WO2012005455A2 - Polarizing glasses - Google Patents
Polarizing glasses Download PDFInfo
- Publication number
- WO2012005455A2 WO2012005455A2 PCT/KR2011/004476 KR2011004476W WO2012005455A2 WO 2012005455 A2 WO2012005455 A2 WO 2012005455A2 KR 2011004476 W KR2011004476 W KR 2011004476W WO 2012005455 A2 WO2012005455 A2 WO 2012005455A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- polarizing glasses
- retardation layer
- polarized light
- auxiliary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/337—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
- G02B30/25—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/34—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/12—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133638—Waveplates, i.e. plates with a retardation value of lambda/n
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/03—Number of plates being 3
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2213/00—Details of stereoscopic systems
- H04N2213/008—Aspects relating to glasses for viewing stereoscopic images
Definitions
- the present invention relates to a polarizing glasses that can improve cross talk caused by light leaking from the inclined surface (simultaneous incident of left and right light incident on one side).
- the eyes of a person are about 65 mm apart so that when looking at an object, each eye sees a slightly different side of the object. As a way of recognizing this, there is a slight difference between the shape of an object seen after covering one eye with a palm and the object seen after covering another.
- This principle is the basic principle applied to stereoscopic image reproduction.
- the stereoscopic image display device emits circularly polarized light by placing a patterned [lambda] / 4 retardation layer on the polarizer of the upper polarizing plate.
- Circularly polarized light is linearly polarized in polarized glasses to recognize stereoscopic images.
- Polarizing glasses are composed of a ⁇ / 4 retardation layer and a polarizer, respectively, on the left and right.
- Left circular polarization and right circular polarization light incident from the front of the polarizing glasses are converted into linearly polarized light so that the images of the left and right eyes are separated.
- the left and right polarized light incident in a direction not perpendicular to the spectacle surface is converted into elliptical polarized light so that the right elliptical polarized light is incident on both the right and left eyes, or the left elliptical polarized light is on the left and right eyes
- Light leakage incident on all is generated. There is a problem that crosstalk phenomenon in which the left and right phases are not properly separated by the light leakage occurs.
- An object of the present invention is to provide a polarizing glasses that can improve the light leakage incident to the left and right light simultaneously on one side by converting the elliptical polarized light incident in a direction not perpendicular to the spectacle surface.
- an object of the present invention is to provide a polarizing glasses that can improve the crosstalk phenomenon caused by the light leakage.
- lambda / 4 retardation layer for converting light of circular polarization into linearly polarized light
- auxiliary retardation layer for converting light not linearly polarized by the ⁇ / 4 retardation layer, and light emitted from the auxiliary retardation layer
- ⁇ / 4 retardation layer is a liquid crystal coating or by the stretching of the film polarized glasses.
- liquid crystal coating layer is a polarizing glasses containing a reactive liquid crystal compound (RM).
- the polarizing glasses of the present invention can improve cross talk caused by an image signal incident in a direction not perpendicular to the spectacle surface, thereby enabling a clear three-dimensional image.
- the present invention is within the range of the viewing angle of the eye (about 90 ° left and right, about 45 ° up and down), the light of circular polarized light incident from the front and inclined plane of the polarizing glasses is converted into linearly polarized light so that the generation of crosstalk is improved. Compared to a clear three-dimensional image can be viewed.
- 1 and 2 is a structure of a polarizing glasses according to the present invention
- 3 to 9 are light measured in a black state after the light of circular polarized light incident in all directions with respect to the spectacle surface passes through each polarizing glasses prepared in Examples 1 to 5 and Comparative Examples 1 to 3; The visibility of is also the transmittance.
- auxiliary retardation layer 21 slow axis of the auxiliary retardation layer
- polarizer 31 transmission axis of the polarizer
- the present invention provides a lambda / 4 phase difference layer for converting light of circularly polarized light into linearly polarized light, an auxiliary phase difference layer having a specific optical characteristic for converting light not linearly polarized by the lambda / 4 phase difference layer into linear polarization and the auxiliary
- a polarizer for passing the light emitted from the retardation layer, by converting the light of the elliptical polarization incident in a direction not perpendicular to the conventional spectacle surface into linearly polarized light by the conventional light leakage (light on the left and right simultaneously incident on one side) It relates to a polarizing glasses that can improve cross talk.
- the polarizing glasses of the present invention comprise a ⁇ / 4 phase difference layer for converting light of circular polarization into linear polarization, an auxiliary phase difference layer for converting light not linearly polarized by the ⁇ / 4 phase difference layer, and the auxiliary phase difference layer. It includes a polarizer for passing the light emitted from.
- the ⁇ / 4 retardation layer is a layer that delays the phase by 1/4 wavelength with respect to the incident light ⁇ , and converts light of circularly polarized light incident into polarized glasses into linearly polarized light.
- the ⁇ / 4 retardation layer may be a ⁇ / 4 liquid crystal coating layer by liquid crystal coating or a ⁇ / 4 retardation film by stretching of the film.
- the liquid crystal coating layer has optical anisotropy and can be manufactured using a liquid crystal compound having crosslinkability by light or heat.
- the liquid crystal compound may include, for example, a reactive liquid crystal compound (RM).
- a reactive liquid crystal compound examples include those described in Information Display 10, No. 1 (Recent Research Trends of Reactive Liquid Crystal Monomer (RM)).
- the reactive liquid crystal compound refers to a monomer molecule having a liquid crystal phase including a mesogen capable of expressing liquid crystal and a terminal group capable of polymerization.
- a monomer molecule having a liquid crystal phase including a mesogen capable of expressing liquid crystal and a terminal group capable of polymerization.
- By polymerizing the reactive liquid crystal compound it is possible to obtain a crosslinked polymer network while maintaining the aligned phase of the liquid crystal.
- the reactive liquid crystal compound molecules are cooled from the clearing point, a large area domain having a structure that is better aligned at a relatively low viscosity in the liquid crystal phase may be obtained than when the liquid crystal polymer having the same structure is used.
- the ⁇ / 4 liquid crystal coating layer thus formed is mechanically and thermally stable because it has a solid thin film form while maintaining the characteristics such as optical anisotropy and dielectric constant of the liquid crystal.
- the ⁇ / 4 liquid crystal coating layer of the present invention may be formed by coating a liquid crystal coating composition containing a reactive liquid crystal compound directly on the auxiliary retardation layer surface.
- the ⁇ / 4 liquid crystal coating layer may be formed by bonding a transparent protective film to a secondary retardation layer surface using a known adhesive and coating a liquid crystal coating composition including a reactive liquid crystal compound directly on the transparent protective film surface.
- the coating method is not particularly limited, but specifically, pin coating, roll coating, dispensing coating or gravure coating may be used. It is desirable to determine the type and amount of solvent depending on the coating method.
- the ⁇ / 4 liquid crystal coating layer may be formed by applying a composition for liquid crystal coating containing a reactive liquid crystal compound (RM) to a substrate, and then irradiating polarized ultraviolet rays, polarized electromagnetic waves, and the like to photocuring them.
- a composition for liquid crystal coating containing a reactive liquid crystal compound (RM) to a substrate, and then irradiating polarized ultraviolet rays, polarized electromagnetic waves, and the like to photocuring them.
- Stretching is a single-axis stretching stretching in the mechanical flow direction; Transverse uniaxial stretching (eg, tenter stretching) stretching in a direction orthogonal to the mechanical flow direction; It can be produced by biaxial stretching or the like which simultaneously performs longitudinal and transverse, and it is preferable to apply a diagonally stretched film.
