WO2012005214A1 - Electron transport material and organic electroluminescent elements using same - Google Patents

Electron transport material and organic electroluminescent elements using same Download PDF

Info

Publication number
WO2012005214A1
WO2012005214A1 PCT/JP2011/065282 JP2011065282W WO2012005214A1 WO 2012005214 A1 WO2012005214 A1 WO 2012005214A1 JP 2011065282 W JP2011065282 W JP 2011065282W WO 2012005214 A1 WO2012005214 A1 WO 2012005214A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
organic
electron transport
derivatives
Prior art date
Application number
PCT/JP2011/065282
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 大輔
洋平 小野
内田 学
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2012523860A priority Critical patent/JP5807637B2/en
Publication of WO2012005214A1 publication Critical patent/WO2012005214A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-123983 discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done.
  • Non-patent document 1 Non-patent document 1 (Proceedings of the 10 th International Workshop on Inorganic and Organic Electroluminescence), Patent Document 2 (JP 2002-158093 JP ) And Patent Document 3 (International Publication No. 2007/86552 pamphlet).
  • the compound described in Non-Patent Document 1 has a low Tg and is not practical.
  • the compounds described in Patent Documents 2 and 3 can drive an organic EL device at a relatively low voltage, longer life is desired for practical use.
  • the present invention has been made in view of the problems of such conventional techniques. It is an object of the present invention to provide an electron transport material that contributes to extending the lifetime of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
  • the present inventors have found that a compound having pyridyl, bipyridyl, phenylpyridyl, or pyridylphenyl in the naphthyl of 9- (1-naphthyl) anthracene is used for the electron transport layer of the organic EL device, resulting in a long lifetime.
  • the present inventors have found that an organic EL element that can be driven by the method is obtained, and have completed the present invention based on this finding. Said subject is solved by each item shown below.
  • a compound represented by the following formula (1) is one selected from the group of monovalent groups represented by the following formulas (2), (3), (4) and (5), and any hydrogen of these groups has 1 to 6 carbon atoms. Or an alkyl of 3 to 6 carbon atoms may be substituted;
  • Ar 1 is naphthalene-1,4-diyl or naphthalene-1,5-diyl, and any hydrogen in these groups is replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Well;
  • Ar 2 is phenyl or 2-naphthyl, and any hydrogen of these groups may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • a pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the above [13], disposed between the cathode and the light emitting layer.
  • An organic electroluminescent device having an electron transport layer and / or an electron injection layer containing [15] At least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative. The organic electroluminescent element described in the item.
  • At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescent element as described in the above item [14].
  • the compound of the present invention is stable even when a voltage is applied in a thin film state and has a feature of high charge transport capability.
  • the compound of the present invention is suitable as a charge transport material in an organic EL device.
  • the organic EL element which has a long lifetime can be obtained.
  • a high-performance display device such as full-color display can be created.
  • the first invention of the present application is a compound having pyridyl, bipyridyl, phenylpyridyl, or pyridylphenyl in the naphthyl of 9- (1-naphthyl) anthracene represented by the following formula (1).
  • Py is one selected from the group of monovalent groups represented by the following formulas (2), (3), (4) and (5).
  • pyridyl represented by the formula (2) is 2-pyridyl, 3-pyridyl or 4-pyridyl.
  • bipyridyl represented by the formula (3) examples include 2,2′-bipyridin-5-yl, 2,2′-bipyridin-6-yl, 2,2′-bipyridin-4-yl, 2, 3'-bipyridin-5-yl, 2,3'-bipyridin-6-yl, 2,3'-bipyridin-4-yl, 2,4'-bipyridin-5-yl, 2,4'-bipyridine-6 -Yl, 2,4'-bipyridin-4-yl, 3,2'-bipyridin-6-yl, 3,2'-bipyridin-5-yl, 3,3'-bipyridin-6-yl, 3,3 '-Bipyridin-5-yl, 3,4'-bipyridin-6-yl, 3,4'-bipyridin-5-yl, 4,2'-bipyridin-3-yl, 4,3'-bipyridine-3- Or 4,4′-
  • phenylpyridyl represented by the formula (4) include 3-phenylpyridin-2-yl, 4-phenylpyridin-2-yl, 5-phenylpyridin-2-yl, and 6-phenylpyridin-2- Yl, 2-phenylpyridin-3-yl, 4-phenylpyridin-3-yl, 5-phenylpyridin-3-yl, 6-phenylpyridin-3-yl, 2-phenylpyridin-4-yl, and 3- Phenylpyridin-4-yl.
  • 4-phenylpyridin-2-yl, 5-phenylpyridin-2-yl, 6-phenylpyridin-2-yl, 5-phenylpyridin-3-yl, 6-phenylpyridin-3-yl, -Phenylpyridin-4-yl is preferred. Further, 6-phenylpyridin-2-yl, 6-phenylpyridin-3-yl, and 2-phenylpyridin-4-yl are more preferable.
  • pyridylphenyl represented by the formula (5) include 4- (2-pyridyl) phenyl, 4- (3-pyridyl) phenyl, 4- (4-pyridyl) phenyl, and 3- (2-pyridyl). It is phenyl, 3- (3-pyridyl) phenyl, 3- (4-pyridyl) phenyl, 2- (2-pyridyl) phenyl, 2- (3-pyridyl) phenyl, or 2- (4-pyridyl) phenyl.
  • 4- (2-pyridyl) phenyl, 4- (3-pyridyl) phenyl, 4- (4-pyridyl) phenyl, 3- (2-pyridyl) phenyl, 3- (3-pyridyl) phenyl, and 3- (4-pyridyl) is preferred.
  • Any hydrogen in the monovalent group represented by the above formulas (2) to (5) may be replaced with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • alkyl having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, Examples thereof include 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl and 2-ethylbutyl.
  • methyl, ethyl, isopropyl and t-butyl are preferable.
  • the cycloalkyl having 3 to 6 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
  • the number of substituents that may be bonded to the monovalent group is, for example, the maximum number of substituents, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • Ar 1 is naphthalene-1,4-diyl or naphthalene-1,5-diyl. Any hydrogen of these groups may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. As examples of the alkyl having 1 to 6 carbon atoms and the cycloalkyl having 3 to 6 carbon atoms, the examples of the substituent of the monovalent group represented by the above formulas (2) to (5) are applied.
  • the number of substituents that may be bonded to naphthalene-1,4-diyl or naphthalene-1,5-diyl is, for example, the maximum number of substituents, preferably 1 to 3, more preferably 1 to 2 More preferably, it is 1.
  • Ar 2 is phenyl or 2-naphthyl. Any hydrogen of these groups may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Examples of the monovalent group substituents represented by the above formulas (2) to (5) are also applied to the examples of the alkyl having 1 to 6 carbons and the cycloalkyl having 3 to 6 carbons.
  • the number of substituents that may be bonded to phenyl or 2-naphthyl is, for example, the maximum number of substituents, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • the above substituents may be linked at any position, but when linked at any one position, the 4-position in phenyl is 2- In naphthyl, the 6-position is preferred.
  • Specific examples of the compound represented by the formula (1) include the following formulas (1-1) to (1-205), (1-211) to (1-617), and (1-621) to (1-1032). ).
  • More preferable compounds are compounds (1-1) to (1-12), (1-19) to (1-24), (1-31) to (1-37), (1-39), (1- 40), (1-43), (1-48), (1-51), (1-103) to (1-114), (1-121) to (1-126), (1-134) To (1-136), (1-138) to (1-140), formulas (1-142) to (1-144), and (1-1023) to (1-1032).
  • Me, Et, i-Pr, and t-Bu are abbreviations for methyl, ethyl, isopropyl, and tertiary butyl, respectively.
  • the compounds of the present invention can be synthesized using known synthesis methods.
  • the method for synthesizing the compound of the present invention will be described using the compound (1-2) as an example.
  • 9-phenylanthracene is synthesized in Reaction 1. Bromobenzene is reacted with metallic magnesium in THF to give a Grignard reagent, which is reacted with 9-bromoanthracene in the presence of a catalyst to give 9-phenylanthracene.
  • the coupling of the benzene ring and the anthracene ring is not limited to the above-described method, and it can be performed by the Negishi coupling reaction, the Suzuki coupling reaction, or the like, and these conventional methods can be appropriately used depending on the situation. Further, 9-phenylanthracene may be a commercially available product.
  • reaction 2 the 10-position of 9-phenylanthracene is brominated using N-bromosuccinimide.
  • a commonly used brominating agent other than N-bromosuccinimide can be used.
  • 9-bromo-10-phenylanthracene is lithiated using an organolithium reagent, or converted to a Grignard reagent using magnesium or an organomagnesium reagent, such as trimethyl borate, triethyl borate, or triisopropyl borate.
  • 10-phenylanthracen-9-yl) boronic acid ester can be synthesized by reacting with.
  • (10-phenylanthracen-9-yl) boronic acid can be synthesized by hydrolyzing the boronic ester in Reaction 4.
  • ZnCl 2 ⁇ TMEDA in the above reaction formula is a tetramethylethylenediamine complex of zinc chloride.
  • R in RLi or RMgX represents straight-chain or branched alkyl, preferably straight-chain or branched alkyl having 1 to 4 carbon atoms.
  • X is a halogen, and chlorine, bromine and iodine are preferably used.
  • the compound (1-2) of the present invention can be synthesized by coupling the anthraceneboronic acid and naphthalene bromide in the presence of a palladium catalyst in the reaction 7.
  • a compound in which bipyridyl, phenylpyridyl or pyridylphenyl is bonded to naphthyl instead of pyridyl can be synthesized by the following procedure by applying the above reaction.
  • the rings can be coupled to each other as in reactions 8) to c) to synthesize bromobipyridine, phenylbromopyridine or pyridylbromobenzene.
  • a compound containing a nitrogen atom at an arbitrary position can be obtained.
  • reaction 5 By applying reaction 5 from the compound obtained above to synthesize a zinc chloride complex, then again reacting the zinc chloride complex with 1,4-dibromonaphthalene or 1,5-dibromonaphthalene according to reaction 6 , Bromonaphthalene to which bipyridyl, phenylpyridyl or pyridylphenyl is bonded can be obtained. By coupling these bromonaphthalenes with anthraceneboronic acid according to Reaction 7, the target compound can be synthesized.
  • the step of coupling bromobipyridine, phenylbromopyridine or pyridylbromobenzene with 1,4-dibromonaphthalene or 1,5-dibromonaphthalene is not limited to the above Negishi coupling reaction, depending on the types of available raw materials and reagents.
  • the Suzuki coupling reaction used in reactions 3, 4 and 7 can also be used.
  • 9-bromo-10-phenylanthracene is lithiated using an organolithium reagent, or converted to a Grignard reagent using magnesium or an organomagnesium reagent, and bis (pinacolato) diboron or 4 , 4,5,5-Tetramethyl-1,3,2-dioxaborolane, the following (10-phenylanthracen-9-yl) boronic acid ester can be synthesized.
  • the example of the Suzuki coupling reaction shown in Reaction 7 was taken up as a method for coupling the anthracene part and the naphthalene part, which are the final steps of the synthesis, but the Negishi coupling reaction depends on the types of available raw materials and reagents. May be used. Furthermore, the synthesis of the compound of the present invention is not limited to the method in which the reaction of coupling the anthracene part and the naphthalene part is the final step.
  • bipyridyl, phenylpyridyl or pyridylphenyl When synthesizing a compound of the present invention in which bipyridyl, phenylpyridyl or pyridylphenyl is bonded to naphthalene, first an anthracene part and a dibromonaphthalene part are coupled in advance, and then a zinc chloride complex, a boronic acid ester, a boronic acid, etc. It is also possible to synthesize bipyridyl, phenylpyridyl or pyridylphenyl having the following active groups by coupling with naphthalene bromide.
  • ⁇ Reagent used in reaction> Specific examples of the palladium catalyst used in the Suzuki coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris ( Dibenzylideneacetone) dipalladium (0) chloroform complex, or bis (dibenzylideneacetone) palladium (0).
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthy
  • bases used in the Suzuki coupling reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate. , Tripotassium phosphate, or potassium fluoride.
  • solvent used in the Suzuki coupling reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1 1,4-dioxane, methanol, ethanol, cyclopentyl methyl ether or isopropyl alcohol.
  • solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • the palladium catalyst used in the Negishi coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris ( Dibenzylideneacetone) dipalladium (0) chloroform complex, bis (dibenzylideneacetone) palladium (0), bis (tri-t-butylphosphino) palladium (0), or (1,1′-bis (diphenylphosphino) Ferrocene) dichloropalladium (II).
  • solvent used in the Negishi coupling reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl. Examples include methyl ether or 1,4-dioxane. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • the compound of the present invention When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device.
  • the electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer
  • the electron transport layer is a layer for transporting the injected electrons to the light emitting layer.
  • the electron transport layer can also serve as the electron injection layer.
  • the material used for each layer is referred to as an electron injection material and an electron transport material.
  • 2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer.
  • the organic EL element of the present invention has a low driving voltage and high durability during driving.
  • the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode.
  • Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
  • the compound of the present invention Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials.
  • the organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
  • the light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
  • the compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like.
  • Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like.
  • heteroaromatic compounds are oxadiazole derivatives having a dialkylamino group or diarylamino group, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives Etc.
  • organometallic complexes examples include zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like.
  • dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives.
  • the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like.
  • styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
  • electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
  • electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives.
  • a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used in a photoconductive material.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
  • Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coat method, or a cast method.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm.
  • a vapor deposition method as a method of thinning the light emitting material from the viewpoint that a homogeneous film can be easily obtained and pinholes are hardly generated.
  • the vapor deposition conditions differ depending on the type of the light emitting material of the present invention.
  • Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 5 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • the organic EL device of the present invention is preferably supported by a substrate in any of the structures described above.
  • the substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used.
  • the anode material metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
  • Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more.
  • the sheet resistance as the electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 ⁇ m, preferably 10 to 400 nm.
  • Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
  • an organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode is used.
  • a method for creating an EL element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a light emitting layer thin film is formed thereon.
  • the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer.
  • the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode.
  • the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
  • the anode When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied.
  • the alternating current waveform to be applied may be arbitrary.
  • Example 1 and Comparative Example 1 were manufactured, and the driving start voltage (V) in the constant current driving test and the time (hr) for maintaining the luminance of 90% or more of the initial luminance were measured.
  • V driving start voltage
  • hr time for maintaining the luminance of 90% or more of the initial luminance
  • Table 1 below shows the material configuration of each layer in the electroluminescent elements according to the manufactured Example 1 and Comparative Examples 1 and 2.
  • CuPc copper phthalocyanine
  • NPD N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl
  • compound (A) is 9-phenyl-10- [6 -(1,1 ′; 3,1 ′′) terphenyl-5′-yl] naphthalen-2-yl] anthracene
  • compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexa Phenyl-7H-benzo [c] fluorene-5,9-diamine
  • compound (C) is 5,5 ′-(2-phenylanthracene-9,10-diyl) di-2,2′-bipyridine, Have the following chemical structure.
  • a 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing CuPc, a molybdenum vapor deposition boat containing NPD, and a compound (A) are placed therein.
  • a tungsten vapor deposition boat was installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing CuPc was heated and deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5.
  • the evaporation boat containing the compound (1-2) was heated and evaporated to a thickness of 15 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so as to have a film thickness of 1 nm, and then the evaporation boat containing aluminum is heated to form a film.
  • the cathode was formed by vapor deposition at a vapor deposition rate of 0.01 to 10 nm / second so as to have a thickness of 100 nm, and an organic electroluminescence device was obtained.
  • Example 1 An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-2) was changed to the compound (C).
  • a constant current driving test was performed using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.63 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 23 hours.
  • electroluminescent devices according to Examples 2 to 10, Comparative Example 2 and Comparative Example 3 having configurations different from those of the electroluminescent devices according to Example 1 and Comparative Example 1 were prepared.
  • the drive start voltage (V) and the time (hr) for maintaining the luminance of 90% or more of the initial luminance were measured.
  • Table 3 below shows the material configuration of each layer in the electroluminescent devices according to Examples 2 to 10, Comparative Example 2 and Comparative Example 3 thus manufactured.
  • HI represents N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4'-diamine
  • compound (D) is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene
  • compound (E) is 9,10-bis (4- (pyridin-2-yl) naphthalene- 1-yl) anthracene
  • compound (F) is 9,10-bis (4- (pyridin-4-yl) naphthalen-1-yl) anthracene.
  • NPD and compound (B) are the same compounds as in Table 1. The chemical structure is shown below together with lithium 8-quinolinolato (Liq) used for forming the cathode.
  • a 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and compound (D) are placed therein.
  • Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound (1-2), molybdenum vapor deposition boat containing Liq, molybdenum containing silver A vapor deposition boat and a molybdenum vapor deposition boat containing magnesium were installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (D) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm.
  • the deposition rate was adjusted so that the weight ratio of the compound (D) to the compound (B) was approximately 95 to 5.
  • the evaporation boat containing the compound (1-2) was heated and evaporated to a film thickness of 25 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq is heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so that the film thickness becomes 1 nm, and then the evaporation boat containing silver and magnesium are deposited.
  • the boat was heated at the same time, and the deposition rate was adjusted so that the atomic weight ratio of silver to magnesium was about 1: 9.
  • a cathode was formed by vapor deposition at a vapor deposition rate of 0.01 to 10 nm / second so that the film thickness was 100 nm, and an organic electroluminescent device was obtained.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-3).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 5.24 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 110 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-19).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 5.55 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 81 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-20).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 4.62 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 75 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-24).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 6.00 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 98 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-48).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.70 V, and the time for maintaining 90% or more of the initial luminance was 79 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-51).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.90 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 112 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-104).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 3.98 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 118 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-1027).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 3.55 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 82 hours.
  • Example 2 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (E).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.08 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 2 hours.
  • Example 3 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (F).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.87 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 30 hours.
  • an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.

