WO2012003770A1 - 一种用户设备接入移动网络的系统、设备及方法 - Google Patents

一种用户设备接入移动网络的系统、设备及方法 Download PDF

Info

Publication number
WO2012003770A1
WO2012003770A1 PCT/CN2011/076522 CN2011076522W WO2012003770A1 WO 2012003770 A1 WO2012003770 A1 WO 2012003770A1 CN 2011076522 W CN2011076522 W CN 2011076522W WO 2012003770 A1 WO2012003770 A1 WO 2012003770A1
Authority
WO
WIPO (PCT)
Prior art keywords
mag
network
layer
address
mobile network
Prior art date
Application number
PCT/CN2011/076522
Other languages
English (en)
French (fr)
Inventor
毕以峰
蒋陶
霍玉臻
王志海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012003770A1 publication Critical patent/WO2012003770A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the invention relates to a fusion technology of a fixed network and a mobile network, in particular to a user equipment
  • UE A system, device, and method for accessing a mobile network. Background technique
  • EPS 3rd Generation Partnership Project
  • E-UTRAN Evolved Universal Mobile Telecommunications System Terrestrial Radio Access Network
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW/PDN GW Packet Data Network Gateway
  • HSS Home Subscriber Server
  • AAA 3GPP Authentication and Authorization Accounting
  • PCRF Policy and Charging Rules Function
  • the MME is responsible for control plane related operations such as mobility management, non-access stratum signaling processing, and user mobility management context management;
  • the S-GW is an access gateway device connected to the E-UTRAN, in the E-UTRAN and The packet data network (PDN, Packet Data Network) forwards data between the GWs and is responsible for buffering the paging waiting data.
  • the P-GW is a border gateway of the 3GPP evolved packet system and the PDN, and is responsible for implementing PDN access, and Forward data and other functions between EPS and PDN.
  • the 3GPP AAA server is simply referred to as 3GPP AAA.
  • the S-GW and the P-GW can use the General Data Transfer Platform (GTP) or the proxy mobile IPv6 ( ⁇ ).
  • GTP General Data Transfer Platform
  • proxy mobile IPv6
  • the EPS system implements interworking with the non-3GPP network through the S2a/b/c interface, and the P-GW serves as an anchor point between the 3GPP and the non-3GPP network.
  • the non-3GPP system is divided into a trusted non-3GPP IP access and an untrusted non-3GPP IP access, and the trusted non-3GPP IP access can directly interface with the P-GW through the S2a;
  • the 3GPP IP access is connected to the P-GW through an Evolved Packet Data Gateway (ePDG).
  • ePDG Evolved Packet Data Gateway
  • the interface between the ePDG and the P-GW is S2b.
  • the S2a interface supports the Mobile IPv4 (MIPv4) protocol and the ⁇ protocol; the S2b interface supports the ⁇ protocol; S2c is the interface between the UE and the P-GW, and uses the dual stack mobile IPv6 (DSMIPv6) protocol to provide control and Mobility management.
  • MIPv4 Mobile IPv4
  • ⁇ protocol the S2b interface supports the ⁇ protocol
  • S2c is the interface between the UE and the P-GW, and uses the dual stack mobile IPv6 (DSMIPv6) protocol to provide control and Mobility management.
  • DSMIPv6 dual stack mobile IPv6
  • the Policy and charging enforcement function exists in the P-GW, and the PCRF and the P-GW exchange information through the Gx interface.
  • the S-GW resides in the Bearer Binding and Event Reporting Function (BBERF) entity, and the S-GW and the PCRF pass through.
  • BBERF Bearer Binding and Event Reporting Function
  • the Gxc interface exchanges information; when the UE accesses through the trusted non-3GPP IP access system, the trusted non-3GPP IP access gateway also resides in the BBERF, and the trusted non-3GPP IP access gateway and the PCRF pass the Gxa interface. Exchange information.
  • FIG. 2 is a schematic diagram of the composition of an existing fixed network.
  • the UE passes the routing gateway (RG, Routing).
  • the access network includes a digital subscriber line access multiplexer (DSLAM), a network element such as an optical network terminal (ONT), and the external network PDN may be the Internet. Or the carrier's corporate network.
  • DLAM digital subscriber line access multiplexer
  • ONT optical network terminal
  • the UE can access the Broadband Forum AAA (BBF AAA, Broadband Forum AAA) server through the BNG/BRAS to complete the access authentication and authentication; the BNG/BRAS obtains the bearer and charging control policy from the BPCF, and completes the connection to the fixed network. Management and billing of resources.
  • BBF AAA Broadband Forum AAA
  • each interface two endpoint network elements of each interface are used as each interface.
  • the name of the port for example:
  • the interface between BNG/BRAS and BBF AAA can be called (BNG/BRAS-BBF AAA) interface;
  • BNG/BRAS-BPCF can be called (BNG/BRAS-BPCF) interface, So on and so forth.
  • the operator hopes to achieve the convergence of the fixed network and the mobile network, so that the UE can access the mobile and fixed convergence network from different access points through a unified identity. .
  • the fixed network can be accessed as a non-3GPP IP access mode of the mobile network EPS, and has different access modes such as S2a, S2b and S2c.
  • the fixed network BNG/BRAS needs to support the Mobile Anchor Gateway (MAG) in the PMIPv6 protocol.
  • MAG Mobile Anchor Gateway
  • Function which means upgrading the BNG/BRAS of the fixed network, but upgrading each BNG/BRAS of the fixed network is costly for the operator to deploy the network, and it is not realistic.
  • no one has proposed a solution that is simple and feasible and supports trusted non-3GPP IP access. Summary of the invention
  • the main purpose of the present invention is to provide a system, device, and method for a UE to access a mobile network, so that the UE can implement trusted non-3GPP IP access in a simple and feasible manner.
  • the present invention provides a system for a UE to access a mobile network, including a UE, a fixed network, and a mobile network; the system further includes a mobility anchor gateway (X-MAG) disposed between the fixed network and the mobile network; - The MAG is provided with a Y interface, and the UE is provided with a Y interface, and the X-MAG is connected to the UE through the Y interface;
  • X-MAG mobility anchor gateway
  • the X-MAG is configured to process control signaling of the UE accessing the mobile network, and to route data sent or received by the UE via the mobile network;
  • the X-MAG control plane protocol stack is provided with a Y interface control plane layer on the side connected to the UE.
  • YC the user plane protocol stack of the X-MAG is connected to the UE-side is provided with a Y interface user plane YU; the YC layer is used for carrying control plane signaling over the network protocol (IP) layer;
  • IP network protocol
  • the YU layer is used to implement double-layer IP encapsulation/decapsulation of data packets.
  • the side of the control plane protocol stack of the X-MAG is further provided with an IP layer and an underlying bearer layer, which are located under the YC layer in sequence; and the user side protocol stack of the X-MAG is connected to the UE side.
  • the IP layer and the underlying bearer layer are disposed, which are in turn located under the YU layer.
  • the X-MAG is connected to a P-GW located in a mobile network; and the P-GW side of the control plane protocol stack of the X-MAG is provided with an underlying bearer layer and an IP layer from bottom to top.
  • the PMIPv6 layer is connected to the P-GW in the user plane protocol stack of the X-MAG.
  • the bottom layer is provided with an underlying bearer layer, an IP layer, and a tunnel layer.
  • the X-MAG is connected to the 3GPP AAA server or the 3GPP AAA proxy through a BBF AAA server in the fixed network; or the X-MAG is directly connected to the 3GPP AAA or 3GPP AAA proxy.
  • the mobile network is a local network; the X-MAG is connected to a P-GW located in a local network through a local interface; the mobile network is divided into a home network and a visited network; and the X-MAG passes through a roaming interface. Connected to the P-GW located in the home network; or the X-MAG is connected to the P-GW located in the visited network through a local interface.
  • the present invention also provides an X-MAG, which is provided with a Y interface, and a YC layer is disposed on the side of the UE connected to the control plane protocol stack of the X-MAG, in the user plane protocol stack of the X-MAG.
  • the YU layer is configured to be connected to the UE.
  • the YC layer is used to carry control plane signaling on the IP layer.
  • the YU layer is used to implement double-layer IP encapsulation/decapsulation of the data packet.
  • the present invention further provides a method for a UE to access a mobile network, setting an X-M AG connected between a fixed network and a mobile network, and setting a Y interface for the X-MAG and the UE;
  • the YC layer and the YU layer are respectively set in the stack and the user plane protocol stack;
  • the UE When the UE sends data through the mobile network, the UE sends the data to the X-MAG and sends the data to the mobile network side via the X-MAG. Alternatively, the UE receives the data forwarded by the mobile network side through the X-MAG.
  • the UE When the UE exchanges control information with the mobile network, the UE sends the control signaling carrying the control information to the X-MAG, triggering the X-MAG to initiate related operations in the mobile network; or, the X-MAG receives the network element from the mobile network side. After the signaling of the self event is triggered, the downlink control information is sent to the UE.
  • the UE sends the data to the X-MAG, and sends the data to the mobile network through the X-MAG.
  • the UE uses the IP address allocated by the 3GPP core network for the uplink data as the inner source IP address and the communication peer IP.
  • the address is encapsulated as the destination IP address, and the IP address assigned to the UE by the fixed network is used as the outer source IP address and the X-MAG is used as the outer destination IP address to encapsulate the address, and then the encapsulated uplink data is transmitted through the YU layer.
  • X-MAG; X-MAG receives the packet from the UE side, decapsulates the outer source IP address and destination IP address, retains the inner source IP address and destination IP address, and then encapsulates it into the ⁇ tunnel to send ;
  • the UE receives the data forwarded by the mobile network side through the X-MAG as follows: X-MAG depacks the downlink data into PMIPv6 encapsulation, retains the inner layer source IP address and the destination IP address, and then uses the IP address assigned by the fixed network to the UE as the outer layer. The destination IP address and the address of the X-MAG are encapsulated as the outer source IP address and then transmitted to the UE through the YU layer. The UE performs decapsulation of the two-layer IP address on the received downlink data from the X-MAG. Load.
  • the UE sends the control signaling carrying the control information to the X-MAG, and triggers the X-MAG to initiate the related operations in the mobile network as: the IP address allocated by the UE to the UE for the uplink control signaling by the fixed network.
  • the source IP address and the address of the X-MAG are used as the destination IP address, and then sent to the X-MAG through the YC layer.
  • the X-MAG decapsulates the IP address and obtains the content of the control signaling.
  • the X-MAG After receiving the signaling trigger from the mobile network side network element or its own event, the X-MAG sends the downlink control signaling to the UE: X-MAG receives the signaling from the P-GW and/or 3GPP AAA of the mobile network side. Triggering, or signaling of the own event, the control signaling is encapsulated by the IP address of the UE as the destination address and the X-MAG address as the source address, and then sent to the UE; , get the control signaling content.
  • the uplink control signaling is: a PPP LCP configuration request sent by the UE to the X-MAG, or a PPP NCP configuration request, or a PPP LCP termination request, or a PPP NCP termination request;
  • the downlink control signaling is: The PPP NCP configuration response, or PPP LCP configuration response, or PPP LCP termination response, or PPP NCP termination response sent by the X-MAG to the UE.
  • the UE interacting with the mobile network further includes: performing, by the UE, access authentication of the user accessing the mobile network between the X-MAG and the 3GPP HSS/AAA.
  • the interaction control information between the UE and the mobile network includes:
  • the UE After the UE authenticates and obtains the IP address assigned by the fixed network to itself, the UE establishes a policy session with the policy and charging rule function PCRF via the fixed network;
  • the UE sends an access/attach request to the X-MAG, and carries the IP address assigned by the fixed network to the UE.
