WO2012008094A1 - Circuit for computing signal evaluation indicator and optical disc device - Google Patents

Circuit for computing signal evaluation indicator and optical disc device Download PDF

Info

Publication number
WO2012008094A1
WO2012008094A1 PCT/JP2011/003449 JP2011003449W WO2012008094A1 WO 2012008094 A1 WO2012008094 A1 WO 2012008094A1 JP 2011003449 W JP2011003449 W JP 2011003449W WO 2012008094 A1 WO2012008094 A1 WO 2012008094A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
combination pattern
combination
value
Prior art date
Application number
PCT/JP2011/003449
Other languages
French (fr)
Japanese (ja)
Inventor
中嶋 健
小倉 洋一
良二 廣瀬
晴旬 宮下
武史 島本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012008094A1 publication Critical patent/WO2012008094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom
    • G11B20/1012Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom partial response PR(1,2,2,2,1)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10268Improvement or modification of read or write signals bit detection or demodulation methods
    • G11B20/10277Improvement or modification of read or write signals bit detection or demodulation methods the demodulation process being specifically adapted to partial response channels, e.g. PRML decoding
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • G11B20/10361Improvement or modification of read or write signals signal quality assessment digital demodulation process
    • G11B20/10379Improvement or modification of read or write signals signal quality assessment digital demodulation process based on soft decisions, e.g. confidence values, probability estimates, likelihoods values or path metrics of a statistical decoding algorithm

