WO2012005251A1 - Continuous process for the production of branched polycarbonate - Google Patents

Continuous process for the production of branched polycarbonate Download PDF

Info

Publication number
WO2012005251A1
WO2012005251A1 PCT/JP2011/065384 JP2011065384W WO2012005251A1 WO 2012005251 A1 WO2012005251 A1 WO 2012005251A1 JP 2011065384 W JP2011065384 W JP 2011065384W WO 2012005251 A1 WO2012005251 A1 WO 2012005251A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
molecular weight
polymerization
branched
polymerization vessel
Prior art date
Application number
PCT/JP2011/065384
Other languages
French (fr)
Japanese (ja)
Inventor
八谷 広志
宗明 網中
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to KR1020137000388A priority Critical patent/KR101458725B1/en
Priority to CN201180031472.8A priority patent/CN102958976B/en
Priority to JP2012523880A priority patent/JP5284540B2/en
Priority to EA201390078A priority patent/EA022372B1/en
Publication of WO2012005251A1 publication Critical patent/WO2012005251A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a continuous production method of a branched polycarbonate by a transesterification method.
  • Polycarbonate is an engineering plastic with excellent mechanical strength such as transparency, heat resistance and impact strength, and is widely used in industrial applications such as optical discs, electrical and electronic fields, and automobiles.
  • industrial applications such as optical discs, electrical and electronic fields, and automobiles.
  • a branched polycarbonate in the transesterification method, can be produced by melt-reacting an aromatic dihydroxy compound, diphenyl carbonate and a polyfunctional compound as a branching agent in the presence of a catalyst.
  • a catalyst it is difficult to industrially obtain a good branched polycarbonate simply by reacting, and the following methods [1] to [3] have been proposed for the improvement.
  • Patent Documents 2 to 4 A method for reducing the Corbeschmitt-type branched structure that naturally occurs in the melting reaction process by using a specific catalyst (Patent Documents 2 to 4), or a method for improving the hue by using a specific catalyst (patents) Document 5), a method using a polyfunctional compound having a specific structure as a branching agent (Patent Documents 6 to 8).
  • the polycarbonate obtained by the production method [1] has improved hue, it has many fish eyes and is inferior in hot water resistance.
  • a branching agent is added together with an aromatic dihydroxy compound and diphenyl carbonate to the process of producing a linear polycarbonate, when switching from a branched polycarbonate to a linear polycarbonate, a linear chain produced later is produced. Fish eyes are generated in polycarbonate. In order to remove this adverse effect, there is a big problem that it takes a lot of time to change the brand, or it is necessary to stop production and clean the production equipment.
  • the branching agent is not added to the polymerization step, so the above problem at the time of switching the brand is solved.
  • the obtained branched polycarbonate has a lot of fish eyes and a decrease in hot water resistance is also observed. There is a problem that high-quality polycarbonate cannot be stably produced.
  • the production method [3] has the advantage of not adding a branching agent, it is difficult to stably produce a rearrangement reaction, which is a side reaction, and even unnecessary side reactions. Occurs, causing problems such as deterioration of hue, fish eye, and a decrease in hot water resistance, and there is also a problem of loss at the time of brand switching.
  • the present invention has been made in view of the above circumstances, and can reduce loss at the time of brand switching, and is excellent in hue and hot water resistance, and produces a branched polycarbonate with less fish eyes by a transesterification method. It aims at providing the continuous manufacturing method of a polycarbonate.
  • the present invention includes (A) a step of producing a low molecular weight polycarbonate having a number average molecular weight of 1000 to 10,000 by an ester exchange method from an aromatic dihydroxy compound and a carbonic acid diester; and (B) a liquid containing a polyfunctional compound in the low molecular weight polycarbonate.
  • a branched polycarbonate comprising: a step of adding and mixing in a state; and (C) a step of continuously producing a branched polycarbonate by performing a polymerization reaction until the melt index of the low molecular weight polycarbonate is 10 g / 10 min or less and the branching index is 14 or more.
  • a continuous manufacturing method is provided. According to this method, it is possible to reduce a loss at the time of brand switching, and it is possible to continuously produce a branched polycarbonate excellent in hue and hot water resistance and having little fish eye by a transesterification method.
  • the range of ⁇ T (° C.) defined by the following formula (I) is preferably ⁇ 20 ° C. to 20 ° C. or less.
  • the said effect of this invention is further show
  • ⁇ T T 2 ⁇ T 1 (I) [Wherein T 1 represents the temperature (° C.) of the low molecular weight polycarbonate introduced into the final polymerization vessel in the step (C), and T 2 represents a branched polycarbonate polymerized by the final polymerization vessel in the step (C). The T 2 is 285 ° C. or lower. ]
  • the polyfunctional compound is added to a melt mixer installed in the middle of the pipe between the device for performing the step (A) and the device for performing the step (C) in a state dissolved in a solvent.
  • the said effect of this invention is further show
  • the solvent is at least selected from the group consisting of phenols, carbonic acid diesters, ketones, ethers, mixtures and reactants of aromatic dihydroxy compounds and carbonic acid diesters, and low molecular weight polycarbonates having a number average molecular weight of 5000 or less.
  • One type is preferable. Thereby, the said effect of this invention is further show
  • the solvent is preferably a depolymerization solvent.
  • the “depolymerization solvent” refers to a solvent that causes depolymerization of polycarbonate.
  • the present invention can further include (D) a step of producing a polycarbonate by performing a polymerization reaction until the melt index becomes 100 g / 10 min or less, following the step (A).
  • a step of producing a polycarbonate by performing a polymerization reaction until the melt index becomes 100 g / 10 min or less following the step (A).
  • loss at the time of brand switching can be reduced, and a plurality of types of polycarbonates including branched polycarbonates having excellent hue and hot water resistance and few fish eyes can be produced continuously by a transesterification method. Can do.
  • the apparatus that performs the process (A) performs the process (C) via a pipe having a branch portion that branches to lead to the apparatus that performs the process (C) and the apparatus that performs the process (D). It is connected with the apparatus and the apparatus which performs (D) process,
  • the said polyfunctional compound may be added to the melt mixer installed in the middle of the piping between a branch part and the apparatus which performs (C) process. it can. Thereby, the said effect of this invention is further show
  • the present invention also provides a branched polycarbonate produced by the above method.
  • This branched polycarbonate is excellent in hue and hot water resistance and has less fish eyes.
  • branched polycarbonate which can reduce a loss at the time of brand switching, and produce a branched polycarbonate having excellent hue and hot water resistance and less fish eye by a transesterification method. Can do.
  • a branched polycarbonate can be produced from an aromatic dihydroxy compound, a carbonic acid diester, and a polyfunctional compound by a transesterification method.
  • the aromatic dihydroxy compound is, for example, a compound represented by HO—Ar—OH.
  • Ar is a divalent aromatic residue, for example, a divalent aromatic residue represented by phenylene, naphthylene, biphenylene, pyridylene, or —Ar 1 —Y—Ar 2 —.
  • Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms
  • Y represents a divalent alkylene having 1 to 30 carbon atoms. Indicates a group.
  • one or more hydrogen atoms bonded to the aromatic ring are other substituents that do not adversely influence the reaction, for example, an alkyl group having 1 to 10 carbon atoms Substituted with a cycloalkyl group having 5 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a phenyl group, a phenoxy group, a vinyl group, a cyano group, an ester group, an amide group, a nitro group, etc. May be.
  • the heterocyclic aromatic group include heterocyclic aromatic groups having one or more nitrogen atoms, oxygen atoms or sulfur atoms constituting the ring.
  • Ar 1 and Ar 2 are each preferably substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted pyridylene, and the like.
  • the divalent alkylene group Y is, for example, an organic group represented by the following general formula.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or 5 to 5 carbon atoms constituting the ring
  • 10 represents a cycloalkyl group, a carbocyclic aromatic group having 5 to 10 carbon atoms constituting the ring, or a carbocyclic aralkyl group having 6 to 10 carbon atoms, k represents an integer of 3 to 11
  • R 5 and R 6 are individually selected for each X and independently of each other represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, X represents carbon, and R 1 , R 2 , R 3 , In R 4 , R 5 , and R 6 , one or more hydrogen atoms may be other substituents, for example, an alkyl group having 1 to 10
  • Examples of the divalent aromatic residue Ar having a substituent as described above include those represented by the following general formula.
  • R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms constituting the ring, or M and n each represent an integer of 1 to 4, and when m is 2 to 4, each R 7 may be the same or different. When n is 2 to 4, each R 8 is Each may be the same or different.
  • the divalent aromatic residue Ar may be represented by —Ar 1 —Z—Ar 2 —.
  • Ar 1 and Ar 2 are as described above, and Z is a single bond or —O—, —CO—, —S—, —SO 2 —, —SO—, —COO—, —CON (R 1 ) —, etc.
  • R 1 is as described above.
  • the aromatic dihydroxy compound used in this embodiment may be used alone or in combination of two or more.
  • a typical example of the aromatic dihydroxy compound is bisphenol A.
  • bisphenol A When used together with other aromatic dihydroxy compounds, bisphenol A is used in a proportion of 85 mol% or more based on the total amount of the aromatic dihydroxy compounds. It is preferable to use it.
  • These aromatic dihydroxy compounds preferably have a low content of chlorine atoms and alkali or alkaline earth metal, and are preferably not substantially contained if possible.
  • the carbonic acid diester used in the present embodiment is, for example, a compound represented by the following general formula. (In the formula, Ar 3 and Ar 4 each represent a monovalent aromatic group.)
  • the monovalent aromatic groups Ar 3 and Ar 4 are preferably a phenyl group, a naphthyl group, a biphenyl group, and a pyridyl group.
  • one or more hydrogen atoms bonded to the aromatic ring are other substituents that do not adversely influence the reaction, for example, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms , Phenyl group, phenoxy group, vinyl group, cyano group, ester group, amide group, nitro group and the like.
  • Ar 3 and Ar 4 may be the same as or different from each other.
  • Ar 3 and Ar 4 include groups represented by the following formulas.
  • carbonic acid diesters include substituted or unsubstituted diphenyl carbonates represented by the following general formula.
  • R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms constituting the ring, or Represents a phenyl group
  • p and q represent an integer of 1 to 5
  • each R 9 may be different when p is 2 or more
  • each R 10 may be different when q is 2 or more.
  • carbonic acid diesters symmetric diaryl carbonates such as unsubstituted diphenyl carbonate and lower alkyl-substituted diphenyl carbonates such as ditolyl carbonate and di-t-butylphenyl carbonate are preferable, and diphenyl carbonate is more preferable.
  • These carbonic acid diesters may be used alone or in combination of two or more.
  • these carbonic acid diesters preferably have a low content of chlorine atoms and alkali or alkaline earth metals, and preferably do not substantially contain them.
  • the use ratio (feed ratio) of the aromatic dihydroxy compound and the carbonic acid diester varies depending on the kind of the aromatic dihydroxy compound and the carbonic acid diester used, the target molecular weight, the hydroxyl group terminal ratio, the polymerization conditions, etc., and is not particularly limited.
  • the carbonic acid diester is preferably 0.9 to 2.5 mol, more preferably 0.95 to 2.0 mol, still more preferably 0.98 to 1.5 mol with respect to 1 mol of the aromatic dihydroxy compound. Used.
  • An aromatic monohydroxy compound may be used in combination for terminal conversion and molecular weight adjustment.
  • the polyfunctional compound used in the present embodiment is a compound having three or more functional groups reactive to the carbonic acid diester in the molecule, and having three or more phenolic hydroxyl groups and / or carboxyl groups. Is preferred.
  • Examples of the polyfunctional compound include 1,1,1-tris (4-hydroxyphenyl) ethane, 4- [4- [1,1-bis (4-hydroxyphenyl) ethyl] - ⁇ , ⁇ -dimethylbenzyl].
  • the amount of the polyfunctional compound used is preferably from 0.1 to 0.95 mol%, more preferably from 0.2 to 0.8 mol%, particularly preferably from 0.1 to 0.9 mol% based on the aromatic dihydroxy compound. 3 to 0.6 mol%.
  • the amount of the polyfunctional compound used is 0.95 mol% or less, it is difficult for fish eyes to increase, and when it is 0.1 mol% or more, the melt tension can be increased.
  • the transesterification method is a method in which the above compound is polycondensed in a transesterification reaction in a molten state with heating in the presence or absence of a catalyst, under reduced pressure and / or inert gas flow, and the polymerization.
  • the apparatus include a stirred tank reactor, a thin film reactor, a centrifugal thin film evaporation reactor, a surface renewal type biaxial kneading reactor, a biaxial horizontal stirring reactor, a wet wall reactor, and a polymerization while allowing it to fall freely.
  • a perforated plate reactor For example, a perforated plate reactor, a perforated plate reactor with wire that is polymerized while being dropped along the wire, and the like are used.
  • the polycondensation reaction can be advanced stepwise to produce the target polycarbonate.
  • a molten prepolymer having a low molecular weight is produced in a stirred tank reactor, and the obtained molten prepolymer is polymerized while being dropped along a perforated plate reactor and a wire that are polymerized while freely dropping. It is preferred to further polymerize using a wire contact flow polymerizer.
  • a wire contact flow type polymerization vessel excellent in substitution efficiency with little loss after switching.
  • the material of these reactors is not particularly limited, but the material constituting at least the inner wall surface of the reactor is usually selected from stainless steel, nickel, glass and the like.
  • the temperature at which the melt polycondensation is carried out in the transesterification reaction is preferably 50 to 320 ° C.
  • an aromatic monohydroxy compound is produced, and the reaction rate can be increased by removing this from the reaction system. Therefore, nitrogen, argon, helium, carbon dioxide, lower hydrocarbon gas, and other inert gases that do not adversely affect the reaction are introduced, and the resulting aromatic monohydroxy compounds are removed by accompanying these gases. And a method of reacting under reduced pressure are preferably used.
  • the preferred reaction pressure varies depending on the molecular weight of the product, and is preferably 10 mmHg to normal pressure in the early stage of polymerization, preferably 20 mmHg or less, particularly preferably 10 mmHg or less, and particularly preferably 5 mmHg or less in the final polymerization vessel.
  • the continuous production method of the branched polycarbonate of the present embodiment includes (A) a step of producing a low molecular weight polycarbonate having a number average molecular weight of 1000 to 10,000 by an ester exchange method from an aromatic dihydroxy compound and a carbonic acid diester, and (B) a low molecular weight. It comprises a step of adding and mixing a polyfunctional compound in a polycarbonate in a liquid state, and (C) a step of performing a polymerization reaction until the melt index (MI) of the low molecular weight polycarbonate is 10 g / 10 min or less and the MIR is 14 or more.
  • MI melt index
  • the branched polycarbonate production system shown in FIG. 1 includes a first stirring polymerization step having stirring tank type first polymerization units 3A and 3B, a second stirring polymerization step having stirring tank type second polymerization unit 3C, and a stirring tank type.
  • a third agitation polymerization step having a third polymerization vessel 3D, a first wire contact flow-down polymerization step having a wire contact flow-down type first polymerization vessel 108A, and a first having a wire contact flow-down second polymerization vessel 108B. It consists of a two-wire contact flow polymerization process.
  • the process is a process from 3A and 3B to 3C, 3D, and 108A.
  • Stirrer tank type polymerizers 3A to 3D respectively include polymerization raw material inlets 1A and 1B or prepolymer inlets 1C and 1D, vent ports 2A to 2D, outlets 5A to 5D, and stirrers 6A to 6A having anchor type stirring blades. 6D is provided.
  • An aromatic dihydroxy compound and a carbonic acid diester among the polymerization raw materials are charged into the stirring tank type first polymerization devices 3A and 3B installed in parallel, and the first stirring polymerization process is performed in a batch manner.
  • a polymerization catalyst is added at this stage, but it may be added in a subsequent process.
  • the produced melted prepolymers 4A and 4B are introduced from the prepolymer inlet 1C into the stirring tank type second polymerization vessel 3C through a transfer pipe.
  • the molten prepolymer 4C which has been polymerized in the second stirring polymerization step is pushed out by a transfer pump 7C provided at the outlet 5C of the stirring tank type second polymerization device 3C, and is stirred through the transfer pipe.
  • 3D is charged from the prepolymer inlet 1D.
  • the second and third stirred polymerization steps are performed continuously.
  • the molten prepolymer 4D generated in the third stirring polymerization step is pushed out from the outlet 5D of the stirring tank type third polymerization vessel 3D by the transfer pump 7D and transferred to the wire contact flow type first polymerization vessel 108A through the transfer pipe.
  • the first and second wire contact flow type polymerization processes are continuously performed in the wire contact flow type first and second polymerization reactors 108A and 108B.
  • the first and second polymerization reactors 108A and 108B are provided with prepolymer inlets 101A and 101B, perforated plates 102A and 102B, wire guides 103A and 103B, gas supply ports 104A and 104B, vent ports 105A, 105B and outlets 107A and 107B are provided.
  • Polymerization proceeds while the molten prepolymer 4D charged from the prepolymer inlet 101A flows in contact with the wire, and the molten prepolymer 109A accumulates in the lower part of the wire contact flow type first polymerization vessel 108A.
  • the polymerization reaction proceeds until the number average molecular weight (Mn) of the molten prepolymer 109A becomes 1000 to 10,000.
  • the number average molecular weight is preferably 1500 to 8000, more preferably 2000 to 7000.
  • Mn is 1000 or more, loss at the time of brand switching can be reduced, and when it is 10000 or less, fish eyes tend to be reduced and a decrease in hot water resistance tends to be suppressed.
  • the molten prepolymer 109A is pushed out from the outlet 107A by the transfer pump 106A, and transferred to the prepolymer inlet 101B of the wire contact flow type second polymerization vessel 108B through the transfer pipe.
  • the number average molecular weight and the weight average molecular weight can be measured using gel permeation chromatography (GPC).
  • Step (B) is a step of adding and mixing a polyfunctional compound in a liquid state to the low molecular weight polycarbonate obtained in step (A).
  • a transfer pipe from the outlet 107 ⁇ / b> A to the prepolymer inlet 101 ⁇ / b> B, a melt mixer (line mixer) 110 installed in the middle of the transfer pipe, and a polyfunctional compound input pipe 111 correspond.
  • the polyfunctional compound is in a liquid state, charged into the melt mixer 110 via the polyfunctional compound charging pipe 111, and mixed with the molten prepolymer 109A transferred from the wire contact flow type first polymerization vessel 108A.
  • the depolymerization reaction when the depolymerization reaction occurs, the depolymerization reaction may be completed until equilibrium is reached in the melt mixer, or may be completed in a subsequent transfer pipe. Moreover, since there exists process (C) after this, it is not necessary to make it react until depolymerization reaches an equilibrium completely by this process. In order to make the mixing more uniform, a mixing region such as a static mixer can be installed in the transfer pipe.
  • the process may be in the middle of the outlet 5D and the prepolymer inlet 101A in the system of FIG. 1, for example, or in the middle of the piping between the outlet 5C and the prepolymer inlet 1D.
  • the polyfunctional compound is added directly to the transfer pipe without using a melt mixer, and the reaction (solution) is performed by installing a mixing region in the transfer pipe or a static mixer. If a polymerization reaction takes place, the depolymerization reaction may also proceed.
  • a kneading apparatus such as a twin screw extruder can be used as the melt mixer.
  • the polyfunctional compound may be added in a molten state, or in the case of powder, it may be added in a state dissolved in a solvent.
  • the polyfunctional compound is preferably added in a molten state or dissolved in a solvent, and particularly preferably added in a state dissolved in a solvent.
  • the polyfunctional compound can be added to the melt mixer in a state of being dissolved in a solvent.
  • Solvents that dissolve the polyfunctional compound include phenols, aromatic dihydroxy compounds, carbonic acid diesters, ketones, ethers, mixtures and reactants of aromatic dihydroxy compounds and carbonic acid diesters, and low number average molecular weights of 5000 or less.
  • a compound such as a molecular weight polycarbonate is preferably present in the plant. These solvents may be used alone or in combination of two or more. When these compounds are used as a solvent, the fish eyes of the resulting branched polycarbonate are reduced.
  • the reason is not clear, but when these compounds are used as a solvent, depolymerization of the polycarbonate is caused, so that it is presumed that the dispersion of the polyfunctional compound further proceeds.
  • the molecular weight of the polycarbonate is once reduced by depolymerization, and if the amount of reduction is too large, it is not preferable for production. Therefore, the amount of solvent is adjusted so that the ratio of molecular weight reduction is less than 50%, more preferably less than 30%. Is preferably determined.
  • dissolves a polyfunctional compound it can also add in the state dissolved in general purpose solvents, such as methanol, ethanol, acetone, a methylene chloride.
  • the polyfunctional compound in a liquid state means a state where the polyfunctional compound itself is in a molten state and a state where the polyfunctional compound is dissolved in a solvent as described above. Therefore, the temperature at which the polyfunctional compound is in a liquid state can be selected arbitrarily depending on the solvent used.
  • the polyfunctional compound in a liquid state may be a state in which the polyfunctional compound is dissolved by reacting with a solvent and / or other components.
  • the other component may be a catalyst that promotes the reaction between the polyfunctional compound and the solvent. Any catalyst can be selected depending on the solvent, and the catalyst used in the polymerization can also be used.
  • Step (C) is a step for continuing the polymerization reaction of the low molecular weight polycarbonate so that the MI of the polycarbonate is 10 g / 10 min or less and the branching index MIR is 14 or more. In FIG. 1, it corresponds to the wire contact flow type second polymerization vessel 108B.
  • the number of polymerization vessels in step (C) is not particularly limited. However, if the number of polymerization vessels is large, there is a risk that switching time and loss will increase in brand switching, so it is preferable that there is only one polymerization vessel. .
  • the molten prepolymer 109A charged into the wire contact flow-down type second polymerization vessel 108B is in contact with the wire and polymerization proceeds while flowing down. It accumulates in the lower part in the wire polymerization flow-down type second polymerization vessel 108B.
  • the molten polymer 109B is discharged from the outlet 107B by the discharge pump 106B and recovered as a branched polycarbonate.
  • the melted prepolymer 109A charged into the wire contact flow type second polymerization vessel 108B depends on the temperature of the polymerization tank, but the higher the amount of the prepolymer supplied, the more polymerized the more high molecular weight polymer is produced. It will be necessary to get time. Therefore, the productivity of high molecular weight polymers is reduced. Also, when the supply of prepolymer is small, quality issues arise as issues other than productivity. If the supply amount is too slow, a part of the prepolymer remaining on the wire may stay and cause fish eyes to increase.
  • the productivity can be increased and the quality can be improved by supplying a specific amount of prepolymer per wire.
  • a supply amount of the prepolymer to the wire contact flow type second polymerization vessel 108B is limited.
  • by introducing a prepolymer containing a branching agent it is possible to obtain an unpredictable effect that the retention on the wire when the wire is dropped increases.
  • the supply amount of the prepolymer to the wire polymerization flow-down type second polymerization vessel 108B which is the final polymerization device is, when an 8 m wire is used, one wire, the amount (kg) per unit time (hour) Is preferably 0.3 to 3.0 kg / (hr ⁇ book), more preferably 0.4 to 2.5 kg / (hr ⁇ book), and further 0.5 to 2.0 kg / (hr ⁇ book). preferable.
  • the supply amount of the prepolymer to the wire is proportional to the length of the wire.
  • the supply amount is less than 0.3 kg / (hr ⁇ book)
  • the productivity is deteriorated, and the influence on the product (increased fish eye, etc.) may occur due to the residence of some polymers in the wire.
  • the supply amount exceeds 3.0 kg / (hr ⁇ book)
  • the residence time becomes short and the wire contact time of the prepolymer becomes short, and it becomes difficult to obtain a sufficient molecular weight.
  • the reaction temperature through the steps (A) to (C) is preferably 50 to 320 ° C., 100 to 300 ° C is more preferable, 130 to 280 ° C is more preferable, and 150 to 270 ° C is particularly preferable.
  • the step (C) is preferably 250 to 320 ° C, more preferably 250 to 300 ° C, still more preferably 255 to 280 ° C, and particularly preferably 260 to 270 ° C.
  • the range of ⁇ T (° C.) defined by the following formula (I) is ⁇ 20 ° C. to 20 ° C. from the viewpoint of impact strength, hue, and gel generation of the obtained branched polymer. preferable.
  • ⁇ T T 2 ⁇ T 1 (I)
  • T 1 indicates the temperature (° C.) of the low molecular weight polycarbonate introduced into the final polymerization vessel in the step (C)
  • T 2 indicates the temperature (° C.) of the branched polycarbonate polymerized by the final polymerization vessel in the step (C).
  • T 2 is 285 ° C. or lower.
  • T 2 is preferably 250 ° C. to 285 ° C., more preferably 260 ° C. to 275 ° C.
  • the “final polymerization vessel” refers to a polymerization vessel that performs the reaction until the MI of the branched polycarbonate becomes 10 g / 10 min or less.
  • the viscosity of the polymer increases as the molecular weight increases in the final polymerization reactor corresponding to step (C) of this embodiment.
  • a vertical polymerization vessel as the final polymerization vessel, it becomes possible to obtain a branched polycarbonate having extremely high physical properties and quality while having a high viscosity that could not be obtained so far.
  • the branched polycarbonate obtained in the step (C) has an MI of 10 g / 10 min or less, preferably 0.5 to 8 g / 10 min, more preferably 1 to 6 g / 10 min, and particularly a large size such as a 5 gallon bottle. When used in a bottle, 2 to 4 g / 10 min is preferable. When it is smaller than this range, the moldability tends to decrease, and when it is larger than 10 g / 10 min, the moldability tends to decrease.
  • the branching index MIR is 14 or more, preferably 15 to 30, more preferably 16 to 25. If it is smaller than 14, improvement in blow moldability is not sufficient, and molding defects and uneven thickness are likely to occur, and if it is larger than 30, molding defects and uneven thickness tend to occur and fish eyes tend to increase. is there.
  • the obtained branched polycarbonate is usually pelletized, but it may be directly connected to a molding machine to produce a molded product such as a sheet or a bottle. Further, a polymer filter or the like having a filtration accuracy of about 1 to 50 ⁇ m may be installed in order to refine or remove the fish eye.
  • a process (D) for producing a polycarbonate by performing a polymerization reaction until the melt index becomes 100 g / 10 min or less can be provided following the process (A).
  • a plurality of types of polycarbonates can be produced.
  • the aspect provided with (D) process is demonstrated, referring FIG.
  • FIG. 2 is a schematic view of a production system for producing a plurality of types of polycarbonate.
  • the production system includes a first stirring polymerization step having stirring tank type first polymerization devices 3A and 3B, a second stirring polymerization step having stirring tank type second polymerization device 3C, and a stirring tank type third polymerization device 3D.
  • a first wire contact flow-down polymerization process having a wire contact flow-down type first polymerization vessel 108A, and a second wire contact flow-down polymerization method having a wire contact flow-down second polymerization device 108B.
  • the point provided with a process is the same as that of the system shown in FIG.
  • a third wire contact flow-down polymerization process having a wire contact flow-down third polymerizer 108C, transfer pumps 106A and 106D, and a branching unit 120 are provided.
  • the molten prepolymer 109A produced in the step (A) is discharged from the outlet 107A and enters the transfer pipe.
  • This transfer pipe has a branching portion 120 branched so as to lead to the device for performing the step (B) and the device for performing the step (D).
  • the molten prepolymer 109A that has flowed out from the outlet 107A is branched at the branching portion 120, and at each branched downstream, at the transfer pump 106D that is the inlet of the step (B) and / or at the inlet of the step (D).
  • a branched polycarbonate is produced by the steps (A), (B), and (C) as in the above-described embodiment.
  • the transfer piping from the transfer pumps 106D to 101B in FIG. 2, the melt mixer (line mixer) 110 installed in the transfer piping, and the polyfunctional compound input piping 111 correspond to the step (B).
  • the wire contact flow type second polymerization vessel 108B to the outlet 107B correspond to the step (C).
  • the first and third wire contact flow type polymerization processes are continuously performed in the wire contact flow type first and third polymerization reactors 108A and 108C.
  • Step (D) corresponds to the process from the transfer pump 106A to the outlet 107C through the wire contact flow type third polymerization vessel 108C.
  • the molten prepolymer 109A transferred through the transfer pipe from the outlet 107A of the wire contact flow type first polymerization vessel 108A by the operation of the transfer pump 106A is converted into the prepolymer of the wire contact flow type third polymerization device 108C. It is transferred to the polymer inlet 101C.
  • the molten prepolymer 109A charged into the wire contact flow-down type third polymerization vessel 108C is brought into contact with the wire and polymerization proceeds while flowing down. , Accumulated in the lower part of the wire contact flow type third polymerization vessel 108C.
  • the molten polymer 109C is discharged from the outlet 107C by the discharge pump 106C and recovered as polycarbonate.
  • the polycarbonate obtained in step (D) has an MI of 100 g / 10 min or less, preferably 1 to 90 g / 10 min, more preferably 5 to 80 g / 10 min, and is determined by the brand to be produced. When the MI is within the above range, the mechanical properties and moldability are excellent.
  • a branched polycarbonate is produced in the step (B) and the subsequent (C) step having a melt mixer 110 for introducing a polyfunctional compound, and the polycarbonate is produced in the step (D).
  • the transfer pumps 106A and 106D By adjusting the operating conditions of the transfer pumps 106A and 106D, it is possible to adjust the amount of the branched polycarbonate produced in the step (B) and the step (C) and the amount of the polycarbonate produced in the step (D). Further, if any one of the transfer pumps 106A and 106D is stopped, only the desired polycarbonate produced in the step (B) and the step (C) or the step (D) can be obtained. In this way, the present embodiment can extremely reduce the loss of brand switching.
  • one (A) process includes one (B) process, one (C) process, and one (D) process, but there may be a plurality of each.
  • the steps (A), (B), (C) and (D) In any case, the reaction temperature is preferably 50 to 320 ° C, more preferably 100 to 300 ° C, further preferably 130 to 280 ° C, and particularly preferably 150 to 270 ° C.
  • the steps (C) and (D) are preferably in the range of 250 to 320 ° C, more preferably 250 to 300 ° C, still more preferably 255 to 280 ° C, and particularly preferably 260 to 270 ° C.
  • branched polycarbonate composition containing additives such as stabilizers, antioxidants, dyes and pigments, ultraviolet absorbers, flame retardants, reinforcing agents with glass fibers and fillers, etc.
  • additives such as stabilizers, antioxidants, dyes and pigments, ultraviolet absorbers, flame retardants, reinforcing agents with glass fibers and fillers, etc.
  • the branched polycarbonate is supplied to the extruder, static mixer, etc. in the molten state from the final reactor in the steps (C) and (D), and the above additives are added, melt kneaded and pelletized. Is preferred.
  • a polymerization catalyst can be used so that it may be added at the process of the said Example (A).
  • the polymerization catalyst to be used is not particularly limited as long as it is used in this field, but water of alkali metal or alkaline earth metal such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.
  • silicon compounds such as silicon oxide, sodium silicate, tetraalkyl silicon, tetraaryl silicon, diphenyl-ethyl-ethoxy silicon
  • germanium such as germanium oxide, germanium tetrachloride, germanium ethoxide, germanium phenoxide
  • tin compounds such as tin oxides, organotin compounds, tin compounds bonded to alkoxy groups or aryloxy groups such as tin oxide, dialkyltin oxide, dialkyltin carboxylate, tin acetate, ethyltin tributoxide
  • lead oxide, lead acetate Lead carbonate, basic carbonate, lead and organic lead alkoxide or Is a lead compound such as aryloxide
  • onium compounds such as quaternary ammonium salts, quaternary phosphonium salts and quaternary arsonium salts
  • antimony compounds such as antimony oxide and antimony acetate
  • these catalysts When using a catalyst, these catalysts may be used only by 1 type and may be used in combination of 2 or more type.
  • the amount of these catalysts used is usually selected in the range of 10 ⁇ 8 to 1 part by weight, preferably 10 ⁇ 7 to 10 ⁇ 1 part by weight, based on 100 parts by weight of the starting aromatic dihydroxy compound.
  • the branched polycarbonate produced by the method of the present embodiment has a repeating unit represented by the following general formula (1) in the main chain and the branched chain.
  • the branched polycarbonate produced by the method of the present embodiment is represented by the following general formulas (2), (3) and (4) together with a branched structure (a) derived from a polyfunctional compound directly bonded to the main chain and the branched chain.
  • a branched structure (b) containing at least one selected from the group consisting of branched structures can be contained.
  • the branched polycarbonate produced by the method of the present embodiment has a branched structure (a) with respect to the amount of the repeating unit represented by the general formula (1) and the following general formulas (2), (3), and (4).
  • the ratio of the total substance amount of the branched structure (b) represented is preferably 0.2 to 1.0 mol%, more preferably 0.3 to 0.9 mol%, More preferably, it is 0.8 mol%.
  • the amount is more than 1.0 mol%, the fish eye increases and impact resistance and mechanical strength are lowered.
  • the amount is less than 0.2 mol%, the effect of improving the moldability tends to be reduced.
  • each “substance amount” refers to a substance amount of a component derived from each structure generated when the branched polycarbonate is hydrolyzed.
  • Ar represents a divalent aromatic residue
  • Ar ′ represents a trivalent aromatic residue
  • Ar is also synonymous with Ar represented by HO—Ar—OH.
  • Ar ′ in the above general formulas (2), (3) and (4) is bonded to a substituent (eg —COO—) which should be present at the start of branching, so that one more hydrogen atom from Ar. A trivalent aromatic residue from which etc. are removed is shown.
  • the ratio of the substance amount of the branched structure (b) to the total substance amount of the branched structure (a) and the branched structure (b) is 0.1 to 0.00. 6, preferably 0.2 to 0.6, and more preferably 0.3 to 0.6. If it exceeds 0.6, the hot water resistance tends to decrease, and if it is less than 0.1, the MIR is small and the increase in melt tension tends to be small.
  • the ratio of the substance amount of the branched structure represented by the general formula (2) to the substance amount of the branched structure (b) represented by the general formulas (2) to (4) is 0.5 or more, Preferably it is 0.85 or more, More preferably, it is 0.9 or more. When it is less than 0.5, impact resistance and mechanical strength tend to decrease and fish eyes tend to increase.
  • the “main chain” refers to a polymer chain formed by condensation of an aromatic dihydroxy compound and a carbonic acid diester used as raw materials by a transesterification reaction.
  • the branched chain having the longest branched portion is selected from the plurality of branched chains, and this is selected as the main chain. Position as.
  • branched structure (a) refers to a branched structure branched by a polyfunctional compound.
  • 1,1,1-tris (4-hydroxyphenyl) ethane is used as the polyfunctional compound, the structure represented by the following formula becomes “branched structure (a)”, and the amount of substance of the branched structure (a) is Quantifies the hydrolyzed 1,1,1-tris (4-hydroxyphenyl) ethane.
  • branched structure (b) refers to a branched structure that occurs spontaneously with respect to the main chain during the production process of the branched polycarbonate (for example, by Fries rearrangement reaction).
  • the branched polycarbonate produced according to this embodiment does not substantially contain chlorine atoms.
  • a branched polycarbonate is produced from an aromatic dihydroxy compound substantially free of chlorine atoms, a carbonic acid diester, and a polyfunctional compound.
  • a branched polycarbonate having a chlorine atom content of 10 ppb or less, preferably 1 ppb or less, can be obtained unless other compounds containing chlorine are added.
  • the branched polycarbonate produced according to the present embodiment has a thickness of 50 ⁇ m and a width of 30 cm, and the number of fish eyes having a size of 300 ⁇ m or more is 100 or less in a length of 1 m at an arbitrary location.
  • the number is preferably 80 or less, more preferably 50 or less.
  • the hue (b * value) of the branched polycarbonate produced according to this embodiment is 0 to 3.0, preferably 0 to 2.5, and more preferably 0 to 1.5.
  • the branched polycarbonate looks yellowish and looks bad. If necessary, the yellowness can be corrected with a colorant such as a bluing agent, but it is necessary to consider transparency.
  • the branched structures (a) and (b) in the branched polycarbonate produced by the present embodiment can be quantified using reverse phase liquid chromatography after the branched polycarbonate is completely hydrolyzed. Hydrolysis of polycarbonate is performed at room temperature as described in Polymer Degradation and Stability 45 (1994), 127 to 137, and is easy to operate and has no side reactions during the decomposition process. Since it can decompose
  • a colorant, a heat stabilizer, an antioxidant, a weathering agent, an ultraviolet absorber, a release agent, a lubricant, an antistatic agent, a plasticizer, and the like are added as necessary. May be used. Furthermore, these additives and the like may be added while the polycarbonate-based resin after polymerization is in a molten state, or the pellets may be once pelletized and then the additives may be added and remelted and kneaded.
  • the branched structure may be present in the branched polycarbonate.
  • the total amount of the branched structure (a) derived from the functional compound and the branched structure (b) of the above general formulas (2) to (4) naturally generated by the transesterification method is represented by the general formula (1).
  • 0.2 to 1.0 mol% preferably 0.2 to 0.9 mol%, more preferably 0.3 to 0.8 mol%, based on the amount of the repeating unit substance. .
  • the amount is more than 1.0 mol%, the fish eye tends to increase.
  • the amount is less than 0.2 mol%, the MIR tends to be small and the increase in melt tension tends to be small.
  • the ratio of the amount of the branched structure (b) to the total amount of the branched structure (a) and the branched structure (b) is 0.1 to 0.6.
  • the ratio of the substance amount of the branched structure represented by the general formula (2) to the substance amount of the branched structure (b) is 0.85 or more, and more preferably 0.9 or more.
  • M PC 0.3591 M PS 1.0388 (Wherein, M PC molecular weight of the polycarbonate, the M PS is the molecular weight of polystyrene.)
  • the molecular weight was determined from a calibration curve of standard monodisperse polystyrene (EasiVial (RED, YELLOW, GREEN) Varian) using a converted molecular weight calibration curve according to the following equation.
  • M PC 0.3591 M PS 1.0388 ( MPC is the molecular weight of polycarbonate, and MPS is the molecular weight of polystyrene.)
  • MI melting index
  • MIR polish index
  • Hue A 15 cm ⁇ 15 cm ⁇ 3.2 mm thick plate was injection molded at a barrel temperature of 300 ° C. and a mold temperature of 90 ° C., and b * with a standard white plate using CR-400 manufactured by Konica Minolta . The difference ( ⁇ b * ) from the value was determined.
  • Reverse-phase liquid chromatography uses an Inertsil ODS-3 column (manufactured by GL Science), a mixed eluent consisting of methanol and 0.1% aqueous phosphoric acid as the eluent, a column oven at 40 ° C., methanol / 0.1. % Phosphoric acid aqueous solution ratio was measured under the condition of starting from 20/80 and grading to 100/0, and the detection was quantified using a UV detector having a wavelength of 300 nm.
  • Hot water resistance The flat plate molded in (3) above was taken out after being immersed in hot water at 95 ° C. for 300 hours, and left in a constant temperature and humidity chamber maintained at 23 ° C. and 50 RH%. After 24 hours, the occurrence of craze was visually confirmed. A: No crazing, B: 1-9 occurrences, C: 10 occurrences or more.
  • Example 1 A branched polycarbonate was produced using the production system shown in FIG.
  • Stirrer tank type first polymerizers 3A and 3B are equipped with stirrers 6A and 6B having an internal volume of 100 liters and anchor type stirring blades.
  • the stirring tank type second polymerization vessel 3C and the stirring tank type third polymerization vessel 3D are equipped with stirrers 6C and 6D having a volume of 50 liters and having anchor type stirring blades.
  • the wire contact flow type first and second polymerization vessels 108A and 108B have a porous plate 102A having five holes, a porous plate 102B having three holes, and SUS316L wire-shaped guides 103A and 103B having a diameter of 1 mm and a length of 8 m.
  • Stirrer tank type 1st polymerization devices 3A and 3B are used by switching alternately, and after stirrer tank type 2nd polymerization device 3C, they are used continuously.
  • a polymerization raw material consisting of bisphenol A as an aromatic dihydroxy compound and diphenyl carbonate (a molar ratio of bisphenol A of 1.06) as a carbonic acid diester, and a disodium salt of bisphenol A as a catalyst (in terms of sodium atoms, in the polymerization raw material) 75 wt ppb) with respect to bisphenol A was charged into the stirring tank type first polymerization vessel 3A from the polymerization raw material inlet 1A.
  • the reaction temperature was 180 ° C.
  • the reaction pressure was atmospheric pressure
  • the nitrogen gas flow rate was 1 liter / hr.
  • the outlet 5A was opened, and the molten prepolymer 4A was supplied to the stirred tank type second polymerization vessel 3C at a flow rate of 7 liter / hr.
  • the stirring tank type first polymerization vessel 3B was operated in the same manner as the stirring tank type first polymerization vessel 3A to obtain a molten prepolymer 4B.
  • the outlet 5A of the stirring tank type first polymerizer 3A is closed, the outlet 5B of the stirring tank type first polymerizer 3B is opened, and the molten prepolymer 4B is supplied at a flow rate of 7 It was supplied from the stirring tank type first polymerization device 3B to the stirring tank type second polymerization device 3C at a rate of 1 liter / hr.
  • the molten prepolymers 4A and 4B were continuously supplied to the stirred tank type second polymerization vessel 3C alternately.
  • the stirring tank type second polymerization vessel 3C was maintained at a reaction temperature of 230 ° C. and a reaction pressure of 13.0 kPa to obtain a molten prepolymer 4C. After the volume of the molten prepolymer 4C reached 20 liters, a part of the molten prepolymer 4C was continuously withdrawn and supplied to the stirring tank type third polymerizer 3D so as to keep the internal volume of 20 liters constant.
  • the stirring tank type third polymerization vessel 3D was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 2.6 kPa to obtain a molten prepolymer 4D. After the volume of the molten prepolymer 4D reached 20 liters, a part of the molten prepolymer 4D was withdrawn and continuously supplied to the wire contact flow type first polymerizer 108A so as to keep the internal volume of 20 liters constant.
  • the wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 400 Pa to obtain a molten prepolymer 109A. After the volume of the molten prepolymer 109A reaches 10 liters, a part of the molten prepolymer 109A is withdrawn so as to keep the volume of 10 liters, and continuously passed through the line mixer 110 to the wire contact flow type second polymerizer 108B. Supplied. The number average molecular weight of the molten prepolymer 109A was 7500.
  • a polyfunctional compound (polyfunctional compound) in which polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane and phenol as a solvent are uniformly dissolved in a line mixer 110 maintained at a temperature of 265 ° C. and a rotational speed of 15 rpm /Phenol 1/1.5 is mixed at a temperature of 180 ° C. from the pipe 111 in such an amount that the polyfunctional compound has a molar ratio of 0.004 with respect to the bisphenol A skeleton in the molten prepolymer 109A. did.
  • the number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was measured and found to be 4000.
  • the wire contact flow type second polymerization vessel 108B was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 118 Pa to obtain a branched polycarbonate. After the volume of the branched polycarbonate reached 10 liters, it was continuously extracted as a strand from the outlet 107B using the discharge pump 106B so as to maintain the capacity of 10 liters, and was cooled and cut to obtain a pellet-like branched polycarbonate. Table 1 shows the evaluation results of the obtained branched polycarbonate.
  • T 1 represents the temperature (° C.) of the low molecular weight polycarbonate introduced into the final polymerization vessel
  • T 2 represents the temperature (° C.) of the branched polycarbonate polymerized in the final polymerization vessel.
  • ⁇ T was 0 ° C.
  • the wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 790 Pa to obtain a molten prepolymer 109A.
  • the number average molecular weight of the molten prepolymer 109A was 5500.
  • Example 3 The solvent of Example 2 was changed to a prepolymer having a number average molecular weight of 2500.
  • the weight mixing ratio of the branching agent and the prepolymer was 1: 2.
  • the uniformly dissolved solution was supplied from the pipe 111 to the line mixer 110 at a temperature of 180 ° C.
  • the number average molecular weight of the molten prepolymer 109A was 5700.
  • the number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was 4900.
  • the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. Table 1 shows the evaluation results of the obtained branched polycarbonate. ⁇ T was 0 ° C.
  • Example 4 The solvent of Example 2 was changed to diphenyl carbonate (DPC) and bisphenol A (BPA). The uniformly dissolved solution was supplied from the pipe 111 to the line mixer 110 at a temperature of 180 ° C. The weight mixing ratio of the branching agent, DPC and BPA was 1.5: 0.5: 1. Further, disodium salt of bisphenol A (75 weight ppb with respect to bisphenol A in the polymerization raw material in terms of sodium atom) was added as a catalyst. The number average molecular weight of the molten prepolymer 109A was 5700. It was 4200 when the number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was measured.
  • DPC diphenyl carbonate
  • BPA bisphenol A
  • Example 5 The solvent of Example 2 was changed to DPC.
  • the weight mixing ratio of the branching agent and DPC was 1: 0.67.
  • the uniformly dissolved solution was supplied from the pipe 111 to the line mixer 110 at a temperature of 180 ° C.
  • the number average molecular weight of the molten prepolymer 109A was 5700.
  • the number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was 4000.
  • the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. Table 1 shows the evaluation results of the obtained branched polycarbonate. ⁇ T was 0 ° C.
  • Example 6 Acetone was used as a solvent for the polyfunctional compound, and it was charged into the stirred tank type third polymerization vessel 3D instead of being charged into the line mixer 110.
  • the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. Although some MI fluctuation was observed, a branched polycarbonate could be produced stably. Table 1 shows the evaluation results of the obtained branched polycarbonate. ⁇ T was 0 ° C.
  • Example 7 The polyfunctional compound of Example 2 was 4- [4- [1,1-bis (4-hydroxyphenyl) ethyl] - ⁇ , ⁇ -dimethylbenzyl] phenol and the solvent was changed to acetone.
  • the wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 1000 Pa to obtain a molten prepolymer 109A.
  • the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed.
  • the evaluation results of the obtained branched polycarbonate are shown in Table 2.
  • ⁇ T was ⁇ 0.2 ° C.
  • Line mixer with polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane (molar ratio 0.004 with respect to bisphenol A skeleton) The same procedure as in Example 2 was performed except that powder was fed from the vent port of the above twin screw extruder without feeding from 110.
  • the evaluation results of the obtained branched polycarbonate are shown in Table 2.
  • the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1.
  • ⁇ T was 25 ° C.
  • the final polymerization was carried out by installing a horizontal polymerization reactor instead of the polymerization vessel 108B as the final polymerization device connected to the twin screw extruder.
  • the temperature of the horizontal polymerization reactor was set to 320 ° C. Except for these changes, the same procedure as in Example 2 was performed.
  • the evaluation results of the obtained branched polycarbonate are shown in Table 3. ⁇ T was 30 ° C.
  • FIG. 1 the line mixer 110 is replaced with a vented twin screw extruder (Ikegai Steel Co., Ltd., PCM 30 mm, L / D 30, temperature 265 ° C.), and the pipe from 107A is connected to the supply port of the twin screw extruder.
  • the exit of the extruder was connected to the feed port of a horizontal polymerization reactor (not shown).
  • Polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane (molar ratio 0.004 with respect to bisphenol A skeleton) and DPC were charged at normal temperature from the vent port of the above twin screw extruder.
  • the weight ratio of branching agent to DPC was 1: 0.6.
  • the final polymerization apparatus connected to the twin-screw extruder was installed with a horizontal polymerization reaction volatilizer instead of the polymerization apparatus 108B to carry out final polymerization.
  • the temperature of the horizontal polymerization reactor was set to 320 ° C. Except for these changes, the same procedure as in Example 2 was performed.
  • the evaluation results of the obtained branched polycarbonate are shown in Table 3. ⁇ T was 25 ° C.
  • Example 9 A branched polycarbonate was produced using the production system shown in FIG.
  • Stirrer tank type first polymerizers 3A and 3B are equipped with stirrers 6A and 6B having an internal volume of 100 liters and anchor type stirring blades.
  • the stirring tank type second polymerization vessel 3C and the stirring tank type third polymerization vessel 3D are equipped with stirrers 6C and 6D having a volume of 50 liters and having anchor type stirring blades.
  • the wire contact flow type first and second polymerization vessels 108A and 108B have a porous plate 102A having five holes, a porous plate 102B having three holes, and SUS316L wire-shaped guides 103A and 103B having a diameter of 1 mm and a length of 8 m.
  • Stirred tank type first polymerizers 3A and 3B are used by switching alternately, and the stirred tank type second polymerizer 3C and thereafter are used continuously.
  • the outlet 5A is opened, and the molten prepolymer 4A is fed to the stirred tank type second polymerization device 3C at a flow rate such that the flow rate of the molten prepolymer per wire in the final polymerization vessel becomes the value shown in Table 2. Supplied.
  • the stirring tank type first polymerization vessel 3B was operated in the same manner as the stirring tank type first polymerization vessel 3A to obtain a molten prepolymer 4B.
  • the outlet 5A of the stirring tank type first polymerizer 3A is closed and the outlet 5B of the stirring tank type first polymerizer 3B is opened, and the molten prepolymer 4B is finally
  • the molten prepolymer per wire in the polymerization vessel was supplied from the stirring vessel type first polymerization vessel 3B to the stirring vessel type second polymerization vessel 3C at such a flow rate that the value shown in Table 2 was obtained. By repeating this, the molten prepolymers 4A and 4B were continuously supplied to the stirred tank type second polymerization vessel 3C alternately.
  • the stirring tank type second polymerization vessel 3C was maintained at a reaction temperature of 232 ° C. and a reaction pressure of 12.8 kPa, thereby obtaining a molten prepolymer 4C. After the volume of the molten prepolymer 4C reached 20 liters, a part of the molten prepolymer 4C was continuously withdrawn and supplied to the stirring tank type third polymerizer 3D so as to keep the internal volume of 20 liters constant.
  • the stirring tank type third polymerization vessel 3D was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 2.5 kPa, thereby obtaining a molten prepolymer 4D. After the volume of the molten prepolymer 4D reached 20 liters, a part of the molten prepolymer 4D was withdrawn and continuously supplied to the wire contact flow type first polymerizer 108A so as to keep the internal volume of 20 liters constant.
  • the wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 770 Pa to obtain a molten prepolymer 109A. After the volume of the molten prepolymer 109A reached 10 liters, a part of the molten prepolymer 109A was extracted so as to keep the volume of 10 liters. The number average molecular weight of the molten prepolymer 109A was 5000.
  • the melted prepolymer 109A extracted is continuously supplied to the wire contact flow type second polymerization vessel 108B via the line mixer 110, and 1 ⁇ 2 quantity is supplied to the wire contact flow type third triple. Continuously supplied to the combiner 108C.
  • Polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane and phenol as a solvent are uniformly dissolved at a weight ratio of 6: 4 in a line mixer 110 maintained at a temperature of 266 ° C. and a rotation speed of 15 rpm.
  • the solution thus obtained was supplied from the pipe 111 at a temperature of 185 ° C. in such an amount that the polyfunctional compound had a molar ratio of 0.003 with respect to the bisphenol A skeleton in the molten prepolymer 109A. It was 4400 when the number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was measured.
  • the wire contact flow type second polymerization vessel 108B was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 122 Pa to obtain a branched polycarbonate. After the volume of the branched polycarbonate reached 10 liters, the discharge pump 106B was used to continuously extract the strands from the outlet 107B as a strand so as to maintain the capacity of 10 liters.
  • the evaluation results of the obtained branched polycarbonate are shown in Table 3.
  • the wire contact flow type third polymerization vessel 108C was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 135 Pa to obtain a polycarbonate. After the polycarbonate volume reaches 10 liters, the discharge pump 106C is used to continuously extract the strands from the outlet 107C as a strand so as to maintain the capacity of 10 liters. A pellet-like linear polycarbonate having an eye measurement value of 0 was obtained. After 50 hours of continuous operation, the flow ratio of 106A and 106D is changed to 50:50, so that the production ratio of branched polycarbonate and linear polycarbonate is changed, and the production volume is controlled without loss of brand switching. Were produced at the same time. The evaluation results of the obtained branched polycarbonate are shown in Table 2.
  • the production method of the present invention is a method for producing a branched polycarbonate with a transesterification method that can reduce loss at the time of brand switching, is excellent in hue and hot water resistance, and has little fish eye, has a large MIR, and is used for extrusion. And a branched polycarbonate excellent in blow moldability can be provided.
  • 1A, 1B Polymerization raw material inlet
  • 1C, 1D Prepolymer inlet
  • 2A, 2B, 2C, 2D Prepolymer inlet
  • 105A, 105B, 105C Vent port
  • 3C Stirring Tank type second polymerizer
  • 3D Stirred tank type third polymerizer
  • Outlet 6A, 6B, 6C, 6D ... stirrer, 7C, 7D, 8, 106A ... transfer pump, 101A, 101B, 101C ...
  • prepolymer inlet 102A, 102B, 102C ... perforated plate, 103A, 103B, 103C ... wire guide, 104A 104B, 104C ... Gas supply port, 106B, 106C ... Discharge pump, 108A ... Wire contact flow-down type first polymerizer, 108B ... Wire contact Downflow type second polymerizer, 108C ... wire-contacting downflow type third polymerization vessel, 109B, 109C ... molten polymer, 110 ... melting mixer (line mixer), 111 ... polyfunctional compound introduction pipe, 120 ... bifurcation.