  • the X-MAG receives the request to establish an association relationship with the UE according to the IP address allocated by the fixed network to the UE.
  • the X-MAG interacts with the P-GW as the PMG6, and obtains the IP address assigned by the 3GPP core network to the UE, and sends the obtained IP address to the UE.
  • the UE completes data transmission and reception through the obtained two IP addresses.
  • the interaction control information between the UE and the mobile network includes:
  • the UE When the UE needs to go offline/de-attach or delete the PDN connection, the UE passes the Y interface to the X-MAG. Send a termination request;
  • the X-MAG interacts with the P-GW, requests to unbind the tunnel with the P-GW, and the P-GW tears down the IP-CAN session with the PCRF, and notifies the 3GPP AAA to delete the identity of the P-GW; b3.
  • the MAG returns a termination response to the UE through the Y interface, and notifies the UE that the offline/de-attach/PDN connection deletion is completed.
  • the interaction control information between the UE and the mobile network includes:
  • the UE When the UE decides to switch to the fixed network, it first obtains the IP address assigned by the fixed network to itself, and establishes a policy session with the policy and charging rule function PCRF via the fixed network;
  • the UE sends an access/attach request to the X-MAG, and carries the IP address assigned by the fixed network to the UE, and the X-MAG receives the request to establish an association relationship with the UE according to the IP address allocated by the fixed network to the UE;
  • the X-MAG interacts with the P-GW as the PMIPv6, and obtains the IP address assigned by the 3GPP core network to the UE, and sends the obtained IP address to the UE;
  • the P-GW initiates a 3GPP access network resource deactivation process.
  • the UE and the mobile network interaction control information includes:
  • the UE When the UE needs to attach a PDN connection, it sends a PPP NCP configuration request to the X-MAG, and performs PPP NCP negotiation with the X-MAG.
  • the X-MAG After receiving the PPP NCP configuration request sent by the UE, the X-MAG obtains the IP address allocated by the fixed network to the UE;
  • the X-MAG interacts with the P-GW as the PMG of the PMIPv6, requests the tunnel binding with the P-GW, and obtains the IP address assigned by the 3GPP core network to the UE;
  • X-MAG completes PPP NCP negotiation with the UE through the Y interface, and passes PPP NCP. The configuration response will be sent to the UE.
  • the mobile anchor gateway X-MAG for implementing trusted non-3GPP IP access is set between the fixed network and the mobile network, so that the UE can pass the X
  • the -MAG implements trusted non-3GPP IP access via a fixed network, which in turn accesses the EPS of the mobile network.
  • the present invention does not need to improve each BNG/BRAS in the fixed network to support the MAG function in the ⁇ , as long as the X-MAG is added between the fixed network and the mobile network, and the MAG of the PM-IPv6 is supported by the X-MAG.
  • the function can realize the UE accessing the mobile network; not only making the network layout simple and convenient, easy to implement, but also reducing the operating cost for the operator.
  • Figure 1 is a schematic diagram of an EPS system architecture
  • FIG. 2 is a schematic diagram of a composition structure of an existing fixed network
  • FIG. 3 is a schematic diagram of a control plane protocol stack of an X-MAG and its associated network element according to the present invention
  • FIG. 4 is a schematic diagram of a user plane protocol stack of an X-MAG and its associated network element according to the present invention
  • FIG. 6 is a schematic diagram of a second network architecture of a UE accessing a mobile network according to the present invention.
  • FIG. 7 is a schematic diagram of a third network architecture of a UE accessing a mobile network according to the present invention.
  • FIG. 8 is a schematic diagram of a fourth network architecture of a UE accessing a mobile network according to the present invention.
  • FIG. 9 is a schematic diagram of a fifth network architecture of a UE accessing a mobile network according to the present invention.
  • FIG. 10 is a schematic diagram of a sixth network architecture of a UE accessing a mobile network according to the present invention
  • FIG. 11 is a schematic diagram of a process for implementing UE access/attachment in a network convergence architecture according to the present invention
  • FIG. 13 is a schematic diagram of an implementation process of a UE switching from a 3GPP IP access network to a fixed network in a network convergence architecture according to the present invention
  • FIG. 14 is a schematic diagram of an implementation process for establishing an additional PDN connection establishment in a network convergence architecture according to the present invention.
  • the basic idea of the present invention is: setting a mobility anchor gateway X-MAG for implementing trusted non-3GPP IP access, connecting between a fixed network and a mobile network, and setting a Y interface between the UE and the X-MAG, Enables the UE to access the EPS of the mobile network through the X-MAG via a fixed network in a trusted non-3GPP IP access manner.
  • the X-MAG is connected between the BNG/BRAS of the fixed network and the P-GW of the mobile network, and is provided with a Y interface; and the UE is enhanced with the function of supporting the Y interface, between the UE and the X-MAG. Interworking through the Y interface; the X-MAG is used to process control signaling of the UE accessing the mobile network, and routing data that the UE sends out or receives via the mobile network.
  • the network system of the present invention supports user access/attachment, multi-PDN connection establishment, user offline/de-attachment, and user switching operations between the 3GPP access network and the fixed network.
  • the protocol stack of the X-MAG needs to be set, and the protocol stack of the UE is improved, so that the UE and the X-MAG support the control plane signaling carried on the IP layer on the Y interface. Supports two-layer IP encapsulation/decapsulation of data packets.
  • the protocol stacks of the X-MAG, the UE, the P-GW, and the BNG/BRAS are respectively set as shown in FIG. 3 and FIG. 4, wherein FIG.
  • control plane protocol stack setting of X-MAG and its related network elements Figure 4 shows the user plane protocol stack settings of X-MAG and its related network elements.
  • the control plane protocol stack of the X-MAG includes at least an L1/L2 (Layer 1 / Layer 2) layer and an IP layer, and an L1/L2 layer is an underlying bearer layer;
  • the ⁇ layer is carried on the IP layer, that is, the X-MAG and the P-GW interact with each other through the PMIPv6 layer on the IP layer; the side connected to the UE is carried in the IP.
  • the layer is the YC layer, namely: the control plane of the Y interface, used to carry control plane signaling over the IP layer, that is, the X-MAG and the UE pass the YC layer above the IP layer.
  • Interactive control signaling e.g., in the UE In the protocol stack on the side, the YC layer is also added on the IP layer to implement control signaling interaction between the UE and the X-MAG.
  • the control signaling encapsulates the IP address allocated by the 3GPP core network in the IP layer, and then encapsulates the IP address allocated by the fixed network in the YC layer, and then transmits it to the YC layer on the X-MAG side;
  • the YC layer on the X-MAG side performs decapsulation processing on the received control signaling from the UE side YC layer, removes the outer IP address, and retains the inner layer IP address, and then encapsulates it into the PMIPv6 tunnel and sends it to the P-GW.
  • the YC layer decapsulates the control signaling of the PMIPv6 tunnel from the P-GW, retains the inner layer IP address, and then encapsulates it with the IP address allocated by the fixed network, and transmits it to the YC layer of the UE side;
  • the YC layer on the UE side performs decapsulation processing on the received control signaling from the X-MAG side YC layer, removes the outer IP address, and then sends it to the IP layer of the UE side for subsequent processing.
  • the processing of the IP layer and the L1/L2 layer on the UE side and the X-MAG side are the same as those in the prior art.
  • the user plane protocol stack of the X-MAG includes at least an L1/L2 layer and an IP layer.
  • the side connected to the P-GW is carried on the IP layer, which is a tunnel layer. That is to say, the X-MAG and the P-GW interact through the tunnel layer on the IP layer; the side connected to the UE, and the YU layer carried on the IP layer, namely: the user plane of the Y interface , for implementing double-layer IP encapsulation/de-encapsulation of data packets, namely: encapsulation/de-encapsulation of IP over IP data; that is, X-MAG and UE exchange data through the YU layer above the IP layer.
  • a Y-U layer is also added on the IP layer to implement data interaction between the UE and the X-MAG.
  • the IP over IP data means that the transmission data as the payload is encapsulated with two layers of IP addresses when transmitting, one is an IP address allocated by the 3GPP core network, and the other is an IP address allocated by the fixed network.
  • the uplink data packet encapsulates the IP address allocated by the 3GPP core network in the IP layer, and then encapsulates the IP address allocated by the fixed network in the YU layer, and then transmits the IP address to the YU layer on the X-MAG side; , the YU layer on the X-MAG side receives the YU from the UE side
  • the data packet of the layer is decapsulated, the outer IP address is removed, the inner IP address is reserved, and then encapsulated into the tunnel and sent to the P-GW.
  • the YU layer decapsulates the downlink data of the tunnel from the P-GW, retains the inner IP address, and then encapsulates it with the IP address allocated by the fixed network, and then transmits it to the YU layer of the UE side; correspondingly, The YU layer on the UE side performs decapsulation processing on the received downlink data from the X-MAG side YU layer, removes the outer IP address, and then sends it to the IP layer of the UE side for subsequent processing.
  • the processing of the IP layer and the L1/L2 layer on the UE side and the X-MAG side are the same as those in the prior art.
  • the X-MAG Based on the setting of the UE side and the X-MAG side control plane and the user plane protocol stack, the X-MAG supports the connection with the UE, the P-GW, the BNG/BRAS, and supports the MAG function in the PMIPv6 protocol to implement the packet routing and forwarding function;
  • the X-MAG can also receive the trigger signaling/access request signaling sent by the UE, and obtain the IP address allocated by the fixed network for the UE from the received signaling; or obtain the signaling from the trigger signaling/access request signaling.
  • Source IP address establish the correspondence between the source IP address and the PMIPv6 tunnel;
  • the X-MAG When the X-MAG receives the trigger signaling/access request signaling sent by the UE, it can parse the parameters carried in the received signaling, and can also send a lifetime zero (PBU) message to the P-GW, and the PBU The message carries all the parameters in the access request signaling.
  • the trigger signaling/access request signaling sent by the UE to the X-MAG may or may not carry the IP address and terminal acquired by the UE on the fixed network.
  • the X-MAG can also receive the offline request message sent by the UE, and parse the parameters carried in the message, and send the PBU message to the P-GW.
  • the PBU message carries the parameters in all/part of the access request message; correspondingly, the UE Sending an offline request message to the X-MAG, which may carry parameters such as a terminal identifier and an access network identifier, and the UE also receives an offline request response message;
  • the X-MAG can also receive a Binding Revocation Indication (BRI) message sent by the P-GW, and parse the parameters carried in the message, and send a corresponding disconnect request to the UE.
  • BRI Binding Revocation Indication
  • the X-MAG can also implement the P-GW selection function; the X-MAG is also responsible for address forwarding and delivery in the IPv4 address and IPv6 address prefix allocation process of the UE;
  • the X-MAG can be directly connected to the 3GPP AAA/3GPP AAA proxy (Proxy), or can be authenticated based on 3GPP user access, and acts as an authenticator. Accordingly, the UE supports 3GPP-based user access authentication.
  • the connection between the specific X-MAG and the 3GPP AAA/3GPP AAA proxy or the BBF AAA server/proxy can be used as the protocol stack corresponding to the connected network element, and how the protocol stack is set as the prior art.
  • the Y interface Based on the YC layer of the control plane protocol stack and the YU layer of the user plane protocol stack, the Y interface supports bearer control plane signaling over the IP layer; supports IP over IP data encapsulation/decapsulation; supports access request/response signaling, Transmission of signaling such as offline request/response signaling.
  • the support encapsulation refers to: for the uplink data packet, the UE encapsulates the data packet by using the IP address allocated by the 3GPP core network, and then fixes the IP address assigned by the network on the outer package; after the data reaches the X-MAG, X- The MAG strips the outermost IP address and encapsulates it into the PMIPv6 tunnel between the X-MAG and the P-GW and sends it to the P-GW.