- the left and right ⁇ / 4 phase difference layers included in the polarizing glasses are arranged such that the slow axis forms 45 ° and ⁇ 45 ° with respect to the transmission axis of the polarizer, respectively.
- the auxiliary retardation layer serves to improve cross talk by converting light not linearly polarized by the ⁇ / 4 retardation layer into linearly polarized light.
- the circularly polarized light incident on the inclined surface of the polarizing glasses becomes elliptical polarization when passing through the ⁇ / 4 retardation layer, and crosstalk is generated by the elliptical polarized light.
- the present invention converts the elliptically polarized light passing through the ⁇ / 4 retardation layer into linearly polarized light using an auxiliary retardation layer having specific optical properties.
- the refractive index ratio NZ of Equation 1 below is -0.5 ⁇ NZ ⁇ 1
- the front retardation value RO of Equation 2 below is 50 ⁇ RO ⁇ 300.
- the wavelength is 100 nm ⁇ RO ⁇ 200 nm.
- Nx and Ny are planar refractive indices
- Nx ⁇ Ny and Nz are thickness direction refractive indices of the retardation layer
- d represents the thickness of the retardation layer
- Nx and Ny are plane refractive indices of the retardation layer
- d represents the thickness of the retardation layer
- the refractive index ratio NZ of the auxiliary retardation layer When the refractive index ratio NZ of the auxiliary retardation layer is out of the above range, the generation range of crosstalk according to the incident direction of light is widened. When the front retardation value RO is out of the above range, the uniformity of the retardation value is decreased. There is a problem that is difficult to secure.
- the auxiliary retardation layer of the polarizing glasses is arranged such that its slow axis is horizontal (FIG. 1A) or vertical (FIG. 1B) with the transmission axis of the polarizer.
- auxiliary retardation layer may be by liquid crystal coating or by stretching of the film, it is preferable that by stretching of the film in the process.
- the polarizer is generally used in the art and is not particularly limited as long as it can perform a polarizing function. Specifically, stretched polyvinyl alcohol, a wire grid and carbon nanotubes using a dichroic compound may be used.
- the stretched polarizer of which the form-type polarizer is easy to process into a film form is a dichroic dye adsorbed and oriented to the stretched polyvinyl alcohol-based film.
- the polyvinyl alcohol-based resin constituting the polarizer can be produced by saponifying a polyvinyl acetate-based resin.
- polyvinyl acetate type resin As an example of polyvinyl acetate type resin, the copolymer etc. with vinyl acetate and the other monomer copolymerizable with this besides the polyvinyl acetate which is a homopolymer of vinyl acetate are mentioned.
- the other monomer copolymerizable with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins, vinyl ethers, acrylamides having an ammonium group, and the like.
- the polyvinyl alcohol-based resin may be modified, for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
- the degree of saponification of the polyvinyl alcohol-based resin may be 85 to 100 mol%, preferably 98 mol% or more.
- the degree of polymerization of the polyvinyl alcohol-based resin is usually 1,000 to 10,000, preferably 1,500 to 5,000.
- the polarizer may be bonded to the transparent protective film on any one or more surfaces.
- a ⁇ / 4 retardation layer, an auxiliary retardation layer, a polarizer, and a transparent protective film may be formed.
- polyester resins such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate and polybutylene terephthalate; Cellulose resins such as diacetyl cellulose and triacetyl cellulose; Polycarbonate resins; Acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; Styrene resins such as polystyrene and acrylonitrile-styrene copolymers; Polyolefin-based resins such as polyethylene, polypropylene, cyclo-based or norbornene-structured polyolefins, ethylene-propylene copolymers; Vinyl chloride-based resins; Amide resins such as nylon and aromatic polyamides; Imide resin; Polyether sulfone resin; Sulfone resins;
- the content of the thermoplastic resin in the transparent protective film is 50 to 100% by weight, preferably 50 to 99% by weight, more preferably 60 to 98% by weight, most preferably 70 to 97% by weight. If the content is less than 50% by weight, it may not sufficiently express the original high transparency possessed by the thermoplastic resin.
- Such a transparent protective film may be one containing an appropriate one or more additives.
- an additive a ultraviolet absorber, antioxidant, a lubricating agent, a plasticizer, a mold release agent, a coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, a coloring agent, etc. are mentioned, for example.
- the light is emitted from a lambda / 4 phase difference layer for converting light of circularly polarized light into linearly polarized light, an auxiliary phase difference layer for converting light not linearly polarized by the lambda / 4 phase difference layer, and linearly polarized light.
- the polarizing glasses including the polarizer for passing the light was prepared.
- the auxiliary retardation layer had a refractive index ratio (NZ) of 0.5 and a front retardation value (RO) of 200 nm, and was prepared by stretching a film.
- the ⁇ / 4 retardation layer was formed by coating a reactive liquid crystal compound solution (Merck, RMS03-013) on the auxiliary retardation layer.
- the slow axes of the ⁇ / 4 retardation layers arranged on the left and right sides of the polarizing glasses are 45 ° clockwise and 45 ° counterclockwise, respectively, and the absorption axis of the polarizer and the slow axis of the auxiliary retardation layer are parallel to each other.
- Figure 3 shows the visibility transmittance of the light measured in the black (black) after passing the light of the circularly polarized light incident in all directions with respect to the polarizing glasses surface. At this time, the incident light used short wavelength of 550nm, and the area exceeding 2% transmittance is indicated by red color, and the low transmittance part is indicated by blue color.
- the transmittance is low in blue within a direction inclined about 45 ° from the direction perpendicular to the polarizing glasses surface (up and down viewing angle range of the eye when viewed from the front).
- the low transmittance means that circularly polarized light is converted into linearly polarized light so that no crosstalk is generated.
- Example 2 In the same manner as in Example 1, but was bonded to a triacetyl cellulose (TAC) film on the observer side of the polarizer as shown in Figure 2 to prepare a polarizing glasses.
- TAC triacetyl cellulose
- the light transmittance of the light measured in the black state after passing the light of circularly polarized light incident in all directions with respect to the polarizing glasses surface was the same as that of FIG. 3.
- Polarizing glasses were manufactured using an auxiliary retardation layer having a refractive index ratio NZ of 0 and a front retardation value RO of 100 nm.
- FIG. 4 is a light transmittance of light measured in a black state after passing circularly polarized light incident in all directions with respect to the polarizing glasses surface, and no black light is generated. Can be confirmed.
- Polarizing glasses were prepared using an auxiliary retardation layer having a refractive index ratio (NZ) of -0.5 and a front retardation value (RO) of 100 nm.
- NZ refractive index ratio
- RO front retardation value
- FIG. 5 is a light transmittance of light measured in a black state after passing circularly polarized light incident from all directions with respect to the polarizing glasses surface, and no black light is generated. Can be confirmed.
- Polarizing glasses were manufactured using an auxiliary retardation layer having a refractive index ratio (NZ) of -0.5 and a front retardation value (RO) of 250 nm.
- NZ refractive index ratio
- RO front retardation value
- FIG. 6 is a transmissivity of light measured in a black state after passing circularly polarized light incident in all directions with respect to the polarizing glasses surface, and no black light is generated. Can be confirmed.
- FIG. 7 is a view through which light of circularly polarized light incident in all directions with respect to the polarizing glasses surface is passed through the polarizing glasses prepared above, and measured in the black state, and crosstalk is generated by light leakage. You can check it.