Abstract

A continuous process for the production of branched polycarbonate, which includes: a step (A) of producing a low-molecular polycarbonate having a number-average molecular weight of 1000 to 10000 from an aromatic dihydroxyl compound and a carbonic diester via transesterification; a step (B) of adding the polyfunctional compound in a liquid state to the low-molecular polycarbonate, and mixing the resulting system; and a step (C) of conducting the polymerization of the mixture successively until the melt index and melt index ratio of the low-molecular polycarbonate reach 10g/10min or less and 14 or more respectively, and thus producing a branched polycarbonate.

Description

分岐ポリカーボネートの連続製造方法Continuous production method of branched polycarbonate
 本発明は、エステル交換法による分岐ポリカーボネートの連続製造方法に関する。 The present invention relates to a continuous production method of a branched polycarbonate by a transesterification method.
 ポリカーボネートは、透明性や耐熱性、耐衝撃強度等の機械的強度が優れたエンジニアリングプラスチックであり、光ディスクや電気電子分野、自動車等の工業用途で幅広く用いられている。中でも近年は、その意匠性や落としても容易に割れない強靭さから、水道設備が行き届いていない国々における飲み水の提供用や特定産地のミネラルウォーターの移送用に、ブロー成形された大型のボトルが広く普及してきている。 Polycarbonate is an engineering plastic with excellent mechanical strength such as transparency, heat resistance and impact strength, and is widely used in industrial applications such as optical discs, electrical and electronic fields, and automobiles. In recent years, large bottles that have been blow-molded to provide drinking water and transport mineral water in specific production areas in countries where water supply facilities are not perfect due to its design and toughness that does not easily break when dropped. Has become widespread.
 このような大型のボトルのブロー成形を安定的に行うためには、汎用のポリカーボネートと比較して高い溶融粘度と溶融張力とが要求される。そのため、高分子量化と共に分子中に分岐構造を付与してポリカーボネートの溶融張力を上げることが必要となる。ポリカーボネートの製造方法として長らく活用されてきたホスゲン法では、特許文献1にあるように、多官能化合物を分岐剤として用いることで、ポリカーボネートに分岐構造を付与することでこの課題を解決してきた。しかしながら、ホスゲン法は毒性の高いホスゲンや多量の塩素系溶剤を使用することから、環境への負荷が大きい。そのため、近年の環境問題に対する意識の高まりから、ポリカーボネートの製造方法はホスゲンや多量の塩素系溶剤を使用しないエステル交換法へと移行してきている。しかしながら、エステル交換法による分岐ポリカーボネートの工業的な連続製造法は、いまだ開発段階にあり、多くの改善提案がなされているのが現状である。 In order to stably perform blow molding of such a large bottle, a higher melt viscosity and melt tension are required compared to general-purpose polycarbonate. Therefore, it is necessary to increase the melt tension of the polycarbonate by increasing the molecular weight and providing a branched structure in the molecule. In the phosgene method that has been used for a long time as a production method of polycarbonate, this problem has been solved by imparting a branched structure to the polycarbonate by using a polyfunctional compound as a branching agent as disclosed in Patent Document 1. However, since the phosgene method uses highly toxic phosgene and a large amount of chlorinated solvent, the load on the environment is large. Therefore, due to the recent increase in awareness of environmental problems, polycarbonate production methods have shifted to transesterification methods that do not use phosgene or a large amount of chlorinated solvents. However, the industrial continuous production method of the branched polycarbonate by the transesterification method is still in the development stage, and many improvement proposals have been made.
 エステル交換法では、芳香族ジヒドロキシ化合物と炭酸ジフェニルと分岐剤としての多官能化合物とを触媒の存在下で溶融反応させることで分岐ポリカーボネートを製造することができる。しかしながら、単純に反応させるだけでは良好な分岐ポリカーボネートを工業的に得ることが難しく、その改善のために例えば下記[1]~[3]の方法が提案されている。 In the transesterification method, a branched polycarbonate can be produced by melt-reacting an aromatic dihydroxy compound, diphenyl carbonate and a polyfunctional compound as a branching agent in the presence of a catalyst. However, it is difficult to industrially obtain a good branched polycarbonate simply by reacting, and the following methods [1] to [3] have been proposed for the improvement.
 [1]特定の触媒を用いることで溶融反応過程で自然発生するコルベシュミット型の分岐構造を低減する方法(特許文献2~4)や、特定の触媒を用いることで色相を改良する方法(特許文献5)、分岐剤として特定の構造の多官能化合物を用いる方法(特許文献6~8)。 [1] A method for reducing the Corbeschmitt-type branched structure that naturally occurs in the melting reaction process by using a specific catalyst (Patent Documents 2 to 4), or a method for improving the hue by using a specific catalyst (patents) Document 5), a method using a polyfunctional compound having a specific structure as a branching agent (Patent Documents 6 to 8).
 [2]得られたポリカーボネートに多官能化合物からなる分岐剤とエステル交換触媒を加えて、押出機内で反応させて分岐ポリカーボネートを得る方法(特許文献9~11)。 [2] A method of obtaining a branched polycarbonate by adding a branching agent composed of a polyfunctional compound and a transesterification catalyst to the obtained polycarbonate and reacting in an extruder (Patent Documents 9 to 11).
 [3]工程汚染の原因となる分岐剤を用いることなく、重合反応過程で自然発生する分岐構造を積極的に発生させて分岐ポリカーボネートを製造する方法(特許文献12,13)。 [3] A method of producing a branched polycarbonate by actively generating a branched structure that naturally occurs in the polymerization reaction process without using a branching agent that causes process contamination (Patent Documents 12 and 13).
特公昭47-23918号公報Japanese Patent Publication No. 47-23918 特開平5-271400号公報Japanese Patent Laid-Open No. 5-271400 特開平5-271402号公報Japanese Patent Laid-Open No. 5-271402 特開平5-295101号公報JP-A-5-295101 特開平4-89824号公報Japanese Patent Laid-Open No. 4-89824 特開2001-302780号公報JP 2001-302780 A 特表2002-508801号公報Japanese translation of PCT publication No. 2002-508801 特開2006-131910号公報JP 2006-131910 A 特開平02-245023号公報Japanese Patent Laid-Open No. 02-245023 特開平11-209469号公報JP-A-11-209469 特開2000-290364号公報JP 2000-290364 A 特開2002-308976号公報JP 2002-308976 A 特開2004-002831号公報JP 2004-002831 A
 しかしながら、[1]の製造方法により得られたポリカーボネートは、色相は改良されたものの、フィッシュアイが多く耐熱水性にも劣るものである。また、直鎖状のポリカーボネートを製造する工程に芳香族ジヒドロキシ化合物及び炭酸ジフェニルと共に分岐剤を投入することから、分岐ポリカーボネートから直鎖状のポリカーボネートへ銘柄切り替えする際、後に生産される直鎖状のポリカーボネートにフィッシュアイが発生する。この悪影響を取り除くために、銘柄切り替えに多大な時間を要したり、一旦生産を止めて生産設備を洗浄したりしなければならないという大きな問題がある。 However, although the polycarbonate obtained by the production method [1] has improved hue, it has many fish eyes and is inferior in hot water resistance. In addition, since a branching agent is added together with an aromatic dihydroxy compound and diphenyl carbonate to the process of producing a linear polycarbonate, when switching from a branched polycarbonate to a linear polycarbonate, a linear chain produced later is produced. Fish eyes are generated in polycarbonate. In order to remove this adverse effect, there is a big problem that it takes a lot of time to change the brand, or it is necessary to stop production and clean the production equipment.
 また、[2]の製造方法では、重合工程に分岐剤を添加しないため銘柄切り替えする際の上記問題は解消するものの、得られた分岐ポリカーボネートにはフィッシュアイが多く、耐熱水性の低下もみられ、良質のポリカーボネートを安定的に製造できないという問題がある。 In addition, in the production method [2], the branching agent is not added to the polymerization step, so the above problem at the time of switching the brand is solved. However, the obtained branched polycarbonate has a lot of fish eyes and a decrease in hot water resistance is also observed. There is a problem that high-quality polycarbonate cannot be stably produced.
 更に、[3]の製造方法では、分岐剤を添加しないという利点を有しているものの、副反応である転位反応を積極的に引き起こすために安定した製造が難しく、不必要な副反応までもが発生して、色相の悪化やフィッシュアイの発生、更には耐熱水性の低下等の問題が起こり、銘柄切り替え時のロスの問題も存在する。 Furthermore, although the production method [3] has the advantage of not adding a branching agent, it is difficult to stably produce a rearrangement reaction, which is a side reaction, and even unnecessary side reactions. Occurs, causing problems such as deterioration of hue, fish eye, and a decrease in hot water resistance, and there is also a problem of loss at the time of brand switching.
 本発明は、上記事情に鑑みてなされたものであり、銘柄切り替え時のロスを少なくすることができるとともに、色相及び耐熱水性に優れ、フィッシュアイが少ない分岐ポリカーボネートをエステル交換法で製造する、分岐ポリカーボネートの連続製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can reduce loss at the time of brand switching, and is excellent in hue and hot water resistance, and produces a branched polycarbonate with less fish eyes by a transesterification method. It aims at providing the continuous manufacturing method of a polycarbonate.
 本発明は、(A)芳香族ジヒドロキシ化合物と炭酸ジエステルとからエステル交換法により数平均分子量が1000~10000の低分子量ポリカーボネートを製造する工程と、(B)前記低分子量ポリカーボネートに多官能化合物を液体状態で添加混合する工程と、(C)引き続き前記低分子量ポリカーボネートのメルトインデックスが10g/10min以下かつ分岐指標が14以上になるまで重合反応を行い、分岐ポリカーボネートを製造する工程とを含む分岐ポリカーボネートの連続製造方法を提供する。この方法によれば、銘柄切り替え時のロスを少なくすることができるとともに、色相及び耐熱水性に優れ、フィッシュアイが少ない分岐ポリカーボネートをエステル交換法で連続して製造することができる。 The present invention includes (A) a step of producing a low molecular weight polycarbonate having a number average molecular weight of 1000 to 10,000 by an ester exchange method from an aromatic dihydroxy compound and a carbonic acid diester; and (B) a liquid containing a polyfunctional compound in the low molecular weight polycarbonate. A branched polycarbonate comprising: a step of adding and mixing in a state; and (C) a step of continuously producing a branched polycarbonate by performing a polymerization reaction until the melt index of the low molecular weight polycarbonate is 10 g / 10 min or less and the branching index is 14 or more. A continuous manufacturing method is provided. According to this method, it is possible to reduce a loss at the time of brand switching, and it is possible to continuously produce a branched polycarbonate excellent in hue and hot water resistance and having little fish eye by a transesterification method.
 また、本発明において、下記式(I)で定義されるΔT(℃)の範囲は-20℃~20℃以下あることが好ましい。これにより、本発明の上記効果が一層奏される。
  ΔT = T - T  (I)
[式中、Tは前記(C)工程における最終重合器に導入される低分子量ポリカーボネートの温度(℃)を示し、Tは前記(C)工程における前記最終重合器により重合された分岐ポリカーボネートの温度(℃)を示し、Tは285℃以下である。]
In the present invention, the range of ΔT (° C.) defined by the following formula (I) is preferably −20 ° C. to 20 ° C. or less. Thereby, the said effect of this invention is further show | played.
ΔT = T 2 −T 1 (I)
[Wherein T 1 represents the temperature (° C.) of the low molecular weight polycarbonate introduced into the final polymerization vessel in the step (C), and T 2 represents a branched polycarbonate polymerized by the final polymerization vessel in the step (C). The T 2 is 285 ° C. or lower. ]
 上記多官能化合物は、溶剤に溶解した状態で、(A)工程を行う装置と(C)工程を行う装置との間の配管途中に設置された溶融混合機に添加されることが好ましい。これにより、本発明の上記効果が一層奏される。 It is preferable that the polyfunctional compound is added to a melt mixer installed in the middle of the pipe between the device for performing the step (A) and the device for performing the step (C) in a state dissolved in a solvent. Thereby, the said effect of this invention is further show | played.
 また、上記溶剤は、フェノール類、炭酸ジエステル類、ケトン類、エーテル類、芳香族ジヒドロキシ化合物と炭酸ジエステルとの混合物及び反応物、並びに数平均分子量5000以下の低分子量ポリカーボネートからなる群から選ばれる少なくとも1種であることが好ましい。これにより、本発明の上記効果がより一層奏される。 The solvent is at least selected from the group consisting of phenols, carbonic acid diesters, ketones, ethers, mixtures and reactants of aromatic dihydroxy compounds and carbonic acid diesters, and low molecular weight polycarbonates having a number average molecular weight of 5000 or less. One type is preferable. Thereby, the said effect of this invention is further show | played.
 また、上記溶剤は、解重合溶剤であることが好ましい。これにより、本発明の上記効果が一層奏される。なお、本明細書において「解重合溶剤」とは、ポリカーボネートの解重合を引き起こす溶剤をいう。 The solvent is preferably a depolymerization solvent. Thereby, the said effect of this invention is further show | played. In the present specification, the “depolymerization solvent” refers to a solvent that causes depolymerization of polycarbonate.
 また、本発明は、(A)工程に引き続き、(D)メルトインデックスが100g/10min以下になるまで重合反応を行いポリカーボネートを製造する工程を更に含むことができる。この製造方法によれば、銘柄切り替え時のロスを少なくすることができるとともに、色相及び耐熱水性に優れ、フィッシュアイが少ない分岐ポリカーボネートを含む複数種のポリカーボネートをエステル交換法で連続して製造することができる。 Further, the present invention can further include (D) a step of producing a polycarbonate by performing a polymerization reaction until the melt index becomes 100 g / 10 min or less, following the step (A). According to this production method, loss at the time of brand switching can be reduced, and a plurality of types of polycarbonates including branched polycarbonates having excellent hue and hot water resistance and few fish eyes can be produced continuously by a transesterification method. Can do.
 ここで、(A)工程を行う装置は、(C)工程を行う装置及び(D)工程を行う装置へそれぞれ通じるように分岐された分岐部を有する配管を介して、(C)工程を行う装置及び(D)工程を行う装置と接続されており、上記多官能化合物は、分岐部と(C)工程を行う装置との間の配管途中に設置された溶融混合機に添加されることができる。これにより、本発明の上記効果が一層奏される。 Here, the apparatus that performs the process (A) performs the process (C) via a pipe having a branch portion that branches to lead to the apparatus that performs the process (C) and the apparatus that performs the process (D). It is connected with the apparatus and the apparatus which performs (D) process, The said polyfunctional compound may be added to the melt mixer installed in the middle of the piping between a branch part and the apparatus which performs (C) process. it can. Thereby, the said effect of this invention is further show | played.
 また、本発明は、上記方法により製造される分岐ポリカーボネートを提供する。この分岐ポリカカーボネートは、色相及び耐熱水性に優れ、フィッシュアイが少ないものとなる。 The present invention also provides a branched polycarbonate produced by the above method. This branched polycarbonate is excellent in hue and hot water resistance and has less fish eyes.
 本発明によれば、銘柄切り替え時のロスを少なくすることができるとともに、色相及び耐熱水性に優れ、フィッシュアイが少ない分岐ポリカーボネートをエステル交換法で製造する、分岐ポリカーボネートの連続製造方法を提供することができる。 According to the present invention, it is possible to provide a continuous production method of a branched polycarbonate, which can reduce a loss at the time of brand switching, and produce a branched polycarbonate having excellent hue and hot water resistance and less fish eye by a transesterification method. Can do.
本発明の一実施形態の分岐ポリカーボネートを製造する製造システムの概略図である。It is the schematic of the manufacturing system which manufactures the branched polycarbonate of one Embodiment of this invention. 本発明の一実施形態の複数種のポリカーボネートを製造する製造システムの概略図である。It is the schematic of the manufacturing system which manufactures the multiple types of polycarbonate of one Embodiment of this invention.
 以下、本発明を詳細に説明する。本実施形態の分岐ポリカーボネートの連続製造方法では、芳香族ジヒドロキシ化合物と、炭酸ジエステルと、多官能化合物とからエステル交換法により分岐ポリカーボネートを製造することができる。 Hereinafter, the present invention will be described in detail. In the continuous production method of a branched polycarbonate according to this embodiment, a branched polycarbonate can be produced from an aromatic dihydroxy compound, a carbonic acid diester, and a polyfunctional compound by a transesterification method.
 本実施形態において、芳香族ジヒドロキシ化合物とは、例えば、HO-Ar-OHで示される化合物である。Arは2価の芳香族残基であり、例えば、フェニレン、ナフチレン、ビフェニレン、ピリジレン、又は、-Ar-Y-Ar-で表される2価の芳香族残基である。ここで、Ar及びArは、各々独立にそれぞれ炭素数5~70を有する2価の炭素環式又は複素環式芳香族基を示し、Yは炭素数1~30を有する2価のアルキレン基を示す。 In the present embodiment, the aromatic dihydroxy compound is, for example, a compound represented by HO—Ar—OH. Ar is a divalent aromatic residue, for example, a divalent aromatic residue represented by phenylene, naphthylene, biphenylene, pyridylene, or —Ar 1 —Y—Ar 2 —. Here, Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y represents a divalent alkylene having 1 to 30 carbon atoms. Indicates a group.
 上記2価の芳香族基(Ar、Ar)において、芳香環に結合する1つ以上の水素原子は、反応に悪影響を及ぼさない他の置換基、例えば、炭素数1~10のアルキル基、環を構成する炭素数が5~10のシクロアルキル基、炭素数1~10のアルコキシ基、フェニル基、フェノキシ基、ビニル基、シアノ基、エステル基、アミド基、ニトロ基等によって置換されていてもよい。複素環式芳香族基の好ましい具体例としては、環を構成する1ないし複数の窒素原子、酸素原子又は硫黄原子を有する複素環式芳香族基を挙げることができる。
 Ar及びArとしてはそれぞれ、置換又は非置換のフェニレン、置換又は非置換のビフェニレン、置換又は非置換のピリジレン等が好ましい。
In the divalent aromatic group (Ar 1 , Ar 2 ), one or more hydrogen atoms bonded to the aromatic ring are other substituents that do not adversely influence the reaction, for example, an alkyl group having 1 to 10 carbon atoms Substituted with a cycloalkyl group having 5 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a phenyl group, a phenoxy group, a vinyl group, a cyano group, an ester group, an amide group, a nitro group, etc. May be. Preferable specific examples of the heterocyclic aromatic group include heterocyclic aromatic groups having one or more nitrogen atoms, oxygen atoms or sulfur atoms constituting the ring.
Ar 1 and Ar 2 are each preferably substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted pyridylene, and the like.
 2価のアルキレン基Yは、例えば、下記一般式で示される有機基である。
Figure JPOXMLDOC01-appb-C000001
(式中、R、R、R、Rは、各々独立に水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、環を構成する炭素数が5~10のシクロアルキル基、環を構成する炭素数が5~10の炭素環式芳香族基、又は、炭素数6~10の炭素環式アラルキル基を示す。kは3~11の整数を示し、R及びRは、各Xについて個々に選択され、互いに独立に、水素原子又は炭素数1~6のアルキル基を示し、Xは炭素を示す。また、R、R、R、R、R、Rにおいて、一つ以上の水素原子は、反応に悪影響を及ぼさない範囲で他の置換基、例えば炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、フェニル基、フェノキシ基、ビニル基、シアノ基、エステル基、アミド基、ニトロ基等によって置換されていてもよい。)
The divalent alkylene group Y is, for example, an organic group represented by the following general formula.
Figure JPOXMLDOC01-appb-C000001
(Wherein R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or 5 to 5 carbon atoms constituting the ring) 10 represents a cycloalkyl group, a carbocyclic aromatic group having 5 to 10 carbon atoms constituting the ring, or a carbocyclic aralkyl group having 6 to 10 carbon atoms, k represents an integer of 3 to 11; R 5 and R 6 are individually selected for each X and independently of each other represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, X represents carbon, and R 1 , R 2 , R 3 , In R 4 , R 5 , and R 6 , one or more hydrogen atoms may be other substituents, for example, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, within a range that does not adversely affect the reaction, Phenyl group, phenoxy group, vinyl group, cyano group, ester group, amide group, nitrite It may be substituted by a group.)
 以上のような置換基を有する2価の芳香族残基Arとしては、例えば、下記一般式で表されるものが挙げられる。 Examples of the divalent aromatic residue Ar having a substituent as described above include those represented by the following general formula.
Figure JPOXMLDOC01-appb-C000002
(式中、R、Rは、各々独立に水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、環を構成する炭素数が5~10のシクロアルキル基又はフェニル基を示し、m及びnは1~4の整数を示し、mが2~4のとき、各Rはそれぞれ同一でも異なっていてもよく、nが2~4のとき、各Rはそれぞれ同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000002
(Wherein R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms constituting the ring, or M and n each represent an integer of 1 to 4, and when m is 2 to 4, each R 7 may be the same or different. When n is 2 to 4, each R 8 is Each may be the same or different.)
 更に、2価の芳香族残基Arは、-Ar-Z-Ar-で示されるものであってもよい。Ar、Arは前述のとおりであり、Zは単結合又は-O-、-CO-、-S-、-SO-、-SO-、-COO-、-CON(R)-等の2価の基を表す。ただし、Rは前述のとおりである。 Further, the divalent aromatic residue Ar may be represented by —Ar 1 —Z—Ar 2 —. Ar 1 and Ar 2 are as described above, and Z is a single bond or —O—, —CO—, —S—, —SO 2 —, —SO—, —COO—, —CON (R 1 ) —, etc. Represents a divalent group. However, R 1 is as described above.
 このような2価の芳香族残基Arとしては、例えば、下記一般式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、m及びnは、前述のとおりである。)
As such a bivalent aromatic residue Ar, what is represented by the following general formula is mentioned, for example.
Figure JPOXMLDOC01-appb-C000003
(Wherein R 7 , R 8 , m and n are as described above.)
 本実施形態で用いられる芳香族ジヒドロキシ化合物は、単独でも2種以上でもよい。芳香族ジヒドロキシ化合物の代表的な例としてはビスフェノールAが挙げられ、他の芳香族ジヒドロキシ化合物と同時に使用する場合は、芳香族ジヒドロキシ化合物の全体量に対してビスフェノールAを85モル%以上の割合で使用することが好ましい。また、これら芳香族ジヒドロキシ化合物は、塩素原子とアルカリ又はアルカリ土類金属の含有量が少ない方が好ましく、できれば実質的に含有していないことが好ましい。 The aromatic dihydroxy compound used in this embodiment may be used alone or in combination of two or more. A typical example of the aromatic dihydroxy compound is bisphenol A. When used together with other aromatic dihydroxy compounds, bisphenol A is used in a proportion of 85 mol% or more based on the total amount of the aromatic dihydroxy compounds. It is preferable to use it. These aromatic dihydroxy compounds preferably have a low content of chlorine atoms and alkali or alkaline earth metal, and are preferably not substantially contained if possible.
 本実施形態で用いられる炭酸ジエステルは、例えば、下記一般式で表される化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、Ar、Arはそれぞれ1価の芳香族基を表す。)
The carbonic acid diester used in the present embodiment is, for example, a compound represented by the following general formula.
Figure JPOXMLDOC01-appb-C000004
(In the formula, Ar 3 and Ar 4 each represent a monovalent aromatic group.)
 1価の芳香族基Ar及びArは、好ましくは、フェニル基、ナフチル基、ビフェニル基、ピリジル基を挙げることができる。Ar、Arにおいて、芳香環に結合する1つ以上の水素原子は、反応に悪影響を及ぼさない他の置換基、例えば、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、フェニル基、フェノキシ基、ビニル基、シアノ基、エステル基、アミド基、ニトロ基等によって置換されていてもよい。Ar、Arは互いに同一であっても異なっていてもよい。 The monovalent aromatic groups Ar 3 and Ar 4 are preferably a phenyl group, a naphthyl group, a biphenyl group, and a pyridyl group. In Ar 3 and Ar 4 , one or more hydrogen atoms bonded to the aromatic ring are other substituents that do not adversely influence the reaction, for example, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms , Phenyl group, phenoxy group, vinyl group, cyano group, ester group, amide group, nitro group and the like. Ar 3 and Ar 4 may be the same as or different from each other.
 より好ましいAr及びArとしては、例えば下記式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000005
More preferable examples of Ar 3 and Ar 4 include groups represented by the following formulas.
Figure JPOXMLDOC01-appb-C000005
 炭酸ジエステルの代表的な例としては、下記一般式で表される置換又は非置換のジフェニルカーボネート類を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
(式中、R及びR10は、各々独立に水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、環を構成する炭素数が5~10のシクロアルキル基又はフェニル基を示し、p及びqは1~5の整数を示し、pが2以上のとき各Rはそれぞれ異なっていてもよく、qが2以上のとき各R10はそれぞれ異なっていてもよい。)
Representative examples of carbonic acid diesters include substituted or unsubstituted diphenyl carbonates represented by the following general formula.
Figure JPOXMLDOC01-appb-C000006
(Wherein R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms constituting the ring, or Represents a phenyl group, p and q represent an integer of 1 to 5, each R 9 may be different when p is 2 or more, and each R 10 may be different when q is 2 or more. .)
 上記炭酸ジエステル類の中でも、非置換のジフェニルカーボネート、並びに、ジトリルカーボネート及びジ-t-ブチルフェニルカーボネートのような低級アルキル置換ジフェニルカーボネート等の対称型ジアリールカーボネートが好ましく、ジフェニルカーボネートがより好ましい。これらの炭酸ジエステル類は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、これら炭酸ジエステル類は、塩素原子とアルカリ又はアルカリ土類金属の含有量が少ない方が好ましく、できれば実質的に含有していないことが好ましい。 Among the carbonic acid diesters, symmetric diaryl carbonates such as unsubstituted diphenyl carbonate and lower alkyl-substituted diphenyl carbonates such as ditolyl carbonate and di-t-butylphenyl carbonate are preferable, and diphenyl carbonate is more preferable. These carbonic acid diesters may be used alone or in combination of two or more. In addition, these carbonic acid diesters preferably have a low content of chlorine atoms and alkali or alkaline earth metals, and preferably do not substantially contain them.