  • the support decapsulation refers to: For the downlink data packet, the P-GW After the X-MAG is removed, the X-MAG removes the PMIP tunnel header of the data, and encapsulates the local IP address allocated by the fixed network in the outer layer of the data packet, and routes the packet to the UE. After receiving the data packet, the UE sequentially strips the data packet. The IP addresses of the outer and outer outer layers get the payload.
  • the X-MAG, Y interface, YU layer, and YC layer are referred to herein as a name for a specific gateway, interface, and protocol layer in the present invention. In practical applications, You can use any other name, as long as the corresponding functions work the same.
  • the X-MAG may implement the server implementation, or may add the functions described above to the existing mobile anchor gateway, such as: adding a YC layer, a YU layer, and the like to the protocol stack.
  • the mobile network may be an EPS, and includes a roaming scenario and a non-roaming scenario; in a non-roaming scenario, the mobile network is referred to as a local network; in a roaming scenario, the mobile network is classified into a home network. And the visited network; correspondingly, the X-MAG is connected to the fixed network and the mobile network, and the network convergence architecture is configured in different ways, which are applicable to the non-roaming scene and the roaming scene respectively.
  • the above X-MAGs can also be classified as part of a fixed or mobile network depending on the deployment of the network. For example, add X-MAG to an existing mobile network or join an existing fixed network. When the X-MAG joins a network, the X-MAG is not between the fixed network and the mobile network, but is part of the network. Both the fixed network and the mobile network in the present invention refer to existing fixed networks and mobile networks.
  • X-MAG can also be integrated into the existing BNG/BRAS as an enhanced module, for example: Rejecting the BNG/BRAS machine without changing or slightly changing the BNG/BRAS
  • the above X-MAG module implements the above solution.
  • Such an implementation method is simple, convenient, easy to implement, and has the advantage of reducing operating costs for the operator.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the UE is connected to the EPS of the mobile network through the X-MAG.
  • the UE accesses the EPS core network through a fixed network, where the fixed network is used as the EPS.
  • Trusted non-3GPP access the network architecture shown in Figure 5 is a network architecture for non-roaming scenarios.
  • the X-MAG is connected to the 3GPP AAA through a BBF AAA server/proxy (Server/Proxy) to implement user access authentication based on 3GPP AAA.
  • the X-MAG is set between the P-GW of the mobile network and the BNG/BRAS of the fixed network, supports the MAG function in the PMIPv6 protocol, and is connected to the UE through the Y interface; the control of the X-MAG and the UE
  • the face protocol stack and the user protocol stack settings are respectively shown in FIG. 3 and FIG. 4.
  • the YC layer and the YU layer are respectively disposed on the X-MAG and the UE control plane protocol stack and the IP layer of the user protocol stack, respectively. Implement control signaling and users between X-MAG and UE The transmission of data.
  • the UE when the UE sends data out of the mobile network, the UE sends the data to the X-MAG, and sends the data to the mobile network 4 via the XM AG; or the UE transmits the data through the X-MAG: forwarded by the mobile network side.
  • Data when the UE sends data out of the mobile network, the UE sends the data to the X-MAG, and sends the data to the mobile network 4 via the XM AG; or the UE transmits the data through the X-MAG: forwarded by the mobile network side.
  • the UE When the UE exchanges control information with the mobile network, the UE sends control signaling carrying the control information to the X-MAG, triggering the X-MAG to initiate related operations in the mobile network; or, the X-MAG receives the mobile network side network. After the signaling of the element or its own event is triggered, the downlink control information is sent to the UE.
  • the UE sends the data to the X-MAG, and sends the data to the mobile network through the X-MAG.
  • the UE uses the IP address allocated by the 3GPP core network for the uplink data as the inner layer source IP address and the communication peer IP address.
  • the IP address is encapsulated as the destination IP address, and the IP address assigned to the UE by the fixed network is used as the outer source IP address and the X-MAG is used as the outer destination IP address for encapsulation.
  • the encapsulated uplink data is transmitted to the YU layer.
  • X-MAG; X-MAG receives the packet from the UE side, decapsulates the outer source IP address and the destination IP address, retains the inner source IP address and destination IP address, and then encapsulates it into the ⁇ tunnel for transmission;
  • the UE receives the data forwarded by the mobile network side through the X-MAG as follows: X-MAG depacks the downlink data into PMIPv6 encapsulation, retains the inner layer source IP address and the destination IP address, and then uses the IP address assigned by the fixed network to the UE as the outer layer. The destination IP address and the address of the X-MAG are encapsulated as the outer source IP address and then transmitted to the UE through the YU layer. The UE performs decapsulation of the two-layer IP address on the received downlink data from the X-MAG. Load.
  • the UE sends the control signaling carrying the control information to the X-MAG, and triggers the X-MAG to initiate the related operations in the mobile network as follows:
  • the IP address assigned by the UE to the UE for the uplink control signaling using the fixed network is the source IP address, X.
  • the X-MAG decapsulates the IP address, obtains the content of the control signaling, and according to the content of the control signaling.
  • the X-MAG After receiving the signaling trigger from the mobile network side network element or its own event, the X-MAG sends the downlink control signaling to the UE: X-MAG receives the signaling from the P-GW and/or 3GPP AAA of the mobile network side. Triggering, or signaling of the own event, the control signaling is encapsulated by the IP address of the UE as the destination address and the X-MAG address as the source address, and then sent to the UE; , get the control signaling content.
  • the uplink control signaling may be: a PPP LCP configuration request sent by the UE to the X-MAG, or a PPP NCP configuration request, or a PPP LCP termination request, or a PPP NCP termination request, and the like;
  • the downlink control signaling may be: a PPP NCP configuration response sent by the X-MAG to the UE, or a PPP LCP West Set response, or a PPP LCP termination response, or a PPP NCP termination response, and the like.
  • Embodiment 2 a PPP NCP configuration response sent by the X-MAG to the UE, or a PPP LCP West Set response, or a PPP LCP termination response, or a PPP NCP termination response, and the like.
  • This embodiment is a second network architecture in which the UE accesses the EPS of the mobile network through the X-MAG.
  • the UE accesses the EPS core network through a fixed network, where the fixed network is used as the EPS.
  • Trusted non-3GPP access the network architecture shown in Figure 6 is a network architecture for non-roaming scenarios.
  • the X-MAG is not connected to the 3GPP AAA through the BBF AAA server/proxy, but is directly connected to the 3GPP AAA to implement user access authentication based on 3GPP AAA.
  • the X-MAG is set between the P-GW of the mobile network and the BNG/BRAS of the fixed network, supports the MAG function in the PMIPv6 protocol, and is connected to the UE through the Y interface; the control of the X-MAG and the UE
  • the face protocol stack and the user protocol stack settings are respectively shown in FIG. 3 and FIG. 4.
  • the YC layer and the YU layer are respectively disposed on the X-MAG and the UE control plane protocol stack and the IP layer of the user protocol stack, respectively.
  • the transmission of control signaling and user data between the X-MAG and the UE is implemented.
  • the UE when the UE sends data out via the mobile network, the UE sends the data to the UE.
  • X-MAG sent to the mobile network 4 via the X-MAG; or, the UE receives the data forwarded by the mobile network side through the X-MAG;
  • the UE When the UE exchanges control information with the mobile network, the UE sends control signaling carrying the control information to the X-MAG, triggering the X-MAG to initiate related operations in the mobile network; or, the X-MAG receives the mobile network side network. After the signaling of the element or its own event is triggered, the downlink control information is sent to the UE.
  • Embodiment 3 The specific control information interaction between the UE and the X-MAG and the data forwarding process are the same as those in the first embodiment.
  • Embodiment 3 The specific control information interaction between the UE and the X-MAG and the data forwarding process are the same as those in the first embodiment.
  • This embodiment is a third network architecture in which the UE accesses the EPS of the mobile network through the X-MAG.
  • the UE accesses the EPS core network through a fixed network, where the fixed network is used as the EPS. Trusted non-3GPP access.
  • the network architecture shown in Figure 7 is a roaming scenario, a home routing network architecture, including a home public land mobile network (hPLMN, home public Land Mobile Network) and a visited PLMN (vPLMN), BPCF is connected by hPCRF and hPCRF, and vPCRF and hPCRF are roamed.
  • hPLMN home public Land Mobile Network
  • vPLMN visited PLMN
  • the interface S9 interface is connected; the BBF AAA server/proxy is connected to the 3GPP AAA through the 3GPP AAA proxy, and the HSS; correspondingly, in this embodiment, the X-MAG is connected to the 3GPP AAA proxy and the 3GPP AAA through the BBF AAA server/proxy. , Implement 3GPP AAA-based user access authentication.
  • the P-GW is selected to be placed in the home network, and the X-MAG is connected to the P-GW through the roaming interface.
  • the roaming interface is an S2a interface.
  • the protocol stack setting, the interface function, and the uplink and downlink transmission processes of the X-MAG and the UE are the same as those described in the first embodiment.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the UE accesses the EPS of the mobile network through the X-MAG.
  • the UE accesses the EPS core network through a fixed network, where the UE is fixed.
  • the network acts as a trusted non-3GPP access to the EPS.
  • the network architecture shown in Figure 8 is a network architecture of roaming scenarios and home routes, including hPLMN and vPLMN.
  • the P-GW is selected to be placed in the home network, and the X-MAG is connected to the P-GW through the roaming interface S2a interface; the BPCF passes the vPCRF and the hPCRF. Connected, the vPCRF and hPCRF are connected through the roaming interface S9 interface.
  • the X-MAG is not connected to the 3GPP AAA proxy and the 3GPP AAA through the BBF AAA server/proxy, but is directly connected to the 3GPP AAA through the 3GPP AAA proxy, and implements the 3GPP AAA based.
  • User access authentication correspondingly, the BBF AAA server/proxy is not connected to the 3GPP AAA Proxy.
  • the protocol stack setting, the interface function, and the uplink and downlink transmission processes of the X-MAG and the UE are the same as those described in the second embodiment.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the UE accesses the EPS of the mobile network through the X-MAG.
  • the UE accesses the EPS core network through a fixed network, where the fixed network is used as the EPS. Trusted non-3GPP access.
  • the network architecture shown in Figure 9 is basically the same as that in the third embodiment, including hPLMN and vPLMN.
  • BPCF is connected to hPCRF through vPCRF, vPCRF and hPCRF are connected through roaming interface S9 interface; BBF AAA server/proxy through 3GPP AAA Proxy and 3GPP AAA, and HSS
  • the X-MAG is connected to the 3GPP AAA proxy and the 3GPP AAA through the BBF AAA server/proxy to implement user access authentication based on 3GPP AAA.
  • the P-GW in this embodiment is selected to be placed in the visited network, and the X-MAG is connected to the P-GW through the local interface.
  • the protocol stack setting, the interface function, and the uplink and downlink transmission processes of the X-MAG and the UE are the same as those described in the first embodiment.
  • This embodiment is a sixth network architecture in which the UE accesses the EPS of the mobile network through the X-MAG.
  • the UE accesses the EPS core network through a fixed network, where the fixed network serves as a trusted non-3GPP access of the EPS.
  • the network architecture shown in Figure 10 is basically the same as that in the fifth embodiment, including hPLMN and vPLMN.
  • the P-GW is selected to be placed in the visited network, and the X-MAG is connected to the P-GW through the local interface.
  • the BPCF is connected to the hPCRF through the vPCRF, vPCRF and hPCRF. Connected through the S9 interface of the roaming interface.