Abstract

The compound represented by formula (1) is useful as an electron transport material for organic EL elements. Use of said electron transport material contributes to extension of the life of organic EL elements. In formula (1), Py is a group selected from a set of monovalent groups represented by Formulas (2), (3), (4) and (5); Ar1 is a naphthalene-1,4-diyl or naphthalene-1,5-diyl group; Ar2 is a phenyl or 2-naphthyl group. Optional hydrogens of the Py, Ar1 and Ar2 can be substituted with C1-6 alkyl groups and/or C3-6 cycloalkyl groups.

Description

電子輸送材料およびこれを用いた有機電界発光素子Electron transport material and organic electroluminescent device using the same
本発明は、ピリジル基を有する新規な電子輸送材料、この電子輸送材料を用いた有機電界発光素子(以下、有機EL素子または単に素子と略記することがある。)等に関する。 The present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
近年、次世代のフルカラーフラットパネルディスプレイとして有機EL素子が注目され、活発な研究がなされている。有機EL素子の実用化を促進するには、素子の駆動電圧の低減、長寿命化が不可欠な要素であり、これらを達成するために新しい電子輸送材料の開発がなされてきた。特に、青色素子の駆動電圧低下、長寿命化は必須である。特許文献1(特開2003-123983号公報)には、フェナントロリン誘導体またはその類似体である2,2’-ビピリジル化合物を電子輸送材料に使用することで有機EL素子を低電圧で駆動させることができると記載されている。しかしながらこの文献の実施例に報告されている素子の特性(駆動電圧、発光効率など)は比較例を基準にした相対値のみであり、実用的な値と判断できる実測値は記載されていない。他に、2,2’-ビピリジル化合物を電子輸送材料に使用した例が、非特許文献1(Proceedings of the 10th International Workshop on Inorganic and Organic Electroluminescence)、特許文献2(特開2002-158093号公報)および特許文献3(国際公開2007/86552パンフレット)に開示されている。非特許文献1に記載されている化合物はTgが低く、実用的ではなかった。特許文献2および3に記載の化合物は比較的低電圧で有機EL素子を駆動させることができるが、実用化に向けてはより長寿命化が望まれている。 In recent years, organic EL elements have attracted attention as next-generation full-color flat panel displays, and active research has been conducted. In order to promote the practical use of organic EL elements, it is indispensable to reduce the drive voltage and extend the life of the elements, and new electron transport materials have been developed to achieve these. In particular, it is essential to lower the driving voltage and extend the life of the blue element. Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-123983) discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done. However, the element characteristics (driving voltage, light emission efficiency, etc.) reported in the examples of this document are only relative values based on comparative examples, and no actual measurement values that can be judged as practical values are described. Alternatively, example of using 2,2'-bipyridyl compound to the electron transport material, non-patent document 1 (Proceedings of the 10 th International Workshop on Inorganic and Organic Electroluminescence), Patent Document 2 (JP 2002-158093 JP ) And Patent Document 3 (International Publication No. 2007/86552 pamphlet). The compound described in Non-Patent Document 1 has a low Tg and is not practical. Although the compounds described in Patent Documents 2 and 3 can drive an organic EL device at a relatively low voltage, longer life is desired for practical use.
特開2003-123983号公報JP 2003-123983 A 特開2002-158093号公報JP 2002-158093 A 国際公開2007/86552パンフレットInternational Publication 2007/86552 Pamphlet
本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明は、有機EL素子の長寿命化等に寄与する電子輸送材料を提供することを課題とする。さらに本発明は、この電子輸送材料を用いた有機EL素子を提供することを課題とする。 The present invention has been made in view of the problems of such conventional techniques. It is an object of the present invention to provide an electron transport material that contributes to extending the lifetime of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
本発明者らは鋭意検討した結果、9-(1-ナフチル)アントラセンのナフチルに、ピリジル、ビピリジル、フェニルピリジル、またはピリジルフェニルを有する化合物を有機EL素子の電子輸送層に用いることにより、長寿命で駆動できる有機EL素子が得られることを見出し、この知見に基づいて本発明を完成した。
上記の課題は以下に示す各項によって解決される。
As a result of intensive studies, the present inventors have found that a compound having pyridyl, bipyridyl, phenylpyridyl, or pyridylphenyl in the naphthyl of 9- (1-naphthyl) anthracene is used for the electron transport layer of the organic EL device, resulting in a long lifetime. The present inventors have found that an organic EL element that can be driven by the method is obtained, and have completed the present invention based on this finding.
Said subject is solved by each item shown below.
[1] 下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000006
式(1)において、
Pyは下記式(2)、(3)、(4)および(5)で表される1価の基の群から選ばれる1つであり、これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;
Figure JPOXMLDOC01-appb-C000007
Arはナフタレン-1,4-ジイルまたはナフタレン-1,5-ジイルであり、これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;
Arはフェニルまたは2-ナフチルであり、これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
[1] A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
In equation (1),
Py is one selected from the group of monovalent groups represented by the following formulas (2), (3), (4) and (5), and any hydrogen of these groups has 1 to 6 carbon atoms. Or an alkyl of 3 to 6 carbon atoms may be substituted;
Figure JPOXMLDOC01-appb-C000007
Ar 1 is naphthalene-1,4-diyl or naphthalene-1,5-diyl, and any hydrogen in these groups is replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Well;
Ar 2 is phenyl or 2-naphthyl, and any hydrogen of these groups may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
[2] Pyが式(2)、(3)および(4)で表される1価の基の群から選ばれる1つである、前記[1]項に記載の化合物。 [2] The compound according to item [1], wherein Py is one selected from the group of monovalent groups represented by formulas (2), (3) and (4).
[3] Pyが式(2)で表される1価の基の群から選ばれる1つである、前記[1]項に記載の化合物。
[4] Pyが式(3)で表される1価の基の群から選ばれる1つである、前記[1]項に記載の化合物。
[5] Pyが式(4)で表される1価の基の群から選ばれる1つである、前記[1]項に記載の化合物。
[6] Pyが式(5)で表される1価の基の群から選ばれる1つである、前記[1]項に記載の化合物。
[3] The compound according to item [1], wherein Py is one selected from the group of monovalent groups represented by formula (2).
[4] The compound according to item [1], wherein Py is one selected from the group of monovalent groups represented by formula (3).
[5] The compound according to item [1], wherein Py is one selected from the group of monovalent groups represented by formula (4).
[6] The compound according to item [1], wherein Py is one selected from the group of monovalent groups represented by formula (5).
[7] Pyが2-ピリジルである、前記[1]項に記載の化合物。
[8] Pyが3-ピリジルである、前記[1]項に記載の化合物。
[9] Pyが4-ピリジルである、前記[1]項に記載の化合物。
[7] The compound according to item [1], wherein Py is 2-pyridyl.
[8] The compound according to item [1], wherein Py is 3-pyridyl.
[9] The compound according to [1] above, wherein Py is 4-pyridyl.
[10] Pyが下記の1価の基の群から選ばれる1つである、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000008
[10] The compound according to [1], wherein Py is one selected from the group of monovalent groups below.
Figure JPOXMLDOC01-appb-C000008
[11] Pyが下記の1価の基の群から選ばれる1つである、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000009
[11] The compound according to item [1], wherein Py is one selected from the group of monovalent groups below.
Figure JPOXMLDOC01-appb-C000009
[12] 下記式(1-2)、(1-3)、(1-19)、(1-20)、(1-24)、(1-48)、(1-51)、(1-104)、または(1-1027)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000010
[12] The following formulas (1-2), (1-3), (1-19), (1-20), (1-24), (1-48), (1-51), (1- 104) or (1-1027), the compound according to the above item [1].
Figure JPOXMLDOC01-appb-C000010
[13] 前記[1]~[12]のいずれか1項に記載の化合物を含有する電子輸送材料。 [13] An electron transport material containing the compound according to any one of [1] to [12].
[14] 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、前記[13]項に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。
[15] 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、前記[14]項に記載する有機電界発光素子。
[16] 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、前記[14]項に記載の有機電界発光素子。
[14] A pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the above [13], disposed between the cathode and the light emitting layer. An organic electroluminescent device having an electron transport layer and / or an electron injection layer containing
[15] At least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative. The organic electroluminescent element described in the item.
[16] At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescent element as described in the above item [14].
本発明の化合物は薄膜状態で電圧を印加しても安定であり、また、電荷の輸送能力が高いという特徴を持つ。本発明の化合物は有機EL素子における電荷輸送材料として適している。本発明の化合物を有機EL素子の電子輸送層に用いることで、長い寿命を有する有機EL素子を得ることができる。本発明の有機EL素子を用いることにより、フルカラー表示等の高性能のディスプレイ装置を作成できる。 The compound of the present invention is stable even when a voltage is applied in a thin film state and has a feature of high charge transport capability. The compound of the present invention is suitable as a charge transport material in an organic EL device. By using the compound of this invention for the electron carrying layer of an organic EL element, the organic EL element which has a long lifetime can be obtained. By using the organic EL element of the present invention, a high-performance display device such as full-color display can be created.
以下、本発明をさらに詳細に説明する。なお、本明細書においては、例えば「式(1-1)で表される化合物」のことを「化合物(1-1)」と称することがある。「式(1-2)で表される化合物」のことを「化合物(1-2)」と称することがある。その他の式記号、式番号についても同様に扱われる。 Hereinafter, the present invention will be described in more detail. In the present specification, for example, the “compound represented by formula (1-1)” may be referred to as “compound (1-1)”. The “compound represented by formula (1-2)” may be referred to as “compound (1-2)”. Other formula symbols and formula numbers are handled in the same manner.
<化合物の説明>
本願の第1の発明は下記の式(1)で表される、9-(1-ナフチル)アントラセンのナフチルに、ピリジル、ビピリジル、フェニルピリジル、またはピリジルフェニルを有する化合物である。
Figure JPOXMLDOC01-appb-C000011
式(1)中、Pyは下記式(2)、(3)、(4)および(5)で表される1価の基の群から選ばれる1つである。
Figure JPOXMLDOC01-appb-C000012
<Description of compound>
The first invention of the present application is a compound having pyridyl, bipyridyl, phenylpyridyl, or pyridylphenyl in the naphthyl of 9- (1-naphthyl) anthracene represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
In formula (1), Py is one selected from the group of monovalent groups represented by the following formulas (2), (3), (4) and (5).
Figure JPOXMLDOC01-appb-C000012
式(2)で表されるピリジルは具体的には、2-ピリジル、3-ピリジルまたは4-ピリジルである。 Specifically, pyridyl represented by the formula (2) is 2-pyridyl, 3-pyridyl or 4-pyridyl.
式(3)で表されるビピリジルは具体的には、2,2’-ビピリジン-5-イル、2,2’-ビピリジン-6-イル、2,2’-ビピリジン-4-イル、2,3’-ビピリジン-5-イル、2,3’-ビピリジン-6-イル、2,3’-ビピリジン-4-イル、2,4’-ビピリジン-5-イル、2,4’-ビピリジン-6-イル、2,4’-ビピリジン-4-イル、3,2’-ビピリジン-6-イル、3,2’-ビピリジン-5-イル、3,3’-ビピリジン-6-イル、3,3’-ビピリジン-5-イル、3,4’-ビピリジン-6-イル、3,4’-ビピリジン-5-イル、4,2’-ビピリジン-3-イル、4,3’-ビピリジン-3-イル、または4,4’-ビピリジン-3-イルである。この中では、2,2’-ビピリジン-5-イル、2,2’-ビピリジン-6-イル、2,3’-ビピリジン-5-イル、2,3’-ビピリジン-6-イル、2,4’-ビピリジン-5-イル、2,4’-ビピリジン-6-イル、3,2’-ビピリジン-6-イル、3,2’-ビピリジン-5-イル、3,3’-ビピリジン-6-イル、3,3’-ビピリジン-5-イル、3,4’-ビピリジン-6-イル、3,4’-ビピリジン-5-イル、4,2’-ビピリジン-3-イル、4,3’-ビピリジン-3-イル、および4,4’-ビピリジン-3-イルが好ましい。そして、2,2’-ビピリジン-5-イル、2,2’-ビピリジン-6-イル、2,3’-ビピリジン-5-イル、2,3’-ビピリジン-6-イル、2,4’-ビピリジン-5-イル、および2,4’-ビピリジン-6-イルがさらに好ましい。 Specific examples of bipyridyl represented by the formula (3) include 2,2′-bipyridin-5-yl, 2,2′-bipyridin-6-yl, 2,2′-bipyridin-4-yl, 2, 3'-bipyridin-5-yl, 2,3'-bipyridin-6-yl, 2,3'-bipyridin-4-yl, 2,4'-bipyridin-5-yl, 2,4'-bipyridine-6 -Yl, 2,4'-bipyridin-4-yl, 3,2'-bipyridin-6-yl, 3,2'-bipyridin-5-yl, 3,3'-bipyridin-6-yl, 3,3 '-Bipyridin-5-yl, 3,4'-bipyridin-6-yl, 3,4'-bipyridin-5-yl, 4,2'-bipyridin-3-yl, 4,3'-bipyridine-3- Or 4,4′-bipyridin-3-yl. Among them, 2,2′-bipyridin-5-yl, 2,2′-bipyridin-6-yl, 2,3′-bipyridin-5-yl, 2,3′-bipyridin-6-yl, 2, 4'-bipyridin-5-yl, 2,4'-bipyridin-6-yl, 3,2'-bipyridin-6-yl, 3,2'-bipyridin-5-yl, 3,3'-bipyridine-6 -Yl, 3,3'-bipyridin-5-yl, 3,4'-bipyridin-6-yl, 3,4'-bipyridin-5-yl, 4,2'-bipyridin-3-yl, 4,3 '-Bipyridin-3-yl and 4,4'-bipyridin-3-yl are preferred. 2,2′-bipyridin-5-yl, 2,2′-bipyridin-6-yl, 2,3′-bipyridin-5-yl, 2,3′-bipyridin-6-yl, 2,4 ′ More preferred are -bipyridin-5-yl and 2,4'-bipyridin-6-yl.
式(4)で表されるフェニルピリジルは具体的には、3-フェニルピリジン-2-イル、4-フェニルピリジン-2-イル、5-フェニルピリジン-2-イル、6-フェニルピリジン-2-イル、2-フェニルピリジン-3-イル、4-フェニルピリジン-3-イル、5-フェニルピリジン-3-イル、6-フェニルピリジン-3-イル、2-フェニルピリジン-4-イル、および3-フェニルピリジン-4-イルである。この中では、4-フェニルピリジン-2-イル、5-フェニルピリジン-2-イル、6-フェニルピリジン-2-イル、5-フェニルピリジン-3-イル、6-フェニルピリジン-3-イル、2-フェニルピリジン-4-イルが好ましい。そして、6-フェニルピリジン-2-イル、6-フェニルピリジン-3-イル、2-フェニルピリジン-4-イルがさらに好ましい。 Specific examples of the phenylpyridyl represented by the formula (4) include 3-phenylpyridin-2-yl, 4-phenylpyridin-2-yl, 5-phenylpyridin-2-yl, and 6-phenylpyridin-2- Yl, 2-phenylpyridin-3-yl, 4-phenylpyridin-3-yl, 5-phenylpyridin-3-yl, 6-phenylpyridin-3-yl, 2-phenylpyridin-4-yl, and 3- Phenylpyridin-4-yl. Among these, 4-phenylpyridin-2-yl, 5-phenylpyridin-2-yl, 6-phenylpyridin-2-yl, 5-phenylpyridin-3-yl, 6-phenylpyridin-3-yl, -Phenylpyridin-4-yl is preferred. Further, 6-phenylpyridin-2-yl, 6-phenylpyridin-3-yl, and 2-phenylpyridin-4-yl are more preferable.
式(5)で表されるピリジルフェニルは具体的には、4-(2-ピリジル)フェニル、4-(3-ピリジル)フェニル、4-(4-ピリジル)フェニル、3-(2-ピリジル)フェニル、3-(3-ピリジル)フェニル、3-(4-ピリジル)フェニル、2-(2-ピリジル)フェニル、2-(3-ピリジル)フェニル、または2-(4-ピリジル)フェニルである。この中では、4-(2-ピリジル)フェニル、4-(3-ピリジル)フェニル、4-(4-ピリジル)フェニル、3-(2-ピリジル)フェニル、3-(3-ピリジル)フェニル、および3-(4-ピリジル)が好ましい。 Specific examples of the pyridylphenyl represented by the formula (5) include 4- (2-pyridyl) phenyl, 4- (3-pyridyl) phenyl, 4- (4-pyridyl) phenyl, and 3- (2-pyridyl). It is phenyl, 3- (3-pyridyl) phenyl, 3- (4-pyridyl) phenyl, 2- (2-pyridyl) phenyl, 2- (3-pyridyl) phenyl, or 2- (4-pyridyl) phenyl. Among these, 4- (2-pyridyl) phenyl, 4- (3-pyridyl) phenyl, 4- (4-pyridyl) phenyl, 3- (2-pyridyl) phenyl, 3- (3-pyridyl) phenyl, and 3- (4-pyridyl) is preferred.
上記の式(2)~(5)で表される1価の基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。炭素数1~6のアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチルまたは2-エチルブチルなどがあげられるが、これらの中でも、メチル、エチル、イソプロピルまたはt-ブチルが好ましい。炭素数3~6のシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。上記1価の基に結合してよい置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個である。 Any hydrogen in the monovalent group represented by the above formulas (2) to (5) may be replaced with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Examples of the alkyl having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, Examples thereof include 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl and 2-ethylbutyl. Among these, methyl, ethyl, isopropyl and t-butyl are preferable. Examples of the cycloalkyl having 3 to 6 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl. The number of substituents that may be bonded to the monovalent group is, for example, the maximum number of substituents, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
Arはナフタレン-1,4-ジイルまたはナフタレン-1,5-ジイルである。これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。炭素数1~6のアルキルおよび炭素数3~6のシクロアルキルの例は、上記の式(2)~(5)で表される1価の基の置換基の例が適用される。ナフタレン-1,4-ジイルまたはナフタレン-1,5-ジイルに結合してよい置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個である。 Ar 1 is naphthalene-1,4-diyl or naphthalene-1,5-diyl. Any hydrogen of these groups may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. As examples of the alkyl having 1 to 6 carbon atoms and the cycloalkyl having 3 to 6 carbon atoms, the examples of the substituent of the monovalent group represented by the above formulas (2) to (5) are applied. The number of substituents that may be bonded to naphthalene-1,4-diyl or naphthalene-1,5-diyl is, for example, the maximum number of substituents, preferably 1 to 3, more preferably 1 to 2 More preferably, it is 1.
Arはフェニルまたは2-ナフチルである。これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。炭素数1~6のアルキルおよび炭素数3~6のシクロアルキルの例は、同じく上記の式(2)~(5)で表される1価の基の置換基の例が適用される。フェニルまたは2-ナフチルに結合してよい置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個である。Arがフェニルのときでも2-ナフチルのときでも、上述の置換基が連結するのは任意の位置でよいが、どこか1箇所に連結する場合には、フェニルにおいては4位が、2-ナフチルにおいては6位が好ましい。 Ar 2 is phenyl or 2-naphthyl. Any hydrogen of these groups may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Examples of the monovalent group substituents represented by the above formulas (2) to (5) are also applied to the examples of the alkyl having 1 to 6 carbons and the cycloalkyl having 3 to 6 carbons. The number of substituents that may be bonded to phenyl or 2-naphthyl is, for example, the maximum number of substituents, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1. Whether Ar 2 is phenyl or 2-naphthyl, the above substituents may be linked at any position, but when linked at any one position, the 4-position in phenyl is 2- In naphthyl, the 6-position is preferred.
<化合物の具体例>
本発明の化合物の具体例は以下に列記する式によって示されるが、本発明はこれらの具体的な構造の開示によって限定されることはない。
<Specific examples of compounds>
Specific examples of the compounds of the present invention are shown by the formulas listed below, but the present invention is not limited by the disclosure of these specific structures.
式(1)で表される化合物の具体例は下記の式(1-1)~(1-205)、(1-211)~(1-617)および(1-621)~(1-1032)で示される。これらの中で好ましい化合物は化合物(1-1)~(1-12)、(1-19)~(1-24)、(1-31)~(1-37)、(1-39)、(1-40)、(1-43)、(1-46)~(1-51)、(1-103)~(1-114)、(1-121)~(1-126)、(1-134)~(1-136)、(1-138)~(1-140)、(1-142)~(1-144)、(1-147)、(1-149)、(1-150)、(1-152)~(1-154)、および(1-1023)~(1-1032)である。より好ましい化合物は化合物(1-1)~(1-12)、(1-19)~(1-24)、(1-31)~(1-37)、(1-39)、(1-40)、(1-43)、(1-48)、(1-51)、(1-103)~(1-114)、(1-121)~(1-126)、(1-134)~(1-136)、(1-138)~(1-140)、式(1-142)~(1-144)、および(1-1023)~(1-1032)である。式中のMe、Et、i-Pr、およびt-Buは、それぞれメチル、エチル、イソプロピル、およびターシャリーブチルの略である。 Specific examples of the compound represented by the formula (1) include the following formulas (1-1) to (1-205), (1-211) to (1-617), and (1-621) to (1-1032). ). Among these, preferred compounds (1-1) to (1-12), (1-19) to (1-24), (1-31) to (1-37), (1-39), (1-40), (1-43), (1-46) to (1-51), (1-103) to (1-114), (1-121) to (1-126), (1 -134) to (1-136), (1-138) to (1-140), (1-142) to (1-144), (1-147), (1-149), (1-150) ), (1-152) to (1-154), and (1-1023) to (1-1032). More preferable compounds are compounds (1-1) to (1-12), (1-19) to (1-24), (1-31) to (1-37), (1-39), (1- 40), (1-43), (1-48), (1-51), (1-103) to (1-114), (1-121) to (1-126), (1-134) To (1-136), (1-138) to (1-140), formulas (1-142) to (1-144), and (1-1023) to (1-1032). In the formula, Me, Et, i-Pr, and t-Bu are abbreviations for methyl, ethyl, isopropyl, and tertiary butyl, respectively.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
<化合物の合成法>
本発明の化合物は既知の合成法を利用して合成することができる。化合物(1-2)を例に本発明の化合物の合成法を説明する。
<Method of synthesizing compounds>
The compounds of the present invention can be synthesized using known synthesis methods. The method for synthesizing the compound of the present invention will be described using the compound (1-2) as an example.
Figure JPOXMLDOC01-appb-C000113
先ず、反応1で9-フェニルアントラセンを合成する。ブロモベンゼンをTHF中で金属マグネシウムと反応させグリニャール試薬とし、これに触媒の存在下9-ブロモアントラセンを反応させて9-フェニルアントラセンとする。ベンゼン環とアントラセン環をカップリングするには上記の方法に限らず、根岸カップリング反応、鈴木カップリング反応などによっても可能であり、状況に応じてこれらの常法が適宜使用できる。また、9-フェニルアントラセンは市販品を用いることもできる。
Figure JPOXMLDOC01-appb-C000113
First, 9-phenylanthracene is synthesized in Reaction 1. Bromobenzene is reacted with metallic magnesium in THF to give a Grignard reagent, which is reacted with 9-bromoanthracene in the presence of a catalyst to give 9-phenylanthracene. The coupling of the benzene ring and the anthracene ring is not limited to the above-described method, and it can be performed by the Negishi coupling reaction, the Suzuki coupling reaction, or the like, and these conventional methods can be appropriately used depending on the situation. Further, 9-phenylanthracene may be a commercially available product.
Figure JPOXMLDOC01-appb-C000114
反応2ではN-ブロモスクシンイミドを用いて9-フェニルアントラセンの10位を臭素化する。ここでもN-ブロモスクシンイミド以外の常用される臭素化剤を使用することができる。
Figure JPOXMLDOC01-appb-C000114
In reaction 2, the 10-position of 9-phenylanthracene is brominated using N-bromosuccinimide. Here too, a commonly used brominating agent other than N-bromosuccinimide can be used.
Figure JPOXMLDOC01-appb-C000115

Figure JPOXMLDOC01-appb-C000116
反応3では、9-ブロモ-10-フェニルアントラセンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ホウ酸トリメチル、ホウ酸トリエチルまたはホウ酸トリイソプロピルなどと反応させることにより、(10-フェニルアントラセン-9-イル)ボロン酸エステルを合成することができる。さらに、反応4で該ボロン酸エステルを加水分解することにより、(10-フェニルアントラセン-9-イル)ボロン酸を合成することができる。
Figure JPOXMLDOC01-appb-C000115