 芳香族ジヒドロキシ化合物と炭酸ジエステルとの使用割合(仕込比率)は、用いられる芳香族ジヒドロキシ化合物及び炭酸ジエステルの種類や、目標とする分子量や水酸基末端比率、重合条件等によって異なり、特に限定されない。炭酸ジエステルは芳香族ジヒドロキシ化合物1モルに対して、好ましくは0.9~2.5モル、より好ましくは0.95~2.0モル、更に好ましくは0.98~1.5モルの割合で用いられる。また、末端変換や分子量調節のために芳香族モノヒドロキシ化合物を併用してもよい。 The use ratio (feed ratio) of the aromatic dihydroxy compound and the carbonic acid diester varies depending on the kind of the aromatic dihydroxy compound and the carbonic acid diester used, the target molecular weight, the hydroxyl group terminal ratio, the polymerization conditions, etc., and is not particularly limited. The carbonic acid diester is preferably 0.9 to 2.5 mol, more preferably 0.95 to 2.0 mol, still more preferably 0.98 to 1.5 mol with respect to 1 mol of the aromatic dihydroxy compound. Used. An aromatic monohydroxy compound may be used in combination for terminal conversion and molecular weight adjustment.
 本実施形態で用いられる、多官能化合物は、炭酸ジエステルに対する反応性のある官能基を分子中に3つ以上有する化合物であり、フェノール性水酸基及び/又はカルボキシル基を3つ以上有する化合物であることが好ましい。多官能化合物としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4-[4-[1,1-ビス(4-ヒドロキシフェニル)エチル]-α,α-ジメチルベンジル]フェノール、2,2’,2”-トリス(4-ヒドロキシフェニル)ジイソプロピルベンゼン、α、α’,α”-トリス(4-ヒドロキシフェニル)トリイソプロピルベンゼン、フロログリシン、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプタン-2、1,3,5-トリ(4-ヒドロキシフェニル)ベンゾール、2,2’-ビス-[4,4-(4,4’-ジヒドロキシジフェニル)シクロヘキシル]プロパン、α-メチル-α,α’,α’-トリス(4-ヒドロキシフェニル)-1,4-ジエチルベンゼン、トリ-(4-ヒドロキシフェニル)フェニルメタン、2,4-ビス(4-ヒドロキシフェニルイソプロピル)フェノール、2,6-ビス(2-ヒドロキシ-5’-メチルベンジル)-4-メチルフェノール、2-(4-ヒドロキシフェニル)-2-(2,4-ジヒドロキシフェニル)プロパン、ヘキサ-(4-(4-ヒドロキシフェニルイソプロピル)フェニル)テレフタル酸エステル、テトラ-(4-ヒドロキシフェニル)メタン、テトラ-(4-(4-ヒドロキシフェニルイソプロピル)フェノキシ)メタン、1,4-ビス(4’,4’’-ジヒドロキシ-トリフェニル)メチルベンゼン、2,4-ジヒドロキシ安息香酸、トリメシン酸、3,3-ビス(3-メチル-4-ヒドロキシフェニル)-2-オキソ-2,3-ジヒドロインドール、トリメシン酸トリクロリド、α,α’,α’’-トリス(4-ヒドロキシフェノール)-1,3,5-トリイソプロピルベンゼン、トリメリット酸、1,3,5-ベンゼントリカルボン酸、ピロメリット酸、C-Si-(O-Si(CH-C-C-OH)、CH-Si-(O-Si(CH-C-C-OH)等が挙げられ、1,1,1-トリス(4-ヒドロキシフェニル)エタンと、4-[4-[1,1-ビス(4-ヒドロキシフェニル)エチル]-α,α-ジメチルベンジル]フェノールが最も好ましい。 The polyfunctional compound used in the present embodiment is a compound having three or more functional groups reactive to the carbonic acid diester in the molecule, and having three or more phenolic hydroxyl groups and / or carboxyl groups. Is preferred. Examples of the polyfunctional compound include 1,1,1-tris (4-hydroxyphenyl) ethane, 4- [4- [1,1-bis (4-hydroxyphenyl) ethyl] -α, α-dimethylbenzyl]. Phenol, 2,2 ′, 2 ″ -tris (4-hydroxyphenyl) diisopropylbenzene, α, α ′, α ″ -tris (4-hydroxyphenyl) triisopropylbenzene, phloroglysin, 4,6-dimethyl-2, 4,6-tri (4-hydroxyphenyl) heptane-2,1,3,5-tri (4-hydroxyphenyl) benzol, 2,2′-bis- [4,4- (4,4′-dihydroxydiphenyl) ) Cyclohexyl] propane, α-methyl-α, α ′, α′-tris (4-hydroxyphenyl) -1,4-diethylbenzene, tri- (4-hydroxyphenyl) phenyl Nylmethane, 2,4-bis (4-hydroxyphenylisopropyl) phenol, 2,6-bis (2-hydroxy-5′-methylbenzyl) -4-methylphenol, 2- (4-hydroxyphenyl) -2- ( 2,4-dihydroxyphenyl) propane, hexa- (4- (4-hydroxyphenylisopropyl) phenyl) terephthalic acid ester, tetra- (4-hydroxyphenyl) methane, tetra- (4- (4-hydroxyphenylisopropyl) phenoxy ) Methane, 1,4-bis (4 ′, 4 ″ -dihydroxy-triphenyl) methylbenzene, 2,4-dihydroxybenzoic acid, trimesic acid, 3,3-bis (3-methyl-4-hydroxyphenyl) -2-Oxo-2,3-dihydroindole, trimesic acid trichloride, α, α ', α'' Tris (4-hydroxyphenol) -1,3,5-triisopropylbenzene, trimellitic acid, 1,3,5-benzenetricarboxylic acid, pyromellitic acid, C 6 H 5 -Si- (O -Si (CH 3 ) 2 -C 3 H 6 -C 6 H 4 -OH) 3 , CH 3 -Si- (O-Si (CH 3 ) 2 -C 3 H 6 -C 6 H 4 -OH) 3 Most preferred are 1,1,1-tris (4-hydroxyphenyl) ethane and 4- [4- [1,1-bis (4-hydroxyphenyl) ethyl] -α, α-dimethylbenzyl] phenol.
 多官能化合物の使用量は、芳香族ジヒドロキシ化合物に対して0.1~0.95モル%であることが好ましく、0.2~0.8モル%であることが好ましく、特に好ましくは0.3~0.6モル%である。多官能化合物の使用量が0.95モル%以下である場合にはフィッシュアイの増加が起こり難くなり、0.1モル%以上である場合には溶融張力を増加できる。 The amount of the polyfunctional compound used is preferably from 0.1 to 0.95 mol%, more preferably from 0.2 to 0.8 mol%, particularly preferably from 0.1 to 0.9 mol% based on the aromatic dihydroxy compound. 3 to 0.6 mol%. When the amount of the polyfunctional compound used is 0.95 mol% or less, it is difficult for fish eyes to increase, and when it is 0.1 mol% or more, the melt tension can be increased.
 エステル交換法とは、上記化合物を触媒の存在下もしくは非存在下で、減圧下及び/又は不活性ガスフロー下で加熱しながら溶融状態でエステル交換反応にて重縮合する方法をいい、その重合方法、装置等には制限はない。装置としては、例えば、攪拌槽型反応器、薄膜反応器、遠心式薄膜蒸発反応器、表面更新型二軸混練反応器、二軸横型攪拌反応器、濡れ壁式反応器、自由落下させながら重合する多孔板型反応器、ワイヤーに沿わせて落下させながら重合するワイヤー付き多孔板型反応器等を用いられる。本実施形態においては、これらを組み合わせることで段階的に重縮合反応を進め目的のポリカーボネートを製造できる。例えば分子量が低い溶融プレポリマーまでは攪拌槽型反応器で製造し、その得られた溶融プレポリマーを、自由落下させながら重合する多孔板型反応器や及びワイヤーに沿わせて落下させながら重合するワイヤー接触流下式重合器を使用して更に重合することが好ましい。特に溶融混合器の後に設置される重合器には、置換効率に優れるワイヤー接触流下式重合器を用いることが、切り替え後のロスが少なく好ましい。これらの製造方法についは、例えば米国特許第5589564号等を参照することができる。また、これらの反応器の材質に特に制限はないが、反応器の少なくとも内壁面を構成する材質は、通常ステンレススチールやニッケル、ガラス等から選ばれる。 The transesterification method is a method in which the above compound is polycondensed in a transesterification reaction in a molten state with heating in the presence or absence of a catalyst, under reduced pressure and / or inert gas flow, and the polymerization. There are no restrictions on the method, apparatus, etc. Examples of the apparatus include a stirred tank reactor, a thin film reactor, a centrifugal thin film evaporation reactor, a surface renewal type biaxial kneading reactor, a biaxial horizontal stirring reactor, a wet wall reactor, and a polymerization while allowing it to fall freely. For example, a perforated plate reactor, a perforated plate reactor with wire that is polymerized while being dropped along the wire, and the like are used. In this embodiment, by combining these, the polycondensation reaction can be advanced stepwise to produce the target polycarbonate. For example, a molten prepolymer having a low molecular weight is produced in a stirred tank reactor, and the obtained molten prepolymer is polymerized while being dropped along a perforated plate reactor and a wire that are polymerized while freely dropping. It is preferred to further polymerize using a wire contact flow polymerizer. In particular, for the polymerization vessel installed after the melt mixer, it is preferable to use a wire contact flow type polymerization vessel excellent in substitution efficiency with little loss after switching. For these production methods, reference can be made, for example, to US Pat. No. 5,589,564. The material of these reactors is not particularly limited, but the material constituting at least the inner wall surface of the reactor is usually selected from stainless steel, nickel, glass and the like.
 エステル交換反応にて溶融重縮合を実施する温度は、50~320℃が好ましい。反応の進行にともなって、芳香族モノヒドロキシ化合物が生成してくるが、これを反応系外へ除去する事によって反応速度が高められる。従って、窒素、アルゴン、ヘリウム、二酸化炭素や低級炭化水素ガス等、反応に悪影響を及ぼさない不活性なガスを導入して、生成してくる芳香族モノヒドロキシ化合物をこれらのガスに同伴させて除去する方法や、減圧下に反応を行う方法等が好ましく用いられる。好ましい反応圧力は、生成物の分子量によっても異なり、重合初期には10mmHg~常圧が好ましく、重合後期には、20mmHg以下、特に10mmHg以下が好ましく、特に最終重合器においては5mmHg以下が好ましい。 The temperature at which the melt polycondensation is carried out in the transesterification reaction is preferably 50 to 320 ° C. As the reaction proceeds, an aromatic monohydroxy compound is produced, and the reaction rate can be increased by removing this from the reaction system. Therefore, nitrogen, argon, helium, carbon dioxide, lower hydrocarbon gas, and other inert gases that do not adversely affect the reaction are introduced, and the resulting aromatic monohydroxy compounds are removed by accompanying these gases. And a method of reacting under reduced pressure are preferably used. The preferred reaction pressure varies depending on the molecular weight of the product, and is preferably 10 mmHg to normal pressure in the early stage of polymerization, preferably 20 mmHg or less, particularly preferably 10 mmHg or less, and particularly preferably 5 mmHg or less in the final polymerization vessel.
 以下、本実施形態の(A)工程、(B)工程、及び(C)工程について説明する。図1を用いて詳細に説明するが、本実施形態の製造方法は、これに限定されるものではない。 Hereinafter, the (A) process, (B) process, and (C) process of this embodiment will be described. Although it demonstrates in detail using FIG. 1, the manufacturing method of this embodiment is not limited to this.
 本実施形態の分岐ポリカーボネートの連続製造方法は、(A)芳香族ジヒドロキシ化合物と炭酸ジエステルとからエステル交換法により数平均分子量が1000~10000の低分子量ポリカーボネートを製造する工程と、(B)低分子量ポリカーボネートに多官能化合物を液体状態で添加混合する工程と、(C)引き続き低分子量ポリカーボネートのメルトインデックス(MI)が10g/10min以下かつMIRが14以上になるまで重合反応を行う工程とからなる。 The continuous production method of the branched polycarbonate of the present embodiment includes (A) a step of producing a low molecular weight polycarbonate having a number average molecular weight of 1000 to 10,000 by an ester exchange method from an aromatic dihydroxy compound and a carbonic acid diester, and (B) a low molecular weight. It comprises a step of adding and mixing a polyfunctional compound in a polycarbonate in a liquid state, and (C) a step of performing a polymerization reaction until the melt index (MI) of the low molecular weight polycarbonate is 10 g / 10 min or less and the MIR is 14 or more.
 図1に示す分岐ポリカーボネートの製造システムは、攪拌槽型第一重合器3A,3Bを有する第一攪拌重合工程、攪拌槽型第二重合器3Cを有する第二攪拌重合工程、及び、攪拌槽型第三重合器3Dを有する第三攪拌重合工程、並びに、ワイヤー接触流下式第一重合器108Aを有する第一ワイヤー接触流下式重合工程、及び、ワイヤー接触流下式第二重合器108Bを有する第二ワイヤー接触流下式重合工程から構成される。 The branched polycarbonate production system shown in FIG. 1 includes a first stirring polymerization step having stirring tank type first polymerization units 3A and 3B, a second stirring polymerization step having stirring tank type second polymerization unit 3C, and a stirring tank type. A third agitation polymerization step having a third polymerization vessel 3D, a first wire contact flow-down polymerization step having a wire contact flow-down type first polymerization vessel 108A, and a first having a wire contact flow-down second polymerization vessel 108B. It consists of a two-wire contact flow polymerization process.
 (A)工程は、3A及び3Bから、3C、3D、108Aまでの工程である。 (A) The process is a process from 3A and 3B to 3C, 3D, and 108A.
 攪拌槽型重合器3A~3Dは、それぞれ、重合原料用入口1A,1B若しくはプレポリマー用入口1C,1D、ベント口2A~2D、出口5A~5D、及び、アンカー型攪拌翼を有する攪拌機6A~6Dを備える。並列に設置された攪拌槽型第一重合器3A及び3Bに、重合原料のうち芳香族ジヒドロキシ化合物と炭酸ジエステルとが投入され、バッチ方式で第一攪拌重合工程が行われる。一般的にはこの段階で重合触媒が添加されるが、その後の工程で添加してもよい。生成した溶融プレポリマー4A及び4Bは、移送配管を通じて攪拌槽型第二重合器3Cに、プレポリマー用入口1Cから投入される。このとき、溶融プレポリマー4A及び4Bの移送には、移送経路の途中に設置された移送ポンプ8を必要に応じて使用してもよい。更に、第二攪拌重合工程で重合を進めた溶融プレポリマー4Cは、攪拌槽型第二重合器3Cの出口5Cに設けた移送ポンプ7Cにより押し出され、移送配管を通じて攪拌槽型第三重合器3Dに、プレポリマー用入口1Dから投入される。このように、第二及び第三攪拌重合工程は連続的に行われる。 Stirrer tank type polymerizers 3A to 3D respectively include polymerization raw material inlets 1A and 1B or prepolymer inlets 1C and 1D, vent ports 2A to 2D, outlets 5A to 5D, and stirrers 6A to 6A having anchor type stirring blades. 6D is provided. An aromatic dihydroxy compound and a carbonic acid diester among the polymerization raw materials are charged into the stirring tank type first polymerization devices 3A and 3B installed in parallel, and the first stirring polymerization process is performed in a batch manner. In general, a polymerization catalyst is added at this stage, but it may be added in a subsequent process. The produced melted prepolymers 4A and 4B are introduced from the prepolymer inlet 1C into the stirring tank type second polymerization vessel 3C through a transfer pipe. At this time, you may use the transfer pump 8 installed in the middle of the transfer path as needed for the transfer of the melted prepolymers 4A and 4B. Further, the molten prepolymer 4C which has been polymerized in the second stirring polymerization step is pushed out by a transfer pump 7C provided at the outlet 5C of the stirring tank type second polymerization device 3C, and is stirred through the transfer pipe. 3D is charged from the prepolymer inlet 1D. Thus, the second and third stirred polymerization steps are performed continuously.
 第三攪拌重合工程で生成した溶融プレポリマー4Dは、攪拌槽型第三重合器3Dの出口5Dから移送ポンプ7Dにより押し出され、移送配管を通じて、ワイヤー接触流下式第一重合器108Aへ移送される。 The molten prepolymer 4D generated in the third stirring polymerization step is pushed out from the outlet 5D of the stirring tank type third polymerization vessel 3D by the transfer pump 7D and transferred to the wire contact flow type first polymerization vessel 108A through the transfer pipe. The
 次に、第一及び第二ワイヤー接触流下式重合工程が、ワイヤー接触流下式第一及び第二重合器108A,108Bにおいて連続的に行われる。ワイヤー接触流下式第一及び第二重合器108A,108Bにはそれぞれ、プレポリマー用入口101A,101B、多孔板102A,102B、ワイヤー状ガイド103A,103B、ガス供給ポート104A,104B、ベント口105A,105B、及び、出口107A,107Bが設けられている。 Next, the first and second wire contact flow type polymerization processes are continuously performed in the wire contact flow type first and second polymerization reactors 108A and 108B. The first and second polymerization reactors 108A and 108B, respectively, are provided with prepolymer inlets 101A and 101B, perforated plates 102A and 102B, wire guides 103A and 103B, gas supply ports 104A and 104B, vent ports 105A, 105B and outlets 107A and 107B are provided.
 プレポリマー用入口101Aから投入された溶融プレポリマー4Dは、ワイヤーに接触して流下しながら重合が進行し、溶融プレポリマー109Aが、ワイヤー接触流下式第一重合器108A内の下部に蓄積する。ここで、溶融プレポリマー109Aの数平均分子量(Mn)が1000~10000になるまで重合反応が進められる。数平均分子量としては好ましくは1500~8000、より好ましくは2000~7000である。Mnが1000以上であると、銘柄切り替え時のロスを小さくすることができ、10000以下であると、フィッシュアイが減少し、耐熱水性の低下が抑えられる傾向がある。溶融プレポリマー109Aは、出口107Aから移送ポンプ106Aにより押し出され、移送配管を通じて、ワイヤー接触流下式第二重合器108Bのプレポリマー用入口101Bへ移送される。なお、本実施形態において数平均分子量及び重量平均分子量の測定は、ゲルパーミュエーションクロマトグラフィー(GPC)を用いて行うことができる。 Polymerization proceeds while the molten prepolymer 4D charged from the prepolymer inlet 101A flows in contact with the wire, and the molten prepolymer 109A accumulates in the lower part of the wire contact flow type first polymerization vessel 108A. Here, the polymerization reaction proceeds until the number average molecular weight (Mn) of the molten prepolymer 109A becomes 1000 to 10,000. The number average molecular weight is preferably 1500 to 8000, more preferably 2000 to 7000. When Mn is 1000 or more, loss at the time of brand switching can be reduced, and when it is 10000 or less, fish eyes tend to be reduced and a decrease in hot water resistance tends to be suppressed. The molten prepolymer 109A is pushed out from the outlet 107A by the transfer pump 106A, and transferred to the prepolymer inlet 101B of the wire contact flow type second polymerization vessel 108B through the transfer pipe. In this embodiment, the number average molecular weight and the weight average molecular weight can be measured using gel permeation chromatography (GPC).
 (B)工程は、上記(A)工程で得られた低分子量ポリカーボネートに多官能化合物を液体状態で添加混合する工程である。図1では出口107Aからプレポリマー用入口101Bまでの移送配管と、この移送配管の途中に設置された溶融混合機(ラインミキサー)110と、多官能化合物投入配管111が該当する。このケースでは多官能化合物が液体状態で、多官能化合物投入配管111を経由して溶融混合機110に投入され、ワイヤー接触流下式第一重合器108Aから移送されてくる溶融プレポリマー109Aと混合される。ここで解重合反応が起こる場合は、溶融混合機内で平衡に達するまで完結させてもよく、その後の移送配管中で完結させてもよい。また、この後に(C)工程があるため、必ずしも本工程で完全に解重合が平衡に達するまで反応させる必要はない。また、混合をより均一にするために、移送配管中にスタティックミキサー等の混合領域を設置することもできる。 Step (B) is a step of adding and mixing a polyfunctional compound in a liquid state to the low molecular weight polycarbonate obtained in step (A). In FIG. 1, a transfer pipe from the outlet 107 </ b> A to the prepolymer inlet 101 </ b> B, a melt mixer (line mixer) 110 installed in the middle of the transfer pipe, and a polyfunctional compound input pipe 111 correspond. In this case, the polyfunctional compound is in a liquid state, charged into the melt mixer 110 via the polyfunctional compound charging pipe 111, and mixed with the molten prepolymer 109A transferred from the wire contact flow type first polymerization vessel 108A. The Here, when the depolymerization reaction occurs, the depolymerization reaction may be completed until equilibrium is reached in the melt mixer, or may be completed in a subsequent transfer pipe. Moreover, since there exists process (C) after this, it is not necessary to make it react until depolymerization reaches an equilibrium completely by this process. In order to make the mixing more uniform, a mixing region such as a static mixer can be installed in the transfer pipe.
 (B)工程は、例えば図1のシステム中の出口5Dとプレポリマー用入口101Aとの途中にあってもよく、出口5Cとプレポリマー用入口1Dとの配管の途中にあってもよい。また、本実施形態の(B)工程においては、溶融混合機を用いることなく移送配管に直接多官能化合物を添加して、移送配管内やスタティックミキサー等の混合領域を設置することで反応(解重合反応が起こる場合は解重合反応も)を進めてもよい。また、溶融混合機として二軸押出機のような混練装置を用いることもできる。その場合には、多官能化合物を溶融状態で添加してもよく、粉体であれば溶剤に溶かした状態で添加してもよい。フィッシュアイの低減や耐熱水性の向上のためには多官能化合物を溶融状態や溶剤に溶かした状態で添加することが好ましく、溶剤に溶かした状態で添加することが特に好ましい。 (B) The process may be in the middle of the outlet 5D and the prepolymer inlet 101A in the system of FIG. 1, for example, or in the middle of the piping between the outlet 5C and the prepolymer inlet 1D. In the step (B) of the present embodiment, the polyfunctional compound is added directly to the transfer pipe without using a melt mixer, and the reaction (solution) is performed by installing a mixing region in the transfer pipe or a static mixer. If a polymerization reaction takes place, the depolymerization reaction may also proceed. Moreover, a kneading apparatus such as a twin screw extruder can be used as the melt mixer. In that case, the polyfunctional compound may be added in a molten state, or in the case of powder, it may be added in a state dissolved in a solvent. In order to reduce fish eyes and improve hot water resistance, the polyfunctional compound is preferably added in a molten state or dissolved in a solvent, and particularly preferably added in a state dissolved in a solvent.
 本実施形態においては、溶融混合機に、多官能化合物を溶剤に溶解させた状態で添加することもできる。多官能化合物を溶解する溶剤としては、フェノール類、芳香族ジヒドロキシ化合物、炭酸ジエステル類、ケトン類、エーテル類、芳香族ジヒドロキシ化合物と炭酸ジエステルとの混合物及び反応物、並びに数平均分子量5000以下の低分子量ポリカーボネート等のプラント内に存在する化合物であることが好ましい。これらの溶剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの化合物を溶剤として用いると、得られる分岐ポリカーボネートのフィッシュアイが少なくなる。その理由は明確ではないが、これら化合物を溶剤として用いた場合には、ポリカーボネートの解重合を引き起こすので多官能化合物の分散がより進行するためではないかと推定している。その場合、ポリカーボネートの分子量が一旦解重合によって低下することになり、低下量が大きすぎると生産上好ましくないため、分子量低下の割合を50%未満、より好ましくは30%未満になるように溶剤量を決定することが好ましい。また、多官能化合物を溶解する溶剤としては、メタノール、エタノール、アセトン、塩化メチレン等の汎用溶剤に溶解させた状態で添加することもできる。 In the present embodiment, the polyfunctional compound can be added to the melt mixer in a state of being dissolved in a solvent. Solvents that dissolve the polyfunctional compound include phenols, aromatic dihydroxy compounds, carbonic acid diesters, ketones, ethers, mixtures and reactants of aromatic dihydroxy compounds and carbonic acid diesters, and low number average molecular weights of 5000 or less. A compound such as a molecular weight polycarbonate is preferably present in the plant. These solvents may be used alone or in combination of two or more. When these compounds are used as a solvent, the fish eyes of the resulting branched polycarbonate are reduced. The reason is not clear, but when these compounds are used as a solvent, depolymerization of the polycarbonate is caused, so that it is presumed that the dispersion of the polyfunctional compound further proceeds. In this case, the molecular weight of the polycarbonate is once reduced by depolymerization, and if the amount of reduction is too large, it is not preferable for production. Therefore, the amount of solvent is adjusted so that the ratio of molecular weight reduction is less than 50%, more preferably less than 30%. Is preferably determined. Moreover, as a solvent which melt | dissolves a polyfunctional compound, it can also add in the state dissolved in general purpose solvents, such as methanol, ethanol, acetone, a methylene chloride.
 本実施形態において「多官能化合物を液体状態で」とは、上述のように、多官能化合物自体が溶融状態となっている状態、及び、多官能化合物を溶剤に溶解させた状態をいう。したがって、多官能化合物が液体状態となる温度は、使用する溶媒によって任意の温度を選択する事ができる。 In the present embodiment, “the polyfunctional compound in a liquid state” means a state where the polyfunctional compound itself is in a molten state and a state where the polyfunctional compound is dissolved in a solvent as described above. Therefore, the temperature at which the polyfunctional compound is in a liquid state can be selected arbitrarily depending on the solvent used.
 また、本実施形態において「多官能化合物を液体状態で」とは、多官能化合物が溶媒及び/又はその他の成分と反応して溶けた状態となってもよい。ここで、その他の成分としては、多官能化合物と溶媒との反応を促進する触媒であってもよい。触媒は、溶媒によって任意のものを選択することができるし、重合時に用いる触媒を使用することもできる。 In the present embodiment, “the polyfunctional compound in a liquid state” may be a state in which the polyfunctional compound is dissolved by reacting with a solvent and / or other components. Here, the other component may be a catalyst that promotes the reaction between the polyfunctional compound and the solvent. Any catalyst can be selected depending on the solvent, and the catalyst used in the polymerization can also be used.
 (C)工程は、引き続き低分子量ポリカーボネートの重合反応を進め、ポリカーボネートのMIが10g/10min以下かつ分岐指標MIRが14以上となるようにする工程である。図1ではワイヤー接触流下式第二重合器108Bに該当する。(C)工程の重合器の数は特に限定されないが、重合器の数が多いと、銘柄切り替えにおいて切り替え時間が多くなりロスが多くなるおそれがあるため、重合器は一つであることが好ましい。 Step (C) is a step for continuing the polymerization reaction of the low molecular weight polycarbonate so that the MI of the polycarbonate is 10 g / 10 min or less and the branching index MIR is 14 or more. In FIG. 1, it corresponds to the wire contact flow type second polymerization vessel 108B. (C) The number of polymerization vessels in step (C) is not particularly limited. However, if the number of polymerization vessels is large, there is a risk that switching time and loss will increase in brand switching, so it is preferable that there is only one polymerization vessel. .
 ワイヤー接触流下式第二重合器108Bに投入された溶融プレポリマー109Aは、ワイヤー接触流下式第一重合器108Aと同様に、ワイヤーに接触して流下しがら重合が進行し、溶融ポリマー109Bが、ワイヤー接触流下式第二重合器108B内の下部に蓄積する。溶融ポリマー109Bは、出口107Bから排出ポンプ106Bにより排出され、分岐ポリカーボネートとして回収される。 The molten prepolymer 109A charged into the wire contact flow-down type second polymerization vessel 108B, like the wire contact flow-down type first polymerization vessel 108A, is in contact with the wire and polymerization proceeds while flowing down. It accumulates in the lower part in the wire polymerization flow-down type second polymerization vessel 108B. The molten polymer 109B is discharged from the outlet 107B by the discharge pump 106B and recovered as a branched polycarbonate.
 ワイヤー接触流下式第二重合器108Bに投入された溶融プレポリマー109Aは、重合槽の温度にもよるが、より高分子量のポリマーを製造する程、プレポリマーの供給量を少なくして十分な重合時間を得ることが必要となる。したがって、分子量の高いポリマーの生産性は低下する。また、プレポリマーの供給が少ない場合、生産性以外の課題として品質の問題も出てくる。あまりにも供給量が遅いとワイヤーに一部残ったプレポリマーが滞留してフィッシュアイを増加させる原因にもなる。 The melted prepolymer 109A charged into the wire contact flow type second polymerization vessel 108B depends on the temperature of the polymerization tank, but the higher the amount of the prepolymer supplied, the more polymerized the more high molecular weight polymer is produced. It will be necessary to get time. Therefore, the productivity of high molecular weight polymers is reduced. Also, when the supply of prepolymer is small, quality issues arise as issues other than productivity. If the supply amount is too slow, a part of the prepolymer remaining on the wire may stay and cause fish eyes to increase.