  • the X-MAG is not connected to the 3GPP AAA proxy and the 3GPP AAA through the BBF AAA server/proxy, but is directly connected to the 3GPP AAA through the 3GPP AAA proxy, and implements the 3GPP AAA based.
  • User access authentication correspondingly, the BBF AAA server/proxy is not connected to the 3GPP AAA Proxy.
  • the protocol stack setting, the interface function, and the uplink and downlink transmission processes of the X-MAG and the UE are the same as those described in the second embodiment.
  • the scenario in which the UE accesses the mobile network has different processes according to the operation of the UE, such as: UE access/attachment process, UE offline/de-attachment process, and UE from the 3GPP IP access network.
  • the process of the UE access/attach process, the UE offline/de-attachment process, the UE handover from the 3GPP IP access network to the fixed network, and the process of establishing an additional PDN connection are respectively described in detail in FIG. 11 to FIG. 14 respectively.
  • the process is applicable to various network architectures for roaming, non-roaming scenarios.
  • the BBF AAA in the figure refers to the BBF AAA server/agent.
  • FIG. 11 is a flowchart of implementing UE access/attachment in a network convergence architecture according to the present invention.
  • the network architecture is based on setting X-MAG between the mobile network and the fixed network, and the X-MAG can implement the MAG function in the PMIPv6, X-
  • the MAG interacts with the UE through the set Y interface, so that the UE accesses/attaches to the EPS core network through the fixed network, and the fixed network acts as a trusted non-3GPP IP access of the EPS.
  • the UE access/attach process of the present invention is as shown in FIG. 11, and includes the following steps: Step 1101: The UE passes the authentication according to the existing fixed network authentication mode.
  • Step 1102 The UE establishes a local connection with the fixed network, and obtains a fixed network to allocate itself.
  • Step 1103 Upon receiving the triggering of the local connection establishment step and/or the authentication step, the BNG/BRAS initiates a fixed network policy session establishment request to the BPCF, and the BNG/BRAS establishes a session for applying/delivering a dynamic policy with the BPCF, so as to Assignment and user acceptance enable accurate control.
  • Step 1104 Based on the triggering of the operation in step 1103, the BPCF initiates a policy session establishment request to the PCRF to establish a policy session.
  • the established policy session is similar to the gateway control session defined in 3GPP.
  • the BPCF obtains the relevant QoS and charging policy from the policy unified control point PCRF.
  • the BPCF passes the vPCRF to reach the hPCRF.
  • the vPCRF does not exist.
  • Step 1105a The UE sends a PPP Link Control Protocol (LCP) configuration request to the X-MAG through the Y interface, and performs PPP LCP negotiation with the X-MAG.
  • LCP Link Control Protocol
  • the PPP LCP configuration request in this embodiment belongs to an access/attach request.
  • Step 1105b The UE performs access authentication for the user access mobile network based on the X-MAG and the 3GPP HSS/AAA.
  • the access authentication for the user is completed by using the 3GPP-based authentication mode
  • the 3GPP-based authentication mode may be EAP-AKA.
  • Step 1105c The UE sends a PPP NCP configuration request to the X-MAG, and performs PPP NCP negotiation with the X-MAG.
  • the configuration request carries at least parameters such as a mobile network ID and an access point name (APN) of the UE;
  • the PPP NCP configuration request sent by the UE to the X-MAG may carry or not carry the IP acquired by the UE on the fixed network. Address IP1.
  • Step 1106 After receiving the PPP NCP configuration request sent by the UE, the X-MAG parses the IP address IP1 assigned by the fixed network carried in the signaling to the UE, or obtains the IP address IP obtained by the UE on the fixed network from the signaling header. 1; After the subsequent PMIPv6 tunnel establishment is completed, X-MAG The correspondence between IP1 and PMIPv6 addresses is established and stored.
  • Step 1107 The X-MAG, as the MAG of the PMIPv6, sends a PBU message to the P-GW to request tunnel binding with the P-GW.
  • Step 1108 After receiving the PBU message, the P-GW creates a Binding Cache Entry (BCE) and allocates an IP address IP2 allocated by the 3GPP core network to the UE.
  • BCE Binding Cache Entry
  • Step 1109 The P-GW sends an APN/P-GW identity pair to the 3GPP HSS/AAA through Diameter signaling, and stores the identifier of the P-GW.
  • Step 1110 The P-GW responds to the X-MAG with a PBA message and carries the PBA message in the PBA message.
  • IP2 The IP address assigned by the 3GPP core network to the UE is IP2.
  • Step 1111 The X-MAG completes the PPP NCP negotiation with the UE through the Y interface, and sends the IP address IP2 assigned to the UE to the UE through the PPP NCP configuration response.
  • Step 1112 If the PCC policy in the PCRF is changed, the PCRF sends the updated PCC policy to the BPCF through the policy session between the established BPCF and the PCRF, and the BPCF also updates the policy to the BNG/BRAS according to the actual situation, BNG. /BRAS performs the appropriate actions based on the updated policy.
  • Step 1113 Complete transmission of the data service
  • the UE can complete the data transmission according to the acquired IP1 and IP2, and the data between the UE and the external PDN is encapsulated in the IP over IP encapsulation format between the X-MAG and the UE, specifically:
  • the UE For the uplink data packet, the UE encapsulates the data packet with the IP address IP2 assigned by the 3GPP core network, and then fixes the IP address IP1 assigned by the network on the outer package; after the data reaches the X-MAG, the X-MAG sets the outermost address IP1. Stripping, and re-encapsulating the data into the PMIPv6 tunnel between the X-MAG and the P-GW, and sending it to the P-GW. After the P-GW arrives at the X-MAG, the X-MAG removes the PMIPv6 tunnel header from the received data, and encapsulates the local IP address IP1 assigned to the UE in the outer layer of the packet. After receiving the data packet, the UE strips the IP addresses IP 1 and IP2 of the outermost layer and the outer layer in turn to obtain a payload.
  • FIG. 12 is a flow chart of implementing offline/de-attachment of a UE in a network convergence architecture according to the present invention.
  • the network architecture is based on setting an X-MAG between a mobile network and a fixed network, and the X-MAG can implement the MAG function in the ⁇ , X-
  • the MAG interacts with the UE through the set Y interface.
  • the offline/de-attachment process is after the UE accesses/attaches to the EPS core network through the fixed network, and then offline/de-attaches or deletes a PDN connection from the fixed network.
  • the offline/de-attachment process of the UE from the mobile network is as shown in FIG. 12, and includes the following steps:
  • Step 1201 The UE accesses the EPS core network through a fixed network, and establishes at least one PDN connection.
  • Step 1202 The UE sends a PPP session termination request to the X-MAG to request offline/de-attach/delete the PDN connection.
  • the PPP session is an LCP or an NCP.
  • the PPP session termination request is a PPP LCP termination request or a PPP NCP termination request.
  • the UE may initiate offline/de-attach, or delete some for some reason. The operation of the PDN connection.
  • Step 1203 The X-MAG sends a PBU message to the P-GW, and carries a lifetime zero indication, and requests to cancel the tunnel binding with the P-GW.
  • Step 1204 The P-GW tears down the IP-CAN session with the PCRF.
  • Step 1205 The P-GW sends the APN/P-GW to the 3GPP HSS/AAA through Diameter signaling.
  • the identity pair notifies the 3GPP HSS/AAA to delete the identity of the P-GW.
  • Step 1206 The P-GW responds to the X-MAG with a PBA message.
  • Step 1207 The X-MAG returns a PPP termination response to the UE through the Y interface, and notifies the UE that the offline/de-attach/PDN connection deletion is completed.
  • the PPP termination response may be a PPP LCP termination response, or a PPP NCP termination response;
  • the notification UE offline/de-attach/PDN connection deletion includes: notifying the UE that the PPP session is removed and the PDN connection is deleted.
  • Step 1208 If the detachment/offline operation is performed, the fixed network needs to complete the local connection release and the local resource release; if only one PDN connection is deleted, only the corresponding resource is released, and the resources of other PDN connections are retained.
  • FIG. 13 is a flow chart of implementing a handover of a UE from a 3GPP access network to a fixed network in a network convergence architecture according to the present invention.
  • the network architecture is based on setting an X-MAG between a mobile network and a fixed network, and the X-MAG can implement PMIPv6.
  • the MAG function allows the X-MAG to interact with the UE through the set Y interface.
  • the handover process refers to that after the UE has accessed/attached to the EPS core network through the fixed network, it needs to switch to the fixed network for some reasons.
  • the process for the UE to switch from the 3GPP access network to the fixed network is as shown in FIG. 13, and includes the following steps:
  • Step 1301 The UE completes trusted 3GPP IP access through a fixed network.
  • Step 1302 The UE decides to switch to the fixed network for some reason
  • the reason may be that the 3GPP radio access signal is deteriorated or the like.
  • Step 1303 The UE completes local access authentication and authentication via BNG/BRAS and BBF AAA.
  • Step 1304 The UE establishes a local connection with the BNG/BRAS on the fixed network, and obtains the local IP address IP1 allocated by the fixed network for itself.
  • Step 1305 Upon receiving the trigger of the local connection establishment step and/or the authentication step, the BNG/BRAS initiates a fixed network policy session establishment request to the BPCF; the BNG/BRAS establishes an application/send with the BPCF. Dynamic policy sessions for accurate control of network resource allocation and user admission.
  • Step 1306 Based on the triggering of step 1305, the BPCF initiates a policy session establishment request to the PCRF to establish a policy session.
  • the policy session is similar to the gateway control session defined in the 3GPP; through the session, the BPCF obtains the relevant QoS and charging policy from the policy unified control point PCRF;
  • BPCF passes through the vPCRF to reach the hPCRF; in the non-roaming scenario, there is no vPCRF.
  • Step 1307a The UE sends a PPP LCP configuration request to the X-MAG through the Y interface, and performs PPP LCP negotiation with the X-MAG.
  • the PPP LCP configuration request in this embodiment belongs to an access/attach request.
  • Step 1307b The UE performs access authentication for the user access mobile network based on the X-MAG and the 3GPP HSS/AAA.
  • the access authentication for the user is completed by using the 3GPP-based authentication mode
  • the 3GPP-based authentication mode may be EAP-AKA.
  • Step 1307c The UE sends a PPP NCP configuration request to the X-MAG, and performs PPP NCP negotiation with the X-MAG.
  • the configuration request carries at least a parameter of the mobile network ID and the APN of the UE.
  • the PPP NCP configuration request sent by the UE to the X-MAG may carry or not carry the IP address IP1 acquired by the UE on the fixed network.
  • Step 1308 After receiving the PPP NCP configuration request sent by the UE, the X-MAG parses the IP address IP1 assigned by the fixed network carried in the signaling to the UE, or obtains the IP address IP obtained by the UE on the fixed network from the signaling header. After the subsequent establishment of the PMIPv6 tunnel is complete, the X-MAG establishes the mapping between the IP1 and PMIPv6 addresses and stores them.
  • Step 1309 The X-MAG, as the MAG of the PMIPv6, sends a PBU message to the P-GW to request tunnel binding with the P-GW.
  • Step 1311 The P-GW responds to the X-MAG with a PBA message, and carries the IP address IP2 allocated by the 3GPP core network to the UE in the PBA message.
  • Step 1312 The X-MAG completes the PPP NCP negotiation with the UE through the Y interface, and sends the IP address IP2 assigned to the UE to the UE through the PPP NCP configuration response.
  • Step 1313 If the PCC policy in the PCRF is changed, the PCRF sends the updated PCC policy to the BPCF through the policy session between the established BPCF and the PCRF.
  • the BPCF also updates the policy to the BNG/BRAS according to the actual situation, BNG. /BRAS performs the appropriate actions based on the updated policy.