Figure JPOXMLDOC01-appb-C000116
In Reaction 3, 9-bromo-10-phenylanthracene is lithiated using an organolithium reagent, or converted to a Grignard reagent using magnesium or an organomagnesium reagent, such as trimethyl borate, triethyl borate, or triisopropyl borate. (10-phenylanthracen-9-yl) boronic acid ester can be synthesized by reacting with. Furthermore, (10-phenylanthracen-9-yl) boronic acid can be synthesized by hydrolyzing the boronic ester in Reaction 4.
Figure JPOXMLDOC01-appb-C000117
一方、反応5で3-ブロモピリジンから塩化亜鉛錯体を合成し、次に下記反応6で該ピリジンの塩化亜鉛錯体と1,4-ジブロモナフタレンとを反応させることにより、3-(4-ブロモナフタレン-1-イル)ピリジンを合成することができる。なお、上記反応式中の「ZnCl・TMEDA」は塩化亜鉛のテトラメチルエチレンジアミン錯体である。また、RLiまたはRMgXにおけるRは直鎖または分岐のアルキルを表すが、好ましくは炭素数1~4の直鎖または炭素数3~4の分岐アルキルである。Xはハロゲンであり、塩素、臭素、ヨウ素が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000117
On the other hand, by synthesizing a zinc chloride complex from 3-bromopyridine in reaction 5, and then reacting the zinc chloride complex of pyridine with 1,4-dibromonaphthalene in the following reaction 6, 3- (4-bromonaphthalene) -1-yl) pyridine can be synthesized. “ZnCl 2 · TMEDA” in the above reaction formula is a tetramethylethylenediamine complex of zinc chloride. R in RLi or RMgX represents straight-chain or branched alkyl, preferably straight-chain or branched alkyl having 1 to 4 carbon atoms. X is a halogen, and chlorine, bromine and iodine are preferably used.
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
反応7で先のアントラセンボロン酸とナフタレンのブロミドをパラジウム触媒の存在下カップリングすることにより、本発明の化合物(1-2)を合成することができる。
Figure JPOXMLDOC01-appb-C000119
The compound (1-2) of the present invention can be synthesized by coupling the anthraceneboronic acid and naphthalene bromide in the presence of a palladium catalyst in the reaction 7.
上記の反応において用いる材料を適宜変更することによって、本発明の他の化合物を合成することができる。例えば、反応1でブロモベンゼンの代わりに4-ブロモトルエンのようなアルキル置換したブロモベンゼンを用いることによって、アルキル置換したフェニルを有する化合物を合成することができる。 Other compounds of the present invention can be synthesized by appropriately changing the materials used in the above reaction. For example, by using an alkyl-substituted bromobenzene such as 4-bromotoluene instead of bromobenzene in reaction 1, a compound having an alkyl-substituted phenyl can be synthesized.
反応5で用いた3-ブロモピリジンの代わりに2-ブロモピリジンまたは4-ブロモピリジンを用いることによって、ナフチルに2-ピリジルまたは4-ピリジルが置換した化合物を合成することができる。また、ブロモピリジンの代わりにヨードピリジンを用いることもできる。反応6で用いた1,4-ジブロモナフタレンの代わりに1,5-ジブロモナフタレンを用いることで、ナフチルの5位にピリジルが結合した化合物を合成することができる。 By using 2-bromopyridine or 4-bromopyridine in place of 3-bromopyridine used in Reaction 5, a compound in which 2-pyridyl or 4-pyridyl is substituted for naphthyl can be synthesized. Also, iodopyridine can be used instead of bromopyridine. By using 1,5-dibromonaphthalene instead of 1,4-dibromonaphthalene used in Reaction 6, a compound in which pyridyl is bonded to the 5-position of naphthyl can be synthesized.
ナフチルにピリジルの代わりにビピリジル、フェニルピリジルまたはピリジルフェニルが結合した化合物は、上記の反応を応用して次の手順で合成することができる。
Figure JPOXMLDOC01-appb-C000120
先の反応6を応用して反応8のa)~c)のように環同士をカップリングしてブロモビピリジン、フェニルブロモピリジンまたはピリジルブロモベンゼンを合成することができる。これらの反応で使用する原料を適宜選択することによって、任意の位置に窒素原子が入った化合物を得ることができる。上記で得られた化合物から反応5を応用して塩化亜鉛錯体を合成し、次いで、再び反応6に準じて塩化亜鉛錯体と1,4-ジブロモナフタレンまたは1,5-ジブロモナフタレンを反応させることにより、ビピリジル、フェニルピリジルまたはピリジルフェニルが結合したブロモナフタレンを得ることができる。これらのブロモナフタレンを反応7に準じてアントラセンボロン酸とカップリングすることによって、目的の化合物を合成することができる。
A compound in which bipyridyl, phenylpyridyl or pyridylphenyl is bonded to naphthyl instead of pyridyl can be synthesized by the following procedure by applying the above reaction.
Figure JPOXMLDOC01-appb-C000120
By applying the previous reaction 6, the rings can be coupled to each other as in reactions 8) to c) to synthesize bromobipyridine, phenylbromopyridine or pyridylbromobenzene. By appropriately selecting the raw materials used in these reactions, a compound containing a nitrogen atom at an arbitrary position can be obtained. By applying reaction 5 from the compound obtained above to synthesize a zinc chloride complex, then again reacting the zinc chloride complex with 1,4-dibromonaphthalene or 1,5-dibromonaphthalene according to reaction 6 , Bromonaphthalene to which bipyridyl, phenylpyridyl or pyridylphenyl is bonded can be obtained. By coupling these bromonaphthalenes with anthraceneboronic acid according to Reaction 7, the target compound can be synthesized.
ブロモビピリジン、フェニルブロモピリジンまたはピリジルブロモベンゼンを1,4-ジブロモナフタレンまたは1,5-ジブロモナフタレンとカップリングする工程では、上記の根岸カップリング反応に限らず、入手できる原料、試薬の種類に応じて、反応3、4および7で用いた鈴木カップリング反応を用いることもできる。 The step of coupling bromobipyridine, phenylbromopyridine or pyridylbromobenzene with 1,4-dibromonaphthalene or 1,5-dibromonaphthalene is not limited to the above Negishi coupling reaction, depending on the types of available raw materials and reagents. The Suzuki coupling reaction used in reactions 3, 4 and 7 can also be used.
反応3~4では9-フェニルアントラセンの10位をボロン酸にしてカップリング反応に供したが、反応3の生成物であるボロン酸エステルをそのままカップリング反応に用いてもよい。また、下記の反応9のように、9-ブロモ-10-フェニルアントラセンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランと反応させることにより、下記のような(10-フェニルアントラセン-9-イル)ボロン酸エステルを合成することができる。
Figure JPOXMLDOC01-appb-C000121
In Reactions 3 to 4, the 10-position of 9-phenylanthracene was converted to a boronic acid and subjected to the coupling reaction. However, the boronic acid ester which is the product of Reaction 3 may be used as it is in the coupling reaction. Further, as shown in Reaction 9 below, 9-bromo-10-phenylanthracene is lithiated using an organolithium reagent, or converted to a Grignard reagent using magnesium or an organomagnesium reagent, and bis (pinacolato) diboron or 4 , 4,5,5-Tetramethyl-1,3,2-dioxaborolane, the following (10-phenylanthracen-9-yl) boronic acid ester can be synthesized.
Figure JPOXMLDOC01-appb-C000121
また、反応10に示すように、9-ブロモ-10-フェニルアントラセンとビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランとを、パラジウム触媒と塩基を用いてカップリング反応させることによっても、同様の(10-フェニルアントラセン-9-イル)ボロン酸エステルを合成することができる。
Figure JPOXMLDOC01-appb-C000122
このようにして得られた(10-フェニルアントラセン-9-イル)ボロン酸エステルも反応7のカップリング反応に好適に用いることができる。
Further, as shown in Reaction 10, 9-bromo-10-phenylanthracene and bis (pinacolato) diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, a palladium catalyst and a base are used. The same (10-phenylanthracen-9-yl) boronic acid ester can be synthesized also by a coupling reaction.
Figure JPOXMLDOC01-appb-C000122
The (10-phenylanthracen-9-yl) boronic acid ester thus obtained can also be suitably used for the coupling reaction of Reaction 7.
合成の最終工程であるアントラセンのパートとナフタレンのパートをカップリングする方法として、反応7に示した鈴木カップリング反応の例を取り上げたが、入手できる原料、試薬の種類に応じて根岸カップリング反応を用いてもよい。さらには、本発明の化合物の合成は、アントラセンのパートとナフタレンのパートをカップリングする反応を最終工程にする方法に限られることはない。ビピリジル、フェニルピリジルまたはピリジルフェニルがナフタレンに結合した本発明の化合物を合成する場合、先ずアントラセンのパートとジブロモナフタレンのパートを前もってカップリングしておいて、塩化亜鉛錯体、ボロン酸エステルまたはボロン酸などの活性基を有するビピリジル、フェニルピリジルまたはピリジルフェニルを、ナフタレンの臭化物とカップリングさせて合成することもできる。 The example of the Suzuki coupling reaction shown in Reaction 7 was taken up as a method for coupling the anthracene part and the naphthalene part, which are the final steps of the synthesis, but the Negishi coupling reaction depends on the types of available raw materials and reagents. May be used. Furthermore, the synthesis of the compound of the present invention is not limited to the method in which the reaction of coupling the anthracene part and the naphthalene part is the final step. When synthesizing a compound of the present invention in which bipyridyl, phenylpyridyl or pyridylphenyl is bonded to naphthalene, first an anthracene part and a dibromonaphthalene part are coupled in advance, and then a zinc chloride complex, a boronic acid ester, a boronic acid, etc. It is also possible to synthesize bipyridyl, phenylpyridyl or pyridylphenyl having the following active groups by coupling with naphthalene bromide.
<反応で用いる試薬>
鈴木カップリング反応で用いられるパラジウム触媒の具体例としては、Pd(PPh、PdCl(PPh、Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、またはビス(ジベンジリデンアセトン)パラジウム(0)があげられる。
<Reagent used in reaction>
Specific examples of the palladium catalyst used in the Suzuki coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris ( Dibenzylideneacetone) dipalladium (0) chloroform complex, or bis (dibenzylideneacetone) palladium (0).
また、反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例としては、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、または2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルがあげられる。 In order to accelerate the reaction, a phosphine compound may be added to these palladium compounds in some cases. Specific examples of the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthyl, or 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl.
鈴木カップリング反応で用いられる塩基の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、リン酸三カリウム、またはフッ化カリウムがあげられる。 Specific examples of bases used in the Suzuki coupling reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate. , Tripotassium phosphate, or potassium fluoride.
また、鈴木カップリング反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、シクロペンチルメチルエーテルまたはイソプロピルアルコールがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Specific examples of the solvent used in the Suzuki coupling reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1 1,4-dioxane, methanol, ethanol, cyclopentyl methyl ether or isopropyl alcohol. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
根岸カップリング反応で用いられるパラジウム触媒の具体例としては、Pd(PPh、PdCl(PPh、Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリt-ブチルホスフィノ)パラジウム(0)、または(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)があげられる。 Specific examples of the palladium catalyst used in the Negishi coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris ( Dibenzylideneacetone) dipalladium (0) chloroform complex, bis (dibenzylideneacetone) palladium (0), bis (tri-t-butylphosphino) palladium (0), or (1,1′-bis (diphenylphosphino) Ferrocene) dichloropalladium (II).
また、根岸カップリング反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテルまたは1,4-ジオキサンがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Specific examples of the solvent used in the Negishi coupling reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl. Examples include methyl ether or 1,4-dioxane. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
本発明の化合物を、有機EL素子における、電子注入層または電子輸送層に用いた場合、電界印加時において安定である。これらは、本発明の化合物が、電界発光型素子の電子注入材料、または電子輸送材料として優れていることを表す。ここで言う電子注入層とは陰極から有機層へ電子を受け取る層であり、電子輸送層とは注入された電子を発光層へ輸送するための層である。また、電子輸送層が電子注入層を兼ねることも可能である。それぞれの層に用いる材料を、電子注入材料および電子輸送材料という。 When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device. The electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer, and the electron transport layer is a layer for transporting the injected electrons to the light emitting layer. The electron transport layer can also serve as the electron injection layer. The material used for each layer is referred to as an electron injection material and an electron transport material.
<有機EL素子の説明>
本願の第2の発明は、電子注入層、または電子輸送層に、本発明の式(1)で表される化合物を含有する有機EL素子である。本発明の有機EL素子は、駆動電圧が低く、駆動時の耐久性が高い。
<Description of organic EL element>
2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer. The organic EL element of the present invention has a low driving voltage and high durability during driving.
本発明の有機EL素子の構造は各種の態様があるが、基本的には陽極と陰極との間に少なくとも正孔輸送層、発光層、電子輸送層を挟持した多層構造である。素子の具体的な構成の例は、(1)陽極/正孔輸送層/発光層/電子輸送層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極、(3)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、等である。 Although the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode. Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
本発明の化合物は、高い電子注入性および電子輸送性を持っているので、単体又は他の材料と併用して電子注入層、または電子輸送層に使用できる。本発明の有機EL素子は、本発明の電子輸送材料に他の材料を用いた正孔注入層、正孔輸送層、発光層、などを組み合わせることで、青色、緑色、赤色や白色の発光を得ることもできる。 Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials. The organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
本発明の有機EL素子に使用できる発光材料または発光性ドーパントは、高分子学会編、高分子機能材料シリーズ“光機能材料”、共同出版(1991)、P236に記載されているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の蛍光分析試薬等の発光材料、城戸淳二監修、“有機EL材料とディスプレイ”シーエムシー社出版(2001)P155~156に記載されているようなドーパント材料、P170~172に記載されているような3重項材料の発光材料等である。 The light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
発光材料または発光性ドーパントとして使用できる化合物は、多環芳香族化合物、ヘテロ芳香族化合物、有機金属錯体、色素、高分子系発光材料、スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ボラン誘導体、オキサジン誘導体、スピロ環を有する化合物、オキサジアゾール誘導体、フルオレン誘導体等である。多環芳香族化合物の例は、アントラセン誘導体、フェナントレン誘導体、ナフタセン誘導体、ピレン誘導体、クリセン誘導体、ペリレン誘導体、コロネン誘導体、ルブレン誘導体等である。ヘテロ芳香族化合物の例は、ジアルキルアミノ基またはジアリールアミノ基を有するオキサジアゾール誘導体、ピラゾロキノリン誘導体、ピリジン誘導体、ピラン誘導体、フェナントロリン誘導体、シロール誘導体、トリフェニルアミノ基を有するチオフェン誘導体、キナクリドン誘導体等である。有機金属錯体の例は、亜鉛、アルミニウム、ベリリウム、ユーロピウム、テルビウム、ジスプロシウム、イリジウム、白金、オスミウム、金、等と、キノリノール誘導体、ベンゾキサゾ-ル誘導体、ベンゾチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、ピロール誘導体、ピリジン誘導体、フェナントロリン誘導体等との錯体である。色素の例は、キサンテン誘導体、ポリメチン誘導体、ポルフィリン誘導体、クマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、オキソベンズアントラセン誘導体、カルボスチリル誘導体、ペリレン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体等の色素が挙げられる。高分子系発光材料の例は、ポリパラフェニルビニレン誘導体、ポリチオフェン誘導体、ポリビニルカルバゾ-ル誘導体、ポリシラン誘導体、ポリフルオレン誘導体、ポリパラフェニレン誘導体等である。スチリル誘導体の例は、アミン含有スチリル誘導体、スチリルアリーレン誘導体等である。 The compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like. Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like. Examples of heteroaromatic compounds are oxadiazole derivatives having a dialkylamino group or diarylamino group, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives Etc. Examples of organometallic complexes are zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like. Examples of dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives. Examples of the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like. Examples of styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
本発明の有機EL素子に使用される他の電子輸送材料は、光導電材料において電子伝達化合物として使用できる化合物、有機EL素子の電子輸送層および電子注入層に使用できる化合物の中から任意に選択して用いることができる。 Other electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
このような電子輸送材料の具体例は、キノリノール系金属錯体、2,2’-ビピリジル誘導体、フェナントロリン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体、チオフェン誘導体、トリアゾール誘導体、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パ-フルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体、イミダゾピリジン誘導体、ボラン誘導体等である。 Specific examples of such electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives. Metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole compounds, gallium complexes, pyrazole derivatives, perfluorinated phenylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives, imidazopyridine derivatives, borane derivatives, and the like.