 従来の方法では、MI<5では生産性が低下する傾向にあり、MI<4では、生産性の低下に加え、フィッシュアイが増加する懸念がある。 In the conventional method, when MI <5, the productivity tends to decrease, and when MI <4, there is a concern that the fish eye increases in addition to the decrease in productivity.
 本実施形態の方法では、ワイヤー1本あたりに特定量のプレポリマーを供給する事により生産性を上げ、品質を向上することができる。従来の方法では、高分子量のポリマーを作製するにはプレポリマーのワイヤー接触流下式第二重合器108Bへの供給量は制限される。これに対し、本実施形態の方法では、分岐剤を投入したプレポリマーを投入することにより、ワイヤー落下時のワイヤーへの保持が上がるといった予想し得ない効果を得ることができる。 In the method of the present embodiment, the productivity can be increased and the quality can be improved by supplying a specific amount of prepolymer per wire. In the conventional method, in order to produce a high molecular weight polymer, a supply amount of the prepolymer to the wire contact flow type second polymerization vessel 108B is limited. On the other hand, in the method of the present embodiment, by introducing a prepolymer containing a branching agent, it is possible to obtain an unpredictable effect that the retention on the wire when the wire is dropped increases.
 具体的には、最終重合器であるワイヤー接触流下式第二重合器108Bへのプレポリマーの供給量は、8mのワイヤーを用いる場合、ワイヤー1本、単位時間(時間)当たりの量(kg)は、0.3~3.0kg/(hr・本)が好ましく、0.4~2.5kg/(hr・本)がより好ましく、0.5~2.0kg/(hr・本)が更に好ましい。なお、ワイヤーへのプレポリマーの供給量は、ワイヤーの長さに比例する。 Specifically, the supply amount of the prepolymer to the wire polymerization flow-down type second polymerization vessel 108B which is the final polymerization device is, when an 8 m wire is used, one wire, the amount (kg) per unit time (hour) Is preferably 0.3 to 3.0 kg / (hr · book), more preferably 0.4 to 2.5 kg / (hr · book), and further 0.5 to 2.0 kg / (hr · book). preferable. In addition, the supply amount of the prepolymer to the wire is proportional to the length of the wire.
 供給量が、0.3kg/(hr・本)未満だと生産性が悪くなり、一部のポリマーのワイヤーへの滞留による製品への影響(フィッシュアイの増加等)が生じることがある。また、3.0kg/(hr・本)を超える供給量では、滞留時間がプレポリマーのワイヤー接触時間が短くなり十分な分子量が得られ難くなる。 When the supply amount is less than 0.3 kg / (hr · book), the productivity is deteriorated, and the influence on the product (increased fish eye, etc.) may occur due to the residence of some polymers in the wire. On the other hand, when the supply amount exceeds 3.0 kg / (hr · book), the residence time becomes short and the wire contact time of the prepolymer becomes short, and it becomes difficult to obtain a sufficient molecular weight.
 本実施形態において、十分なMIとMIRを得たり、色相やフィッシュアイの数を良好なものとしたりする観点から、(A)~(C)工程を通しての反応温度は50~320℃が好ましく、100~300℃がより好ましく、130~280℃が更に好ましく、150~270℃が特に好ましい。このうち、(C)工程は250~320℃が好ましく、250~300℃がより好ましく、255~280℃が更に好ましく、260~270℃が特に好ましい。 In this embodiment, from the viewpoint of obtaining sufficient MI and MIR, and improving the hue and the number of fish eyes, the reaction temperature through the steps (A) to (C) is preferably 50 to 320 ° C., 100 to 300 ° C is more preferable, 130 to 280 ° C is more preferable, and 150 to 270 ° C is particularly preferable. Of these, the step (C) is preferably 250 to 320 ° C, more preferably 250 to 300 ° C, still more preferably 255 to 280 ° C, and particularly preferably 260 to 270 ° C.
 本実施形態においては、下記式(I)で定義されるΔT(℃)の範囲が、得られる分岐ポリマーの衝撃強度、色相、ゲルの発生の面から、-20℃~20℃であることが好ましい。
  ΔT = T - T  (I)
ここで、Tは(C)工程における最終重合器に導入される低分子量ポリカーボネートの温度(℃)を示し、Tは(C)工程における最終重合器により重合された分岐ポリカーボネートの温度(℃)を示し、Tは285℃以下である。
In the present embodiment, the range of ΔT (° C.) defined by the following formula (I) is −20 ° C. to 20 ° C. from the viewpoint of impact strength, hue, and gel generation of the obtained branched polymer. preferable.
ΔT = T 2 −T 1 (I)
Here, T 1 indicates the temperature (° C.) of the low molecular weight polycarbonate introduced into the final polymerization vessel in the step (C), and T 2 indicates the temperature (° C.) of the branched polycarbonate polymerized by the final polymerization vessel in the step (C). ) And T 2 is 285 ° C. or lower.
 Tは、250℃~285℃が好ましく、260℃~275℃が更に好ましい。また、上記「最終重合器」とは、分岐ポリカーボネートのMIが10g/10min以下になるまで反応を行う重合器をいう。 T 2 is preferably 250 ° C. to 285 ° C., more preferably 260 ° C. to 275 ° C. The “final polymerization vessel” refers to a polymerization vessel that performs the reaction until the MI of the branched polycarbonate becomes 10 g / 10 min or less.
 一般的な溶融重合法では、本実施形態の(C)工程に相当する最終重合器内において分子量の増加と共にポリマーの粘度が上がっていくために、反応器の温度をかなり上げて粘度を下げる必要がある。本実施形態の方法では、最終重合器に縦型の重合器を用いることにより、これまで得ることのできなかった高粘度でありながら物性、品質に極めて優れた分岐ポリカーボネートを得ることが可能となる。 In a general melt polymerization method, the viscosity of the polymer increases as the molecular weight increases in the final polymerization reactor corresponding to step (C) of this embodiment. There is. In the method of the present embodiment, by using a vertical polymerization vessel as the final polymerization vessel, it becomes possible to obtain a branched polycarbonate having extremely high physical properties and quality while having a high viscosity that could not be obtained so far. .
 本実施形態において、MIはASTM D1238の方法で、温度300℃、荷重1.2kgで測定される。分岐指標MIRは同様に12kg荷重で測定した値をMI値で除したものである。本実施形態において(C)工程で得られる分岐ポリカーボネートはMIが10g/10min以下、好ましくは0.5~8g/10min、より好ましくは1~6g/10minであり、特に5ガロンボトルのような大型ボトルに用いる場合には2~4g/10minが好ましい。この範囲よりも小さい場合には成形性が低下する傾向があり、10g/10minより大きい場合も成形性が低下する傾向がある。また分岐指標MIRは14以上、好ましくは15~30、より好ましくは16~25の範囲にある。14よりも小さい場合にはブロー成形性の改善が十分でなく成形不良や偏肉が発生しやすくなり、30より大きい場合にも成形不良や偏肉が発生しフィッシュアイの増大がみられる傾向がある。 In this embodiment, MI is measured by the method of ASTM D1238 at a temperature of 300 ° C. and a load of 1.2 kg. Similarly, the branching index MIR is obtained by dividing the value measured at 12 kg load by the MI value. In this embodiment, the branched polycarbonate obtained in the step (C) has an MI of 10 g / 10 min or less, preferably 0.5 to 8 g / 10 min, more preferably 1 to 6 g / 10 min, and particularly a large size such as a 5 gallon bottle. When used in a bottle, 2 to 4 g / 10 min is preferable. When it is smaller than this range, the moldability tends to decrease, and when it is larger than 10 g / 10 min, the moldability tends to decrease. The branching index MIR is 14 or more, preferably 15 to 30, more preferably 16 to 25. If it is smaller than 14, improvement in blow moldability is not sufficient, and molding defects and uneven thickness are likely to occur, and if it is larger than 30, molding defects and uneven thickness tend to occur and fish eyes tend to increase. is there.
 (C)工程の後、得られた分岐ポリカーボネートは通常はペレット化されるが、そのまま成形機と連結してシートやボトル等の成形品を製造してもよい。更に、フィッシュアイを微細化したり除去したりするために、ろ過精度1~50μm程度のポリマーフィルター等を設置してもよい。 After the step (C), the obtained branched polycarbonate is usually pelletized, but it may be directly connected to a molding machine to produce a molded product such as a sheet or a bottle. Further, a polymer filter or the like having a filtration accuracy of about 1 to 50 μm may be installed in order to refine or remove the fish eye.
 本実施形態は、別の実施形態として、上記(A)工程に引き続き、メルトインデックスが100g/10min以下になるまで重合反応を行いポリカーボネートを製造する(D)工程を設けることができる。このような態様により、複数種のポリカーボネートを製造することができる。以下、(D)工程を備える態様について、図2を参照しながら説明する。 In this embodiment, as another embodiment, a process (D) for producing a polycarbonate by performing a polymerization reaction until the melt index becomes 100 g / 10 min or less can be provided following the process (A). According to such an embodiment, a plurality of types of polycarbonates can be produced. Hereinafter, the aspect provided with (D) process is demonstrated, referring FIG.
 図2は、複数種のポリカーボネートを製造する製造システムの概略図である。当該製造システムは、攪拌槽型第一重合器3A,3Bを有する第一攪拌重合工程、攪拌槽型第二重合器3Cを有する第二攪拌重合工程、及び、攪拌槽型第三重合器3Dを有する第三攪拌重合工程、並びに、ワイヤー接触流下式第一重合器108Aを有する第一ワイヤー接触流下式重合工程、及び、ワイヤー接触流下式第二重合器108Bを有する第二ワイヤー接触流下式重合工程を備える点は、図1に示すシステムと同様である。本実施形態の複数種のポリカーボネートの製造方法では、これらに加え、ワイヤー接触流下式第三重合器108Cを有する第三ワイヤー接触流下式重合工程、移送ポンプ106A,106D、及び、分岐部120を備える。 FIG. 2 is a schematic view of a production system for producing a plurality of types of polycarbonate. The production system includes a first stirring polymerization step having stirring tank type first polymerization devices 3A and 3B, a second stirring polymerization step having stirring tank type second polymerization device 3C, and a stirring tank type third polymerization device 3D. , A first wire contact flow-down polymerization process having a wire contact flow-down type first polymerization vessel 108A, and a second wire contact flow-down polymerization method having a wire contact flow-down second polymerization device 108B. The point provided with a process is the same as that of the system shown in FIG. In the method for producing a plurality of types of polycarbonates of the present embodiment, in addition to these, a third wire contact flow-down polymerization process having a wire contact flow-down third polymerizer 108C, transfer pumps 106A and 106D, and a branching unit 120 are provided. Prepare.
 (A)工程で製造された溶融プレポリマー109Aは、出口107Aから排出され、移送配管に入る。この移送配管は、(B)工程を行う装置及び(D)工程を行う装置へそれぞれ通じるように分岐された分岐部120を有している。出口107Aから流出してきた溶融プレポリマー109Aは、分岐部120において流れが分岐され、分岐されたそれぞれの下流において、(B)工程の入口である移送ポンプ106D及び/又は(D)工程の入口である移送ポンプ106Aにより押し出され、移送配管を通じて、ワイヤー接触流下式第二重合器108Bのプレポリマー用入口101B及び/又はワイヤー接触流下式第三重合器108Cのプレポリマー用入口101Cへ移送される。 (A) The molten prepolymer 109A produced in the step (A) is discharged from the outlet 107A and enters the transfer pipe. This transfer pipe has a branching portion 120 branched so as to lead to the device for performing the step (B) and the device for performing the step (D). The molten prepolymer 109A that has flowed out from the outlet 107A is branched at the branching portion 120, and at each branched downstream, at the transfer pump 106D that is the inlet of the step (B) and / or at the inlet of the step (D). It is pushed out by a certain transfer pump 106A and transferred through a transfer pipe to the prepolymer inlet 101B of the wire contact flow down second polymerizer 108B and / or the prepolymer inlet 101C of the wire contact flow down third polymerizer 108C. .
 移送ポンプ106Dが稼動している場合、上述の実施形態と同様に、(A)工程、(B)工程及び(C)工程により分岐ポリカーボネートが製造されることとなる。ここで、図2における移送ポンプ106Dから101Bまでの移送配管と、該移送配管途中に設置された溶融混合機(ラインミキサー)110と、多官能化合物投入配管111とが(B)工程に該当し、ワイヤー接触流下式第二重合器108Bから出口107Bまでが(C)工程に該当する。 When the transfer pump 106D is operating, a branched polycarbonate is produced by the steps (A), (B), and (C) as in the above-described embodiment. Here, the transfer piping from the transfer pumps 106D to 101B in FIG. 2, the melt mixer (line mixer) 110 installed in the transfer piping, and the polyfunctional compound input piping 111 correspond to the step (B). The wire contact flow type second polymerization vessel 108B to the outlet 107B correspond to the step (C).
 移送ポンプ106Aが稼動している場合、第一及び第三ワイヤー接触流下式重合工程が、ワイヤー接触流下式第一及び第三重合器108A,108Cにおいて連続的に行われる。 When the transfer pump 106A is operating, the first and third wire contact flow type polymerization processes are continuously performed in the wire contact flow type first and third polymerization reactors 108A and 108C.
 (D)工程は、移送ポンプ106Aから、ワイヤー接触流下式第三重合器108Cを通じて、出口107Cまでが相当する。(D)工程では、移送ポンプ106Aの稼動によりワイヤー接触流下式第一重合器108Aの出口107Aから移送配管を通じて移送されてくる溶融プレポリマー109Aが、ワイヤー接触流下式第三重合器108Cのプレポリマー用入口101Cへ移送される。 Step (D) corresponds to the process from the transfer pump 106A to the outlet 107C through the wire contact flow type third polymerization vessel 108C. In the step (D), the molten prepolymer 109A transferred through the transfer pipe from the outlet 107A of the wire contact flow type first polymerization vessel 108A by the operation of the transfer pump 106A is converted into the prepolymer of the wire contact flow type third polymerization device 108C. It is transferred to the polymer inlet 101C.
 ワイヤー接触流下式第三重合器108Cに投入された溶融プレポリマー109Aは、ワイヤー接触流下式第一重合器108Aと同様に、ワイヤーに接触して流下しがら重合が進行し、溶融ポリマー109Cが、ワイヤー接触流下式第三重合器108C内の下部に蓄積する。溶融ポリマー109Cは、出口107Cから排出ポンプ106Cにより排出され、ポリカーボネートとして回収される。 The molten prepolymer 109A charged into the wire contact flow-down type third polymerization vessel 108C, like the wire contact flow-down type first polymerization vessel 108A, is brought into contact with the wire and polymerization proceeds while flowing down. , Accumulated in the lower part of the wire contact flow type third polymerization vessel 108C. The molten polymer 109C is discharged from the outlet 107C by the discharge pump 106C and recovered as polycarbonate.
 また(D)工程で得られるポリカーボネートはMIが100g/10min以下、好ましくは1~90g/10min、より好ましくは5~80g/10minであり、生産される銘柄によって決められる。MIが上記範囲内であると、機械的物性及び成形性に優れる。 The polycarbonate obtained in step (D) has an MI of 100 g / 10 min or less, preferably 1 to 90 g / 10 min, more preferably 5 to 80 g / 10 min, and is determined by the brand to be produced. When the MI is within the above range, the mechanical properties and moldability are excellent.
 図2に示す製造システムでは、多官能化合物を投入する溶融混合機110を有する(B)工程及びこれに続く(C)工程において分岐ポリカーボネートを製造し、(D)工程においてポリカーボネートを製造することができる。移送ポンプ106A,106Dの稼動具合を調整することにより、(B)工程及び(C)工程で製造される分岐ポリカーボネート、並びに、(D)工程で製造されるポリカーボネートの量を調整することができる。また、移送ポンプ106A,106Dのいずれか一方を停止すれば、(B)工程及び(C)工程、又は(D)工程で製造される所望のポリカーボネートのみを得ることができる。本実施形態はこのようにして、銘柄切り替えのロスを極めて小さくすることができる。なお、図2では1つの(A)工程に対して(B)工程及び(C)工程、並びに、(D)工程がそれぞれ1つずつ存在するが、それぞれが複数あってもよい。 In the production system shown in FIG. 2, a branched polycarbonate is produced in the step (B) and the subsequent (C) step having a melt mixer 110 for introducing a polyfunctional compound, and the polycarbonate is produced in the step (D). it can. By adjusting the operating conditions of the transfer pumps 106A and 106D, it is possible to adjust the amount of the branched polycarbonate produced in the step (B) and the step (C) and the amount of the polycarbonate produced in the step (D). Further, if any one of the transfer pumps 106A and 106D is stopped, only the desired polycarbonate produced in the step (B) and the step (C) or the step (D) can be obtained. In this way, the present embodiment can extremely reduce the loss of brand switching. In FIG. 2, one (A) process includes one (B) process, one (C) process, and one (D) process, but there may be a plurality of each.
 本実施形態において、十分なMIとMIRを得たり、色相やフィッシュアイの数を良好なものとしたりする観点から、(A)工程、(B)工程、(C)工程及び(D)工程のいずれにおいても、反応温度は50~320℃が好ましく、100~300℃がより好ましく、130~280℃が更に好ましく、150~270℃が特に好ましい。このうち、(C)工程と(D)工程は、250~320℃の範囲が好ましく、250~300℃がより好ましく、255~280℃が更に好ましく、260~270℃が特に好ましい。 In the present embodiment, from the viewpoint of obtaining sufficient MI and MIR, and improving the number of hues and fish eyes, the steps (A), (B), (C) and (D) In any case, the reaction temperature is preferably 50 to 320 ° C, more preferably 100 to 300 ° C, further preferably 130 to 280 ° C, and particularly preferably 150 to 270 ° C. Among these, the steps (C) and (D) are preferably in the range of 250 to 320 ° C, more preferably 250 to 300 ° C, still more preferably 255 to 280 ° C, and particularly preferably 260 to 270 ° C.
 本実施形態の方法では、安定剤、酸化防止剤、染顔料、紫外線吸収剤、難燃剤等の添加剤や、ガラス繊維、フィラーとの強化剤等を含む分岐ポリカーボネート組成物を製造する場合には、(C)工程及び(D)工程の最終反応器から溶融状態のままで押出機やスタティックミキサー等に分岐ポリカーボネートを供給して、前述の添加剤等を添加・溶融混練してペレット化することが好ましい。 In the method of this embodiment, when manufacturing a branched polycarbonate composition containing additives such as stabilizers, antioxidants, dyes and pigments, ultraviolet absorbers, flame retardants, reinforcing agents with glass fibers and fillers, etc. The branched polycarbonate is supplied to the extruder, static mixer, etc. in the molten state from the final reactor in the steps (C) and (D), and the above additives are added, melt kneaded and pelletized. Is preferred.
 本実施形態の方法では、上記例(A)工程で添加されるように、重合触媒を使用することができる。使用する重合触媒としては、この分野で用いられているものであれば特に制限はないが、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属又はアルカリ土類金属の水酸化物類;水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素テトラメチルアンモニウム等のホウ素やアルミニウムの水素化物のアルカリ金属塩、アルカリ土類金属塩、第四級アンモニウム塩類;水素化リチウム、水素化ナトリウム、水素化カルシウム等のアルカリ金属又はアルカリ土類金属の水素化合物類;リチウムメトキシド、ナトリウムエトキシド、カルシウムメトキシド等のアルカリ金属又はアルカリ土類金属のアルコキシド類;リチウムフェノキシド、ナトリウムフェノキシド、マグネシウムフェノキシド、LiO-Ar-OLi、NaO-Ar-ONa(ここでArはアリール基)等のアルカリ金属又はアルカリ土類金属のアリーロキシド類;酢酸リチウム、酢酸カルシウム、安息香酸ナトリウム等のアルカリ金属又はアルカリ土類金属の有機酸塩類;酸化亜鉛、酢酸亜鉛、亜鉛フェノキシド等の亜鉛化合物類;酸化ホウ素、ホウ酸、ホウ酸ナトリウム、ホウ酸トリメチル、ホウ酸トリブチル、ホウ酸トリフェニル、(R)NB(R)で表されるアンモニウムボレート類、(R)PB(R)で表されるホスホニウムボレート類(式中、R、R、R、Rは各々独立に水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、環を構成する炭素数が5~10のシクロアルキル基、環を構成する炭素数が5~10の炭素環式芳香族基、又は、炭素数6~10の炭素環式アラルキル基を示す。)等のホウ素の化合物類;酸化ケイ素、ケイ酸ナトリウム、テトラアルキルケイ素、テトラアリールケイ素、ジフェニル-エチル-エトキシケイ素等のケイ素の化合物類;酸化ゲルマニウム、四塩化ゲルマニウム、ゲルマニウムエトキシド、ゲルマニウムフェノキシド等のゲルマニウムの化合物類;酸化スズ、ジアルキルスズオキシド、ジアルキルスズカルボキシレート、酢酸スズ、エチルスズトリブトキシド等のアルコキシ基又はアリーロキシ基と結合したスズ化合物、有機スズ化合物等のスズの化合物類;酸化鉛、酢酸鉛、炭酸鉛、塩基性炭酸塩、鉛及び有機鉛のアルコキシド又はアリーロキシド等の鉛の化合物;第四級アンモニウム塩、第四級ホスホニウム塩、第四級アルソニウム塩等のオニウム化合物類;酸化アンチモン、酢酸アンチモン等のアンチモンの化合物類;酢酸マンガン、炭酸マンガン、ホウ酸マンガン等のマンガンの化合物類;酸化チタン、チタンのアルコキシド又はアリーロキシド等のチタンの化合物類;酢酸ジルコニウム、酸化ジルコニウム、ジルコニウムのアルコキシド又はアリーロキシド、ジルコニウムアセチルアセトン等のジルコニウム化合物類等の触媒を挙げることができる。触媒を用いる場合、これらの触媒は1種だけで用いてもよいし、2種以上を組み合わせて用いてもよい。また、これらの触媒の使用量は、原料の芳香族ジヒドロキシ化合物100重量部に対して、通常10-8~1重量部、好ましくは10-7~10-1重量部の範囲で選ばれる。 In the method of this embodiment, a polymerization catalyst can be used so that it may be added at the process of the said Example (A). The polymerization catalyst to be used is not particularly limited as long as it is used in this field, but water of alkali metal or alkaline earth metal such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc. Oxides: lithium aluminum hydride, sodium borohydride, alkali metal salts, alkaline earth metal salts, quaternary ammonium salts of boron and aluminum hydrides such as tetramethylammonium borohydride; lithium hydride, hydrogen Alkali metal or alkaline earth metal hydrides such as sodium hydride and calcium hydride; Alkali metal or alkaline earth metal alkoxides such as lithium methoxide, sodium ethoxide and calcium methoxide; lithium phenoxide, sodium phenoxide, Magnesium phenoxy Alyloxides of alkali metals or alkaline earth metals such as LiO—Ar—OLi, NaO—Ar—ONa (where Ar is an aryl group); Alkali metals or alkaline earths such as lithium acetate, calcium acetate, sodium benzoate Metal organic acid salts; zinc compounds such as zinc oxide, zinc acetate, zinc phenoxide; boron oxide, boric acid, sodium borate, trimethyl borate, tributyl borate, triphenyl borate, (R 1 R 2 R 3 Ammonium borates represented by R 4 ) NB (R 1 R 2 R 3 R 4 ), phosphonium borates represented by (R 1 R 2 R 3 R 4 ) PB (R 1 R 2 R 3 R 4 ) (wherein, R 1, R 2, R 3, R 4 each independently represent a hydrogen atom, an alkyl group, an alkoxy group having 1 to 10 carbon atoms having 1 to 10 carbon atoms, the ring A cycloalkyl group having 5 to 10 carbon atoms, a carbocyclic aromatic group having 5 to 10 carbon atoms constituting a ring, or a carbocyclic aralkyl group having 6 to 10 carbon atoms). Compounds of boron; silicon compounds such as silicon oxide, sodium silicate, tetraalkyl silicon, tetraaryl silicon, diphenyl-ethyl-ethoxy silicon; germanium such as germanium oxide, germanium tetrachloride, germanium ethoxide, germanium phenoxide Compounds; tin compounds such as tin oxides, organotin compounds, tin compounds bonded to alkoxy groups or aryloxy groups such as tin oxide, dialkyltin oxide, dialkyltin carboxylate, tin acetate, ethyltin tributoxide; lead oxide, lead acetate , Lead carbonate, basic carbonate, lead and organic lead alkoxide or Is a lead compound such as aryloxide; onium compounds such as quaternary ammonium salts, quaternary phosphonium salts and quaternary arsonium salts; antimony compounds such as antimony oxide and antimony acetate; manganese acetate, manganese carbonate, and boron Manganese compounds such as manganese acid; Titanium compounds such as titanium oxide, titanium alkoxide or aryloxide; Catalysts such as zirconium compounds such as zirconium acetate, zirconium oxide, zirconium alkoxide or aryloxide, zirconium acetylacetone it can. When using a catalyst, these catalysts may be used only by 1 type and may be used in combination of 2 or more type. The amount of these catalysts used is usually selected in the range of 10 −8 to 1 part by weight, preferably 10 −7 to 10 −1 part by weight, based on 100 parts by weight of the starting aromatic dihydroxy compound.
 本実施形態の方法で製造される分岐ポリカーボネートは、下記一般式(1)で表される繰り返し単位を主鎖及び分岐鎖に有する。
Figure JPOXMLDOC01-appb-C000007
The branched polycarbonate produced by the method of the present embodiment has a repeating unit represented by the following general formula (1) in the main chain and the branched chain.
Figure JPOXMLDOC01-appb-C000007
 本実施形態の方法で製造される分岐ポリカーボネートは、主鎖及び分岐鎖に直接結合した多官能化合物由来の分岐構造(a)と共に、下記一般式(2),(3)及び(4)で表される分岐構造からなる群より選ばれる少なくとも一種を含む分岐構造(b)を含有することができる。 The branched polycarbonate produced by the method of the present embodiment is represented by the following general formulas (2), (3) and (4) together with a branched structure (a) derived from a polyfunctional compound directly bonded to the main chain and the branched chain. A branched structure (b) containing at least one selected from the group consisting of branched structures can be contained.
 本実施形態の方法で製造される分岐ポリカーボネートは、上記一般式(1)で表される繰り返し単位の物質量に対する分岐構造(a)と下記一般式(2)、(3)及び(4)で表される分岐構造(b)の合計物質量の割合が0.2~1.0モル%であることが好ましく、0.3~0.9モル%であることがより好ましく、0.3~0.8モル%であることが更に好ましい。1.0モル%より多い場合にはフィッシュアイの増加及び耐衝撃性や機械的強度の低下が起こり、0.2モル%より少ない場合には成形性の改善効果が小さくなる傾向にある。ここで上記各「物質量」とは、当該分岐ポリカーボネートを加水分解したときに生じる、それぞれの構造由来の成分の物質量をいう。 The branched polycarbonate produced by the method of the present embodiment has a branched structure (a) with respect to the amount of the repeating unit represented by the general formula (1) and the following general formulas (2), (3), and (4). The ratio of the total substance amount of the branched structure (b) represented is preferably 0.2 to 1.0 mol%, more preferably 0.3 to 0.9 mol%, More preferably, it is 0.8 mol%. When the amount is more than 1.0 mol%, the fish eye increases and impact resistance and mechanical strength are lowered. When the amount is less than 0.2 mol%, the effect of improving the moldability tends to be reduced. Here, each “substance amount” refers to a substance amount of a component derived from each structure generated when the branched polycarbonate is hydrolyzed.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、Arは2価の芳香族残基、Ar’は3価の芳香族残基を示す。)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(In the formula, Ar represents a divalent aromatic residue, and Ar ′ represents a trivalent aromatic residue.)
 上記一般式(1)及び(3)におけるArもHO-Ar-OHで示されるArと同義である。更に、上記一般式(2)、(3)及び(4)におけるAr’は、分岐の開始点に存在すべき置換基(例えば-COO-)が結合するために、Arから更に一つの水素原子等が除かれた、3価の芳香族残基を示す。 In the above general formulas (1) and (3), Ar is also synonymous with Ar represented by HO—Ar—OH. Furthermore, Ar ′ in the above general formulas (2), (3) and (4) is bonded to a substituent (eg —COO—) which should be present at the start of branching, so that one more hydrogen atom from Ar. A trivalent aromatic residue from which etc. are removed is shown.