  • Step 1314 The P-GW initiates a 3GPP access network resource deactivation process.
  • the related resources of the 3GPP access network are deactivated or deleted, and this step is a prior art.
  • FIG. 14 is a flowchart of implementing an additional PDN connection in a network convergence architecture according to the present invention.
  • the network architecture is based on setting an X-MAG between a mobile network and a fixed network, and the X-MAG can implement the MAG function in the ⁇ , X-MAG. Interact with the UE through the set Y interface.
  • the UE can access multiple PDNs at the same time, establish multiple PDN connections, and obtain multiple/pair IPv4/IPv6 addresses.
  • This process describes the operation of establishing an additional PDN connection after the UE is attached.
  • the process of establishing an additional PDN connection according to the present invention is as shown in FIG. 14, and includes the following steps:
  • Step 1401 The UE has been connected/attached to the EPS core network by the fixed network, and the specific access/attachment process is as shown in FIG.
  • Step 1402 When the UE needs to attach a PDN connection, the UE sends a PPP NCP configuration request to the X-MAG, and performs PPP NCP negotiation with the X-MAG.
  • the configuration request carries at least parameters of a mobile network ID, an APN, and the like of the UE;
  • the PPP NCP configuration request sent to the X-MAG may carry or not carry the IP address IP 1 obtained by the UE on the fixed network.
  • Step 1403 After receiving the PPP NCP configuration request sent by the UE, the X-MAG parses the IP address IP1 assigned by the fixed network carried in the signaling to the UE, or obtains the IP address IP obtained by the UE on the fixed network from the signaling header. After the subsequent establishment of the PMIPv6 tunnel is complete, the X-MAG establishes the mapping between the IP1 and PMIPv6 addresses and stores them.
  • Step 1404 The X-MAG sends the PBU message to the P-GW as the MAG of the PMIPv6, and requests the tunnel binding with the P-GW.
  • Step 1405 After receiving the PBU message, the P-GW creates a BCE, and allocates an IP address IP2 allocated by the 3GPP core network to the UE.
  • Step 1406 The P-GW sends an APN/P-GW identity pair to the 3GPP HSS/AAA through Diameter signaling, and stores the identifier of the P-GW.
  • Step 1407 The P-GW responds to the X-MAG with a PBA message, and carries the IP address IP2 allocated by the 3GPP core network to the UE in the PBA message.
  • Step 1408 The X-MAG completes the PPP NCP negotiation with the UE through the Y interface, and sends the IP address IP2 assigned to the UE to the UE through the PPP NCP configuration response.
  • Step 1409 If the PCC policy in the PCRF is changed, the PCRF sends the updated PCC policy to the BPCF through the policy session between the established BPCF and the PCRF.
  • the BPCF also updates the policy to the BNG/BRAS according to the actual situation, BNG. /BRAS performs the appropriate actions based on the updated policy.
  • the system, device and method for the UE to access the mobile network do not need to improve each BNG/BRAS in the fixed network to support the MAG function in the PMIPv6, as long as it is between the fixed network and the mobile network.
  • the G ⁇ 's MAG function enables the UE to access the mobile network; it not only makes the network layout simple and convenient, but also easy to implement, and reduces operating costs for operators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种UE接入移动网络的系统,包括UE、固定网络和移动网络,以及设置于固定网络和移动网络之间的X-MAG;所述X-MAG与UE通过Y接口相连;所述X-MAG,用于处理UE接入移动网络的控制信令,以及路由UE经移动网络外发或接收的数据;所述X-MAG的控制面协议栈中连接UE一侧设置有Y-C层,所述X-MAG的用户面协议栈中连接UE一侧设置有Y-U层;所述Y-C层,用于承载在IP层之上的控制面信令;所述Y-U层,用于实现数据包的双层IP封装/解封装;本发明同时还公开了UE接入移动网络的设备及方法。通过本发明的方案,能够使UE通过简单可行的方式实现可信任非3GPPIP接入。

Description

一种用户设备接入移动网络的系统、 设备及方法 技术领域
本发明涉及固定网络与移动网络的融合技术, 特别是指一种用户设备
( UE )接入移动网络的系统、 设备及方法。 背景技术
第三代合作伙伴计划 (3GPP, 3rd Generation Partnership Project )演进 的分组系统(EPS , Evolved Packet System ), 如图 1所示, 由演进的通用移 动通信系统陆地无线接入网(E-UTRAN, Evolved Universal Terrestrial Radio Access Network )、 移动性管理实体 ( MME, Mobility Management Entity ). 服务网关( S-GW , Serving Gateway )、分组数据网络网关( P-GW/PDN GW , Packet Data Network Gateway ), 归属用户服务器 (HSS, Home Subscriber Server )、 3GPP认证授权计费( AAA )服务器、策略和计费规则功能( PCRF, Policy and Charging Rules Function ) 实体、 以及其他支撑节点组成。 其中, MME负责移动性管理、 非接入层信令的处理、 用户的移动管理上下文的管 理等控制面相关工作; S-GW 是与 E-UTRAN 相连的接入网关设备, 在 E-UTRAN和分组数据网络 ( PDN, Packet Data Network ) GW之间转发数 据, 并负责对寻呼等待数据进行緩存; P-GW则是 3GPP演进的分组系统与 PDN的边界网关, 负责实现 PDN的接入、 以及在 EPS与 PDN间转发数据 等功能。 下文中, 将 3GPP AAA服务器简称为 3GPP AAA。
在 EPS系统中, 当 UE通过 E-UTRAN接入时, S-GW与 P-GW之间可 以釆用通用数据传输平台 (GTP, General Data Transfer Platform ), 也可以 釆用代理移动 IPv6 ( ΡΜΙΡνό )协议; 并且, EPS系统通过 S2a/b/c接口实 现与非 3GPP网络的互通, P-GW作为 3GPP与非 3GPP网络之间的锚点。 其中,如图 1所示, 非 3GPP系统被分为可信任非 3GPP IP接入和不可信任 非 3GPP IP接入, 可信任非 3GPP IP接入可直接通过 S2a与 P-GW接口; 不可信任非 3GPP IP接入需经过演进的分组数据网关( ePDG, Evolved Packet Data Gateway ) 与 P-GW相连, ePDG与 P-GW之间的接口为 S2b。 S2a接 口支持移动 IPv4 ( MIPv4 )协议和 ΡΜΙΡνό协议; S2b接口支持 ΡΜΙΡνό协 议; S2c是 UE和 P-GW之间的接口, 釆用双栈移动 IPv6 ( DSMIPv6, Dual Stack Mobile IPv6 )协议, 提供控制和移动性管理。
在 EPS 系统中, 策略和计费执行功能 (PCEF , Policy and charging enforcement function )存在于 P-GW中, PCRF与 P-GW通过 Gx接口交换 信息。 当 S-GW与 P-GW之间的接口基于 PMIPv6时, S-GW中驻留有承载 绑定和事件报告功能( BBERF, Bearer Binding and Event Reporting Function ) 实体, S-GW与 PCRF之间通过 Gxc接口交换信息; 当 UE通过可信任非 3GPP IP接入系统接入时, 可信任非 3GPP IP接入网关中也驻留有 BBERF , 可信任非 3GPP IP接入网关与 PCRF之间通过 Gxa接口交换信息。