本発明の有機EL素子に使用される正孔注入材料および正孔輸送材料については、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物や、有機EL素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾ-ル誘導体、トリアリールアミン誘導体、フタロシアニン誘導体等である。 Regarding the hole injection material and the hole transport material used in the organic EL device of the present invention, in a photoconductive material, a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used. Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
本発明の有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、スピンコート法またはキャスト法等の方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。なお、発光材料を薄膜化する方法は、均質な膜が得やすく、かつピンホールが生成しにくい等の点から蒸着法を採用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着条件は、本発明の発光材料の種類により異なる。蒸着条件は一般的に、ボート加熱温度50~400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚5nm~5μmの範囲で適宜設定することが好ましい。 Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coat method, or a cast method. The film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. Note that it is preferable to adopt a vapor deposition method as a method of thinning the light emitting material from the viewpoint that a homogeneous film can be easily obtained and pinholes are hardly generated. When thinning using the vapor deposition method, the vapor deposition conditions differ depending on the type of the light emitting material of the present invention. Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 −6 to 10 −3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature −150 to + 300 ° C., film thickness 5 nm to 5 μm. It is preferable to set appropriately within the range.
本発明の有機EL素子は、前記のいずれの構造であっても、基板に支持されていることが好ましい。基板は機械的強度、熱安定性および透明性を有するものであればよく、ガラス、透明プラスチックフィルム等を用いることができる。陽極物質は4eVより大きな仕事関数を有する金属、合金、電気伝導性化合物およびこれらの混合物を用いることができる。その具体例は、Au等の金属、CuI、インジウムチンオキシド(以下、ITOと略記する)、SnO、ZnO等である。 The organic EL device of the present invention is preferably supported by a substrate in any of the structures described above. The substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used. As the anode material, metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
陰極物質は4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれらの混合物を使用できる。その具体例は、アルミニウム、カルシウム、マグネシウム、リチウム、マグネシウム合金、アルミニウム合金等である。合金の具体例は、アルミニウム/弗化リチウム、アルミニウム/リチウム、マグネシウム/銀、マグネシウム/インジウム等である。有機EL素子の発光を効率よく取り出すために、電極の少なくとも一方は光透過率を10%以上にすることが望ましい。電極としてのシート抵抗は数百Ω/□以下にすることが好ましい。なお、膜厚は電極材料の性質にもよるが、通常10nm~1μm、好ましくは10~400nmの範囲に設定される。このような電極は、上述の電極物質を使用して、蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。 Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more. The sheet resistance as the electrode is preferably several hundred Ω / □ or less. Although the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 μm, preferably 10 to 400 nm. Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
次に、本発明の発光材料を用いて有機EL素子を作成する方法の一例として、前述の陽極/正孔注入層/正孔輸送層/発光層/本発明の電子輸送材料/陰極からなる有機EL素子の作成法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法により形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に発光層の薄膜を形成させる。この発光層の上に本発明の電子輸送材料を真空蒸着し、薄膜を形成させ、電子輸送層とする。さらに陰極用物質からなる薄膜を蒸着法により形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Next, as an example of a method for producing an organic EL device using the light emitting material of the present invention, an organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode is used. A method for creating an EL element will be described. A thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A light emitting layer thin film is formed thereon. On this light emitting layer, the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer. Furthermore, the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode. In the production of the organic EL element described above, the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明又は半透明の電極側(陽極又は陰極、および両方)より発光が観測できる。また、この有機EL素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied. The alternating current waveform to be applied may be arbitrary.
以下に、本発明を実施例に基づいて更に詳しく説明する。まず、実施例で用いた化合物の合成例について、以下に説明する。 Hereinafter, the present invention will be described in more detail based on examples. First, synthesis examples of the compounds used in the examples are described below.
<化合物(1-2)の合成例>
<3-(4-ブロモナフタレン-1-イル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000123
3-ブロモナフタレン22.98gをフラスコに入れ、フラスコ内を窒素ガスで置換した後に、乾燥THF160mLを加え氷浴で冷却した。そこへ塩化イソプロピルマグネシウム・THF溶液(2M)80mLを滴下した。滴下終了後もそのまま1時間攪拌した後、塩化亜鉛・テトラメチルエチレンジアミン錯体40.32gを加え、さらに1時間攪拌した後に、1,4-ジブロモナフタレン62.40g、テトラキス(トリフェニルホスフィン)パラジウム5.04gを加え4時間加熱還流した。反応液を室温まで冷却して、エチレンジアミン4酢酸・4ナトリウム塩181.60gを200mLの水に溶解した水溶液を加えて攪拌した。有機層と水層を分離し、有機層を硫酸マグネシウムで乾燥させた。溶媒を減圧留去して得られた粗成生物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン~トルエン/酢酸エチル=9/1(容量比))で精製し、溶媒を減圧留去して3-(4-ブロモナフタレン-1-イル)ピリジン28.90gを得た。
<Synthesis Example of Compound (1-2)>
<Synthesis of 3- (4-bromonaphthalen-1-yl) pyridine>
Figure JPOXMLDOC01-appb-C000123
After putting 22.98 g of 3-bromonaphthalene into the flask and replacing the inside of the flask with nitrogen gas, 160 mL of dry THF was added and cooled in an ice bath. 80 mL of isopropyl magnesium chloride / THF solution (2M) was added dropwise thereto. After completion of the dropwise addition, the mixture was stirred as it was for 1 hour, 40.32 g of zinc chloride / tetramethylethylenediamine complex was added, and after further stirring for 1 hour, 62.40 g of 1,4-dibromonaphthalene and tetrakis (triphenylphosphine) palladium 5. 04g was added and it heated and refluxed for 4 hours. The reaction solution was cooled to room temperature, and an aqueous solution obtained by dissolving 181.60 g of ethylenediaminetetraacetic acid / tetrasodium salt in 200 mL of water was added and stirred. The organic layer and the aqueous layer were separated, and the organic layer was dried over magnesium sulfate. The crude product obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (developing solvent: toluene to toluene / ethyl acetate = 9/1 (volume ratio)). 28.90 g of (4-bromonaphthalen-1-yl) pyridine was obtained.
<3-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000124
(10-フェニルアントラセン-9-イル)ボロン酸11.71g、3-(4-ブロモナフタレン-1-イル)ピリジン6.96g、テトラキス(トリフェニルホスフィン)パラジウム0.74g、リン酸三カリウム10.39g、シュードクメン30mL、イソプロピルアルコール3mL、水3mLをフラスコに入れ窒素雰囲気下、還流温度で15時間攪拌した。なお、(10-フェニルアントラセン-9-イル)ボロン酸は市販品を精製せずに、そのまま用いた。加熱終了後室温まで冷却し、析出した固形物を濾別して純水、次いで酢酸エチルで洗浄した。固形物をトルエンに溶解してシリカゲルクロマトグラフィー(展開溶液トルエン~トルエン/酢酸エチル=9/1(容量比))で精製し、さらに活性炭で濾過した(溶媒トルエン)。溶媒を減圧留去して3-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)ピリジン10.00gを得た。
H-NMR(CDCl): δ=9.0(d、1H)、8.8(dd、1H)、8.0(m、2H)、7.8(d、2H)、7.7~7.6(m、4H)、7.5(m、2H)、7.5(m、4H)、7.5(m、1H)、7.4~7.3(m、2H)、7.3(m、4H).
<Synthesis of 3- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) pyridine>
Figure JPOXMLDOC01-appb-C000124
11.71 g of (10-phenylanthracen-9-yl) boronic acid, 6.96 g of 3- (4-bromonaphthalen-1-yl) pyridine, 0.74 g of tetrakis (triphenylphosphine) palladium, tripotassium phosphate 39 g, pseudocumene 30 mL, isopropyl alcohol 3 mL, and water 3 mL were placed in a flask and stirred at reflux temperature for 15 hours under a nitrogen atmosphere. The (10-phenylanthracen-9-yl) boronic acid was used as it was without purifying a commercially available product. After the heating, the mixture was cooled to room temperature, and the precipitated solid was separated by filtration and washed with pure water and then with ethyl acetate. The solid was dissolved in toluene and purified by silica gel chromatography (developing solution toluene to toluene / ethyl acetate = 9/1 (volume ratio)), and further filtered through activated carbon (solvent toluene). The solvent was distilled off under reduced pressure to obtain 10.00 g of 3- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) pyridine.
1 H-NMR (CDCl 3 ): δ = 9.0 (d, 1H), 8.8 (dd, 1H), 8.0 (m, 2H), 7.8 (d, 2H), 7.7 To 7.6 (m, 4H), 7.5 (m, 2H), 7.5 (m, 4H), 7.5 (m, 1H), 7.4 to 7.3 (m, 2H), 7.3 (m, 4H).
<化合物(1-3)の合成例>
<1-ブロモ-4-エトキシナフタレンの合成>
Figure JPOXMLDOC01-appb-C000125
市販の1-エトキシナフタレン236gとアセトニトリル400mLをフラスコに入れ、氷冷しながらN-ブロモコハク酸イミド(NBS)234gを粉体のまま加えた。2時間攪拌した後、生じた固体を濾別した。この固体をトルエンに溶解し、シリカゲルでろ過した後、溶媒を減圧除去して1-ブロモ-4-エトキシナフタレン318gを得た。
<Synthesis Example of Compound (1-3)>
<Synthesis of 1-bromo-4-ethoxynaphthalene>
Figure JPOXMLDOC01-appb-C000125
236 g of commercially available 1-ethoxynaphthalene and 400 mL of acetonitrile were placed in a flask, and 234 g of N-bromosuccinimide (NBS) was added as a powder while cooling with ice. After stirring for 2 hours, the resulting solid was filtered off. This solid was dissolved in toluene, filtered through silica gel, and then the solvent was removed under reduced pressure to obtain 318 g of 1-bromo-4-ethoxynaphthalene.
<4-エトキシナフタレン-1-イルボロン酸の合成>
Figure JPOXMLDOC01-appb-C000126
窒素雰囲気下マグネシウム34gとTHF500mLをフラスコに入れ、1-ブロモ-4-エトキシナフタレン317gのTHF500mL溶液を2時間かけて滴下し、さらに30分加熱還流した。このようにして得たグリニャール試薬を、トリメトキシボラン157gとTHF500mLの入ったフラスコにキャヌラ(cannula)を用いて滴下した。滴下終了後12時間攪拌し、10%希硫酸を加えてさらに1時間攪拌した後、酢酸エチルで抽出した。有機層を純水で洗浄して、溶媒を減圧留去したところへヘプタンを加え、生じた沈殿を濾別し、乾燥して、4-エトキシナフタレン-1-イルボロン酸238gを得た。
<Synthesis of 4-Ethoxynaphthalen-1-ylboronic acid>
Figure JPOXMLDOC01-appb-C000126
In a nitrogen atmosphere, 34 g of magnesium and 500 mL of THF were placed in a flask. A solution of 317 g of 1-bromo-4-ethoxynaphthalene in 500 mL of THF was added dropwise over 2 hours, and the mixture was further heated under reflux for 30 minutes. The Grignard reagent thus obtained was added dropwise to a flask containing 157 g of trimethoxyborane and 500 mL of THF using a cannula. After completion of the dropwise addition, the mixture was stirred for 12 hours, 10% dilute sulfuric acid was added, and the mixture was further stirred for 1 hour, and then extracted with ethyl acetate. The organic layer was washed with pure water, heptane was added to the place where the solvent was distilled off under reduced pressure, and the resulting precipitate was filtered off and dried to obtain 238 g of 4-ethoxynaphthalen-1-ylboronic acid.
<9-(4-エトキシナフタレン-1-イル)-10-フェニルアントラセンの合成>
Figure JPOXMLDOC01-appb-C000127
市販の9-ブロモ-10-フェニルアントラセン40.0g、(4-エトキシナフタレン-1-イル)ボロン酸33.7g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.79g、水酸化バリウム・8水和物57.6g、ジメトキシエタン420mL、水70mLをフラスコに入れて4時間還流した。反応液を室温まで冷却し、水を加えて析出した固体を濾別し、これをメタノールで洗浄した。この粗体をトルエンに溶解し、シリカゲルでろ過した後、溶媒を減圧留去して、9-(4-エトキシナフタレン-1-イル)-10-フェニルアントラセン43.4gを得た。
<Synthesis of 9- (4-ethoxynaphthalen-1-yl) -10-phenylanthracene>
Figure JPOXMLDOC01-appb-C000127
40.0 g of commercially available 9-bromo-10-phenylanthracene, 33.7 g of (4-ethoxynaphthalen-1-yl) boronic acid, 0.79 g of tetrakis (triphenylphosphine) palladium (0), barium hydroxide and 8 water A 57.6 g Japanese product, 420 mL dimethoxyethane, and 70 mL water were placed in a flask and refluxed for 4 hours. The reaction solution was cooled to room temperature, water was added and the precipitated solid was filtered off and washed with methanol. This crude product was dissolved in toluene, filtered through silica gel, and then the solvent was distilled off under reduced pressure to obtain 43.4 g of 9- (4-ethoxynaphthalen-1-yl) -10-phenylanthracene.
<4-(10-フェニルアントラセン-9-イル)ナフタレン-1-オ-ルの合成>
Figure JPOXMLDOC01-appb-C000128
9-(4-エトキシナフタレン-1-イル)-10-フェニルアントラセン42.5g、ピリジン塩酸塩116g、N-メチル-2-ピロリドン50mLをフラスコに入れ、200度で14時間加熱した。反応液を室温まで冷却し、水を加えて析出した固体を濾別した。これをメタノールで洗浄後、乾燥して4-(10-フェニルアントラセン-9-イル)ナフタレン-1-オール38.5gを得た。
<Synthesis of 4- (10-phenylanthracen-9-yl) naphthalen-1-ol>
Figure JPOXMLDOC01-appb-C000128
42.5 g of 9- (4-ethoxynaphthalen-1-yl) -10-phenylanthracene, 116 g of pyridine hydrochloride and 50 mL of N-methyl-2-pyrrolidone were placed in a flask and heated at 200 ° C. for 14 hours. The reaction solution was cooled to room temperature, water was added, and the precipitated solid was separated by filtration. This was washed with methanol and dried to obtain 38.5 g of 4- (10-phenylanthracen-9-yl) naphthalen-1-ol.
<4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル トリフルオロメタンスルホネートの合成>
Figure JPOXMLDOC01-appb-C000129
4-(10-フェニルアントラセン-9-イル)ナフタレン-1-オール26.5gと無水ピリジン300mLをフラスコに入れて0度に冷却した。そこへトリフルオロメタンスルホン酸無水物24.6gを滴下し、3時間攪拌した。室温に戻した反応液に水を加え、析出した沈殿を濾別し、水、メタノールで洗浄した後、トルエンに溶解してシリカゲルでろ過した。溶媒を減圧留去してからヘプタンを加え、得られた沈殿を濾別し、乾燥して、4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル トリフルオロメタンスルホネート31.6gを得た。
<Synthesis of 4- (10-phenylanthracen-9-yl) naphthalen-1-yl trifluoromethanesulfonate>
Figure JPOXMLDOC01-appb-C000129
4- (10-phenylanthracen-9-yl) naphthalen-1-ol (26.5 g) and anhydrous pyridine (300 mL) were placed in a flask and cooled to 0 ° C. Thereto, 24.6 g of trifluoromethanesulfonic anhydride was added dropwise and stirred for 3 hours. Water was added to the reaction solution returned to room temperature, and the deposited precipitate was separated by filtration, washed with water and methanol, dissolved in toluene, and filtered through silica gel. The solvent was distilled off under reduced pressure, heptane was added, and the resulting precipitate was filtered off and dried to obtain 31.6 g of 4- (10-phenylanthracen-9-yl) naphthalen-1-yl trifluoromethanesulfonate. It was.
<4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロランの合成>
Figure JPOXMLDOC01-appb-C000130
4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル トリフルオロメタンスルホネート29.6g、ビスピナコレートジボロン17.1g、[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロリドジクロロメタン錯体1.37g、酢酸カリウム10.0g、およびシクロペンチルメチルエーテル150mLをフラスコに入れ、11時間加熱還流した。加熱終了後トルエンと水を加え、抽出した有機層を乾燥、濃縮し、シリカゲルでろ過した。さらに溶媒を減圧留去した後、ヘプタンを加えて得られた沈殿を濾別し、乾燥して、4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロラン11.7gを得た。
<Synthesis of 4,4,5,5-tetramethyl-2- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -1,3,2-dioxaborolane>
Figure JPOXMLDOC01-appb-C000130
4- (10-phenylanthracen-9-yl) naphthalen-1-yl trifluoromethanesulfonate 29.6 g, bispinacholate diboron 17.1 g, [1,1-bis (diphenylphosphino) ferrocene] palladium dichloride dichloromethane complex 1.37g, potassium acetate 10.0g, and cyclopentyl methyl ether 150mL were put into the flask, and it heated and refluxed for 11 hours. After heating, toluene and water were added, and the extracted organic layer was dried, concentrated, and filtered through silica gel. Further, the solvent was distilled off under reduced pressure, and the precipitate obtained by adding heptane was filtered off, dried, and dried to 4,4,5,5-tetramethyl-2- (4- (10-phenylanthracene-9- Yl) 11.7 g of naphthalen-1-yl) -1,3,2-dioxaborolane was obtained.
<4-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000131