Definitions

  • the present invention relates to a circuit for evaluating the signal quality of a signal obtained by subjecting a reproduced signal reproduced from an optical disc to maximum likelihood decoding.
  • PRML Partial-Response-Maximum-Likelihood
  • PRML decoding method is a technique that combines partial response (PR) and maximum likelihood decoding (ML), and the most probable signal sequence is selected from a reproduced waveform on the assumption that known intersymbol interference occurs.
  • the reproduction signal is sampled in synchronization with the reproduction clock, and based on the Euclidean distance between the reproduction signal and the state transition sequence (the sum of squares of the difference between each sample value of the reproduction signal and each expected value of the state transition sequence). Maximum likelihood decoding is performed.
  • an optical disc apparatus that employs a level determination method (a decoding method that determines the polarity of a reproduction signal based on a comparison result between the reproduction signal and a predetermined threshold and generates a signal sequence based on the determination result)
  • a level determination method a decoding method that determines the polarity of a reproduction signal based on a comparison result between the reproduction signal and a predetermined threshold and generates a signal sequence based on the determination result
  • a jitter value indicating variation in the time direction between the zero cross point of the reproduction signal and the change point of the reproduction clock is used.
  • Patent Document 1 a combination of two state transition sequences that are most likely to cause an error in PRML decoding (that is, two state transition sequences that minimize the Euclidean distance between them) is selected.
  • An evaluation method is described that evaluates the signal quality of a reproduction signal based on the absolute value of the difference value between two index values (hereinafter referred to as the difference absolute value), each indicating the probability of two types of state transition sequences. ing.
  • Patent Document 2 in a PRML decoding method employing PR (1, 2, 2, 2, 1) equalization, an absolute value of a difference between two state transition sequence combinations when a 1-bit error occurs, There is described an evaluation method for evaluating the signal quality of a reproduced signal based on the difference absolute value of the combination of two kinds of state transition sequences when the shortest mark is incorrect by 2 bits or more.
  • Patent Document 3 not only combinations of two state transition sequences that minimize the Euclidean distance between each other, but also combinations of two state transition sequences that do not minimize the Euclidean distance between each other are reproduced signals. It is described that it is used for the evaluation of signal quality.
  • a memory for example, DRAM
  • a reproduction process a process for reproducing a reproduction signal from an optical disk
  • a signal evaluation index calculation process an index value corresponding to the signal quality of the reproduction signal. Since the circuit scale is also reduced by using it in the calculation process), the signal evaluation index calculation process cannot be executed in parallel with the reproduction process.
  • an object of the present invention is to provide a signal evaluation index calculation circuit and an optical disc apparatus capable of calculating an index value corresponding to the signal quality of a reproduction signal in parallel with the reproduction processing.
  • the signal evaluation index calculation circuit is a binary signal obtained by performing maximum likelihood decoding processing on a digital reproduction signal reproduced based on a recording code recorded on an optical disc.
  • a circuit for calculating an index value according to quality wherein a plurality of state transition sequences each of which is assigned a different recording condition and transitions from a first state at a time kn to a second state at a time k Among the combination pattern groups to which a plurality of combination patterns each indicating a combination of two state transition sequences corresponding to the recording condition are respectively assigned, it is determined that the most likely decoding process is most likely.
  • the combination of the first state transition sequence and the second state transition sequence determined to be the second most probable is the composite pattern group assigned to the combination pattern group.
  • a combination of the first state transition sequence and the second state transition sequence by the pattern detection unit for each of the plurality of combination pattern groups A first index indicating the Euclidean distance between the first state transition sequence and the digital reproduction signal when it is detected that the pattern matches any one of a plurality of combination patterns assigned to the group
  • a distance calculation unit that calculates a distance difference value corresponding to a difference value between a value and a second index value indicating the Euclidean distance between the second state transition sequence and the digital reproduction signal; and the distance calculation unit Any one of the plurality of combination pattern groups out of the distance difference values calculated for each of the plurality of combination pattern groups by A selection unit that selects a distance difference value corresponding to a group, an integration unit that generates an integration value by integrating the distance difference values selected by the selection unit, an integration value generated by the integration unit, and the integration And a holding unit that holds a count value indicating the number of times the unit is integrated.
  • the holding unit holds index values (integrated values and number-of-times values) corresponding to the signal quality of the binarized signal, so that reproduction processing (two values corresponding to the recording code recorded on the optical disc) is performed. In parallel with the process of reproducing the binarized signal, an index value corresponding to the signal quality of the binarized signal can be calculated.
  • the plurality of combination pattern groups include a first combination pattern group to which a first recording condition including only one zero-cross portion in a predetermined unit section of the recording code is assigned, and a predetermined combination of the recording code.
  • a second combination pattern group to which a second recording condition is assigned that includes only one isolated pattern with the shortest mark length in the unit section, and two isolated patterns with the shortest mark length in the predetermined unit section of the recording code.
  • a third combination pattern group to which a third recording condition is included, and the first combination pattern group includes a non-minimum distance difference between the Euclidean distances between each other.
  • a plurality of first combination patterns each indicating a combination of two state transition sequences corresponding to the first recording condition are assigned.
  • the second combination pattern group a plurality of combinations of two state transition sequences each corresponding to the second recording condition and the Euclidean distance between them being the minimum distance difference are shown.
  • a second combination pattern is assigned, and the third combination pattern group includes two combinations of state transition sequences corresponding to the third recording condition and the Euclidean distance between them being the minimum distance difference.
  • a plurality of third combination patterns indicated by each may be assigned.
  • a digital reproduction signal corresponding to a recording code of a predetermined section among the recording codes recorded on the optical disc may be repeatedly reproduced, and the selection unit performs the plurality of times each time reproduction of the digital reproduction signal is repeated.
  • the combination pattern to be selected may be switched.
  • the selection unit is most dominant in the signal quality evaluation of the binarized signal among the plurality of combination pattern groups among the distance difference values calculated for the plurality of combination pattern groups by the distance calculation unit.
  • a distance difference value corresponding to a specific combination pattern group may be selected.
  • the signal evaluation index calculation circuit includes a defect detection unit that detects that a defect portion is included in the digital reproduction signal, and a defect portion that is included in the digital reproduction signal by the defect detection unit. And a calculation control unit that stops the integration operation by the integration unit when it is detected.
  • the signal evaluation index calculation circuit includes a limit detection unit that detects that the integrated value generated by the integration unit has reached a predetermined upper limit value, and the integrated value is set to the upper limit value by the limit detection unit. And a calculation control unit that stops the integration operation by the integration unit when it is detected that the value has reached.
  • the index value according to the signal quality of the binarized signal can be calculated in parallel with the reproduction process (processing for reproducing the binarized signal according to the recording code recorded on the optical disc).
  • the figure which shows the combination pattern which each showed the combination of two types of state transition sequences corresponding to the 1st recording condition in which the Euclidean distance between each other is 14 and only one zero cross part is included.
  • the figure which shows the combination pattern which each showed the combination of two types of state transition sequences corresponding to the 1st recording condition in which the Euclidean distance between each other is 14 and only one zero cross part is included.
  • the figure which shows the combination pattern which each showed the combination of two types of state transition sequences corresponding to the 1st recording condition in which the Euclidean distance between each other is 14 and only one zero cross part is included.
  • the combination patterns respectively indicate two combinations of state transition sequences corresponding to the second recording condition in which the Euclidean distance between each other is 12 and only one isolated pattern having the shortest mark length is included.
  • the combination patterns respectively indicate two combinations of state transition sequences corresponding to the second recording condition in which the Euclidean distance between each other is 12 and only one isolated pattern having the shortest mark length is included.
  • the combination patterns respectively indicate two combinations of state transition sequences corresponding to the second recording condition in which the Euclidean distance between each other is 12 and only one isolated pattern having the shortest mark length is included.
  • the combination patterns respectively indicate two combinations of state transition sequences corresponding to the third recording condition in which the Euclidean distance between them is 12 and only two isolated patterns with the shortest mark length are included.
  • the combination patterns respectively indicate two combinations of state transition sequences corresponding to the third recording condition in which the Euclidean distance between them is 12 and only two isolated patterns with the shortest mark length are included.
  • Figure. The combination patterns respectively indicate two combinations of state transition sequences corresponding to the third recording condition in which the Euclidean distance between them is 12 and only two isolated patterns with the shortest mark length are included.
  • Figure. The graph which shows the relationship between the boost amount of a waveform equalizer, and a signal quality evaluation value.
  • the graph which shows the relationship between the boost amount of a waveform equalizer, and a signal quality evaluation value.
  • index calculation circuit The figure for demonstrating the modification of a signal evaluation parameter
  • FIG. 1 shows a configuration example of an optical disc apparatus.
  • This optical disk apparatus includes an optical head unit 11, a preamplifier 12, an automatic gain controller (AGC) 13, a waveform equalizer 14, an analog / digital converter (A / D) 15, a PLL 16, and an adaptive filter. 17, Viterbi decoder 18, demodulator 19, data transfer unit 20, memory 21, error correction unit 22, interface (I / F) 23, data input unit 24, recording compensation unit 25, A laser drive unit 26, a servo control unit 27, a CPU 28, and a signal evaluation index calculation circuit 100.
  • the optical disc 10 records a recording code (for example, a recording code modulated by 1-7PP). Examples of the optical disk 10 include a read-only disk provided with pits physically formed in a spiral shape on a spiral, and a recording disk in which a crystal and an amorphous region are formed on a track called a guide groove.
  • the optical head unit 11 reproduces an analog reproduction signal corresponding to a recording code recorded on the optical disc 10 by irradiating the optical disc 10 with a reproduction beam and receiving reflected light from the optical disc 10.
  • the optical head unit 11 includes a light source that emits an energy beam (reproduction beam, recording beam), a light detection unit that receives reflected light from the optical disc 10 and generates an analog reproduction signal corresponding to the reflected light. .
  • the preamplifier 12 amplifies the analog reproduction signal reproduced by the optical head unit 11.
  • the automatic gain controller 13 controls the amplitude of the analog reproduction signal from the preamplifier 12 so that the amplitude of the digital reproduction signal DS is constant. That is, the amplification gain of the automatic gain controller 13 is controlled so that the amplitude of the digital reproduction signal DS is constant.
  • the waveform equalizer 14 amplifies the high frequency band of the analog reproduction signal from the automatic gain controller 13 and attenuates the noise component of the analog reproduction signal.
  • the boost amount and cut-off frequency of the waveform equalizer 14 can be adjusted by the CPU 28.
  • the analog / digital converter 15 samples the analog reproduction signal from the waveform equalizer 14 in synchronization with the clock signal generated by the PLL 16, and converts the sample value of the analog reproduction signal into a digital value, thereby reproducing the analog reproduction signal.
  • the signal is converted into a digital reproduction signal DS.
  • the PLL 16 adjusts the phase of the clock signal based on the digital reproduction signal DS obtained by the analog / digital converter 15.
  • the adaptive filter 17 is digital so that the frequency characteristic of the digital reproduction signal DS becomes a PR equalization characteristic (for example, PR (1, 2, 2, 2, 1) equalization characteristic) assumed in the Viterbi decoder 18.
  • the playback signal DS is subjected to waveform shaping processing to generate a digital playback signal DPR.
  • the Viterbi decoder 18 records a recording modulation rule (for example, 1-7PP modulation) of a recording code recorded on the optical disc 10 and a PR equalization characteristic (for example, PR (1, 2, 2, 2, 1) of the digital reproduction signal DPR. ) Equalization characteristics), the digital reproduction signal DPR generated by the adaptive filter 17 is subjected to maximum likelihood decoding to generate the most likely binary signal DB.
  • the most probable state transition sequence is selected from a plurality of state transition sequences that transition from the state to the second state at time k, and a binarized signal DB corresponding to the most probable state transition sequence is output.
  • the demodulator 19 performs a demodulation process (for example, 1-7PP demodulation) on the binarized signal DB generated by the Viterbi decoder 18 to generate a digital demodulated signal.
  • the data transfer unit 20 transfers the digital demodulated signal generated by the demodulator 19 to the memory 21.
  • the memory 21 stores the digital demodulated signal transferred by the data transfer unit 20.
  • the error correction unit 22 reads the digital demodulated signal stored in the memory 21 and performs error correction processing.
  • the error correction unit 22 transfers the digital demodulated signal subjected to the error correction process and the correction information (for example, error rate) obtained by the error correction process to the memory 21.
  • the digital demodulated signal (digital demodulated signal subjected to error correction processing) stored in the memory 21 is transferred to a host computer (not shown) through the interface 23. In this way, a digital demodulated signal corresponding to the recording code recorded on the optical disc 10 is reproduced.
  • the data input unit 24 inputs a recording code to be recorded on the optical disc 10 (for example, a recording code subjected to 1-7PP modulation).
  • the recording compensation unit 25 converts the recording code input by the data input unit 24 into a recording pulse based on a preset recording parameter (correspondence between the recording code and the shape of the recording pulse).
  • the recording parameters of the recording compensation unit 25 can be adjusted by the CPU 28.
  • the laser drive unit 26 controls the light emission operation (reproduction beam irradiation) by the optical head unit 11 according to the recording pulse obtained by the recording compensation unit 25.
  • the servo control unit 27 executes focus servo, tracking servo, spherical aberration correction, and the like. Control parameters (parameters such as focus servo, tracking servo, and spherical aberration correction) of the servo control unit 27 can be adjusted by the CPU 28. In this way, the recording code is recorded on the optical disc 10.
  • the signal evaluation index calculation circuit 100 calculates an index value (integrated value DD and integration count NN) according to the signal quality of the binarized signal DB generated by the Viterbi decoder 18. As shown in FIG. 2, the signal evaluation index calculation circuit 100 includes a pattern detection unit 101, a delay unit 102, a distance calculation unit 103, a selector 104 (selection unit), an integrator 105 (integration unit), and a register 106. (Holding part).
  • ⁇ Pattern detection unit> Registered in the pattern detection unit 101 are a plurality of combination pattern groups to which different recording conditions are assigned (here, three combination pattern groups to which three recording conditions having a relatively high error occurrence probability are assigned). Has been. Each of the plurality of combination pattern groups is assigned a plurality of combination patterns corresponding to the recording conditions assigned to the combination pattern group. In each of the plurality of combination pattern groups, each of the plurality of combination patterns is included in the combination pattern group in a plurality of state transition sequences that transition from the first state at time kn to the second state at time k. Two combinations of state transition sequences corresponding to assigned recording conditions are shown.
  • the pattern detection unit 101 performs the most in the Viterbi decoder 18 among a plurality of state transition sequences that transition from the first state at the time kn to the second state at the time k for each of the plurality of combination pattern groups.
  • the combination of the first state transition sequence PA determined to be probable and the second state transition sequence PB determined to be the second most probable is one of a plurality of combination patterns assigned to the combination pattern group Detect one match.
  • the pattern detection unit 101 may include a plurality (here, three) of pattern detectors 111, 112, and 113. First, second, and third combination pattern groups are registered in the pattern detectors 111, 112, and 113, respectively.
  • First combination pattern group is assigned a recording condition (first recording condition) in which only one zero-cross portion is included in a predetermined unit section of the recording code. Also, the 18 combination patterns shown in FIGS. 3 to 5 are assigned to the first combination pattern group. Each of these 18 combination patterns indicates a combination of two kinds of state transition sequences corresponding to the first recording condition while the Euclidean distance between them is “14 (non-minimum distance difference)”. .
  • Second combination pattern group is assigned a recording condition (second recording condition) in which only one isolated pattern having the shortest mark length is included in a predetermined unit section of the recording code.
  • second recording condition a recording condition in which only one isolated pattern having the shortest mark length is included in a predetermined unit section of the recording code.
  • 18 combination patterns shown in FIGS. 6 to 8 are assigned to the second combination pattern group. Each of these 18 combination patterns indicates a combination of two state transition sequences corresponding to the second recording condition while the Euclidean distance between them is “12 (minimum distance difference)”.
  • the third combination pattern group is assigned a recording condition (third recording condition) in which only two isolated patterns having the shortest mark length are included in a predetermined unit section of the recording code.
  • the 18 combination patterns shown in FIGS. 9 to 11 are assigned to the third combination pattern group.
  • Each of these 18 combination patterns indicates a combination of two types of state transition sequences corresponding to the third recording condition while the Euclidean distance between them is “12 (minimum distance difference)”.
  • the pattern detectors 111, 112, 113 detect the combination of the first and second state transition sequences PA, PB, respectively, and the combination of the first and second state transition sequences PA, PB is the first and second combinations, respectively.
  • Detection pulses P1, P2, and P3 are output when it is detected that any one of the 18 combination patterns assigned to the third combination pattern group is matched.
  • the delay unit 102 delays the digital reproduction signal DPR obtained by the adaptive filter 17 and supplies it to the distance calculation unit 103 in order to match the pattern detection timing in the pattern detection unit 101 with the calculation timing in the distance calculation unit 103. To do.
  • the distance calculation unit 103 includes a plurality of combinations (in this case, three) of combination pattern groups in which the combination of the first and second state transition sequences PA and PB is assigned to the combination pattern group by the pattern detection unit 101.
  • the first index value Euclidean distance between the first state transition sequence PA and the digital reproduction signal DPR
  • the second index value are detected.
  • a distance difference value corresponding to a difference value between is calculated.
  • the distance calculation unit 103 may include a plurality (three in this case) of distance calculators 131, 132, and 133.
  • the distance calculators 131, 132, and 133 are Euclidean signals of the first state transition sequence PA and the digital reproduction signal DPR when the detection pulses P1, P2, and P3 are output by the pattern detectors 111, 112, and 113, respectively.
  • a first index value indicating a distance (a sum of squares of differences between each expected value of the first state transition sequence and each sample value of the digital reproduction signal DPR from time kn to time k), and a second state transition
  • a second value indicating the Euclidean distance between the column PB and the digital reproduction signal DPR (the sum of squared differences between the respective expected values of the second state transition sequence from the time kn to the time k and the sample values of the digital reproduction signal DPR).
  • the index value of is calculated.
  • the distance calculators 131, 132, 133 calculate distance difference values D1, D2, D3 corresponding to the difference values of the first and second index values, respectively.
  • the distance calculator 131. , 132, and 133 calculate “
  • the selector 104 selects a plurality of combination pattern groups from among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 for each of a plurality (here, three) combination pattern groups. A distance difference value corresponding to any one combination pattern group is selected.
  • the integrator 105 generates an integrated value DD by integrating the distance difference values (here, any one of the distance difference values D1, D2, and D3) selected by the selector 104.
  • the register 106 holds an integrated value DD generated by the integrator 105 and a count value NN indicating the number of integrations of the integrator 105.
  • the CPU 28 calculates a signal quality evaluation value M having a correlation with the error occurrence probability of the binarized signal DB based on the integrated value DD and the count value NN held by the signal evaluation index calculation circuit 100.
  • the calculation of the signal quality evaluation value M by the CPU 28 will be described.
  • the generic name of the distance difference values D1, D2, and D3 is expressed as “distance difference value D”.
  • the signal quality evaluation value M (calculation of the signal quality evaluation value M, correlation between the signal quality evaluation value M and the error occurrence probability of the binarized signal, etc.), refer to Patent Documents 1 and 2. The description is incorporated.
  • the distance difference value D and the variance value ⁇ 2 can be expressed as (Equation 1) and (Equation 2), respectively.
  • the first term on the right side of (Expression 2) corresponds to the mean square value of the distance difference value D
  • the second term on the right side of (Expression 2) corresponds to the square value of the average value of the distance difference value D.
  • the distribution of the distance difference values D is a normal distribution in which the average value of the distance difference values D is “0”
  • the signal quality evaluation value M can be simplified as in (Equation 3).
  • the signal quality evaluation value M can be calculated based on the integrated value DD, the count value NN, and the Euclidean distance d between the first and second state transition sequences PA and PB.
  • the register 106 holds the index values (integrated value DD and number-of-times value NN) corresponding to the signal quality of the binarized signal, so that the reproduction process (two according to the recording code recorded on the optical disc 10) is performed.
  • an index value corresponding to the signal quality of the binarized signal can be calculated.
  • the signal quality evaluation value M correlated with the error probability of the binarized signal DB can be calculated in parallel with the reproduction process.
  • the calculation of the signal quality evaluation value M can be executed at high speed and with low power consumption, and the circuit scale of the signal evaluation index calculation circuit 100 can be increased. Can be reduced.
  • the CPU 28 weights the signal quality evaluation value M calculated for each of the plurality of combination pattern groups by the frequency of occurrence of the combination pattern assigned to the combination pattern group, and cumulatively adds these signal quality evaluation values. Thus, a new signal quality evaluation value correlated with the error occurrence probability of the binarized signal DB may be calculated.
  • the signal quality evaluation value M corresponding to the first combination pattern group M (the signal quality evaluation value M calculated based on the integration value DD obtained by integrating the distance difference value D1). ) Is expressed as “signal quality evaluation value M14”, and the signal quality evaluation value M corresponding to the second combination pattern group (signal quality calculated based on the integrated value DD obtained by integrating the distance difference value D2)
  • the evaluation value M) is expressed as “signal quality evaluation value M12A” and is calculated based on the signal quality evaluation value M corresponding to the third combination pattern group (accumulated value DD obtained by integrating the distance difference value D3).
  • the signal quality evaluation value M) is expressed as “signal quality evaluation value M12B”.
  • the selector 104 selects the distance difference value D1 corresponding to the first combination pattern group among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 based on the control of the CPU.
  • a reproduction process (a process of reproducing the binarized signal DB corresponding to the recording code recorded on the optical disc 10) is executed. That is, the optical head unit 11 reproduces an analog reproduction signal from a predetermined recording area of the optical disk 10, and the analog / digital converter 15 performs an analog process processed by the preamplifier 12, the automatic gain controller 13, and the waveform equalizer 14.
  • the reproduction signal is converted into a digital reproduction signal DS, and the adaptive filter 17 and the Viterbi decoder 18 convert the digital reproduction signal DS into a binarized signal DB.
  • the integrator 105 integrates the distance difference value D1 to generate an integrated value DD.
  • the CPU 28 calculates the signal quality evaluation value M14 based on the integrated value DD (integrated value of the distance difference value D1) and the count value NN held in the register 106.
  • the selector 104 corresponds to the second combination pattern group among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 based on the control of the CPU 28.
  • the distance difference value D2 to be selected is selected.
  • the reproduction process is executed again.
  • the optical head unit 11 reproduces an analog reproduction signal from the same recording area of the optical disc 10. That is, the digital reproduction signal DS reproduced in the calculation of the signal quality evaluation value M14 is reproduced again.
  • the integrator 105 integrates the distance difference value D2 to generate an integrated value DD.
  • the CPU 28 calculates the signal quality evaluation value M12A based on the integrated value DD (integrated value of the distance difference value D2) and the count value NN held in the register 106.
  • the selector 104 corresponds to the third combination pattern group among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 based on the control of the CPU.
  • the distance difference value D3 to be selected is selected.
  • the reproduction process is executed again.
  • the optical head unit 11 reproduces an analog reproduction signal from the same recording area of the optical disc 10.
  • the integrator 105 integrates the distance difference value D3 to generate an integrated value DD.
  • the CPU 28 calculates the signal quality evaluation value M12B based on the integrated value DD (integrated value of the distance difference value D3) and the number-of-times value NN held in the register 106.
  • the digital reproduction signal DS corresponding to the recording code of a predetermined section among the recording codes recorded on the optical disc 10 is repeatedly reproduced, and the selector 104 repeats the reproduction of the digital reproduction signal DS under the control of the CPU 28.
  • a combination pattern group selected as a processing target among a plurality (three in this case) of combination pattern groups is switched.
  • the CPU 28 is assigned to the first, second, and third combination pattern groups.
  • the signal quality evaluation values M14, M12A, and M12B are weighted according to the occurrence frequency of the combination pattern, the signal quality evaluation values M14, M12A, and M12B are cumulatively added to calculate a new signal quality evaluation value.
  • the CPU 28 uses the signal quality evaluation value M (or a new signal quality evaluation value obtained by the above-described weighted addition) calculated for each of a plurality (three in this case) of combination pattern groups, as an optical disc.
  • Device parameters such as the cut-off frequency and boost amount of the waveform equalizer 14, the recording parameter of the recording compensation unit 25, and the control parameter of the servo control unit 27 may be adjusted.
  • the CPU 28 selects the optical disc based on the signal quality evaluation value M corresponding to the combination pattern group that is most dominant in the evaluation of the signal quality of the binarized signal DB among a plurality (here, three) combination pattern groups. Device parameters may be adjusted.
  • the selector 104 is a distance difference corresponding to the most dominant combination pattern group in the evaluation of the signal quality of the binarized signal DB among a plurality (here, three) combination pattern groups. Select a value.
  • the CPU 28 sets the boost amount of the waveform equalizer 14 to an arbitrary boost amount.
  • the digital reproduction signal DS corresponding to the recording code of a predetermined section among the recording codes recorded on the optical disc 10 is repeatedly reproduced, and the selector 104 is repeatedly reproduced based on the control of the CPU 28.
  • the combination pattern group selected as the processing target among the first, second, and third combination pattern groups is switched. Thereby, signal quality evaluation values M14, M12A, M12B corresponding to an arbitrary boost amount are calculated.
  • the CPU 28 sets the boost amount of the waveform equalizer 14 to another boost amount.
  • the digital reproduction signal DS corresponding to the recording code of a predetermined section among the recording codes recorded on the optical disc 10 is repeatedly reproduced, and the selector 104 is repeatedly reproduced based on the control of the CPU 28.
  • the combination pattern group selected as the processing target among the first, second, and third combination pattern groups is switched. Thereby, signal quality evaluation values M14, M12A, and M12B corresponding to different boost amounts are calculated.
  • the boost amount of the waveform equalizer 14 and the signal quality evaluation values M14, M12A, and M12B are calculated. Correlation with each can be detected.
  • the degree of influence of the signal quality evaluation value on the signal quality of the binarized signal DB depends on the frequency of occurrence of the combination pattern assigned to the combination pattern group.
  • the occurrence frequency of the combination pattern assigned to the first combination pattern group among the first to third combination pattern groups. Is often the highest.
  • the CPU 28 is based on the signal quality evaluation value M14 corresponding to the first combination pattern group among the signal quality evaluation values M14, M12A, and M12B (for example, the signal quality evaluation value M14 becomes the minimum value).
  • the boost amount of the waveform equalizer 14 is adjusted.
  • the selector 104 selects the distance difference value D1 corresponding to the first combination pattern group among the distance difference values D1, D2, and D3 calculated for each combination pattern group based on the control of the CPU.
  • the change amounts of the signal quality evaluation values M14, M12A, and M12B are the change amounts ⁇ M14, ⁇ M12A, and ⁇ M12B, respectively.
  • the change amounts ⁇ M14 and ⁇ M12B are smaller than the change amount ⁇ M12A. That is, in the case of FIG.
  • the signal quality evaluation value M12A among the signal quality evaluation values M14, M12A, and M12B is most sensitive to the signal quality of the binarized signal DB. Therefore, in this case, the CPU 28 is based on the signal quality evaluation value M12A corresponding to the second combination pattern group among the signal quality evaluation values M14, M12A, and M12B (for example, the signal quality evaluation value M12A becomes the minimum value). Ii), the boost amount of the waveform equalizer 14 is adjusted. Thereby, the margin of reliability of the binarized signal DB with respect to the boost amount of the waveform equalizer 14 can be increased. In this case, the selector 104 selects the distance difference value D2 corresponding to the second combination pattern group among the distance difference values D1, D2, and D3 calculated for each combination pattern group based on the control of the CPU.
  • the parameters of the optical disk apparatus can be adjusted in parallel with the reproduction process. Also, without adjusting the parameters of the optical disk device at the time of starting the optical disk device, the optical disk device is started after setting the parameters of the optical disk device to the initial values, and the parameters of the optical disk device are optimized in parallel with the reproduction process. Therefore, the startup time of the optical disk apparatus can be shortened. Thereby, the stress of the user of the optical disk apparatus (stress due to waiting for activation of the optical disk apparatus) can be alleviated.
  • the CPU 28 controls the CPU 28 to select the distance difference value corresponding to the most dominant combination pattern group in the evaluation of the signal quality of the binarized signal DB among the plurality of combination pattern groups.
  • Signal quality evaluation value M corresponding to the most dominant combination pattern group in the evaluation of the signal quality of the binarized signal DB can be calculated, and the parameters of the optical disc apparatus are adjusted based on the signal quality evaluation value it can.
  • the parameter adjustment of the optical disc apparatus is performed more than the case of adjusting the parameters of the optical disc apparatus based on the new signal quality evaluation value obtained by weighted addition of the signal quality evaluation value M calculated for each combination pattern. The time required can be shortened.
  • the optical disc apparatus may include a signal evaluation index calculation circuit 200 shown in FIG. 14 instead of the signal evaluation index calculation circuit 100 shown in FIGS.
  • the signal evaluation index calculation circuit 200 includes a defect detection unit 201, a limit detection unit 202, and an operation control unit 203 in addition to the configuration of the signal evaluation index calculation circuit 100 shown in FIG.
  • the defect detection unit 201 detects that the digital reproduction signal DS obtained by the analog-to-digital converter 15 includes a defect portion (portion where no valid information exists)
  • the defect detection unit 201 outputs a defect detection signal S201.
  • the limit detection unit 202 When the limit detection unit 202 detects that the integrated value DD obtained by the integrator 105 has reached a predetermined upper limit value, the limit detection unit 202 outputs a limit detection signal S202. When at least one of the defect detection signal S201 and the limit detection signal S202 is output, the arithmetic control unit 203 stops the integration operation by the integrator 105. For example, the arithmetic control unit 203 outputs an OR circuit 211 that outputs a logical sum of the defect detection signal S201 and the limit detection signal S202, and the distance selected by the selector 104 when the output of the OR circuit 211 is “0”. A selector 212 that supplies a difference value (any one of distance difference values D1 to D3) to the integrator 105 and supplies “0” to the integrator 105 when the output of the OR circuit 211 is “1”; May be included.
  • a selector 212 that supplies a difference value (any one of distance difference values D1 to D3) to the integrator 105 and supplies
  • the distance difference value D may increase and the integrator 105 may overflow.
  • the integrated value DD increases extremely, or the integrator 105 malfunctions due to the overflow of the integrator 105, and the integrated value DD. May be drastically reduced.
  • the defect detection unit 201 detects that a defective portion is included in the digital reproduction signal DS, and outputs a defect detection signal S201. Thereby, the integration operation of the integrator 105 is stopped by the arithmetic control unit 203, and it is possible to prevent the integrated value DD from being extremely increased due to the defective portion included in the digital reproduction signal DS.
  • limit detection unit 202 detects that integrated value DD has reached a predetermined upper limit value, and outputs limit detection signal S202. Thereby, it is possible to prevent the integrated value DD from being extremely reduced due to the overflow of the integrator 105.
  • the reliability of the integrated value DD can be maintained, and as a result, the reliability of the signal quality evaluation value M can be maintained.
  • the parameters of the optical disc apparatus can be accurately adjusted based on the signal quality evaluation value M.
  • the signal evaluation index calculation circuit described above is useful not only for next-generation recording / reproducing optical disc apparatuses but also for high-density and large-capacity optical disc apparatuses that perform recording / reproduction such as magneto-optical disc apparatuses. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