- the polarizing glasses were manufactured in the same manner as in Example 1, but using an auxiliary phase difference layer having a refractive index ratio (NZ) of -0.5 and a front phase difference value (RO) of 300 nm.
- NZ refractive index ratio
- RO front phase difference value
- FIG. 8 is a view through which the circular polarized light incident in all directions with respect to the polarizing glasses surface passes through the polarizing glasses prepared above, and the visibility of the light measured in the black state is generated. You can check it.
- the polarizing glasses were manufactured in the same manner as in Example 1, but using an auxiliary phase difference layer having a refractive index ratio NZ of 1 and a front phase difference value RO of 50 nm.
- FIG. 9 is a transmissivity of light measured in a black state after passing circularly polarized light incident in all directions with respect to the polarizing glasses surface, and black cross-talk is generated by light leakage. You can check it.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Ophthalmology & Optometry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Polarising Elements (AREA)
Abstract
The present invention relates to polarizing glasses, and more specifically, to polarizing glasses comprising: a λ/4 phase difference layer for transforming circularly polarized light into linearly polarized light; an auxiliary phase difference layer having specific optical characteristics for transforming the light which is not linearly polarized by the λ/4 phase difference layer into linearly polarized light; and a polarizer for passing the light emitted from the auxiliary phase difference layer. The polarizing glasses transform the circularly polarized light received through an inclined plane into linearly polarized light in known polarizing glasses, thereby improving known cross torque due to light leakage (simultaneous incidence of left and right lights into one side).
Description
본 발명은 경사면에서 입사되는 빛이 새어(좌, 우측의 빛이 한 쪽에 동시 입사) 발생되는 크로스 토크를 개선할 수 있는 편광안경에 관한 것이다.The present invention relates to a polarizing glasses that can improve cross talk caused by light leaking from the inclined surface (simultaneous incident of left and right light incident on one side).
일반적으로 사람의 두 눈은 약 65㎜ 정도 떨어져 있어 물체를 볼 때 각각의 눈은 물체의 약간 다른 면을 보게 된다. 이를 알아 볼 수 있는 방법으로 한 물체를 손바닥으로 한쪽 눈을 가린 후 보이는 물체의 형태와, 또 다른 한 쪽을 가린 후 보이는 물체는 약간의 차이가 있다.In general, the eyes of a person are about 65 mm apart so that when looking at an object, each eye sees a slightly different side of the object. As a way of recognizing this, there is a slight difference between the shape of an object seen after covering one eye with a palm and the object seen after covering another.
이를 좌우 양안에 의한 차이(Disparity)라고 하는데 이 차이가 뇌에서 합성되어 입체감을 가지는 상으로 지각된다. 이 원리가 입체화상 재현에 응용되는 기본 원리이다.This is called disparity due to the left and right binocular. This difference is synthesized in the brain and perceived as a three-dimensional image. This principle is the basic principle applied to stereoscopic image reproduction.
입체화상표시장치는 상판 편광판의 편광자상에 패턴화된 λ/4 위상차층을 위치시켜 원편광된 빛을 출사한다. 원편광된 빛은 편광안경에서 선편광시켜 입체화상을 인식한다. 편광안경은 좌우에 각각 λ/4 위상차층 및 편광자로 구성된다.The stereoscopic image display device emits circularly polarized light by placing a patterned [lambda] / 4 retardation layer on the polarizer of the upper polarizing plate. Circularly polarized light is linearly polarized in polarized glasses to recognize stereoscopic images. Polarizing glasses are composed of a λ / 4 retardation layer and a polarizer, respectively, on the left and right.
편광안경의 정면에서 입사되는 좌원편광 및 우원편광의 빛은 선편광으로 변환되어 각각 좌안과 우안에 상이 분리되어 인식된다. 그러나 안경면에 수직하지 않은 방향으로 입사되는 좌원편광 및 우원편광의 빛은 타원편광된 빛으로 변환되어 우측의 타원편광된 빛이 우안과 좌안에 모두 입사되거나 좌측의 타원편광된 빛이 좌안과 우안에 모두 입사되는 빛샘이 발생된다. 이러한 빛샘에 의해 좌우의 상이 제대로 분리되지 않는 크로스 토크 현상이 발생되는 문제가 있다.Left circular polarization and right circular polarization light incident from the front of the polarizing glasses are converted into linearly polarized light so that the images of the left and right eyes are separated. However, the left and right polarized light incident in a direction not perpendicular to the spectacle surface is converted into elliptical polarized light so that the right elliptical polarized light is incident on both the right and left eyes, or the left elliptical polarized light is on the left and right eyes Light leakage incident on all is generated. There is a problem that crosstalk phenomenon in which the left and right phases are not properly separated by the light leakage occurs.
본 발명은 안경면에 수직하지 않은 방향으로 입사되는 타원편광된 빛을 선편광으로 변환시켜 한 쪽에 좌, 우측의 빛이 동시에 입사되는 빛샘을 개선할 수 있는 편광안경을 제공하는 데 목적이 있다.An object of the present invention is to provide a polarizing glasses that can improve the light leakage incident to the left and right light simultaneously on one side by converting the elliptical polarized light incident in a direction not perpendicular to the spectacle surface.
또한 본 발명은 상기 빛샘에 의해 발생하는 크로스 토크 현상을 개선할 수 있는 편광안경을 제공하는 데 목적이 있다.In addition, an object of the present invention is to provide a polarizing glasses that can improve the crosstalk phenomenon caused by the light leakage.
1. 원편광의 빛을 선편광으로 변환시키기 위한 λ/4 위상차층, 상기 λ/4 위상차층에 의해 선편광화되지 않은 빛을 선편광으로 변환시키기 위한 보조 위상차층, 및 상기 보조 위상차층으로부터 출사된 빛을 통과시키는 편광자를 포함하고, 상기 보조 위상차층은 -0.5<NZ<1이고 50nm<RO<300nm인 광학 특성을 갖는 것인 편광안경.1. lambda / 4 retardation layer for converting light of circular polarization into linearly polarized light, auxiliary retardation layer for converting light not linearly polarized by the λ / 4 retardation layer, and light emitted from the auxiliary retardation layer And a polarizer through which the auxiliary retardation layer has optical properties of -0.5 <NZ <1 and 50nm <RO <300nm.
2. 위 1에 있어서, 상기 보조 위상차층은 0≤NZ<1이고, 100nm<RO<250nm인 편광안경.2. In the above 1, wherein the auxiliary retardation layer is 0≤NZ <1, 100nm <RO <250nm polarized glasses.
3. 위 2에 있어서, 상기 보조 위상차층의 지상축은 편광자의 투과축과 서로 평행 또는 수직으로 배치된 편광안경.3. In the above 2, wherein the slow axis of the auxiliary retardation layer is disposed in parallel or perpendicular to the transmission axis of the polarizer.
4. 위 1에 있어서, 상기 λ/4 위상차층은 액정 코팅에 의한 것이거나 필름의 연신에 의한 것인 편광안경.4. In the above 1, wherein the λ / 4 retardation layer is a liquid crystal coating or by the stretching of the film polarized glasses.
5. 위 4에 있어서, 액정 코팅층은 반응성 액정 화합물(RM)을 포함하는 것인 편광안경.5. In the above 4, wherein the liquid crystal coating layer is a polarizing glasses containing a reactive liquid crystal compound (RM).
6. 위 1에 있어서, 편광자의 어느 한 면에 투명 보호필름이 접합된 편광안경.6. In the above 1, the polarizing glasses bonded to the transparent protective film on either side of the polarizer.