4-ヨードピリジン1.0gをフラスコに入れ、フラスコ内を窒素ガスで置換した後に、乾燥THF30mLを加え氷浴で冷却した。そこへ塩化イソプロピルマグネシウムTHF溶液(2M)2.8mLを滴下した。滴下後そのまま1時間攪拌した後、塩化亜鉛・テトラメチルエチレンジアミン錯体1.4gを加え、さらに1時間攪拌した後に、4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル トリフルオロメタンスルホネート2.4g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.17g、および無水キシレン20mLを加え、12時間加熱還流した。反応液を室温まで冷却し、エチレンジアミン4酢酸・4ナトリウム塩水溶液を加え、有機層と水層を分離した。有機層を硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。この粗成生物をシリカゲルカラムクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=97/3)で精製することで、4-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)ピリジン0.95gを得た。
H-NMR(CDCl): δ=8.8(d、2H)、8.0(d、1H)、7.8(d、2H)、7.6~7.5(m、12H)、7.3~7.2(m、6H).
<Synthesis of 4- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) pyridine>
Figure JPOXMLDOC01-appb-C000131
After putting 1.0 g of 4-iodopyridine into the flask and replacing the inside of the flask with nitrogen gas, 30 mL of dry THF was added and cooled in an ice bath. 2.8 mL of isopropylmagnesium chloride THF solution (2M) was added dropwise thereto. After the dropwise addition, the mixture was stirred for 1 hour, and then 1.4 g of zinc chloride / tetramethylethylenediamine complex was added. After further stirring for 1 hour, 4- (10-phenylanthracen-9-yl) naphthalen-1-yl trifluoromethanesulfonate 2 0.4 g, tetrakis (triphenylphosphine) palladium (0) 0.17 g, and anhydrous xylene 20 mL were added, and the mixture was heated to reflux for 12 hours. The reaction solution was cooled to room temperature, ethylenediaminetetraacetic acid / tetrasodium salt aqueous solution was added, and the organic layer and the aqueous layer were separated. After drying the organic layer with magnesium sulfate, the solvent was distilled off under reduced pressure. This crude product is purified by silica gel column chromatography (developing solution: toluene to toluene / ethyl acetate = 97/3) to give 4- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl. ) 0.95 g of pyridine was obtained.
1 H-NMR (CDCl 3 ): δ = 8.8 (d, 2H), 8.0 (d, 1H), 7.8 (d, 2H), 7.6 to 7.5 (m, 12H) 7.3-7.2 (m, 6H).
<化合物(1-19)の合成例>
<5-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-2,2’-ビピリジンの合成>
Figure JPOXMLDOC01-appb-C000132
4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロラン2.0g、5-ブロモ-2,2’-ビピリジン1.1g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸三カリウム1.7g、シュードクメン12mL、t-ブチルアルコール2mL、および水0.5mLをフラスコに入れ、窒素雰囲気下、還流温度で9時間攪拌した。加熱終了後室温まで冷却し、析出した固形物を濾別した。固形物をトルエンに溶解してシリカゲルクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=95/5(容量比))で精製し、5-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-2,2’-ビピリジン0.81gを得た。なお、ここで用いた5-ブロモ-2,2’-ビピリジンは上記のカップリング反応を応用して合成した。
H-NMR(CDCl): δ=9.0(d、1H)、8.8(d、1H)、8.6(d、1H)、8.6~8.5(d、1H)、8.2(dd、1H)、8.1(d、1H)、7.9(dt、1H)、7.8(d、2H)、7.7~7.5(m、9H)、7.5(m、1H)、7.4~7.2(m、7H).
<Synthesis Example of Compound (1-19)>
<Synthesis of 5- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -2,2'-bipyridine>
Figure JPOXMLDOC01-appb-C000132
4,4,5,5-tetramethyl-2- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -1,3,2-dioxaborolane 2.0 g, 5-bromo-2, A flask was charged with 1.1 g of 2′-bipyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.7 g of tripotassium phosphate, 12 mL of pseudocumene, 2 mL of t-butyl alcohol, and 0.5 mL of water. The mixture was stirred at a reflux temperature for 9 hours under a nitrogen atmosphere. After heating, the mixture was cooled to room temperature, and the precipitated solid was filtered off. The solid material was dissolved in toluene and purified by silica gel chromatography (developing solution: toluene to toluene / ethyl acetate = 95/5 (volume ratio)) to give 5- (4- (10-phenylanthracen-9-yl) naphthalene. -1-yl) -2,2′-bipyridine (0.81 g) was obtained. The 5-bromo-2,2′-bipyridine used here was synthesized by applying the above coupling reaction.
1 H-NMR (CDCl 3 ): δ = 9.0 (d, 1H), 8.8 (d, 1H), 8.6 (d, 1H), 8.6 to 8.5 (d, 1H) , 8.2 (dd, 1H), 8.1 (d, 1H), 7.9 (dt, 1H), 7.8 (d, 2H), 7.7 to 7.5 (m, 9H), 7.5 (m, 1H), 7.4 to 7.2 (m, 7H).
<化合物(1-20)の合成例>
<5-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-2,3’-ビピリジンの合成>
Figure JPOXMLDOC01-appb-C000133
4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロラン2.0g、5-ブロモ-2,3’-ビピリジン1.1g、テトラキス(トリフェニルホスフィン)パラジウム0.14g、リン酸三カリウム1.7g、シュードクメン12mL、t-ブチルアルコール2mL、および水0.5mLをフラスコに入れ、窒素雰囲気下、還流温度で13時間攪拌した。加熱終了後室温まで冷却し、析出した固形物を濾別した。固形物をトルエンに溶解してシリカゲルクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=85/15(容量比))で精製し、5-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-2,3’-ビピリジン0.95gを得た。なお、ここで用いた5-ブロモ-2,3’-ビピリジンは上記のカップリング反応を応用して合成した。
H-NMR(CDCl): δ=9.4(dd、1H)、9.1(dd、1H)、8.8(dd、1H)、8.5(dt、1H)、8.2(dd、1H)、8.1(d、1H)、8.0(d、1H)、7.8(d、2H)、7.7~7.5(m、11H)、7.4~7.3(m、6H).
<Synthesis Example of Compound (1-20)>
<Synthesis of 5- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -2,3′-bipyridine>
Figure JPOXMLDOC01-appb-C000133
4,4,5,5-tetramethyl-2- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -1,3,2-dioxaborolane 2.0 g, 5-bromo-2, A flask was charged with 1.1 g of 3′-bipyridine, 0.14 g of tetrakis (triphenylphosphine) palladium, 1.7 g of tripotassium phosphate, 12 mL of pseudocumene, 2 mL of t-butyl alcohol, and 0.5 mL of water under a nitrogen atmosphere. And stirred at reflux temperature for 13 hours. After heating, the mixture was cooled to room temperature, and the precipitated solid was filtered off. The solid material was dissolved in toluene and purified by silica gel chromatography (developing solution: toluene to toluene / ethyl acetate = 85/15 (volume ratio)) to give 5- (4- (10-phenylanthracen-9-yl) naphthalene. -1-yl) -2,3′-bipyridine (0.95 g) was obtained. The 5-bromo-2,3′-bipyridine used here was synthesized by applying the above coupling reaction.
1 H-NMR (CDCl 3 ): δ = 9.4 (dd, 1H), 9.1 (dd, 1H), 8.8 (dd, 1H), 8.5 (dt, 1H), 8.2 (Dd, 1H), 8.1 (d, 1H), 8.0 (d, 1H), 7.8 (d, 2H), 7.7 to 7.5 (m, 11H), 7.4 to 7.3 (m, 6H).
<化合物(1-24)の合成例>
<5-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-3,4’-ビピリジンの合成>
Figure JPOXMLDOC01-appb-C000134
4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロラン2.0g、5-ブロモ-3,4’-ビピリジン1.1g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸三カリウム1.7g、シュードクメン12mL、t-ブチルアルコール2mL、および水0.5mLをフラスコに入れ、窒素雰囲気下、還流温度で3時間攪拌した。加熱終了後室温まで冷却し、析出した固形物を濾別した。固形物をトルエンに溶解してシリカゲルクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=3/1(容量比))で精製して、5-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-3,4’-ビピリジン1.65gを得た。なお、ここで用いた5-ブロモ-3,4’-ビピリジンは上記のカップリング反応を応用して合成した。
H-NMR(CDCl): δ=9.0(dd、2H)、8.8(dd、2H)、8.3(t、1H)、8.0(d、1H)、7.8(d、2H)、7.7~7.6(m、6H)、7.6(m、2H)、7.5(m、4H)、7.4~7.3(m、6H).
<Synthesis Example of Compound (1-24)>
<Synthesis of 5- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -3,4'-bipyridine>
Figure JPOXMLDOC01-appb-C000134
4,4,5,5-tetramethyl-2- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -1,3,2-dioxaborolane 2.0 g, 5-bromo-3, A flask was charged with 1.1 g of 4′-bipyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.7 g of tripotassium phosphate, 12 mL of pseudocumene, 2 mL of t-butyl alcohol, and 0.5 mL of water. The mixture was stirred at reflux temperature for 3 hours under a nitrogen atmosphere. After heating, the mixture was cooled to room temperature, and the precipitated solid was filtered off. The solid was dissolved in toluene and purified by silica gel chromatography (developing solution: toluene to toluene / ethyl acetate = 3/1 (volume ratio)) to give 5- (4- (10-phenylanthracen-9-yl). 1.65 g of naphthalen-1-yl) -3,4'-bipyridine was obtained. Note that 5-bromo-3,4'-bipyridine used here was synthesized by applying the above coupling reaction.
1 H-NMR (CDCl 3 ): δ = 9.0 (dd, 2H), 8.8 (dd, 2H), 8.3 (t, 1H), 8.0 (d, 1H), 7.8 (D, 2H), 7.7 to 7.6 (m, 6H), 7.6 (m, 2H), 7.5 (m, 4H), 7.4 to 7.3 (m, 6H).
<化合物(1-48)の合成例>
<4-(3-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000135
4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロラン2.0g、4-(3-ブロモフェニル)ピリジン1.1g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸三カリウム1.7g、シュードクメン12mL、t-ブチルアルコール2mL、および水0.5mLをフラスコに入れ、窒素雰囲気下、還流温度で4時間攪拌した。加熱終了後、室温まで冷却し、水とトルエンを加えて分液をした。有機層を乾燥、濃縮して粗体をシリカゲルクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=95/5(容量比))で精製し、4-(3-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)フェニル)ピリジン1.36gを得た。なお、ここで用いた4-(3-ブロモフェニル)ピリジンは上記のカップリング反応を応用して合成した。
H-NMR(CDCl): δ=8.7(d、2H)、8.1(d、1H)、8.0(t、1H)、7.8(m、4H)、7.7(m、2H)、7.7~7.6(m、5H)、7.6~7.5(m、5H)、7.5~7.4(m、1H)、7.4~7.3(m、2H)、7.3~7.2(m、4H).
<Synthesis Example of Compound (1-48)>
<Synthesis of 4- (3- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000135
4,4,5,5-tetramethyl-2- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -1,3,2-dioxaborolane 2.0 g, 4- (3-bromo Phenyl) pyridine (1.1 g), tetrakis (triphenylphosphine) palladium (0) (0.14 g), tripotassium phosphate (1.7 g), pseudocumene (12 mL), t-butyl alcohol (2 mL), and water (0.5 mL) were placed in a flask. The mixture was stirred at reflux temperature for 4 hours under an atmosphere. After heating, the mixture was cooled to room temperature, and water and toluene were added to separate the layers. The organic layer was dried and concentrated, and the crude product was purified by silica gel chromatography (developing solution: toluene to toluene / ethyl acetate = 95/5 (volume ratio)) to give 4- (3- (4- (10-phenylanthracene). 1.36 g of -9-yl) naphthalen-1-yl) phenyl) pyridine was obtained. The 4- (3-bromophenyl) pyridine used here was synthesized by applying the above coupling reaction.
1 H-NMR (CDCl 3 ): δ = 8.7 (d, 2H), 8.1 (d, 1H), 8.0 (t, 1H), 7.8 (m, 4H), 7.7 (M, 2H), 7.7 to 7.6 (m, 5H), 7.6 to 7.5 (m, 5H), 7.5 to 7.4 (m, 1H), 7.4 to 7 .3 (m, 2H), 7.3 to 7.2 (m, 4H).
<化合物(1-51)の合成例>
<4-(4-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000136
4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロラン2.0g、4-(4-ブロモフェニル)ピリジン1.1g、テトラキス(トリフェニルホスフィン)パラジウム0.14g、リン酸三カリウム1.7g、シュードクメン12mL、t-ブチルアルコール2mL、および水0.5mLをフラスコに入れ、窒素雰囲気下、還流温度で3時間攪拌した。加熱終了後室温まで冷却し、水とトルエンを加えて分液をした。有機層を乾燥、濃縮して粗体をシリカゲルクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=97/3(容量比))で精製し、4-(4-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)フェニル)ピリジン0.98gを得た。なお、ここで用いた4-(4-ブロモフェニル)ピリジンは上記のカップリング反応を応用して合成した。
H-NMR(CDCl): δ=8.7(dd、2H)、8.1(d、1H)、7.9~7.8(q、4H)、7.8(d、2H)、7.7~7.5(m、11H)、7.5~7.4(m、1H)、7.4~7.2(m、6H).
<Synthesis Example of Compound (1-51)>
<Synthesis of 4- (4- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000136
4,4,5,5-tetramethyl-2- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -1,3,2-dioxaborolane 2.0 g, 4- (4-bromo (Phenyl) pyridine (1.1 g), tetrakis (triphenylphosphine) palladium (0.14 g), tripotassium phosphate (1.7 g), pseudocumene (12 mL), t-butyl alcohol (2 mL), and water (0.5 mL) were placed in a flask. Stir at reflux for 3 hours. After heating, the mixture was cooled to room temperature, and water and toluene were added to separate the layers. The organic layer was dried and concentrated, and the crude product was purified by silica gel chromatography (developing solution: toluene to toluene / ethyl acetate = 97/3 (volume ratio)) to give 4- (4- (4- (10-phenylanthracene). 0.98 g of -9-yl) naphthalen-1-yl) phenyl) pyridine was obtained. The 4- (4-bromophenyl) pyridine used here was synthesized by applying the above coupling reaction.
1 H-NMR (CDCl 3 ): δ = 8.7 (dd, 2H), 8.1 (d, 1H), 7.9 to 7.8 (q, 4H), 7.8 (d, 2H) 7.7-7.5 (m, 11H), 7.5-7.4 (m, 1H), 7.4-7.2 (m, 6H).
<化合物(1-104)の合成例>
<3-(4-(4,4,5,5-テトラメチル-1、3、2-ジオキサボロラン-2-イル)ナフタレン-1-イル)ピリジン>の合成
Figure JPOXMLDOC01-appb-C000137
3-(4-ブロモナフタレン-1-イル)ピリジン29.84g、ビスピナコレートジボロン5.49g、(1、1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウム(II)ジクロリド・ジクロロメタン錯体3.15g、酢酸カリウム28.03g、シクロペンチルメチルエーテル60mLをフラスコに入れ、窒素雰囲気下、還流温度で1.5時間過熱攪拌した。加熱終了後室温まで冷却し純水で洗浄した。減圧濃縮後、活性炭カラムクロマトグラフィー(展開液:トルエン)で精製することで3-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)ナフタレン-1-イル)ピリジンを30g得た。なお、ここで用いた3-(4-ブロモナフタレン-1-イル)ピリジンは上記のカップリング反応を応用して合成した。
<Synthesis Example of Compound (1-104)>
Synthesis of <3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalen-1-yl) pyridine>
Figure JPOXMLDOC01-appb-C000137
2. 29.84 g of 3- (4-bromonaphthalen-1-yl) pyridine, 5.49 g of bispinacholate diboron, (1,1′-bis (diphenylphosphino) ferrocene) palladium (II) dichloride / dichloromethane complex 15 g, potassium acetate 28.03 g, and cyclopentyl methyl ether 60 mL were placed in a flask, and the mixture was heated and stirred at reflux temperature for 1.5 hours in a nitrogen atmosphere. After completion of heating, the mixture was cooled to room temperature and washed with pure water. After concentration under reduced pressure, purification by activated carbon column chromatography (developing solution: toluene) gave 3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaboran-2-yl) naphthalene- 30 g of 1-yl) pyridine was obtained. The 3- (4-bromonaphthalen-1-yl) pyridine used here was synthesized by applying the above coupling reaction.
<3-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)ナフタレン-1-イル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000138
9-ブロモ-10-(ナフタレン-2-イル)アントラセン2.0g、3-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフタレン-1-イル)ピリジン1.1g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸三カリウム1.7g、シュードクメン12mL、t-ブチルアルコール2mL、および水0.5mLをフラスコに入れ、窒素雰囲気下、還流温度で3時間攪拌した。加熱終了後室温まで冷却し、水とトルエンを加えて分液をした。有機層を乾燥、濃縮して粗体をシリカゲルクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=97/3(容量比))で精製し、4-(4-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)フェニル)ピリジン0.98gを得た。
H-NMR(CDCl): δ=9.0(dd、1H)、8.8(dd、1H)、8.1~7.9(m、6H)、7.8(d、2H)、7.7~7.5(m、9H)、7.3~7.2(m、6H).
<Synthesis of 3- (4- (10- (naphthalen-2-yl) anthracen-9-yl) naphthalen-1-yl) pyridine>
Figure JPOXMLDOC01-appb-C000138
9-Bromo-10- (naphthalen-2-yl) anthracene 2.0 g, 3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthalene-1 -Yl) Pyridine 1.1 g, tetrakis (triphenylphosphine) palladium (0) 0.14 g, tripotassium phosphate 1.7 g, pseudocumene 12 mL, t-butyl alcohol 2 mL, and water 0.5 mL were placed in a flask. The mixture was stirred at reflux temperature for 3 hours under a nitrogen atmosphere. After heating, the mixture was cooled to room temperature, and water and toluene were added to separate the layers. The organic layer was dried and concentrated, and the crude product was purified by silica gel chromatography (developing solution: toluene to toluene / ethyl acetate = 97/3 (volume ratio)) to give 4- (4- (4- (10-phenylanthracene). 0.98 g of -9-yl) naphthalen-1-yl) phenyl) pyridine was obtained.