In the present disclosures, for each combination pattern group, a pattern detection unit (101) detects that the combination of a first state transition array (PA) that has been determined to be the most probable in maximum likelihood decoding processing and a second state transition array (PB) that has been determined to be the second most probable matches one of a plurality of combination patterns allocated to the combination pattern group in question. For each combination pattern group, a distance computation unit (102) computes distance differences (D1, D2, D3) on the basis of a digital playback signal (DPR) and the first and second state transition arrays (PA, PB) in response to the detection by the pattern detection unit (101). A selection unit (104) selects one of the distance differences (D1, D2, D3). An integration unit (105) generates an integrated value (DD) by integrating the distance difference selected by the selection unit (104). A holding unit (106) holds the integrated value (DD) and a number of times (NN) that indicates the number of times the integration unit (105) has integrated.

Description

信号評価指標演算回路および光ディスク装置Signal evaluation index calculation circuit and optical disk apparatus
 この発明は、光ディスクから再生された再生信号に最尤復号処理を施すことによって得られた信号の信号品質を評価する回路に関する。 The present invention relates to a circuit for evaluating the signal quality of a signal obtained by subjecting a reproduced signal reproduced from an optical disc to maximum likelihood decoding.
 近年、光ディスク(例えば、Blu-ray Diskなど)の高記録密度化に伴い、符号間干渉の増大およびSNR(Signal Noise Ratio)の劣化が顕著になる傾向にある。そのため、光ディスク装置では、PRML(Partial Response Maximum Likelihood)復号方式が採用されることが多くなってきている。PRML復号方式は、パーシャルレスポンス(PR)と最尤復号(ML)とを組み合わせた技術であり、既知の符号間干渉が起こることを前提として再生波形から最も確からしい信号系列が選択される。具体的には、再生信号を再生クロックに同期してサンプリングし、再生信号と状態遷移列とのユークリッド距離(再生信号の各サンプル値と状態遷移列の各期待値との差分二乗和)に基づいて最尤復号が実行される。 In recent years, with the increase in recording density of optical discs (for example, Blu-ray discs), intersymbol interference and SNR (Signal noise ratio) tend to become prominent. Therefore, PRML (Partial-Response-Maximum-Likelihood) decoding method is increasingly used in optical disk devices. The PRML decoding method is a technique that combines partial response (PR) and maximum likelihood decoding (ML), and the most probable signal sequence is selected from a reproduced waveform on the assumption that known intersymbol interference occurs. Specifically, the reproduction signal is sampled in synchronization with the reproduction clock, and based on the Euclidean distance between the reproduction signal and the state transition sequence (the sum of squares of the difference between each sample value of the reproduction signal and each expected value of the state transition sequence). Maximum likelihood decoding is performed.
 また、光ディスク装置では、再生性能の最適化や再生性能の検査などのために、光ディスク装置によって光ディスクから再生された再生信号の信号品質を評価することが求められている。従来、レベル判定方式(再生信号と所定の閾値との比較結果に基づいて再生信号の極性を判別し、その判別結果に基づいて信号系列を生成する復号方式)が採用された光ディスク装置では、再生信号の信号品質を評価する指標として、再生信号のゼロクロス点と再生クロックの変化点との時間方向のばらつきを示したジッタ値が利用されている。しかしながら、PRML復号方式では、サンプリングされたすべての再生信号が復号結果に影響するので、ジッタ値を最適化しても最尤復号によって得られた信号系列の誤り発生確率が低下しない場合がある。そのため、PRML復号方式に適した再生信号の信号評価方法が提案されている(例えば、特許文献1,2,3など)。 Further, in the optical disc apparatus, it is required to evaluate the signal quality of the reproduction signal reproduced from the optical disc by the optical disc apparatus for the purpose of optimizing the reproduction performance and examining the reproduction performance. Conventionally, an optical disc apparatus that employs a level determination method (a decoding method that determines the polarity of a reproduction signal based on a comparison result between the reproduction signal and a predetermined threshold and generates a signal sequence based on the determination result) As an index for evaluating the signal quality of a signal, a jitter value indicating variation in the time direction between the zero cross point of the reproduction signal and the change point of the reproduction clock is used. However, in the PRML decoding method, since all sampled reproduction signals affect the decoding result, there is a case where the error occurrence probability of the signal sequence obtained by the maximum likelihood decoding does not decrease even if the jitter value is optimized. Therefore, a signal evaluation method for a reproduction signal suitable for the PRML decoding method has been proposed (for example, Patent Documents 1, 2, and 3).
 特許文献1には、PRML復号において最も誤りが発生しやすい2通りの状態遷移列(すなわち、互いの間のユークリッド距離が最小となる2通りの状態遷移列)の組合せを選択し、このような2通りの状態遷移列の確からしさをそれぞれ示した2個の指標値の差分値の絶対値(以下、差分絶対値と表記)に基づいて、再生信号の信号品質を評価する評価方法が記載されている。特許文献2には、PR(1,2,2,2,1)等化を採用したPRML復号方式において、1ビット誤りが発生する場合の2通りの状態遷移列の組合せの差分絶対値と、最短マークが2ビット以上誤る場合の2通りの状態遷移列の組合せの差分絶対値とに基づいて、再生信号の信号品質を評価する評価方法が記載されている。特許文献3には、互いの間のユークリッド距離が最小となる2通りの状態遷移列の組合せだけでなく、互いの間のユークリッド距離が最小とならない2通りの状態遷移列の組合せも、再生信号の信号品質の評価に利用することが記載されている。 In Patent Document 1, a combination of two state transition sequences that are most likely to cause an error in PRML decoding (that is, two state transition sequences that minimize the Euclidean distance between them) is selected. An evaluation method is described that evaluates the signal quality of a reproduction signal based on the absolute value of the difference value between two index values (hereinafter referred to as the difference absolute value), each indicating the probability of two types of state transition sequences. ing. In Patent Document 2, in a PRML decoding method employing PR (1, 2, 2, 2, 1) equalization, an absolute value of a difference between two state transition sequence combinations when a 1-bit error occurs, There is described an evaluation method for evaluating the signal quality of a reproduced signal based on the difference absolute value of the combination of two kinds of state transition sequences when the shortest mark is incorrect by 2 bits or more. In Patent Document 3, not only combinations of two state transition sequences that minimize the Euclidean distance between each other, but also combinations of two state transition sequences that do not minimize the Euclidean distance between each other are reproduced signals. It is described that it is used for the evaluation of signal quality.
特許第3926688号公報Japanese Patent No. 3926688 国際公開第2008/081820号International Publication No. 2008/081820 特許第3668202号公報Japanese Patent No. 3668202
 しかしながら、従来の光ディスク装置では、再生処理(光ディスクから再生信号を再生する処理)の際に利用されるメモリ(例えば、DRAM)を信号評価指標演算処理(再生信号の信号品質に応じた指標値を演算する処理)の際にも利用することによって回路規模の削減を図っているので、再生処理に並行して信号評価指標演算処理を実行することができない。 However, in a conventional optical disc apparatus, a memory (for example, DRAM) used in a reproduction process (a process for reproducing a reproduction signal from an optical disk) is subjected to a signal evaluation index calculation process (an index value corresponding to the signal quality of the reproduction signal). Since the circuit scale is also reduced by using it in the calculation process), the signal evaluation index calculation process cannot be executed in parallel with the reproduction process.
 そこで、この発明は、再生処理に並行して再生信号の信号品質に応じた指標値を演算可能な信号評価指標演算回路および光ディスク装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a signal evaluation index calculation circuit and an optical disc apparatus capable of calculating an index value corresponding to the signal quality of a reproduction signal in parallel with the reproduction processing.
 この発明の1つの局面に従うと、信号評価指標演算回路は、光ディスクに記録された記録符号に基づいて再生されたデジタル再生信号に最尤復号処理を施すことによって得られた二値化信号の信号品質に応じた指標値を演算する回路であって、それぞれに異なる記録条件が割り当てられ且つ時刻k-nにおける第1の状態から時刻kにおける第2の状態へ遷移する複数通りの状態遷移列のうちその記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の組合せパターンがそれぞれに割り当てられた複数の組合せパターングループ毎に、上記最尤復号処理において最も確からしいと判断された第1の状態遷移列と2番目に確からしいと判断された第2の状態遷移列の組合せが、その組合せパターングループに割り当てられた複数の組合せパターンのいずれか1つに一致することを検出するパターン検出部と、上記複数の組合せパターングループ毎に、上記パターン検出部によって上記第1および第2の状態遷移列の組合せがその組合せパターングループに割り当てられた複数の組合せパターンのいずれか1つに一致することが検出された場合に、上記第1の状態遷移列と上記デジタル再生信号との間のユークリッド距離を示した第1の指標値と上記第2の状態遷移列と上記デジタル再生信号との間のユークリッド距離を示した第2の指標値との差分値に対応する距離差分値を演算する距離演算部と、上記距離演算部によって上記複数の組合せパターングループ毎に演算された距離差分値の中から上記複数の組合せパターングループのうちいずれか1つの組合せパターングループに対応する距離差分値を選択する選択部と、上記選択部によって選択された距離差分値を積算することによって積算値を生成する積算部と、上記積算部によって生成された積算値と上記積算部の積算回数を示した回数値とを保持する保持部とを備える。 According to one aspect of the present invention, the signal evaluation index calculation circuit is a binary signal obtained by performing maximum likelihood decoding processing on a digital reproduction signal reproduced based on a recording code recorded on an optical disc. A circuit for calculating an index value according to quality, wherein a plurality of state transition sequences each of which is assigned a different recording condition and transitions from a first state at a time kn to a second state at a time k Among the combination pattern groups to which a plurality of combination patterns each indicating a combination of two state transition sequences corresponding to the recording condition are respectively assigned, it is determined that the most likely decoding process is most likely. The combination of the first state transition sequence and the second state transition sequence determined to be the second most probable is the composite pattern group assigned to the combination pattern group. A combination of the first state transition sequence and the second state transition sequence by the pattern detection unit for each of the plurality of combination pattern groups. A first index indicating the Euclidean distance between the first state transition sequence and the digital reproduction signal when it is detected that the pattern matches any one of a plurality of combination patterns assigned to the group A distance calculation unit that calculates a distance difference value corresponding to a difference value between a value and a second index value indicating the Euclidean distance between the second state transition sequence and the digital reproduction signal; and the distance calculation unit Any one of the plurality of combination pattern groups out of the distance difference values calculated for each of the plurality of combination pattern groups by A selection unit that selects a distance difference value corresponding to a group, an integration unit that generates an integration value by integrating the distance difference values selected by the selection unit, an integration value generated by the integration unit, and the integration And a holding unit that holds a count value indicating the number of times the unit is integrated.
 上記信号評価指標演算回路では、二値化信号の信号品質に応じた指標値(積算値および回数値)を保持部が保持することによって、再生処理(光ディスクに記録された記録符号に応じた二値化信号を再生する処理)に並行して二値化信号の信号品質に応じた指標値を演算できる。 In the signal evaluation index calculation circuit, the holding unit holds index values (integrated values and number-of-times values) corresponding to the signal quality of the binarized signal, so that reproduction processing (two values corresponding to the recording code recorded on the optical disc) is performed. In parallel with the process of reproducing the binarized signal, an index value corresponding to the signal quality of the binarized signal can be calculated.
 なお、上記複数の組合せパターングループは、上記記録符号の所定の単位区間においてゼロクロス部分が1個のみ含まれる第1の記録条件が割り当てられた第1の組合せパターングループと、上記記録符号の所定の単位区間において最短マーク長の孤立パターンが1個のみ含まれる第2の記録条件が割り当てられた第2の組合せパターングループと、上記記録符号の所定の単位区間において最短マーク長の孤立パターンが2個のみ含まれる第3の記録条件が割り当てられた第3の組合せパターングループとを含んでいても良く、上記第1の組合せパターングループには、互いの間のユークリッド距離が非最小距離差であるとともに上記第1の記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の第1の組合せパターンが割り当てられ、上記第2の組合せパターングループには、互いの間のユークリッド距離が最小距離差であるとともに上記第2の記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の第2の組合せパターンが割り当てられ、上記第3の組合せパターングループには、互いの間のユークリッド距離が最小距離差であるとともに上記第3の記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の第3の組合せパターンが割り当てられていても良い。 The plurality of combination pattern groups include a first combination pattern group to which a first recording condition including only one zero-cross portion in a predetermined unit section of the recording code is assigned, and a predetermined combination of the recording code. A second combination pattern group to which a second recording condition is assigned that includes only one isolated pattern with the shortest mark length in the unit section, and two isolated patterns with the shortest mark length in the predetermined unit section of the recording code. And a third combination pattern group to which a third recording condition is included, and the first combination pattern group includes a non-minimum distance difference between the Euclidean distances between each other. A plurality of first combination patterns each indicating a combination of two state transition sequences corresponding to the first recording condition are assigned. In the second combination pattern group, a plurality of combinations of two state transition sequences each corresponding to the second recording condition and the Euclidean distance between them being the minimum distance difference are shown. A second combination pattern is assigned, and the third combination pattern group includes two combinations of state transition sequences corresponding to the third recording condition and the Euclidean distance between them being the minimum distance difference. A plurality of third combination patterns indicated by each may be assigned.
 また、上記光ディスクに記録された記録符号のうち所定区間の記録符号に応じたデジタル再生信号が繰り返し再生されても良く、上記選択部は、上記デジタル再生信号の再生が繰り返される毎に、上記複数の組合せパターングループのうち選択対象とする組合せパターンを切り替えても良い。 In addition, a digital reproduction signal corresponding to a recording code of a predetermined section among the recording codes recorded on the optical disc may be repeatedly reproduced, and the selection unit performs the plurality of times each time reproduction of the digital reproduction signal is repeated. Of these combination pattern groups, the combination pattern to be selected may be switched.
 または、上記選択部は、上記距離演算部によって上記複数の組合せパターングループ毎に演算された距離差分値の中から上記複数の組合せパターングループのうち上記二値化信号の信号品質の評価において最も支配的な組合せパターングループに対応する距離差分値を選択しても良い。 Alternatively, the selection unit is most dominant in the signal quality evaluation of the binarized signal among the plurality of combination pattern groups among the distance difference values calculated for the plurality of combination pattern groups by the distance calculation unit. A distance difference value corresponding to a specific combination pattern group may be selected.
 なお、上記信号評価指標演算回路は、上記デジタル再生信号の中に欠陥部分が含まれていることを検出する欠陥検出部と、上記欠陥検出部によって上記デジタル再生信号の中に欠陥部分が含まれていることが検出された場合に、上記積算部による積算動作を停止させる演算制御部とをさらに備えていても良い。このように構成することにより、積算値の極端な増加を防止できるので、積算値の信頼性を維持できる。 The signal evaluation index calculation circuit includes a defect detection unit that detects that a defect portion is included in the digital reproduction signal, and a defect portion that is included in the digital reproduction signal by the defect detection unit. And a calculation control unit that stops the integration operation by the integration unit when it is detected. By configuring in this way, an extreme increase in the integrated value can be prevented, so that the reliability of the integrated value can be maintained.
 また、上記信号評価指標演算回路は、上記積算部によって生成された積算値が予め定められた上限値に到達したことを検出するリミット検出部と、上記リミット検出部によって上記積算値が上記上限値に到達したことが検出された場合に、上記積算部による積算動作を停止させる演算制御部とをさらに備えていても良い。このように構成することにより、積算値の極端な減少を防止できるので、積算値の信頼性を維持できる。 The signal evaluation index calculation circuit includes a limit detection unit that detects that the integrated value generated by the integration unit has reached a predetermined upper limit value, and the integrated value is set to the upper limit value by the limit detection unit. And a calculation control unit that stops the integration operation by the integration unit when it is detected that the value has reached. By configuring in this way, an extreme decrease in the integrated value can be prevented, so that the reliability of the integrated value can be maintained.
 以上のように、再生処理(光ディスクに記録された記録符号に応じた二値化信号を再生する処理)に並行して二値化信号の信号品質に応じた指標値を演算できる。 As described above, the index value according to the signal quality of the binarized signal can be calculated in parallel with the reproduction process (processing for reproducing the binarized signal according to the recording code recorded on the optical disc).
