WO2012006503A1 - Anti-neuropilin antibodies and methods of use - Google Patents
Anti-neuropilin antibodies and methods of use Download PDFInfo
- Publication number
- WO2012006503A1 WO2012006503A1 PCT/US2011/043318 US2011043318W WO2012006503A1 WO 2012006503 A1 WO2012006503 A1 WO 2012006503A1 US 2011043318 W US2011043318 W US 2011043318W WO 2012006503 A1 WO2012006503 A1 WO 2012006503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- amino acid
- seq
- acid sequence
- hvr
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
Definitions
- the present invention relates to anti-neuropilin antibodies and methods of using the same.
- NRPl Neuropilin-1
- VEGF vascular endothelial growth factor
- the invention provides anti-NRPl antibodies and methods of using the same.
- the invention provides an isolated antibody that binds to neuropilin-1 (NRP1), wherein the antibody comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:3, (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:4, and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:5.
- the antibody further comprises (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 8; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- an isolated antibody that binds to neuropilin-1 comprising (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 8; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- the invention provides an isolated antibody that binds to neuropilin-1 (NRP1), wherein the antibody comprises (a) a VH sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:2; (b) a VL sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:7; or (c) a VH sequence as in (a) and a VL sequence as in (b).
- the antibody comprises a VH sequence of SEQ ID NO:2.
- the antibody comprises a VL sequence of SEQ ID NO:7.
- an isolated antibody that binds to neuropilin-1 (NRP1) wherein the antibody comprises a VH sequence of SEQ ID NO:2 and a VL sequence of SEQ ID NO:7.
- the antibody of the invention is an IgGl antibody.
- the antibody is an antibody fragment that binds neuropilin, e.g., an antibody that lacks an Fc portion, an F(ab') 2 , an Fab, or an Fv structure.
- the invention provides an immunoconjugate comprising any of the antibodies of the invention.
- the invention also provides an isolated nucleic acid encoding any of the anti-NRPl antibodies of the invention.
- a vector comprising the nucleic acid is provided.
- a host cell comprising the vector or comprising the nucleic acid is provided.
- the host cell is eukaryotic.
- the host cell is a CHO cell.
- a method of making an anti-NRPl antibody is provided, wherein the method comprises culturing the host cell under conditions suitable for expression of the nucleic acid encoding the antibody so that the antibody produced. In some embodiments the method further comprises isolating the antibody produced by the methods.
- a method of detecting the presence of NRPl in a biological sample comprising contacting the biological sample with an antibody of the invention under conditions permissive for binding of the antibody to NRPl, and detecting the presence of the bound antibody, e.g., by detecting whether a complex is formed between the antibody and NRPl .
- an antibody of the invention for use in detecting the presence of NRPl in a biological sample.
- the detection of the presence of NRPl is by immunohistochemistry.
- Figure 1 A-D show results of immunohistochemistry using monoclonal anti-NRPl antibody 7130.
- FIGSA-C show results of immunohistochemistry using monoclonal anti-NRPl antibody 7130.
- (2A tissue section from colorectal cancer (CRC) patient
- 2B tissue section from breast cancer (BC) patient
- 2C tissue section from non-small cell lung cancer (NSCLC) patient).
- acceptor human framework for the purposes herein is a framework comprising the amino acid sequence of a light chain variable domain (VL) framework or a heavy chain variable domain (VH) framework derived from a human immunoglobulin framework or a human consensus framework, as defined below.
- An acceptor human framework "derived from” a human immunoglobulin framework or a human consensus framework may comprise the same amino acid sequence thereof, or it may contain amino acid sequence changes. In some embodiments, the number of amino acid changes are 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less.
- the VL acceptor human framework is identical in sequence to the VL human immunoglobulin framework sequence or human consensus framework sequence.
- Binding affinity refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity” refers to intrinsic binding affinity which reflects a 1 : 1 interaction between members of a binding pair (e.g., antibody and antigen).
- the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein. Specific illustrative and exemplary embodiments for measuring binding affinity are described in the following.
- an “affinity matured” antibody refers to an antibody with one or more alterations in one or more hypervariable regions (HVRs), compared to a parent antibody which does not possess such alterations, such alterations resulting in an improvement in the affinity of the antibody for antigen.
- HVRs hypervariable regions
- anti-neuropilin-1 antibody refers to an antibody that is capable of binding NRP1 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting NRP 1.
- the extent of binding of an anti- NRP1 antibody to an unrelated, non- NRP1 protein is less than about 10% of the binding of the antibody to NRP1 as measured, e.g., by a radioimmunoassay (RIA).
- RIA radioimmunoassay
- an antibody that binds to NRP1 has a dissociation constant (Kd) of ⁇ ⁇ , ⁇ 100 nM, ⁇ 10 nM, ⁇ 1 nM, ⁇ 0.1 nM, ⁇ 0.01 nM, or ⁇ 0.001 nM (e.g. 10 ⁇ 8 M or less, e.g. from 10 ⁇ 8 M to 10 "13 M, e.g., from 10 "9 M to 10 "13 M).
- Kd dissociation constant
- an anti- NRP1 antibody binds to an epitope of NRP 1 that is conserved among NRPl from different species.
- antibody herein is used in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity.
- antibody fragment refers to a molecule other than an intact antibody that comprises a portion of an intact antibody that binds the antigen to which the intact antibody binds.
- antibody fragments include but are not limited to Fv, Fab, Fab', Fab'-SH, F(ab') 2 ; diabodies; linear antibodies; single-chain antibody molecules (e.g. scFv); and multispecific antibodies formed from antibody fragments.
- an "antibody that binds to the same epitope” as a reference antibody refers to an antibody that blocks binding of the reference antibody to its antigen in a competition assay by 50% or more, and conversely, the reference antibody blocks binding of the antibody to its antigen in a competition assay by 50% or more.
- An exemplary competition assay is provided herein.
- chimeric antibody refers to an antibody in which a portion of the heavy and/or light chain is derived from a particular source or species, while the remainder of the heavy and/or light chain is derived from a different source or species.
- the "class" of an antibody refers to the type of constant domain or constant region possessed by its heavy chain.
- the heavy chain constant domains that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
- cytotoxic agent refers to a substance that inhibits or prevents a cellular function and/or causes cell death or destruction.
- Cytotoxic agents include, but are not limited to, radioactive isotopes (e.g., At 211 , 1 131 , 1 125 , Y 90 , Re 186 , Re 188 , Sm 153 , Bi 212 , P 32 , Pb 212 and radioactive isotopes of Lu); chemotherapeutic agents or drugs (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents); growth inhibitory agents; enzymes and fragments thereof such as nucleolytic enzymes; antibiotics; toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal
- Antibody effector functions refer to those biological activities attributable to the Fc region of an antibody, which vary with the antibody isotype. Examples of antibody effector functions include: Clq binding and complement dependent cytotoxicity (CDC); Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor); and B cell activation.
- an "effective amount" of an agent refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
- Fc region herein is used to define a C-terminal region of an
- immunoglobulin heavy chain that contains at least a portion of the constant region.
- the term includes native sequence Fc regions and variant Fc regions.
- a human IgG heavy chain Fc region extends from Cys226, or from Pro230, to the carboxyl-terminus of the heavy chain.
- the C-terminal lysine (Lys447) of the Fc region may or may not be present.
- numbering of amino acid residues in the Fc region or constant region is according to the EU numbering system, also called the EU index, as described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, 1991.
- FR Framework or "FR” refers to variable domain residues other than hypervariable region (HVR) residues.
- the FR of a variable domain generally consists of four FR domains: FR1, FR2, FR3, and FR4. Accordingly, the HVR and FR sequences generally appear in the following sequence in VH (or VL): FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4.
- full length antibody “intact antibody,” and “whole antibody” are used herein interchangeably to refer to an antibody having a structure substantially similar to a native antibody structure or having heavy chains that contain an Fc region as defined herein.
- host cell refers to cells into which exogenous nucleic acid has been introduced, including the progeny of such cells.
- Host cells include “transformants” and “transformed cells,” which include the primary transformed cell and progeny derived therefrom without regard to the number of passages. Progeny may not be completely identical in nucleic acid content to a parent cell, but may contain mutations. Mutant progeny that have the same function or biological activity as screened or selected for in the originally transformed cell are included herein.
- a "human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human or a human cell or derived from a non-human source that utilizes human antibody repertoires or other human antibody-encoding sequences. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues.
- a "human consensus framework” is a framework which represents the most commonly occurring amino acid residues in a selection of human immunoglobulin VL or VH framework sequences.
- the selection of human immunoglobulin VL or VH sequences is from a subgroup of variable domain sequences.
- the subgroup of sequences is a subgroup as in Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH
- the subgroup is subgroup kappa I as in Kabat et al, supra.
- the subgroup is subgroup III as in Kabat et al, supra.
- a "humanized” antibody refers to a chimeric antibody comprising amino acid residues from non-human HVRs and amino acid residues from human FRs.
- a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the HVRs (e.g., CDRs) correspond to those of a non-human antibody, and all or substantially all of the FRs correspond to those of a human antibody.
- a humanized antibody optionally may comprise at least a portion of an antibody constant region derived from a human antibody.
- a "humanized form" of an antibody, e.g., a non-human antibody refers to an antibody that has undergone humanization.
- hypervariable region refers to each of the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops ("hypervariable loops").
- native four-chain antibodies comprise six HVRs; three in the VH (HI, H2, H3), and three in the VL (LI, L2, L3).
- HVRs generally comprise amino acid residues from the hypervariable loops and/or from the "complementarity determining regions" (CDRs), the latter being of highest sequence variability and/or involved in antigen recognition.
- CDRs complementarity determining regions
- An HVR region as used herein comprise any number of residues located within positions 24-36 (for LI), 46-56 (for L2), 89-97 (for L3), 26-35B (for HI), 47-65 (for H2), and 93-102 (for H3). Therefore, an HVR includes residues in positions described previously:
- CDRs generally comprise the amino acid residues that form the hypervariable loops.
- CDRs also comprise "specificity determining residues,” or "SDRs,” which are residues that contact antigen. SDRs are contained within regions of the CDRs called abbreviated-CDRs, or a-CDRs.
- Exemplary a-CDRs (a-CDR-Ll, a- CDR-L2, a-CDR-L3, a-CDR-Hl, a-CDR-H2, and a-CDR-H3) occur at amino acid residues 31- 34 of LI, 50-55 of L2, 89-96 of L3, 31-35B of HI, 50-58 of H2, and 95-102 of H3.
- HVR residues and other residues in the variable domain are numbered herein according to Kabat et al., supra.
- An "immunoconjugate" is an antibody conjugated to one or more heterologous molecule(s), including but not limited to a cytotoxic agent.
- mammals include, but are not limited to, domesticated animals (e.g., cows, sheep, cats, dogs, and horses), primates (e.g., humans and non-human primates such as monkeys), rabbits, and rodents (e.g., mice and rats).
- domesticated animals e.g., cows, sheep, cats, dogs, and horses
- primates e.g., humans and non-human primates such as monkeys
- rabbits e.g., mice and rats
- rodents e.g., mice and rats.
- the individual or subject is a human.
- an “isolated” antibody is one which has been separated from a component of its natural environment.
- an antibody is purified to greater than 95% or 99% purity as determined by, for example, electrophoretic (e.g., SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis) or chromatographic (e.g., ion exchange or reverse phase HPLC).