1 H-NMR (CDCl 3 ): δ = 9.0 (dd, 1H), 8.8 (dd, 1H), 8.1 to 7.9 (m, 6H), 7.8 (d, 2H) 7.7-7.5 (m, 9H), 7.3-7.2 (m, 6H).
<化合物(1-1027)の合成例>
<2-メチル-3-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000139
4,4,5,5-テトラメチル-2-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)-1,3,2-ジオキサボロラン2.0g、3-ブロモ-2-メチルピリジン0.72g、テトラキス(トリフェニルホスフィン)パラジウム0.14g、リン酸三カリウム1.7g、シュードクメン12mL、t-ブチルアルコール2mL、および水0.5mLをフラスコに入れ、窒素雰囲気下、還流温度で8時間攪拌した。加熱終了後室温まで冷却し、水とトルエンを加えて分液をした。有機層を乾燥、濃縮して粗体をシリカゲルクロマトグラフィー(展開液:トルエン~トルエン/酢酸エチル=9/1(容量比))で精製し、2-メチル-3-(4-(10-フェニルアントラセン-9-イル)ナフタレン-1-イル)ピリジン1.30gを得た。
H-NMR(CDCl): δ=8.7(dd、1H)、7.8(m、3H)、7.7~7.5(m、10H)、7.4(m、1H)、7.4~7.3(m、3H)、7.3~7.2(m、4H)、2.5(s、3H).
<Synthesis Example of Compound (1-1027)>
<Synthesis of 2-methyl-3- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) pyridine>
Figure JPOXMLDOC01-appb-C000139
4,4,5,5-tetramethyl-2- (4- (10-phenylanthracen-9-yl) naphthalen-1-yl) -1,3,2-dioxaborolane 2.0 g, 3-bromo-2- 0.72 g of methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium, 1.7 g of tripotassium phosphate, 12 mL of pseudocumene, 2 mL of t-butyl alcohol, and 0.5 mL of water are placed in a flask and refluxed under a nitrogen atmosphere. Stir at temperature for 8 hours. After heating, the mixture was cooled to room temperature, and water and toluene were added to separate the layers. The organic layer was dried and concentrated, and the crude product was purified by silica gel chromatography (developing solution: toluene to toluene / ethyl acetate = 9/1 (volume ratio)) to give 2-methyl-3- (4- (10-phenyl). 1.30 g of anthracen-9-yl) naphthalen-1-yl) pyridine was obtained.
1 H-NMR (CDCl 3 ): δ = 8.7 (dd, 1H), 7.8 (m, 3H), 7.7 to 7.5 (m, 10H), 7.4 (m, 1H) , 7.4 to 7.3 (m, 3H), 7.3 to 7.2 (m, 4H), 2.5 (s, 3H).
原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の誘導体化合物を合成することができる。 By appropriately changing the raw material compound, other derivative compounds of the present invention can be synthesized by a method according to the synthesis example described above.
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。 Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
実施例1および比較例1に係る電界発光素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期輝度の90%以上の輝度を維持する時間(hr)の測定を行った。以下、実施例および比較例について詳細に説明する。 The electroluminescent elements according to Example 1 and Comparative Example 1 were manufactured, and the driving start voltage (V) in the constant current driving test and the time (hr) for maintaining the luminance of 90% or more of the initial luminance were measured. . Hereinafter, examples and comparative examples will be described in detail.
作製した実施例1および比較例1、2に係る電界発光素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000140
Table 1 below shows the material configuration of each layer in the electroluminescent elements according to the manufactured Example 1 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000140
表1において、「CuPc」は銅フタロシアニン、「NPD」はN,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、化合物(A)は9-フェニル-10-〔6-(1,1’;3,1”)テルフェニル-5’-イル〕ナフタレン-2-イル〕アントラセン、化合物(B)はN,N,N,N-7,7-ヘキサフェニル-7H-ベンゾ〔c〕フルオレン-5,9-ジアミンであり、化合物(C)は5,5’-(2-フェニルアントラセン-9,10-ジイル)ジ-2,2’-ビピリジン、それぞれ、下記化学構造を有する。 In Table 1, “CuPc” is copper phthalocyanine, “NPD” is N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl, and compound (A) is 9-phenyl-10- [6 -(1,1 ′; 3,1 ″) terphenyl-5′-yl] naphthalen-2-yl] anthracene, compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexa Phenyl-7H-benzo [c] fluorene-5,9-diamine, compound (C) is 5,5 ′-(2-phenylanthracene-9,10-diyl) di-2,2′-bipyridine, Have the following chemical structure.
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、CuPcを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1-2)を入れたモリブデン製蒸着用ボート、弗化リチウムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン製蒸着用ボートを装着した。 A 26 mm × 28 mm × 0.7 mm glass substrate (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing CuPc, a molybdenum vapor deposition boat containing NPD, and a compound (A) are placed therein. A molybdenum vapor deposition boat, a molybdenum vapor deposition boat containing compound (B), a molybdenum vapor deposition boat containing compound (1-2), a molybdenum vapor deposition boat containing lithium fluoride, and aluminum. A tungsten vapor deposition boat was installed.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、CuPcが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、ついで、NPDが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(A)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(A)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-2)の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing CuPc was heated and deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm. The deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5. Next, the evaporation boat containing the compound (1-2) was heated and evaporated to a thickness of 15 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、弗化リチウム入りの蒸着用ボートを加熱して膜厚1nmになるように0.003~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウム入りの蒸着用ボートを加熱して膜厚100nmになるように0.01~10nm/秒の蒸着速度で蒸着することにより、陰極を形成し、有機電界発光素子を得た。 Thereafter, the evaporation boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so as to have a film thickness of 1 nm, and then the evaporation boat containing aluminum is heated to form a film. The cathode was formed by vapor deposition at a vapor deposition rate of 0.01 to 10 nm / second so as to have a thickness of 100 nm, and an organic electroluminescence device was obtained.
ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、直流電圧を印加すると、波長約455nmの青色発光を得た。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.75Vで、初期輝度の90%以上の輝度を維持する時間は34時間だった。 When a direct current voltage was applied using the ITO electrode as the anode and the lithium fluoride / aluminum electrode as the cathode, blue light emission with a wavelength of about 455 nm was obtained. In addition, a constant current driving test was performed at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.75 V, and the time for maintaining 90% or more of the initial luminance was 34 hours.
<比較例1>
化合物(1-2)を化合物(C)に替えた以外は実施例1と同様にして有機EL素子を得た。ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.63Vで、初期輝度の90%以上の輝度を維持する時間は23時間だった。
<Comparative Example 1>
An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-2) was changed to the compound (C). A constant current driving test was performed using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.63 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 23 hours.
以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000142
The above results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000142
さらに、前記実施例1および比較例1に係る電界発光素子とは異なる構成の、実施例2~10、比較例2および比較例3に係る電界発光素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期輝度の90%以上の輝度を維持する時間(hr)の測定を行った。 Further, electroluminescent devices according to Examples 2 to 10, Comparative Example 2 and Comparative Example 3 having configurations different from those of the electroluminescent devices according to Example 1 and Comparative Example 1 were prepared. The drive start voltage (V) and the time (hr) for maintaining the luminance of 90% or more of the initial luminance were measured.
作製した実施例2~10、比較例2および比較例3に係る電界発光素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000143
Table 3 below shows the material configuration of each layer in the electroluminescent devices according to Examples 2 to 10, Comparative Example 2 and Comparative Example 3 thus manufactured.
Figure JPOXMLDOC01-appb-T000143
表3において、「HI」はN,N’-ジフェニル-N,N’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1、1’-ビフェニル]-4、4’-ジアミン、化合物(D)は9-フェニル-10-(4-フェニルナフタレン-1-イル)アントラセン、化合物(E)は9,10-ビス(4-(ピリジン-2-イル)ナフタレン-1-イル)アントラセン、化合物(F)は9,10-ビス(4-(ピリジン-4-イル)ナフタレン-1-イル)アントラセンである。「NPD」および化合物(B)は表1と同じ化合物である。陰極の形成に用いたリチウム 8-キノリノラート(Liq)と共に化学構造を以下に示す。 In Table 3, “HI” represents N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4'-diamine, compound (D) is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene, compound (E) is 9,10-bis (4- (pyridin-2-yl) naphthalene- 1-yl) anthracene, compound (F) is 9,10-bis (4- (pyridin-4-yl) naphthalen-1-yl) anthracene. “NPD” and compound (B) are the same compounds as in Table 1. The chemical structure is shown below together with lithium 8-quinolinolato (Liq) used for forming the cathode.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(D)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1-2)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、銀を入れたモリブデン製蒸着用ボート、およびマグネシウムを入れたモリブデン製蒸着用ボートを装着した。 A 26 mm × 28 mm × 0.7 mm glass substrate (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and compound (D) are placed therein. Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound (1-2), molybdenum vapor deposition boat containing Liq, molybdenum containing silver A vapor deposition boat and a molybdenum vapor deposition boat containing magnesium were installed.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、ついで、NPDが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、化合物(D)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。次に化合物(D)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に化合物(1-2)の入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (D) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm. Next, the deposition rate was adjusted so that the weight ratio of the compound (D) to the compound (B) was approximately 95 to 5. Next, the evaporation boat containing the compound (1-2) was heated and evaporated to a film thickness of 25 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liq入りの蒸着用ボートを加熱して膜厚1nmになるように0.003~0.1nm/秒の蒸着速度で蒸着し、次いで、銀が入った蒸着用ボートとマグネシウムの入った蒸着用ボートを同時に加熱して、銀とマグネシウムの原子量比がおよそ1対9になるように蒸着速度を調節した。膜厚100nmになるように0.01~10nm/秒の蒸着速度で蒸着することにより、陰極を形成し、有機電界発光素子を得た。 Thereafter, the evaporation boat containing Liq is heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so that the film thickness becomes 1 nm, and then the evaporation boat containing silver and magnesium are deposited. The boat was heated at the same time, and the deposition rate was adjusted so that the atomic weight ratio of silver to magnesium was about 1: 9. A cathode was formed by vapor deposition at a vapor deposition rate of 0.01 to 10 nm / second so that the film thickness was 100 nm, and an organic electroluminescent device was obtained.
ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、直流電圧を印加すると、波長約455nmの青色発光を得た。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.38Vで、初期輝度の90%以上の輝度を維持する時間は106時間だった。 When a direct current voltage was applied using the ITO electrode as the anode and the Liq / magnesium-silver alloy electrode as the cathode, blue light emission with a wavelength of about 455 nm was obtained. In addition, a constant current driving test was performed at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 4.38 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 106 hours.
化合物(1-2)を化合物(1-3)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.24Vで、初期輝度の90%以上の輝度を維持する時間は110時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-3). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 5.24 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 110 hours.
化合物(1-2)を化合物(1-19)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.55Vで、初期輝度の90%以上の輝度を維持する時間は81時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-19). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 5.55 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 81 hours.
化合物(1-2)を化合物(1-20)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.62Vで、初期輝度の90%以上の輝度を維持する時間は75時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-20). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 4.62 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 75 hours.
化合物(1-2)を化合物(1-24)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は6.00Vで、初期輝度の90%以上の輝度を維持する時間は98時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-24). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 6.00 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 98 hours.
化合物(1-2)を化合物(1-48)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.70Vで、初期輝度の90%以上の輝度を維持する時間は79時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-48). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.70 V, and the time for maintaining 90% or more of the initial luminance was 79 hours.
化合物(1-2)を化合物(1-51)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.90Vで、初期輝度の90%以上の輝度を維持する時間は112時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-51). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.90 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 112 hours.
化合物(1-2)を化合物(1-104)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.98Vで、初期輝度の90%以上の輝度を維持する時間は118時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-104). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 3.98 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 118 hours.
化合物(1-2)を化合物(1-1027)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.55Vで、初期輝度の90%以上の輝度を維持する時間は82時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (1-1027). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 3.55 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 82 hours.
<比較例2>
化合物(1-2)を化合物(E)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.08Vで、初期輝度の90%以上の輝度を維持する時間は2時間だった。
<Comparative Example 2>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (E). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.08 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 2 hours.
<比較例3>
化合物(1-2)を化合物(F)に替えた以外は実施例2と同様にして有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.87Vで、初期輝度の90%以上の輝度を維持する時間は30時間だった。
<Comparative Example 3>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-2) was changed to the compound (F). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.87 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 30 hours.
以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000145
The above results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000145
本発明の好ましい態様によれば、特に発光素子の寿命を向上させ、駆動電圧とのバランスも優れた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。 According to a preferred aspect of the present invention, it is possible to provide an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.