光ディスク装置の構成例を示す図。The figure which shows the structural example of an optical disk device. 信号評価指標演算回路の構成例を示す図。The figure which shows the structural example of a signal evaluation parameter | index calculation circuit. 互いの間のユークリッド距離が14であるとともにゼロクロス部分が1個のみ含まれている第1の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The figure which shows the combination pattern which each showed the combination of two types of state transition sequences corresponding to the 1st recording condition in which the Euclidean distance between each other is 14 and only one zero cross part is included. 互いの間のユークリッド距離が14であるとともにゼロクロス部分が1個のみ含まれている第1の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The figure which shows the combination pattern which each showed the combination of two types of state transition sequences corresponding to the 1st recording condition in which the Euclidean distance between each other is 14 and only one zero cross part is included. 互いの間のユークリッド距離が14であるとともにゼロクロス部分が1個のみ含まれている第1の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The figure which shows the combination pattern which each showed the combination of two types of state transition sequences corresponding to the 1st recording condition in which the Euclidean distance between each other is 14 and only one zero cross part is included. 互いの間のユークリッド距離が12であるとともに最短マーク長の孤立パターンが1個のみ含まれている第2の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The combination patterns respectively indicate two combinations of state transition sequences corresponding to the second recording condition in which the Euclidean distance between each other is 12 and only one isolated pattern having the shortest mark length is included. Figure. 互いの間のユークリッド距離が12であるとともに最短マーク長の孤立パターンが1個のみ含まれている第2の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The combination patterns respectively indicate two combinations of state transition sequences corresponding to the second recording condition in which the Euclidean distance between each other is 12 and only one isolated pattern having the shortest mark length is included. Figure. 互いの間のユークリッド距離が12であるとともに最短マーク長の孤立パターンが1個のみ含まれている第2の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The combination patterns respectively indicate two combinations of state transition sequences corresponding to the second recording condition in which the Euclidean distance between each other is 12 and only one isolated pattern having the shortest mark length is included. Figure. 互いの間のユークリッド距離が12であるとともに最短マーク長の孤立パターンが2個のみ含まれている第3の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The combination patterns respectively indicate two combinations of state transition sequences corresponding to the third recording condition in which the Euclidean distance between them is 12 and only two isolated patterns with the shortest mark length are included. Figure. 互いの間のユークリッド距離が12であるとともに最短マーク長の孤立パターンが2個のみ含まれている第3の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The combination patterns respectively indicate two combinations of state transition sequences corresponding to the third recording condition in which the Euclidean distance between them is 12 and only two isolated patterns with the shortest mark length are included. Figure. 互いの間のユークリッド距離が12であるとともに最短マーク長の孤立パターンが2個のみ含まれている第3の記録条件に対応する2通りの状態遷移列の組合せを各々が示した組合せパターンを示す図。The combination patterns respectively indicate two combinations of state transition sequences corresponding to the third recording condition in which the Euclidean distance between them is 12 and only two isolated patterns with the shortest mark length are included. Figure. 波形等化器のブースト量と信号品質評価値との関係を示すグラフ。The graph which shows the relationship between the boost amount of a waveform equalizer, and a signal quality evaluation value. 波形等化器のブースト量と信号品質評価値との関係を示すグラフ。The graph which shows the relationship between the boost amount of a waveform equalizer, and a signal quality evaluation value. 信号評価指標演算回路の変形例について説明するための図。The figure for demonstrating the modification of a signal evaluation parameter | index calculation circuit.
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (光ディスク装置)
 図1は、光ディスク装置の構成例を示す。この光ディスク装置は、光学ヘッド部11と、プリアンプ12と、自動利得制御器(AGC)13と、波形等化器14と、アナログ・デジタル変換器(A/D)15と、PLL16と、適応フィルタ17と、ビダビ復号器18と、復調器19と、データ転送部20と、メモリ21と、誤り訂正部22と、インターフェイス(I/F)23と、データ入力部24と、記録補償部25と、レーザ駆動部26と、サーボ制御部27と、CPU28と、信号評価指標演算回路100とを備える。光ディスク10は、記録符号(例えば、1-7PP変調された記録符号)を記録する。光ディスク10の例としては、スパイラルに物理的に凹凸状に形成されたピットを備えた再生専用ディスクや、案内溝と呼ばれるトラック上にクリスタルとアモルファス領域とが形成された記録ディスクなどがある。
(Optical disk device)
FIG. 1 shows a configuration example of an optical disc apparatus. This optical disk apparatus includes an optical head unit 11, a preamplifier 12, an automatic gain controller (AGC) 13, a waveform equalizer 14, an analog / digital converter (A / D) 15, a PLL 16, and an adaptive filter. 17, Viterbi decoder 18, demodulator 19, data transfer unit 20, memory 21, error correction unit 22, interface (I / F) 23, data input unit 24, recording compensation unit 25, A laser drive unit 26, a servo control unit 27, a CPU 28, and a signal evaluation index calculation circuit 100. The optical disc 10 records a recording code (for example, a recording code modulated by 1-7PP). Examples of the optical disk 10 include a read-only disk provided with pits physically formed in a spiral shape on a spiral, and a recording disk in which a crystal and an amorphous region are formed on a track called a guide groove.
  〔光学ヘッド部〕
 光学ヘッド部11は、光ディスク10に再生ビームを照射して光ディスク10からの反射光を受光することによって、光ディスク10に記録された記録符号に応じたアナログ再生信号を再生する。例えば、光学ヘッド部11は、エネルギービーム(再生ビーム,記録ビーム)を照射する光源や、光ディスク10からの反射光を受光して反射光に応じたアナログ再生信号を生成する光検出部などを含む。
[Optical head part]
The optical head unit 11 reproduces an analog reproduction signal corresponding to a recording code recorded on the optical disc 10 by irradiating the optical disc 10 with a reproduction beam and receiving reflected light from the optical disc 10. For example, the optical head unit 11 includes a light source that emits an energy beam (reproduction beam, recording beam), a light detection unit that receives reflected light from the optical disc 10 and generates an analog reproduction signal corresponding to the reflected light. .
  〔プリアンプ,AGC,波形等化器,A/D,PLL〕
 プリアンプ12は、光学ヘッド部11によって再生されたアナログ再生信号を増幅させる。自動利得制御器13は、デジタル再生信号DSの振幅が一定になるように、プリアンプ12からのアナログ再生信号の振幅を制御する。すなわち、自動利得制御器13の増幅利得は、デジタル再生信号DSの振幅が一定になるように制御される。波形等化器14は、自動利得制御器13からのアナログ再生信号の高周波数帯域を増幅させるとともにアナログ再生信号のノイズ成分を減衰させる。なお、波形等化器14のブースト量およびカットオフ周波数は、CPU28によって調整可能である。アナログ・デジタル変換器15は、PLL16によって生成されたクロック信号に同期して波形等化器14からのアナログ再生信号をサンプリングし、アナログ再生信号のサンプル値をデジタル値に変換することによって、アナログ再生信号をデジタル再生信号DSに変換する。PLL16は、アナログ・デジタル変換器15によって得られたデジタル再生信号DSに基づいてクロック信号の位相を調整する。
[Preamplifier, AGC, waveform equalizer, A / D, PLL]
The preamplifier 12 amplifies the analog reproduction signal reproduced by the optical head unit 11. The automatic gain controller 13 controls the amplitude of the analog reproduction signal from the preamplifier 12 so that the amplitude of the digital reproduction signal DS is constant. That is, the amplification gain of the automatic gain controller 13 is controlled so that the amplitude of the digital reproduction signal DS is constant. The waveform equalizer 14 amplifies the high frequency band of the analog reproduction signal from the automatic gain controller 13 and attenuates the noise component of the analog reproduction signal. The boost amount and cut-off frequency of the waveform equalizer 14 can be adjusted by the CPU 28. The analog / digital converter 15 samples the analog reproduction signal from the waveform equalizer 14 in synchronization with the clock signal generated by the PLL 16, and converts the sample value of the analog reproduction signal into a digital value, thereby reproducing the analog reproduction signal. The signal is converted into a digital reproduction signal DS. The PLL 16 adjusts the phase of the clock signal based on the digital reproduction signal DS obtained by the analog / digital converter 15.
  〔適応フィルタ,ビダビ復号器〕
 適応フィルタ17は、デジタル再生信号DSの周波数特性がビダビ復号器18において想定されるPR等化特性(例えば、PR(1,2,2,2,1)等化特性)になるように、デジタル再生信号DSに波形整形処理を施してデジタル再生信号DPRを生成する。ビダビ復号器18は、光ディスク10に記録された記録符号の記録変調則(例えば、1-7PP変調)とデジタル再生信号DPRのPR等化特性(例えば、PR(1,2,2,2,1)等化特性)とに基づいて、適応フィルタ17によって生成されたデジタル再生信号DPRに最尤復号処理を施して最も確からしい二値化信号DBを生成する。詳しくは、ビダビ復号器18は、時刻k-n(nは、1以上の整数であり、PR(1,2,2,2,1)等化の場合は、n=5)における第1の状態から時刻kにおける第2の状態に遷移する複数通りの状態遷移列の中から最も確からしい状態遷移列を選択し、最も確からしい状態遷移列に応じた二値化信号DBを出力する。
[Adaptive filter, Viterbi decoder]
The adaptive filter 17 is digital so that the frequency characteristic of the digital reproduction signal DS becomes a PR equalization characteristic (for example, PR (1, 2, 2, 2, 1) equalization characteristic) assumed in the Viterbi decoder 18. The playback signal DS is subjected to waveform shaping processing to generate a digital playback signal DPR. The Viterbi decoder 18 records a recording modulation rule (for example, 1-7PP modulation) of a recording code recorded on the optical disc 10 and a PR equalization characteristic (for example, PR (1, 2, 2, 2, 1) of the digital reproduction signal DPR. ) Equalization characteristics), the digital reproduction signal DPR generated by the adaptive filter 17 is subjected to maximum likelihood decoding to generate the most likely binary signal DB. Specifically, the Viterbi decoder 18 performs the first operation at time k−n (n is an integer equal to or greater than 1 and n = 5 in the case of PR (1, 2, 2, 2, 1) equalization) The most probable state transition sequence is selected from a plurality of state transition sequences that transition from the state to the second state at time k, and a binarized signal DB corresponding to the most probable state transition sequence is output.
  〔復調器,データ転送部,メモリ,誤り訂正部,I/F〕
 復調器19は、ビダビ復号器18によって生成された二値化信号DBに復調処理(例えば、1-7PP復調)を施してデジタル復調信号を生成する。データ転送部20は、復調器19によって生成されたデジタル復調信号をメモリ21に転送する。メモリ21は、データ転送部20によって転送されたデジタル復調信号を格納する。誤り訂正部22は、メモリ21に格納されたデジタル復調信号を読み出して誤り訂正処理を施す。また、誤り訂正部22は、誤り訂正処理を施したデジタル復調信号および誤り訂正処理によって得られた訂正情報(例えば、エラーレート)をメモリ21に転送する。メモリ21に格納されたデジタル復調信号(誤り訂正処理が施されたデジタル復調信号)は、インターフェイス23を通じてホストコンピュータ(図示せず)に転送される。このようにして、光ディスク10に記録された記録符号に応じたデジタル復調信号が再生される。
[Demodulator, data transfer unit, memory, error correction unit, I / F]
The demodulator 19 performs a demodulation process (for example, 1-7PP demodulation) on the binarized signal DB generated by the Viterbi decoder 18 to generate a digital demodulated signal. The data transfer unit 20 transfers the digital demodulated signal generated by the demodulator 19 to the memory 21. The memory 21 stores the digital demodulated signal transferred by the data transfer unit 20. The error correction unit 22 reads the digital demodulated signal stored in the memory 21 and performs error correction processing. The error correction unit 22 transfers the digital demodulated signal subjected to the error correction process and the correction information (for example, error rate) obtained by the error correction process to the memory 21. The digital demodulated signal (digital demodulated signal subjected to error correction processing) stored in the memory 21 is transferred to a host computer (not shown) through the interface 23. In this way, a digital demodulated signal corresponding to the recording code recorded on the optical disc 10 is reproduced.
  〔データ入力部,記録補償部,レーザ駆動部,サーボ制御部〕
 データ入力部24は、光ディスク10に記録すべき記録符号(例えば、1-7PP変調が施された記録符号)を入力する。記録補償部25は、予め設定された記録パラメータ(記録符号と記録パルスの形状との対応関係)に基づいて、データ入力部24によって入力された記録符号を記録パルスに変換する。記録補償部25の記録パラメータは、CPU28によって調整可能である。レーザ駆動部26は、記録補償部25によって得られた記録パルスに従って、光学ヘッド部11による発光動作(再生ビームの照射)を制御する。サーボ制御部27は、フォーカスサーボ,トラッキングサーボ,球面収差補正などを実行する。サーボ制御部27の制御パラメータ(フォーカスサーボ,トラッキングサーボ,球面収差補正などのパラメータ)は、CPU28によって調整可能である。このようにして、光ディスク10に記録符号が記録される。
[Data input unit, recording compensation unit, laser drive unit, servo control unit]
The data input unit 24 inputs a recording code to be recorded on the optical disc 10 (for example, a recording code subjected to 1-7PP modulation). The recording compensation unit 25 converts the recording code input by the data input unit 24 into a recording pulse based on a preset recording parameter (correspondence between the recording code and the shape of the recording pulse). The recording parameters of the recording compensation unit 25 can be adjusted by the CPU 28. The laser drive unit 26 controls the light emission operation (reproduction beam irradiation) by the optical head unit 11 according to the recording pulse obtained by the recording compensation unit 25. The servo control unit 27 executes focus servo, tracking servo, spherical aberration correction, and the like. Control parameters (parameters such as focus servo, tracking servo, and spherical aberration correction) of the servo control unit 27 can be adjusted by the CPU 28. In this way, the recording code is recorded on the optical disc 10.
  〔信号評価指標演算回路〕
 信号評価指標演算回路100は、ビダビ復号器18によって生成された二値化信号DBの信号品質に応じた指標値(積算値DDおよび積算回数NN)を演算する。図2のように、信号評価指標演算回路100は、パターン検出部101と、遅延器102と、距離演算部103と、セレクタ104(選択部)と、積算器105(積算部)と、レジスタ106(保持部)とを含む。
[Signal evaluation index calculation circuit]
The signal evaluation index calculation circuit 100 calculates an index value (integrated value DD and integration count NN) according to the signal quality of the binarized signal DB generated by the Viterbi decoder 18. As shown in FIG. 2, the signal evaluation index calculation circuit 100 includes a pattern detection unit 101, a delay unit 102, a distance calculation unit 103, a selector 104 (selection unit), an integrator 105 (integration unit), and a register 106. (Holding part).
   〈パターン検出部〉
 パターン検出部101には、それぞれ異なる記録条件が割り当てられた複数の組合せパターングループ(ここでは、誤り発生確率が比較的高い3個の記録条件がそれぞれ割り当てられた3個の組合せパターングループ)が登録されている。複数の組合せパターングループの各々には、その組合せパターングループに割り当てられた記録条件に対応する複数の組合せパターンが割り当てられている。複数の組合せパターングループの各々において、複数の組合せパターンの各々は、時刻k-nにおける第1の状態から時刻kにおける第2の状態に遷移する複数通りの状態遷移列のうちその組合せパターングループに割り当てられた記録条件に対応する2通りの状態遷移列の組合せを示している。また、パターン検出部101は、複数の組合せパターングループ毎に、時刻k-nにおける第1の状態から時刻kにおける第2の状態に遷移する複数通りの状態遷移列のうちビダビ復号器18において最も確からしいと判断された第1の状態遷移列PAと2番目に確からしいと判断された第2の状態遷移列PBとの組合せが、その組合せパターングループに割り当てられた複数の組合せパターンのいずれか1つに一致することを検出する。なお、誤り発生確率が比較的高い3個の記録条件に対応する組合せパターンの説明については、特許文献2(表1,表2,表3)の記載を援用する。
<Pattern detection unit>
Registered in the pattern detection unit 101 are a plurality of combination pattern groups to which different recording conditions are assigned (here, three combination pattern groups to which three recording conditions having a relatively high error occurrence probability are assigned). Has been. Each of the plurality of combination pattern groups is assigned a plurality of combination patterns corresponding to the recording conditions assigned to the combination pattern group. In each of the plurality of combination pattern groups, each of the plurality of combination patterns is included in the combination pattern group in a plurality of state transition sequences that transition from the first state at time kn to the second state at time k. Two combinations of state transition sequences corresponding to assigned recording conditions are shown. In addition, the pattern detection unit 101 performs the most in the Viterbi decoder 18 among a plurality of state transition sequences that transition from the first state at the time kn to the second state at the time k for each of the plurality of combination pattern groups. The combination of the first state transition sequence PA determined to be probable and the second state transition sequence PB determined to be the second most probable is one of a plurality of combination patterns assigned to the combination pattern group Detect one match. For the description of the combination pattern corresponding to the three recording conditions having a relatively high error occurrence probability, the description in Patent Document 2 (Table 1, Table 2, Table 3) is incorporated.
 例えば、パターン検出部101は、複数(ここでは、3個)のパターン検出器111,112,113を含んでいても良い。パターン検出器111,112,113には、それぞれ、第1,第2,第3の組合せパターングループが登録されている。 For example, the pattern detection unit 101 may include a plurality (here, three) of pattern detectors 111, 112, and 113. First, second, and third combination pattern groups are registered in the pattern detectors 111, 112, and 113, respectively.
    《第1の組合せパターングループ》
 第1の組合せパターングループには、記録符号の所定の単位区間においてゼロクロス部分が1個のみ含まれるという記録条件(第1の記録条件)が割り当てられている。また、第1の組合せパターングループには、図3~図5に示した18個の組合せパターンが割り当てられている。これらの18個の組合せパターンの各々は、互いの間のユークリッド距離が“14(非最小距離差)”であるとともに第1の記録条件に対応する2通りの状態遷移列の組合せを示している。
<< First combination pattern group >>
The first combination pattern group is assigned a recording condition (first recording condition) in which only one zero-cross portion is included in a predetermined unit section of the recording code. Also, the 18 combination patterns shown in FIGS. 3 to 5 are assigned to the first combination pattern group. Each of these 18 combination patterns indicates a combination of two kinds of state transition sequences corresponding to the first recording condition while the Euclidean distance between them is “14 (non-minimum distance difference)”. .
    《第2の組合せパターングループ》
 第2の組合せパターングループには、記録符号の所定の単位区間において最短マーク長の孤立パターンが1個のみ含まれるという記録条件(第2の記録条件)が割り当てられている。また、第2の組合せパターングループには、図6~図8に示した18個の組合せパターンが割り当てられている。これらの18個の組合せパターンの各々は、互いの間のユークリッド距離が“12(最小距離差)”であるとともに第2の記録条件に対応する2通りの状態遷移列の組合せを示している。
<< Second combination pattern group >>
The second combination pattern group is assigned a recording condition (second recording condition) in which only one isolated pattern having the shortest mark length is included in a predetermined unit section of the recording code. In addition, the 18 combination patterns shown in FIGS. 6 to 8 are assigned to the second combination pattern group. Each of these 18 combination patterns indicates a combination of two state transition sequences corresponding to the second recording condition while the Euclidean distance between them is “12 (minimum distance difference)”.
    《第3の組合せパターングループ》
 第3の組合せパターングループには、記録符号の所定の単位区間において最短マーク長の孤立パターンが2個のみ含まれるという記録条件(第3の記録条件)が割り当てられている。また、第3の組合せパターングループには、図9~図11に示した18個の組合せパターンが割り当てられている。これらの18個の組合せパターンの各々は、互いの間のユークリッド距離が“12(最小距離差)”であるとともに第3の記録条件に対応する2通りの状態遷移列の組合せを示している。
<< Third combination pattern group >>
The third combination pattern group is assigned a recording condition (third recording condition) in which only two isolated patterns having the shortest mark length are included in a predetermined unit section of the recording code. In addition, the 18 combination patterns shown in FIGS. 9 to 11 are assigned to the third combination pattern group. Each of these 18 combination patterns indicates a combination of two types of state transition sequences corresponding to the third recording condition while the Euclidean distance between them is “12 (minimum distance difference)”.