- electrophoretic e.g., SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis
- chromatographic e.g., ion exchange or reverse phase HPLC
- nucleic acid refers to a nucleic acid molecule that has been separated from a component of its natural environment.
- An isolated nucleic acid includes a nucleic acid molecule contained in cells that ordinarily contain the nucleic acid molecule, but the nucleic acid molecule is present extrachromosomally or at a chromosomal location that is different from its natural chromosomal location.
- isolated nucleic acid encoding an anti-NRPl antibody refers to one or more nucleic acid molecules encoding antibody heavy and light chains (or fragments thereof), including such nucleic acid molecule(s) in a single vector or separate vectors, and such nucleic acid molecule(s) present at one or more locations in a host cell.
- monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variant antibodies, e.g., containing naturally occurring mutations or arising during production of a monoclonal antibody preparation, such variants generally being present in minor amounts.
- polyclonal antibody preparations typically include different antibodies directed against different determinants (epitopes)
- each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen.
- the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including but not limited to the hybridoma method, recombinant DNA methods, phage-display methods, and methods utilizing transgenic animals containing all or part of the human immunoglobulin loci, such methods and other exemplary methods for making monoclonal antibodies being described herein.
- naked antibody refers to an antibody that is not conjugated to a heterologous moiety (e.g., a cytotoxic moiety) or radiolabel.
- the naked antibody may be present in a pharmaceutical formulation.
- Native antibodies refer to naturally occurring immunoglobulin molecules with varying structures.
- native IgG antibodies are heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light chains and two identical heavy chains that are disulfide-bonded. From N- to C-terminus, each heavy chain has a variable region (VH), also called a variable heavy domain or a heavy chain variable domain, followed by three constant domains (CHI, CH2, and CH3).
- VH variable region
- VL variable region
- the light chain of an antibody may be assigned to one of two types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequence of its constant domain.
- package insert is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, combination therapy, contraindications and/or warnings concerning the use of such therapeutic products.
- Percent (%) amino acid sequence identity with respect to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
- % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2.
- the ALIGN-2 sequence comparison computer program was authored by Genentech, Inc., and the source code has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087.
- the ALIGN-2 program is publicly available from Genentech, Inc., South San Francisco, California, or may be compiled from the source code.
- the ALIGN-2 program should be compiled for use on a UNLX operating system, including digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.
- % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B is calculated as follows:
- pharmaceutical formulation refers to a preparation which is in such form as to permit the biological activity of an active ingredient contained therein to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered.
- a “pharmaceutically acceptable carrier” refers to an ingredient in a pharmaceutical formulation, other than an active ingredient, which is nontoxic to a subject.
- pharmaceutically acceptable carrier includes, but is not limited to, a buffer, excipient, stabilizer, or preservative.
- neuropilin-1 refers to any native NRPT from any vertebrate source, including mammals such as primates (e.g. humans) and rodents (e.g., mice and rats), unless otherwise indicated.
- the term encompasses "full-length,” unprocessed NRP1 as well as any form of NRPl that results from processing in the cell.
- the term also encompasses naturally occurring variants of NRPl, e.g., splice variants or allelic variants.
- the basic structure of neuropilins comprises five domains: three extracellular domains (ala2, blb2 and c), a transmembrane domain, and a cytoplasmic domain.
- the ala2 domain is homologous to complement components Clr and Cls (CUB), which generally contains four cysteine residues that form two disculfid bridges.
- the blb2 domain is homologous to coagulation factors V and VIII.
- the central portion of the c domain is designated as MAM due to its homology to meprin, A5 and receptor tyrosine phosphotase ⁇ proteins.
- the ala2 and blb2 domains are responsible for ligand binding, whereas the c domain is critical for homodimerization or heterodimerization. Gu et al. (2002) J. Biol. Chem. 277: 18069-76; He and Tessier-Lavigne (1997) Cell 90:739-51.
- variable region refers to the domain of an antibody heavy or light chain that is involved in binding the antibody to antigen.
- the variable domains of the heavy chain and light chain (VH and VL, respectively) of a native antibody generally have similar structures, with each domain comprising four conserved framework regions (FRs) and three hypervariable regions (HVRs).
- FRs conserved framework regions
- HVRs hypervariable regions
- antibodies that bind a particular antigen may be isolated using a VH or VL domain from an antibody that binds the antigen to screen a library of complementary VL or VH domains, respectively. See, e.g., Portolano et al., J.
- vector refers to a nucleic acid molecule capable of propagating another nucleic acid to which it is linked.
- the term includes the vector as a self- replicating nucleic acid structure as well as the vector incorporated into the genome of a host cell into which it has been introduced.
- Certain vectors are capable of directing the expression of nucleic acids to which they are operatively linked. Such vectors are referred to herein as "expression vectors.”
- the invention provides novel antibodies that bind to NRPl .
- Antibodies of the invention are useful, e.g., for detecting the presence of NRPl, for example, in biological samples.
- the invention provides anti-NRPl antibodies useful for, e.g., diagnostic applications.
- the invention provides an anti-NRPl antibody with the following heavy and light chain sequences:
- amino acid sequence of the heavy chain variable region is the following:
- the amino acid sequences of the Kabat CDRs of the heavy chain are the following: CDRl : NYHMS (SEQ ID NO:3); CDR2: IIYAVSAATWSTWVKG (SEQ ID NO:4); CDR3: VRAPGDSTYYDL (SEQ ID NO:5).
- amino acid sequence of the light chain variable region is the following:
- the amino acid sequences of the Kabat CDRs of the light chain are the following: CDR1 : QASQTISNNWLS (SEQ ID NO:8); CDR2: KAS ILAS (SEQ ID NO:9); CDR3: LYGHYITTSAHNA (SEQ ID NO: 10).
- the invention provides an anti-NRPl antibody comprising at least one, two, three, four, five, or six HVRs selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:3; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:5; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 8; (e) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- HVR-H1 comprising the amino acid sequence of SEQ ID NO:3
- HVR-H2 comprising the amino acid sequence of SEQ ID NO:4
- HVR-H3 comprising the amino acid sequence of SEQ ID NO:5
- HVR-L1 comprising the amino acid sequence of SEQ ID NO: 8
- HVR-L2 comprising the amino
- the invention provides an antibody comprising at least one, at least two, or all three VH HVR sequences selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:3; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:5.
- the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO:5.
- the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO: 3 and HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- the antibody comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:3; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:5.
- the invention provides an antibody comprising at least one, at least two, or all three VL HVR sequences selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO:8; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- the antibody comprises (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 8; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- an antibody of the invention comprises (a) a VH domain comprising at least one, at least two, or all three VH HVR sequences selected from (i) HVR-Hl comprising the amino acid sequence of SEQ ID NO:3, (ii) HVR-H2 comprising the amino acid sequence of SEQ ID NO:4, and (iii) HVR-H3 comprising an amino acid sequence selected from SEQ ID NO:5; and (b) a VL domain comprising at least one, at least two, or all three VL HVR sequences selected from (i) HVR-Ll comprising the amino acid sequence of SEQ ID NO: 8, (ii) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9, and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- the invention provides an antibody comprising (a) HVR-Hl comprising the amino acid sequence of SEQ ID NO:3; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:5; (d) HVR-Ll comprising the amino acid sequence of SEQ ID NO: 8; (e) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9; and (f) HVR-L3 comprising an amino acid sequence selected from SEQ ID NO: 10.
- an anti-NRPl antibody comprises a heavy chain variable domain
- VH sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO:2.
- a VH sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence (SEQ ID NO:2), but an anti-NRPl antibody comprising that sequence retains the ability to bind to NRP1.
- a total of 1 to 10 amino acids have been substituted, inserted and/or deleted in SEQ ID NO:2.
- substitutions, insertions, or deletions occur in regions outside the HVRs (i.e., in the FRs).
- the anti-NRPl antibody comprises the VH sequence in SEQ ID NO:2, including post-translational modifications of that sequence.
- the VH comprises one, two or three HVRs selected from: (a) HVR-Hl comprising the amino acid sequence of SEQ ID NO:3, (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:4, and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:5.
- an anti-NRPl antibody comprising a light chain variable domain (VL) having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%o, 99%), or 100% sequence identity to the amino acid sequence of SEQ ID NO:7.
- VL light chain variable domain
- a VL sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%), or 99%) identity contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence (SEQ ID NO:7), but an anti-NRPl antibody comprising that sequence retains the ability to bind to NRP1.
- the anti-NRPl antibody comprises the VL sequence in SEQ ID NO:7, including post-translational modifications of that sequence.
- the VL comprises one, two or three HVRs selected from (a) HVR-Ll comprising the amino acid sequence of SEQ ID NO: 8; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO:9; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 10.
- an anti-NRPl antibody comprising a
- the antibody comprises the VH and VL sequences in SEQ ID NO:2 and SEQ ID NO:7, respectively, including post-translational modifications of those sequences.
- the invention provides an antibody that binds to the same epitope as an anti-NRPl antibody provided herein.
- an antibody is provided that binds to the same epitope as an anti-NRPl antibody comprising a VH sequence of SEQ ID NO:2 and a VL sequence of SEQ ID NO:7.
- an anti-NRPl antibody is a monoclonal antibody, including a chimeric, humanized or human antibody.
- an anti-NRPl antibody is an antibody fragment, e.g., a Fv, Fab, Fab', scFv, diabody, or F(ab') 2 fragment.
- the antibody is a full length antibody, e.g., an intact IgGl antibody or other antibody class or isotype as defined herein.
- an anti-NRPl antibody may incorporate any of the features, singly or in combination, as described in Sections 1-7 below: 1.
- a ntibody A ffinity for any of the above embodiments, may incorporate any of the features, singly or in combination, as described in Sections 1-7 below: 1.
- an antibody provided herein has a dissociation constant (Kd) of ⁇ ⁇ , ⁇ ⁇ ⁇ , ⁇ ⁇ ⁇ , ⁇ 1 nM, ⁇ 0.1 nM, ⁇ 0.01 nM, or ⁇ 0.001 nM (e.g. 10 "8 M or less, e.g. from 10 "8 M to 10 "13 M, e.g., from 10 "9 M to 10 "13 M).
- Kd dissociation constant
- Kd is measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen as described by the following assay.
- Solution binding affinity of Fabs for antigen is measured by equilibrating Fab with a minimal concentration of ( 125 I)-labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate (see, e.g., Chen et al, J. Mol. Biol. 293:865-881(1999)).
- MICROTITER ® multi-well plates (Thermo Scientific) are coated overnight with 5 ⁇ g/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 23°C).
- a non-adsorbent plate (Nunc #269620)
- 100 pM or 26 pM [ 125 I]-antigen are mixed with serial dilutions of a Fab of interest (e.g., consistent with assessment of the anti-VEGF antibody, Fab-12, in Presta et al, Cancer Res. 57:4593-4599 (1997)).
- the Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g., about 65 hours) to ensure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature (e.g., for one hour). The solution is then removed and the plate washed eight times with 0.1% polysorbate 20 (TWEEN-20TM) in PBS. When the plates have dried, 150 ⁇ /well of scintillant
- Kd is measured using surface plasmon resonance assays using a BIACORE ® -2000 or a BIACORE ® -3000 (BIAcore, Inc., Piscataway, NJ) at 25°C with immobilized antigen CM5 chips at -10 response units (RU).