图 2是现有固定网络的组成架构示意图, UE通过路由网关( RG , Routing
Gateway ),接入网(AN, Access Network )、 宽带网络网关 /宽带远程接入服 务器 ( BNG//BRAS , Broadband Network Gateway/Broadband Remote Access Server )依此接入到外部网络 PDN。 这里 , 所述接入网中包括数字用户线路 访问多路复用器 (DSLAM, Digital Subscriber Line Access Multiplexer ), 光 网络终端 (ONT, Optical Network Terminal )等网元; 所述外部网络 PDN 可以是 Internet或者运营商企业网等。 其中, UE可通过 BNG/BRAS接入到 宽带论坛 AAA ( BBF AAA, Broadband Forum AAA )服务器, 完成接入认 证和鉴权; BNG/BRAS从 BPCF获取承载和计费控制策略, 完成对固定网 络接入资源的管理和计费。 下文中, 将 BBF AAA服务器简称为 BBF AAA。
为方便描述每个接口, 本文中以每个接口的两个端点网元作为每个接 口的名称, 例如: BNG/BRAS 和 BBF AAA 之间的接口可称作 ( BNG/BRAS-BBF AAA )接口; BNG/BRAS和 BPCF之间的接口可称作 ( BNG/BRAS-BPCF )接口, 依此类推。
为了方便对移动网络和固定网络能够统一管理, 运营商希望实现固定 网络和移动网络的融合, 这样, UE可以通过统一的身份从不同的接入点分 别都能接入到移动、 固定融合的网络。
根据上述对移动网络和固定网络的描述, 固定网络可以作为移动网络 EPS的非 3GPP IP接入模式接入, 而且有 S2a、 S2b和 S2c等不同的接入方 式。但是, 当固定网络作为可信任的非 3GPP IP接入到 EPS时, 即釆用 S2a 接入方式时, 需要固定网络 BNG/BRAS支持 PMIPv6协议中的移动锚点网 关 ( MAG , Mobile Anchor Gateway ) 的功能, 这就意味着要升级固定网络 的 BNG/BRAS,但是升级固定网络的每个 BNG/BRAS,对运营商布网来说, 所付出的代价很大, 并且也不大现实。 目前, 还没有人提出简单可行、 且 支持可信任非 3GPP IP接入的方案。 发明内容
有鉴于此, 本发明的主要目的在于提供一种 UE接入移动网络的系统、 设备及方法, 使 UE能通过简单可行的方式实现可信任非 3GPP IP接入。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种 UE接入移动网络的系统, 包括 UE、 固定网络和移 动网络; 该系统还包括设置于固定网络和移动网络之间的移动锚点网关 ( X-MAG );所述 X-MAG设置有 Y接口,且所述 UE设置有 Y接口, X-MAG 与 UE通过 Y接口相连;
所述 X-MAG, 用于处理 UE接入移动网络的控制信令, 以及路由 UE 经移动网络外发或接收的数据;
所述 X-MAG的控制面协议栈中连接 UE一侧设置有 Y接口控制面层 Y-C , 所述 X-MAG的用户面协议栈中连接 UE—侧设置有 Y接口用户面层 Y-U; 所述 Y-C层, 用于承载在网络协议(IP )层之上的控制面信令; 所述 Y-U层, 用于实现数据包的双层 IP封装 /解封装。
其中, 所述 X-MAG的控制面协议栈中连接 UE一侧还设置有 IP层和 底层承载层, 依次位于 Y-C层之下; 所述 X-MAG的用户面协议栈中连接 UE一侧还设置有 IP层和底层承载层, 依次位于 Y-U层之下。
上述方案中, 所述 X-MAG 与位于移动网络中的 P-GW相连; 所述 X-MAG 的控制面协议栈中连接 P-GW一侧从下向上依次设置有底层承载 层、 IP层、 PMIPv6层; 所述 X-MAG的用户面协议栈中连接 P-GW—侧从 下向上依次设置有底层承载层、 IP层、 隧道层。
上述方案中,所述 X-MAG通过固定网络中的 BBF AAA服务器与 3GPP AAA服务器或 3GPP AAA代理相连;或者,所述 X-MAG直接与 3GPP AAA 或 3GPP AAA代理相连。
上述方案中,所述移动网络为本地网络; 所述 X-MAG通过本地接口与 位于本地网络的 P-GW相连; 所述移动网络分为家乡网络和拜访网络; 所 述 X-MAG通过漫游接口与位于家乡网络的 P-GW相连;或者 ,所述 X-MAG 通过本地接口与位于拜访网络的 P-GW相连。
本发明还提供了一种 X-MAG ,该 X-MAG设置有 Y接口,且在 X-MAG 的控制面协议栈中连接 UE一侧设置有 Y-C层,在 X-MAG的用户面协议栈 中连接 UE—侧设置有 Y-U层; 所述 Y-C层, 用于承载在 IP层之上的控制 面信令; 所述 Y-U层, 用于实现数据包的双层 IP封装 /解封装。
本发明又提供了一种 UE接入移动网络的方法,设置连接于固定网络和 移动网络之间的 X-M AG , 并为 X-MAG和 UE设置 Y接口;
在所述 X-MAG的控制面协议栈中连接 UE一侧设置 Y-C层, 在所述 X-MAG的用户面协议栈中连接 UE一侧设置 Y-U层; 并在 UE的控制面协 议栈和用户面协议栈中分别设置 Y-C层和 Y-U层;
UE经由移动网络外发数据时, UE将数据发送给 X-MAG,经由 X-MAG 发送到移动网络侧; 或者, UE通过 X-MAG接收由移动网络侧转发来的数 据;
UE与移动网络交互控制信息时, UE将携带有控制信息的控制信令发 送给 X-MAG, 触发 X-MAG发起移动网络内的相关操作; 或者, X-MAG 收到来自移动网络侧网元或自身事件的信令触发后, 发送下行控制信息给 UE。
上述方案中, 所述 UE将数据发送给 X-MAG, 经由 X-MAG发送到移 动网络侧为: UE对上行数据先用 3GPP核心网分配的 IP地址作为内层源 IP 地址、 通信对端 IP地址作为目的 IP地址进行封装, 再用固定网络为 UE分 配的 IP地址作为外层源 IP地址、 X-MAG地作为外层目的 IP地址进行封装 址, 之后经 Y-U层将封装后的上行数据传输给 X-MAG; X-MAG对收到的 来自 UE侧的数据包, 解封装掉外层源 IP地址和目的 IP地址, 保留内层源 IP地址和目的 IP地址, 之后封装入 ΡΜΙΡνό隧道中发送;
UE通过 X-MAG接收由移动网络侧转发来的数据为: X-MAG对下行 数据解 PMIPv6封装, 保留内层源 IP地址和目的 IP地址, 然后用固定网络 为 UE分配的 IP地址作为外层目的 IP地址、 X-MAG的地址作为外层源 IP 地址封装后, 经 Y-U层传输给 UE; UE对收到的来自 X-MAG的下行数据, 进行两层 IP地址的解封装处理, 获取有效载荷。
上述方案中 , 所述 UE将携带有控制信息的控制信令发送给 X-MAG, 触发 X-MAG发起移动网络内的相关操作为: UE对上行控制信令用固定网 络为 UE分配的 IP地址为源 IP地址、 X-MAG的地址作为目的 IP地址后 , 经 Y-C层发送给 X-MAG; X-MAG收到封装的控制信令后,解除 IP地址封 装, 获取控制信令的内容, 并根据控制信令的内容发起后续相关操作; X-MAG收到来自移动网络侧网元或自身事件的信令触发后,发送下行 控制信令给 UE为: X-MAG收到来自移动网络侧的 P-GW和 /或 3GPP AAA 的信令触发、或者自身事件的信令触发,将控制信令用固定网络为 UE分配 的 IP地址作为目的地址、 X-MAG地址作为源地址进行封装后 ,发送给 UE; UE收到后解除 IP地址封装, 得到控制信令内容。
上述方案中, 所述上行控制信令为: UE向 X-MAG发送的 PPP LCP配 置请求、 或 PPP NCP配置请求、 或 PPP LCP终止请求、 或 PPP NCP终止请 求; 所述下行控制信令为: X-MAG向 UE发送的 PPP NCP配置应答、 或 PPP LCP配置应答、 或 PPP LCP终止应答、 或 PPP NCP终止应答。
上述方案中,所述 UE与移动网络交互还包括: UE通过 X-MAG与 3GPP HSS/AAA之间进行用户接入移动网络的接入鉴权。
上述方案中, UE接入 /附着到移动网络时, 所述 UE与移动网络交互控 制信息包括:
al. UE通过认证并获取固定网络为自身分配的 IP地址后, 经由固定网 络与策略和计费规则功能 PCRF建立策略会话;
a2. UE向 X-MAG发送接入 /附着请求, 并携带固定网络为 UE分配的 IP地址, X-MAG收到请求根据固定网络为 UE分配的 IP地址与 UE建立关 联关系;
a3. 基于 X-MAG进行用户接入移动网络的接入鉴权;
a4. X-MAG作为 PMIPv6的 MAG与 P-GW交互,获取 3GPP核心网为 UE分配的 IP地址, 并将获取的 IP地址发送给 UE;
a5. UE通过获取的两个 IP地址完成数据收发。
上述方案中, UE从移动网络离线 /去附着时, 所述 UE与移动网络交互 控制信息包括:
bl. UE需要离线 /去附着或删除 PDN连接时, UE通过 Y接口向 X-MAG 发送终止请求;
b2. X-MAG与 P-GW交互, 请求与 P-GW解除隧道绑定, P-GW拆除 与 PCRF之间的 IP-CAN会话, 并通知 3GPP AAA删除 P-GW的标识; b3. X-MAG通过 Y接口向 UE返回终止应答,通知 UE离线 /去附着 /PDN 连接删除完成。
上述方案中, UE从 3GPP接入网向固定网络切换时, 所述 UE与移动 网络交互控制信息包括:
cl. UE决定切换到固定网络时, 先获取固定网络为自身分配的 IP地址 后, 并经由固定网络与策略和计费规则功能 PCRF建立策略会话;
c2. UE向 X-MAG发送接入 /附着请求, 并携带固定网络为 UE分配的 IP地址, X-MAG收到请求根据固定网络为 UE分配的 IP地址与 UE建立关 联关系;
c3. 基于 X-MAG进行用户接入移动网络的接入鉴权;
c4. X-MAG作为 PMIPv6的 MAG与 P-GW交互,获取 3GPP核心网为 UE分配的 IP地址, 并将获取的 IP地址发送给 UE;
c5. P-GW发起 3GPP接入网资源去激活流程。
上述方案中, UE建立附加分组数据网连接时, 所述 UE与移动网络交 互控制信息包括:
dl. UE需要附加 PDN连接时 , 向 X-MAG发送 PPP NCP配置请求 , 与 X-MAG进行 PPP NCP协商;
d2. X-MAG接收到 UE发送的 PPP NCP配置请求后, 获取固定网络为 UE分配的 IP地址;
d3. X-MAG作为 PMIPv6的 MAG与 P-GW交互, 请求与 P-GW的隧 道绑定 , 获取 3GPP核心网为 UE分配的 IP地址;
d4. X-MAG通过 Y接口与 UE完成 PPP NCP协商, 并通过 PPP NCP 配置应答将发送给 UE。
本发明所提供的 UE接入移动网络的系统、设备及方法,在固定网络和 移动网络之间设置用于实现可信任非 3GPP IP 接入的移动锚点网关 X-MAG, 使得 UE能通过 X-MAG经由固定网络实现可信任非 3GPP IP接 入, 进而接入移动网络的 EPS。
本发明不需要对固定网络中的每个 BNG/BRAS 进行改进, 使其支持 ΡΜΙΡνό 中的 MAG 功能, 只要在固定网络和移动网络之间增加设置 X-MAG,且使 X-MAG支持 PMIPv6的 MAG功能, 即可实现 UE接入移动 网络; 不仅使网络布局简单方便、 易于实现, 并且对于运营商而言可减少 运营成本。 附图说明
图 1为 EPS系统架构的示意图;
图 2为现有固定网络的组成架构示意图;
图 3为本发明中 X-MAG及其相关网元的控制面协议栈示意图; 图 4为本发明中 X-MAG及其相关网元的用户面协议栈示意图; 图 5为本发明 UE接入移动网络的第一种网络架构示意图;
图 6为本发明 UE接入移动网络的第二种网络架构示意图;
图 7为本发明 UE接入移动网络的第三种网络架构示意图;
图 8为本发明 UE接入移动网络的第四种网络架构示意图;
图 9为本发明 UE接入移动网络的第五种网络架构示意图;