 パターン検出器111,112,113は、それぞれ、第1および第2の状態遷移列PA,PBの組合せを検出し、第1および第2の状態遷移列PA,PBの組合せが第1,第2,第3の組合せパターングループに割り当てられた18個の組合せパターンのいずれか1つに一致することを検出した場合に、検出パルスP1,P2,P3を出力する。 The pattern detectors 111, 112, 113 detect the combination of the first and second state transition sequences PA, PB, respectively, and the combination of the first and second state transition sequences PA, PB is the first and second combinations, respectively. , Detection pulses P1, P2, and P3 are output when it is detected that any one of the 18 combination patterns assigned to the third combination pattern group is matched.
   〈遅延器〉
 遅延器102は、パターン検出部101におけるパターン検出のタイミングと距離演算部103における演算タイミングとを一致させるために、適応フィルタ17によって得られたデジタル再生信号DPRを遅延させて距離演算部103に供給する。
<Delay device>
The delay unit 102 delays the digital reproduction signal DPR obtained by the adaptive filter 17 and supplies it to the distance calculation unit 103 in order to match the pattern detection timing in the pattern detection unit 101 with the calculation timing in the distance calculation unit 103. To do.
   〈距離演算部〉
 距離演算部103は、複数(ここでは、3個)の組合せパターングループ毎に、パターン検出部101によって第1および第2の状態遷移列PA,PBの組合せがその組合せパターングループに割り当てられた複数の組合せパターンのいずれか1つに一致することが検出された場合に、第1の指標値(第1の状態遷移列PAとデジタル再生信号DPRとの間のユークリッド距離)と第2の指標値(第2の状態遷移列PBとデジタル再生信号DPRとの間のユークリッド距離)との差分値に対応する距離差分値を演算する。
<Distance calculation unit>
The distance calculation unit 103 includes a plurality of combinations (in this case, three) of combination pattern groups in which the combination of the first and second state transition sequences PA and PB is assigned to the combination pattern group by the pattern detection unit 101. When it is detected that one of the combination patterns is detected, the first index value (Euclidean distance between the first state transition sequence PA and the digital reproduction signal DPR) and the second index value are detected. A distance difference value corresponding to a difference value between (the Euclidean distance between the second state transition sequence PB and the digital reproduction signal DPR) is calculated.
 例えば、距離演算部103は、複数(ここでは、3個)の距離演算器131,132,133を含んでいても良い。距離演算器131,132,133は、それぞれ、パターン検出器111,112,113によって検出パルスP1,P2,P3が出力された場合に、第1の状態遷移列PAとデジタル再生信号DPRとのユークリッド距離(時刻k-n~時刻kにおける第1の状態遷移列の各期待値とデジタル再生信号DPRの各サンプル値との差分二乗和)を示した第1の指標値と、第2の状態遷移列PBとデジタル再生信号DPRとのユークリッド距離(時刻k-n~時刻kにおける第2の状態遷移列の各期待値とデジタル再生信号DPRの各サンプル値との差分二乗和)を示した第2の指標値とを演算する。さらに、距離演算器131,132,133は、それぞれ、第1および第2の指標値の差分値に対応する距離差分値D1,D2,D3を演算する。例えば、第1の指標値を“Pa”,第2の指標値を“Pb”,第1および第2の状態遷移列PA,PBの間のユークリッド距離を“d”とすると、距離演算器131,132,133は、それぞれ、“|Pa-Pb|-d”を距離差分値D1,D2,D3として演算する。 For example, the distance calculation unit 103 may include a plurality (three in this case) of distance calculators 131, 132, and 133. The distance calculators 131, 132, and 133 are Euclidean signals of the first state transition sequence PA and the digital reproduction signal DPR when the detection pulses P1, P2, and P3 are output by the pattern detectors 111, 112, and 113, respectively. A first index value indicating a distance (a sum of squares of differences between each expected value of the first state transition sequence and each sample value of the digital reproduction signal DPR from time kn to time k), and a second state transition A second value indicating the Euclidean distance between the column PB and the digital reproduction signal DPR (the sum of squared differences between the respective expected values of the second state transition sequence from the time kn to the time k and the sample values of the digital reproduction signal DPR). The index value of is calculated. Further, the distance calculators 131, 132, 133 calculate distance difference values D1, D2, D3 corresponding to the difference values of the first and second index values, respectively. For example, assuming that the first index value is “Pa”, the second index value is “Pb”, and the Euclidean distance between the first and second state transition sequences PA and PB is “d”, the distance calculator 131. , 132, and 133 calculate “| Pa−Pb | −d 2 ” as distance difference values D1, D2, and D3, respectively.
   〈セレクタ,積算器,レジスタ〉
 セレクタ104は、CPU28の制御に基づき、距離演算部103によって複数(ここでは、3個)の組合せパターングループ毎に演算された距離差分値D1,D2,D3の中から複数の組合せパターングループのうちいずれか1つの組合せパターングループに対応する距離差分値を選択する。積算器105は、セレクタ104によって選択された距離差分値(ここでは、距離差分値D1,D2,D3のいずれか1つ)を積算することによって積算値DDを生成する。レジスタ106は、積算器105によって生成された積算値DDと、積算器105の積算回数を示した回数値NNとを保持する。
<Selector, integrator, register>
Based on the control of the CPU 28, the selector 104 selects a plurality of combination pattern groups from among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 for each of a plurality (here, three) combination pattern groups. A distance difference value corresponding to any one combination pattern group is selected. The integrator 105 generates an integrated value DD by integrating the distance difference values (here, any one of the distance difference values D1, D2, and D3) selected by the selector 104. The register 106 holds an integrated value DD generated by the integrator 105 and a count value NN indicating the number of integrations of the integrator 105.
  〔CPU〕
 CPU28は、信号評価指標演算回路100によって保持された積算値DDおよび回数値NNに基づいて、二値化信号DBの誤り発生確率と相関がある信号品質評価値Mを演算する。
[CPU]
The CPU 28 calculates a signal quality evaluation value M having a correlation with the error occurrence probability of the binarized signal DB based on the integrated value DD and the count value NN held by the signal evaluation index calculation circuit 100.
 ここで、CPU28による信号品質評価値Mの演算について説明する。なお、説明の簡略化のために、距離差分値D1,D2,D3の総称を“距離差分値D”と表記する。なお、信号品質評価値Mに関する詳細な説明(信号品質評価値Mの演算や、信号品質評価値Mと二値化信号の誤り発生確率との相関関係など)については、特許文献1,2の記載を援用する。 Here, the calculation of the signal quality evaluation value M by the CPU 28 will be described. For simplification of description, the generic name of the distance difference values D1, D2, and D3 is expressed as “distance difference value D”. For a detailed description of the signal quality evaluation value M (calculation of the signal quality evaluation value M, correlation between the signal quality evaluation value M and the error occurrence probability of the binarized signal, etc.), refer to Patent Documents 1 and 2. The description is incorporated.
 距離差分値Dおよび分散値σは、それぞれ、(式1)(式2)のように表現できる。 The distance difference value D and the variance value σ 2 can be expressed as (Equation 1) and (Equation 2), respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (式2)の右辺の第1項は、距離差分値Dの二乗平均値に相当し、(式2)の右辺の第2項は、距離差分値Dの平均値の二乗値に相当する。ここで、距離差分値Dの分布が距離差分値Dの平均値が“0”となる正規分布であると仮定すると、信号品質評価値Mは、(式3)のように簡略化できる。 The first term on the right side of (Expression 2) corresponds to the mean square value of the distance difference value D, and the second term on the right side of (Expression 2) corresponds to the square value of the average value of the distance difference value D. Here, assuming that the distribution of the distance difference values D is a normal distribution in which the average value of the distance difference values D is “0”, the signal quality evaluation value M can be simplified as in (Equation 3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (式3)において、“A”は、定数であり、“d”は、第1および第2の状態遷移列PA,PBの間のユークリッド距離に相当する。(式3)のように、積算値DD,回数値NN,第1および第2の状態遷移列PA,PBの間のユークリッド距離dに基づいて、信号品質評価値Mを演算できる。 In (Formula 3), “A” is a constant, and “d” corresponds to the Euclidean distance between the first and second state transition sequences PA and PB. As in (Equation 3), the signal quality evaluation value M can be calculated based on the integrated value DD, the count value NN, and the Euclidean distance d between the first and second state transition sequences PA and PB.
 以上のように、二値化信号の信号品質に応じた指標値(積算値DDおよび回数値NN)をレジスタ106が保持することによって、再生処理(光ディスク10に記録された記録符号に応じた二値化信号DBを再生する処理)に並行して二値化信号の信号品質に応じた指標値を演算できる。これにより、再生処理に並行して二値化信号DBの誤り確率と相関のある信号品質評価値Mを演算できる。 As described above, the register 106 holds the index values (integrated value DD and number-of-times value NN) corresponding to the signal quality of the binarized signal, so that the reproduction process (two according to the recording code recorded on the optical disc 10) is performed. In parallel with the process of reproducing the binarized signal DB, an index value corresponding to the signal quality of the binarized signal can be calculated. Thereby, the signal quality evaluation value M correlated with the error probability of the binarized signal DB can be calculated in parallel with the reproduction process.
 また、(式3)のように信号品質評価値Mの演算を簡略化することにより、信号品質評価値Mの演算を高速かつ低消費電力で実行できるとともに信号評価指標演算回路100の回路規模を低減できる。 Further, by simplifying the calculation of the signal quality evaluation value M as in (Equation 3), the calculation of the signal quality evaluation value M can be executed at high speed and with low power consumption, and the circuit scale of the signal evaluation index calculation circuit 100 can be increased. Can be reduced.
  〔重み付け加算による信号品質評価値の演算〕
 なお、CPU28は、複数の組合せパターングループ毎に演算された信号品質評価値Mを、組合せパターングループに割り当てられた組合せパターンの発生頻度で重み付けして、これらの信号品質評価値を累積加算することによって、二値化信号DBの誤り発生確率と相関のある新たな信号品質評価値を演算しても良い。
[Calculation of signal quality evaluation value by weighted addition]
The CPU 28 weights the signal quality evaluation value M calculated for each of the plurality of combination pattern groups by the frequency of occurrence of the combination pattern assigned to the combination pattern group, and cumulatively adds these signal quality evaluation values. Thus, a new signal quality evaluation value correlated with the error occurrence probability of the binarized signal DB may be calculated.
 ここで、組合せパターングループ毎に演算された信号品質評価値Mを重み付け加算することによって新たな信号品質評価値を演算する例について説明する。なお、説明の簡略化のために、第1の組合せパターングループに対応する信号品質評価値M(距離差分値D1を積算して得られた積算値DDに基づいて演算された信号品質評価値M)を“信号品質評価値M14”と表記し、第2の組合せパターングループに対応する信号品質評価値M(距離差分値D2を積算して得られた積算値DDに基づいて演算された信号品質評価値M)を“信号品質評価値M12A”と表記し、第3の組合せパターングループに対応する信号品質評価値M(距離差分値D3を積算して得られた積算値DDに基づいて演算された信号品質評価値M)を“信号品質評価値M12B”と表記する。 Here, an example of calculating a new signal quality evaluation value by weighted addition of the signal quality evaluation value M calculated for each combination pattern group will be described. For simplification of explanation, the signal quality evaluation value M corresponding to the first combination pattern group M (the signal quality evaluation value M calculated based on the integration value DD obtained by integrating the distance difference value D1). ) Is expressed as “signal quality evaluation value M14”, and the signal quality evaluation value M corresponding to the second combination pattern group (signal quality calculated based on the integrated value DD obtained by integrating the distance difference value D2) The evaluation value M) is expressed as “signal quality evaluation value M12A” and is calculated based on the signal quality evaluation value M corresponding to the third combination pattern group (accumulated value DD obtained by integrating the distance difference value D3). The signal quality evaluation value M) is expressed as “signal quality evaluation value M12B”.
 まず、セレクタ104は、CPU28の制御に基づき、距離演算部103によって演算される距離差分値D1,D2,D3のうち第1の組合せパターングループに対応する距離差分値D1を選択する。次に、再生処理(光ディスク10に記録された記録符号に応じた二値化信号DBを再生する処理)が実行される。すなわち、光学ヘッド部11は、光ディスク10の所定の記録領域からアナログ再生信号を再生し、アナログ・デジタル変換器15は、プリアンプ12,自動利得制御器13,波形等化器14によって処理されたアナログ再生信号をデジタル再生信号DSに変換し、適応フィルタ17およびビダビ復号器18は、デジタル再生信号DSを二値化信号DBに変換する。一方、信号評価指標演算回路100では、積算器105は、距離差分値D1を積算して積算値DDを生成する。CPU28は、レジスタ106に保持された積算値DD(距離差分値D1の積算値)および回数値NNに基づいて信号品質評価値M14を演算する。 First, the selector 104 selects the distance difference value D1 corresponding to the first combination pattern group among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 based on the control of the CPU. Next, a reproduction process (a process of reproducing the binarized signal DB corresponding to the recording code recorded on the optical disc 10) is executed. That is, the optical head unit 11 reproduces an analog reproduction signal from a predetermined recording area of the optical disk 10, and the analog / digital converter 15 performs an analog process processed by the preamplifier 12, the automatic gain controller 13, and the waveform equalizer 14. The reproduction signal is converted into a digital reproduction signal DS, and the adaptive filter 17 and the Viterbi decoder 18 convert the digital reproduction signal DS into a binarized signal DB. On the other hand, in the signal evaluation index calculation circuit 100, the integrator 105 integrates the distance difference value D1 to generate an integrated value DD. The CPU 28 calculates the signal quality evaluation value M14 based on the integrated value DD (integrated value of the distance difference value D1) and the count value NN held in the register 106.
 次に、信号品質評価値M14の演算が完了すると、セレクタ104は、CPU28の制御に基づき、距離演算部103によって演算される距離差分値D1,D2,D3のうち第2の組合せパターングループに対応する距離差分値D2を選択する。次に、再生処理が再度実行される。このとき、光学ヘッド部11は、光ディスク10の同一の記録領域からアナログ再生信号を再生する。すなわち、信号品質評価値M14の演算の際に再生されたデジタル再生信号DSが再度再生されることになる。一方、信号評価指標演算回路100では、積算器105は、距離差分値D2を積算して積算値DDを生成する。CPU28は、レジスタ106に保持された積算値DD(距離差分値D2の積算値)および回数値NNに基づいて信号品質評価値M12Aを演算する。 Next, when the calculation of the signal quality evaluation value M14 is completed, the selector 104 corresponds to the second combination pattern group among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 based on the control of the CPU 28. The distance difference value D2 to be selected is selected. Next, the reproduction process is executed again. At this time, the optical head unit 11 reproduces an analog reproduction signal from the same recording area of the optical disc 10. That is, the digital reproduction signal DS reproduced in the calculation of the signal quality evaluation value M14 is reproduced again. On the other hand, in the signal evaluation index calculation circuit 100, the integrator 105 integrates the distance difference value D2 to generate an integrated value DD. The CPU 28 calculates the signal quality evaluation value M12A based on the integrated value DD (integrated value of the distance difference value D2) and the count value NN held in the register 106.
 次に、信号品質評価値M12Aの演算が完了すると、セレクタ104は、CPU28の制御に基づき、距離演算部103によって演算される距離差分値D1,D2,D3のうち第3の組合せパターングループに対応する距離差分値D3を選択する。次に、再生処理が再度実行される。このときも、光学ヘッド部11は、光ディスク10の同一の記録領域からアナログ再生信号を再生する。一方、信号評価指標演算回路100では、積算器105は、距離差分値D3を積算して積算値DDを生成する。CPU28は、レジスタ106に保持された積算値DD(距離差分値D3の積算値)および回数値NNに基づいて信号品質評価値M12Bを演算する。 Next, when the calculation of the signal quality evaluation value M12A is completed, the selector 104 corresponds to the third combination pattern group among the distance difference values D1, D2, and D3 calculated by the distance calculation unit 103 based on the control of the CPU. The distance difference value D3 to be selected is selected. Next, the reproduction process is executed again. Also at this time, the optical head unit 11 reproduces an analog reproduction signal from the same recording area of the optical disc 10. On the other hand, in the signal evaluation index calculation circuit 100, the integrator 105 integrates the distance difference value D3 to generate an integrated value DD. The CPU 28 calculates the signal quality evaluation value M12B based on the integrated value DD (integrated value of the distance difference value D3) and the number-of-times value NN held in the register 106.
 このように、光ディスク10に記録された記録符号のうち所定区間の記録符号に応じたデジタル再生信号DSが繰り返し再生され、CPU28の制御によって、セレクタ104が、デジタル再生信号DSの再生が繰り返される毎に、複数(ここでは、3個)の組合せパターングループのうち処理対象として選択される組合せパターングループを切り替える。 In this way, the digital reproduction signal DS corresponding to the recording code of a predetermined section among the recording codes recorded on the optical disc 10 is repeatedly reproduced, and the selector 104 repeats the reproduction of the digital reproduction signal DS under the control of the CPU 28. In addition, a combination pattern group selected as a processing target among a plurality (three in this case) of combination pattern groups is switched.
 第1,第2,第3の組合せパターングループにそれぞれ対応する信号品質評価値M14,M12A,M12Bの演算が完了すると、CPU28は、第1,第2,第3の組合せパターングループに割り当てられた組合せパターンの発生頻度に応じて信号品質評価値M14,M12A,M12Bを重み付けした後に、信号品質評価値M14,M12A,M12Bを累積加算して新たな信号品質評価値を演算する。 When the calculation of the signal quality evaluation values M14, M12A, and M12B respectively corresponding to the first, second, and third combination pattern groups is completed, the CPU 28 is assigned to the first, second, and third combination pattern groups. After the signal quality evaluation values M14, M12A, and M12B are weighted according to the occurrence frequency of the combination pattern, the signal quality evaluation values M14, M12A, and M12B are cumulatively added to calculate a new signal quality evaluation value.
  〔パラメータ調整〕
 また、CPU28は、複数(ここでは、3個)の組合せパターングループ毎に演算された信号品質評価値M(または、上述の重み付け加算によって得られた新たな信号品質評価値)に基づいて、光ディスク装置のパラメータ(波形等化器14のカットオフ周波数およびブースト量,記録補償部25の記録パラメータ,サーボ制御部27の制御パラメータなど)を調整しても良い。
(Parameter adjustment)
Further, the CPU 28 uses the signal quality evaluation value M (or a new signal quality evaluation value obtained by the above-described weighted addition) calculated for each of a plurality (three in this case) of combination pattern groups, as an optical disc. Device parameters (such as the cut-off frequency and boost amount of the waveform equalizer 14, the recording parameter of the recording compensation unit 25, and the control parameter of the servo control unit 27) may be adjusted.