- carboxymethylated dextran biosensor chips (CM5, BIACORE, Inc.) are activated with N-ethyl- N'- (3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions.
- EDC N-ethyl- N'- (3-dimethylaminopropyl)-carbodiimide hydrochloride
- NHS N-hydroxysuccinimide
- Antigen is diluted with 10 mM sodium acetate, pH 4.8, to 5 ⁇ g/ml (-0.2 ⁇ ) before injection at a flow rate of 5 ⁇ /minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1 M ethanolamine is injected to block unreacted groups.
- association rates (k on ) and dissociation rates (k 0 ff) are calculated using a simple one-to-one Langmuir binding model (BIACORE ® Evaluation Software version 3.2) by simultaneously fitting the association and dissociation sensorgrams.
- the equilibrium dissociation constant (Kd) is calculated as the ratio k 0 ff/k on See, e.g., Chen et al, J. Mol. Biol. 293:865-881 (1999).
- an antibody provided herein is an antibody fragment.
- Antibody fragments include, but are not limited to, Fab, Fab', Fab'-SH, F(ab') 2 , Fv, and scFv fragments, and other fragments described below.
- Fab fragment antigen binding protein
- Fab' fragment antigen binding protein
- Fab'-SH fragment antigen binding protein
- Fv fragment antigen binding protein
- scFv fragments see, e.g., Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., (Springer-Verlag, New York), pp. 269-315 (1994); see also WO 93/16185; and U.S.
- Patent Nos. 5,571,894 and 5,587,458 For discussion of Fab and F(ab') 2 fragments comprising salvage receptor binding epitope residues and having increased in vivo half- life, see U.S.
- Diabodies are antibody fragments with two antigen-binding sites that may be bivalent or bispecific. See, for example, EP 404,097; WO 1993/01161; Hudson et al, Nat. Med. 9: 129- 134 (2003); and Hollinger et al, Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993). Triabodies and tetrabodies are also described in Hudson et al, Nat. Med. 9: 129-134 (2003).
- Single-domain antibodies are antibody fragments comprising all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody.
- a single-domain antibody is a human single-domain antibody (Domantis, Inc., Waltham, MA; see, e.g., U.S. Patent No. 6,248,516 Bl).
- Antibody fragments can be made by various techniques, including but not limited to proteolytic digestion of an intact antibody as well as production by recombinant host cells (e.g. E. coli or phage), as described herein.
- an antibody provided herein is a chimeric antibody.
- Certain chimeric antibodies are described, e.g., in U.S. Patent No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Sci. USA, 81 :6851-6855 (1984)).
- a chimeric antibody comprises a non-human variable region (e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region.
- a chimeric antibody is a "class switched" antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.
- a chimeric antibody is a humanized antibody.
- a non-human antibody is humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody.
- a humanized antibody comprises one or more variable domains in which HVRs, e.g., CDRs, (or portions thereof) are derived from a non-human antibody, and FRs (or portions thereof) are derived from human antibody sequences.
- HVRs e.g., CDRs, (or portions thereof) are derived from a non-human antibody
- FRs or portions thereof
- a humanized antibody optionally will also comprise at least a portion of a human constant region.
- some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the HVR residues are derived), e.g., to restore or improve antibody specificity or affinity.
- a non-human antibody e.g., the antibody from which the HVR residues are derived
- Human framework regions that may be used for humanization include but are not limited to: framework regions selected using the "best-fit" method (see, e.g., Sims et al. J. Immunol. 151 :2296 (1993)); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions (see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992); and Presta et al. J. Immunol, 151 :2623 (1993)); human mature (somatically mutated) framework regions or human germline framework regions (see, e.g., Almagro and Fransson, Front. Biosci.
- an antibody provided herein is a human antibody.
- Human antibodies can be produced using various techniques known in the art. Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin. Pharmacol. 5: 368-74 (2001) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008).
- Human antibodies may be prepared by administering an immunogen to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge. Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous
- immunoglobulin loci or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated.
- endogenous immunoglobulin loci have generally been inactivated.
- Human antibodies can also be made by hybridoma-based methods. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described. (See, e.g., Kozbor J. Immunol, 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al, J. Immunol, 147: 86 (1991).) Human antibodies generated via human B-cell hybridoma technology are also described in Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006).
- Additional methods include those described, for example, in U.S. Patent No. 7,189,826 (describing production of monoclonal human IgM antibodies from hybridoma cell lines) and Ni, Xiandai Mianyixue, 26(4):265-268 (2006) (describing human-human hybridomas).
- Human hybridoma technology Trioma technology
- Vollmers and Brandlein, Histology and Histopathology, 20(3):927-937 (2005) and Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3): 185-91 (2005).
- Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant domain. Techniques for selecting human antibodies from antibody libraries are described below.
- Antibodies of the invention may be isolated by screening combinatorial libraries for antibodies with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are reviewed, e.g., in
- repertoires of VH and VL genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994).
- Phage typically display antibody fragments, either as single-chain Fv (scFv) fragments or as Fab fragments.
- scFv single-chain Fv
- Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas.
- naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993).
- naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol, 227: 381-388 (1992).
- Patent publications describing human antibody phage libraries include, for example: US Patent No. 5,750,373, and US Patent Publication Nos. 2005/0079574,
- Antibodies or antibody fragments isolated from human antibody libraries are considered human antibodies or human antibody fragments herein. 6. Multispecific A ntibodies
- an antibody provided herein is a multispecific antibody, e.g. a bispecific antibody.
- Multispecific antibodies are monoclonal antibodies that have binding specificities for at least two different sites.
- one of the binding specificities is for NRPl and the other is for any other antigen.
- bispecific antibodies may bind to two different epitopes of NRP 1.
- Bispecific antibodies may also be used to localize cytotoxic agents to cells which express NRPl .
- Bispecific antibodies can be prepared as full length antibodies or antibody fragments.
- Multispecific antibodies include, but are not limited to, recombinant co-expression of two immunoglobulin heavy chain-light chain pairs having different specificities (see Milstein and Cuello, Nature 305: 537 (1983)), WO 93/08829, and Traunecker et al, EMBO J. 10: 3655 (1991)), and "knob-in-hole” engineering (see, e.g., U.S. Patent No. 5,731,168).
- Multi-specific antibodies may also be made by engineering electrostatic steering effects for making antibody Fc-heterodimeric molecules (WO 2009/089004A1); cross- linking two or more antibodies or fragments (see, e.g., US Patent No.
- Engineered antibodies with three or more functional antigen binding sites are also included herein (see, e.g. US 2006/0025576A1).
- the antibody or fragment herein also includes a "Dual Acting FAb” or “DAF” comprising an antigen binding site that binds to NRP1 as well as another, different antigen (see, US 2008/0069820, for example).
- amino acid sequence variants of the antibodies provided herein are contemplated.
- Amino acid sequence variants of an antibody may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., antigen-binding. a) Substitution, Insertion, and Deletion Variants
- antibody variants having one or more amino acid substitutions are provided.
- Sites of interest for substitutional mutagenesis include the HVRs and FRs.
- amino acid side chain classes may be introduced into an antibody of interest and the products screened for a desired activity, e.g., retained/improved antigen binding, decreased immunogenicity, or improved ADCC or CDC.
- Amino acids may be grouped according to common side-chain properties:
- Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
- substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody).
- a parent antibody e.g. a humanized or human antibody
- the resulting variant(s) selected for further study will have modifications (e.g., improvements) in certain biological properties (e.g., increased affinity, reduced immunogenicity) relative to the parent antibody and/or will have substantially retained certain biological properties of the parent antibody.
- An exemplary substitutional variant is an affinity matured antibody, which may be conveniently generated, e.g., using phage display-based affinity maturation techniques such as those described herein. Briefly, one or more HVR residues are mutated and the variant antibodies displayed on phage and screened for a particular biological activity (e.g. binding affinity).
- Alterations may be made in HVRs, e.g., to improve antibody affinity. Such alterations may be made in HVR "hotspots," i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008)), and/or SDRs (a-CDRs), with the resulting variant VH or VL being tested for binding affinity.
- HVR "hotspots” i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008)
- SDRs a-CDRs
- affinity maturation diversity is introduced into the variable genes chosen for maturation by any of a variety of methods (e.g., error-prone PCR, chain shuffling, or oligonucleotide-directed mutagenesis).
- a secondary library is then created. The library is then screened to identify any antibody variants with the desired affinity.
- HVR-directed approaches in which several HVR residues (e.g., 4-6 residues at a time) are randomized.
- HVR residues involved in antigen binding may be specifically identified, e.g., using alanine scanning mutagenesis or modeling.
- CDR-H3 and CDR-L3 in particular are often targeted.
- substitutions, insertions, or deletions may occur within one or more HVRs so long as such alterations do not substantially reduce the ability of the antibody to bind antigen.
- conservative alterations e.g., conservative substitutions as provided herein
- Such alterations may be outside of HVR "hotspots" or SDRs.
- each HVR either is unaltered, or contains no more than one, two or three amino acid substitutions.
- a useful method for identification of residues or regions of an antibody that may be targeted for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (1989) Science, 244: 1081-1085.
- a residue or group of target residues e.g., charged residues such as arg, asp, his, lys, and glu
- a neutral or negatively charged amino acid e.g., alanine or polyalanine
- a crystal structure of an antigen-antibody complex to identify contact points between the antibody and antigen.
- Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution.
- Variants may be screened to determine whether they contain the desired properties.
- Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
- terminal insertions include an antibody with an N-terminal methionyl residue.
- Other insertional variants of the antibody molecule include the fusion to the N- or C -terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
- ADEPT enzyme
- an antibody provided herein is altered to increase or decrease the extent to which the antibody is glycosylated.
- Addition or deletion of glycosylation sites to an antibody may be conveniently accomplished by altering the amino acid sequence such that one or more glycosylation sites is created or removed.
- the carbohydrate attached thereto may be altered.
- Native antibodies produced by mammalian cells typically comprise a branched, biantennary oligosaccharide that is generally attached by an N-linkage to Asn297 of the CH2 domain of the Fc region. See, e.g., Wright et al. TIBTECH 15:26-32 (1997).
- oligosaccharide may include various carbohydrates, e.g., mannose, N-acetyl glucosamine (GlcNAc), galactose, and sialic acid, as well as a fucose attached to a GlcNAc in the "stem" of the biantennary oligosaccharide structure.
- modifications of the oligosaccharide in an antibody of the invention may be made in order to create antibody variants with certain improved properties.
- antibody variants having a carbohydrate structure that lacks fucose attached (directly or indirectly) to an Fc region.
- the amount of fucose in such antibody may be from 1% to 80%, from 1% to 65%, from 5% to 65%> or from 20% to 40%.
- the amount of fucose is determined by calculating the average amount of fucose within the sugar chain at Asn297, relative to the sum of all glycostructures attached to Asn 297 (e. g. complex, hybrid and high mannose structures) as measured by MALDI-TOF mass spectrometry, as described in WO 2008/077546, for example.
- Asn297 refers to the asparagine residue located at about position 297 in the Fc region (Eu numbering of Fc region residues); however, Asn297 may also be located about ⁇ 3 amino acids upstream or downstream of position 297, i.e., between positions 294 and 300, due to minor sequence variations in antibodies.