图 10为本发明 UE接入移动网络的第六种网络架构示意图; 图 11为本发明网络融合架构下 UE接入 /附着的实现流程示意图; 图 12为本发明网络融合架构下 UE离线 /去附着的实现流程示意图; 图 13为本发明网络融合架构下 UE从 3GPP IP接入网向固定网络切换 的实现流程示意图; 图 14为本发明网络融合架构下建立附加 PDN连接建立的实现流程示 意图。 具体实施方式
本发明的基本思想是: 设置用于实现可信任非 3GPP IP接入的移动锚 点网关 X-MAG , 连接于固定网络和移动网络之间, 并在 UE和 X-MAG之 间设置 Y接口, 使 UE能通过 X-MAG经由固定网络、 以可信任非 3GPP IP 接入方式接入移动网络的 EPS。
具体的, 所述 X-MAG连接于固定网络的 BNG/BRAS 和移动网络的 P-GW之间, 设置有 Y接口; 且所述 UE增强有支持 Y接口的功能, UE与 X-MAG之间通过 Y接口互通; 所述 X-MAG用于处理 UE接入移动网络的 控制信令, 以及路由 UE 经移动网络外发或接收的数据。 基于所设置的 X-MAG网元, 本发明的网络系统支持用户接入 /附着、 多 PDN连接建立、 用户离线 /去附着、 以及用户在 3GPP接入网与固定网络之间的切换操作。
为实现 X-MAG与 UE之间的传输, 需要设置 X-MAG的协议栈, 并改 进 UE的协议栈, 使 UE、 X-MAG在 Y接口支持承载在 IP层之上的控制面 信令, 支持数据包的双层 IP封装 /解封装。 X-MAG分别与 UE、 P-GW, BNG/BRAS进行通信时, X-MAG、 UE、 P-GW和 BNG/BRAS的协议栈分 别设置如图 3和图 4所示,其中, 图 3为 X-MAG及其相关网元的控制面协 议栈设置, 图 4为 X-MAG及其相关网元的用户面协议栈设置。 具体的: 如图 3所示, X-MAG的控制面协议栈至少包括 Ll/L2( Layer 1 /Layer 2 ) 层、 IP层, L1/L2层为底层承载层; 在 IP层之上, 连接 P-GW的一侧, 承 载于 IP层之上的是 ΡΜΙΡνό层, 也就是说, X-MAG与 P-GW之间在 IP层 之上通过 PMIPv6层交互; 连接 UE的一侧, 承载于 IP层之上的是 Y-C层, 即: Y接口的控制面层, 用于承载在 IP层之上的控制面信令, 也就是说, X-MAG与 UE之间在 IP层之上通过 Y-C层交互控制信令。 相应的, 在 UE 侧的协议栈中 , IP层之上也增加设置有 Y-C层, 以实现 UE与 X-MAG之 间的控制信令交互。
对于控制面传输, 在 UE侧, 控制信令在 IP层封装 3GPP核心网分配 的 IP地址后,再在 Y-C层封装固定网络分配的 IP地址,之后传输给 X-MAG 侧的 Y-C层; 相应的, X-MAG侧的 Y-C层对收到的来自 UE侧 Y-C层的控 制信令, 进行解封装处理, 去掉外层 IP地址, 保留内层 IP地址, 之后封装 入 PMIPv6隧道发给 P-GW。并且,在 X-MAG侧, Y-C层解封装来自 P-GW 的 PMIPv6隧道的控制信令, 保留内层 IP地址, 然后用固定网络分配的 IP 地址封装后, 传输给 UE侧的 Y-C层; 相应的, UE侧的 Y-C层对收到的来 自 X-MAG侧 Y-C层的控制信令, 进行解封装处理, 去掉外层 IP地址, 之 后下发给 UE侧的 IP层,进行后续处理。 UE侧和 X-MAG侧的 IP层、 L1/L2 层的处理均与现有技术的处理相同。
如图 4所示, X-MAG的用户面协议栈至少包括 L1/L2层、 IP层; 在 IP 层之上,连接 P-GW的一侧,承载于 IP层之上的是隧道层,也就是说, X-MAG 与 P-GW之间在 IP层之上通过隧道层 ( Tunnel ) 交互; 连接 UE的一侧, 承载于 IP层之上的是 Y-U层, 即: Y接口的用户面层, 用于实现数据包的 双层 IP封装 /解封装,即: IP over IP数据的封装 /解封装;也就是说, X-MAG 与 UE之间在 IP层之上通过 Y-U层交互数据。 相应的, 在 UE侧的协议栈 中, IP层之上也增加设置有 Y-U层, 以实现 UE与 X-MAG之间的数据交 互。 这里, 所述 IP over IP数据是指作为有效载荷的传输数据在传输时外面 封装有两层 IP地址, 一个是 3GPP核心网分配的 IP地址, 一个是固定网络 分配的 IP地址。
对于用户面传输, 在 UE侧, 上行数据包在 IP层封装 3GPP核心网分 配的 IP地址后, 再在 Y-U层封装固定网络分配的 IP地址, 之后传输给 X-MAG侧的 Y-U层;相应的, X-MAG侧的 Y-U层对收到的来自 UE侧 Y-U 层的数据包, 进行解封装处理, 去掉外层 IP地址, 保留内层 IP地址, 之后 封装入隧道中发给 P-GW。 并且, 在 X-MAG侧, Y-U层解封装来自 P-GW 的隧道的下行数据,保留内层 IP地址, 然后用固定网络分配的 IP地址封装 后,传输给 UE侧的 Y-U层;相应的, UE侧的 Y-U层对收到的来自 X-MAG 侧 Y-U层的下行数据, 进行解封装处理, 去掉外层 IP地址, 之后下发给 UE侧的 IP层, 进行后续处理。 UE侧和 X-MAG侧的 IP层、 L1/L2层的处 理均与现有技术的处理相同。
基于 UE侧和 X-MAG侧控制面和用户面协议栈的设置 , X-MAG支持 与 UE、 P-GW, BNG/BRAS连接, 且支持 PMIPv6协议中的 MAG功能, 实现分组路由和转发功能;
X-MAG还能接收 UE发送的触发信令 /接入请求信令,并从收到的信令 中获取固定网络为 UE分配的 IP地址; 或者从触发信令 /接入请求信令中获 取的源 IP地址, 建立源 IP地址与 PMIPv6隧道之间的对应关系;
当 X-MAG收到 UE发来的触发信令 /接入请求信令时, 能解析所收到 信令中携带的参数, 还能向 P-GW发送生命期置零(PBU ) 消息, PBU消 息中携带全部 /部分接入请求信令中的参数; 相应的, UE发送给 X-MAG的 触发信令 /接入请求信令, 可携带或不携带 UE在固定网络获取的 IP地址、 终端标识、 接入网标识等参数; UE还接收接入请求应答消息;
X-MAG还能接收 UE发来的离线请求消息,并解析消息中携带的参数, 还向 P-GW发送 PBU消息, PBU消息中携带全部 /部分接入请求消息中的 参数; 相应的, UE向 X-MAG发送离线请求消息, 可携带终端标识、 接入 网标识等参数, UE还接收离线请求应答消息;
X-MAG还能接收 P-GW发来的绑定撤除指示( BRI, Binding Revocation Indication )消息, 并解析消息中携带的参数, 向 UE发送对应的断开连接请 求。 另外, X-MAG还可以实现 P-GW选择功能; X-MAG还在 UE的 IPv4 地址和 IPv6地址前缀分配过程中负责地址转发和传递;
X-MAG能与 3GPP AAA/3GPP AAA代理(Proxy ) 直接连接、 或者经 现基于 3GPP的用户接入认证, 并作为认证方,相应的, UE支持基于 3GPP 的用户接入认证。具体 X-MAG与 3GPP AAA/3GPP AAA代理、或 BBF AAA 服务器 /代理的连接, 可釆用与所连接网元对应的协议栈即可, 协议栈如何 设置为现有技术。
基于控制面协议栈 Y-C层和用户面协议栈 Y-U层设置, Y接口支持承 载在 IP层之上控制面信令; 支持 IP over IP数据的封装 /解封装; 支持接入 请求 /响应信令、 离线请求 /响应信令等信令的传输。 其中, 所述支持封装是 指: 对于上行数据报文, UE用 3GPP核心网分配的 IP地址封装数据报文, 再在外层封装上固定网络分配的 IP地址; 数据到达 X-MAG后, X-MAG 将最外层 IP地址剥离,再封装到 X-MAG和 P-GW之间的 PMIPv6隧道中, 发送给 P-GW; 所述支持解封装是指: 对于下行数据报文, 从 P-GW到达 X-MAG后, X-MAG去掉该数据的 PMIP隧道头后, 在数据报文外层封装 固定网络分配的本地 IP地址, 并路由给 UE, UE收到该数据报文后, 依次 剥离最外层和次外层的 IP地址, 得到有效载荷。
需要说明的是: 本文中所称 X-MAG、 Y接口、 Y-U层、 Y-C层, 只是 为了描述方便给本发明中的特定网关、 接口、 协议层提出的一种名称叫法, 实际应用中, 可以釆用任何其他的名称叫法, 只要对应的功能作用相同即 可。
在具体实现上, X-MAG可以釆用服务器实现, 也可以在现有移动锚点 网关基础上增加上面所述的功能, 如: 在协议栈中增加 Y-C层、 Y-U层等 等。 在实际应用中, 所述移动网络可以是 EPS , 且包括漫游场景和非漫游 场景; 在非漫游场景下, 所述移动网络称为本地网络; 在漫游场景下, 所 述移动网络分为家乡网络和拜访网络; 相应的, X-MAG与固定网络和移动 网络连接, 构成的网络融合架构有多种不同的方式, 分别适用于非漫游场 景和漫游场景。
上述 X-MAG 还可以根据网络的部署归类为固定网络或移动网络的一 部分。 比如:把 X-MAG加入到现有的移动网络中或加入到现有的固定网络 中。当 X-MAG加入某个网络后 , X-MAG就不在固定网络和移动网络之间 , 而是其加入网络的一部分。 本发明中所述固定网络和移动网络均指现有的 固定网络和移动网络。
当然,在网络部署时,也可以将 X-MAG作为一个增强模块集成到现有 的 BNG/BRAS上, 比如: 在不改动或者略微改动 BNG/BRAS的情况下, 在 BNG/BRAS机拒上插上 X-MAG的模块, 实现上述方案。 这样的实现方 法具有简单方便、 易于实现, 并且对于运营商而言可减少运营成本的优点。
实施例一:
本实施例是 UE通过 X-MAG接入移动网络的 EPS的第一种网络架构 , 如图 5所示, 本实施例中, UE通过固定网络接入到 EPS核心网, 其中固定 网络作为 EPS的可信任非 3GPP接入, 图 5所示网络架构为非漫游场景的 网络架构。本实施例中, X-MAG通过 BBF AAA服务器 /代理( Server/Proxy ) 与 3GPP AAA相连, 实现基于 3GPP AAA的用户接入认证。
在本实施例中, X-MAG 设置于移动网络的 P-GW 和固定网络的 BNG/BRAS之间, 支持 PMIPv6协议中的 MAG功能, 且通过 Y接口与 UE 连接; X-MAG和 UE的控制面协议栈和用户协议栈设置分别如图 3和图 4 所示, 在 X-MAG和 UE的控制面协议栈和用户协议栈的 IP层之上分别设 置有 Y-C层和 Y-U层, 分别用于实现 X-MAG与 UE之间控制信令和用户 数据的传输。
实际应用中, 当 UE 经由移动网络外发数据时, UE 将数据发送给 X-MAG, 经由 X-M AG发送到移动网络 4则; 或者, UE通过 X-MAG接^:由 移动网络侧转发来的数据;
当 UE与移动网络交互控制信息时, UE将携带有控制信息的控制信令 发送给 X-MAG, 触发 X-MAG发起移动网络内的相关操作; 或者, X-MAG 收到来自移动网络侧网元或自身事件的信令触发后, 发送下行控制信息给 UE。
具体的, 所述 UE将数据发送给 X-MAG , 经由 X-MAG发送到移动网 络侧为: UE对上行数据先用 3GPP核心网分配的 IP地址作为内层源 IP地 址、 通信对端 IP地址作为目的 IP地址进行封装, 再用固定网络为 UE分配 的 IP地址作为外层源 IP地址、 X-MAG地作为外层目的 IP地址进行封装址 , 之后经 Y-U层将封装后的上行数据传输给 X-MAG; X-MAG对收到的来自 UE侧的数据包, 解封装掉外层源 IP地址和目的 IP地址,保留内层源 IP地 址和目的 IP地址, 之后封装入 ΡΜΙΡνό隧道中发送;
UE通过 X-MAG接收由移动网络侧转发来的数据为: X-MAG对下行 数据解 PMIPv6封装, 保留内层源 IP地址和目的 IP地址, 然后用固定网络 为 UE分配的 IP地址作为外层目的 IP地址、 X-MAG的地址作为外层源 IP 地址封装后, 经 Y-U层传输给 UE; UE对收到的来自 X-MAG的下行数据, 进行两层 IP地址的解封装处理, 获取有效载荷。
UE将携带有控制信息的控制信令发送给 X-MAG, 触发 X-MAG发起 移动网络内的相关操作为: UE对上行控制信令用固定网络为 UE分配的 IP 地址为源 IP地址、 X-MAG的地址作为目的 IP地址后, 经 Y-C层发送给 X-MAG; X-MAG收到封装的控制信令后, 解除 IP地址封装, 获取控制信 令的内容, 并根据控制信令的内容发起后续相关操作; X-MAG收到来自移动网络侧网元或自身事件的信令触发后,发送下行 控制信令给 UE为: X-MAG收到来自移动网络侧的 P-GW和 /或 3GPP AAA 的信令触发、或者自身事件的信令触发,将控制信令用固定网络为 UE分配 的 IP地址作为目的地址、 X-MAG地址作为源地址进行封装后 ,发送给 UE; UE收到后解除 IP地址封装, 得到控制信令内容。