 または、CPU28は、複数(ここでは、3個)の組合せパターングループのうち二値化信号DBの信号品質の評価において最も支配的な組合せパターングループに対応する信号品質評価値Mに基づいて、光ディスク装置のパラメータを調整しても良い。この場合、セレクタ104は、CPU28の制御に基づき、複数(ここでは、3個)の組合せパターングループのうち二値化信号DBの信号品質の評価において最も支配的な組合せパターングループに対応する距離差分値を選択する。 Alternatively, the CPU 28 selects the optical disc based on the signal quality evaluation value M corresponding to the combination pattern group that is most dominant in the evaluation of the signal quality of the binarized signal DB among a plurality (here, three) combination pattern groups. Device parameters may be adjusted. In this case, based on the control of the CPU 28, the selector 104 is a distance difference corresponding to the most dominant combination pattern group in the evaluation of the signal quality of the binarized signal DB among a plurality (here, three) combination pattern groups. Select a value.
 次に、最も支配的な組合せパターングループに対応する信号品質評価値Mに基づく光ディスク装置のパラメータの調整について説明する。ここでは、波形等化器14のブースト量を調整する場合を例に挙げて説明する。 Next, adjustment of parameters of the optical disk apparatus based on the signal quality evaluation value M corresponding to the most dominant combination pattern group will be described. Here, a case where the boost amount of the waveform equalizer 14 is adjusted will be described as an example.
 まず、CPU28は、波形等化器14のブースト量を任意のブースト量に設定する。次に、光ディスク10に記録された記録符号のうち所定区間の記録符号に応じたデジタル再生信号DSが繰り返し再生され、セレクタ104は、CPU28の制御に基づき、デジタル再生信号DSの再生が繰り返される毎に、第1,第2,第3の組合せパターングループのうち処理対象として選択される組合せパターングループを切り替える。これにより、任意のブースト量に対応する信号品質評価値M14,M12A,M12Bが演算される。 First, the CPU 28 sets the boost amount of the waveform equalizer 14 to an arbitrary boost amount. Next, the digital reproduction signal DS corresponding to the recording code of a predetermined section among the recording codes recorded on the optical disc 10 is repeatedly reproduced, and the selector 104 is repeatedly reproduced based on the control of the CPU 28. In addition, the combination pattern group selected as the processing target among the first, second, and third combination pattern groups is switched. Thereby, signal quality evaluation values M14, M12A, M12B corresponding to an arbitrary boost amount are calculated.
 次に、CPU28は、波形等化器14のブースト量を別のブースト量に設定する。次に、光ディスク10に記録された記録符号のうち所定区間の記録符号に応じたデジタル再生信号DSが繰り返し再生され、セレクタ104は、CPU28の制御に基づき、デジタル再生信号DSの再生が繰り返される毎に、第1,第2,第3の組合せパターングループのうち処理対象として選択される組合せパターングループを切り替える。これにより、別のブースト量に対応する信号品質評価値M14,M12A,M12Bが演算される。 Next, the CPU 28 sets the boost amount of the waveform equalizer 14 to another boost amount. Next, the digital reproduction signal DS corresponding to the recording code of a predetermined section among the recording codes recorded on the optical disc 10 is repeatedly reproduced, and the selector 104 is repeatedly reproduced based on the control of the CPU 28. In addition, the combination pattern group selected as the processing target among the first, second, and third combination pattern groups is switched. Thereby, signal quality evaluation values M14, M12A, and M12B corresponding to different boost amounts are calculated.
 このように、波形等化器14のブースト量を変化させながら信号品質評価値M14,M12A,M12Bを演算することによって、波形等化器14のブースト量と信号品質評価値M14,M12A,M12Bの各々との相関関係を検出できる。 Thus, by calculating the signal quality evaluation values M14, M12A, and M12B while changing the boost amount of the waveform equalizer 14, the boost amount of the waveform equalizer 14 and the signal quality evaluation values M14, M12A, and M12B are calculated. Correlation with each can be detected.
 ここで、図12のように、波形等化器14のブースト量と信号品質評価値M14,M12A,M12Bの各々との相関関係が互いに同一である場合について説明する。この場合、二値化信号DBの信号品質に対する信号品質評価値の影響度は、組合せパターングループに割り当てられた組合せパターンの発生頻度に依存することになる。また、一般的に(例えば、光ディスク10に記録された記録符号がユーザデータである場合)、第1~第3の組合せパターングループのうち第1の組合せパターングループに割り当てられた組合せパターンの発生頻度が最も高くなることが多い。したがって、この場合、CPU28は、信号品質評価値M14,M12A,M12Bのうち第1の組合せパターングループに対応する信号品質評価値M14に基づいて(例えば、信号品質評価値M14が最小値になるように)、波形等化器14のブースト量を調整する。これにより、波形等化器14のブースト量を最適化でき、二値化信号DBの信頼性を高めることができる。なお、この場合、セレクタ104は、CPU28の制御に基づき、組合せパターングループ毎に演算された距離差分値D1,D2,D3のうち第1の組合せパターングループに対応する距離差分値D1を選択する。 Here, as shown in FIG. 12, the case where the correlation between the boost amount of the waveform equalizer 14 and each of the signal quality evaluation values M14, M12A, and M12B is the same will be described. In this case, the degree of influence of the signal quality evaluation value on the signal quality of the binarized signal DB depends on the frequency of occurrence of the combination pattern assigned to the combination pattern group. In general (for example, when the recording code recorded on the optical disc 10 is user data), the occurrence frequency of the combination pattern assigned to the first combination pattern group among the first to third combination pattern groups. Is often the highest. Therefore, in this case, the CPU 28 is based on the signal quality evaluation value M14 corresponding to the first combination pattern group among the signal quality evaluation values M14, M12A, and M12B (for example, the signal quality evaluation value M14 becomes the minimum value). Ii), the boost amount of the waveform equalizer 14 is adjusted. Thereby, the boost amount of the waveform equalizer 14 can be optimized, and the reliability of the binarized signal DB can be improved. In this case, the selector 104 selects the distance difference value D1 corresponding to the first combination pattern group among the distance difference values D1, D2, and D3 calculated for each combination pattern group based on the control of the CPU.
 次に、図13のように、波形等化器14のブースト量と信号品質評価値M14,M12A,M12Bの各々との相関関係が互いに異なる場合について説明する。図13のハッチングされた範囲内においてCPU28が波形等化器14のブースト量を変化させた場合、信号品質評価値M14,M12A,M12Bの変化量は、それぞれ、変化量ΔM14,ΔM12A,ΔM12Bとなる。ここで、変化量ΔM14,ΔM12Bは、変化量ΔM12Aよりも小さい。すなわち、図13の場合、信号品質評価値M14,M12A,M12Bのうち信号品質評価値M12Aが、二値化信号DBの信号品質に対して最も敏感である。したがって、この場合、CPU28は、信号品質評価値M14,M12A,M12Bのうち第2の組合せパターングループに対応する信号品質評価値M12Aに基づいて(例えば、信号品質評価値M12Aが最小値になるように)、波形等化器14のブースト量を調整する。これにより、波形等化器14のブースト量に対する二値化信号DBの信頼性の余裕度を高めることができる。なお、この場合、セレクタ104は、CPU28の制御に基づき、組合せパターングループ毎に演算された距離差分値D1,D2,D3のうち第2の組合せパターングループに対応する距離差分値D2を選択する。 Next, as shown in FIG. 13, the case where the correlation between the boost amount of the waveform equalizer 14 and the signal quality evaluation values M14, M12A, and M12B is different from each other will be described. When the CPU 28 changes the boost amount of the waveform equalizer 14 within the hatched range in FIG. 13, the change amounts of the signal quality evaluation values M14, M12A, and M12B are the change amounts ΔM14, ΔM12A, and ΔM12B, respectively. . Here, the change amounts ΔM14 and ΔM12B are smaller than the change amount ΔM12A. That is, in the case of FIG. 13, the signal quality evaluation value M12A among the signal quality evaluation values M14, M12A, and M12B is most sensitive to the signal quality of the binarized signal DB. Therefore, in this case, the CPU 28 is based on the signal quality evaluation value M12A corresponding to the second combination pattern group among the signal quality evaluation values M14, M12A, and M12B (for example, the signal quality evaluation value M12A becomes the minimum value). Ii), the boost amount of the waveform equalizer 14 is adjusted. Thereby, the margin of reliability of the binarized signal DB with respect to the boost amount of the waveform equalizer 14 can be increased. In this case, the selector 104 selects the distance difference value D2 corresponding to the second combination pattern group among the distance difference values D1, D2, and D3 calculated for each combination pattern group based on the control of the CPU.
 以上のように、再生処理(光ディスク10に記録された記録符号に応じた二値化信号DBを再生する処理)に並行して二値化信号の信号品質に応じた指標値(積算値DDおよび回数値NN)を演算できるので、再生処理と並行して光ディスク装置のパラメータを調整できる。また、光ディスク装置の起動時に光ディスク装置のパラメータを調整せずに、光ディスク装置のパラメータを一旦初期値に設定した後に光ディスク装置を起動させ、再生処理と並行して光ディスク装置のパラメータの最適化を実行できるので、光ディスク装置の起動時間を短縮できる。これにより、光ディスク装置のユーザのストレス(光ディスク装置の起動待ちによるストレス)を緩和できる。 As described above, in parallel with the reproduction process (the process of reproducing the binary signal DB corresponding to the recording code recorded on the optical disc 10), the index value (integrated value DD and Since the numerical value NN) can be calculated, the parameters of the optical disk apparatus can be adjusted in parallel with the reproduction process. Also, without adjusting the parameters of the optical disk device at the time of starting the optical disk device, the optical disk device is started after setting the parameters of the optical disk device to the initial values, and the parameters of the optical disk device are optimized in parallel with the reproduction process. Therefore, the startup time of the optical disk apparatus can be shortened. Thereby, the stress of the user of the optical disk apparatus (stress due to waiting for activation of the optical disk apparatus) can be alleviated.
 また、CPU28の制御によってセレクタ104が複数の組合せパターングループのうち二値化信号DBの信号品質の評価において最も支配的な組合せパターングループに対応する距離差分値を選択することによって、CPU28は、複数の組合せパターングループのうち二値化信号DBの信号品質の評価において最も支配的な組合せパターングループに対応する信号品質評価値Mを演算でき、その信号品質評価値に基づいて光ディスク装置のパラメータを調整できる。これにより、組合せパターン毎に演算された信号品質評価値Mを重み付け加算することによって得られた新たな信号品質評価値に基づいて光ディスク装置のパラメータを調整する場合よりも、光ディスク装置のパラメータ調整に要する時間を短縮できる。 Further, the CPU 28 controls the CPU 28 to select the distance difference value corresponding to the most dominant combination pattern group in the evaluation of the signal quality of the binarized signal DB among the plurality of combination pattern groups. Signal quality evaluation value M corresponding to the most dominant combination pattern group in the evaluation of the signal quality of the binarized signal DB can be calculated, and the parameters of the optical disc apparatus are adjusted based on the signal quality evaluation value it can. Thereby, the parameter adjustment of the optical disc apparatus is performed more than the case of adjusting the parameters of the optical disc apparatus based on the new signal quality evaluation value obtained by weighted addition of the signal quality evaluation value M calculated for each combination pattern. The time required can be shortened.
 (信号評価指標演算回路の変形例)
 なお、光ディスク装置は、図1,図2に示した信号評価指標演算回路100に代えて、図14に示した信号評価指標演算回路200を備えていても良い。信号評価指標演算回路200は、図1に示した信号評価指標演算回路100の構成に加えて、欠陥検出部201,リミット検出部202,および演算制御部203を含む、
 欠陥検出部201は、アナログ・デジタル変換器15によって得られたデジタル再生信号DSに欠陥部分(有効な情報が存在しない部分)が含まれていることを検出すると、欠陥検出信号S201を出力する。リミット検出部202は、積算器105によって得られた積算値DDが予め定められた上限値に到達したことを検出すると、リミット検出信号S202を出力する。演算制御部203は、欠陥検出信号S201およびリミット検出信号S202のうち少なくとも一方が出力された場合には、積算器105による積算動作を停止させる。例えば、演算制御部203は、欠陥検出信号S201とリミット検出信号S202との論理和を出力するOR回路211と、OR回路211の出力が“0”である場合にはセレクタ104によって選択された距離差分値(距離差分値D1~D3のいずれか1つ)を積算器105に供給し、OR回路211の出力が“1”である場合には“0”を積算器105に供給するセレクタ212とを含んでいても良い。
(Modification of signal evaluation index calculation circuit)
The optical disc apparatus may include a signal evaluation index calculation circuit 200 shown in FIG. 14 instead of the signal evaluation index calculation circuit 100 shown in FIGS. The signal evaluation index calculation circuit 200 includes a defect detection unit 201, a limit detection unit 202, and an operation control unit 203 in addition to the configuration of the signal evaluation index calculation circuit 100 shown in FIG.
When the defect detection unit 201 detects that the digital reproduction signal DS obtained by the analog-to-digital converter 15 includes a defect portion (portion where no valid information exists), the defect detection unit 201 outputs a defect detection signal S201. When the limit detection unit 202 detects that the integrated value DD obtained by the integrator 105 has reached a predetermined upper limit value, the limit detection unit 202 outputs a limit detection signal S202. When at least one of the defect detection signal S201 and the limit detection signal S202 is output, the arithmetic control unit 203 stops the integration operation by the integrator 105. For example, the arithmetic control unit 203 outputs an OR circuit 211 that outputs a logical sum of the defect detection signal S201 and the limit detection signal S202, and the distance selected by the selector 104 when the output of the OR circuit 211 is “0”. A selector 212 that supplies a difference value (any one of distance difference values D1 to D3) to the integrator 105 and supplies “0” to the integrator 105 when the output of the OR circuit 211 is “1”; May be included.
 光ディスク10のような可搬性のある媒体(特に、カートリッジに収納されていないディスク)では、光ディスク10の表面に埃,キズ,指紋などが付着してしまう。このような状態の光ディスク10をディスク装置によって再生した場合、光ディスク10からアナログ再生信号を適切に再生することができず、その結果、再生処理や光学ヘッド部11を正確に制御できない可能性がある。一般的な光ディスク装置では、再生信号(デジタル再生信号DS)の中に含まれる欠陥部分を検出し、その検出結果を用いてトラッキングやフォーカスの制御が実行されている。また、再生信号の中に欠陥部分が含まれている場合、信号品質評価値Mを正確に演算できない可能性がある。例えば、光ディスク10の欠陥部分(または、記録品質が極端に劣化した部分)からアナログ再生信号を再生した場合、距離差分値Dが大きくなって積算器105にオーバーフローが発生してしまう場合がある。このように、再生信号の中に欠陥部分が含まれている場合には、積算値DDが極端に増加してしまったり、積算器105のオーバーフローによって積算器105が誤作動を起こして積算値DDが極端に減少してしまう可能性がある。 In a portable medium such as the optical disk 10 (particularly, a disk that is not stored in a cartridge), dust, scratches, fingerprints, and the like adhere to the surface of the optical disk 10. When the optical disk 10 in such a state is reproduced by the disk device, an analog reproduction signal cannot be appropriately reproduced from the optical disk 10, and as a result, there is a possibility that the reproduction process and the optical head unit 11 cannot be accurately controlled. . In a general optical disc apparatus, a defective portion included in a reproduction signal (digital reproduction signal DS) is detected, and tracking and focus control are executed using the detection result. In addition, when the reproduced signal includes a defective portion, the signal quality evaluation value M may not be accurately calculated. For example, when an analog reproduction signal is reproduced from a defective portion of the optical disc 10 (or a portion where the recording quality is extremely deteriorated), the distance difference value D may increase and the integrator 105 may overflow. As described above, when a defective portion is included in the reproduction signal, the integrated value DD increases extremely, or the integrator 105 malfunctions due to the overflow of the integrator 105, and the integrated value DD. May be drastically reduced.
 図14に示した信号評価指標演算回路200では、欠陥検出部201は、デジタル再生信号DSの中に欠陥部分が含まれていることを検出して、欠陥検出信号S201を出力する。これにより、演算制御部203によって積算器105の積算動作が停止され、デジタル再生信号DSの中に含まれた欠陥部分によって積算値DDが極端に増加してしまうことを防止できる。また、積算器105においてオーバーフローが発生した場合、リミット検出部202は、積算値DDが予め定められた上限値に到達したことを検出して、リミット検出信号S202を出力する。これにより、積算器105のオーバーフローによって積算値DDが極端に減少してしまうことを防止できる。 In the signal evaluation index calculation circuit 200 shown in FIG. 14, the defect detection unit 201 detects that a defective portion is included in the digital reproduction signal DS, and outputs a defect detection signal S201. Thereby, the integration operation of the integrator 105 is stopped by the arithmetic control unit 203, and it is possible to prevent the integrated value DD from being extremely increased due to the defective portion included in the digital reproduction signal DS. When overflow occurs in integrator 105, limit detection unit 202 detects that integrated value DD has reached a predetermined upper limit value, and outputs limit detection signal S202. Thereby, it is possible to prevent the integrated value DD from being extremely reduced due to the overflow of the integrator 105.
 以上のように、積算値DDの極端な増減を防止できるので、積算値DDの信頼性を維持でき、その結果、信号品質評価値Mの信頼性を維持できる。また、信号品質評価値Mの信頼性を維持できるので、信号品質評価値Mに基づいて光ディスク装置のパラメータを正確に調整できる。 As described above, since the extreme increase / decrease in the integrated value DD can be prevented, the reliability of the integrated value DD can be maintained, and as a result, the reliability of the signal quality evaluation value M can be maintained. In addition, since the reliability of the signal quality evaluation value M can be maintained, the parameters of the optical disc apparatus can be accurately adjusted based on the signal quality evaluation value M.
 以上説明したように、上述の信号評価指標演算回路は、次世代の記録再生可能な光ディスク装置のみならず、光磁気ディスク装置などの記録再生を行う高密度大容量の光ディスク装置などにも有用である。 As described above, the signal evaluation index calculation circuit described above is useful not only for next-generation recording / reproducing optical disc apparatuses but also for high-density and large-capacity optical disc apparatuses that perform recording / reproduction such as magneto-optical disc apparatuses. is there.
10  光ディスク
11  光学ヘッド部
12  プリアンプ
13  自動利得制御器(AGC)
14  波形等化器
15  アナログ・デジタル変換器(A/D)
16  PLL
17  適応フィルタ
18  ビダビ復号器
19  復調器
20  データ転送部
21  メモリ
22  誤り訂正部
23  インターフェイス(I/F)
24  データ入力部
25  記録補償部
26  レーザ駆動部
27  サーボ制御部
100  信号評価指標演算回路
101  パターン検出部
102  遅延器
103  距離演算部
104  セレクタ
105  積算器
106  レジスタ
111~113  パターン検出器
131~133  距離演算器
200  信号評価指標演算回路
201  欠陥検出部
202  リミット検出部
DESCRIPTION OF SYMBOLS 10 Optical disk 11 Optical head part 12 Preamplifier 13 Automatic gain controller (AGC)
14 Waveform equalizer 15 Analog to digital converter (A / D)
16 PLL
17 Adaptive Filter 18 Viterbi Decoder 19 Demodulator 20 Data Transfer Unit 21 Memory 22 Error Correction Unit 23 Interface (I / F)
24 data input unit 25 recording compensation unit 26 laser driving unit 27 servo control unit 100 signal evaluation index calculation circuit 101 pattern detection unit 102 delay unit 103 distance calculation unit 104 selector 105 accumulator 106 registers 111 to 113 pattern detectors 131 to 133 distance Operation unit 200 Signal evaluation index calculation circuit 201 Defect detection unit 202 Limit detection unit