- Such fucosylation variants may have improved ADCC function. See, e.g., US Patent Publication Nos. US 2003/0157108 (Presta, L.); US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd). Examples of publications related to "defucosylated” or "fucose-deficient" antibody variants include: US 2003/0157108; WO 2000/61739; WO 2001/29246; US
- Examples of cell lines capable of producing defucosylated antibodies include Lecl3 CHO cells deficient in protein fucosylation (Ripka et al. Arch. Biochem. Biophys. 249:533-545 (1986); US Pat Appl No US 2003/0157108 Al, Presta, L; and WO 2004/056312 Al, Adams et al, especially at Example 11), and knockout cell lines, such as alpha- 1,6-fucosyltransferase gene, FUT8, knockout CHO cells (see, e.g., Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004); Kanda, Y. et al, Biotechnol. Bioeng., 94(4):680-688 (2006); and WO2003/085107).
- Antibodies variants are further provided with bisected oligosaccharides, e.g., in which a biantennary oligosaccharide attached to the Fc region of the antibody is bisected by GlcNAc. Such antibody variants may have reduced fucosylation and/or improved ADCC function. Examples of such antibody variants are described, e.g., in WO 2003/011878 (Jean-Mairet et al); US Patent No. 6,602,684 (Umana et al); and US 2005/0123546 (Umana et al). Antibody variants with at least one galactose residue in the oligosaccharide attached to the Fc region are also provided. Such antibody variants may have improved CDC function.
- one or more amino acid modifications may be introduced into the Fc region of an antibody provided herein, thereby generating an Fc region variant.
- the Fc region variant may comprise a human Fc region sequence ⁇ e.g., a human IgGl, IgG2, IgG3 or IgG4 Fc region) comprising an amino acid modification ⁇ e.g. a substitution) at one or more amino acid positions.
- the invention contemplates an antibody variant that possesses some but not all effector functions, which make it a desirable candidate for applications in which the half life of the antibody in vivo is important yet certain effector functions (such as complement and ADCC) are unnecessary or deleterious.
- In vitro and/or in vivo cytotoxicity assays can be conducted to confirm the reduction/depletion of CDC and/or ADCC activities.
- Fc receptor (FcR) binding assays can be conducted to ensure that the antibody lacks FcyR binding (hence likely lacking ADCC activity), but retains FcRn binding ability.
- NK cells express FcyRIII only, whereas monocytes express FcyRI, FcyRII and FcyRIII.
- FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991).
- Non- limiting examples of in vitro assays to assess ADCC activity of a molecule of interest is described in U.S. Patent No. 5,500,362 (see, e.g. Hellstrom, I. et al. Proc. Nat'l Acad. Sci. USA 83:7059-7063 (1986)) and Hellstrom, I et al, Proc.
- non-radioactive assays methods may be employed (see, for example, ACTITM non-radioactive cytotoxicity assay for flow cytometry (CellTechnology, Inc. Mountain View, CA; and CytoTox 96 ® non-radioactive cytotoxicity assay (Promega, Madison, WI).
- Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
- ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. Proc. Nat 'l Acad. Sci. USA 95:652-656 (1998).
- Clq binding assays may also be carried out to confirm that the antibody is unable to bind Clq and hence lacks CDC activity. See, e.g., Clq and C3c binding ELISA in WO 2006/029879 and WO 2005/100402.
- a CDC assay may be performed (see, for example, Gazzano-Santoro et al., J. Immunol.
- FcRn binding and in vivo clearance/half life determinations can also be performed using methods known in the art (see, e.g., Petkova, S.B. et al, Int'l. Immunol. 18(12): 1759-1769 (2006)).
- Antibodies with reduced effector function include those with substitution of one or more of Fc region residues 238, 265, 269, 270, 297, 327 and 329 (U.S. Patent No. 6,737,056).
- Such Fc mutants include Fc mutants with substitutions at two or more of amino acid positions 265, 269, 270, 297 and 327, including the so-called "DANA" Fc mutant with substitution of residues 265 and 297 to alanine (US Patent No. 7,332,581).
- Certain antibody variants with improved or diminished binding to FcRs are described. (See, e.g., U.S. Patent No. 6,737,056; WO 2004/056312, and Shields et al., J. Biol. Chem. 9(2): 6591-6604 (2001).)
- an antibody variant comprises an Fc region with one or more amino acid substitutions which improve ADCC, e.g., substitutions at positions 298, 333, and/or 334 of the Fc region (EU numbering of residues).
- alterations are made in the Fc region that result in altered (i.e., either improved or diminished) Clq binding and/or Complement Dependent Cytotoxicity (CDC), e.g., as described in US Patent No. 6,194,551, WO 99/51642, and Idusogie et al. J. Immunol. 164: 4178-4184 (2000).
- CDC Complement Dependent Cytotoxicity
- FcRn neonatal Fc receptor
- Those antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn.
- Fc variants include those with substitutions at one or more of Fc region residues: 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434, e.g., substitution of Fc region residue 434 (US Patent No. 7,371,826).
- cysteine engineered antibodies e.g., "thioMAbs”
- one or more residues of an antibody are substituted with cysteine residues.
- the substituted residues occur at accessible sites of the antibody.
- reactive thiol groups are thereby positioned at accessible sites of the antibody and may be used to conjugate the antibody to other moieties, such as drug moieties or linker-drug moieties, to create an immunoconjugate, as described further herein.
- any one or more of the following residues may be substituted with cysteine: V205 (Kabat numbering) of the light chain; Al 18 (EU numbering) of the heavy chain; and S400 (EU numbering) of the heavy chain Fc region.
- Cysteine engineered antibodies may be generated as described, e.g., in U.S. Patent No.
- an antibody provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available.
- the moieties suitable for derivatization of the antibody include but are not limited to water soluble polymers.
- water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1, 3- dioxolane, poly-1, 3, 6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n- vinyl pyrrolidone)poly ethylene glycol, propropylene glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol),
- PEG poly
- Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water.
- the polymer may be of any molecular weight, and may be branched or unbranched.
- the number of polymers attached to the antibody may vary, and if more than one polymer are attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc.
- conjugates of an antibody and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided.
- the nonproteinaceous moiety is a carbon nanotube (Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605 (2005)).
- the radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the antibody-nonproteinaceous moiety are killed.
- Antibodies may be produced using recombinant methods and compositions, e.g., as described in U.S. Patent No. 4,816,567.
- isolated nucleic acid encoding an anti-NRPl antibody described herein is provided.
- Such nucleic acid may encode an amino acid sequence comprising the VL and/or an amino acid sequence comprising the VH of the antibody (e.g., the light and/or heavy chains of the antibody).
- one or more vectors e.g., expression vectors
- a host cell comprising such nucleic acid is provided.
- a host cell comprises (e.g., has been transformed with): (1) a vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and an amino acid sequence comprising the VH of the antibody, or (2) a first vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and a second vector comprising a nucleic acid that encodes an amino acid sequence comprising the VH of the antibody.
- the host cell is eukaryotic, e.g. a Chinese Hamster Ovary (CHO) cell or lymphoid cell (e.g., Y0, NSO, Sp20 cell).
- a method of making an anti-NRPl antibody comprises culturing a host cell comprising a nucleic acid encoding the antibody, as provided above, under conditions suitable for expression of the antibody, and optionally recovering the antibody from the host cell (or host cell culture medium).
- nucleic acid encoding an antibody is isolated and inserted into one or more vectors for further cloning and/or expression in a host cell.
- nucleic acid may be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).
- Suitable host cells for cloning or expression of antibody-encoding vectors include prokaryotic or eukaryotic cells described herein.
- prokaryotic or eukaryotic cells described herein.
- antibodies may be produced in bacteria, in particular when glycosylation and Fc effector function are not needed.
- Fc effector function are not needed.
- expression of antibody fragments and polypeptides in bacteria see, e.g., U.S. Patent Nos.
- the antibody may be isolated from the bacterial cell paste in a soluble fraction and can be further purified.
- eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for antibody-encoding vectors, including fungi and yeast strains whose glycosylation pathways have been "humanized,” resulting in the production of an antibody with a partially or fully human glycosylation pattern. See Gerngross, Nat. Biotech. 22: 1409-1414 (2004), and Li et al, Nat. Biotech. 24:210-215 (2006).
- Suitable host cells for the expression of glycosylated antibody are also derived from multicellular organisms (invertebrates and vertebrates). Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains have been identified which may be used in conjunction with insect cells, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures can also be utilized as hosts. See, e.g., US Patent Nos. 5,959,177, 6,040,498, 6,420,548, 7,125,978, and 6,417,429 (describing PLANTIBODIESTM technology for producing antibodies in transgenic plants).
- Vertebrate cells may also be used as hosts.
- mammalian cell lines that are adapted to grow in suspension may be useful.
- Other examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7); human embryonic kidney line (293 or 293 cells as described, e.g., in Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK); mouse Sertoli cells (TM4 cells as described, e.g., in Mather, Biol. Reprod.
- monkey kidney cells (CV1); African green monkey kidney cells (VERO-76); human cervical carcinoma cells (HELA); canine kidney cells (MDCK; buffalo rat liver cells (BRL 3 A); human lung cells (W138); human liver cells (Hep G2); mouse mammary tumor (MMT 060562); TRI cells, as described, e.g., in Mather et al, Annals N. Y. Acad. Sci. 383:44-68 (1982); MRC 5 cells; and FS4 cells.
- Other useful mammalian host cell lines include Chinese hamster ovary (CHO) cells, including DHFR " CHO cells (Urlaub et al., Proc. Natl. Acad. Sci.
- Anti-NRPl antibodies provided herein may be identified, screened for, or characterized for their physical/chemical properties and/or biological activities by various assays known in the art.
- an antibody of the invention is tested for its antigen binding activity, e.g., by known methods such as ELISA, Western blot, etc.
- competition assays may be used to identify an antibody that competes with any one of the antibodies of the invention for binding to NRP1 (e.g., anti-NRPl antibody 7130 described below).
- a competing antibody binds to the same epitope (e.g., a linear or a conformational epitope) that is bound by any one of the antibodies of the invention (e.g., anti-NRPl antibody 7130 described below).
- epitope e.g., a linear or a conformational epitope
- anti-NRPl antibody 7130 described below.
- Detailed exemplary methods for mapping an epitope to which an antibody binds are provided in Morris (1996) "Epitope Mapping Protocols," in Methods in Molecular Biology vol. 66 (Humana Press, Totowa, NJ).
- immobilized NRPl is incubated in a solution comprising a first labeled antibody that binds to NRPl (e.g., anti-NRPl antibody 7130 described below) and a second unlabeled antibody that is being tested for its ability to compete with the first antibody for binding to NRPl .
- the second antibody may be present in a hybridoma supernatant.
- immobilized NRPl is incubated in a solution comprising the first labeled antibody but not the second unlabeled antibody. After incubation under conditions permissive for binding of the first antibody to NRPl, excess unbound antibody is removed, and the amount of label associated with immobilized NRPl is measured. If the amount of label associated with immobilized NRPl is substantially reduced in the test sample relative to the control sample, then that indicates that the second antibody is competing with the first antibody for binding to NRPl . See Harlow and Lane (1988) Antibodies: A
- assays are provided for identifying anti-NRPl antibodies useful for detecting the presence of NRPl, e.g., in immunohistochemistry assays.