본 발명의 편광안경은 안경면에 수직하지 않은 방향으로 입사되는 화상신호에 의해 발생되는 크로스 토크를 개선할 수 있으므로 선명한 입체화상 구현이 가능하다.The polarizing glasses of the present invention can improve cross talk caused by an image signal incident in a direction not perpendicular to the spectacle surface, thereby enabling a clear three-dimensional image.
또한, 본 발명은 눈의 시야각(좌우측 약 90°, 상하측 약 45°) 범위내에서, 편광안경의 정면 및 경사면에서 입사되는 원편광의 빛이 선편광으로 변환되어 크로스 토크의 발생이 개선되므로 종래에 비해 선명한 입체영상을 감상할 수 있다.In addition, the present invention is within the range of the viewing angle of the eye (about 90 ° left and right, about 45 ° up and down), the light of circular polarized light incident from the front and inclined plane of the polarizing glasses is converted into linearly polarized light so that the generation of crosstalk is improved. Compared to a clear three-dimensional image can be viewed.
도 1 및 도 2는 본 발명에 따른 편광안경의 구조이고,1 and 2 is a structure of a polarizing glasses according to the present invention,
도 3 내지 도 9는 안경면에 대하여 전 방향에서 입사된 원편광의 빛이 실시예 1 내지 5 및 비교예 1 내지 3에서 제조된 각 편광안경을 통과한 후 암(black)상태에서 측정된 빛의 시감도 투과도이다.3 to 9 are light measured in a black state after the light of circular polarized light incident in all directions with respect to the spectacle surface passes through each polarizing glasses prepared in Examples 1 to 5 and Comparative Examples 1 to 3; The visibility of is also the transmittance.
[부호의 설명][Description of the code]
10 : λ/4 위상차층 11 : λ/4 위상차층의 지상축10: lambda / 4 phase difference layer 11: slow axis of the lambda / 4 phase difference layer
20 : 보조 위상차층 21 : 보조 위상차층의 지상축20: auxiliary retardation layer 21: slow axis of the auxiliary retardation layer
30 : 편광자 31 : 편광자의 투과축30: polarizer 31: transmission axis of the polarizer
40 : 투명보호필름40: transparent protective film
본 발명은 원편광의 빛을 선편광으로 변환시키기 위한 λ/4 위상차층, 상기 λ/4 위상차층에 의해 선편광화되지 않은 빛을 선편광으로 변환시키기 위하여 특정의 광학 특성을 갖는 보조 위상차층 및 상기 보조 위상차층으로부터 출사된 빛을 통과시키는 편광자를 포함함으로써, 종래 안경면에 수직하지 않은 방향으로 입사되는 타원편광의 빛을 선편광으로 변환시켜 종래 빛샘(좌, 우측의 빛이 한 쪽에 동시 입사)에 의한 크로스 토크를 개선할 수 있는 편광안경에 관한 것이다.The present invention provides a lambda / 4 phase difference layer for converting light of circularly polarized light into linearly polarized light, an auxiliary phase difference layer having a specific optical characteristic for converting light not linearly polarized by the lambda / 4 phase difference layer into linear polarization and the auxiliary By including a polarizer for passing the light emitted from the retardation layer, by converting the light of the elliptical polarization incident in a direction not perpendicular to the conventional spectacle surface into linearly polarized light by the conventional light leakage (light on the left and right simultaneously incident on one side) It relates to a polarizing glasses that can improve cross talk.
이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명의 편광안경은 원편광의 빛을 선편광으로 변환시키기 위한 λ/4 위상차층, 상기 λ/4 위상차층에 의해 선편광화되지 않은 빛을 선편광으로 변환시키기 위한 보조 위상차층, 및 상기 보조 위상차층으로부터 출사된 빛을 통과시키는 편광자를 포함한다.The polarizing glasses of the present invention comprise a λ / 4 phase difference layer for converting light of circular polarization into linear polarization, an auxiliary phase difference layer for converting light not linearly polarized by the λ / 4 phase difference layer, and the auxiliary phase difference layer. It includes a polarizer for passing the light emitted from.
λ/4 위상차층은 입사광(λ)에 대해 1/4파장만큼 위상을 지연시키는 층으로, 편광안경으로 입사되는 원편광의 빛을 선편광으로 변환시키는 역할을 한다.The λ / 4 retardation layer is a layer that delays the phase by 1/4 wavelength with respect to the incident light λ, and converts light of circularly polarized light incident into polarized glasses into linearly polarized light.
λ/4 위상차층은 액정 코팅에 의한 λ/4 액정 코팅층이거나 필름의 연신에 의한 λ/4 위상차 필름일 수 있다.The λ / 4 retardation layer may be a λ / 4 liquid crystal coating layer by liquid crystal coating or a λ / 4 retardation film by stretching of the film.
액정 코팅층은 광학 이방성을 가지고, 광 또는 열에 의한 가교성을 갖는 액정 화합물을 이용하여 제조할 수 있다. 액정 화합물은 일례로 반응성 액정 화합물(RM)이 포함될 수 있다. 반응성 액정 화합물(RM)의 예로서는 인포메이션디스플레이 10권 1호(반응성 액정 단량체(RM)의 최신 연구 동향)에 기재된 것을 들 수 있다.The liquid crystal coating layer has optical anisotropy and can be manufactured using a liquid crystal compound having crosslinkability by light or heat. The liquid crystal compound may include, for example, a reactive liquid crystal compound (RM). Examples of the reactive liquid crystal compound (RM) include those described in Information Display 10, No. 1 (Recent Research Trends of Reactive Liquid Crystal Monomer (RM)).
반응성 액정 화합물은 액정성을 발현할 수 있는 메조겐(mesogen)과 중합이 가능한 말단기를 포함하여 액정상을 갖게 되는 단량체 분자를 말한다. 반응성 액정 화합물을 중합하게 되면 액정의 배열된 상을 유지하면서 가교된 고분자 네트워크를 얻을 수 있게 된다. 반응성 액정 화합물 분자는 투명점(clearing point)으로부터 냉각하게 되면 같은 구조의 액정 고분자를 사용하는 경우보다 액정상에서 상대적으로 낮은 점도에서 보다 잘 배향된 구조를 갖는 대면적의 도메인을 얻을 수 있다.The reactive liquid crystal compound refers to a monomer molecule having a liquid crystal phase including a mesogen capable of expressing liquid crystal and a terminal group capable of polymerization. By polymerizing the reactive liquid crystal compound, it is possible to obtain a crosslinked polymer network while maintaining the aligned phase of the liquid crystal. When the reactive liquid crystal compound molecules are cooled from the clearing point, a large area domain having a structure that is better aligned at a relatively low viscosity in the liquid crystal phase may be obtained than when the liquid crystal polymer having the same structure is used.
이와 같이 형성된 λ/4 액정 코팅층은 액정이 가지는 광학 이방성이나 유전율 등의 특성을 그대로 유지하면서도 고체상의 박막 형태를 가지고 있기 때문에 기계적이나 열적으로 안정하다.The λ / 4 liquid crystal coating layer thus formed is mechanically and thermally stable because it has a solid thin film form while maintaining the characteristics such as optical anisotropy and dielectric constant of the liquid crystal.
본 발명의 λ/4 액정 코팅층은 보조 위상차층면에 직접 반응성 액정 화합물을 포함하는 액정 코팅용 조성물을 코팅하여 형성할 수 있다.The λ / 4 liquid crystal coating layer of the present invention may be formed by coating a liquid crystal coating composition containing a reactive liquid crystal compound directly on the auxiliary retardation layer surface.