 また、本実施形態の方法で製造される分岐ポリカーボネートは、上記分岐構造(a)と分岐構造(b)との合計物質量に対する分岐構造(b)の物質量の比が0.1~0.6であり、好ましくは0.2~0.6であり、更に好ましくは0.3~0.6である。0.6を超えると耐熱水性が低下する傾向があり、0.1を下回る場合は、MIRが小さく溶融張力の増加が小さくなる傾向がある。 Further, in the branched polycarbonate produced by the method of the present embodiment, the ratio of the substance amount of the branched structure (b) to the total substance amount of the branched structure (a) and the branched structure (b) is 0.1 to 0.00. 6, preferably 0.2 to 0.6, and more preferably 0.3 to 0.6. If it exceeds 0.6, the hot water resistance tends to decrease, and if it is less than 0.1, the MIR is small and the increase in melt tension tends to be small.
 また、上記一般式(2)~(4)で表される分岐構造(b)の物質量に対する上記一般式(2)で表される分岐構造の物質量の比が0.5以上であり、好ましくは0.85以上であり、より好ましくは0.9以上である。0.5を下回る場合は、耐衝撃性、機械的強度が低下し、フィッシュアイが多くなる傾向がある。 Further, the ratio of the substance amount of the branched structure represented by the general formula (2) to the substance amount of the branched structure (b) represented by the general formulas (2) to (4) is 0.5 or more, Preferably it is 0.85 or more, More preferably, it is 0.9 or more. When it is less than 0.5, impact resistance and mechanical strength tend to decrease and fish eyes tend to increase.
 なお、本明細書において「主鎖」とは、原料として使用する芳香族ジヒドロキシ化合物及び炭酸ジエステルとがエステル交換反応により縮合して形成されたポリマー鎖をいう。この場合において、多官能化合物によって分岐されている部分(「分岐構造(a)」)では、複数存在する分岐鎖のうち、分岐した先の部分が最も長い分岐鎖を選択し、これを主鎖として位置づける。 In the present specification, the “main chain” refers to a polymer chain formed by condensation of an aromatic dihydroxy compound and a carbonic acid diester used as raw materials by a transesterification reaction. In this case, in the portion branched by the polyfunctional compound (“branched structure (a)”), the branched chain having the longest branched portion is selected from the plurality of branched chains, and this is selected as the main chain. Position as.
 本明細書において、「分岐構造(a)」とは、多官能化合物によって分岐された分岐構造をいう。例えば、多官能化合物として1,1,1-トリス(4-ヒドロキシフェニル)エタンを用いた場合、下記式で示される構造が「分岐構造(a)」となり、分岐構造(a)の物質量としては加水分解された1,1,1-トリス(4-ヒドロキシフェニル)エタンが定量される。
Figure JPOXMLDOC01-appb-C000011
In the present specification, the “branched structure (a)” refers to a branched structure branched by a polyfunctional compound. For example, when 1,1,1-tris (4-hydroxyphenyl) ethane is used as the polyfunctional compound, the structure represented by the following formula becomes “branched structure (a)”, and the amount of substance of the branched structure (a) is Quantifies the hydrolyzed 1,1,1-tris (4-hydroxyphenyl) ethane.
Figure JPOXMLDOC01-appb-C000011
 本明細書において、「分岐構造(b)」とは、主鎖に対して、分岐ポリカーボネートの製造過程で(例えばフリース転位反応により)自然発生的に生成した分岐構造をいう。 In the present specification, the “branched structure (b)” refers to a branched structure that occurs spontaneously with respect to the main chain during the production process of the branched polycarbonate (for example, by Fries rearrangement reaction).
 本実施形態により製造される分岐ポリカーボネートは、実質的に塩素原子を含有していないことが好ましい。国際公開第2005/121210号パンフレット等に記載されているように、本エステル交換法では、実質的に塩素原子を含有していない芳香族ジヒドロキシ化合物と炭酸ジエステルと多官能化合物とから分岐ポリカーボネートを製造した場合には、塩素を含有する他の化合物を添加しない限り、塩素原子含有量が10ppb以下、好ましくは1ppb以下の分岐ポリカーボネートを得ることができる。 It is preferable that the branched polycarbonate produced according to this embodiment does not substantially contain chlorine atoms. As described in WO 2005/121210 pamphlet, etc., in this transesterification method, a branched polycarbonate is produced from an aromatic dihydroxy compound substantially free of chlorine atoms, a carbonic acid diester, and a polyfunctional compound. In such a case, a branched polycarbonate having a chlorine atom content of 10 ppb or less, preferably 1 ppb or less, can be obtained unless other compounds containing chlorine are added.
 本実施形態により製造される分岐ポリカーボネートは、厚さ50μm、幅30cmのフィルムを成形したとき、任意の箇所における長さ1m中、大きさが300μm以上のフィッシュアイの数が100個以下であり、好ましくは80個以下、更に好ましくは50個以下である。 The branched polycarbonate produced according to the present embodiment has a thickness of 50 μm and a width of 30 cm, and the number of fish eyes having a size of 300 μm or more is 100 or less in a length of 1 m at an arbitrary location. The number is preferably 80 or less, more preferably 50 or less.
 本実施形態により製造される分岐ポリカーボネートの色相(b値)は、0~3.0であり、好ましくは0~2.5、更に好ましくは0~1.5である。上記範囲を超えると、分岐ポリカーボネートが黄色味を帯びて見え、見た目が悪い。また必要に応じて、ブルーイング剤等の着色剤で黄色味を補正することも可能であるが、透明感への配慮が必要である。 The hue (b * value) of the branched polycarbonate produced according to this embodiment is 0 to 3.0, preferably 0 to 2.5, and more preferably 0 to 1.5. When the above range is exceeded, the branched polycarbonate looks yellowish and looks bad. If necessary, the yellowness can be corrected with a colorant such as a bluing agent, but it is necessary to consider transparency.
 本実施形態により製造される分岐ポリカーボネートの色相の測定は、バレル温度300℃、金型温度90℃で、厚さ3.2mmの平板を射出成形し、コニカミノルタ社製 CR-400を用い、白色校正板の上に載せて測定径8mmで反射法で測定し、白色校正板とのb値の差(平板のb値=平板を白色校正板に載せての測定値-白色校正板の測定値)で求めることができる。 The hue of the branched polycarbonate produced according to the present embodiment was measured by injection molding a 3.2 mm thick flat plate at a barrel temperature of 300 ° C. and a mold temperature of 90 ° C., and using a CR-400 manufactured by Konica Minolta Co., Ltd. Placed on the calibration plate and measured by the reflection method with a measurement diameter of 8 mm, the difference in b * value from the white calibration plate (b * value of the flat plate = measured value when the flat plate is placed on the white calibration plate-white calibration plate Measured value).
 本実施形態により製造される分岐ポリカーボネート中の分岐構造(a)及び(b)は、該分岐ポリカーボネートを完全加水分解して、逆相液体クロマトグラフィーを用いて定量することができる。ポリカーボネートの加水分解はPolymer Degradation and Stability 45(1994),127~137 に記載されているような常温での加水分解法が、操作が容易で分解過程での副反応もなく、完全にポリカーボネートを加水分解できるので好ましく、本実施形態においては室温(25℃)で行うことができる。 The branched structures (a) and (b) in the branched polycarbonate produced by the present embodiment can be quantified using reverse phase liquid chromatography after the branched polycarbonate is completely hydrolyzed. Hydrolysis of polycarbonate is performed at room temperature as described in Polymer Degradation and Stability 45 (1994), 127 to 137, and is easy to operate and has no side reactions during the decomposition process. Since it can decompose | disassemble, it is preferable and in this embodiment, it can carry out at room temperature (25 degreeC).
 本実施形態の分岐ポリカーボネートの連続製造方法には、必要に応じて着色剤、耐熱安定剤、酸化防止剤、耐候剤、紫外線吸収剤、離型剤、滑剤、帯電防止剤、可塑剤等を添加して用いてもよい。更に、これら添加剤等は、重合終了後のポリカーボネート系樹脂が溶融状態の間に添加してもよいし、ポリカーボネートを一旦ペレタイズした後、添加剤を添加再溶融混練してもよい。 In the continuous production method of the branched polycarbonate according to this embodiment, a colorant, a heat stabilizer, an antioxidant, a weathering agent, an ultraviolet absorber, a release agent, a lubricant, an antistatic agent, a plasticizer, and the like are added as necessary. May be used. Furthermore, these additives and the like may be added while the polycarbonate-based resin after polymerization is in a molten state, or the pellets may be once pelletized and then the additives may be added and remelted and kneaded.
 また、エステル交換法では上記一般式(2)~(4)に示されるような分岐構造(b)が自然発生的に生成することが知られている。本実施形態においては、分岐ポリカーボネート中に当該分岐構造が存在してもよい。その場合、当該分岐構造(b)の量に応じて、多官能化合物由来の使用量を少なくしてもよい。その場合、官能化合物由来の分岐構造(a)とエステル交換法で自然発生する上記一般式(2)~(4)の分岐構造(b)の合計物質量が一般式(1)で表される繰り返し単位の物質量に対して0.2~1.0モル%であり、0.2~0.9モル%であることが好ましく、0.3~0.8モル%であることがより好ましい。1.0モル%より多い場合にはフィッシュアイの増加が起こる傾向があり、0.2モル%より少ない場合にはMIRが小さく溶融張力の増加が小さくなる傾向がある。 In the transesterification method, it is known that a branched structure (b) as shown in the above general formulas (2) to (4) is spontaneously generated. In the present embodiment, the branched structure may be present in the branched polycarbonate. In that case, you may reduce the usage-amount derived from a polyfunctional compound according to the quantity of the said branched structure (b). In this case, the total amount of the branched structure (a) derived from the functional compound and the branched structure (b) of the above general formulas (2) to (4) naturally generated by the transesterification method is represented by the general formula (1). 0.2 to 1.0 mol%, preferably 0.2 to 0.9 mol%, more preferably 0.3 to 0.8 mol%, based on the amount of the repeating unit substance. . When the amount is more than 1.0 mol%, the fish eye tends to increase. When the amount is less than 0.2 mol%, the MIR tends to be small and the increase in melt tension tends to be small.
 芳香族ジヒドロキシ化合物として代表的なビスフェノールAを用いた場合には、上記一般式(2)~(4)は下記式(9)~(11)となる。 When typical bisphenol A is used as the aromatic dihydroxy compound, the above general formulas (2) to (4) become the following formulas (9) to (11).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 これらの分岐構造は、分岐ポリカーボネートを完全加水分解して、逆相液体クロマトグラフィーを用いて定量することができる。本実施形態により製造される分岐ポリカーボネートは、分岐構造(a)と分岐構造(b)との合計物質量に対する分岐構造(b)の物質量の比が0.1~0.6である。また、分岐構造(b)の物質量に対する上記一般式(2)で表される分岐構造の物質量の比が0.85以上であり、0.9以上がより好ましい。 These branched structures can be quantified using reverse-phase liquid chromatography after complete hydrolysis of the branched polycarbonate. In the branched polycarbonate produced according to the present embodiment, the ratio of the amount of the branched structure (b) to the total amount of the branched structure (a) and the branched structure (b) is 0.1 to 0.6. The ratio of the substance amount of the branched structure represented by the general formula (2) to the substance amount of the branched structure (b) is 0.85 or more, and more preferably 0.9 or more.
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
 各項目の評価は以下の方法で測定した。
 (1)分子量
 (1-a)数平均分子量:ゲルパーミュエーションクロマトグラフィー (東ソー社製HLC-8320GPC、TSK-GEL Super Multipore HZ-M 2本、RI検出器)を用いて、溶離液テトラヒドロフラン、温度40℃で測定した。分子量は、標準単分散ポリスチレン(VARIAN社製EasiVial)の較正曲線から下式による換算分子量較正曲線を用いて求めた。
PC=0.3591MPS 1.0388
(式中、MPCはポリカーボネートの分子量、MPSはポリスチレンの分子量である。)
 (1-b)重量平均分子量:ゲルパーミュエーションクロマトグラフィー(東ソー社製HLC-8320GPC、TSK-GEL Super Multipore HZ-M 2本、RI検出器)、溶離液=テトラヒドロフラン、インジェクション量=5マイクロリットル、測定温度=40℃、検出器=RI検出器。
測定サンプルの調整=10mgの分岐ポリカーボネートを10ミリリットルの塩化メチレンに溶解した。分子量は、標準単分散ポリスチレン(EasiVial (RED, YELLOW, GREEN) VARIAN社製)の較正曲線から下式による換算分子量較正曲線を用いて求めた。
PC=0.3591MPS 1.0388
(MPCはポリカーボネートの分子量、MPSはポリスチレンの分子量である。)
Evaluation of each item was measured by the following method.
(1) Molecular weight (1-a) Number average molecular weight: Gel permeation chromatography (HLC-8320GPC manufactured by Tosoh Corporation, TSK-GEL Super Multipore HZ-M, 2 RI detectors), eluent tetrahydrofuran, Measurement was performed at a temperature of 40 ° C. Molecular weight was calculated | required using the conversion molecular weight calibration curve by the following Formula from the calibration curve of a standard monodisperse polystyrene (Varian's EasiVial).
M PC = 0.3591 M PS 1.0388
(Wherein, M PC molecular weight of the polycarbonate, the M PS is the molecular weight of polystyrene.)
(1-b) Weight average molecular weight: Gel permeation chromatography (HLC-8320GPC manufactured by Tosoh Corporation, two TSK-GEL Super Multipore HZ-M, RI detector), eluent = tetrahydrofuran, injection amount = 5 microliters , Measurement temperature = 40 ° C., detector = RI detector.
Preparation of measurement sample = 10 mg of branched polycarbonate was dissolved in 10 ml of methylene chloride. The molecular weight was determined from a calibration curve of standard monodisperse polystyrene (EasiVial (RED, YELLOW, GREEN) Varian) using a converted molecular weight calibration curve according to the following equation.
M PC = 0.3591 M PS 1.0388
( MPC is the molecular weight of polycarbonate, and MPS is the molecular weight of polystyrene.)
 (2)MI,MIR:MI(メルトインデックス)はASTM D1238の方法で、温度300℃、荷重1.2kgで測定した。MIR(分岐指標)は同様の方法で12kg荷重で測定した値をMI値で除して求めた。 (2) MI, MIR: MI (melt index) was measured by the method of ASTM D1238 at a temperature of 300 ° C. and a load of 1.2 kg. The MIR (branch index) was obtained by dividing the value measured with a 12 kg load by the MI value by the same method.
 (3)色相:バレル温度300℃、金型温度90℃で、15cm×15cm×厚さ3.2mmの平板を射出成形し、コニカミノルタ社製 CR-400を用いて標準白版とのb値との差(Δb)を求めた。 (3) Hue: A 15 cm × 15 cm × 3.2 mm thick plate was injection molded at a barrel temperature of 300 ° C. and a mold temperature of 90 ° C., and b * with a standard white plate using CR-400 manufactured by Konica Minolta . The difference (Δb * ) from the value was determined.
 (4)フィッシュアイ:フィルム成形機(田辺プラスチック機械社製、30mmφ単軸押出機、スクリュー回転数100rpm、吐出量10kg/hr、バレル温度280℃、Tダイ温度260℃、ロール温度120℃)で厚さ50μm、幅30cmのフィルムを成形し、任意の長さ1m中の、大きさが300μm以上のフィッシュアイの数を目視で数えた。 (4) Fisheye: Film molding machine (manufactured by Tanabe Plastic Machinery Co., Ltd., 30 mmφ single screw extruder, screw rotation speed 100 rpm, discharge rate 10 kg / hr, barrel temperature 280 ° C., T die temperature 260 ° C., roll temperature 120 ° C.) A film having a thickness of 50 μm and a width of 30 cm was formed, and the number of fish eyes having a size of 300 μm or more in an arbitrary length of 1 m was visually counted.
 (5)グレード切り替え完了までの時間:分岐ポリカーボネートを製造した後に多官能化合物の供給を停止して、MIが10g/10minのポリカーボネートの製造に切り替えた後、得られるポリカーボネートのフィッシュアイを1時間毎に測定して測定値が1以下になるまでの時間を求めた。 (5) Time to complete the grade change: After the branched polycarbonate is produced, the supply of the polyfunctional compound is stopped and the production is switched to the production of the polycarbonate with MI of 10 g / 10 min. The time until the measured value became 1 or less was determined.
 (6)分岐構造の量:ポリカーボネート55mgをテトラヒドロフラン2mlに溶解した後、5規定の水酸化カリウムメタノール溶液を0.5ml添加し、25℃で2時間攪拌して完全に加水分解した。その後、濃塩酸0.3mlを加え、逆相液体クロマトグラフィー(LC-1100 Agilent社製)で測定した。逆相液体クロマトグラフィーは、Inertsil ODS-3カラム(GLサイエンス社製)、溶離液としてメタノールと0.1%リン酸水溶液からなる混合溶離液を用い、カラムオーブンは40℃、メタノール/0.1%リン酸水溶液比率を20/80からスタートし100/0までグラジエントする条件下で測定し、検出は波長300nmのUV検出器を用いて行い定量した。 (6) Amount of branched structure: After dissolving 55 mg of polycarbonate in 2 ml of tetrahydrofuran, 0.5 ml of 5 N potassium hydroxide methanol solution was added and stirred at 25 ° C. for 2 hours for complete hydrolysis. Thereafter, 0.3 ml of concentrated hydrochloric acid was added, and measurement was performed by reversed-phase liquid chromatography (LC-1100, manufactured by Agilent). Reverse-phase liquid chromatography uses an Inertsil ODS-3 column (manufactured by GL Science), a mixed eluent consisting of methanol and 0.1% aqueous phosphoric acid as the eluent, a column oven at 40 ° C., methanol / 0.1. % Phosphoric acid aqueous solution ratio was measured under the condition of starting from 20/80 and grading to 100/0, and the detection was quantified using a UV detector having a wavelength of 300 nm.
 (7)耐熱水性:上記(3)で成形した平板を95℃の熱水中に300時間浸漬後に取り出し、23℃で50RH%に保たれた恒温恒湿室に放置した。24時間後に、クレーズの発生を目視で確認した。A:クレーズの発生無し、B:1~9個発生、C:10個以上発生。 (7) Hot water resistance: The flat plate molded in (3) above was taken out after being immersed in hot water at 95 ° C. for 300 hours, and left in a constant temperature and humidity chamber maintained at 23 ° C. and 50 RH%. After 24 hours, the occurrence of craze was visually confirmed. A: No crazing, B: 1-9 occurrences, C: 10 occurrences or more.
 (8)耐衝撃強度
 日精ASB社製インジェクションブロー成形機 ASB-650EXHSを使用して、バレル温度295℃、金型温度コア60℃、キャビティ30℃で、5ガロン水ボトル(直径約25cm、高さ約50cm)を射出ブロー成形した。
 (8-a)ボトル強度:上記のように成形した水ボトルに水を満たし、同じボトルを1.5mの高さより、上、下、斜め上、斜め下の4方向より落下させて割れの有無を評価した。(A:割れ無し、C:割れあり)
 (8-b)シャルピー強度:ISO 306に準拠し、バレル温度300℃、金型温度90℃で試験片を射出成形で作成し、ノッチ入りで試験した。
(8) Impact resistance strength Using an injection blow molding machine ASB-650EXHS manufactured by Nissei ASB, at a barrel temperature of 295 ° C, a mold temperature core of 60 ° C, and a cavity of 30 ° C, a 5 gallon water bottle (diameter approximately 25 cm, height About 50 cm) was injection blow molded.
(8-a) Bottle strength: The water bottle formed as described above is filled with water, and the same bottle is dropped from four heights of 1.5 m above, below, diagonally above, and diagonally below to check for cracks. Evaluated. (A: no crack, C: crack)
(8-b) Charpy strength: In accordance with ISO 306, a test piece was prepared by injection molding at a barrel temperature of 300 ° C. and a mold temperature of 90 ° C., and tested with a notch.
<実施例1>
 図1に示す製造システムを用いて、分岐ポリカーボネートを製造した。攪拌槽型第一重合器3A及び3Bは内容積100リットルでアンカー型攪拌翼を有する攪拌機6A,6Bを備える。攪拌槽型第二重合器3C及び攪拌槽型第三重合器3Dは容積50リットルでアンカー型攪拌翼を有する攪拌機6C,6Dを備える。ワイヤー接触流下式第一及び第二重合器108A,108Bは、孔を5個有する多孔板102A,孔を3個有する多孔板102Bと1mm径長さ8mのSUS316L製ワイヤー状ガイド103A,103Bを保有する。攪拌槽型第一重合器3A及び3Bは交互に切り替えて使用され、攪拌槽型第二重合器3C以降は連続で使用される。
<Example 1>
A branched polycarbonate was produced using the production system shown in FIG. Stirrer tank type first polymerizers 3A and 3B are equipped with stirrers 6A and 6B having an internal volume of 100 liters and anchor type stirring blades. The stirring tank type second polymerization vessel 3C and the stirring tank type third polymerization vessel 3D are equipped with stirrers 6C and 6D having a volume of 50 liters and having anchor type stirring blades. The wire contact flow type first and second polymerization vessels 108A and 108B have a porous plate 102A having five holes, a porous plate 102B having three holes, and SUS316L wire-shaped guides 103A and 103B having a diameter of 1 mm and a length of 8 m. To do. Stirrer tank type 1st polymerization devices 3A and 3B are used by switching alternately, and after stirrer tank type 2nd polymerization device 3C, they are used continuously.
 芳香族ジヒドロキシ化合物としてのビスフェノールA及び炭酸ジエステルとしてのジフェニルカーボネート(対ビスフェノールAモル比1.06)よりなる重合原料80kgと、触媒としてビスフェノールAのジナトリウム塩(ナトリウム原子換算で、重合原料中のビスフェノールAに対して75重量ppb)とを、重合原料用入口1Aから撹拌槽型第一重合器3Aに仕込んだ。反応温度は180℃、反応圧力は大気圧で、窒素ガス流量は1リットル/hrで攪拌した。4時間後出口5Aを開き、溶融プレポリマー4Aを流量7リットル/hrで撹拌槽型第二重合器3Cへ供給した。 80 kg of a polymerization raw material consisting of bisphenol A as an aromatic dihydroxy compound and diphenyl carbonate (a molar ratio of bisphenol A of 1.06) as a carbonic acid diester, and a disodium salt of bisphenol A as a catalyst (in terms of sodium atoms, in the polymerization raw material) 75 wt ppb) with respect to bisphenol A was charged into the stirring tank type first polymerization vessel 3A from the polymerization raw material inlet 1A. The reaction temperature was 180 ° C., the reaction pressure was atmospheric pressure, and the nitrogen gas flow rate was 1 liter / hr. After 4 hours, the outlet 5A was opened, and the molten prepolymer 4A was supplied to the stirred tank type second polymerization vessel 3C at a flow rate of 7 liter / hr.
 その後、攪拌槽型第一重合器3Aと同様に攪拌槽型第一重合器3Bを運転して、溶融プレポリマー4Bを得た。攪拌槽型第一重合器3Aが空になった後、攪拌槽型第一重合器3Aの出口5Aを閉じて攪拌槽型第一重合器3Bの出口5Bを開き、溶融プレポリマー4Bを流量7リットル/hrで攪拌槽型第一重合器3Bから攪拌槽型第二重合器3Cに供給した。これを繰り返すことで、溶融プレポリマー4A及び4Bを交互に攪拌槽型第二重合器3Cに連続的に供給した。 Thereafter, the stirring tank type first polymerization vessel 3B was operated in the same manner as the stirring tank type first polymerization vessel 3A to obtain a molten prepolymer 4B. After the stirring tank type first polymerizer 3A is emptied, the outlet 5A of the stirring tank type first polymerizer 3A is closed, the outlet 5B of the stirring tank type first polymerizer 3B is opened, and the molten prepolymer 4B is supplied at a flow rate of 7 It was supplied from the stirring tank type first polymerization device 3B to the stirring tank type second polymerization device 3C at a rate of 1 liter / hr. By repeating this, the molten prepolymers 4A and 4B were continuously supplied to the stirred tank type second polymerization vessel 3C alternately.
 攪拌槽型第二重合器3Cは反応温度230℃、反応圧力13.0kPaに保持され、溶融プレポリマー4Cを得た。溶融プレポリマー4Cの容量が20リットルに達した後、内容量20リットルを一定に保つように、溶融プレポリマー4Cの一部を連続的に抜き出し攪拌槽型第三重合器3Dに供給した。 The stirring tank type second polymerization vessel 3C was maintained at a reaction temperature of 230 ° C. and a reaction pressure of 13.0 kPa to obtain a molten prepolymer 4C. After the volume of the molten prepolymer 4C reached 20 liters, a part of the molten prepolymer 4C was continuously withdrawn and supplied to the stirring tank type third polymerizer 3D so as to keep the internal volume of 20 liters constant.
 攪拌槽型第三重合器3Dは反応温度265℃、反応圧力2.6kPaに保持され、溶融プレポリマー4Dを得た。溶融プレポリマー4Dの容量が20リットルに達した後、内容量20リットルを一定に保つように、溶融プレポリマー4Dの一部を抜き出し連続的にワイヤー接触流下式第一重合器108Aに供給した。 The stirring tank type third polymerization vessel 3D was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 2.6 kPa to obtain a molten prepolymer 4D. After the volume of the molten prepolymer 4D reached 20 liters, a part of the molten prepolymer 4D was withdrawn and continuously supplied to the wire contact flow type first polymerizer 108A so as to keep the internal volume of 20 liters constant.
 ワイヤー接触流下式第一重合器108Aは反応温度265℃、反応圧力400Paに保持され、溶融プレポリマー109Aを得た。溶融プレポリマー109Aの容量が10リットルに達した後、10リットルの容量を保つように、溶融プレポリマー109Aの一部を抜き出しラインミキサー110を経由してワイヤー接触流下式第二重合器108Bに連続的に供給した。溶融プレポリマー109Aの数平均分子量は7500であった。 The wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 400 Pa to obtain a molten prepolymer 109A. After the volume of the molten prepolymer 109A reaches 10 liters, a part of the molten prepolymer 109A is withdrawn so as to keep the volume of 10 liters, and continuously passed through the line mixer 110 to the wire contact flow type second polymerizer 108B. Supplied. The number average molecular weight of the molten prepolymer 109A was 7500.
 温度が265℃、回転数が15rpmに保たれたラインミキサー110に、多官能化合物1,1,1-トリス(4-ヒドロキシフェニル)エタン及び溶剤としてのフェノールを均一に溶解した溶液(多官能化合物/フェノール=1/1.5の重量比で混合)を、溶融プレポリマー109A中のビスフェノールA骨格に対して多官能化合物がモル比0.004になる量で配管111から180℃の温度で供給した。ワイヤー接触流下式第二重合器108Bに入る直前の溶融プレポリマーの数平均分子量を測定したところ4000であった。 A polyfunctional compound (polyfunctional compound) in which polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane and phenol as a solvent are uniformly dissolved in a line mixer 110 maintained at a temperature of 265 ° C. and a rotational speed of 15 rpm /Phenol=1/1.5 is mixed at a temperature of 180 ° C. from the pipe 111 in such an amount that the polyfunctional compound has a molar ratio of 0.004 with respect to the bisphenol A skeleton in the molten prepolymer 109A. did. The number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was measured and found to be 4000.
 ワイヤー接触流下式第二重合器108Bは反応温度265℃、反応圧力118Paに保たれ、分岐ポリカーボネートを得た。分岐ポリカーボネートの容量が10リットルに達した後、10リットルの容量を保つように、排出ポンプ106Bを用い出口107Bからストランドとして連続的に抜き出し、冷却後切断してペレット状の分岐ポリカーボネートを得た。得られた分岐ポリカーボネートの評価結果を表1に示す。なお、表1~3中、Tは最終重合器に導入される低分子量ポリカーボネートの温度(℃)を示し、Tは最終重合器で重合された分岐ポリカーボネートの温度(℃)を示す。ΔTは、0℃であった。 The wire contact flow type second polymerization vessel 108B was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 118 Pa to obtain a branched polycarbonate. After the volume of the branched polycarbonate reached 10 liters, it was continuously extracted as a strand from the outlet 107B using the discharge pump 106B so as to maintain the capacity of 10 liters, and was cooled and cut to obtain a pellet-like branched polycarbonate. Table 1 shows the evaluation results of the obtained branched polycarbonate. In Tables 1 to 3, T 1 represents the temperature (° C.) of the low molecular weight polycarbonate introduced into the final polymerization vessel, and T 2 represents the temperature (° C.) of the branched polycarbonate polymerized in the final polymerization vessel. ΔT was 0 ° C.