- an antibody of the invention is tested for such activity.
- the invention also provides immunoconjugates comprising an anti-NRPl antibody herein conjugated to one or more agents, such as radioactive isotopes.
- an immunoconjugate comprises an antibody as described herein conjugated to a radioactive atom to form a radioconjugate.
- a variety of radioactive isotopes are available for the production of radioconjugates. Examples include At 211 , 1 131 , 1 125 , Y 90 ,
- the radioconjugate When used for detection, it may comprise a radioactive atom for scintigraphic studies, for example tc99m or 1123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium- 111, fluorine- 19, carbon- 13, nitrogen-15, oxygen- 17, gadolinium, manganese or iron.
- NMR nuclear magnetic resonance
- any of the anti-NRPl antibodies provided herein is useful for detecting the presence of NRP1 in a biological sample.
- the term "detecting" as used herein encompasses quantitative or qualitative detection.
- a biological sample comprises a cell or tissue from normal or cancer patients, such as, for example, normal and cancerous tissue of breast, colon, lung, kidney, bone, brain, stomach, pancreas, bladder, ovary, uterus, as well as heart, embryonic and placental tissue.
- an anti-NRPl antibody for use in a method of diagnosis or detection.
- a method of detecting the presence of NRP1 in a biological sample comprises contacting the biological sample with an anti-NRPl antibody as described herein under conditions permissive for binding of the anti- NRP1 antibody to NRP1, and detecting whether a complex is formed between the anti-NRPl antibody and NRP1.
- Such method may be an in vitro or in vivo method.
- an anti-NRPl antibody is used to select subjects eligible for therapy with an anti-NRPl antibody, e.g. where NRP1 is a biomarker for selection of patients.
- labeled anti-NRPl antibodies include, but are not limited to, labels or moieties that are detected directly (such as fluorescent, chromophoric, electron-dense, chemiluminescent, and radioactive labels), as well as moieties, such as enzymes or ligands, that are detected indirectly, e.g., through an enzymatic reaction or
- Exemplary labels include, but are not limited to, the radioisotopes P, 14 C, 125 1, 3 H, and 131 I, fluorophores such as rare earth chelates or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, luceriferases, e.g., firefly luciferase and bacterial luciferase (U.S. Patent No.
- luciferin 2,3-dihydrophthalazinediones
- horseradish peroxidase HRP
- alkaline phosphatase alkaline phosphatase
- ⁇ -galactosidase glucoamylase
- lysozyme saccharide oxidases, e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase
- heterocyclic oxidases such as uricase and xanthine oxidase, coupled with an enzyme that employs hydrogen peroxide to oxidize a dye precursor such as HRP
- HRP horseradish peroxidase
- lactoperoxidase or microperoxidase, biotin/avidin, spin labels, bacteriophage labels, stable free radicals, and the like.
- Immunohistochemistry was performed on freshly cut tissue sections following standard procedure. Tissue sections were incubated with primary antibody (monoclonal anti- NRPl antibody 7130) at 1 ug/ml followed by standard washes and secondary detection with anti-rabbit biotinylated goat antibody (Vector lab) and Vectastain ® ABC-HRP Elite. The specificity of the anti-NRPl antibody was assessed using HEK-293 cells transfected with human NRP1 and empty vector as control (see Figures 1A and IB).
- FIG. 1C and ID show IHC of tissue sections from normal kidney and normal placenta, respectively, stained with monoclonal anti-NRPl antibody 7130.
- Figure 2A- C show IHC of tissue sections stained with monoclonal anti-NRPl antibody 7130 from colorectal cancer, breast cancer and non-small cell lung cancer patients, respectively.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800433017A CN103097418A (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of us |
CA2803792A CA2803792A1 (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
JP2013518855A JP2013539962A (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
AU2011274528A AU2011274528B2 (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
SG2013001516A SG186983A1 (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
RU2013105487/10A RU2571226C2 (en) | 2010-07-09 | 2011-07-08 | Antibodies against neyropilin and methods of their application |
MX2013000083A MX2013000083A (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use. |
EP11731614.1A EP2591004A1 (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
BR112013000340A BR112013000340A2 (en) | 2010-07-09 | 2011-07-08 | isolated antibody that binds neuropillin-1 (nrp1), isolated nucleic acid, host cell, method of producing an antibody, immunoconjugate and method of detecting nrp1 in a biological sample |
NZ60544911A NZ605449A (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
KR1020137000478A KR20130120439A (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
ZA2013/00174A ZA201300174B (en) | 2010-07-09 | 2013-01-08 | Anti-neuropilin antibodies and methods of use |
US13/737,550 US8993249B2 (en) | 2010-07-09 | 2013-01-09 | Anti-neuropilin antibodies and methods of use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36312110P | 2010-07-09 | 2010-07-09 | |
US61/363,121 | 2010-07-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/737,550 Continuation US8993249B2 (en) | 2010-07-09 | 2013-01-09 | Anti-neuropilin antibodies and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012006503A1 true WO2012006503A1 (en) | 2012-01-12 |
Family
ID=44628386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/043318 WO2012006503A1 (en) | 2010-07-09 | 2011-07-08 | Anti-neuropilin antibodies and methods of use |
Country Status (14)
Country | Link |
---|---|
US (1) | US8993249B2 (en) |
EP (1) | EP2591004A1 (en) |
JP (1) | JP2013539962A (en) |
KR (1) | KR20130120439A (en) |
CN (1) | CN103097418A (en) |
AU (1) | AU2011274528B2 (en) |
BR (1) | BR112013000340A2 (en) |
CA (1) | CA2803792A1 (en) |
MX (1) | MX2013000083A (en) |
NZ (1) | NZ605449A (en) |
RU (1) | RU2571226C2 (en) |
SG (1) | SG186983A1 (en) |
WO (1) | WO2012006503A1 (en) |
ZA (1) | ZA201300174B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150266959A1 (en) * | 2012-10-08 | 2015-09-24 | St. Jude Children's Research Hospital, Inc. | Therapies based on control of regulatory t cell stability and function via a neuropilin-1:semaphorin axis |
WO2018119171A1 (en) * | 2016-12-23 | 2018-06-28 | Potenza Therapeutics, Inc. | Anti-neuropilin antigen-binding proteins and methods of use thereof |
WO2022117572A2 (en) | 2020-12-02 | 2022-06-09 | Oncurious Nv | An ltbr agonist in combination therapy against cancer |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016089126A1 (en) * | 2014-12-03 | 2016-06-09 | 사회복지법인 삼성생명공익재단 | Antibody against neuropilin 1 and use thereof |
CN105237637B (en) * | 2015-11-10 | 2018-10-30 | 厦门大学 | The single domain antibody and preparation method thereof of anti human nerve dynein 1 |
WO2017172086A1 (en) | 2016-02-19 | 2017-10-05 | Leung Chuen Yan | Genetic markers for engraftment of human cardiac ventricular progenitor cells |
KR101985299B1 (en) * | 2016-06-03 | 2019-09-03 | 삼성전자주식회사 | Anti-c-Met/anti-Nrp1 bispecific antibody |
US10508263B2 (en) | 2016-11-29 | 2019-12-17 | Procella Therapeutics Ab | Methods for isolating human cardiac ventricular progenitor cells |
CN111133099B (en) * | 2017-08-23 | 2023-12-01 | 普罗赛拉治疗公司 | Use of neuropilin-1 (NRP 1) as a cell surface marker for isolation of human cardiac ventricular progenitor cells |
Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
US4737456A (en) | 1985-05-09 | 1988-04-12 | Syntex (U.S.A.) Inc. | Reducing interference in ligand-receptor binding assays |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
EP0404097A2 (en) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof |
WO1993001161A1 (en) | 1991-07-11 | 1993-01-21 | Pfizer Limited | Process for preparing sertraline intermediates |
WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
WO1993016185A2 (en) | 1992-02-06 | 1993-08-19 | Creative Biomolecules, Inc. | Biosynthetic binding protein for cancer marker |
WO1994029351A2 (en) | 1993-06-16 | 1994-12-22 | Celltech Limited | Antibodies |
US5500362A (en) | 1987-01-08 | 1996-03-19 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US5571894A (en) | 1991-02-05 | 1996-11-05 | Ciba-Geigy Corporation | Recombinant antibodies specific for a growth factor receptor |
US5587458A (en) | 1991-10-07 | 1996-12-24 | Aronex Pharmaceuticals, Inc. | Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
US5648237A (en) | 1991-09-19 | 1997-07-15 | Genentech, Inc. | Expression of functional antibody fragments |
WO1997030087A1 (en) | 1996-02-16 | 1997-08-21 | Glaxo Group Limited | Preparation of glycosylated antibodies |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5789199A (en) | 1994-11-03 | 1998-08-04 | Genentech, Inc. | Process for bacterial production of polypeptides |
US5821337A (en) | 1991-06-14 | 1998-10-13 | Genentech, Inc. | Immunoglobulin variants |
US5840523A (en) | 1995-03-01 | 1998-11-24 | Genetech, Inc. | Methods and compositions for secretion of heterologous polypeptides |
WO1998058964A1 (en) | 1997-06-24 | 1998-12-30 | Genentech, Inc. | Methods and compositions for galactosylated glycoproteins |
US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
WO1999022764A1 (en) | 1997-10-31 | 1999-05-14 | Genentech, Inc. | Methods and compositions comprising glycoprotein glycoforms |
US5959177A (en) | 1989-10-27 | 1999-09-28 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
WO1999051642A1 (en) | 1998-04-02 | 1999-10-14 | Genentech, Inc. | Antibody variants and fragments thereof |
US6040498A (en) | 1998-08-11 | 2000-03-21 | North Caroline State University | Genetically engineered duckweed |
US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6194551B1 (en) | 1998-04-02 | 2001-02-27 | Genentech, Inc. | Polypeptide variants |