Claims (16)

  1. 下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)において、
    Pyは下記式(2)、(3)、(4)および(5)で表される1価の基の群から選ばれる1つであり、これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;
    Figure JPOXMLDOC01-appb-C000002
    Arはナフタレン-1,4-ジイルまたはナフタレン-1,5-ジイルであり、これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;
    Arはフェニルまたは2-ナフチルであり、これらの基の任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In equation (1),
    Py is one selected from the group of monovalent groups represented by the following formulas (2), (3), (4) and (5), and any hydrogen of these groups has 1 to 6 carbon atoms. Or an alkyl of 3 to 6 carbon atoms may be substituted;
    Figure JPOXMLDOC01-appb-C000002
    Ar 1 is naphthalene-1,4-diyl or naphthalene-1,5-diyl, and any hydrogen in these groups is replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Well;
    Ar 2 is phenyl or 2-naphthyl, and any hydrogen of these groups may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  2. Pyが式(2)、(3)および(4)で表される1価の基の群から選ばれる1つである、請求項1に記載の化合物。 The compound according to claim 1, wherein Py is one selected from the group of monovalent groups represented by formulas (2), (3) and (4).
  3. Pyが式(2)で表される1価の基の群から選ばれる1つである、請求項1に記載の化合物。 The compound according to claim 1, wherein Py is one selected from the group of monovalent groups represented by formula (2).
  4. Pyが式(3)で表される1価の基の群から選ばれる1つである、請求項1に記載の化合物。 The compound according to claim 1, wherein Py is one selected from the group of monovalent groups represented by formula (3).
  5. Pyが式(4)で表される1価の基の群から選ばれる1つである、請求項1に記載の化合物。 The compound according to claim 1, wherein Py is one selected from the group of monovalent groups represented by formula (4).
  6. Pyが式(5)で表される1価の基の群から選ばれる1つである、請求項1に記載の化合物。 The compound according to claim 1, wherein Py is one selected from the group of monovalent groups represented by formula (5).
  7. Pyが2-ピリジルである、請求項1に記載の化合物。 The compound of claim 1, wherein Py is 2-pyridyl.
  8. Pyが3-ピリジルである、請求項1に記載の化合物。 The compound of claim 1, wherein Py is 3-pyridyl.
  9. Pyが4-ピリジルである、請求項1に記載の化合物。 The compound of claim 1, wherein Py is 4-pyridyl.
  10. Pyが下記の1価の基の群から選ばれる1つである、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    The compound according to claim 1, wherein Py is one selected from the group of monovalent groups below.
    Figure JPOXMLDOC01-appb-C000003
  11. Pyが下記の1価の基の群から選ばれる1つである、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    The compound according to claim 1, wherein Py is one selected from the group of monovalent groups below.
    Figure JPOXMLDOC01-appb-C000004
  12. 下記式(1-2)、(1-3)、(1-19)、(1-20)、(1-24)、(1-48)、(1-51)、(1-104)、または(1-1027)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    The following formulas (1-2), (1-3), (1-19), (1-20), (1-24), (1-48), (1-51), (1-104), Or the compound of Claim 1 represented by (1-1027).
    Figure JPOXMLDOC01-appb-C000005
  13. 請求項1~12のいずれか1項に記載の化合物を含有する電子輸送材料。 An electron transport material containing the compound according to any one of claims 1 to 12.
  14. 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、請求項13に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。 The electron transport containing the electron transport material of Claim 13 arrange | positioned between a pair of electrode which consists of an anode and a cathode, the light emitting layer arrange | positioned between this pair of electrodes, and the said cathode and this light emitting layer An organic electroluminescent device having a layer and / or an electron injection layer.
  15. 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、請求項14に記載する有機電界発光素子。 The organic material according to claim 14, wherein at least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative. Electroluminescent device.
  16. 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項14に記載の有機電界発光素子。 At least one of the electron transport layer and the electron injection layer is further made of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth metal. The material contains at least one selected from the group consisting of halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes. 14. The organic electroluminescent element according to 14.
PCT/JP2011/065282 2010-07-05 2011-07-04 Electron transport material and organic electroluminescent elements using same WO2012005214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012523860A JP5807637B2 (en) 2010-07-05 2011-07-04 Electron transport material and organic electroluminescent device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-152913 2010-07-05
JP2010152913 2010-07-05