또한, λ/4 액정 코팅층은 보조 위상차층면에 공지의 접착제로 투명보호필름을 접합하고 상기 투명보호필름면에 직접 반응성 액정 화합물을 포함하는 액정 코팅용 조성물을 코팅하여 형성할 수 있다.In addition, the λ / 4 liquid crystal coating layer may be formed by bonding a transparent protective film to a secondary retardation layer surface using a known adhesive and coating a liquid crystal coating composition including a reactive liquid crystal compound directly on the transparent protective film surface.
코팅 방법은 특별히 한정하지는 않으나 구체적으로 핀 코팅, 롤 코팅, 디스펜싱 코팅 또는 그라비아 코팅 등이 사용될 수 있다. 코팅 방법에 따라 용매의 종류 및 사용량을 결정하는 것이 바람직하다.The coating method is not particularly limited, but specifically, pin coating, roll coating, dispensing coating or gravure coating may be used. It is desirable to determine the type and amount of solvent depending on the coating method.
λ/4 액정 코팅층은 반응성 액정 화합물(RM)을 포함하는 액정 코팅용 조성물을 기재에 도포한 후, 편광된 자외선, 편광된 전자기파 등을 조사하여 광경화시켜 형성할 수 있다.The λ / 4 liquid crystal coating layer may be formed by applying a composition for liquid crystal coating containing a reactive liquid crystal compound (RM) to a substrate, and then irradiating polarized ultraviolet rays, polarized electromagnetic waves, and the like to photocuring them.
λ/4 필름층은 용액제막법 또는 압출성형법으로 필름을 제조하고, 이를 연신하는 것이 바람직하다. 연신은 기계적 흐름방향으로 연신하는 종일축 연신; 기계적 흐름방향에 직교하는 방향으로 연신하는 횡일축 연신(예, 텐터연신); 종 및 횡을 동시에 수행하는 이축연신 등으로 제조될 수 있고, 바람직하게는 경사연신된 필름을 적용하는 것이 좋다.(lambda) / 4 film layer manufactures a film by the solution forming method or the extrusion molding method, and it is preferable to extend this. Stretching is a single-axis stretching stretching in the mechanical flow direction; Transverse uniaxial stretching (eg, tenter stretching) stretching in a direction orthogonal to the mechanical flow direction; It can be produced by biaxial stretching or the like which simultaneously performs longitudinal and transverse, and it is preferable to apply a diagonally stretched film.
편광안경에 포함되는 좌우 λ/4 위상차층은 그 지상축이 편광자의 투과축에 대하여 각각 45°, -45°를 이루도록 배치된다.The left and right λ / 4 phase difference layers included in the polarizing glasses are arranged such that the slow axis forms 45 ° and −45 ° with respect to the transmission axis of the polarizer, respectively.
보조 위상차층은 λ/4 위상차층에 의해 선편광화되지 않은 빛을 선편광으로 변환시켜 크로스 토크를 개선하는 역할을 한다. 특히 편광안경의 경사면에서 입사되는 원편광의 빛은 λ/4 위상차층을 통과하면 타원편광이 되고, 상기 타원편광된 빛에 의해 크로스 토크가 발생된다. 본 발명은 특정의 광학물성을 갖는 보조 위상차층을 사용하여 λ/4 위상차층을 통과한 타원편광된 빛을 선편광으로 변환시킨다.The auxiliary retardation layer serves to improve cross talk by converting light not linearly polarized by the λ / 4 retardation layer into linearly polarized light. In particular, the circularly polarized light incident on the inclined surface of the polarizing glasses becomes elliptical polarization when passing through the λ / 4 retardation layer, and crosstalk is generated by the elliptical polarized light. The present invention converts the elliptically polarized light passing through the λ / 4 retardation layer into linearly polarized light using an auxiliary retardation layer having specific optical properties.
보조 위상차층은 하기 수학식 1의 굴절률비(NZ)가 -0.5<NZ<1이고, 하기 수학식 2의 정면 위상차값(RO)이 50<RO<300인 것을 사용한다. 필름 제조 공정 및 재료 선택의 용이성을 고려하면 0≤NZ<1이 바람직하고, 상기 바람직한 범위의 굴절률비(NZ)에서 위상차 보상을 고려하면 100㎚≤RO≤200㎚인 것이 바람직하다.As the auxiliary retardation layer, the refractive index ratio NZ of Equation 1 below is -0.5 <NZ <1, and the front retardation value RO of Equation 2 below is 50 <RO <300. In consideration of the film manufacturing process and the ease of material selection, 0 ≦ NZ <1 is preferable, and considering the phase difference compensation in the refractive index ratio NZ in the above preferred range, it is preferable that the wavelength is 100 nm ≦ RO ≦ 200 nm.
[수학식 1][Equation 1]
Nz = (Nx - Nz) / (Nx - Ny) =Rth / RO + 0.5Nz = (Nx-Nz) / (Nx-Ny) = Rth / RO + 0.5
(여기서, Nx, Ny는 면상 굴절률로서 Nx ≥ Ny, Nz는 위상차층의 두께 방향 굴절률, d는 위상차층의 두께를 나타냄)Where Nx and Ny are planar refractive indices, where Nx ≥ Ny and Nz are thickness direction refractive indices of the retardation layer, and d represents the thickness of the retardation layer.
[수학식 2][Equation 2]
RO = (Nx - Ny) ×dRO = (Nx-Ny) × d
(여기서, Nx, Ny는 위상차층의 면상 굴절률이고, d는 위상차층의 두께를 나타냄, 이때 Nx ≥ Ny이다)Where Nx and Ny are plane refractive indices of the retardation layer, and d represents the thickness of the retardation layer, where Nx ≥ Ny.
보조 위상차층의 굴절률비(NZ)가 상기 범위를 벗어나는 경우에는 빛의 입사방향에 따른 크로스토크의 발생 범위가 넓어지게 되고, 정면 위상차값(RO)이 상기 범위를 벗어나는 경우에는 위상차값의 균일도를 확보하기 어려운 문제가 있다.When the refractive index ratio NZ of the auxiliary retardation layer is out of the above range, the generation range of crosstalk according to the incident direction of light is widened. When the front retardation value RO is out of the above range, the uniformity of the retardation value is decreased. There is a problem that is difficult to secure.
편광안경의 보조 위상차층은 그 지상축이 편광자의 투과축과 서로 수평(도 1a) 또는 수직(도 1b)을 이루도록 배치된다.The auxiliary retardation layer of the polarizing glasses is arranged such that its slow axis is horizontal (FIG. 1A) or vertical (FIG. 1B) with the transmission axis of the polarizer.
또한 보조 위상차층은 액정 코팅에 의한 것이거나 필름의 연신에 의한 것일 수 있으며, 공정상 필름의 연신에 의한 것이 바람직하다.In addition, the auxiliary retardation layer may be by liquid crystal coating or by stretching of the film, it is preferable that by stretching of the film in the process.
편광자는 당 분야에서 일반적으로 사용되는 것으로 편광기능을 수행할 수 있는 것이면 특별히 한정하지 않는다. 구체적으로 이색성 화합물을 이용한 연신 폴리비닐알콜, 와이어 그리드 및 탄소나노튜브 등이 사용될 수 있다.The polarizer is generally used in the art and is not particularly limited as long as it can perform a polarizing function. Specifically, stretched polyvinyl alcohol, a wire grid and carbon nanotubes using a dichroic compound may be used.