WO2001029246A1 (en) | 1999-10-19 | 2001-04-26 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing polypeptide |
US6248516B1 (en) | 1988-11-11 | 2001-06-19 | Medical Research Council | Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors |
WO2002031140A1 (en) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions |
US6420548B1 (en) | 1999-10-04 | 2002-07-16 | Medicago Inc. | Method for regulating transcription of foreign genes |
US20020164328A1 (en) | 2000-10-06 | 2002-11-07 | Toyohide Shinkawa | Process for purifying antibody |
WO2003011878A2 (en) | 2001-08-03 | 2003-02-13 | Glycart Biotechnology Ag | Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity |
US20030115614A1 (en) | 2000-10-06 | 2003-06-19 | Yutaka Kanda | Antibody composition-producing cell |
US6602684B1 (en) | 1998-04-20 | 2003-08-05 | Glycart Biotechnology Ag | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
US20030157108A1 (en) | 2001-10-25 | 2003-08-21 | Genentech, Inc. | Glycoprotein compositions |
WO2003085107A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Cells with modified genome |
WO2003084570A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | DRUG CONTAINING ANTIBODY COMPOSITION APPROPRIATE FOR PATIENT SUFFERING FROM FcϜRIIIa POLYMORPHISM |
WO2003085119A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | METHOD OF ENHANCING ACTIVITY OF ANTIBODY COMPOSITION OF BINDING TO FcϜ RECEPTOR IIIa |
US20040093621A1 (en) | 2001-12-25 | 2004-05-13 | Kyowa Hakko Kogyo Co., Ltd | Antibody composition which specifically binds to CD20 |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
US20040109865A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Antibody composition-containing medicament |
US20040110282A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Cells in which activity of the protein involved in transportation of GDP-fucose is reduced or lost |
WO2004056312A2 (en) | 2002-12-16 | 2004-07-08 | Genentech, Inc. | Immunoglobulin variants and uses thereof |
US20040132140A1 (en) | 2002-04-09 | 2004-07-08 | Kyowa Hakko Kogyo Co., Ltd. | Production process for antibody composition |
US20050014934A1 (en) | 2002-10-15 | 2005-01-20 | Hinton Paul R. | Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis |
US20050079574A1 (en) | 2003-01-16 | 2005-04-14 | Genentech, Inc. | Synthetic antibody phage libraries |
WO2005035586A1 (en) | 2003-10-08 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | Fused protein composition |
WO2005035778A1 (en) | 2003-10-09 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | PROCESS FOR PRODUCING ANTIBODY COMPOSITION BY USING RNA INHIBITING THE FUNCTION OF α1,6-FUCOSYLTRANSFERASE |
US20050119455A1 (en) | 2002-06-03 | 2005-06-02 | Genentech, Inc. | Synthetic antibody phage libraries |
US20050123546A1 (en) | 2003-11-05 | 2005-06-09 | Glycart Biotechnology Ag | Antigen binding molecules with increased Fc receptor binding affinity and effector function |
WO2005053742A1 (en) | 2003-12-04 | 2005-06-16 | Kyowa Hakko Kogyo Co., Ltd. | Medicine containing antibody composition |
WO2005100402A1 (en) | 2004-04-13 | 2005-10-27 | F.Hoffmann-La Roche Ag | Anti-p-selectin antibodies |
US20050266000A1 (en) | 2004-04-09 | 2005-12-01 | Genentech, Inc. | Variable domain library and uses |
US6982321B2 (en) | 1986-03-27 | 2006-01-03 | Medical Research Council | Altered antibodies |
US20060025576A1 (en) | 2000-04-11 | 2006-02-02 | Genentech, Inc. | Multivalent antibodies and uses therefor |
WO2006029879A2 (en) | 2004-09-17 | 2006-03-23 | F.Hoffmann-La Roche Ag | Anti-ox40l antibodies |
US7041870B2 (en) | 2000-11-30 | 2006-05-09 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
US7087409B2 (en) | 1997-12-05 | 2006-08-08 | The Scripps Research Institute | Humanization of murine antibody |
US7125978B1 (en) | 1999-10-04 | 2006-10-24 | Medicago Inc. | Promoter for regulating expression of foreign genes |
US7189826B2 (en) | 1997-11-24 | 2007-03-13 | Institute For Human Genetics And Biochemistry | Monoclonal human natural antibodies |
US20070061900A1 (en) | 2000-10-31 | 2007-03-15 | Murphy Andrew J | Methods of modifying eukaryotic cells |
WO2007056470A2 (en) | 2005-11-08 | 2007-05-18 | Genentech, Inc. | Neuropilin antagonists |
US20070117126A1 (en) | 1999-12-15 | 2007-05-24 | Genentech, Inc. | Shotgun scanning |
US20070160598A1 (en) | 2005-11-07 | 2007-07-12 | Dennis Mark S | Binding polypeptides with diversified and consensus vh/vl hypervariable sequences |
US20070237764A1 (en) | 2005-12-02 | 2007-10-11 | Genentech, Inc. | Binding polypeptides with restricted diversity sequences |
US20070292936A1 (en) | 2006-05-09 | 2007-12-20 | Genentech, Inc. | Binding polypeptides with optimized scaffolds |
US20080069820A1 (en) | 2006-08-30 | 2008-03-20 | Genentech, Inc. | Multispecific antibodies |
US7371826B2 (en) | 1999-01-15 | 2008-05-13 | Genentech, Inc. | Polypeptide variants with altered effector function |
WO2008077546A1 (en) | 2006-12-22 | 2008-07-03 | F. Hoffmann-La Roche Ag | Antibodies against insulin-like growth factor i receptor and uses thereof |
US20090002360A1 (en) | 2007-05-25 | 2009-01-01 | Innolux Display Corp. | Liquid crystal display device and method for driving same |
US7521541B2 (en) | 2004-09-23 | 2009-04-21 | Genetech Inc. | Cysteine engineered antibodies and conjugates |
US7527791B2 (en) | 2004-03-31 | 2009-05-05 | Genentech, Inc. | Humanized anti-TGF-beta antibodies |
WO2009089004A1 (en) | 2008-01-07 | 2009-07-16 | Amgen Inc. | Method for making antibody fc-heterodimeric molecules using electrostatic steering effects |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4675187A (en) | 1983-05-16 | 1987-06-23 | Bristol-Myers Company | BBM-1675, a new antibiotic complex |
WO1989006692A1 (en) | 1988-01-12 | 1989-07-27 | Genentech, Inc. | Method of treating tumor cells by inhibiting growth factor receptor function |
US5427908A (en) | 1990-05-01 | 1995-06-27 | Affymax Technologies N.V. | Recombinant library screening methods |
US5723286A (en) | 1990-06-20 | 1998-03-03 | Affymax Technologies N.V. | Peptide library and screening systems |
US6172197B1 (en) | 1991-07-10 | 2001-01-09 | Medical Research Council | Methods for producing members of specific binding pairs |
GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
ES2315612T3 (en) | 1991-04-10 | 2009-04-01 | The Scripps Research Institute | GENOTECAS OF HETERODYMERIC RECEPTORS USING PHAGEMIDS. |
US5270170A (en) | 1991-10-16 | 1993-12-14 | Affymax Technologies N.V. | Peptide library and screening method |
EP0617706B1 (en) | 1991-11-25 | 2001-10-17 | Enzon, Inc. | Multivalent antigen-binding proteins |
US5733743A (en) | 1992-03-24 | 1998-03-31 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
TW225528B (en) | 1992-04-03 | 1994-06-21 | Ciba Geigy Ag | |
US5521184A (en) | 1992-04-03 | 1996-05-28 | Ciba-Geigy Corporation | Pyrimidine derivatives and processes for the preparation thereof |
CN1701814A (en) | 1992-11-13 | 2005-11-30 | 马克斯普朗克科学促进协会 | F1K-1 is a receptor for vascular endothelial growth factor |
WO1994013804A1 (en) | 1992-12-04 | 1994-06-23 | Medical Research Council | Multivalent and multispecific binding proteins, their manufacture and use |
US5635388A (en) | 1994-04-04 | 1997-06-03 | Genentech, Inc. | Agonist antibodies against the flk2/flt3 receptor and uses thereof |
GB9410534D0 (en) | 1994-05-26 | 1994-07-13 | Lynxvale Ltd | Improvements in or relating to growth factor inhibitors |
IL117645A (en) | 1995-03-30 | 2005-08-31 | Genentech Inc | Vascular endothelial cell growth factor antagonists for use as medicaments in the treatment of age-related macular degeneration |
US5874562A (en) | 1995-06-07 | 1999-02-23 | Progenitor, Inc. | Nucleic acid encoding developmentally-regulated endothelial cell locus-1 |
US6020473A (en) | 1995-08-25 | 2000-02-01 | Genentech, Inc. | Nucleic acids encoding variants of vascular endothelial cell growth factor |
CO4950519A1 (en) | 1997-02-13 | 2000-09-01 | Novartis Ag | PHTHALAZINES, PHARMACEUTICAL PREPARATIONS THAT UNDERSTAND THEM AND THE PROCESS FOR THEIR PREPARATION |
DK1695985T3 (en) | 1997-04-07 | 2011-06-14 | Genentech Inc | Method of generating humanized antibodies by random mutagenesis |
DK0973804T3 (en) | 1997-04-07 | 2007-05-07 | Genentech Inc | Anti-VEGF antibodies |
ATE371727T1 (en) | 1997-06-18 | 2007-09-15 | Merck & Co Inc | KDR, A HUMAN TYROSINE KINASE RECEPTOR |
JP4404479B2 (en) | 1997-12-09 | 2010-01-27 | チルドレンズ・メディカル・センター・コーポレイション | Soluble inhibitors of vascular endothelial growth factor and uses thereof |
CA2313390A1 (en) | 1997-12-09 | 1999-06-17 | Children's Medical Center Corporation | Peptide antagonists of vascular endothelial growth factor |
US6777534B1 (en) | 1997-12-09 | 2004-08-17 | Children's Medical Center Corporation | Peptide antagonists of vascular endothelial growth factor |
EP1037925A2 (en) | 1997-12-09 | 2000-09-27 | Children's Medical Center Corporation | Antagonists of neuropilin receptor functional and use thereof |
RS49779B (en) | 1998-01-12 | 2008-06-05 | Glaxo Group Limited, | Byciclic heteroaromatic compounds as protein tyrosine kinase inhibitors |
ME00415B (en) | 2000-02-15 | 2011-10-10 | Pharmacia & Upjohn Co Llc | Pyrrole substituted 2-indolinone protein kinase inhibitors |
WO2003035100A1 (en) * | 2001-09-26 | 2003-05-01 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Neuropilin as a novel therapeutic target for modulation of immune reponses |
EP1439192A1 (en) * | 2003-01-15 | 2004-07-21 | Xerion Pharmaceuticals AG | Neuropilin-1 inhibitors |
GEP20104991B (en) | 2003-11-07 | 2010-05-25 | Immunex Corp | Antibodies that bind interleukin-4 receptor |
US7563443B2 (en) | 2004-09-17 | 2009-07-21 | Domantis Limited | Monovalent anti-CD40L antibody polypeptides and compositions thereof |
-
2011
- 2011-07-08 CN CN2011800433017A patent/CN103097418A/en active Pending
- 2011-07-08 SG SG2013001516A patent/SG186983A1/en unknown
- 2011-07-08 KR KR1020137000478A patent/KR20130120439A/en not_active Application Discontinuation
- 2011-07-08 EP EP11731614.1A patent/EP2591004A1/en not_active Withdrawn
- 2011-07-08 RU RU2013105487/10A patent/RU2571226C2/en not_active IP Right Cessation
- 2011-07-08 BR BR112013000340A patent/BR112013000340A2/en not_active IP Right Cessation
- 2011-07-08 JP JP2013518855A patent/JP2013539962A/en active Pending
- 2011-07-08 WO PCT/US2011/043318 patent/WO2012006503A1/en active Application Filing
- 2011-07-08 CA CA2803792A patent/CA2803792A1/en not_active Abandoned
- 2011-07-08 AU AU2011274528A patent/AU2011274528B2/en not_active Ceased
- 2011-07-08 MX MX2013000083A patent/MX2013000083A/en active IP Right Grant
- 2011-07-08 NZ NZ60544911A patent/NZ605449A/en not_active IP Right Cessation
-
2013
- 2013-01-08 ZA ZA2013/00174A patent/ZA201300174B/en unknown
- 2013-01-09 US US13/737,550 patent/US8993249B2/en active Active
Patent Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4737456A (en) | 1985-05-09 | 1988-04-12 | Syntex (U.S.A.) Inc. | Reducing interference in ligand-receptor binding assays |
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
US6982321B2 (en) | 1986-03-27 | 2006-01-03 | Medical Research Council | Altered antibodies |
US5500362A (en) | 1987-01-08 | 1996-03-19 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US5648260A (en) | 1987-03-18 | 1997-07-15 | Scotgen Biopharmaceuticals Incorporated | DNA encoding antibodies with altered effector functions |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
US6248516B1 (en) | 1988-11-11 | 2001-06-19 | Medical Research Council | Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors |
EP0404097A2 (en) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof |
US5959177A (en) | 1989-10-27 | 1999-09-28 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
US6417429B1 (en) | 1989-10-27 | 2002-07-09 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
US5571894A (en) | 1991-02-05 | 1996-11-05 | Ciba-Geigy Corporation | Recombinant antibodies specific for a growth factor receptor |
US5821337A (en) | 1991-06-14 | 1998-10-13 | Genentech, Inc. | Immunoglobulin variants |
WO1993001161A1 (en) | 1991-07-11 | 1993-01-21 | Pfizer Limited | Process for preparing sertraline intermediates |
US5648237A (en) | 1991-09-19 | 1997-07-15 | Genentech, Inc. | Expression of functional antibody fragments |
US5587458A (en) | 1991-10-07 | 1996-12-24 | Aronex Pharmaceuticals, Inc. | Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof |
WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
WO1993016185A2 (en) | 1992-02-06 | 1993-08-19 | Creative Biomolecules, Inc. | Biosynthetic binding protein for cancer marker |
WO1994029351A2 (en) | 1993-06-16 | 1994-12-22 | Celltech Limited | Antibodies |
US5789199A (en) | 1994-11-03 | 1998-08-04 | Genentech, Inc. | Process for bacterial production of polypeptides |
US5840523A (en) | 1995-03-01 | 1998-11-24 | Genetech, Inc. | Methods and compositions for secretion of heterologous polypeptides |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
WO1997030087A1 (en) | 1996-02-16 | 1997-08-21 | Glaxo Group Limited | Preparation of glycosylated antibodies |
WO1998058964A1 (en) | 1997-06-24 | 1998-12-30 | Genentech, Inc. | Methods and compositions for galactosylated glycoproteins |
WO1999022764A1 (en) | 1997-10-31 | 1999-05-14 | Genentech, Inc. | Methods and compositions comprising glycoprotein glycoforms |
US7189826B2 (en) | 1997-11-24 | 2007-03-13 | Institute For Human Genetics And Biochemistry | Monoclonal human natural antibodies |
US7087409B2 (en) | 1997-12-05 | 2006-08-08 | The Scripps Research Institute | Humanization of murine antibody |
WO1999051642A1 (en) | 1998-04-02 | 1999-10-14 | Genentech, Inc. | Antibody variants and fragments thereof |
US6194551B1 (en) | 1998-04-02 | 2001-02-27 | Genentech, Inc. | Polypeptide variants |
US6602684B1 (en) | 1998-04-20 | 2003-08-05 | Glycart Biotechnology Ag | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
US6040498A (en) | 1998-08-11 | 2000-03-21 | North Caroline State University | Genetically engineered duckweed |
US7371826B2 (en) | 1999-01-15 | 2008-05-13 | Genentech, Inc. | Polypeptide variants with altered effector function |
US7332581B2 (en) | 1999-01-15 | 2008-02-19 | Genentech, Inc. | Polypeptide variants with altered effector function |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
US6420548B1 (en) | 1999-10-04 | 2002-07-16 | Medicago Inc. | Method for regulating transcription of foreign genes |
US7125978B1 (en) | 1999-10-04 | 2006-10-24 | Medicago Inc. | Promoter for regulating expression of foreign genes |
WO2001029246A1 (en) | 1999-10-19 | 2001-04-26 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing polypeptide |
US20070117126A1 (en) | 1999-12-15 | 2007-05-24 | Genentech, Inc. | Shotgun scanning |
US20060025576A1 (en) | 2000-04-11 | 2006-02-02 | Genentech, Inc. | Multivalent antibodies and uses therefor |
US20030115614A1 (en) | 2000-10-06 | 2003-06-19 | Yutaka Kanda | Antibody composition-producing cell |
US20020164328A1 (en) | 2000-10-06 | 2002-11-07 | Toyohide Shinkawa | Process for purifying antibody |
WO2002031140A1 (en) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions |
US20070061900A1 (en) | 2000-10-31 | 2007-03-15 | Murphy Andrew J | Methods of modifying eukaryotic cells |
US7041870B2 (en) | 2000-11-30 | 2006-05-09 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
WO2003011878A2 (en) | 2001-08-03 | 2003-02-13 | Glycart Biotechnology Ag | Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity |
US20030157108A1 (en) | 2001-10-25 | 2003-08-21 | Genentech, Inc. | Glycoprotein compositions |
US20040093621A1 (en) | 2001-12-25 | 2004-05-13 | Kyowa Hakko Kogyo Co., Ltd | Antibody composition which specifically binds to CD20 |
WO2003085119A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | METHOD OF ENHANCING ACTIVITY OF ANTIBODY COMPOSITION OF BINDING TO FcϜ RECEPTOR IIIa |
US20040132140A1 (en) | 2002-04-09 | 2004-07-08 | Kyowa Hakko Kogyo Co., Ltd. | Production process for antibody composition |
US20040110282A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Cells in which activity of the protein involved in transportation of GDP-fucose is reduced or lost |
WO2003084570A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | DRUG CONTAINING ANTIBODY COMPOSITION APPROPRIATE FOR PATIENT SUFFERING FROM FcϜRIIIa POLYMORPHISM |
US20040109865A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Antibody composition-containing medicament |
US20040110704A1 (en) | 2002-04-09 | 2004-06-10 | Kyowa Hakko Kogyo Co., Ltd. | Cells of which genome is modified |
WO2003085107A1 (en) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Cells with modified genome |
US20050119455A1 (en) | 2002-06-03 | 2005-06-02 | Genentech, Inc. | Synthetic antibody phage libraries |
US20050014934A1 (en) | 2002-10-15 | 2005-01-20 | Hinton Paul R. | Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis |
WO2004056312A2 (en) | 2002-12-16 | 2004-07-08 | Genentech, Inc. | Immunoglobulin variants and uses thereof |
US20050079574A1 (en) | 2003-01-16 | 2005-04-14 | Genentech, Inc. | Synthetic antibody phage libraries |
WO2005035586A1 (en) | 2003-10-08 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | Fused protein composition |
WO2005035778A1 (en) | 2003-10-09 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | PROCESS FOR PRODUCING ANTIBODY COMPOSITION BY USING RNA INHIBITING THE FUNCTION OF α1,6-FUCOSYLTRANSFERASE |
US20050123546A1 (en) | 2003-11-05 | 2005-06-09 | Glycart Biotechnology Ag | Antigen binding molecules with increased Fc receptor binding affinity and effector function |
WO2005053742A1 (en) | 2003-12-04 | 2005-06-16 | Kyowa Hakko Kogyo Co., Ltd. | Medicine containing antibody composition |
US7527791B2 (en) | 2004-03-31 | 2009-05-05 | Genentech, Inc. | Humanized anti-TGF-beta antibodies |
US20050266000A1 (en) | 2004-04-09 | 2005-12-01 | Genentech, Inc. | Variable domain library and uses |
WO2005100402A1 (en) | 2004-04-13 | 2005-10-27 | F.Hoffmann-La Roche Ag | Anti-p-selectin antibodies |
WO2006029879A2 (en) | 2004-09-17 | 2006-03-23 | F.Hoffmann-La Roche Ag | Anti-ox40l antibodies |
US7521541B2 (en) | 2004-09-23 | 2009-04-21 | Genetech Inc. | Cysteine engineered antibodies and conjugates |
US20070160598A1 (en) | 2005-11-07 | 2007-07-12 | Dennis Mark S | Binding polypeptides with diversified and consensus vh/vl hypervariable sequences |
WO2007056470A2 (en) | 2005-11-08 | 2007-05-18 | Genentech, Inc. | Neuropilin antagonists |
US20070237764A1 (en) | 2005-12-02 | 2007-10-11 | Genentech, Inc. | Binding polypeptides with restricted diversity sequences |
US20070292936A1 (en) | 2006-05-09 | 2007-12-20 | Genentech, Inc. | Binding polypeptides with optimized scaffolds |
US20080069820A1 (en) | 2006-08-30 | 2008-03-20 | Genentech, Inc. | Multispecific antibodies |
WO2008077546A1 (en) | 2006-12-22 | 2008-07-03 | F. Hoffmann-La Roche Ag | Antibodies against insulin-like growth factor i receptor and uses thereof |
US20090002360A1 (en) | 2007-05-25 | 2009-01-01 | Innolux Display Corp. | Liquid crystal display device and method for driving same |
WO2009089004A1 (en) | 2008-01-07 | 2009-07-16 | Amgen Inc. | Method for making antibody fc-heterodimeric molecules using electrostatic steering effects |
Non-Patent Citations (98)
Title |
---|
ALMAGRO, FRANSSON, FRONT. BIOSCI., vol. 13, 2008, pages 1619 - 1633 |
ANONYMOUS: "Anti-Neuropilin 1 antibody [EPR3113] (ab81321) Abreviews", 22 June 2010 (2010-06-22), XP002661281, Retrieved from the Internet <URL:http://www.abcam.com/index.html?pageconfig=reviews&intAbID=81321> [retrieved on 20110927] * |
ANONYMOUS: "Anti-Neuropilin 1 antibody [EPR3113] (ab81321) Datasheet", 22 June 2010 (2010-06-22), XP002660278, Retrieved from the Internet <URL:http://www.abcam.com/Neuropilin-1-antibody-EPR3113-ab81321.html> [retrieved on 20110927] * |
BACA ET AL., J. BIOL. CHEM., vol. 272, 1997, pages 10678 - 10684 |
BIELENBERG ET AL., EXP CELL RES, vol. 312, 2006, pages 584 - 93 |
BOERNER ET AL., J. IMMUNOL., vol. 147, 1991, pages 86 |