Publications (1)

Publication Number Publication Date
WO2012005214A1 true WO2012005214A1 (en) 2012-01-12

Family

ID=45441193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065282 WO2012005214A1 (en) 2010-07-05 2011-07-04 Electron transport material and organic electroluminescent elements using same

Country Status (3)

Country Link
JP (1) JP5807637B2 (en)
TW (1) TWI498321B (en)
WO (1) WO2012005214A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107874A (en) * 2011-10-27 2013-06-06 Jnc Corp Electron transport material and organic electroluminescent element using the same
WO2013114941A1 (en) * 2012-02-03 2013-08-08 Jnc株式会社 Anthracene derivative and organic electroluminescent element using same
JP2013177375A (en) * 2012-02-06 2013-09-09 Jnc Corp Electron transport material, and organic electroluminescent element using the same
JP2013189424A (en) * 2012-02-17 2013-09-26 Semiconductor Energy Lab Co Ltd Bipyridine compound, light-emitting element material, organic semiconductor material, light-emitting element, display module, lighting module, light-emitting device, lighting device, display device and electronic device
JP2013227251A (en) * 2012-04-25 2013-11-07 Jnc Corp Electron transport material and organic electroluminescent element using the same
KR20140082345A (en) * 2012-12-24 2014-07-02 에스에프씨 주식회사 Antracene derivatives having heteroaryl substituted naphthyl group and organic light-emitting diode including the same
KR20140090411A (en) * 2013-01-09 2014-07-17 에스에프씨 주식회사 Asymmetric antracene derivatives having two naphthyl groups and organic light-emitting diode including the same
JP2015051966A (en) * 2013-08-07 2015-03-19 Jnc株式会社 Electron transport material and organic electroluminescent element using the same
KR101521101B1 (en) * 2013-01-25 2015-05-18 에스에프씨 주식회사 Organic light-emitting diode including aryl substituted antracene derivatives
KR101554591B1 (en) * 2013-01-25 2015-09-21 에스에프씨 주식회사 Organic light-emitting diode including aryl substituted antracene derivatives
US20160308137A1 (en) * 2015-04-20 2016-10-20 Sfc Co., Ltd. Organic light emitting diode
KR20210101173A (en) * 2014-08-19 2021-08-18 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting display device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060374A1 (en) * 2010-11-04 2012-05-10 Jnc株式会社 Electron transport material and organic electroluminescence element using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282270A (en) * 2002-03-25 2003-10-03 Konica Corp Organic electroluminescent device and display using the same
WO2004063159A1 (en) * 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
JP2006045503A (en) * 2004-07-09 2006-02-16 Chisso Corp Luminescent material and organic electroluminescent element using the same
JP2009256352A (en) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd Bipyridine-based compound and organic light-emitting element having organic membrane containing it
JP2010168363A (en) * 2008-12-25 2010-08-05 Chisso Corp Anthracene derivative having pyridylnaphthyl group and organic electroluminescent device
WO2010137678A1 (en) * 2009-05-29 2010-12-02 チッソ株式会社 Electron transporting material and organic electroluminescent device using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282270A (en) * 2002-03-25 2003-10-03 Konica Corp Organic electroluminescent device and display using the same
WO2004063159A1 (en) * 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
JP2006045503A (en) * 2004-07-09 2006-02-16 Chisso Corp Luminescent material and organic electroluminescent element using the same
JP2009256352A (en) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd Bipyridine-based compound and organic light-emitting element having organic membrane containing it
JP2010168363A (en) * 2008-12-25 2010-08-05 Chisso Corp Anthracene derivative having pyridylnaphthyl group and organic electroluminescent device
WO2010137678A1 (en) * 2009-05-29 2010-12-02 チッソ株式会社 Electron transporting material and organic electroluminescent device using same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107874A (en) * 2011-10-27 2013-06-06 Jnc Corp Electron transport material and organic electroluminescent element using the same
JPWO2013114941A1 (en) * 2012-02-03 2015-05-11 Jnc株式会社 Anthracene derivative and organic electroluminescence device using the same
WO2013114941A1 (en) * 2012-02-03 2013-08-08 Jnc株式会社 Anthracene derivative and organic electroluminescent element using same
US9478750B2 (en) 2012-02-03 2016-10-25 Jnc Corporation Anthracene derivative and organic electroluminescent element using the same
CN103958471A (en) * 2012-02-03 2014-07-30 捷恩智株式会社 Anthracene derivative and organic electroluminescent element using same
JP2013177375A (en) * 2012-02-06 2013-09-09 Jnc Corp Electron transport material, and organic electroluminescent element using the same
JP2013189424A (en) * 2012-02-17 2013-09-26 Semiconductor Energy Lab Co Ltd Bipyridine compound, light-emitting element material, organic semiconductor material, light-emitting element, display module, lighting module, light-emitting device, lighting device, display device and electronic device
JP2013227251A (en) * 2012-04-25 2013-11-07 Jnc Corp Electron transport material and organic electroluminescent element using the same
KR102002025B1 (en) * 2012-12-24 2019-07-19 에스에프씨주식회사 Antracene derivatives having heteroaryl substituted naphthyl group and organic light-emitting diode including the same
KR20140082345A (en) * 2012-12-24 2014-07-02 에스에프씨 주식회사 Antracene derivatives having heteroaryl substituted naphthyl group and organic light-emitting diode including the same
KR20140090411A (en) * 2013-01-09 2014-07-17 에스에프씨 주식회사 Asymmetric antracene derivatives having two naphthyl groups and organic light-emitting diode including the same
KR102030587B1 (en) * 2013-01-09 2019-10-10 에스에프씨주식회사 Asymmetric antracene derivatives having two naphthyl groups and organic light-emitting diode including the same
KR101521101B1 (en) * 2013-01-25 2015-05-18 에스에프씨 주식회사 Organic light-emitting diode including aryl substituted antracene derivatives
KR101554591B1 (en) * 2013-01-25 2015-09-21 에스에프씨 주식회사 Organic light-emitting diode including aryl substituted antracene derivatives
JP2015051966A (en) * 2013-08-07 2015-03-19 Jnc株式会社 Electron transport material and organic electroluminescent element using the same
KR20210101173A (en) * 2014-08-19 2021-08-18 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting display device including the same
KR102379141B1 (en) * 2014-08-19 2022-03-25 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting display device including the same
KR20220040452A (en) * 2014-08-19 2022-03-30 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting display device including the same
KR102500206B1 (en) * 2014-08-19 2023-02-15 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting display device including the same
KR101847431B1 (en) * 2015-04-20 2018-04-10 에스에프씨주식회사 An organic light emitting diode
US10483467B2 (en) 2015-04-20 2019-11-19 Sfc Co., Ltd. Organic light emitting diode
US20160308137A1 (en) * 2015-04-20 2016-10-20 Sfc Co., Ltd. Organic light emitting diode

Also Published As

Publication number Publication date
TW201202199A (en) 2012-01-16
TWI498321B (en) 2015-09-01
JPWO2012005214A1 (en) 2013-09-02
JP5807637B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5807637B2 (en) Electron transport material and organic electroluminescent device using the same
JP5533863B2 (en) Electron transport material and organic electroluminescent device using the same
JP5119929B2 (en) Novel compound and organic electroluminescence device using the same
JP5076901B2 (en) Electron transport material and organic electroluminescent device using the same
JP5176343B2 (en) Electron transport material and organic electroluminescent device using the same
JP5262192B2 (en) Electron transport material and organic electroluminescent device using the same
JP5262081B2 (en) Electron transport material and organic electroluminescent device using the same
JP5737294B2 (en) Electron transport material and organic electroluminescent device using the same
JP2008214306A (en) Electron transport material and organic electroluminescent element using the same
JP5907069B2 (en) Electron transport material and organic electroluminescent device using the same
JP5799772B2 (en) Electron transport material and organic electroluminescent device using the same
JPWO2009107651A1 (en) Substituted bipyridyl compounds and organic electroluminescent devices
JP5176366B2 (en) Novel bipyridine derivative and organic electroluminescent device containing the same
JP6402904B2 (en) Electron transport material and organic electroluminescent device using the same
JP2008156266A (en) Electron transporting material and organic electroluminescent device produced by using the same
JP5870346B2 (en) COMPOUND HAVING SUBSTITUTED ORTOTERPHENY STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
JP2013227251A (en) Electron transport material and organic electroluminescent element using the same
JP6428762B2 (en) Electron transport material and organic electroluminescent device using the same
JP6136311B2 (en) Electron transport material and organic electroluminescent device using the same
JP6070047B2 (en) Electron transport material and organic electroluminescent device using the same
JP2007291088A (en) Electron transport material and organic electroluminescence element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523860

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803548

Country of ref document: EP

Kind code of ref document: A1