<実施例2>
 実施例1の溶剤を、アセトンとフェノールとを均一に溶解した溶液(多官能化合物/アセトン/フェノール=1/2.5/0.1 の重量比で混合)に変更した。均一に溶解した溶液は、配管111から40℃の温度でラインミキサー110に供給した。ワイヤー接触流下式第一重合器108Aは反応温度265℃、反応圧力790Paに保持され、溶融プレポリマー109Aを得た。溶融プレポリマー109Aの数平均分子量は5500であった。ワイヤー接触流下式第二重合器108Bに入る直前の溶融プレポリマーの数平均分子量を測定した所4200であった。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。のこれらの変更以外は実施例1と同様に実施した。得られた分岐ポリカーボネートの評価結果を表1に示す。ΔTは、0℃であった。
<Example 2>
The solvent of Example 1 was changed to a solution in which acetone and phenol were uniformly dissolved (mixed at a weight ratio of polyfunctional compound / acetone / phenol = 1 / 2.5 / 0.1). The uniformly dissolved solution was supplied to the line mixer 110 from the pipe 111 at a temperature of 40 ° C. The wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 790 Pa to obtain a molten prepolymer 109A. The number average molecular weight of the molten prepolymer 109A was 5500. It was 4200 when the number average molecular weight of the melted prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was measured. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 1 was performed. Table 1 shows the evaluation results of the obtained branched polycarbonate. ΔT was 0 ° C.
<実施例3>
 実施例2の溶剤を数平均分子量2500のプレポリマーに変更した。分岐剤とプレポリマーの重量混合比は、1:2とした。均一に溶解した溶液は、配管111から180℃の温度でラインミキサー110に供給した。溶融プレポリマー109Aの数平均分子量は5700であった。ワイヤー接触流下式第二重合器108Bに入る直前の溶融プレポリマーの数平均分子量を測定した所4900であった。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。これらの変更以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表1に示す。ΔTは、0℃であった。
<Example 3>
The solvent of Example 2 was changed to a prepolymer having a number average molecular weight of 2500. The weight mixing ratio of the branching agent and the prepolymer was 1: 2. The uniformly dissolved solution was supplied from the pipe 111 to the line mixer 110 at a temperature of 180 ° C. The number average molecular weight of the molten prepolymer 109A was 5700. The number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was 4900. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. Table 1 shows the evaluation results of the obtained branched polycarbonate. ΔT was 0 ° C.
<実施例4>
 実施例2の溶剤をジフェニルカーボネート(DPC)とビスフェノールA(BPA)に変更した。均一に溶解した溶液は、配管111から180℃の温度でラインミキサー110に供給した。分岐剤とDPCとBPAの重量混合比は、1.5:0.5:1とした。更に触媒としてビスフェノールAのジナトリウム塩(ナトリウム原子換算で、重合原料中のビスフェノールAに対して75重量ppb)を添加した。溶融プレポリマー109Aの数平均分子量は5700であった。ワイヤー接触流下式第二重合器108Bに入る直前の溶融プレポリマーの数平均分子量を測定した所4200であった。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。これらの変更以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表1に示す。ΔTは、0℃であった。
<Example 4>
The solvent of Example 2 was changed to diphenyl carbonate (DPC) and bisphenol A (BPA). The uniformly dissolved solution was supplied from the pipe 111 to the line mixer 110 at a temperature of 180 ° C. The weight mixing ratio of the branching agent, DPC and BPA was 1.5: 0.5: 1. Further, disodium salt of bisphenol A (75 weight ppb with respect to bisphenol A in the polymerization raw material in terms of sodium atom) was added as a catalyst. The number average molecular weight of the molten prepolymer 109A was 5700. It was 4200 when the number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was measured. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. Table 1 shows the evaluation results of the obtained branched polycarbonate. ΔT was 0 ° C.
<実施例5>
 実施例2の溶剤をDPCに変更した。分岐剤とDPCの重量混合比は、1:0.67とした。均一に溶解した溶液は、配管111から180℃の温度でラインミキサー110に供給した。溶融プレポリマー109Aの数平均分子量は5700であった。ワイヤー接触流下式第二重合器108Bに入る直前の溶融プレポリマーの数平均分子量を測定した所4000であった。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。これらの変更以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表1に示す。ΔTは、0℃であった。
<Example 5>
The solvent of Example 2 was changed to DPC. The weight mixing ratio of the branching agent and DPC was 1: 0.67. The uniformly dissolved solution was supplied from the pipe 111 to the line mixer 110 at a temperature of 180 ° C. The number average molecular weight of the molten prepolymer 109A was 5700. The number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was 4000. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. Table 1 shows the evaluation results of the obtained branched polycarbonate. ΔT was 0 ° C.
<実施例6>
 多官能化合物の溶剤としてアセトンを用い、ラインミキサー110に投入する代わりに、攪拌槽型第三重合器3Dに投入した。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。これらの変更以外は実施例2と同様に実施した。若干MI変動が見られたものの、安定に分岐ポリカーボネートが製造できた。得られた分岐ポリカーボネートの評価結果を表1に示す。ΔTは、0℃であった。
<Example 6>
Acetone was used as a solvent for the polyfunctional compound, and it was charged into the stirred tank type third polymerization vessel 3D instead of being charged into the line mixer 110. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. Although some MI fluctuation was observed, a branched polycarbonate could be produced stably. Table 1 shows the evaluation results of the obtained branched polycarbonate. ΔT was 0 ° C.
<実施例7>
 実施例2の多官能化合物を4-[4-[1,1-ビス(4-ヒドロキシフェニル)エチル]-α,α-ジメチルベンジル]フェノールとし溶剤をアセトンに変更した。ワイヤー接触流下式第一重合器108Aは反応温度265℃、反応圧力1000Paに保持され、溶融プレポリマー109Aを得た。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。これらの変更以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表2に示す。ΔTは、-0.2℃であった。
<Example 7>
The polyfunctional compound of Example 2 was 4- [4- [1,1-bis (4-hydroxyphenyl) ethyl] -α, α-dimethylbenzyl] phenol and the solvent was changed to acetone. The wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 265 ° C. and a reaction pressure of 1000 Pa to obtain a molten prepolymer 109A. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. Except for these changes, the same procedure as in Example 2 was performed. The evaluation results of the obtained branched polycarbonate are shown in Table 2. ΔT was −0.2 ° C.
<実施例8>
 溶剤としてフェノールを使用した(多官能化合物/フェノール=6/4の重量比で混合)こと、図1のワイヤー接触流下式第二重合器の出口107Bの後ろに、ベント付き二軸押出機(池貝鉄鋼社製PCM30mm、L/D30、温度265℃)を設置し、多官能化合物1,1,1-トリス(4-ヒドロキシフェニル)エタン(ビスフェノールA骨格に対してモル比0.004)をラインミキサー110から供給せずに、上記二軸押出機のベント口から粉体状で投入したこと以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表2に示す。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。ΔTは、25℃であった。
<Example 8>
Phenol was used as a solvent (mixed at a weight ratio of polyfunctional compound / phenol = 6/4), and a twin screw extruder with a vent (Ikegai) was placed behind the outlet 107B of the wire contact flow down type second polymerizer in FIG. PCM 30 mm, L / D30, temperature 265 ° C.) installed by Steel Co., Ltd. Line mixer with polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane (molar ratio 0.004 with respect to bisphenol A skeleton) The same procedure as in Example 2 was performed except that powder was fed from the vent port of the above twin screw extruder without feeding from 110. The evaluation results of the obtained branched polycarbonate are shown in Table 2. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. ΔT was 25 ° C.
<比較例1>
 図1のワイヤー接触流下式第二重合器の出口107Bの後ろに、ベント付き二軸押出機(池貝鉄鋼社製PCM30mm、L/D30、温度265℃)を設置し、多官能化合物1,1,1-トリス(4-ヒドロキシフェニル)エタン(ビスフェノールA骨格に対してモル比0.004)をラインミキサー110から供給せずに、上記二軸押出機のベント口から粉体状で投入したこと以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表3に示す。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。ΔTは、0℃であった。
<Comparative Example 1>
A double-screw extruder with a vent (PCM 30 mm, L / D30, temperature 265 ° C., manufactured by Ikegai Steel Co., Ltd.) is installed behind the outlet 107B of the wire contact flow-down type second polymerizer of FIG. Except that 1-tris (4-hydroxyphenyl) ethane (molar ratio of 0.004 with respect to bisphenol A skeleton) was not supplied from the line mixer 110 but was charged in powder form from the vent port of the above twin screw extruder. Was carried out in the same manner as in Example 2. The evaluation results of the obtained branched polycarbonate are shown in Table 3. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. ΔT was 0 ° C.
<比較例2>
 図1において、ラインミキサー110をベント付き単軸押出機に交換し、107Aからの配管を単軸押出機の供給口に繋ぎ、単軸押出機の出口を101Bへの配管に接続した。多官能化合物1,1,1-トリス(4-ヒドロキシフェニル)エタン(ビスフェノールA骨格に対してモル比0.004)を上記単軸押出機のベント口から粉体状で投入したこと以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表3に示す。なお、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表1に示す値となるように、(A)工程における溶融プレポリマーの供給速度を調節した。ΔTは、0℃であった。
<Comparative Example 2>
In FIG. 1, the line mixer 110 was replaced with a vented single screw extruder, the pipe from 107A was connected to the supply port of the single screw extruder, and the outlet of the single screw extruder was connected to the pipe to 101B. Except that polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane (molar ratio 0.004 with respect to bisphenol A skeleton) was charged in powder form from the vent port of the single screw extruder Performed as in Example 2. The evaluation results of the obtained branched polycarbonate are shown in Table 3. In addition, the supply rate of the melted prepolymer in the step (A) was adjusted so that the flow rate of the melted prepolymer per wire in the final polymerization vessel became the value shown in Table 1. ΔT was 0 ° C.
<比較例3>
 図1において、ラインミキサー110をベント付き二軸押出機(池貝鉄鋼社製PCM30mm、L/D30、温度265℃)に交換し、107Aからの配管を二軸押出機の供給口に繋ぎ、二軸押出機の出口を横型重合反応器(図示せず)の供給口に接続した。多官能化合物1,1,1-トリス(4-ヒドロキシフェニル)エタン(ビスフェノールA骨格に対してモル比0.004)を上記二軸押出機のベント口から常温で投入した。更に二軸押出機に連結する最終重合器を重合器108Bの代わりに横型重合反応器を設置して最終重合を実施した。横型重合反応器の温度は、320℃に設定した。これらの変更以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表3に示す。ΔTは、30℃であった。
<Comparative Example 3>
In FIG. 1, the line mixer 110 is replaced with a vented twin screw extruder (Ikegai Steel Co., Ltd., PCM 30 mm, L / D30, temperature 265 ° C.), and the pipe from 107A is connected to the supply port of the twin screw extruder. The exit of the extruder was connected to the feed port of a horizontal polymerization reactor (not shown). The polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane (molar ratio 0.004 with respect to the bisphenol A skeleton) was charged at room temperature from the vent port of the above twin screw extruder. Further, the final polymerization was carried out by installing a horizontal polymerization reactor instead of the polymerization vessel 108B as the final polymerization device connected to the twin screw extruder. The temperature of the horizontal polymerization reactor was set to 320 ° C. Except for these changes, the same procedure as in Example 2 was performed. The evaluation results of the obtained branched polycarbonate are shown in Table 3. ΔT was 30 ° C.
<比較例4>
 図1において、ラインミキサー110をベント付き二軸押出機(池貝鉄鋼社製PCM30mm、L/D30、温度265℃)に交換し、107Aからの配管を二軸押出機の供給口に繋ぎ、二軸押出機の出口を横型重合反応器(図示せず)の供給口に接続した。多官能化合物1,1,1-トリス(4-ヒドロキシフェニル)エタン(ビスフェノールA骨格に対してモル比0.004)とDPCを上記二軸押出機のベント口から常温で投入した。分岐剤とDPCの重量比は1:0.6とした。更に二軸押出機に連結する最終重合器を重合器108Bの代わりに横型重合反応揮を設置して最終重合を実施した。横型重合反応器の温度は、320℃に設定した。これらの変更以外は実施例2と同様に実施した。得られた分岐ポリカーボネートの評価結果を表3に示す。ΔTは、25℃であった。
<Comparative example 4>
In FIG. 1, the line mixer 110 is replaced with a vented twin screw extruder (Ikegai Steel Co., Ltd., PCM 30 mm, L / D 30, temperature 265 ° C.), and the pipe from 107A is connected to the supply port of the twin screw extruder. The exit of the extruder was connected to the feed port of a horizontal polymerization reactor (not shown). Polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane (molar ratio 0.004 with respect to bisphenol A skeleton) and DPC were charged at normal temperature from the vent port of the above twin screw extruder. The weight ratio of branching agent to DPC was 1: 0.6. Further, the final polymerization apparatus connected to the twin-screw extruder was installed with a horizontal polymerization reaction volatilizer instead of the polymerization apparatus 108B to carry out final polymerization. The temperature of the horizontal polymerization reactor was set to 320 ° C. Except for these changes, the same procedure as in Example 2 was performed. The evaluation results of the obtained branched polycarbonate are shown in Table 3. ΔT was 25 ° C.
<比較例5>
 実施例2において多官能化合物と溶剤の添加を行わなかった。MI=3の高分子ポリマーを作製するために、最終重合器108Bへの供給量を極端に少なくし、ワイヤー1本当たりの供給量を0.2kg/hr・本とした。103Bでの滞留時間を長くする事でMI=3の高分子ポリマーが出来たが、フィッシュアイの多いポリマーが得られた。また、生産性も実施例2の場合に比べてかなり悪かった。
<Comparative Example 5>
In Example 2, the polyfunctional compound and the solvent were not added. In order to produce a polymer having MI = 3, the supply amount to the final polymerization vessel 108B was extremely reduced, and the supply amount per wire was set to 0.2 kg / hr. By increasing the residence time at 103B, a polymer with MI = 3 was produced, but a polymer with a lot of fish eyes was obtained. The productivity was also considerably worse than that in Example 2.
<実施例9>
 図2に示す製造システムを用いて、分岐ポリカーボネートを製造した。攪拌槽型第一重合器3A及び3Bは内容積100リットルでアンカー型攪拌翼を有する攪拌機6A,6Bを備える。攪拌槽型第二重合器3C及び攪拌槽型第三重合器3Dは容積50リットルでアンカー型攪拌翼を有する攪拌機6C,6Dを備える。ワイヤー接触流下式第一及び第二重合器108A,108Bは、孔を5個有する多孔板102A,孔を3個有する多孔板102Bと1mm径長さ8mのSUS316L製ワイヤー状ガイド103A,103Bを保有する。攪拌槽型第一重合器3A及び3Bは交互に切り替えて使用され、攪拌槽型第二重合器3C以降は連続で使用される。
<Example 9>
A branched polycarbonate was produced using the production system shown in FIG. Stirrer tank type first polymerizers 3A and 3B are equipped with stirrers 6A and 6B having an internal volume of 100 liters and anchor type stirring blades. The stirring tank type second polymerization vessel 3C and the stirring tank type third polymerization vessel 3D are equipped with stirrers 6C and 6D having a volume of 50 liters and having anchor type stirring blades. The wire contact flow type first and second polymerization vessels 108A and 108B have a porous plate 102A having five holes, a porous plate 102B having three holes, and SUS316L wire-shaped guides 103A and 103B having a diameter of 1 mm and a length of 8 m. To do. Stirred tank type first polymerizers 3A and 3B are used by switching alternately, and the stirred tank type second polymerizer 3C and thereafter are used continuously.
 芳香族ジヒドロキシ化合物としてのビスフェノールAと炭酸ジエステルとしてのジフェニルカーボネート(対ビスフェノールAモル比1.07)よりなる重合原料80kg、触媒としてビスフェノールAのジナトリウム塩(ナトリウム原子換算で、重合原料中のビスフェノールAに対して50重量ppb)を撹拌槽型第一重合器3Aに仕込んだ。反応温度は185℃、反応圧力は大気圧で、窒素ガス流量は1リットル/hrで行った。4時間後出口5Aを開き、溶融プレポリマー4Aを、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表2に示す値となるような流量で、撹拌槽型第二重合器3Cへ供給した。 80 kg of polymerization raw material consisting of bisphenol A as an aromatic dihydroxy compound and diphenyl carbonate as carbonic acid diester (molar ratio of bisphenol A: 1.07), disodium salt of bisphenol A as a catalyst (bisphenol in the polymerization raw material in terms of sodium atom) 50 weight ppb) with respect to A was charged into the stirred tank type first polymerization vessel 3A. The reaction temperature was 185 ° C., the reaction pressure was atmospheric pressure, and the nitrogen gas flow rate was 1 liter / hr. After 4 hours, the outlet 5A is opened, and the molten prepolymer 4A is fed to the stirred tank type second polymerization device 3C at a flow rate such that the flow rate of the molten prepolymer per wire in the final polymerization vessel becomes the value shown in Table 2. Supplied.
 その後、攪拌槽型第一重合器3Aと同様に攪拌槽型第一重合器3Bを運転して、溶融プレポリマー4Bを得た。攪拌槽型第一重合器3Aが空になった後、攪拌槽型第一重合器3Aの出口5Aを閉じて攪拌槽型第一重合器3Bの出口5Bを開き、溶融プレポリマー4Bを、最終重合器におけるワイヤー一本当たりの溶融プレポリマーの流量が表2に示す値となるような流量で、攪拌槽型第一重合器3Bから攪拌槽型第二重合器3Cに供給した。これを繰り返すことで、溶融プレポリマー4A及び4Bを交互に攪拌槽型第二重合器3Cに連続的に供給した。 Thereafter, the stirring tank type first polymerization vessel 3B was operated in the same manner as the stirring tank type first polymerization vessel 3A to obtain a molten prepolymer 4B. After the stirring tank type first polymerizer 3A is emptied, the outlet 5A of the stirring tank type first polymerizer 3A is closed and the outlet 5B of the stirring tank type first polymerizer 3B is opened, and the molten prepolymer 4B is finally The molten prepolymer per wire in the polymerization vessel was supplied from the stirring vessel type first polymerization vessel 3B to the stirring vessel type second polymerization vessel 3C at such a flow rate that the value shown in Table 2 was obtained. By repeating this, the molten prepolymers 4A and 4B were continuously supplied to the stirred tank type second polymerization vessel 3C alternately.
 攪拌槽型第二重合器3Cは反応温度232℃、反応圧力12.8kPaに保持され、溶融プレポリマー4Cを得た。溶融プレポリマー4Cの容量が20リットルに達した後、内容量20リットルを一定に保つように、溶融プレポリマー4Cの一部を連続的に抜き出し攪拌槽型第三重合器3Dに供給した。 The stirring tank type second polymerization vessel 3C was maintained at a reaction temperature of 232 ° C. and a reaction pressure of 12.8 kPa, thereby obtaining a molten prepolymer 4C. After the volume of the molten prepolymer 4C reached 20 liters, a part of the molten prepolymer 4C was continuously withdrawn and supplied to the stirring tank type third polymerizer 3D so as to keep the internal volume of 20 liters constant.
 攪拌槽型第三重合器3Dは反応温度266℃、反応圧力2.5kPaに保持され、溶融プレポリマー4Dを得た。溶融プレポリマー4Dの容量が20リットルに達した後、内容量20リットルを一定に保つように、溶融プレポリマー4Dの一部を抜き出し連続的にワイヤー接触流下式第一重合器108Aに供給した。 The stirring tank type third polymerization vessel 3D was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 2.5 kPa, thereby obtaining a molten prepolymer 4D. After the volume of the molten prepolymer 4D reached 20 liters, a part of the molten prepolymer 4D was withdrawn and continuously supplied to the wire contact flow type first polymerizer 108A so as to keep the internal volume of 20 liters constant.
 ワイヤー接触流下式第一重合器108Aは反応温度266℃、反応圧力770Paに保持され、溶融プレポリマー109Aを得た。溶融プレポリマー109Aの容量が10リットルに達した後、10リットルの容量を保つように、溶融プレポリマー109Aの一部を抜き出た。溶融プレポリマー109Aの数平均分子量は5000であった。抜き出された溶融プレポリマー109Aは、1/2量をラインミキサー110を経由してワイヤー接触流下式第二重合器108Bに連続的に供給し、1/2量をワイヤー接触流下式第三重合器108Cに連続的に供給した。 The wire contact flow type first polymerization vessel 108A was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 770 Pa to obtain a molten prepolymer 109A. After the volume of the molten prepolymer 109A reached 10 liters, a part of the molten prepolymer 109A was extracted so as to keep the volume of 10 liters. The number average molecular weight of the molten prepolymer 109A was 5000. The melted prepolymer 109A extracted is continuously supplied to the wire contact flow type second polymerization vessel 108B via the line mixer 110, and ½ quantity is supplied to the wire contact flow type third triple. Continuously supplied to the combiner 108C.
 温度が266℃、回転数が15rpmに保たれたラインミキサー110に、多官能化合物1,1,1-トリス(4-ヒドロキシフェニル)エタン及び溶剤としてのフェノールを重量比6:4として均一に溶解した溶液を、溶融プレポリマー109A中のビスフェノールA骨格に対して多官能化合物がモル比0.003になる量で配管111から185℃の温度で供給した。ワイヤー接触流下式第二重合器108Bに入る直前の溶融プレポリマーの数平均分子量を測定したところ4400であった。 Polyfunctional compound 1,1,1-tris (4-hydroxyphenyl) ethane and phenol as a solvent are uniformly dissolved at a weight ratio of 6: 4 in a line mixer 110 maintained at a temperature of 266 ° C. and a rotation speed of 15 rpm. The solution thus obtained was supplied from the pipe 111 at a temperature of 185 ° C. in such an amount that the polyfunctional compound had a molar ratio of 0.003 with respect to the bisphenol A skeleton in the molten prepolymer 109A. It was 4400 when the number average molecular weight of the molten prepolymer immediately before entering the wire contact flow type second polymerization vessel 108B was measured.
 ワイヤー接触流下式第二重合器108Bは反応温度266℃、反応圧力122Paに保たれ、分岐ポリカーボネートを得た。分岐ポリカーボネートの容量が10リットルに達した後、10リットルの容量を保つように、排出ポンプ106Bを用い出口107Bからストランドとして連続的に抜き出し、冷却後切断してペレット状の分岐ポリカーボネート得た。得られた分岐ポリカーボネートの評価結果を表3に示す。 The wire contact flow type second polymerization vessel 108B was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 122 Pa to obtain a branched polycarbonate. After the volume of the branched polycarbonate reached 10 liters, the discharge pump 106B was used to continuously extract the strands from the outlet 107B as a strand so as to maintain the capacity of 10 liters. The evaluation results of the obtained branched polycarbonate are shown in Table 3.
 ワイヤー接触流下式第三重合器108Cは反応温度266℃、反応圧力135Paに保たれ、ポリカーボネート得た。ポリカーボネートの容量が10リットルに達した後、10リットルの容量を保つように、排出ポンプ106Cを用い出口107Cからストランドとして連続的に抜き出し冷却後切断して、MI10g/10minで色相0.6、フィッシュアイの測定値が0のペレット状の直鎖状のポリカーボネートを得た。50時間連続運転した後、106Aと106Dの流量比を50:50にすることで、分岐ポリカーボネートと直鎖ポリカーボネートとの生産比率を変更し、銘柄切り替えロスなく生産量を制御し、複数種のポリカーボネートを同時に生産した。得られた分岐ポリカーボネートの評価結果を表2に示す。 The wire contact flow type third polymerization vessel 108C was maintained at a reaction temperature of 266 ° C. and a reaction pressure of 135 Pa to obtain a polycarbonate. After the polycarbonate volume reaches 10 liters, the discharge pump 106C is used to continuously extract the strands from the outlet 107C as a strand so as to maintain the capacity of 10 liters. A pellet-like linear polycarbonate having an eye measurement value of 0 was obtained. After 50 hours of continuous operation, the flow ratio of 106A and 106D is changed to 50:50, so that the production ratio of branched polycarbonate and linear polycarbonate is changed, and the production volume is controlled without loss of brand switching. Were produced at the same time. The evaluation results of the obtained branched polycarbonate are shown in Table 2.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 本発明の製造方法は、銘柄切り替え時のロスを少なくすることができるとともに、色相及び耐熱水性に優れ、フィッシュアイが少ない分岐ポリカーボネートをエステル交換法で製造するものであり、MIRが大きく、押出用途やブロー成形性に優れた分岐ポリカーボネートを提供することができる。 The production method of the present invention is a method for producing a branched polycarbonate with a transesterification method that can reduce loss at the time of brand switching, is excellent in hue and hot water resistance, and has little fish eye, has a large MIR, and is used for extrusion. And a branched polycarbonate excellent in blow moldability can be provided.
 1A,1B…重合原料用入口、1C,1D…プレポリマー用入口、2A,2B,2C,2D,105A,105B,105C…ベント口、3A,3B…攪拌槽型第一重合器、3C…攪拌槽型第二重合器、3D…攪拌槽型第三重合器、4A,4B,4C,4D,109A…溶融プレポリマー、5A,5B,5C,5D,107A,107B,107C…出口、6A,6B,6C,6D…攪拌機、7C,7D,8,106A…移送ポンプ、101A,101B,101C…プレポリマー用入口、102A,102B,102C…多孔板、103A,103B,103C…ワイヤー状ガイド、104A,104B,104C…ガス供給ポート、106B,106C…排出ポンプ、108A…ワイヤー接触流下式第一重合器、108B…ワイヤー接触流下式第二重合器、108C…ワイヤー接触流下式第三重合器、109B,109C…溶融ポリマー、110…溶融混合機(ラインミキサー)、111…多官能化合物投入配管、120…分岐部。 1A, 1B: Polymerization raw material inlet, 1C, 1D: Prepolymer inlet, 2A, 2B, 2C, 2D, 105A, 105B, 105C ... Vent port, 3A, 3B ... Stirred tank type first polymerizer, 3C ... Stirring Tank type second polymerizer, 3D ... Stirred tank type third polymerizer, 4A, 4B, 4C, 4D, 109A ... Molten prepolymer, 5A, 5B, 5C, 5D, 107A, 107B, 107C ... Outlet, 6A, 6B, 6C, 6D ... stirrer, 7C, 7D, 8, 106A ... transfer pump, 101A, 101B, 101C ... prepolymer inlet, 102A, 102B, 102C ... perforated plate, 103A, 103B, 103C ... wire guide, 104A 104B, 104C ... Gas supply port, 106B, 106C ... Discharge pump, 108A ... Wire contact flow-down type first polymerizer, 108B ... Wire contact Downflow type second polymerizer, 108C ... wire-contacting downflow type third polymerization vessel, 109B, 109C ... molten polymer, 110 ... melting mixer (line mixer), 111 ... polyfunctional compound introduction pipe, 120 ... bifurcation.