Claims (7)

  1.  光ディスクに記録された記録符号に基づいて再生されたデジタル再生信号に最尤復号処理を施すことによって得られた二値化信号の信号品質に応じた指標値を演算する回路であって、
     それぞれに異なる記録条件が割り当てられ且つ時刻k-nにおける第1の状態から時刻kにおける第2の状態へ遷移する複数通りの状態遷移列のうち当該記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の組合せパターンがそれぞれに割り当てられた複数の組合せパターングループ毎に、前記最尤復号処理において最も確からしいと判断された第1の状態遷移列と2番目に確からしいと判断された第2の状態遷移列の組合せが、当該組合せパターングループに割り当てられた複数の組合せパターンのいずれか1つに一致することを検出するパターン検出部と、
     前記複数の組合せパターングループ毎に、前記パターン検出部によって前記第1および第2の状態遷移列の組合せが当該組合せパターングループに割り当てられた複数の組合せパターンのいずれか1つに一致することが検出された場合に、前記第1の状態遷移列と前記デジタル再生信号との間のユークリッド距離を示した第1の指標値と前記第2の状態遷移列と前記デジタル再生信号との間のユークリッド距離を示した第2の指標値との差分値に対応する距離差分値を演算する距離演算部と、
     前記距離演算部によって前記複数の組合せパターングループ毎に演算された距離差分値の中から前記複数の組合せパターングループのうちいずれか1つの組合せパターングループに対応する距離差分値を選択する選択部と、
     前記選択部によって選択された距離差分値を積算することによって積算値を生成する積算部と、
     前記積算部によって生成された積算値と前記積算部の積算回数を示した回数値とを保持する保持部とを備える
    ことを特徴とする信号評価指標演算回路。
    A circuit for calculating an index value according to the signal quality of a binarized signal obtained by performing maximum likelihood decoding processing on a digital reproduction signal reproduced based on a recording code recorded on an optical disc,
    Each of the two state transition sequences corresponding to the recording condition among a plurality of state transition sequences to which a different recording condition is assigned and which transitions from the first state at time kn to the second state at time k. The first state transition sequence determined to be the most probable in the maximum likelihood decoding process and the second most probable for each of a plurality of combination pattern groups to which a plurality of combination patterns each indicating a combination are assigned. A pattern detection unit that detects that the determined combination of the second state transition sequences matches any one of a plurality of combination patterns assigned to the combination pattern group;
    For each of the plurality of combination pattern groups, the pattern detection unit detects that the combination of the first and second state transition sequences matches any one of the plurality of combination patterns assigned to the combination pattern group. The first index value indicating the Euclidean distance between the first state transition sequence and the digital reproduction signal, and the Euclidean distance between the second state transition sequence and the digital reproduction signal. A distance calculation unit that calculates a distance difference value corresponding to a difference value with the second index value indicating
    A selection unit for selecting a distance difference value corresponding to any one of the plurality of combination pattern groups from among the distance difference values calculated for each of the plurality of combination pattern groups by the distance calculation unit;
    An integration unit that generates an integrated value by integrating the distance difference values selected by the selection unit;
    A signal evaluation index calculation circuit comprising: a holding unit that holds an integration value generated by the integration unit and a count value indicating the number of integrations of the integration unit.
  2.  請求項1において、
     前記複数の組合せパターングループは、
      前記記録符号の所定の単位区間においてゼロクロス部分が1個のみ含まれる第1の記録条件が割り当てられた第1の組合せパターングループと、
      前記記録符号の所定の単位区間において最短マーク長の孤立パターンが1個のみ含まれる第2の記録条件が割り当てられた第2の組合せパターングループと、
      前記記録符号の所定の単位区間において最短マーク長の孤立パターンが2個のみ含まれる第3の記録条件が割り当てられた第3の組合せパターングループとを含み、
     前記第1の組合せパターングループには、互いの間のユークリッド距離が非最小距離差であるとともに前記第1の記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の第1の組合せパターンが割り当てられ、
     前記第2の組合せパターングループには、互いの間のユークリッド距離が最小距離差であるとともに前記第2の記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の第2の組合せパターンが割り当てられ、
     前記第3の組合せパターングループには、互いの間のユークリッド距離が最小距離差であるとともに前記第3の記録条件に対応する2通りの状態遷移列の組合せを各々が示した複数の第3の組合せパターンが割り当てられる
    ことを特徴とする信号評価指標演算回路。
    In claim 1,
    The plurality of combination pattern groups are:
    A first combination pattern group to which a first recording condition including only one zero-cross portion in a predetermined unit section of the recording code is assigned;
    A second combination pattern group assigned with a second recording condition in which only one isolated pattern with the shortest mark length is included in a predetermined unit section of the recording code;
    A third combination pattern group assigned with a third recording condition in which only two isolated patterns with the shortest mark length are included in a predetermined unit section of the recording code,
    In the first combination pattern group, a plurality of first combinations each showing two combinations of state transition sequences corresponding to the first recording condition while the Euclidean distance between them is a non-minimum distance difference. Is assigned a combination pattern,
    The second combination pattern group includes a plurality of second combinations each of which indicates a combination of two kinds of state transition sequences corresponding to the second recording condition while the Euclidean distance between them is the minimum distance difference. A combination pattern is assigned,
    In the third combination pattern group, there are a plurality of third combinations each indicating two combinations of state transition sequences corresponding to the third recording condition, and the Euclidean distance between them is the minimum distance difference. A signal evaluation index calculation circuit, wherein a combination pattern is assigned.
  3.  請求項1において、
     前記光ディスクに記録された記録符号のうち所定区間の記録符号に応じたデジタル再生信号が繰り返し再生され、
     前記選択部は、前記デジタル再生信号の再生が繰り返される毎に、前記複数の組合せパターングループのうち選択対象とする組合せパターンを切り替える
    ことを特徴とする信号評価指標演算回路。
    In claim 1,
    Of the recording codes recorded on the optical disc, a digital reproduction signal corresponding to a recording code of a predetermined section is repeatedly reproduced,
    The signal selection index calculation circuit, wherein the selection unit switches a combination pattern to be selected from the plurality of combination pattern groups every time reproduction of the digital reproduction signal is repeated.
  4.  請求項1において、
     前記選択部は、前記距離演算部によって前記複数の組合せパターングループ毎に演算された距離差分値の中から前記複数の組合せパターングループのうち前記二値化信号の信号品質の評価において最も支配的な組合せパターングループに対応する距離差分値を選択する
    ことを特徴とする信号評価指標演算回路。
    In claim 1,
    The selection unit is most dominant in the signal quality evaluation of the binarized signal among the plurality of combination pattern groups among the distance difference values calculated for each of the plurality of combination pattern groups by the distance calculation unit. A signal evaluation index calculation circuit, wherein a distance difference value corresponding to a combination pattern group is selected.
  5.  請求項1において、
     前記デジタル再生信号の中に欠陥部分が含まれていることを検出する欠陥検出部と、
     前記欠陥検出部によって前記デジタル再生信号の中に欠陥部分が含まれていることが検出された場合に、前記積算部による積算動作を停止させる演算制御部とをさらに備える
    ことを特徴とする信号評価指標演算回路。
    In claim 1,
    A defect detection unit for detecting that a defect portion is included in the digital reproduction signal;
    The signal evaluation further comprising: an arithmetic control unit that stops the integration operation by the integration unit when the defect detection unit detects that a defective portion is included in the digital reproduction signal Index calculation circuit.
  6.  請求項1において、
     前記積算部によって生成された積算値が予め定められた上限値に到達したことを検出するリミット検出部と、
     前記リミット検出部によって前記積算値が前記上限値に到達したことが検出された場合に、前記積算部による積算動作を停止させる演算制御部とをさらに備える
    ことを特徴とする信号評価指標演算回路。
    In claim 1,
    A limit detection unit for detecting that the integrated value generated by the integrating unit has reached a predetermined upper limit;
    A signal evaluation index calculation circuit, further comprising: a calculation control unit that stops the integration operation by the integration unit when the limit detection unit detects that the integration value has reached the upper limit value.
  7.  光ディスクに記録された記録符号に基づいてデジタル再生信号を再生する再生部と、
     前記再生部によって得られたデジタル再生信号の周波数特性が所望の等化特性となるように、前記デジタル再生信号の波形を整形する適応フィルタと、
     前記適応フィルタによって得られたデジタル再生信号に最尤復号処理を施して最も確からしい二値化信号を生成するビダビ復号器と、
     前記二値化信号の信号品質に応じた指標値を演算する請求項1~6のいずれか1項に記載の信号評価指標演算回路とを備える
    ことを特徴とする光ディスク装置。
    A reproduction unit for reproducing a digital reproduction signal based on a recording code recorded on an optical disc;
    An adaptive filter that shapes the waveform of the digital reproduction signal so that the frequency characteristic of the digital reproduction signal obtained by the reproduction unit has a desired equalization characteristic;
    A Viterbi decoder that generates the most likely binary signal by performing maximum likelihood decoding on the digital reproduction signal obtained by the adaptive filter;
    7. An optical disc apparatus comprising: the signal evaluation index calculation circuit according to claim 1 that calculates an index value corresponding to a signal quality of the binarized signal.
PCT/JP2011/003449 2010-07-12 2011-06-16 Circuit for computing signal evaluation indicator and optical disc device WO2012008094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010158076 2010-07-12
JP2010-158076 2010-07-12