이 중 특히 필름 형태로의 가공이 용이한 연신형태의 편광자는 연신된 폴리비닐알코올계 필름에 이색성 색소가 흡착 배향된 것이다. 편광자를 구성하는 폴리비닐알코올계 수지는 폴리아세트산비닐계 수지를 비누화함으로써 제조될 수 있다.Among these, the stretched polarizer of which the form-type polarizer is easy to process into a film form is a dichroic dye adsorbed and oriented to the stretched polyvinyl alcohol-based film. The polyvinyl alcohol-based resin constituting the polarizer can be produced by saponifying a polyvinyl acetate-based resin.
폴리아세트산비닐계 수지의 예로는, 아세트산 비닐의 단독 중합체인 폴리아세트산 비닐 이외에, 아세트산비닐 및 이와 공중합 가능한 다른 단량체와의 공중합체 등을 들 수 있다. 아세트산비닐과 공중합 가능한 다른 단량체의 구체적인 예로는 불포화 카르복시산류, 불포화 술폰산류, 올레핀류, 비닐에테르류, 암모늄기를 갖는 아크릴아미드류 등을 들 수 있다. 또한, 폴리비닐알코올계 수지는 변성된 것일 수도 있는데, 예를 들면 알데히드류로 변성된 폴리비닐포르말 또는 폴리비닐아세탈 등도 사용할 수 있다. 폴리비닐알코올계 수지의 비누화도는 통상 85 내지 100몰%, 바람직하게는 98몰% 이상일 수 있다. 또한, 폴리비닐알코올계 수지의 중합도는 통상 1,000 내지 10,000, 바람직하게는 1,500 내지 5,000이다.As an example of polyvinyl acetate type resin, the copolymer etc. with vinyl acetate and the other monomer copolymerizable with this besides the polyvinyl acetate which is a homopolymer of vinyl acetate are mentioned. Specific examples of the other monomer copolymerizable with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins, vinyl ethers, acrylamides having an ammonium group, and the like. In addition, the polyvinyl alcohol-based resin may be modified, for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used. The degree of saponification of the polyvinyl alcohol-based resin may be 85 to 100 mol%, preferably 98 mol% or more. In addition, the degree of polymerization of the polyvinyl alcohol-based resin is usually 1,000 to 10,000, preferably 1,500 to 5,000.
편광자는 어느 한 면 이상에 투명보호필름이 접합될 수 있다. 일례로 도 2와 같이 λ/4 위상차층, 보조 위상차층, 편광자 및 투명보호필름으로 구성될 수 있다.The polarizer may be bonded to the transparent protective film on any one or more surfaces. For example, as shown in FIG. 2, a λ / 4 retardation layer, an auxiliary retardation layer, a polarizer, and a transparent protective film may be formed.
투명보호필름은 투명성, 기계적 강도, 열안정성, 수분차폐성, 등방성 등에서 우수한 필름이 사용될 수 있다. 구체적인 예로는, 폴리에틸렌테레프탈레이트, 폴리에틸렌이소프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르계 수지; 디아세틸셀룰로오스, 트리아세틸셀룰로오스 등의 셀룰로오스계 수지; 폴리카보네이트계 수지; 폴리메틸(메타)아크릴레이트, 폴리에틸(메타)아크릴레이트 등의 아크릴계 수지; 폴리스티렌, 아크릴로니트릴-스티렌 공중합체 등의 스티렌계 수지; 폴리에틸렌, 폴리프로필렌, 시클로계 또는 노보넨 구조를 갖는 폴리올레핀, 에틸렌-프로필렌 공중합체 등의 폴리올레핀계 수지; 염화비닐계 수지; 나일론, 방향족 폴리아미드 등의 아미드계 수지; 이미드계 수지; 폴리에테르술폰계 수지; 술폰계 수지; 폴리에테르술폰계 수지; 폴리에테르에테르케톤계 수지; 황화 폴리페닐렌계 수지; 비닐알콜계 수지; 염화비닐리덴계 수지; 비닐부티랄계 수지; 알릴레이트계 수지; 폴리옥시메틸렌계 수지; 에폭시계 수지 등과 같은 열가소성 수지로 구성된 필름을 들 수 있으며, 상기 열가소성 수지의 블렌드물로 구성된 필름도 사용할 수 있다. 또한, (메타)아크릴계, 우레탄계, 아크릴우레탄계, 에폭시계, 실리콘계 등의 열경화성 수지 또는 자외선 경화형 수지로 된 필름을 이용할 수도 있다.As the transparent protective film, a film excellent in transparency, mechanical strength, thermal stability, moisture shielding, isotropy, and the like may be used. Specific examples include polyester resins such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate and polybutylene terephthalate; Cellulose resins such as diacetyl cellulose and triacetyl cellulose; Polycarbonate resins; Acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; Styrene resins such as polystyrene and acrylonitrile-styrene copolymers; Polyolefin-based resins such as polyethylene, polypropylene, cyclo-based or norbornene-structured polyolefins, ethylene-propylene copolymers; Vinyl chloride-based resins; Amide resins such as nylon and aromatic polyamides; Imide resin; Polyether sulfone resin; Sulfone resins; Polyether sulfone resin; Polyether ether ketone resins; Sulfided polyphenylene resins; Vinyl alcohol-based resins; Vinylidene chloride-based resins; Vinyl butyral resin; Allyl resins; Polyoxymethylene resin; And films composed of thermoplastic resins such as epoxy resins, and the like, and films composed of blends of the above thermoplastic resins may also be used. Moreover, the film of thermosetting resin or ultraviolet curable resin, such as (meth) acrylic-type, urethane type, acrylurethane type, epoxy type, and silicone type, can also be used.
투명보호필름 중의 상기 열가소성 수지의 함량은 50 내지 100중량%, 바람직하게는 50 내지 99중량%, 보다 바람직하게는 60 내지 98중량%, 가장 바람직하게는 70 내지 97중량%인 것이 좋다. 그 함량이 50중량% 미만인 경우에는 열가소성 수지가 가지고 있는 본래의 고투명성을 충분히 발현하지 못할 수 있다.The content of the thermoplastic resin in the transparent protective film is 50 to 100% by weight, preferably 50 to 99% by weight, more preferably 60 to 98% by weight, most preferably 70 to 97% by weight. If the content is less than 50% by weight, it may not sufficiently express the original high transparency possessed by the thermoplastic resin.
이러한 투명보호필름은 적절한 1종 이상의 첨가제가 함유된 것일 수도 있다. 첨가제로는, 예를 들어 자외선흡수제, 산화방지제, 윤활제, 가소제, 이형제, 착색방지제, 난연제, 핵제, 대전방지제, 안료, 착색제 등을 들 수 있다.Such a transparent protective film may be one containing an appropriate one or more additives. As an additive, a ultraviolet absorber, antioxidant, a lubricating agent, a plasticizer, a mold release agent, a coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, a coloring agent, etc. are mentioned, for example.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
실시예 1Example 1
도 1a와 같이, 원편광의 빛을 선편광으로 변환시키기 위한 λ/4 위상차층, 상기 λ/4 위상차층에 의해 선편광화되지 않은 빛을 선편광으로 변환시키기 위한 보조 위상차층 및 상기 보조 위상차층으로부터 출사된 빛을 통과시키는 편광자를 포함하는 편광안경을 제조하였다.As shown in FIG. 1A, the light is emitted from a lambda / 4 phase difference layer for converting light of circularly polarized light into linearly polarized light, an auxiliary phase difference layer for converting light not linearly polarized by the lambda / 4 phase difference layer, and linearly polarized light. The polarizing glasses including the polarizer for passing the light was prepared.
보조 위상차층은 굴절률비(NZ)가 0.5이고 정면 위상차값(RO)이 200㎚이고, 연신하여 제조된 필름을 사용하였다. λ/4 위상차층은 보조 위상차층상에 반응성 액정 화합물 용액(Merck사, RMS03-013)을 코팅하여 형성하였다.The auxiliary retardation layer had a refractive index ratio (NZ) of 0.5 and a front retardation value (RO) of 200 nm, and was prepared by stretching a film. The λ / 4 retardation layer was formed by coating a reactive liquid crystal compound solution (Merck, RMS03-013) on the auxiliary retardation layer.
편광안경 좌우에 배치된 λ/4 위상차층의 지상축은 각각 시계방향으로 45°와 반시계 방향으로 45° 위치하며, 편광자의 흡수축과 보조 위상차층의 지상축이 서로 평행하도록 구성하였다.The slow axes of the λ / 4 retardation layers arranged on the left and right sides of the polarizing glasses are 45 ° clockwise and 45 ° counterclockwise, respectively, and the absorption axis of the polarizer and the slow axis of the auxiliary retardation layer are parallel to each other.
도 3은 편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도를 나타낸 것이다. 이때 입사되는 빛은 550nm의 단파장을 사용하였으며, 투과도 2%를 초과한 부위는 붉은 색, 투과도가 낮은 부위는 파란색으로 표시된다.Figure 3 shows the visibility transmittance of the light measured in the black (black) after passing the light of the circularly polarized light incident in all directions with respect to the polarizing glasses surface. At this time, the incident light used short wavelength of 550nm, and the area exceeding 2% transmittance is indicated by red color, and the low transmittance part is indicated by blue color.
도 3과 같이, 편광안경 면에 대하여 수직인 방향에서부터 약 45°기울어진 방향이내(정면을 볼 때 눈의 상하 시야각 범위)에서는 파란색으로 투과도가 낮음을 확인할 수 있다. 투과도가 낮다는 것은 원편광된 빛이 선편광으로 변환되어 크로스 토크가 발생되지 않음을 의미한다. As shown in FIG. 3, it can be seen that the transmittance is low in blue within a direction inclined about 45 ° from the direction perpendicular to the polarizing glasses surface (up and down viewing angle range of the eye when viewed from the front). The low transmittance means that circularly polarized light is converted into linearly polarized light so that no crosstalk is generated.
실시예 2Example 2
상기 실시예 1과 동일하게 실시하되, 도 2와 같이 편광자의 관측자측 면에 트리아세틸셀룰로오스(TAC)필름을 접합하여 편광안경을 제조하였다.In the same manner as in Example 1, but was bonded to a triacetyl cellulose (TAC) film on the observer side of the polarizer as shown in Figure 2 to prepare a polarizing glasses.
편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도는 도 3과 동일하였다.The light transmittance of the light measured in the black state after passing the light of circularly polarized light incident in all directions with respect to the polarizing glasses surface was the same as that of FIG. 3.
실시예 3Example 3
상기 실시예 1과 동일하게 실시하되, 굴절률비(NZ)가 0이고 정면 위상차값(RO)이 100㎚인 보조 위상차층을 사용하여 편광안경을 제조하였다.In the same manner as in Example 1, Polarizing glasses were manufactured using an auxiliary retardation layer having a refractive index ratio NZ of 0 and a front retardation value RO of 100 nm.
도 4는 편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도로, 빛샘이 없어 크로스 토크가 발생되지 않음을 확인할 수 있다.FIG. 4 is a light transmittance of light measured in a black state after passing circularly polarized light incident in all directions with respect to the polarizing glasses surface, and no black light is generated. Can be confirmed.
실시예 4Example 4
상기 실시예 1과 동일하게 실시하되, 굴절률비(NZ)가 -0.5이고 정면 위상차값(RO)이 100㎚인 보조 위상차층을 사용하여 편광안경을 제조하였다.In the same manner as in Example 1, Polarizing glasses were prepared using an auxiliary retardation layer having a refractive index ratio (NZ) of -0.5 and a front retardation value (RO) of 100 nm.
도 5는 편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도로, 빛샘이 없어 크로스 토크가 발생되지 않음을 확인할 수 있다.FIG. 5 is a light transmittance of light measured in a black state after passing circularly polarized light incident from all directions with respect to the polarizing glasses surface, and no black light is generated. Can be confirmed.
실시예 5Example 5
상기 실시예 1과 동일하게 실시하되, 굴절률비(NZ)가 -0.5이고 정면 위상차값(RO)이 250㎚인 보조 위상차층을 사용하여 편광안경을 제조하였다.In the same manner as in Example 1, Polarizing glasses were manufactured using an auxiliary retardation layer having a refractive index ratio (NZ) of -0.5 and a front retardation value (RO) of 250 nm.
도 6은 편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도로, 빛샘이 없어 크로스 토크가 발생되지 않음을 확인할 수 있다.FIG. 6 is a transmissivity of light measured in a black state after passing circularly polarized light incident in all directions with respect to the polarizing glasses surface, and no black light is generated. Can be confirmed.
비교예 1Comparative Example 1
상기 실시예 1과 동일하게 실시하되, 보조 위상차층을 제외하고 편광안경을 제조하였다.In the same manner as in Example 1, except that the auxiliary retardation layer to prepare a polarizing glasses.
도 7은 편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도로, 빛샘에 의해 크로스 토크가 발생됨을 확인할 수 있다.FIG. 7 is a view through which light of circularly polarized light incident in all directions with respect to the polarizing glasses surface is passed through the polarizing glasses prepared above, and measured in the black state, and crosstalk is generated by light leakage. You can check it.
비교예 2Comparative Example 2
상기 실시예 1과 동일하게 실시하되, 굴절률비(NZ)가 -0.5이고 정면 위상차값(RO)이 300㎚인 보조 위상차층을 사용하여 편광안경을 제조하였다.The polarizing glasses were manufactured in the same manner as in Example 1, but using an auxiliary phase difference layer having a refractive index ratio (NZ) of -0.5 and a front phase difference value (RO) of 300 nm.
도 8은 편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도로, 빛샘에 의해 크로스 토크가 발생됨을 확인할 수 있다.FIG. 8 is a view through which the circular polarized light incident in all directions with respect to the polarizing glasses surface passes through the polarizing glasses prepared above, and the visibility of the light measured in the black state is generated. You can check it.
비교예 3Comparative Example 3
상기 실시예 1과 동일하게 실시하되, 굴절률비(NZ)가 1이고 정면 위상차값(RO)이 50㎚인 보조 위상차층을 사용하여 편광안경을 제조하였다.The polarizing glasses were manufactured in the same manner as in Example 1, but using an auxiliary phase difference layer having a refractive index ratio NZ of 1 and a front phase difference value RO of 50 nm.
도 9는 편광안경 면에 대하여 전 방향에서 입사된 원편광의 빛을 상기에서 제조된 편광안경에 통과시킨 후 암(black)상태에서 측정된 빛의 시감도 투과도로, 빛샘에 의해 크로스 토크가 발생됨을 확인할 수 있다.FIG. 9 is a transmissivity of light measured in a black state after passing circularly polarized light incident in all directions with respect to the polarizing glasses surface, and black cross-talk is generated by light leakage. You can check it.
Claims (6)
- 원편광의 빛을 선편광으로 변환시키기 위한 λ/4 위상차층, 상기 λ/4 위상차층에 의해 선편광화되지 않은 빛을 선편광으로 변환시키기 위한 보조 위상차층, 및 상기 보조 위상차층으로부터 출사된 빛을 통과시키는 편광자를 포함하고, 상기 보조 위상차층은 -0.5<NZ<1이고 50nm<RO<300nm인 광학 특성을 갖는 것인 편광안경.Passing a λ / 4 retardation layer for converting circularly polarized light into linearly polarized light, an auxiliary retardation layer for converting light not linearly polarized by the λ / 4 retardation layer into linearly polarized light, and light emitted from the auxiliary retardation layer And a polarizer, wherein the auxiliary retardation layer has optical properties of -0.5 <NZ <1 and 50nm <RO <300nm.
- 청구항 1에 있어서, 상기 보조 위상차층은 0≤NZ<1이고, 100nm<RO<250nm인 편광안경.The polarizing glasses of claim 1, wherein the auxiliary retardation layer is 0 ≦ NZ <1 and 100 nm <RO <250 nm.
- 청구항 2에 있어서, 상기 보조 위상차층의 지상축은 편광자의 투과축과 서로 평행 또는 수직으로 배치된 편광안경.The polarizing glasses of claim 2, wherein the slow axis of the auxiliary retardation layer is disposed in parallel or perpendicular to the transmission axis of the polarizer.
- 청구항 1에 있어서, 상기 λ/4 위상차층은 액정 코팅에 의한 것이거나 필름의 연신에 의한 것인 편광안경.The polarizing glasses of claim 1, wherein the λ / 4 retardation layer is by liquid crystal coating or by stretching of a film.
- 청구항 4에 있어서, 액정 코팅층은 반응성 액정 화합물(RM)을 포함하는 것인 편광안경.The polarizing glasses of claim 4, wherein the liquid crystal coating layer comprises a reactive liquid crystal compound (RM).
- 청구항 1에 있어서, 편광자의 어느 한 면에 투명 보호필름이 접합된 편광안경.The polarizing glasses of claim 1, wherein a transparent protective film is bonded to one surface of the polarizer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100066315A KR20120005711A (en) | 2010-07-09 | 2010-07-09 | Polarizing eyeglasses |
KR10-2010-0066315 | 2010-07-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012005455A2 true WO2012005455A2 (en) | 2012-01-12 |
WO2012005455A3 WO2012005455A3 (en) | 2012-04-05 |
Family
ID=45441616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/004476 WO2012005455A2 (en) | 2010-07-09 | 2011-06-20 | Polarizing glasses |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20120005711A (en) |
TW (1) | TW201202783A (en) |
WO (1) | WO2012005455A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112505817A (en) * | 2020-12-14 | 2021-03-16 | 深圳市盛波光电科技有限公司 | Polarizer for near-to-eye display and display device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140074171A (en) * | 2012-12-07 | 2014-06-17 | 동우 화인켐 주식회사 | Polarizing plate and liquid crystal comprising the same display |
WO2014088273A1 (en) * | 2012-12-07 | 2014-06-12 | 동우화인켐 주식회사 | Polarizing plate, and liquid crystal display device including same |
CN111781170A (en) * | 2019-04-03 | 2020-10-16 | 阳程科技股份有限公司 | Polarized light alignment detection device and detection method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060047388A (en) * | 2004-04-26 | 2006-05-18 | 스미또모 가가꾸 가부시키가이샤 | A laminate polarizing plate, a method of producing the same and a liquid crystal display |
KR20060092048A (en) * | 2005-02-16 | 2006-08-22 | 주식회사 엘지화학 | A retardation film having a homeotropic alignment liquid crystal film and method for preparing the same |
KR20090117641A (en) * | 2008-05-09 | 2009-11-12 | 동우 화인켐 주식회사 | In-plane switching liquid crystal display comprising biaxial retardation film with negative refractive property and biaxial retardation film with positive refractive property |
KR20100022919A (en) * | 2008-08-20 | 2010-03-03 | 동우 화인켐 주식회사 | Twist nematic liquid crystal display with wideviewing |
-
2010
- 2010-07-09 KR KR1020100066315A patent/KR20120005711A/en not_active Application Discontinuation
-
2011
- 2011-06-20 WO PCT/KR2011/004476 patent/WO2012005455A2/en active Application Filing
- 2011-06-29 TW TW100122896A patent/TW201202783A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060047388A (en) * | 2004-04-26 | 2006-05-18 | 스미또모 가가꾸 가부시키가이샤 | A laminate polarizing plate, a method of producing the same and a liquid crystal display |
KR20060092048A (en) * | 2005-02-16 | 2006-08-22 | 주식회사 엘지화학 | A retardation film having a homeotropic alignment liquid crystal film and method for preparing the same |
KR20090117641A (en) * | 2008-05-09 | 2009-11-12 | 동우 화인켐 주식회사 | In-plane switching liquid crystal display comprising biaxial retardation film with negative refractive property and biaxial retardation film with positive refractive property |
KR20100022919A (en) * | 2008-08-20 | 2010-03-03 | 동우 화인켐 주식회사 | Twist nematic liquid crystal display with wideviewing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112505817A (en) * | 2020-12-14 | 2021-03-16 | 深圳市盛波光电科技有限公司 | Polarizer for near-to-eye display and display device |
Also Published As
Publication number | Publication date |
---|---|
KR20120005711A (en) | 2012-01-17 |
TW201202783A (en) | 2012-01-16 |
WO2012005455A3 (en) | 2012-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101872781B1 (en) | Liquid Crystal Panel and Polarizer Laminate used in said Liquid Crystal Panel | |
WO2015012483A1 (en) | Anti-reflective polarizing plate and image display apparatus including same | |
KR102057611B1 (en) | Inverse dispertion phase retardation film and display having the same | |
CN103869401B (en) | Polarization plates and preparation method thereof and the liquid crystal display including it | |
WO2011067993A1 (en) | Liquid crystal display device | |
CN110249244B (en) | Optically anisotropic laminate, circularly polarizing plate, and image display device | |
WO2016159671A1 (en) | Liquid-crystal element | |
WO2019188205A1 (en) | Optical anisotropic layered body, polarizing plate, and image display device | |
WO2012005455A2 (en) | Polarizing glasses | |
KR102028236B1 (en) | Retardation film and liquid crystal display comprising the same | |
KR102239679B1 (en) | Liquid crystal display | |
KR20160112380A (en) | Liquid crystal panel and liquid crystal display devices comprising the same | |
WO2019209029A1 (en) | Optical device and use thereof | |
KR20150033623A (en) | Retardation film for in-plane swiching mode liquid crystal display and liquid crystal display comprising the same | |
WO2016159672A1 (en) | Liquid crystal device | |
KR102369639B1 (en) | Display Device | |
TWI841713B (en) | Phase difference film, polarizing plate and image display device | |
KR20140000431A (en) | Retardation film and liquid crystal display including the same | |
KR20130005774A (en) | Retardation film for in-plane swiching mode liquid crystal display and liquid crystal display comprising the same | |
KR20100037033A (en) | Liquid crystal display device | |
KR101694871B1 (en) | Stereoscopic image system | |
TWI845771B (en) | LCD display device | |
WO2015046936A1 (en) | Optical film and method for manufacturing same | |
KR20110074208A (en) | Polarizing plate and liquid crystal comprising the same display | |
WO2012026693A2 (en) | Method for manufacturing a phase contrast film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11803741 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11803741 Country of ref document: EP Kind code of ref document: A2 |