Claims (8)

  1.  (A)芳香族ジヒドロキシ化合物と炭酸ジエステルとからエステル交換法により数平均分子量が1000~10000の低分子量ポリカーボネートを製造する工程と、
     (B)前記低分子量ポリカーボネートに多官能化合物を液体状態で添加混合する工程と、
     (C)引き続き前記低分子量ポリカーボネートのメルトインデックスが10g/10min以下かつ分岐指標が14以上になるまで重合反応を行い、分岐ポリカーボネートを製造する工程と、
    を含む分岐ポリカーボネートの連続製造方法。
    (A) a step of producing a low molecular weight polycarbonate having a number average molecular weight of 1000 to 10,000 by an ester exchange method from an aromatic dihydroxy compound and a carbonic acid diester;
    (B) adding and mixing a polyfunctional compound in a liquid state to the low molecular weight polycarbonate;
    (C) a step of continuously producing a branched polycarbonate by performing a polymerization reaction until the melt index of the low molecular weight polycarbonate is 10 g / 10 min or less and the branching index is 14 or more;
    A method for continuously producing a branched polycarbonate comprising
  2.  下記式(I)で定義されるΔT(℃)の範囲が-20℃~20℃以下ある、請求項1に記載の方法。
      ΔT = T - T (I)
    [式中、Tは前記(C)工程における最終重合器に導入される低分子量ポリカーボネートの温度(℃)を示し、Tは前記(C)工程における前記最終重合器により重合された分岐ポリカーボネートの温度(℃)を示し、Tは285℃以下である。]
    The method according to claim 1, wherein the range of ΔT (° C) defined by the following formula (I) is -20 ° C to 20 ° C or less.
    ΔT = T 2 −T 1 (I)
    [Wherein T 1 represents the temperature (° C.) of the low molecular weight polycarbonate introduced into the final polymerization vessel in the step (C), and T 2 represents a branched polycarbonate polymerized by the final polymerization vessel in the step (C). The T 2 is 285 ° C. or lower. ]
  3.  前記多官能化合物は、溶剤に溶解した状態で、前記(A)工程を行う装置と前記(C)工程を行う装置との間の配管途中に設置された溶融混合機に添加される、請求項1又は2に記載の方法。 The said polyfunctional compound is added to the melt mixer installed in the middle of piping between the apparatus which performs the said (A) process, and the apparatus which performs the said (C) process in the state melt | dissolved in the solvent. The method according to 1 or 2.
  4.  前記溶剤が、フェノール類、炭酸ジエステル類、ケトン類、エーテル類、芳香族ジヒドロキシ化合物と炭酸ジエステルとの混合物及び反応物、並びに数平均分子量5000以下の低分子量ポリカーボネートからなる群から選ばれる少なくとも1種である、請求項3に記載の方法。 The solvent is at least one selected from the group consisting of phenols, carbonic acid diesters, ketones, ethers, mixtures and reactants of aromatic dihydroxy compounds and carbonic acid diesters, and low molecular weight polycarbonates having a number average molecular weight of 5000 or less. The method of claim 3, wherein
  5.  前記溶剤が、解重合溶剤である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the solvent is a depolymerization solvent.
  6.  前記(A)工程に引き続き、(D)メルトインデックスが100g/10min以下になるまで重合反応を行い、ポリカーボネートを製造する工程を更に含む、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, further comprising a step of producing a polycarbonate by carrying out a polymerization reaction until the melt index becomes 100 g / 10 min or less following the step (A).
  7.  前記(A)工程を行う装置は、前記(C)工程を行う装置及び前記(D)工程を行う装置へそれぞれ通じるように分岐された分岐部を有する配管を介して、前記(C)工程を行う装置及び前記(D)工程を行う装置と接続されており、
     前記多官能化合物は、前記分岐部と前記(C)工程を行う装置との間の配管途中に設置された溶融混合機に添加される、請求項6に記載の方法。
    The apparatus for performing the step (A) performs the step (C) via a pipe having a branch portion branched so as to lead to the apparatus for performing the step (C) and the apparatus for performing the step (D). Connected to a device for performing and the device for performing the step (D),
    The said polyfunctional compound is a method of Claim 6 added to the melt mixer installed in the middle of piping between the said branch part and the apparatus which performs the said (C) process.
  8.  請求項1~7のいずれか1項に記載の方法で製造される分岐ポリカーボネート。 A branched polycarbonate produced by the method according to any one of claims 1 to 7.
PCT/JP2011/065384 2010-07-08 2011-07-05 Continuous process for the production of branched polycarbonate WO2012005251A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137000388A KR101458725B1 (en) 2010-07-08 2011-07-05 Continuous process for the production of branched polycarbonate
CN201180031472.8A CN102958976B (en) 2010-07-08 2011-07-05 Continuous process for the production of branched polycarbonate
JP2012523880A JP5284540B2 (en) 2010-07-08 2011-07-05 Continuous production method of branched polycarbonate
EA201390078A EA022372B1 (en) 2010-07-08 2011-07-05 Continuous process for the production of branched polycarbonate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010155954 2010-07-08
JP2010155956 2010-07-08
JP2010-155956 2010-07-08
JP2010-155954 2010-07-08

Publications (1)

Publication Number Publication Date
WO2012005251A1 true WO2012005251A1 (en) 2012-01-12

Family

ID=45441229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065384 WO2012005251A1 (en) 2010-07-08 2011-07-05 Continuous process for the production of branched polycarbonate

Country Status (7)

Country Link
JP (1) JP5284540B2 (en)
KR (1) KR101458725B1 (en)
CN (1) CN102958976B (en)
EA (1) EA022372B1 (en)
MY (1) MY169222A (en)
TW (1) TWI492961B (en)
WO (1) WO2012005251A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172317A1 (en) * 2012-05-18 2013-11-21 三菱瓦斯化学株式会社 Method for continuously producing high-molecular-weight polycarbonate resin
WO2014024904A1 (en) 2012-08-10 2014-02-13 三菱瓦斯化学株式会社 Method for producing branched aromatic polycarbonate resin
KR101804288B1 (en) * 2013-06-20 2017-12-08 사빅 글로벌 테크놀러지스 비.브이. Process for the manufacture of polycarbonate compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290364A (en) * 1999-04-02 2000-10-17 Mitsubishi Gas Chem Co Inc Production of branched polycarbonate resin
JP2002508801A (en) * 1997-06-30 2002-03-19 バイエル・アクチエンゲゼルシヤフト Method for producing branched polycarbonate
JP2005511835A (en) * 2001-12-06 2005-04-28 ゼネラル・エレクトリック・カンパニイ Process for producing branched aromatic polycarbonate
JP2008024870A (en) * 2006-07-24 2008-02-07 Idemitsu Kosan Co Ltd Branched polycarbonate resin and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489824A (en) * 1990-08-03 1992-03-24 Nippon G Ii Plast Kk Preparation of polycarbonate
JPH05271402A (en) * 1992-01-29 1993-10-19 Daicel Chem Ind Ltd Branched polycarbonate and its production
JPH05295101A (en) * 1992-01-29 1993-11-09 Daicel Chem Ind Ltd Branched polycarbonate and production thereof
KR0180827B1 (en) * 1996-05-23 1999-05-15 김상응 Method for manufacturing branched polycarbonate
US7759456B2 (en) * 2006-06-30 2010-07-20 Sabic Innovative Plastics Ip B.V. Branched polycarbonate resins and processes to prepare the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508801A (en) * 1997-06-30 2002-03-19 バイエル・アクチエンゲゼルシヤフト Method for producing branched polycarbonate
JP2000290364A (en) * 1999-04-02 2000-10-17 Mitsubishi Gas Chem Co Inc Production of branched polycarbonate resin
JP2005511835A (en) * 2001-12-06 2005-04-28 ゼネラル・エレクトリック・カンパニイ Process for producing branched aromatic polycarbonate
JP2008024870A (en) * 2006-07-24 2008-02-07 Idemitsu Kosan Co Ltd Branched polycarbonate resin and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172317A1 (en) * 2012-05-18 2013-11-21 三菱瓦斯化学株式会社 Method for continuously producing high-molecular-weight polycarbonate resin
CN104395374A (en) * 2012-05-18 2015-03-04 三菱瓦斯化学株式会社 Method for continuously producing high-molecular-weight polycarbonate resin
JPWO2013172317A1 (en) * 2012-05-18 2016-01-12 三菱瓦斯化学株式会社 Continuous production method of high molecular weight polycarbonate resin
US9243106B2 (en) 2012-05-18 2016-01-26 Mitsubishi Gas Chemical Company, Inc. Method for continuous production of high molecular weight polycarbonate resin
RU2630678C2 (en) * 2012-05-18 2017-09-12 Мицубиси Гэс Кемикал Компани, Инк. Method for continuous production of high-molecular weight polycarbonate resin
WO2014024904A1 (en) 2012-08-10 2014-02-13 三菱瓦斯化学株式会社 Method for producing branched aromatic polycarbonate resin
KR20150042249A (en) 2012-08-10 2015-04-20 미츠비시 가스 가가쿠 가부시키가이샤 Method for producing branched aromatic polycarbonate resin
JPWO2014024904A1 (en) * 2012-08-10 2016-07-25 三菱瓦斯化学株式会社 Process for producing branched aromatic polycarbonate resin
US9701788B2 (en) 2012-08-10 2017-07-11 Mitsubishi Gas Chemical Company, Inc. Method for producing branched aromatic polycarbonate resin
KR101804288B1 (en) * 2013-06-20 2017-12-08 사빅 글로벌 테크놀러지스 비.브이. Process for the manufacture of polycarbonate compositions

Also Published As

Publication number Publication date
JPWO2012005251A1 (en) 2013-09-02
EA022372B1 (en) 2015-12-30
CN102958976A (en) 2013-03-06
TWI492961B (en) 2015-07-21
EA201390078A1 (en) 2013-06-28
JP5284540B2 (en) 2013-09-11
MY169222A (en) 2019-03-19
TW201209075A (en) 2012-03-01
KR101458725B1 (en) 2014-11-05
KR20130041075A (en) 2013-04-24
CN102958976B (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5079323B2 (en) Method for producing high-quality aromatic polycarbonate
WO1997032916A1 (en) Polycarbonate comprising different kinds of bonding units and process for the preparation thereof
JP6237785B2 (en) Method for producing high molecular weight aromatic polycarbonate resin
JP5259017B2 (en) Branched polycarbonate
US9458290B2 (en) Process for preparing highly polymerized aromatic polycarbonate resin
JP5284540B2 (en) Continuous production method of branched polycarbonate
KR102404309B1 (en) Aromatic polycarbonate resin composition and method for producing aromatic polycarbonate resin
WO2017170185A1 (en) High molecular weight aromatic polycarbonate resin manufacturing method
JP5287704B2 (en) Polycarbonate resin composition
KR102407926B1 (en) Method for producing high molecular weight aromatic polycarbonate resin
JP2004026916A (en) Method for continuously producing plurality of polycarbonates
CN112839978B (en) Polycarbonate resin
KR101418692B1 (en) Process for producing polycondensation polymer, and polymerizer
TW201311762A (en) Method for continuously producing branched polycarbonate
KR102388897B1 (en) Method for producing high molecular weight aromatic polycarbonate resin
KR20240038082A (en) Aromatic polycarbonate, method for producing aromatic polycarbonate, and container
JP2002308982A (en) Manufacturing method for aromatic-aliphatic copolycarbonate
JP2003327684A (en) Method for manufacturing aromatic-aliphatic copolymerized polycarbonate
JP2006096959A (en) Production process of aromatic polycarbonate
JP2002317043A (en) Method for producing aromatic-aliphatic copolycarbonate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031472.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523880

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137000388

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201390078

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 11803585

Country of ref document: EP

Kind code of ref document: A1