Publications (1)

Publication Number Publication Date
WO2012008094A1 true WO2012008094A1 (en) 2012-01-19

Family

ID=45469114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003449 WO2012008094A1 (en) 2010-07-12 2011-06-16 Circuit for computing signal evaluation indicator and optical disc device

Country Status (1)

Country Link
WO (1) WO2012008094A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002312129A (en) * 2001-04-11 2002-10-25 Sony Corp Device and method for evaluating quality of regenerated signal, device and method for regenerating data, and recording data and method therefor
JP2003272304A (en) * 2002-03-13 2003-09-26 Toshiba Corp Information recording reproducing device, and method of signal evaluation therefore, and information recording reproducing medium
WO2008081820A1 (en) * 2006-12-28 2008-07-10 Panasonic Corporation Information recording medium evaluation method, information recording medium, information recording medium manufacturing method, signal processing method, and access control device
WO2009107399A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Signal evaluation method and signal evaluation device
JP2010140551A (en) * 2008-12-11 2010-06-24 Panasonic Corp Method and device for playback of optical disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002312129A (en) * 2001-04-11 2002-10-25 Sony Corp Device and method for evaluating quality of regenerated signal, device and method for regenerating data, and recording data and method therefor
JP2003272304A (en) * 2002-03-13 2003-09-26 Toshiba Corp Information recording reproducing device, and method of signal evaluation therefore, and information recording reproducing medium
WO2008081820A1 (en) * 2006-12-28 2008-07-10 Panasonic Corporation Information recording medium evaluation method, information recording medium, information recording medium manufacturing method, signal processing method, and access control device
WO2009107399A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Signal evaluation method and signal evaluation device
JP2010140551A (en) * 2008-12-11 2010-06-24 Panasonic Corp Method and device for playback of optical disk

Similar Documents

Publication Publication Date Title
US7940622B2 (en) Recording/reproduction device, evaluation value calculation method, and evaluation value calculation device
US7835245B2 (en) Evaluation value calculating apparatus, recording and playback apparatus, evaluation value calculating method, recording method
JP6504245B2 (en) Data detection device, reproduction device, data detection method
US7633846B2 (en) Multi-level information reproducing method, multi-level information recording medium, multi-level information waveform equalizing device, multi-level information reproducing apparatus, multi-level information recording apparatus, signal processing method, reproduced signal processing circuit and optical disk apparatus
JP4959749B2 (en) Recording condition adjusting method and optical disc apparatus
US8873358B2 (en) Skew detection method and optical disc device
JP5441906B2 (en) Reproduction signal evaluation method, reproduction signal evaluation apparatus, and optical disc apparatus including the same
JP4423670B2 (en) Information recording medium reproducing method and information recording or reproducing apparatus
JP2008112509A (en) Optical disc recording apparatus
JP2004152445A (en) Optical disk device
US8194518B2 (en) Optical disc device and optical disc playback method
US7441177B2 (en) Information reproduction apparatus and method using maximum likelihood decoding
WO2012008094A1 (en) Circuit for computing signal evaluation indicator and optical disc device
US20090040887A1 (en) Optical disk reproduction apparatus
US7298683B2 (en) Optical information recording/reproducing apparatus with mechanism for correcting spherical aberration and method using same
JP2020170576A (en) Optical disk evaluation method, and optical device
JP2007207294A (en) Optical disk drive, focus offset adjusting method
JP4234042B2 (en) Multi-value information recording medium, multi-value information waveform equalizer, multi-value information reproducing device
JP2010152951A (en) Optical disk drive device
US20080285406A1 (en) Optical disc apparatus and optical disc reproduction method
WO2011068068A1 (en) Data record evaluation method, device, and program, and optical information recording medium
US20100322052A1 (en) Reproduction signal quality evaluation device and method
US20090168622A1 (en) Optical disk apparatus
JP4424271B2 (en) Optical disk playback device
JP4045497B2 (en) Optical disc playback apparatus and optical disc playback method, and skew detection apparatus and skew detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP