WO2012005473A2 - Method for preparing ε-caprolactam by using high-silica nano-plate zeolite - Google Patents

Method for preparing ε-caprolactam by using high-silica nano-plate zeolite Download PDF

Info

Publication number
WO2012005473A2
WO2012005473A2 PCT/KR2011/004828 KR2011004828W WO2012005473A2 WO 2012005473 A2 WO2012005473 A2 WO 2012005473A2 KR 2011004828 W KR2011004828 W KR 2011004828W WO 2012005473 A2 WO2012005473 A2 WO 2012005473A2
Authority
WO
WIPO (PCT)
Prior art keywords
caprolactam
oxime
zeolite
producing
formula
Prior art date
Application number
PCT/KR2011/004828
Other languages
French (fr)
Korean (ko)
Other versions
WO2012005473A3 (en
Inventor
유룡
김정남
박우진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012005473A2 publication Critical patent/WO2012005473A2/en
Publication of WO2012005473A3 publication Critical patent/WO2012005473A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing ⁇ -caprolactam from cyclonucleanone oxime, and more particularly, from a cyclonucleanone oxime using a high silica nanoplate-shaped zeolite material as a catalyst for gas phase Beckman rearrangement reaction. It relates to a method for producing ⁇ -caprolactam.
  • the Beckman cultivation heat reaction of cyclonuxanone oxime is well known as an important industrial process for producing ⁇ -caprolactam, the main raw material of nylon-6.
  • the existing ⁇ -caprolactam production process converts cyclonucleanone oxime into liquid phase with fuming sulfuric acid as a catalyst.
  • the existing processes have raised problems such as the generation of a large amount of ammonium sulfate by-products generated by using sulfuric acid catalysts, vessel corrosion, and safety of use.
  • US Pat. Nos. 4,709,024 and 4,717,769 compare to other catalysts when using a high silica MFI zeolite (silicon / metal element> 500, ⁇ + -form) as a catalyst. It has been described that the conversion rate of cyclonucleanone oxime and the selectivity of ⁇ -caprolactam are very high. Beckman cultivation heat reaction of cyclonucleanone oxime of this catalyst is a surface or internal defect
  • U.S. Patent No. 5,212,302 uses a mixture of ammonium nitrate and ammonia water to form hydrogen-bonded silanol groups and simultaneously reduce the amount of terminal silanol groups, thereby increasing the catalytic conversion of ⁇ -caprolactam You can get selectivity It was described.
  • Korean Patent No. 10-0613399 discloses that a high silica zeolite catalyst with a nanoparticle size (100-1000 nm) can improve the conversion rate, product selectivity, and catalyst lifetime of cyclonuxanon oxime. , The performance of the catalyst was not significantly improved compared to the existing catalyst.
  • the present invention is to solve the above-mentioned problems of the prior art, in the production of ⁇ -caprolactam from cyclonucleanone oxime using a gas phase Beckman conversion process, high oxime conversion, high ⁇ -caprolactam selectivity, very slow It is an object of the present invention to provide a method using a high silica nanoplatelet zeolite having a catalyst deactivation characteristic.
  • the present invention in the method for producing ⁇ -caprolactam from the cyclonuclinon oxime using a gas phase Beckman conversion process, a plate-like structure of one or more unit crystal lattice is arranged.
  • a method for preparing ⁇ -caprolactam from cyclonucleanone oxime using the zeolite material formed as a catalyst is arranged.
  • the plate-like structure refers to a plate-like structure in which the zeolite extends in a plate shape with a unit crystal lattice of 1 or 10 or less in thickness
  • the zeolite material is a material formed by regular or irregular arrangement of the plate-like structures of the zeolite.
  • the regular arrangement means a structure in which the plate-shaped structures of the zeolite are stacked on top of each other
  • the irregular arrangement means a structure in which the plate-shaped structures of the zeolite are stacked in various other forms.
  • the zeolitic material may itself or delamination, filler It can be used to activate or modify using a post-treatment reaction selected from the group consisting of pillaring, salt aqueous solution treatment, ion exchange, dealumination, metal loading and organic functionalization.
  • the zeolitic material preferably has a molar ratio of silicon to metal element of at least 500.
  • Metal elements included in the zeolitic material are, for example, Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf and Bi Can be selected from the group consisting of.
  • the present invention also provides a method for producing ⁇ -caprolactam from cyclonucleanone oxime using a gas phase Beckman conversion process, comprising two or more ammonium functional groups, or one ammonium functional group and one amine functional group.
  • the present invention provides a method for preparing ⁇ -caprolactam from cyclonucleanone oxime using a zeolite material synthesized by adding an organic surfactant to a structural derivative.
  • the organic surfactant may be used at the same time or each of those represented by the formula (1) or (2).
  • X is a halogen (CI, Br, I) anion or a hydroxide (OH) anion.
  • C1 is preferably 8 to 22 carbon atoms
  • C2 is 3 to 6 carbon atoms
  • C3 is preferably 1 to 8 carbon atoms.
  • the zeolitic material may be prepared by completely or partially removing the organic surfactant by calcining or chemical treatment.
  • the zeolite material preferably has a molar ratio of silicon to metal element of at least 500.
  • Metal elements included in the zeolitic material are, for example, Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf and Bi Can be selected from the group consisting of.
  • the zeolite material may be prepared through a crystallization process selected from the group consisting of, for example, hydrothermal synthesis, microwave heating and dry-gel synthesis.
  • the present invention also provides a process for preparing ⁇ -caprolactam from cyclonucleanone oxime using a gas phase Beckman conversion process, comprising at least two ammonium functional groups or comprising one ammonium functional group and one amine functional group. It is synthesized by adding organic surfactant as a structural derivative and is selected from the group consisting of delamination, pillaring, base water solution treatment, ion exchange, dealumination, metal loading and organic functionalization. It provides a method for producing ⁇ -caprolactam from cyclonucleanone oxime using a zeolite material that is activated or modified using a catalyst as a catalyst.
  • the organic surfactant may be used at the same time or each of those represented by the formula (1) or (2).
  • the present invention also removes ⁇ ⁇ caprolactam from the cyclonuclinon oxime described above. ⁇ -caprolactam prepared using the crude method is provided.
  • the present invention provides a method for preparing ⁇ -caprolactam using high silica nanoplatelet zeolite having high yield and long catalyst lifetime in a Beckman conversion process of cyclonucleanone oxime or a post-treated material.
  • the high silica nanoplatelet zeolite material of the present invention is a significant improvement in the preparation of ⁇ -caprolactam from cyclonuclear oximes compared to conventional zeolites, nanoporous amorphous silica, nanoporous zeolites and their post-treated catalyst materials. Shows catalytic performance. In addition, the performance of such a catalyst can be further improved depending on the synthesis conditions and post-treatment methods of the material.
  • productivity of epsilon caprolactam can be improved remarkably.
  • the existing frequent catalyst replacement and regeneration processes can be greatly reduced, making ⁇ -caprolactam more economical and efficient.
  • FIG. 1 is a premicroscopic scanning micrograph of a high silica nanoplatelet zeolite prepared according to Example 1.
  • FIG. 1 is a premicroscopic scanning micrograph of a high silica nanoplatelet zeolite prepared according to Example 1.
  • Example 2 is a transmission electron micrograph of the high silica nanoplatelet zeolite prepared according to Example 1.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of the high silica nanoplatelet zeolite prepared according to Example 1.
  • Figure 4 is a view showing the ⁇ Si MAS NMR spectrum of the high silica nanoplatelet zeolite prepared according to Example 1.
  • the present invention relates to a process for producing ⁇ -caprolactam from cyclonucleanone oximes using a gas phase Beckman conversion process.
  • the gaseous Beckman conversion process refers to a method of injecting a cyclonucleanone oxime into a reaction vessel at a temperature of 250 to 500 ° C. containing a solid catalyst layer, and preparing an epsilon caprolactam from the cyclonucleanone oxime through a gas phase Beckman potential.
  • the catalyst used in the present invention is a zeolite material formed by arranging one or more unit crystal lattice plate-like structures having a thickness of 10 or less.
  • the plate-like structure refers to a plate-like structure in which the zeolite extends in a plate shape with a thickness of one or less unit crystal lattice
  • the zeolite material refers to a material formed by regular or irregular arrangement of the plate-like structures of the zeolite.
  • the regularly arranged means a structure in which the plate-shaped structure of the zeolite is stacked on top of one another
  • the irregularly arranged means a structure in which the plate-shaped structure of the zeolite is stacked in various other forms.
  • This nano-plate shaped zeolite material can be synthesized by adding an organic surfactant as a structural derivative to the synthetic composition of the zeolite.
  • an organic surfactant as a structural derivative to the synthetic composition of the zeolite.
  • Organic-functionalized silica shears are polymerized with other gel shears such as silica or alumina to form organic-inorganic composite gels.
  • the hydrophobic organic domains are self-assembled between the inorganic domains by non-covalent bonds between organic materials, that is, van der Waals forces, dipole-dipole interactions, and ionic interactions.
  • each gel area is arranged in a regular or complete arrangement.
  • the nano-sized inorganic gel region stabilized by the organic region has a single unit crystal lattice thickness or 10 single unit crystal lattice stacks depending on the structure of the organic surfactant or the number of ammonium functional groups contained therein through the crystallization process. It is converted into a single or multiple plate-shaped zeolite. At this time, each zeolite Due to the stabilizing effect of organic matter, the growth of zeolite is suppressed and the crystal size
  • the crystallization process can be performed through conventional methods such as hydrothermal synthesis, dry-gel synthesis, and microwave synthesis.
  • the crystallized zeolite can be obtained through conventional methods such as filtration and centrifugation.
  • the material thus obtained may be used as it is or may be selectively or completely removed only from organic matter through firing or other chemical reactions.
  • the organic surfactant used in the present invention is designed to simultaneously form a micro pore structure and a meso pore structure.
  • a surfactant containing two ammonium functional groups or one ammonium functional group and one amine functional group is used. It consists of a head and a hydrophobic alkyl tail.
  • the organic surfactant may be represented by Formula 1 or 2 below.
  • X is a halogen (CI, Br, I) anion or a hydroxide (OH) anion.
  • CI, C2 and C3 are each independently substituted or unsubstituted alkyl groups.
  • C3 is also possible in a variety of molecular structures substituted with alkenyl groups or atoms other than carbon on the table.
  • C1 is preferably 8 to 22 carbon atoms
  • C2 is 3 to 6 carbon atoms
  • C3 is preferably 1 to 8 carbon atoms.
  • the organic surfactant is generalized in the order of C1-C2-C3 according to the length of CI, C2, C3 (Eg 22 ⁇ 6-6: C1 is 22 carbon atoms, C2 is 6 carbon atoms, C3 is 6 carbon atoms and consists of two ammonium functional groups; 22-6-0: C1 is 22 carbon atoms, C2 has 6 carbon atoms and consists of one ammonium group and one amine group).
  • Ammonium functional groups can be expanded to two or more, preferably 2 to 5. Too many ammonium functional groups thicken the skeleton thickness of the crystal, resulting in low efficiency of the catalyst.
  • the number of single unit crystal lattice included in a single plate-like structure can be controlled.
  • the mole ratio of silicon to metal is preferably 500 or more, and the silica raw material is conventionally free of impurities such as fumed silica, colloidal silica, and organosilicon compounds.
  • Silica materials can be used.
  • Metal elements include Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf, Bi. Crystallization of the zeolite is preferably carried out for 1 to 30 days at 100 to 200 ° C through hydrothennal synthesis, dry-gel, microwave synthesis, and more preferably. Preferably it is carried out at 130 to 150 ° C for 3 to 15 days.
  • reaction temperature is low or the reaction time is short, the crystallinity of the zeolite is poor and the catalytic performance is poor. If the reaction temperature is too high, the crystallization and the decomposition reaction of the surfactant occur simultaneously, so that the nano-plate zeolite and the existing large zeolite crystals together It is mixed, and the performance as a catalyst is reduced.
  • the synthesized zeolite is preferably subjected to filter recovery, washing and drying using an aspirator, and then firing the organic surfactant under air or nitrogen at 300 to 700 ° C. More preferably, 400 to 500 ° C. It is advantageous to fire at C under air or nitrogen. Low firing temperatures do not completely remove organic surfactants, and too high calcined silver leads to dehydroxylation reactions of silanol groups, thereby reducing the activity and selectivity of the catalyst.
  • the microporous structure of the zeolite can be any zeolite structure that can be induced by an organic surfactant, preferably pentasil zeolite, and in its case is also preferably a codename designated by the MFK International Zeolite Association.
  • the above zeolite can be peeled, peeled, and replaced with silver. Conventional post-treatment of tablets, bases, silanizations and acid treatments can be used. However, without any aftertreatment, the nano-plate zeolites show superior catalytic activity, selectivity, and lifetime compared to other silica catalysts.
  • the present inventors have variously characterized zeolite obtained by powder X-ray diffraction method, nitrogen adsorption method, SEM (scanning electron microscope), TEM (transmission electron microscope), 3 ⁇ 41 MAS NMR, FT-IR, ICP-AES, etc.
  • the result is a high silica nanostructure with a very large specific surface area (> 600 m 2 g "1 ), large pore volume (> 1.0 cm 3 g " 1 ), and a large amount of silanol groups ⁇ Si MAS NMR from Q3 / Q4-0.25) It was confirmed that the plate-like zeolite was synthesized.
  • the zeolite catalyst shows very high catalytic activity, selectivity, and lifetime despite the fact that the FT-IR analysis shows that the terminal surface silanol groups are known to have very low selectivity of ⁇ -caprolactam. It means that the orientation and acidity of the group is different from that of other zeolites.
  • Highly catalytically active hydrogen bonding through the synthesis conditions of the zeolite preferably, the amount of surfactant, control of hydrothermal synthesis time, ⁇ of the synthetic gel, etc.
  • various post-treatment processes typically ammonium nitrate and ammonia water treatment
  • the formed silanol group can be further formed to further improve the conversion rate of cyclonucleanone oxime.
  • the Beckman rearrangement conversion reaction of the cyclonucleanone oxime using the above-mentioned zeolite catalyst can be suitably performed under gas phase conditions in a fixed bed or a fluidized bed, and the reaction temperature is generally preferably performed at 250 to 500 ° C., More preferably, it is good to set it to 300 ⁇ 380 ° C.
  • the reaction temperature is low, the conversion rate of cyclonucleanone oxime is low and the activity of the catalyst is also fast. Too high a decrease in selectivity of ⁇ -caprolactam by the side reactions.
  • the reaction pressure is typically between 0.005 and 0.5 MPa, preferably between 0.005 and 0.2 MPa.
  • Cyclo hex oxime is a block such as a sole or nitrogen, Helms, argon and carbon dioxide, It can be supplied together with an active gas, and more preferably, a solution in which cyclonucleanone oxime is dissolved in C1-C8 alcohols, benzene, toluene, acetonitrile and the like and mixed with the above inert gas is supplied.
  • Example 1 High silica nanoplatelet agent with single unit crystal lattice thickness Beckman conversion reaction of cyclonuxanon oxime with light
  • C1 has 16 carbon atoms
  • C2 has 6 carbon atoms
  • C3 has 6 carbon atoms
  • an organic surfactant consisting of two ammonium functional groups and two hydroxyl anions (OH-) (hereinafter, 16-6- 6) was mixed with tetraethyl orthorsilicate (TEOS) and distilled water to prepare a mixed gel.
  • TEOS tetraethyl orthorsilicate
  • the final mixture was placed in a stainless autoclave and reacted with stirring (60 rpm) at 140 ° C. for 6 days. At this time, the pH of the synthetic gel is 12.
  • the product was filtered using an aspirator and washed several times with distilled water. The resulting product was dried thoroughly in Aubon 120 ° C, and then fired in a 500 ° C furnace (2 hours) while blowing air.
  • FIG. 1 is a scanning electron micrograph of the high silica nanoplatelet zeolite prepared according to Example 1
  • Figure 2 is a transmission electron micrograph of the high silica nanoplatelet zeolite prepared according to Example 1
  • Figure 3 Is a diagram showing the X-ray diffraction pattern of the high silica nanoplatelet zeolite prepared according to Example 1
  • Figure 4 is a diagram showing the 3 ⁇ 4 Si9SAS NSR spectrum of the high silica nanoplatelet zeolite prepared according to Example 1 .
  • the scanning electron micrograph of FIG. 1 shows that the zeolite was crystal-grown in the form of a plate-like structure having a thickness of 20 to 50 ran.
  • the zeolite crystals are very thin on the b-axis of crystals and wide on the ac plane of the crystals.
  • the thickness of the crystals on the b-axis is about 2 nm.
  • powder X-ray diffraction analysis confirmed that the synthesized material had a structure of MFI zeolite.
  • only the diffraction pattern corresponding to WI diffraction was clearly seen due to the very thin skeleton thickness on the b-axis (FIG. 3).
  • the Si MAS NMR spectrum Fig.
  • the calcined zeolite catalyst was molded into a size of 14-20 mesh, and 0.1 g of catalyst and 2 g of quartz sand (14-20 mesh) were mixed well, followed by quartz reaction (40 cm in length, Inside diameter was 1.3 cm).
  • the catalyst was pretreated at 500 ° C. for 2 hours under air flow (50 mL / min) and the reaction temperature was adjusted to 320 ° C.
  • high purity nitrogen (99.999%) was added to the reaction vessel at 60 mL / min, and after sufficient stabilization, cyclohexanone oxime solution (10 wt%) dissolved in ethanol was subjected to high performance liquid chromatography (HPLC).
  • the mixed gel was stirred at room temperature for 2 hours, then the final mixture was placed in a stainless autoclave and reacted with stirring (400 rpm) at 105 ° C. for 4 days. After reaction, the solid product is separated and centrifuged and washed repeatedly. The resulting product was dried in 120 ° C. Aubon and then calcined in a 500 ° C. furnace for 2 hours while blowing air.
  • the specific surface area of the synthesized material is 340 m 2 g _1 and the total pore volume is 0.22 cm 3 1 .
  • Powder X-ray diffraction analysis confirmed that the synthesized material was MFI zeolite.
  • the Si / Al ratio of the synthesized material is 2,050. Electron micrographs showed that the crystal size of the synthesized material was about 200 nm.
  • the calcined conventional zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 2.
  • the final mixture was placed in a stainless autoclave and reacted at 130 ° C. without stirring for 1 day. After reaction, the solid product was separated and dried without washing. The dried product was washed at room temperature with ethane using a single hydrochloric acid solution and calcined for 2 hours in a furnace at 500 ° C while blowing air to remove the polymer.
  • the specific surface area of the synthesized material was 750 m 2 g -1 , the total pore volume included 0.92 cm 3 g "1 , and a very uniform mesopore size (7 nm).
  • Low angle powder X-ray diffraction analysis It was confirmed that the synthesized material had a cubic Idid mesoporous structure, and the high-angle powder X-ray diffraction results showed that the amorphous silica had no specific microporous structure. It was.
  • the calcined conventional nanoporous catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 3.
  • the final mixture was placed in a stainless autoclave and reacted at 170 ° C. without stirring for 6 days. After reaction, the product was filtered using an aspirator and washed several times with distilled water. The obtained product was dried in 120 ° C Aubon, and then fired in a 600 ° C furnace for 12 hours while blowing air.
  • the specific surface area of the synthesized material was 430 m 2 g— 1 , the total pore volume included 0.52 cm 3 g “1 , and a very uniform mesopore size (8 nm).
  • Low angle powder X-ray diffraction analysis It was confirmed that the synthesized material had a regular cubic mesoporous structure, and the elevation of the powder X-ray diffraction showed that it had a MFI type zeolite structure.
  • the calcined conventional nanoporous catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 4.
  • Comparative Example 4 Comparison with Existing High Silica Zeolite Post-treated with Ammonium Nitrate (1 g)
  • the comparative high silica zeolite catalyst of Comparative Example 1 (1 g) was repeated three times at 60 ° C. for 6 hours at 1 M NH 4 NO 3 solution (20 mL). After the treatment, it was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 5.
  • Comparative Example 5 Comparison with Existing High Silica Zeolites Post-treated with Ammonium Nitrate and Ammonia Water
  • the existing high silica zeolite catalyst of Comparative Example 1 was post-treated with a mixed solution of ammonium nitrate and ammonia water.
  • 1 g of zeolite was mixed with 1 g of ammonia water (25 wt%) and 3 g of ammonium nitrate solution (7.5 wt%), and then placed in a sealed plastic bottle and stirred at 90 ° C for 1 hour.
  • the obtained product was filtered, washed and dried, and was carried out in the same manner as the Beckman conversion reaction process of cyclonuclinon oxime of Example 1. However, 500 ° C pretreatment was not performed.
  • the reaction results are shown in Table 6.
  • Example 1 The hydrothermal synthesis time carried out in Example 1 was increased to 6 days (Sample A), 9 days (Sample ⁇ ), 15 days (Sample _ C), and the Beckman conversion reaction characteristics were confirmed. Except for the small bed temperature 600 ° C. was the same as in Example 1.
  • the calcined zeolite catalyst was carried out in the same manner as in the Beckman conversion reaction process of cyclonuclinon oxime of Example 1. The reaction results are shown in Table 7.
  • Example 3 Beckman conversion reaction of cyclonucleoside oxime of nanoplatelet zeolite according to synthetic gel ⁇
  • Example D After addition of sulfuric acid to adjust the ⁇ of the synthetic gel of Example 1 to 10, a nano-plate zeolite was prepared (Sample D).
  • the molar composition of the final synthetic gel was as follows. 100 SiO 2 : 1016-6-6 Organic Surfactant: 6000 H 2 0: 3 H 2 S0 4
  • Example 2 All other manufacturing procedures were the same as in Example 1, except that the firing temperature was performed at 600 ° C.
  • the Beckman conversion reaction process of the calcined zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of cyclonuclinon oxime of Example 1 except that the reaction temperature was 370 ° C. and the space velocity WHSV was 8 h _1 .
  • the reaction results are shown in Table 8 in comparison with Sample A (Example 2).
  • Example 1 All other manufacturing procedures were the same as in Example 1.
  • the calcined zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 9.
  • Example 2-6-6 organic surfactants other than 16-6-6 organic surfactants (C1 has 22 carbon atoms, C2 has 6 carbon atoms, C3 has 6 carbon atoms)
  • silica filler 5 g of TEOS was added to 1 g of the nanoplatelet zeolite before firing, and the mixture was stirred in a sealed plastic bottle at room temperature for 12 hours. After the completion of reaction, the obtained material was filtered without washing, dried at room temperature, 20 g of distilled water was added thereto, heated at 100 ° C. for 12 hours, then obtained through filtration and washed with distilled water.
  • the calcined zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of cyclonucleanone oxime of Example 3, and the reaction results before (sample G) and after (sample H) are shown in Table 10.
  • Example 6 Beckman conversion reaction of cyclonucleanone oxime of nanoplate-shaped zeolite after-treatment with ammonium nitrate and ammonia water
  • Example A The catalyst of Example 2 (Sample A) was worked up with a mixed solution of ammonium nitrate and ammonia water, and the process was carried out in the same manner as in Comparative Example 5. The catalyst thus obtained was carried out in the same manner as in the Beckman conversion reaction process of cyclohexanone oxime of Comparative Example 5. The reaction results are shown in Table 11.
  • Example 7 Beckman Conversion of Cyclonucleanone Oximes Using Nanoplate Zeolites Post-treated with (CH 3 ) 3 SiCl
  • Example 2 The catalyst of Example 2 (Sample A) was worked up using trimethyl silane chloride ((C3 ⁇ 4) 3 SiCl, TMSC1). 1 g of zeolite catalyst was added to 1.9 g of TMSC1 and 100 mL of toluene solution and then refluxed with stirring at 110 ° C. for 3 hours. After the reaction was completed, the mixture was filtered through a filter and washed several times with toluene and acetone. After drying at 80 ° C. for 2 hours, the catalyst thus obtained was replaced with cyclone nucleus of Comparative Example 5. The same procedure was followed as for Beckman's conversion reaction. Return results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention provides a method for preparing ε-caprolactam by using high-silica nano-plate zeolite. According to the present invention, the method prepares ε-caprolactam from cyclohexanone oxime by a gas-phase Beckmann rearrangement, wherein a zeolite material having a multilayered or single plate structure in which a single unit crystal lattice or ten or less lattices are connected to be regularly or irregularly arranged is used as a catalyst. According to the present invention, the method for preparing ε-caprolactam can rapidly increase the productivity of ε-caprolactam by using high-silica nano-plate zeolite having a high oxime conversion rate, high ε-caprolactam selectivity and very slow catalyst inactivation. Further, it is also possible to remarkably reduce known frequent catalyst exchange and regeneration processes, and thus it is possible to prepare ε-caprolactam more economically and efficiently.

Description

【명세세  [Specifications
【발명 의 명 칭】  [Name of invention]
고 실리카 나노판상형 제올라이트를 이용한 ε—카프로락탐의 제조방법 【기술분야】  Manufacturing Method of ε-Caprolactam Using High Silica Nanoplate Zeolite [Technical Field]
본 발명은 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법 에 관한 것으로, 더욱 상세하게는 고 실리카 나노판상 형 태의 제을라이트 물질을 기상 베크 만 재배 열 반웅의 촉매로 이용하여 시클로핵사논 옥심으로부터 ε-카프로락탐을 제 조하는 방법 에 관한 것이다.  The present invention relates to a method for producing ε-caprolactam from cyclonucleanone oxime, and more particularly, from a cyclonucleanone oxime using a high silica nanoplate-shaped zeolite material as a catalyst for gas phase Beckman rearrangement reaction. It relates to a method for producing ε-caprolactam.
【배경 기술】  [Background technology]
시클로핵사논 옥심 의 베크만 재배 열 반웅은 나일론 -6의 주원료인 ε-카프로락 탐을 생산하는 중요한 산업 공정으로 잘 알려져 있다.  The Beckman cultivation heat reaction of cyclonuxanone oxime is well known as an important industrial process for producing ε-caprolactam, the main raw material of nylon-6.
기존의 ε-카프로락탐 생산 공정은 발연 황산을 촉매로 넣고 시클로핵사논 옥 심을 액상에서 전환하였다. 하지만, 기존 공정은 황산 촉매를 사용함으로써 발생하 는 다량의 황산암모늄 부산물 생성, 용기 부식, 사용 안전성 등의 문제가 대두되어 왔다.  The existing ε-caprolactam production process converts cyclonucleanone oxime into liquid phase with fuming sulfuric acid as a catalyst. However, the existing processes have raised problems such as the generation of a large amount of ammonium sulfate by-products generated by using sulfuric acid catalysts, vessel corrosion, and safety of use.
따라서, 이 러 한 문제들을 해결하기 위 해, 황산 대신 고체산 촉매를 이용한 기 상 베크만 전환 공정 의 개발 연구가 많이 진행되 어 왔다. 현재까지 실리카, 실리카- 알루미나, 보론-실리카, 고체 인산, 금속 산화물, 제올라이트 등이 베크만 전환 공정 의 새로운 촉매로 제안되어졌다.  Therefore, in order to solve these problems, much research has been conducted on the development of a gas phase Beckman conversion process using a solid acid catalyst instead of sulfuric acid. To date, silica, silica-alumina, boron-silica, solid phosphoric acid, metal oxides and zeolites have been proposed as new catalysts for the Beckman conversion process.
그 증, 미국 특허 제 4,709,024호와 제 4,717,769호는 고 실리카 MFI형 제올라 이트 (규소 /금속원소 > 500, Η+-형 태 )를 촉매로 사용할 경우에 여타 다른 촉매에 비 해 시클로핵사논 옥심 의 전환율과 ε-카프로락탐의 선택도가 매우 높음을 기술한 바 있다. 이 촉매의 시클로핵사논 옥심의 베크만 재배 열 반웅은 표면 또는 내부 결함In addition, US Pat. Nos. 4,709,024 and 4,717,769 compare to other catalysts when using a high silica MFI zeolite (silicon / metal element> 500, Η + -form) as a catalyst. It has been described that the conversion rate of cyclonucleanone oxime and the selectivity of ε-caprolactam are very high. Beckman cultivation heat reaction of cyclonucleanone oxime of this catalyst is a surface or internal defect
(defect)에 존재하는 약산성 의 실란올기 (Si≡O-H)에 의 해 촉매 활성 이 일어 난다고 잘 알려져 있다 (Bulletin of the Chemical Society of Japan, 80권, 1280-1287, 2007 년). 보다 구체적으로는, 수소 결합된 이웃 실란올기 (vicinal silanol) 또는 실란을 둥 지 (silanol nest)가 높은 ε-카프로락탐 선택도를 얻는테 증요한 역할을 하며, 표면의 말단 실란을기 (terminal silanol)는 오히 려 ε-카프로락탐 선택도를 저하시 킨다고 알려 져 있다 (Journal of Catalysis, 186권, 12-19, 1999년). It is well known that catalytic activity is caused by weakly acidic silanol groups (Si≡O-H) present in the defect (Bulletin of the Chemical Society of Japan, Vol. 80, 1280-1287, 2007). More specifically, hydrogen-bonded neighboring silanol groups or silanol nests play a critical role in obtaining high ε-caprolactam selectivity and terminal silanol groups on the surface. ) Is known to reduce ε-caprolactam selectivity (Journal of Catalysis, Vol. 186, 12-19, 1999).
미국 특허 제 5,212,302호는 질산암모늄과 암모니아수의 혼합용액을 이용하여 수소 결합된 실란올기를 형성 함과 동시 에 말단 실란올기 의 양을 줄임으로써, 보다 높은 시클로핵사논 옥심 의 촉매 전환율과 ε-카프로락탐 선택도를 얻을 수 있음을 기술한 바 있다. U.S. Patent No. 5,212,302 uses a mixture of ammonium nitrate and ammonia water to form hydrogen-bonded silanol groups and simultaneously reduce the amount of terminal silanol groups, thereby increasing the catalytic conversion of ε-caprolactam You can get selectivity It was described.
상기한 바와 같이, 종래의 고 실리카 제을라이트 촉매를 이용한 시클로핵사 논 옥심의 베크만 전환 공정은 높은 옥심의 전환을 및 ε—카프로락탐의 선택도를 보 여 준다. 하지만, 기존 제올라이트 촉매의 큰 결정 (보통 1 μπι 이상) 내 무수히 많이 존재하는 마이크로 세공 (직경 1 nm 이하)은 느린 분자 확산을 불러일으키며, 이는 기상 베크만 전환 공정에서 제한적인 촉매 효율 및 짧은 촉매 수명을 갖는 원인이 된다. 특히, 제을라이트 촉매의 빠른 활성 저하는 촉매의 잦은 재생 및 교체를 요구 하며, 이는 ε—카프로락탐의 생산 단가를 높이는 중요한 요인이 된다.  As described above, the Beckman conversion process of cyclonuclear nonoxime using a conventional high silica zeolite catalyst shows high oxime conversion and ε-caprolactam selectivity. However, myriad micropores (less than 1 nm in diameter) in large crystals of conventional zeolite catalysts (typically 1 μπι or more) lead to slow molecular diffusion, which results in limited catalytic efficiency and short catalyst life in gas phase Beckman conversion processes. It is a cause of having. In particular, the rapid deactivation of the zeolite catalyst requires frequent regeneration and replacement of the catalyst, which is an important factor in increasing the production cost of ε-caprolactam.
한편, 한국 특허 제 10-0613399호는 나노 입자 크기 (100 ~ 1000 nm)의 고 실리카 제을라이트 촉매가 시클로핵사논 옥심의 전환율, 생성물 선택도, 촉매의 수명 을 개선할 수 있음을 기술한 바 있지만, 기존 촉매에 비해 촉매의 성능을 크게 향상 시키지는 못하였다.  On the other hand, Korean Patent No. 10-0613399 discloses that a high silica zeolite catalyst with a nanoparticle size (100-1000 nm) can improve the conversion rate, product selectivity, and catalyst lifetime of cyclonuxanon oxime. , The performance of the catalyst was not significantly improved compared to the existing catalyst.
[발명의 상세한 설명】  Detailed description of the invention
【기술적 과제】  [Technical problem]
본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, 기상 베크만 전환 공정을 이용하여 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조함에 있어, 높은 옥심의 전환율, 높은 ε-카프로락탐 선택성, 매우 느린 촉매의 비활성화 특성을 갖는 고 실리카 나노판상형 제을라이트를 이용하는 방법을 제공하는 것을 그 목적 으로 한다.  The present invention is to solve the above-mentioned problems of the prior art, in the production of ε-caprolactam from cyclonucleanone oxime using a gas phase Beckman conversion process, high oxime conversion, high ε-caprolactam selectivity, very slow It is an object of the present invention to provide a method using a high silica nanoplatelet zeolite having a catalyst deactivation characteristic.
【기술적 해결방법】  Technical Solution
상기의 목적을 달성하기 위하여 본 발명은, 기상 베크만 전환 공정을 이용하 여 시클로핵사논 옥심으로부터 ε—카프로락탐을 제조하는 방법에 있어서, 단위 결정 격자 1개 또는 10개 이하 두께의 판상 구조체가 배열되어 형성되는 제올라이트 물 질을 촉매로 사용하여 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법을 제공한다.  In order to achieve the above object, the present invention, in the method for producing ε-caprolactam from the cyclonuclinon oxime using a gas phase Beckman conversion process, a plate-like structure of one or more unit crystal lattice is arranged Provided is a method for preparing ε-caprolactam from cyclonucleanone oxime using the zeolite material formed as a catalyst.
상기 판상 구조체는 제을라이트가 단위 결정 격자 1개 또는 10개 이하 두께 로 판상으로 연장되어 형성되는 판상의 구조체를 말하며, 상기 제을라이트 물질은 이러한 제올라이트의 판상 구조체가 규칙적 또는 불규칙적으로 배열되어 형성된 물 질을 말한다. 여기서, 규칙적으로 배열되었다 함은 제올라이트의 판상 구조체가 차 곡차곡 포개어져 있는 구조를 말하며, 불규칙적으로 배열되었다 함은 제올라이트의 판상 구조체가 그 이외의 다양한 형태로 쌓여져 있는 구조를 말한다.  The plate-like structure refers to a plate-like structure in which the zeolite extends in a plate shape with a unit crystal lattice of 1 or 10 or less in thickness, and the zeolite material is a material formed by regular or irregular arrangement of the plate-like structures of the zeolite. Say Here, the regular arrangement means a structure in which the plate-shaped structures of the zeolite are stacked on top of each other, and the irregular arrangement means a structure in which the plate-shaped structures of the zeolite are stacked in various other forms.
상기 제올라이트 물질은 그 자체로 또는, 박피반웅 (delamination), 필러링 (pillaring), 염 기수용액 처 리, 이온교환, 탈알루미늄화, 금속 담지 및 유기 관능화로 이루어지는 군에서 선택되는 후 처 리 반웅을 이용하여 활성화 또는 개질화시 킨 것 을 사용할 수 있다. The zeolitic material may itself or delamination, filler It can be used to activate or modify using a post-treatment reaction selected from the group consisting of pillaring, salt aqueous solution treatment, ion exchange, dealumination, metal loading and organic functionalization.
상기 제올라이트 물질은 규소 대 금속 원소의 몰비 가 500 이상인 것이 바람 직하다.  The zeolitic material preferably has a molar ratio of silicon to metal element of at least 500.
상기 제올라이트 물질에 포함되는 금속 원소는 예를 들어 Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf 및 Bi로 이루어진 군에서 선택 될 수 있다.  Metal elements included in the zeolitic material are, for example, Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf and Bi Can be selected from the group consisting of.
본 발명은 또한, 기상 베크만 전환 공정을 이용하여 시클로핵사논 옥심으로 부터 ε-카프로락탐을 제조하는 방법 에 있어서 , 2개 이상의 암모늄 관능기를 포함하 거나, 1개의 암모늄 관능기 및 1개의 아민 관능기를 포함하는 유기 계면활성 제를 구 조 유도체로 첨 가하여 합성되는 제올라이트 물질을 촉매로 사용하여 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법을 제공한다.  The present invention also provides a method for producing ε-caprolactam from cyclonucleanone oxime using a gas phase Beckman conversion process, comprising two or more ammonium functional groups, or one ammonium functional group and one amine functional group. The present invention provides a method for preparing ε-caprolactam from cyclonucleanone oxime using a zeolite material synthesized by adding an organic surfactant to a structural derivative.
상기 유기 계면활성 제는 화학식 1 또는 2로 표시되는 것들을 각각 또는 동시 에 사용할 수 있다.  The organic surfactant may be used at the same time or each of those represented by the formula (1) or (2).
[화학식 1]  [Formula 1]
Figure imgf000004_0001
Figure imgf000004_0001
[화학식 2] [Formula 2]
Figure imgf000004_0002
Figure imgf000004_0002
(여 기서 , X는 할로겐 (CI, Br, I) 음이온 또는 하이드록사이드 (OH) 음이온이 다. ) Where X is a halogen (CI, Br, I) anion or a hydroxide (OH) anion.
상기 화학식 1 및 화학식 2에서 C1은 탄소 원자 8 ~ 22 개, C2 는 탄소원자 3 ~ 6 개, C3는 탄소원자 1 ~ 8 개로 이루어지는 것이 바람직하다.  In Formula 1 and Formula 2, C1 is preferably 8 to 22 carbon atoms, C2 is 3 to 6 carbon atoms, and C3 is preferably 1 to 8 carbon atoms.
상기 제올라이트 물질은 소성 또는 화학적 처 리 에 의 해 유기 계면활성제를 완전 또는 부분적으로 제거 하여 제조될 수 있다. 상기 제을라이트 물질은 규소 대 금속 원소의 몰비가 500 이상인 것이 바람 직하다. The zeolitic material may be prepared by completely or partially removing the organic surfactant by calcining or chemical treatment. The zeolite material preferably has a molar ratio of silicon to metal element of at least 500.
상기 제올라이트 물질에 포함되는 금속 원소는 예를 들어 Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf 및 Bi로 이루어진 군에서 선택 될 수 있다.  Metal elements included in the zeolitic material are, for example, Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf and Bi Can be selected from the group consisting of.
상기 제올라이트 물질은 예를 들어 수열합성법 (hydrothermal synthesis), 마 이크로파 가열 (microwave heating) 및 건식-겔 합성법 (dry— gel synthesis)으로 이루 어지는 군에서 선택되는 결정화 과정을 거쳐 제조될 수 있다.  The zeolite material may be prepared through a crystallization process selected from the group consisting of, for example, hydrothermal synthesis, microwave heating and dry-gel synthesis.
본 발명은 또한, 기상 베크만 전환 공정을 이용하여 시클로핵사논 옥심으로 부터 ε-카프로락탐을 제조하는 방법에 있어서, 2개 이상의 암모늄 관능기를 포함하 거나 1개의 암모늄 관능기 및 1개의 아민 관능기를 포함하는 유기 계면활성제를 구 조 유도체로 첨가하여 합성되며, 박피반응 (delamination), 필러링 (pillaring), 염기수 용액 처리, 이온교환, 탈알루미늄화, 금속 담지 및 유기 관능화로 이루어지는 군에서 선택되는 후 처리 반웅을 이용하여 활성화 또는 개질화되는 제올라이트 물질을 촉 매로 사용하여 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법을 제공한 다.  The present invention also provides a process for preparing ε-caprolactam from cyclonucleanone oxime using a gas phase Beckman conversion process, comprising at least two ammonium functional groups or comprising one ammonium functional group and one amine functional group. It is synthesized by adding organic surfactant as a structural derivative and is selected from the group consisting of delamination, pillaring, base water solution treatment, ion exchange, dealumination, metal loading and organic functionalization. It provides a method for producing ε-caprolactam from cyclonucleanone oxime using a zeolite material that is activated or modified using a catalyst as a catalyst.
상기 유기 계면활성제는 화학식 1 또는 2로 표시되는 것들을 각각 또는 동시 에 사용할 수 있다.  The organic surfactant may be used at the same time or each of those represented by the formula (1) or (2).
[화학식 1]  [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
[화학식 2] [Formula 2]
Figure imgf000005_0002
Figure imgf000005_0002
(여기서, X는 할로겐 (CI, Br, I) 음이온 또는 하이드록사이드 (OH) 음이온이 본 발명은 또한, 앞서 설명한 시클로핵사논 옥심으로부터 εᅳ카프로락탐을 제 조하는 방법을 이용하여 제조되는 ε-카프로락탐을 제공한다. (Wherein X is a halogen (CI, Br, I) anion or a hydroxide (OH) anion, the present invention also removes ε ᅳ caprolactam from the cyclonuclinon oxime described above. Ε-caprolactam prepared using the crude method is provided.
【유리한 효과】  Advantageous Effects
상기에서 설명한 바와 같이, 본 발명은 시클로핵사논 옥심의 베크만 전환 공 정에서 높은 수득율과 긴 촉매 수명올 갖는 고 실리카 나노판상형 제을라이트 또는 이를 후처리한 물질을 이용하여 ε—카프로락탐을 제조하는 방법을 제공한다. 본 발명 의 고 실리카 나노판상형 제올라이트 물질은 기존 제올라이트, 나노다공성 비정질 실리카, 나노다공성 제을라이트 및 이들의 후처리 된 촉매 물질에 비해, 시클로핵사 논 옥심으로부터 ε-카프로락탐을 제조하는 데 있어 획기적으로 개선된 촉매 성능을 보여준다. 또한, 이러한 촉매의 성능은 물질의 합성 조건 및 후처리 방법에 따라 더 욱 개선할 수 있다.  As described above, the present invention provides a method for preparing ε-caprolactam using high silica nanoplatelet zeolite having high yield and long catalyst lifetime in a Beckman conversion process of cyclonucleanone oxime or a post-treated material. To provide. The high silica nanoplatelet zeolite material of the present invention is a significant improvement in the preparation of ε-caprolactam from cyclonuclear oximes compared to conventional zeolites, nanoporous amorphous silica, nanoporous zeolites and their post-treated catalyst materials. Shows catalytic performance. In addition, the performance of such a catalyst can be further improved depending on the synthesis conditions and post-treatment methods of the material.
따라서, 본 발명의 ε—카프로락탐 제조 방법에 의하면, ε-카프로락탐의 생산성 을 비약적으로 증진시킬 수 있다. 아을러, 기존의 잦은 촉매 교체 및 재생 과정 또 한 크게 줄일 수 있어, 보다 경제적이고 효율적으로 ε-카프로락탐을 제조할 수 있 다.  Therefore, according to the epsilon caprolactam manufacturing method of this invention, productivity of epsilon caprolactam can be improved remarkably. In addition, the existing frequent catalyst replacement and regeneration processes can be greatly reduced, making ε-caprolactam more economical and efficient.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 실시예 1에 따라 제조된 고 실리카 나노판상형 제올라이트의 주사전 자현미경사진이다.  1 is a premicroscopic scanning micrograph of a high silica nanoplatelet zeolite prepared according to Example 1. FIG.
도 2는 실시예 1에 따라 제조된 고 실리카 나노판상형 제을라이트의 투과전 자현미경사진이다.  2 is a transmission electron micrograph of the high silica nanoplatelet zeolite prepared according to Example 1.
도 3은 실시예 1에 따라 제조된 고 실리카 나노판상형 제올라이트의 X-선 회절 패턴을 나타낸 도면이다.  3 is a diagram showing an X-ray diffraction pattern of the high silica nanoplatelet zeolite prepared according to Example 1. FIG.
도 4는 실시예 1에 따라 제조된 고 실리카 나노판상형 제올라이트의 ^Si MAS NMR스펙트럼을 나타낸 도면이다.  Figure 4 is a view showing the ^ Si MAS NMR spectrum of the high silica nanoplatelet zeolite prepared according to Example 1.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하, 본 발명을 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 상세한 설명은 생략한다.  Hereinafter, the present invention will be described in detail. In describing the present invention, detailed descriptions of related well-known configurations or functions will be omitted.
*본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개 념으로 해석되어야 한다.  * The terms or words used in this specification and claims are not to be construed as being limited to conventional or dictionary meanings, and should be construed as meanings and concepts consistent with the technical details of the present invention.
본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 실 시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균둥물과 변형예들이 있을 수 있다. 본 발명은 기상 베크만 전환 공정을 이용하여 시클로핵사논 옥심으로부터 ε- 카프로락탐을 제조하는 방법에 관한 것이다. 기상 베크만 전환 공정은 고체 촉매층 이 담긴 250 내지 500 °C 온도의 반웅기에 시클로핵사논 옥심을 주입하고, 기체 상 베크만 전위를 통해 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법을 말한다. 상기 공정을 이용하면 촉매의 분리공정 없이 연속적으로 ε—카프로락탐을 생 산할 수 있을 뿐 아니라, 기존 황산 촉매 공정에서 발생하는 다량의 부산물 생성 및 용기 부식 등의 문제를 동시에 해결할 수 있다. 본 발명에서 사용하는 촉매는 단위 결정 격자 1개 또는 10개 이하 두께의 판 상 구조체가 배열되어 형성되는 제올라이트 물질이다. 상기 판상 구조체는 제올라이 트가 단위 결정 격자 1개 또는 10개 이하 두께로 판상으로 연장되어 형성되는 판상 의 구조체를 말하며, 상기 제올라이트 물질은 이러한 제올라이트의 판상 구조체 가 규칙적 또는 불규칙적으로 배열되어 형성된 물질을 말한다. 여기서, 규칙적으로 배 열되었다 함은 제올라이트의 판상 구조체가 차곡차곡 포개어져 있는 구조를 말하며, 불규칙적으로 배열되었다 함은 제올라이트의 판상 구조체가 그 이외의 다양한 형태 로 쌓여져 있는 구조를 말한다. The embodiments described in the present specification and the configuration shown in the drawings are preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention. There may be. The present invention relates to a process for producing ε-caprolactam from cyclonucleanone oximes using a gas phase Beckman conversion process. The gaseous Beckman conversion process refers to a method of injecting a cyclonucleanone oxime into a reaction vessel at a temperature of 250 to 500 ° C. containing a solid catalyst layer, and preparing an epsilon caprolactam from the cyclonucleanone oxime through a gas phase Beckman potential. Using this process can not only produce ε-caprolactam continuously without the catalyst separation process, but also solve the problems such as the generation of a large amount of by-products and vessel corrosion generated in the existing sulfuric acid catalytic process. The catalyst used in the present invention is a zeolite material formed by arranging one or more unit crystal lattice plate-like structures having a thickness of 10 or less. The plate-like structure refers to a plate-like structure in which the zeolite extends in a plate shape with a thickness of one or less unit crystal lattice, and the zeolite material refers to a material formed by regular or irregular arrangement of the plate-like structures of the zeolite. Say. Here, the regularly arranged means a structure in which the plate-shaped structure of the zeolite is stacked on top of one another, and the irregularly arranged means a structure in which the plate-shaped structure of the zeolite is stacked in various other forms.
이러한 나노 판상 형태의 제올라이트 물질은 제올라이트의 합성 조성에 유기 계면활성제를 구조 유도체로 첨가하여 합성 할 수 있다. 상기 나노 판상 제올라이트 물질의 제조 방법을 보다 구체적으로 설명하면 다음과 같다.  This nano-plate shaped zeolite material can be synthesized by adding an organic surfactant as a structural derivative to the synthetic composition of the zeolite. Hereinafter, a method of preparing the nano-plate zeolite material will be described in more detail.
<제 1 단계〉 <First step>
유기-관능화 실리카 전단체를 실리카나 알루미나와 같은 다른 겔 전단체와 같이 중합하여 유기—무기 복합 겔을 형성한다. 이 때 소수성 유기물 영역 (domain)이 유기물질 간의 비공유결합, 즉, 반데르발스 힘, 쌍극자-쌍극자 상호작용, 이온 상호 작용 등에 의해 무기물 영역 사이에서 자가조립 되어 형성된다. 이 때 유기물의 구 조나 농도에 따라 각각의 겔 영역들은 완전 또는 국부적으로 규칙적인 배열을 하게 된다.  Organic-functionalized silica shears are polymerized with other gel shears such as silica or alumina to form organic-inorganic composite gels. At this time, the hydrophobic organic domains are self-assembled between the inorganic domains by non-covalent bonds between organic materials, that is, van der Waals forces, dipole-dipole interactions, and ionic interactions. At this time, depending on the structure or concentration of the organic matter, each gel area is arranged in a regular or complete arrangement.
<제 2 단계 > <Second step>
이후 유기물 영역에 의해 안정화된 나노 크기의 무기 겔 영역은 결정화 과정 을 통해서 유기 계면활성제의 구조나 그것에 포함되어 있는 암모늄 관능기의 개수 에 따라 단일 단위 결정 격자 두께 또는 단일 단위 결정 격자가 10개 이하로 쌓인 단일 또는 다중 판상구조의 제올라이트로 변환된다. 이 때 각 제올라이트를 들러싸 고 있는 유기물의 안정화 효과 때문에 제올라이트의 성장이 억제되며, 결정크기가Subsequently, the nano-sized inorganic gel region stabilized by the organic region has a single unit crystal lattice thickness or 10 single unit crystal lattice stacks depending on the structure of the organic surfactant or the number of ammonium functional groups contained therein through the crystallization process. It is converted into a single or multiple plate-shaped zeolite. At this time, each zeolite Due to the stabilizing effect of organic matter, the growth of zeolite is suppressed and the crystal size
10 nm 이하의 극미세 두께로 조절되게 된다. 이 때 결정화 과정은 수열합성 (hydrothermal synthesis), 건식-겔 합성 (dry-gel), 마이크로파 합성 (microwave synthesis) 등 통상적인 방법을 통해서 모두 가능하다. It can be adjusted to a very fine thickness of 10 nm or less. At this time, the crystallization process can be performed through conventional methods such as hydrothermal synthesis, dry-gel synthesis, and microwave synthesis.
<제 3단계 > <Step 3>
결정화가 끝난 제올라이트는 여과법이나 원심분리 등 통상적인 방법을 통해 수득할 수 있다. 이렇게 얻어진 물질은 그대로 사용할 수도 있고, 소성 또는 다른 화학적 반웅을 통해 유기물만올 선택적으로 완전 또는 부분적으로 제거하여 사용할 수도 있다. 본 발명에서 사용하는 유기 계면활성제는 마이크로 기공 구조와 메조 기공 구조를 동시에 형성할 수 있도록 설계되었는테, 일반적으로는, 2개의 암모늄 관능기 또는 1개의 암모늄 관능기와 1개의 아민관능기를 동시에 포함한 계면활성제의 머리 부분과 소수성 알킬 (akyl) 꼬리 부분으로 이루어져 있다. 상기 유기 계면활성제는 하 기의 화학식 1 또는 2로 표현할 수 있다.  The crystallized zeolite can be obtained through conventional methods such as filtration and centrifugation. The material thus obtained may be used as it is or may be selectively or completely removed only from organic matter through firing or other chemical reactions. The organic surfactant used in the present invention is designed to simultaneously form a micro pore structure and a meso pore structure. Generally, a surfactant containing two ammonium functional groups or one ammonium functional group and one amine functional group is used. It consists of a head and a hydrophobic alkyl tail. The organic surfactant may be represented by Formula 1 or 2 below.
[화학식 1]  [Formula 1]
Figure imgf000008_0001
Figure imgf000008_0001
[화학식 2] [Formula 2]
Figure imgf000008_0002
여기서 X는 할로겐 (CI, Br, I) 음이온 또는 하이드록사이드 (OH) 음이온이 바 람직하다. CI, C2, C3는 각각 독립적으로 치환되거나 치환되지 않은 알킬 (alkyl) 그 룹이다. 또한 C3는 알케닐 (alkenyl) 그룹 또는 주기을표 상의 탄소 이외의 다른 원 자가 치환된 다양한 분자 구조가 가능하다. C1은 탄소 원자 8 ~ 22 개, C2 는 탄소 원자 3 ~ 6 개, C3는 탄소원자 1 ~ 8 개로 이루어지는 것이 바람직하다. 본 발명에 서, 유기 계면활성제는 CI, C2, C3의 길이에 따라 C1-C2-C3의 순서로 일반화하여 표시한다 (예, 22ᅳ6—6: C1이 탄소 원자 22개, C2가 탄소원자 6개, C3가 탄소원자 6 개이고 암모늄 관능기 두 개로 이루어짐; 22-6-0: C1이 탄소 원자 22개, C2가 탄소 원자 6개이고 한 개의 암모늄 관능기와 한 개의 아민 관능기로 이루어짐).
Figure imgf000008_0002
Where X is a halogen (CI, Br, I) anion or a hydroxide (OH) anion. CI, C2 and C3 are each independently substituted or unsubstituted alkyl groups. C3 is also possible in a variety of molecular structures substituted with alkenyl groups or atoms other than carbon on the table. C1 is preferably 8 to 22 carbon atoms, C2 is 3 to 6 carbon atoms, and C3 is preferably 1 to 8 carbon atoms. In the present invention, the organic surfactant is generalized in the order of C1-C2-C3 according to the length of CI, C2, C3 (Eg 22 ᅳ 6-6: C1 is 22 carbon atoms, C2 is 6 carbon atoms, C3 is 6 carbon atoms and consists of two ammonium functional groups; 22-6-0: C1 is 22 carbon atoms, C2 has 6 carbon atoms and consists of one ammonium group and one amine group).
암모늄 관능기는 두 개 또는 그 이상으로도 확장이 가능하고, 바람직하게는 2 ~ 5개이다. 지나치게 많은 수의 암모늄 관능기는 결정의 골격 두께를 두껍게 하여 촉매의 효율이 낮아진다.  Ammonium functional groups can be expanded to two or more, preferably 2 to 5. Too many ammonium functional groups thicken the skeleton thickness of the crystal, resulting in low efficiency of the catalyst.
상기 유기 계면활성제의 구조나, 암모늄 또는 아민 관능기의 개수를 조절함 으로써 한 개의 단일 판상구조가 포함하는 단일 단위 결정 격자의 개수를 조절할 수 있다.  By controlling the structure of the organic surfactant or the number of ammonium or amine functional groups, the number of single unit crystal lattice included in a single plate-like structure can be controlled.
상기의 제올라이트를 제조하는 데 있어, 금속원소에 대한 규소의 몰비는 500 이상이 바람직하며, 상기 실리카 원료는 발연 실리카 (fumed silica), 콜로이드 실리카 (colloid silica), 유기 규소 화합물 등 불순물이 없는 통상적인 실리카 재료는 사용 가능하다. 금속원소는 Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf, Bi가 포함된다. 상기 제올라이트의 결정화 과정은 수열합성 (hydrothennal synthesis), 건식ᅳ 겔 합성 (dry-gel), 마이크로파 합성 (microwave synthesis) 등을 통해 100 ~ 200 °C에서 1 〜 30 일간 수행하는 것이 바람직하며, 더욱 바람직하게는 130 ~ 150 °C 에서 3 ~ 15 일간 수행하는 것이 유리하다. 반응온도가 낮거나 반웅시간이 짧으면 제올라이트의 결정성이 떨어져 촉매성능이 좋지 않으며, 반응온도가 지나치게 높으 면 결정화 및 계면활성제의 분해 반웅이 동시에 일어나기 때문에 나노판상형 제올 라이트와 기존의 큰 제올라이트 결정들이 같이 섞여 있어 촉매로서의 성능이 저하 된다. In preparing the zeolite, the mole ratio of silicon to metal is preferably 500 or more, and the silica raw material is conventionally free of impurities such as fumed silica, colloidal silica, and organosilicon compounds. Silica materials can be used. Metal elements include Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf, Bi. Crystallization of the zeolite is preferably carried out for 1 to 30 days at 100 to 200 ° C through hydrothennal synthesis, dry-gel, microwave synthesis, and more preferably. Preferably it is carried out at 130 to 150 ° C for 3 to 15 days. If the reaction temperature is low or the reaction time is short, the crystallinity of the zeolite is poor and the catalytic performance is poor. If the reaction temperature is too high, the crystallization and the decomposition reaction of the surfactant occur simultaneously, so that the nano-plate zeolite and the existing large zeolite crystals together It is mixed, and the performance as a catalyst is reduced.
합성된 제올라이트는 아스피레이터를 이용하여 필터 회수, 세척, 건조 과정을 거친 후, 300 ~ 700 °C에서 공기 또는 질소 하에서 유기 계면활성제를 소성하는 것 이 바람직하며, 더욱 바람직하게는 400 - 500 °C에서 공기 또는 질소 하에서 소성 하는 것이 유리하다. 낮은 소성 온도는 유기 계면활성제를 완전히 제거할 수 없고, 너무 높은 소성 은도는 실란올기의 디히드록실레이션 (dehydroxylation) 반웅을 일으 키기 때문에 촉매의 활성 및 선택도를 감소시킨다. The synthesized zeolite is preferably subjected to filter recovery, washing and drying using an aspirator, and then firing the organic surfactant under air or nitrogen at 300 to 700 ° C. More preferably, 400 to 500 ° C. It is advantageous to fire at C under air or nitrogen. Low firing temperatures do not completely remove organic surfactants, and too high calcined silver leads to dehydroxylation reactions of silanol groups, thereby reducing the activity and selectivity of the catalyst.
상기 제올라이트의 마이크로 다공 구조는 유기 계면활성제가 유도할 수 있는 모든 제올라이트 구조가 가능하며, 바람직하게는 펜타실 제올라이트이고, 그 증에서 도 바람직하게는 MFK국제 제올라이트 협회에서 지정한 코드명)구조 제올라이트이 다. 상기의 제을라이트는 필러링 (pillaring), 박피처리 (delamination), 양이은 교환 공 정, 염기처리, 실란화 (silylation), 산처리 둥의 통상적인 후처리 과정을 이용할 수 있 다. 하지만, 아무런 후처리 과정 없이도, 상기의 나노 판상형 제올라이트는 다른 실 리카 촉매들에 비해 뛰어난 촉매 활성, 선택도, 수명을 보여 준다. The microporous structure of the zeolite can be any zeolite structure that can be induced by an organic surfactant, preferably pentasil zeolite, and in its case is also preferably a codename designated by the MFK International Zeolite Association. The above zeolite can be peeled, peeled, and replaced with silver. Conventional post-treatment of tablets, bases, silanizations and acid treatments can be used. However, without any aftertreatment, the nano-plate zeolites show superior catalytic activity, selectivity, and lifetime compared to other silica catalysts.
본 발명자들은 얻어진 제올라이트를 파우더 X-선 회절법, 질소 흡착법, SEM (주사전자현미경), TEM (투과전자현미경), ¾1 MAS NMR, FT— IR, ICP-AES 등을 이용하여 다각적으로 특성 분석한 결과, 매우 넓은 비표면적 (> 600 m2 g"1),큰 기공 부피 (> 1.0 cm3 g"1), 다량의 실란올기 ^Si MAS NMR로 부터 Q3/Q4 - 0.25) 를 가진 고 실리카 나노판상형 제올라이트가 합성됨을 확인하였다. 특히, FT-IR분 석 결과, ε-카프로락탐의 선택도가 매우 낮다고 알려져 있는 말단 표면 실란올기가 매우 많음에도 불구하고 상기 제올라이트 촉매는 매우 높은 촉매 활성, 선택도, 수명 을 보여주는데, 이는 표면 실란을기의 배향 및 산성도가 다른 제올라이트의 그것과 는 다르다는 것을 의미한다. 상기 제올라이트의 합성 조건 (바람직하게는, 계면활성제 의 양, 수열합성 시간의 조절, 합성겔의 ρΗ 등) 및 다양한 후처리 과정 (대표적으로, 질산암모늄과 암모니아수 처리)을 통해 촉매 활성이 높은 수소 결합된 실란올기를 추가로 형성하여, 시클로핵사논 옥심의 전환율을 보다 향상시킬 수 있다. The present inventors have variously characterized zeolite obtained by powder X-ray diffraction method, nitrogen adsorption method, SEM (scanning electron microscope), TEM (transmission electron microscope), ¾1 MAS NMR, FT-IR, ICP-AES, etc. The result is a high silica nanostructure with a very large specific surface area (> 600 m 2 g "1 ), large pore volume (> 1.0 cm 3 g " 1 ), and a large amount of silanol groups ^ Si MAS NMR from Q3 / Q4-0.25) It was confirmed that the plate-like zeolite was synthesized. In particular, the zeolite catalyst shows very high catalytic activity, selectivity, and lifetime despite the fact that the FT-IR analysis shows that the terminal surface silanol groups are known to have very low selectivity of ε-caprolactam. It means that the orientation and acidity of the group is different from that of other zeolites. Highly catalytically active hydrogen bonding through the synthesis conditions of the zeolite (preferably, the amount of surfactant, control of hydrothermal synthesis time, ρΗ of the synthetic gel, etc.) and various post-treatment processes (typically ammonium nitrate and ammonia water treatment) The formed silanol group can be further formed to further improve the conversion rate of cyclonucleanone oxime.
상기 언급된 제올라이트 촉매를 사용한 시클로핵사논 옥심의 베크만 재배열 전환 반웅은 고정층 또는 유동층에서 기체상 조건 하에 적절하게 수행될 수 있고, 반웅 온도는 일반적으로 250 〜 500 °C에서 수행하는 것이 바람직하며, 더욱 바람직 하게는 300 ~ 380 °C로 하는 것이 좋다. 반웅온도가 낮으면 시클로핵사논 옥심의 전환율이 낮고 촉매의 활성 저하 역시 빠르다. 너무 높으면 부반웅들에 의한 ε-카프 로락탐의 선택도가 낮아진다. 반웅 압력은 전형적으로 0.005 내지 0.5 MPa, 바람직 하게는 0.005 내지 0.2 MPa이다. 시클로핵사논 옥심의 공간속도 (WHSV)는 0.1 ~ 30 h"1, 바람직하게는 0.2 〜 10 h1로 하는 것이 바람직하다. 시클로핵사논 옥심은 단독적으로 또는 질소, 헬름, 아르곤 및 이산화탄소와 같은 블활성 기체와 함께 공급 할 수 있고, 더욱 바람직하게는, 시클로핵사논 옥심을 C1-C8의 알콜류, 벤젠, 톨루 엔, 아세토니트릴 등에 녹인 용액과 상기의 불활성 기체를 함께 혼합하여 공급한다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시 예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. 실시예 1: 단일 단위 결정 격자 두께를 갖는 고 실리카 나노판상형 제올 라이트를 이용한 시클로핵사논 옥심의 베크만 전환 반웅 The Beckman rearrangement conversion reaction of the cyclonucleanone oxime using the above-mentioned zeolite catalyst can be suitably performed under gas phase conditions in a fixed bed or a fluidized bed, and the reaction temperature is generally preferably performed at 250 to 500 ° C., More preferably, it is good to set it to 300 ~ 380 ° C. When the reaction temperature is low, the conversion rate of cyclonucleanone oxime is low and the activity of the catalyst is also fast. Too high a decrease in selectivity of ε-caprolactam by the side reactions. The reaction pressure is typically between 0.005 and 0.5 MPa, preferably between 0.005 and 0.2 MPa. Space velocity (WHSV) of cyclohexanone hex oxime is 0.1 ~ 30 h "1, preferably preferably in the 0.2 ~ 10 h 1. Cyclo hex oxime is a block such as a sole or nitrogen, Helms, argon and carbon dioxide, It can be supplied together with an active gas, and more preferably, a solution in which cyclonucleanone oxime is dissolved in C1-C8 alcohols, benzene, toluene, acetonitrile and the like and mixed with the above inert gas is supplied. Preferred examples are provided to aid the understanding of the invention, but the following examples are merely illustrative of the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It goes without saying that modifications fall within the scope of the appended claims Example 1: High silica nanoplatelet agent with single unit crystal lattice thickness Beckman conversion reaction of cyclonuxanon oxime with light
1) 단일 단위 결정 격자 두께를 갖는 고 실리카 나노판상형 제올라이트의 제조  1) Preparation of high silica nanoplatelet zeolite with single unit crystal lattice thickness
화학식 1의 C1이 탄소 원자 16개, C2가 탄소원자 6개, C3가 탄소원자 6개이 고 암모늄 관능기 두 개와 두 개의 하이드록실 음이온 (OH-)으로 이루어진 유기 계 면활성제 (이하, 16-6-6이라 표현)를 테트라에틸오르소실리케이트 (tetraethyl orthorsilicate, TEOS), 증류수와 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성 은 다음과 같았다.  C1 has 16 carbon atoms, C2 has 6 carbon atoms, C3 has 6 carbon atoms, and an organic surfactant consisting of two ammonium functional groups and two hydroxyl anions (OH-) (hereinafter, 16-6- 6) was mixed with tetraethyl orthorsilicate (TEOS) and distilled water to prepare a mixed gel. The molar composition of the synthetic gel was as follows.
100 SiO2: 10 16-6-6 유기 계면활성제: 6000 H2O 100 SiO 2 : 10 16-6-6 Organic surfactant: 6000 H 2 O
상기 혼합 겔을 실온에서 2시간 동안 교반 후, 최종 혼합물을 스테인리스 오 토클레이브 (autoclave)에 넣고 140 °C에서 6일 동안 교반 (60 rpm)하면서 반웅하였다. 이 때 합성 겔의 pH는 12이다. 반웅 후, 아스피레이터를 이용하여 생성물을 여과하 고 증류수로 여러 번 세척하였다. 수득한 생성물올 120 °C 오본에서 층분히 건조시 킨 후, 공기를 홀려주면서 500 °C 퍼니스 (furnace)에서 2시간 동안소성하였다.  After the mixed gel was stirred at room temperature for 2 hours, the final mixture was placed in a stainless autoclave and reacted with stirring (60 rpm) at 140 ° C. for 6 days. At this time, the pH of the synthetic gel is 12. After reaction, the product was filtered using an aspirator and washed several times with distilled water. The resulting product was dried thoroughly in Aubon 120 ° C, and then fired in a 500 ° C furnace (2 hours) while blowing air.
도 1은 실시예 1에 따라 제조된 고 실리카 나노판상형 제을라이트의 주사전 자현미경사진이고, 도 2는 실시예 1에 따라 제조된 고 실리카 나노판상형 제올라이 트의 투과전자현미경사진이고, 도 3은 실시예 1에 따라 제조된 고 실리카 나노판상 형 제올라이트의 X—선 회절 패턴을 나타낸 도면이며, 도 4는 실시예 1에 따라 제조 된 고 실리카 나노판상형 제올라이트의 ¾Si9SAS NSR 스펙트럼을 나타낸 도면이 다. 도 1의 주사전자현미경 사진을 통해 제올라이트가 나노 단위 (20 ~ 50 ran) 두께의 판상 구조 형태로 결정 성장되었음을 알 수 있다. 도 2의 투과전자현미경 사 진은 결정의 b-축으로는 매우 얇고 결정의 a-c면으로는 넓은 판상구조의 제올라이 트 결정임을 보여주며, 특히 b-축으로의 결정 두께는 약 2 nm이며 이는 MFI제올라 이트 구조의 단일 단위격자 크기에 해당한다. 또한, 분말 X-선 회절 분석을 통해 합 성한 물질이 MFI형 제올라이트의 구조를 가지고 있음을 확인하였다. 다만, b-축으 로 매우 얇은 골격 두께로 인해 WI 회절에 해당하는 회절 패턴만이 선명하게 나타 났다 (도 3). 이 물질의 Si MAS NMR 스펙트럼 (도 4)은 Si의 Q3(O≡Si_OH), Q4(OSi)배위에 해당하는 두 개의 피크를 보여주었고, 실란을기의 양을 나타내는 Q3 의 비율은 Q4 대비 0.4 : 1이었다. 소성 후, 합성한 물질의 Si/Al의 비율은 3,800, 비 표면적은 680 m g 총 기공 부피는 1.3 cm3 g"1 였다. 2) 시클로핵사논 옥심의 베크만 전환 반웅 1 is a scanning electron micrograph of the high silica nanoplatelet zeolite prepared according to Example 1, Figure 2 is a transmission electron micrograph of the high silica nanoplatelet zeolite prepared according to Example 1, Figure 3 Is a diagram showing the X-ray diffraction pattern of the high silica nanoplatelet zeolite prepared according to Example 1, Figure 4 is a diagram showing the ¾ Si9SAS NSR spectrum of the high silica nanoplatelet zeolite prepared according to Example 1 . The scanning electron micrograph of FIG. 1 shows that the zeolite was crystal-grown in the form of a plate-like structure having a thickness of 20 to 50 ran. The transmission electron micrograph of FIG. 2 shows that the zeolite crystals are very thin on the b-axis of crystals and wide on the ac plane of the crystals. In particular, the thickness of the crystals on the b-axis is about 2 nm. Corresponds to the single unit cell size of the MFI zeolite structure. In addition, powder X-ray diffraction analysis confirmed that the synthesized material had a structure of MFI zeolite. However, only the diffraction pattern corresponding to WI diffraction was clearly seen due to the very thin skeleton thickness on the b-axis (FIG. 3). The Si MAS NMR spectrum (Fig. 4) of this material showed two peaks corresponding to the Q 3 (O≡Si_OH) and Q 4 (OSi) configuration of Si, and the ratio of Q 3 representing the amount of silane groups was It was 0.4: 1 compared with Q <4> . After firing, the Si / Al ratio of the synthesized material was 3,800, and the specific surface area was 680 mg. The total pore volume was 1.3 cm 3 g "1 . 2) Beckman conversion reaction of cyclonuclinon oxime
상기의 소성된 제올라이트 촉매를 14-20 메쉬 (mesh) 크기로 성형하고, 촉매 0.1 g과 2 g 석영 샌드 (quartz sand, 14—20 메쉬)를 잘 혼합한 후에 석영 반웅기 (길 이 40 cm, 내경 1.3 cm)에 층진 시켰다. 공기 흐름 (50 mL/min) 하에서 촉매를 500 °C에서 2시간 동안 전처리를 하고, 반웅기 온도를 320 °C가 되도록 조절하였다. 같 은 온도에서 공기 대신에 고순도 질소 (99.999 %)를 분당 60 mL로 반웅기에 홀려주 었고, 충분히 안정화 시킨 후에, 에탄올에 녹인 시클로핵사논 옥심 용액 (10 wt%)을 고성능액체 크로마토그래피 (HPLC) 펌프를 이용하여 분당 0.06mL의 속도로 반웅기 에 주입하였다. 이때의 시클로핵사논 옥심의 공간속도 (WHSV)는 3 h_1이다. 반웅 생 성물합한뤠 시간마다 웅축기 (0 °C)를 통해 액화시킨 후에 포집하였고, FID가 부착된 기체 크로마토그래피 (컬럼: HP— innowax, 길이 30 m) 또는 질량 분석기가 부착된 기체 크로마토그래피를 이용하여 분석하였다. 반웅 결과를 표 1에 나타내었다. The calcined zeolite catalyst was molded into a size of 14-20 mesh, and 0.1 g of catalyst and 2 g of quartz sand (14-20 mesh) were mixed well, followed by quartz reaction (40 cm in length, Inside diameter was 1.3 cm). The catalyst was pretreated at 500 ° C. for 2 hours under air flow (50 mL / min) and the reaction temperature was adjusted to 320 ° C. At the same temperature, high purity nitrogen (99.999%) was added to the reaction vessel at 60 mL / min, and after sufficient stabilization, cyclohexanone oxime solution (10 wt%) dissolved in ethanol was subjected to high performance liquid chromatography (HPLC). A pump was used to inject the reaction at a rate of 0.06 mL per minute. At this time, the space velocity (WHSV) of cyclonucleanone oxime is 3 h _1 . The reactions were collected after liquefaction through a condenser (0 ° C) every hour, and either a FID-attached gas chromatography (column: HP—innowax, 30 m length) or a gas chromatography with a mass spectrometer was attached. The analysis was carried out. The reaction results are shown in Table 1.
【표 1】  Table 1
Figure imgf000012_0001
Figure imgf000012_0001
비교예 1: 기존 고 실리카 제올라이트와 비교  Comparative Example 1: Comparison with Existing High Silica Zeolite
기존 고 실리카 제을라이트 촉매는 미국 특허 제 5,212,302호의 문헌예 1을 참 조하여 제조하였다. 10 % 테트라프로필암모늄 하이드록사이드 (tetrapropylammoni- umhydroxide, TPAOH), TEOS, 에탄올 (Ε1ΌΗ)을 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같았다.  Existing high silica zeolite catalysts were prepared with reference to Document 1 of US Pat. No. 5,212,302. 10% tetrapropylammonium hydroxide (tetrapropylammoni-umhydroxide, TPAOH), TEOS, ethanol (Ε1ΌΗ) was mixed to prepare a mixed gel. The molar composition of the synthetic gel was as follows.
100 SiO2: 23 TPAOH: 970 EtOH: 2340 H20 100 SiO 2 : 23 TPAOH: 970 EtOH: 2340 H 2 0
상기 혼합 겔을 실온에서 2시간 동안 교반 후, 최종 혼합물을 스테인리스 오 토클레이브 (autoclave)에 넣은 후, 105 °C에서 4일 동안 교반 (400 rpm)하면서 반웅하 였다. 반웅 후, 고체 생성물을 원심 분리기를 이용하여 분리, 세척 과정을 반복 수행 하였고, 수득한 생성물을 120 °C 오본에서 층분히 건조시킨 후, 공기를 홀려주면서 500 °C 퍼니스에서 2시간 동안 소성하였다. The mixed gel was stirred at room temperature for 2 hours, then the final mixture was placed in a stainless autoclave and reacted with stirring (400 rpm) at 105 ° C. for 4 days. After reaction, the solid product is separated and centrifuged and washed repeatedly. The resulting product was dried in 120 ° C. Aubon and then calcined in a 500 ° C. furnace for 2 hours while blowing air.
합성한 물질의 비표면적은 340 m2 g_1이고, 총 기공 부피는 0.22 cm3 1이다. 분말 X-선 회절 분석을 통해, 합성한 물질이 MFI형 제을라이트였음을 확인하였다. 합성한 물질의 Si/Al의 비율은 2,050이다. 전자현미경 사진은 합성한 물질의 결정 크 기가 약 200 nm임을 보여주었다. The specific surface area of the synthesized material is 340 m 2 g _1 and the total pore volume is 0.22 cm 3 1 . Powder X-ray diffraction analysis confirmed that the synthesized material was MFI zeolite. The Si / Al ratio of the synthesized material is 2,050. Electron micrographs showed that the crystal size of the synthesized material was about 200 nm.
상기의 소성된 기존 제올라이트 촉매를 실시예 1의 시클로핵사논 옥심의 베 크만 전환 반웅 과정과 동일한 방법으로 수행하였다. 반웅 결과를 표 2에 나타내었 다.  The calcined conventional zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 2.
【표 2】  Table 2
Figure imgf000013_0001
Figure imgf000013_0001
비교예 2: 나노다공성 비정질 실리카와 비교  Comparative Example 2: Comparison with Nanoporous Amorphous Silica
기존 나노다공성 비정질 실리카 촉매는 문헌 (Journal of American Chemical Society, 127권, 7601—7610, 2005년)을 참조하여 제조하였다. 삼블럭 공증합 체 고분자 P123 (Εθ2οΡθ7οΕθ2ο, 분자량 =5,800), η_부탄올 (BuOH), TEOS, 염산 (HC1) 을 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같았다.  Existing nanoporous amorphous silica catalysts were prepared with reference to the Journal of American Chemical Society, Vol. 127, 7601-7610, 2005. Three-block co-polymer polymer P123 (Εθ2οΡθ7οΕθ2ο, molecular weight = 5,800), η_butanol (BuOH), TEOS, and hydrochloric acid (HC1) were mixed to prepare a mixed gel. The molar composition of the synthetic gel was as follows.
0.017 P123: 1.0 TEOS: 1.31 BuOH: 1.83 HC1: 195 H2O 0.017 P123: 1.0 TEOS: 1.31 BuOH: 1.83 HC1: 195 H 2 O
상기 혼합 겔을 35 °C에서 1일 동안 교반 후, 최종 혼합물을 스테인리스 오 토클레이브 (autoclave)에 넣고, 130 °C에서 1일 동안 교반 없이 반웅하였다. 반웅 후, 세척과정 없이 고체 생성물을 분리, 건조하였다. 건조된 생성물을 상온에서 에탄을一 염산 용액을 이용하여 세척하였고, 공기를 홀려주면서 500 °C 퍼니스에서 2시간 동 안 소성하여 고분자를 제거하였다. After the mixed gel was stirred at 35 ° C. for 1 day, the final mixture was placed in a stainless autoclave and reacted at 130 ° C. without stirring for 1 day. After reaction, the solid product was separated and dried without washing. The dried product was washed at room temperature with ethane using a single hydrochloric acid solution and calcined for 2 hours in a furnace at 500 ° C while blowing air to remove the polymer.
합성한 물질의 비표면적은 750 m2 g-1이고, 총 기공 부피는 0.92 cm3 g"1, 그 리고 매우 균일한 메조기공 크기 (7 nm)를 포함하였다. 저각 분말 X-선 회절 분석을 통해, 합성한 물질이 입방형 Idid 메조다공구조를 가졌음을 확인하였다. 고각 분말 X-선 회절 결과는 특정형태의 미세다공구조가 없는 비정질 실리카 형태임을 보여주 었다. The specific surface area of the synthesized material was 750 m 2 g -1 , the total pore volume included 0.92 cm 3 g "1 , and a very uniform mesopore size (7 nm). Low angle powder X-ray diffraction analysis It was confirmed that the synthesized material had a cubic Idid mesoporous structure, and the high-angle powder X-ray diffraction results showed that the amorphous silica had no specific microporous structure. It was.
상기의 소성된 기존 나노다공성 촉매를 실시예 1의 시클로핵사논 옥심의 베 크만 전환 반웅 과정과 동일한 방법으로 수행하였다. 반웅 결과를 표 3에 나타내었 다.  The calcined conventional nanoporous catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 3.
【표 3】  Table 3
Figure imgf000014_0001
Figure imgf000014_0001
비교예 3: 나노다공성 고 실리카 제올라이트와 비교  Comparative Example 3: Comparison with Nanoporous High Silica Zeolite
기존 나노다공성 고 실리카 제올라이트 촉매는 참고 문헌 (Journal of American Chemical Society, 122권, 7116—7117, 2000년)의 합성 방법을 참조하여 제조하였다. 본 발명의 비교예에서는 문헌의 카본 블랙 대신에 구조 규칙적 나노다 공성 탄소 (참고문헌 Journal of Materials Chemistry, 16권, 1445, 2006년)를 고체주 형으로 사용하였다. 20 % TPAOH 용액, TEOS, 에탄올 (EtOH), 나노다공성 탄소를 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같았다.  Existing nanoporous high silica zeolite catalysts were prepared with reference to the synthesis method of the reference (Journal of American Chemical Society, Vol. 122, 7116-7117, 2000). In the comparative example of the present invention, instead of the carbon black of the literature, the structure-regulated nanoporous carbon (Journal of Materials Chemistry, 16, 1445, 2006) was used as the solid mold. A mixed gel was prepared by mixing 20% TPAOH solution, TEOS, ethanol (EtOH) and nanoporous carbon. The molar composition of the synthetic gel was as follows.
100 SiO2: 25 TPAOH: 940 H2O: 900 탄소 100 SiO 2 : 25 TPAOH: 940 H 2 O: 900 carbon
최종 혼합물을 스테인리스 오토클레이브 (autoclave)에 넣은 후, 170 °C에서 6 일 동안 교반 없이 반웅하였다. 반웅 후, 아스피레이터를 이용하여 생성물을 여과하 고 증류수로 여러 번 세척하였다. 수득한 생성물을 120 °C 오본에서 층분히 건조시 킨 후, 공기를 홀려주면서 600 °C 퍼니스에서 12시간 동안 소성하였다. The final mixture was placed in a stainless autoclave and reacted at 170 ° C. without stirring for 6 days. After reaction, the product was filtered using an aspirator and washed several times with distilled water. The obtained product was dried in 120 ° C Aubon, and then fired in a 600 ° C furnace for 12 hours while blowing air.
합성한 물질의 비표면적은 430 m2 g— 1이고, 총 기공 부피는 0.52 cm3 g"1, 그 리고 매우 균일한 메조기공 크기 (8 nm)를 포함하였다. 저각 분말 X-선 회절 분석을 통해, 합성한 물질이 규칙적인 입방형 메조다공구조를 가졌음을 확인하였다. 고각 분말 X-선 회절 결과는 MFI형 제올라이트 구조를 가졌음을 보여주었다. The specific surface area of the synthesized material was 430 m 2 g— 1 , the total pore volume included 0.52 cm 3 g “1 , and a very uniform mesopore size (8 nm). Low angle powder X-ray diffraction analysis It was confirmed that the synthesized material had a regular cubic mesoporous structure, and the elevation of the powder X-ray diffraction showed that it had a MFI type zeolite structure.
상기의 소성된 기존 나노다공성 촉매를 실시예 1의 시클로핵사논 옥심의 베 크만 전환 반웅 과정과 동일한 방법으로 수행하였다. 반웅 결과를 표 4에 나타내었 다.  The calcined conventional nanoporous catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 4.
[표 4】
Figure imgf000015_0001
TABLE 4
Figure imgf000015_0001
비교예 4: 질산 암모늄으로 후처리한 기존 고 실리카 제올라이트와 비교 비교예 1의 기존 고 실리카 제올라이트 촉매 (1 g)를 1 M NH4NO3 용액 (20 mL)으로 60 °C에서 6시간 동안 3번 반복 처리한 후에, 실시예 1의 시클로핵사논 옥 심의 베크만 전환 반웅 과정과 동일한 방법으로 수행하였다. 반웅 결과를 표 5에 나 타내었다. Comparative Example 4 Comparison with Existing High Silica Zeolite Post-treated with Ammonium Nitrate (1 g) The comparative high silica zeolite catalyst of Comparative Example 1 (1 g) was repeated three times at 60 ° C. for 6 hours at 1 M NH 4 NO 3 solution (20 mL). After the treatment, it was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 5.
[표 5]  TABLE 5
Figure imgf000015_0002
Figure imgf000015_0002
비교예 5: 질산 암모늄과 암모니아수로 후처리한 기존 고 실리카 제올라 이트와 비교  Comparative Example 5: Comparison with Existing High Silica Zeolites Post-treated with Ammonium Nitrate and Ammonia Water
미국 특허 제 5,212,302호를 참조하여 비교예 1의 기존 고 실리카 제올라이트 촉매를 질산암모늄과 암모니아수 혼합용액으로 후처리하였다. 1 g의 제올라이트를 1 g의 암모니아수 (25wt%)와 3 g의 질산암모늄 용액 (7.5wt%)과 혼합한 후, 밀폐된 플 라스틱 병에 담아 90 °C에서 1시간 동안 교반하였다. 얻어진 생성물을 여과, 세척, 건조하였고, 실시예 1의 시클로핵사논 옥심의 베크만 전환 반웅 과정과 동일한 방법 으로 수행하였다. 단, 500 °C 전처리 과정을 수행하지 않았다. 반웅 결과를 표 6에 나타내었다.  Referring to US Pat. No. 5,212,302, the existing high silica zeolite catalyst of Comparative Example 1 was post-treated with a mixed solution of ammonium nitrate and ammonia water. 1 g of zeolite was mixed with 1 g of ammonia water (25 wt%) and 3 g of ammonium nitrate solution (7.5 wt%), and then placed in a sealed plastic bottle and stirred at 90 ° C for 1 hour. The obtained product was filtered, washed and dried, and was carried out in the same manner as the Beckman conversion reaction process of cyclonuclinon oxime of Example 1. However, 500 ° C pretreatment was not performed. The reaction results are shown in Table 6.
【표 6】 Table 6
Figure imgf000016_0001
Figure imgf000016_0001
실시예 2: 결정화 시간에 따른 나노판상형 제올라이트의 시클로핵사논 옥 심의 베크만 전환 반웅  Example 2: Beckman Conversion of Nanonuclear Zeolites to Cyclonucleosanone Oximes
실시예 1에서 수행한 수열 합성 시간을 6일 (시료 Α), 9일 (시료 Β), 15일 (시료 _ C)으로 증가해가며 베크만 전환 반웅 특성올 확인하였다. 소상온도 600 °C를 제외한 나머지 과정은 실시예 1과 동일하였다. 상기의 소성된 제을라이트 촉매를 실 시예 1의 시클로핵사논 옥심의 베크만 전환 반웅 과정과 동일한 방법으로 수행하였 다. 반웅 결과를 표 7에 나타내었다. The hydrothermal synthesis time carried out in Example 1 was increased to 6 days (Sample A), 9 days (Sample Β), 15 days (Sample _ C), and the Beckman conversion reaction characteristics were confirmed. Except for the small bed temperature 600 ° C. was the same as in Example 1. The calcined zeolite catalyst was carried out in the same manner as in the Beckman conversion reaction process of cyclonuclinon oxime of Example 1. The reaction results are shown in Table 7.
【표 7]  [Table 7]
Figure imgf000016_0002
Figure imgf000016_0002
실시예 3: 합성 겔 ρΗ에 따른 나노판상형 제올라이트의 시클로핵사논 옥 심의 베크만 전환 반웅  Example 3: Beckman conversion reaction of cyclonucleoside oxime of nanoplatelet zeolite according to synthetic gel ρΗ
황산을 첨가하여 실시예 1의 합성 겔의 ρΗ를 10으로 맞춘 후, 나노판상형 제 올라이트를 제조하였다 (시료 D). 최종 합성 겔의 몰 조성은 다음과 같았다. 100 SiO2: 1016-6-6유기 계면활성제: 6000 H20: 3 H2S04 After addition of sulfuric acid to adjust the ρΗ of the synthetic gel of Example 1 to 10, a nano-plate zeolite was prepared (Sample D). The molar composition of the final synthetic gel was as follows. 100 SiO 2 : 1016-6-6 Organic Surfactant: 6000 H 2 0: 3 H 2 S0 4
소성 온도를 600 °C에서 수행한 것을 제외하고, 이 밖의 모든 제조 과정은 실시예 1과 동일하였다. 상기의 소성된 제올라이트 촉매의 베크만 전환 반웅 과정은 반웅 온도 370 °C, 공간속도 WHSV가 8 h_1인 것을 제외하고는 실시예 1의 시클로 핵사논 옥심의 베크만 전환 반웅 과정과 동일한 방법으로 수행하였다. 반웅 결과를 시료 A (실시예 2)와 비교하여 표 8에 나타내었다. All other manufacturing procedures were the same as in Example 1, except that the firing temperature was performed at 600 ° C. The Beckman conversion reaction process of the calcined zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of cyclonuclinon oxime of Example 1 except that the reaction temperature was 370 ° C. and the space velocity WHSV was 8 h _1 . The reaction results are shown in Table 8 in comparison with Sample A (Example 2).
【표 8]  [Table 8]
Figure imgf000017_0001
Figure imgf000017_0001
실시예 4: 계면활성제 양에 따른 나노판상형 제올라이트의 시클로핵사논 옥심의 베크만 전환 반웅  Example 4 Beckman Conversion of Cyclonusanone Oxime of Nanoplate Zeolite with Amount of Surfactant
실시예 1의 계면활성제의 양을 조절해가며, 나노판상형 제올라이트를 제조하 였다. 각각의 합성 겔의 몰 조성은 다음과 같았다.  While adjusting the amount of the surfactant of Example 1, a nano-plate zeolite was prepared. The molar composition of each synthetic gel was as follows.
(시료 Ε) 100 SiO2: 716-6-6유기 계면활성제: 6000 H2O (Sample Ε) 100 SiO 2 : 716-6-6 Organic surfactant: 6000 H 2 O
(시료 F) 100 SiO2: 1516-6-6유기 계면활성제: 6000 H2O (Sample F) 100 SiO 2 : 1516-6-6 Organic Surfactant: 6000 H 2 O
이 밖의 모든 제조 과정은 실시예 1과 동일하였다. 상기의 소성된 제올라이 트 촉매를 실시예 1의 시클로핵사논 옥심의 베크만 전환 반웅 과정과 동일한 방법 으로 수행하였다. 반웅 결과를 표 9에 나타내었다.  All other manufacturing procedures were the same as in Example 1. The calcined zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of the cyclonucleanone oxime of Example 1. The reaction results are shown in Table 9.
【표 9] [Table 9]
Figure imgf000018_0001
Figure imgf000018_0001
실시예 5: 실리카 필러링 (pillaring)을 한 나노판상형 제올라이트의 시클 로핵사논 옥심의 베크만 전환 반웅  Example 5 Beckman's Conversion of Cyclonucleoxan Oxime of Nanoplate Zeolite with Silica Pillaring
16-6-6 유기계면활성제 (실시예 1)가 아닌 22—6-6 유기 계면활성제 (화학식 [1]의 C1이 탄소 원자 22개, C2가 탄소원자 6개, C3가 탄소원자 6개)를 사용하여 나 노판상형 제올라이트를 실시예 1과 동일하게 제조한 후에, 실리카 필러링을 수행하 였다. 소성 전 나노판상형 제올라이트 1 g에 TEOS 5 g을 가하고, 밀폐된 플라스틱 병에 담아 상온에서 12 시간동안 교반하였다. 반웅 종료 후, 얻어진 물질을 별도의 세척 없이 여과하고, 상온에서 건조시킨 후, 증류수 20 g을 가하여 100 °C에서 12 시간 동안 가열 후, 여과를 통해 수득하고 증류수로 세척하였다. 110 °C에서 건조한 후 600 °C에서 4시간 동안 소성 과정을 통해 유기 계면활성제를 제거하였다. 이렇게 얻어진 물질에 제올라이트의 판과 판 사이에 비정질 실리카 기둥이 형성되었음을 전자현미경 분석을 통해 확인하였다. 22-6-6 organic surfactants other than 16-6-6 organic surfactants (Example 1) (C1 has 22 carbon atoms, C2 has 6 carbon atoms, C3 has 6 carbon atoms) Using to prepare a nano-plate type zeolite in the same manner as in Example 1, was carried out silica filler. 5 g of TEOS was added to 1 g of the nanoplatelet zeolite before firing, and the mixture was stirred in a sealed plastic bottle at room temperature for 12 hours. After the completion of reaction, the obtained material was filtered without washing, dried at room temperature, 20 g of distilled water was added thereto, heated at 100 ° C. for 12 hours, then obtained through filtration and washed with distilled water. After drying at 110 ° C to remove the organic surfactant through a calcination process at 600 ° C for 4 hours. It was confirmed by electron microscopic analysis that an amorphous silica column was formed between the plate of the zeolite and the plate thus obtained.
상기의 소성된 제올라이트 촉매를 실시예 3의 시클로핵사논 옥심의 베크만 전환 반웅 과정과 동일한 방법으로 수행하였고, 필러링 전 (시료 G)과 후 (시료 H)의 반웅 결과를 표 10에 나타내었다.  The calcined zeolite catalyst was carried out in the same manner as the Beckman conversion reaction process of cyclonucleanone oxime of Example 3, and the reaction results before (sample G) and after (sample H) are shown in Table 10.
[표 10】 TABLE 10
Figure imgf000019_0001
Figure imgf000019_0001
실시예 6: 질산암모늄과 암모니아수로 후처리한 나노판상형 제올라이트의 시클로핵사논 옥심의 베크만 전환 반웅  Example 6: Beckman conversion reaction of cyclonucleanone oxime of nanoplate-shaped zeolite after-treatment with ammonium nitrate and ammonia water
실시예 2의 촉매 (시료 Α)를 질산암모늄과 암모니아수 혼합용액으로 후처리하 였고, 그 과정은 비교예 5와 동일하게 수행하였다. 이렇게 얻어진 촉매를 비교예 5 의 씨클로핵사논 옥심의 베크만 전환 반웅 과정과 동일한 방법으로 수행하였다. 반 웅 결과를 표 11에 나타내었다.  The catalyst of Example 2 (Sample A) was worked up with a mixed solution of ammonium nitrate and ammonia water, and the process was carried out in the same manner as in Comparative Example 5. The catalyst thus obtained was carried out in the same manner as in the Beckman conversion reaction process of cyclohexanone oxime of Comparative Example 5. The reaction results are shown in Table 11.
【표 11]  Table 11
Figure imgf000019_0002
Figure imgf000019_0002
실시예 7: (CH3)3SiCl로 후처리한 나노판상형 제올라이트를 이용한 시클 로핵사논 옥심의 베크만 전환 반웅 Example 7: Beckman Conversion of Cyclonucleanone Oximes Using Nanoplate Zeolites Post-treated with (CH 3 ) 3 SiCl
실시예 2의 촉매 (시료 A)를 트리메틸 실란 클로라이드 ((C¾)3SiCl, TMSC1)를 이용하여 후처리 하였다. 1 g의 제올라이트 촉매를 1.9 g의 TMSC1과 100 mL의 톨루엔 용액에 넣은 후, 110 °C에서 3시간 동안 교반하면서 리플럭스 (reflux)하였다. 반웅 종료 후, 필터로 여과하고 톨루엔과 아세톤으로 여러 번 세척하 였다. 80 °C에서 2시간 동안 건조 후, 이렇게 얻어진 촉매를 비교예 5의 씨클로핵사 논 옥심의 베크만 전환 반웅 과정과 동일한 방법으로 수행하였다. 반웅 결과를 표The catalyst of Example 2 (Sample A) was worked up using trimethyl silane chloride ((C¾) 3 SiCl, TMSC1). 1 g of zeolite catalyst was added to 1.9 g of TMSC1 and 100 mL of toluene solution and then refluxed with stirring at 110 ° C. for 3 hours. After the reaction was completed, the mixture was filtered through a filter and washed several times with toluene and acetone. After drying at 80 ° C. for 2 hours, the catalyst thus obtained was replaced with cyclone nucleus of Comparative Example 5. The same procedure was followed as for Beckman's conversion reaction. Return results
12에 나타내었다. It is shown in 12.
【표 12]  Table 12
Figure imgf000020_0001
Figure imgf000020_0001

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
기상 베크만 전환 공정을 이용하여 시클로핵사논 옥심으로부터  From Cyclonucleanone Oximes Using a Vapor Beckman Conversion Process
ε-카프로락탐을 제조하는 방법에 있어서, In the method for producing ε-caprolactam,
단위 결정 격자 1개 또는 10개 이하 두께의 판상 구조체가 배열되어 형성되 는 제올라이트 물질을 촉매로 사용하여 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법.  A method for producing ε-caprolactam from a cyclonucleone oxime using a zeolite material formed by arranging plate structures having a unit crystal lattice of one or ten or less thicknesses as a catalyst.
【청구항 2】 [Claim 2]
저 U항에 있어서,  In that U term,
상기 제올라이트 물질은 박피반웅 (delamination), 필러링 (pillaring), 염기수 용액 처리, 이온교환, 탈알루미늄화, 금속 담지 및 유기 관능화로 이루어지는 군에서 선택되는 후 처리 반웅을 이용하여 활성화 또는 개질화되는 것을 특징으로 하는 시 클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법.  The zeolitic material is activated or modified using a post treatment reaction selected from the group consisting of delamination, pillaring, base water solution treatment, ion exchange, dealumination, metal loading and organic functionalization. A method of producing ε-caprolactam from a cyclonucleosanone oxime.
【청구항 3] [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 제올라이트 물질은 규소 대 금속 원소의 몰비가 500 이상인 것을 특징 으로 하는 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법.  And wherein said zeolitic material has a molar ratio of silicon to metal element of at least 500.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 제올라이트 물질에 포함되는 금속 원소는 Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf 및 Bi로 이루어진 군에서 선택되는 것 을 특징으로 하는 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법.  Metal elements included in the zeolitic material are Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf and Bi A method for producing ε-caprolactam from cyclonuclinonone oxime, characterized in that it is selected.
【청구항 5】 [Claim 5]
제 1항 내지 제 4항 증 어느 한 항에 따른 시클로핵사논 옥심으로부터  From cyclonucleanone oxime according to any one of claims 1 to 4
ε—카프로락탐을 제조하는 방법을 이용하여 제조되는 ε—카프로락탐. ε—caprolactam prepared using a method for producing caprolactam.
【청구항 6】 [Claim 6]
기상 베크만 전환 공정을 이용하여 시클로핵사논 옥심으로부터  From Cyclonucleanone Oximes Using a Vapor Beckman Conversion Process
ε-카프로락탐을 제조하는 방법에 있어서, 2개 이상의 암모늄 관능기를 포함하거나, 1개의 암모늄 관능기 및 1개의 아 민 관능기를 포함하는 유기 계면활성제를 구조 유도체로 첨가하여 합성되는 제올라 이트 물질을 촉매로 사용하여 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법. In the method for producing ε-caprolactam, Ε-capro from cyclonucleanone oxime using a zeolite material which is synthesized by adding an organic surfactant comprising two or more ammonium functional groups or containing one ammonium functional group and one amine functional group as a structural derivative Process for preparing lactam.
[청구항 7】 [Claim 7]
저16항에 있어서,  The method of claim 16,
상기 유기 계면활성제는 화학식 1 또는 2로 표시되는 것을 특징으로 하는 시 클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법. The organic surfactant is a method for producing ε -caprolactam from cyclonesananone oxime, characterized in that represented by the formula (1) or (2).
[화학식 1]  [Formula 1]
Figure imgf000022_0001
Figure imgf000022_0001
[화학식 2] [Formula 2]
Figure imgf000022_0002
Figure imgf000022_0002
(여기서, X는 할로겐 (CI, Br, I) 음이온 또는 하이드록사이드 (이 ί) 음이온이 다.) Where X is a halogen (CI, Br, I) anion or a hydroxide (this) anion.)
【청구항 8】 [Claim 8]
계 7항에 있어서,  The method according to claim 7,
상기 화학식 1 및 화학식 2에서 C1은 탄소 원자 8 ~ 22 개, C2 는 탄소원자 3 ~ 6 개, C3는 탄소원자 1 ~ 8 개로 이루어지는 것을 특징으로 하는 시클로핵사논 옥심으로부터 ε—카프로락탐을 제조하는 방법.  In Formula 1 and Formula 2, C1 is 8 to 22 carbon atoms, C2 is 3 to 6 carbon atoms, C3 is 1 to 8 carbon atoms, characterized in that for preparing ε—caprolactam from cyclohexanone oxime Way.
[청구항 9】 [Claim 9]
제 6항에 있어서,  The method of claim 6,
상기 제을라이트 물질은 소성 또는 화학적 처리에 의해 유기 계면활성제를 완전 또는 부분적으로 제거하여 제조되는 것을 특징으로 하는 시클로핵사논 옥심으 로부터 ε-카프로락탐을 제조하는 방법. The zeolite material is prepared by completely or partially removing the organic surfactant by calcining or chemical treatment. To prepare ε-caprolactam.
【청구항 10] [Claim 10]
제 6항에 있어서,  The method of claim 6,
상기 제올라이트 물질은 규소 대 금속 원소의 몰비가 500 이상인 것을 특징 으로 하는 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법.  And wherein said zeolitic material has a molar ratio of silicon to metal element of at least 500.
【청구항 11】 [Claim 11]
제 6항에 있어서,  The method of claim 6,
상기 제올라이트 물질에 포함되는 금속 원소는 Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf 및 Bi로 이루어진 군에서 선택되는 것 을 특징으로 하는 시클로핵사논 옥심으로부터 ε—카프로락탐을 제조하는 방법.  Metal elements included in the zeolitic material are Be, B, Al, Ti, Fe, Ga, V, Cr, Co, Ni, Cu, Zn, Ge, Zr, Nb, Sb, La, Hf and Bi A process for producing ε-caprolactam from cyclonuclinon oximes which is selected.
[청구항 12】 [Claim 12]
거 16항에 있어서,  According to claim 16,
상기 제올라이트 물질은 수열합성법 (hydrothermal synthesis), 마이크로파 가 열 (microwave heating) 및 건식-겔 합성법 (dry— gel synthesis)으로 이루어지는 군에 서 선택되는 결정화 과정을 거쳐 제조되는 것을 특징으로 하는 시클로핵사논 옥심 으로부터 ε-카프로락탐을 제조하는 방법.  The zeolitic material is cyclonuxanon oxime, characterized in that is prepared through a crystallization process selected from the group consisting of hydrothermal synthesis, microwave heating and dry-gel synthesis Method for preparing ε-caprolactam from
【청구항 13] [Claim 13]
제 6항 내지 제 12항 중 어느 한 항에 따른 시클로핵사논 옥심으로부터 ε-카프로락탐을 제조하는 방법을 이용하여 제조되는 ε-카프로락탐.  An epsilon caprolactam manufactured using the method of manufacturing an epsilon caprolactam from the cyclonucleanone oxime according to any one of claims 6 to 12.
【청구항 14] [Claim 14]
기상 베크만 전환 공정올 이용하여 시클로핵사논 옥심으로부터  Gas phase Beckman conversion process from cyclonuxanon oxime
ε-카프로락탐을 제조하는 방법에 있어서, In the method for producing ε-caprolactam,
2개 이상의 암모늄 관능기를 포함하거나 1개의 암모늄 관능기 및 1개의 아민 관능기를 포함하는 유기 계면활성제를 구조 유도체로 첨가하여 합성되며, 박피반웅 (delamination), 필러링 (pillaring), 염기수용액 처리, 이은교환, 탈알루미늄화, 금속 담지 및 유기 관능화로 이루어지는 군에서 선택되는 후 처리 반웅을 이용하여 활성 화 또는 개질화되는 제올라이트 물질을 촉매로 사용하여 시클로핵사논 옥심으로부 터 ε-카프로락탐을 제조하는 방법. 【청구항 15】 Synthesized by adding organic surfactants containing at least two ammonium functional groups or containing one ammonium functional group and one amine functional group as structural derivatives, delamination, pillaring, aqueous solution treatment, and silver exchange , Ε-caprolactam from cyclonuxanonone oxime using a zeolite material that is activated or modified using a post-treatment reaction selected from the group consisting of dealumination, metal loading and organic functionalization . [Claim 15]
제 14항에 있어서,  The method of claim 14,
상기 유기 계면활성제는 화학식 1 또는 2로 표시 되는 것을 특징으로 하는 클로핵사논 옥심으로부터 ε—카프로락탐을 제조하는 방법 . The organic surfactant is a method for producing ε -caprolactam from clonuxanone oxime, characterized in that represented by the formula (1) or (2).
[화학식 1]  [Formula 1]
C1 C2 C3 C1 C2 C3
X X" XX "
[화학식 2]
Figure imgf000024_0001
[Formula 2]
Figure imgf000024_0001
X" X "
(여 기서, X는 할로겐 (CI, Br, I) 음이온 또는 하이드록사이 드 (OH) 음이온。 다.) Where X is a halogen (CI, Br, I) anion or a hydroxide (OH) anion.
PCT/KR2011/004828 2010-07-05 2011-07-01 Method for preparing ε-caprolactam by using high-silica nano-plate zeolite WO2012005473A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0064199 2010-07-05
KR1020100064199A KR101180346B1 (en) 2010-07-05 2010-07-05 Production of epsilon-caprolactam over high-silica zeolite nanosheets

Publications (2)

Publication Number Publication Date
WO2012005473A2 true WO2012005473A2 (en) 2012-01-12
WO2012005473A3 WO2012005473A3 (en) 2012-04-19

Family

ID=45441632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004828 WO2012005473A2 (en) 2010-07-05 2011-07-01 Method for preparing ε-caprolactam by using high-silica nano-plate zeolite

Country Status (2)

Country Link
KR (1) KR101180346B1 (en)
WO (1) WO2012005473A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212302A (en) * 1990-12-26 1993-05-18 Sumitomo Chemical Company, Ltd. Process for producing epsilon-caprolactam and activating solid catalysts therefor
US6946553B2 (en) * 2002-02-27 2005-09-20 Sumitomo Chemical Company, Limited Process for producing ε-caprolactam and catalyst for the production
US20100105893A1 (en) * 2008-08-20 2010-04-29 Sumitomo Chemical Company, Limited METHOD FOR PRODUCING epsilon-CAPROLACTAM AND METHOD FOR PRODUCING PENTASIL TYPE ZEOLITE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212302A (en) * 1990-12-26 1993-05-18 Sumitomo Chemical Company, Ltd. Process for producing epsilon-caprolactam and activating solid catalysts therefor
US6946553B2 (en) * 2002-02-27 2005-09-20 Sumitomo Chemical Company, Limited Process for producing ε-caprolactam and catalyst for the production
US20100105893A1 (en) * 2008-08-20 2010-04-29 Sumitomo Chemical Company, Limited METHOD FOR PRODUCING epsilon-CAPROLACTAM AND METHOD FOR PRODUCING PENTASIL TYPE ZEOLITE

Also Published As

Publication number Publication date
KR101180346B1 (en) 2012-09-06
KR20120003540A (en) 2012-01-11
WO2012005473A3 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
KR102410485B1 (en) Cha type zeolitic materials and methods for their preparation using combinations of cycloalkyl- and tetraalkylammonium compounds
KR100586213B1 (en) Process for preparing bound zeolites
Shen et al. Direct synthesis of c-axis oriented ZSM-5 nanoneedles from acid-treated kaolin clay
EP2592049A2 (en) Zeolite or an analogous material thereof including mesopores arranged regularly or irregularly, and preparation method for same
KR101147007B1 (en) Synthesis of BEA, MTW and MFI type zeolites possessing additional meso- and macro porosity using cyclicdiammonium organic templates
JP5898187B2 (en) LEV type zeolitic material and method for producing the same
JP6054969B2 (en) Method of synthesizing zeolitic material using recycled mother liquor without using organic template
KR20070086050A (en) Method for the synthesis of zeolite beta with diethylentriamine
JP2019505460A (en) CHA-type zeolitic material and process for producing them using a combination of cycloalkyl- and ethyltrimethylammonium compounds
JP6034286B2 (en) Alkali-free synthesis of LEV-type zeolite materials
KR102062748B1 (en) Zeolitic materials and methods for their preparation using alkenyltrialkylammonium compounds
CN103896302A (en) Silicon molecular sieve and preparation method thereof
KR101451902B1 (en) Zeolite with MRE structure and their analogue materials possessing mesopore, and synthesis method thereof
CN112551542B (en) Single crystal cascade hole HZSM-5 molecular sieve and green preparation method thereof
Wei et al. Synthesis of TS-1 submicrocrystals from inorganic reactants by a seed method for the vapor Beckmann rearrangement of cyclohexanone oxime
KR101600575B1 (en) Method for manufacturing of meso-microporous mordenite in form of plate and meso-microporous mordenite in form of plate thereby
WO2012005473A2 (en) Method for preparing ε-caprolactam by using high-silica nano-plate zeolite
JP4243360B2 (en) Method for producing amine
CN107686119B (en) hierarchical porous silicon-aluminum molecular sieve nanoclusters and preparation method thereof
Wei et al. Controlling the microstructure of MFI zeolites with Mg (OH) 2 nanocrystals to improve their catalytic performances
KR101189757B1 (en) Preparation method of randomly assembled mesostructure constructed with hierarchically mesoporous and microporous MFI zeolite nanosheets of single-unit-cell thickness, using water glass as the silica source
KR20070020354A (en) Process for producing binder-free ZSM-5 zeolite in small crystal size
EP2903934B1 (en) Process for the production of a mfi zeolitic material employing elemental precursors
KR20150072069A (en) Amorphous silica alumina-zeolite composites and preparation method thereof
KR100613399B1 (en) High silica zeolite catalyst of nano particles, method for preparing the same and method for preparing ?-caprolactam using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803759

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803759

Country of ref document: EP

Kind code of ref document: A2