BRENNAN ET AL., SCIENCE, vol. 229, 1985, pages 81 |
BRODEUR ET AL.: "Monoclonal Antibody Production Techniques and Applications", 1987, MARCEL DEKKER, INC., pages: 51 - 63 |
BRUGGEMANN, M. ET AL., J. EXP. MED., vol. 166, 1987, pages 1351 - 1361 |
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285 |
CHARLTON: "Methods in Molecular Biology", vol. 248, 2003, HUMANA PRESS, pages: 245 - 254 |
CHEN ET AL., J. MOL. BIOL., vol. 293, 1999, pages 865 - 881 |
CHOTHIA, LESK, J. MOL. BIOL., vol. 196, 1987, pages 901 - 917 |
CHOWDHURY, METHODS MOL. BIOL., vol. 207, 2008, pages 179 - 196 |
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
CLARKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
CLYNES, PROC. NAT'L ACAD. SCI. USA, vol. 95, 1998, pages 652 - 656 |
CRAGG, M.S. ET AL., BLOOD, vol. 101, 2003, pages 1045 - 1052 |
CRAGG, M.S., M.J. GLENNIE, BLOOD, vol. 103, 2004, pages 2738 - 2743 |
CUNNINGHAM, WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
DALL'ACQUA ET AL., METHODS, vol. 36, 2005, pages 43 - 60 |
DIJK, VAN DC WINKCL, CURR. OPIN. PHARMACOL., vol. 5, 2001, pages 368 - 74 |
DUNCAN, WINTER, NATURE, vol. 322, 1988, pages 738 - 40 |
FELLOUSE, PROC. NATL. ACAD. SCI. USA, vol. 101, no. 34, 2004, pages 12467 - 12472 |
FLATMAN ET AL., J. CHROMATOGR. B, vol. 848, 2007, pages 79 - 87 |
GAZZANO-SANTORO ET AL., J. IMMUNOL. METHODS, vol. 202, 1996, pages 163 |
GERNGROSS, NAT. BIOTECH., vol. 22, 2004, pages 1409 - 1414 |
GRAHAM ET AL., J. GEN VIROL., vol. 36, 1977, pages 59 |
GRIFFITHS ET AL., EMBO J, vol. 12, 1993, pages 725 - 734 |
GRUBER ET AL., J. IMMUNOL., vol. 152, 1994, pages 5368 |
GU ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 18069 - 76 |
GUYER ET AL., J. IMMUNOL., vol. 117, 1976, pages 587 |
HARLOW, LANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY |
HE, TESSIER-LAVIGNE, CELL, vol. 90, 1997, pages 739 - 51 |
HELLSTROM, I ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 82, 1985, pages 1499 - 1502 |
HELLSTROM, I. ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 83, 1986, pages 7059 - 7063 |
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
HOOGENBOOM ET AL.: "Methods in Molecular Biology", vol. 178, 2001, HUMAN PRESS, pages: 1 - 37 |
HOOGENBOOM, WINTER, J. MOL. BIOL., vol. 227, 1992, pages 381 - 388 |
HUDSON ET AL., NAT. MED., vol. 9, 2003, pages 129 - 134 |
IDUSOGIE ET AL., J. IMMUNOL., vol. 164, 2000, pages 4178 - 4184 |
K1IMKA ET AL., BR. J CANCER, vol. 83, 2000, pages 252 - 260 |
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTES OF HEALTH |
KABAT ET AL.: "Sequences ofProteins of Immunological Interest", vol. 1-3, 1991, NIH PUBLICATION 91-3242 |
KABAT ET AL.: "Sequences ofProteins of lmmunological lnterest", 1991, NATIONAL INSTITUTES OF HEALTH |
KAM ET AL., PROC. NATL. ACAD. SCI. USA, vol. 102, 2005, pages 11600 - 11605 |
KANDA, Y. ET AL., BIOTECHNOL. BIOENG., vol. 94, no. 4, 2006, pages 680 - 688 |
KASHMIRI ET AL., METHODS, vol. 36, 2005, pages 25 - 34 |
KAWASAKI ET AL., DEVELOPMENT, vol. 126, 1999, pages 4895 - 902 |
KIM ET AL., J. IMMUNOL., vol. 24, 1994, pages 249 |
KINDT ET AL.: "Kuby Immunology", 2007, W.H. FREEMAN AND CO., pages: 91 |
KOSTELNY ET AL., J. IMMUNOL., vol. 148, no. 5, 1992, pages 1547 - 1553 |
KOZBOR, J. IMMUNOL., vol. 133, 1984, pages 3001 |
LEE ET AL., J. IMMUNOL. METHODS, vol. 284, no. 1-2, 2004, pages 119 - 132 |
LEE ET AL., J. MOL. BIOL., vol. 340, no. 5, 2004, pages 1073 - 1093 |
LI ET AL., NAT. BIOTECH., vol. 24, 2006, pages 210 - 215 |
LI ET AL., PROC. NATL. ACAD. SCI. L;S, vol. 103, 2006, pages 3557 - 3562 |
LONBERG, CURR. OPIN. IMMUNOL., vol. 20, 2008, pages 450 - 459 |
LONBERG, NAT. BIOTECH, vol. 23, 2005, pages 1117 - 1125 |
M. CRISTINA LEBRE ET AL: "Rheumatoid Arthritis Synovium Contains Two Subsets of CD83-DC-LAMP- Dendritic Cells with Distinct Cytokine Profiles", THE AMERICAN JOURNAL OF PATHOLOGY, vol. 172, no. 4, 1 April 2008 (2008-04-01), pages 940 - 950, XP055008436, ISSN: 0002-9440, DOI: 10.2353/ajpath.2008.070703 * |
MARKS ET AL., J. MOL. BIOL., vol. 222, 1992, pages 581 - 597 |
MARKS, BRADBURY: "Methods in Molecular Biology", vol. 248, 2003, HUMAN PRESS, pages: 161 - 175 |
MATHER ET AL., ANNALS N. Y. ACAD. SCI., vol. 383, 1982, pages 44 - 68 |
MATHER, BIOL. REPROD., vol. 23, 1980, pages 243 - 251 |
MCCAFFERTY ET AL., NATURE, vol. 348, pages 552 - 554 |
MILSTEIN, CUELLO, NATURE, vol. 305, 1983, pages 537 |
MORRIS: "Methods in Molecular Biology", vol. 66, 1996, HUMANA PRESS, article "Epitope Mapping Protocols" |
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855 |
NI, XIANDAI MIANYIXUE, vol. 26, no. 4, 2006, pages 265 - 268 |
OKAZAKI ET AL., J MOL. BIOL., vol. 336, 2004, pages 1239 - 1249 |
OSBOURN ET AL., METHODS, vol. 36, 2005, pages 61 - 68 |
PADLAN, MOL. IMMUNOL., vol. 28, 1991, pages 489 - 498 |
PAN ET AL., CANCER CELL, vol. 11, 2007, pages 53 - 67 |
PAN, J BIOL CHCM, vol. 282, 2007, pages 24049 - 56 |
PCTKOVA, S.B., INT'L. IMMUNOL., vol. 18, no. 12, 2006, pages 1759 - 1769 |
PLUCKTHÜN: "The Pharmacology ofmonoclonal Antibodies", vol. 113, 1994, SPRINGER-VERLAG, pages: 269 - 315 |
PORTOLANO ET AL., J IMMUNOL., vol. 150, 1993, pages 880 - 887 |
PRESTA ET AL., CANCER RES., vol. 57, 1997, pages 4593 - 4599 |
PRESTA ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623 |
QUEEN ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 86, 1989, pages 10029 - 10033 |
RAVETCH, KINET, ANNU. REV. IMMUNOL., vol. 9, 1991, pages 457 - 492 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329 |
RIPKA ET AL., ARCH. BIOCHEM. BIOPHYS., vol. 249, 1986, pages 533 - 545 |
ROSOK ET AL., J. BIOL. CHEM., vol. 271, 1996, pages 22611 - 22618 |
SHIELDS ET AL., J. BIOL. CHEM., vol. 9, no. 2, 2001, pages 6591 - 6604 |
SIDHU ET AL., J. MOL. BIOL., vol. 338, no. 2, 2004, pages 299 - 310 |
SIMS ET AL., J. IMMUNOL., vol. 151, 1993, pages 2296 |
SOKER ET AL., CELL, vol. 92, 1998, pages 735 - 45 |
TRAUNECKER ET AL., JEMSOV., vol. 10, 1991, pages 3655 |
TUTT ET AL., J. IMMUNOL., vol. 147, 1991, pages 60 |
URLAUB ET AL., PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216 |
VOLLMCRS, BRANDLCIN, HISTOLOGY AND HISTOPATHOLOGY, vol. 20, no. 3, 2005, pages 927 - 937 |
VOLLMERS, BRANDLEIN, METHODS AND FINDINGS IN EXPERIMENTAL AND CLINICAL PHARMACOLOGY, vol. 27, no. 3, 2005, pages 185 - 91 |
WINTER ET AL., ANN. REV. IMMUNOL., vol. 12, 1994, pages 433 - 455 |
WRIGHT ET AL., TIBTECH, vol. 15, 1997, pages 26 - 32 |
YAMANE-OHNUKI ET AL., BIOTECH. BIOENG., vol. 87, 2004, pages 614 |
YAZAKI, WU: "Methods in Molecular Biology", vol. 248, 2003, HUMANA PRESS, pages: 255 - 268 |
ZHANG SHUMIN ET AL: "Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells", MOLECULAR CANCER, BIOMED CENTRAL, LONDON, GB, vol. 9, no. 1, 19 January 2010 (2010-01-19), pages 9, XP021068016, ISSN: 1476-4598 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150266959A1 (en) * | 2012-10-08 | 2015-09-24 | St. Jude Children's Research Hospital, Inc. | Therapies based on control of regulatory t cell stability and function via a neuropilin-1:semaphorin axis |
US9540439B2 (en) * | 2012-10-08 | 2017-01-10 | St. Jude Children's Research Hospital | Therapies based on control of regulatory T cell stability and function via a neuropilin-1:semaphorin axis |
WO2018119171A1 (en) * | 2016-12-23 | 2018-06-28 | Potenza Therapeutics, Inc. | Anti-neuropilin antigen-binding proteins and methods of use thereof |
US10227413B2 (en) | 2016-12-23 | 2019-03-12 | Potenza Therapeutics, Inc. | Anti-neuropilin antigen-binding proteins and methods of use thereof |
US11186644B2 (en) | 2016-12-23 | 2021-11-30 | Potenza Therapeutics, Inc. | Anti-neuropilin antigen-binding proteins and methods of use thereof |
WO2022117572A2 (en) | 2020-12-02 | 2022-06-09 | Oncurious Nv | An ltbr agonist in combination therapy against cancer |
Also Published As
Publication number | Publication date |
---|---|
AU2011274528B2 (en) | 2015-04-23 |
ZA201300174B (en) | 2014-03-26 |
RU2571226C2 (en) | 2015-12-20 |
BR112013000340A2 (en) | 2016-05-31 |
US8993249B2 (en) | 2015-03-31 |
KR20130120439A (en) | 2013-11-04 |
CA2803792A1 (en) | 2012-01-12 |
US20130115626A1 (en) | 2013-05-09 |
JP2013539962A (en) | 2013-10-31 |
RU2013105487A (en) | 2014-08-20 |
NZ605449A (en) | 2015-03-27 |
MX2013000083A (en) | 2013-02-26 |
EP2591004A1 (en) | 2013-05-15 |
AU2011274528A1 (en) | 2013-01-24 |
CN103097418A (en) | 2013-05-08 |
SG186983A1 (en) | 2013-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8993249B2 (en) | Anti-neuropilin antibodies and methods of use | |
US10035854B2 (en) | Method of treating retinopathy with an anti-LRP5 antibody | |
US11002738B2 (en) | Anti-GPNMB antibodies and diagnostic uses thereof | |
JP2024122991A (en) | Anti-polyubiquitin multispecific antibody | |
US8623666B2 (en) | Method for detecting erythropoietin (EPO) receptor using anti-human EPO receptor antibodies | |
EP3149047A1 (en) | Anti- indoleamine 2,3-dioxygenase 1 antibodies and diagnostic uses thereof | |
WO2023034750A1 (en) | Anti-polyubiquitin multispecific antibodies | |
CN117957249A (en) | Anti-polyubiquitin multispecific antibodies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180043301.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11731614 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011731614 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011731614 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2803792 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 224053 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/000083 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2013518855 Country of ref document: JP Kind code of ref document: A Ref document number: 20137000478 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011274528 Country of ref document: AU Date of ref document: 20110708 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013105487 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013000340 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013000340 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130107 |