其中, 所述上行控制信令可以为: UE向 X-MAG发送的 PPP LCP配置 请求、 或 PPP NCP配置请求、 或 PPP LCP终止请求、 或 PPP NCP终止请求 等等;
所述下行控制信令可以为: X-MAG向 UE发送的 PPP NCP配置应答、 或 PPP LCP西己置应答、 或 PPP LCP终止应答、 或 PPP NCP终止应答等等。 实施例二:
本实施例是 UE通过 X-MAG接入移动网络的 EPS的第二种网络架构, 如图 6所示, 本实施例中, UE通过固定网络接入到 EPS核心网, 其中固定 网络作为 EPS的可信任非 3GPP接入, 图 6所示网络架构为非漫游场景的 网络架构。
与实施例一不同的是: 本实施例中 , X-MAG不通过 BBF AAA服务器 / 代理与 3GPP AAA相连,而是直接与 3GPP AAA相连,实现基于 3GPP AAA 的用户接入认证。
在本实施例中, X-MAG 设置于移动网络的 P-GW 和固定网络的 BNG/BRAS之间, 支持 PMIPv6协议中的 MAG功能, 且通过 Y接口与 UE 连接; X-MAG和 UE的控制面协议栈和用户协议栈设置分别如图 3和图 4 所示, 在 X-MAG和 UE的控制面协议栈和用户协议栈的 IP层之上分别设 置有 Y-C层和 Y-U层, 分别用于实现 X-MAG与 UE之间控制信令和用户 数据的传输。
实际应用中, 当 UE 经由移动网络外发数据时, UE 将数据发送给 X-MAG, 经由 X-MAG发送到移动网络 4则; 或者, UE通过 X-MAG接^:由 移动网络侧转发来的数据;
当 UE与移动网络交互控制信息时, UE将携带有控制信息的控制信令 发送给 X-MAG, 触发 X-MAG发起移动网络内的相关操作; 或者, X-MAG 收到来自移动网络侧网元或自身事件的信令触发后, 发送下行控制信息给 UE。
其中, UE与 X-MAG之间具体的控制信息交互、 以及数据转发过程与 实施例一的详细描述相同。 实施例三:
本实施例是 UE通过 X-MAG接入移动网络的 EPS的第三种网络架构 , 如图 7所示, 本实施例中, UE通过固定网络接入到 EPS核心网, 其中固定 网络作为 EPS的可信任非 3GPP接入。 图 7所示网络架构为漫游场景、 家 乡路由的网络架构,包括家乡公共陆地移动网络( hPLMN, home Public Land Mobile Network )和拜访 PLMN ( vPLMN ), BPCF通过 vPCRF和 hPCRF 相连, vPCRF和 hPCRF通过漫游接口 S9接口相连; BBF AAA月良务器 /代 理通过 3GPP AAA代理与 3GPP AAA, 以及 HSS相连; 相应的 , 本实施例 中 , X-MAG通过 BBF AAA服务器 /代理与 3GPP AAA代理、 3GPP AAA相 连, 实现基于 3GPP AAA的用户接入认证。
本实施例中, P-GW选择放置在家乡网络中, X-MAG通过漫游接口与 P-GW相连, 这里, 漫游接口是 S2a接口。
本实施例中, X-MAG与 UE的协议栈设置、 接口功能、 以及上行和下 行传输过程等均与实施例一所描述的功能、 原理相同。
实施例四:
本实施例是 UE通过 X-MAG接入移动网络的 EPS的第四种网络架构, 如图 8所示, 本实施例中, UE通过固定网络接入到 EPS核心网, 其中固定 网络作为 EPS的可信任非 3GPP接入。 图 8所示网络架构为漫游场景、 家 乡路由的网络架构 , 包括 hPLMN和 vPLMN , P-GW选择放置在家乡网络 中, X-MAG通过漫游接口 S2a接口与 P-GW相连; BPCF通过 vPCRF和 hPCRF相连, vPCRF和 hPCRF通过漫游接口 S9接口相连。
与实施例三不同的是: 本实施例中 , X-MAG不通过 BBF AAA服务器 / 代理与 3GPP AAA代理、 3GPP AAA相连, 而是直接通过 3GPP AAA代理 与 3 GPP AAA相连, 实现基于 3 GPP AAA的用户接入认证, 相应的, BBF AAA服务器 /代理未与 3GPP AAA Proxy相连。
本实施例中, X-MAG与 UE的协议栈设置、 接口功能、 以及上行和下 行传输过程等均与实施例二所描述的功能、 原理相同。
实施例五:
本实施例是 UE通过 X-MAG接入移动网络的 EPS的第五种网络架构 , 如图 9所示, 本实施例中, UE通过固定网络接入到 EPS核心网, 其中固定 网络作为 EPS的可信任非 3GPP接入。 图 9所示网络架构与实施例三基本 相同, 包括 hPLMN和 vPLMN, BPCF通过 vPCRF和 hPCRF相连, vPCRF 和 hPCRF通过漫游接口 S9接口相连; BBF AAA服务器 /代理通过 3GPP AAA Proxy与 3GPP AAA、 以及 HSS相连; 相应的, 本实施例中, X-MAG通过 BBF AAA服务器 /代理与 3GPP AAA代理、 3GPP AAA相连,实现基于 3GPP AAA的用户接入认证。
本实施例与实施例三不同的是: 本实施例中的 P-GW选择放置在拜访 网络中, X-MAG通过本地接口与 P-GW相连。
本实施例中, X-MAG与 UE的协议栈设置、 接口功能、 以及上行和下 行传输过程等均与实施例一所描述的功能、 原理相同。
实施例六:
本实施例是 UE通过 X-MAG接入移动网络的 EPS的第六种网络架构, 如图 10所示, 本实施例中, UE通过固定网络接入到 EPS核心网, 其中固 定网络作为 EPS的可信任非 3GPP接入。 图 10所示网络架构与实施例五基 本相同, 包括 hPLMN和 vPLMN, P-GW选择放置在拜访网络中, X-MAG 通过本地接口与 P-GW相连; BPCF通过 vPCRF和 hPCRF相连, vPCRF 和 hPCRF通过漫游接口 S9接口相连。
与实施例五不同的是: 本实施例中 , X-MAG不通过 BBF AAA服务器 / 代理与 3GPP AAA代理、 3GPP AAA相连, 而是直接通过 3GPP AAA代理 与 3 GPP AAA相连, 实现基于 3 GPP AAA的用户接入认证, 相应的, BBF AAA服务器 /代理未与 3GPP AAA Proxy相连。
本实施例中, X-MAG与 UE的协议栈设置、 接口功能、 以及上行和下 行传输过程等均与实施例二所描述的功能、 原理相同。
基于上述各种网络架构, 对于 UE接入移动网络的场景, 根据 UE的操 作不同对应有不同的流程, 如: UE接入 /附着流程、 UE离线 /去附着流程、 UE从 3GPP IP接入网向固定网络切换的流程、 以及建立附加 PDN连接的 流程等。 下面结合图 11至图 14分别详细介绍 UE接入 /附着流程、 UE离线 /去附着流程、 UE从 3GPP IP接入网向固定网络切换的流程、 以及建立附加 PDN连接的流程, 所述各个处理流程均适用于漫游、 非漫游场景的各种网 络架构。 其中, 图中的 BBF AAA指 BBF AAA服务器 /代理。
图 11为本发明网络融合架构下 UE接入 /附着的实现流程, 所基于的网 络架构是在移动网络和固定网络之间设置 X-MAG, X-MAG能实现 PMIPv6 中的 MAG功能, X-MAG与 UE之间通过设置的 Y接口交互, 使 UE通过 固定网络接入 /附着到 EPS核心网, 固定网络作为 EPS的可信任非 3GPP IP 接入。 具体的, 本发明 UE接入 /附着流程如图 11所示, 包括以下步骤: 步骤 1101 : UE按照现有的固定网络认证方式通过认证。
步骤 1102: UE与固定网络建立本地连接, 并获取固定网络为自身分配 的本地 IP地址 IP 1。
步骤 1103: 收到本地连接建立步骤和 /或鉴权步骤的触发, BNG/BRAS 向 BPCF发起固网策略会话建立请求, BNG/BRAS与 BPCF建立申请 /下发 动态策略的会话, 以便对网络资源分配和用户接纳实现准确控制。
步骤 1104: 基于步骤 1103操作的触发, BPCF向 PCRF发起策略会话 建立请求, 建立策略会话;
这里, 所建立的策略会话类似于 3GPP中定义的网关控制会话,通过此 会话, BPCF向策略统一控制点 PCRF获取相关的 QoS和计费策略;
其中, 在漫游场景下, BPCF会经过 vPCRF到达 hPCRF; 非漫游场景 下, 不存在 vPCRF。
步骤 1105a: UE通过 Y接口向 X-MAG发送 PPP链路控制协议( LCP, Link Control Protocol ) 配置请求, 与 X-MAG进行 PPP LCP协商;
本实施例中的 PPP LCP配置请求属于一种接入 /附着请求。
步骤 1105b: UE基于 X-MAG与 3GPP HSS/AAA之间进行用户接入移 动网络的接入鉴权;
这里, 釆用基于 3GPP 的认证方式完成对用户的接入鉴权, 所述基于 3GPP的认证方式可以是 EAP-AKA。
步骤 1105c: UE向 X-MAG发送 PPP NCP配置请求 , 与 X-MAG进行 PPP NCP协商;
这里, 所述配置请求中至少携带 UE的移动网 ID、 接入点名称(APN ) 等参数; UE发送给 X-MAG的 PPP NCP配置请求中, 可以携带或者不携带 UE在固定网络获取的 IP地址 IP1。
步骤 1106: X-MAG接收到 UE发送的 PPP NCP配置请求后, 解析出 信令中携带的固定网络为 UE分配的 IP地址 IP1 , 或者从信令头中获取 UE 在固定网络获取的 IP地址 IP 1; 待后续 PMIPv6隧道建立完成后, X-MAG 会建立 IP1和 PMIPv6地址的对应关系并存储。
步骤 1107: X-MAG作为 PMIPv6的 MAG, 发送 PBU消息给 P-GW, 请求与 P-GW的隧道绑定。
步骤 1108: P-GW收到 PBU消息后,创建绑定緩存入口(BCE, Binding Cache Entry ), 并为 UE分配 3GPP核心网分配的 IP地址 IP2;
这里, P-GW如何与 PCRF建立 IP-CAN会话为现有技术; 其中, PCRF 在漫游场景下区分 v/hPCRF, 非漫游场景下不存在 vPCRF。
步骤 1109: P-GW通过直径协议 ( Diameter )信令向 3GPP HSS/AAA 发送 APN/P-GW标识对, 存储该 P-GW的标识。
步骤 1110: P-GW向 X-MAG回应 PBA消息, 并在该 PBA消息中携带
3GPP核心网为 UE分配的 IP地址 IP2。
步骤 1111 : X-MAG通过 Y接口与 UE完成 PPP NCP协商,通过 PPP NCP 配置应答将分配给 UE的 IP地址 IP2发送给 UE。
步骤 1112: 如果 PCRF中的 PCC策略有改动, 则 PCRF会通过已建立 的 BPCF和 PCRF之间的策略会话将更新的 PCC策略发送给 BPCF, BPCF 也会根据实际情况向 BNG/BRAS更新策略, BNG/BRAS会根据更新的策略 执行相应的操作。
步骤 1113: 完成数据业务的传输;
这里, UE可根据获取的 IP1和 IP2完成数据传输, UE与外部 PDN之 间的数据在 X-MAG与 UE之间的传输釆用 IP over IP的封装格式, 具体就 疋:
对于上行数据报文, UE用 3GPP核心网分配的 IP地址 IP2封装数据报 文, 再在外层封装上固定网络分配的 IP地址 IP1 ; 数据到达 X-MAG后, X-MAG将最外层地址 IP1剥离, 并将数据再封装到 X-MAG与 P-GW之间 的 PMIPv6隧道中, 发送给 P-GW。 对于下行数据报文, 从 P-GW到达 X-MAG后, X-MAG将所收到数据 去掉 PMIPv6隧道头后, 在报文外层封装固定网络为 UE分配的本地 IP地 址 IP1 , 并路由给 UE, UE收到该数据报文后, 依次剥离最外层和次外层的 IP地址 IP 1和 IP2 , 获得有效载荷。
图 12为本发明网络融合架构下 UE离线 /去附着的实现流程,所基于的 网络架构是在移动网络和固定网络之间设置 X-MAG , X-MAG 能实现 ΡΜΙΡνό中的 MAG功能, X-MAG与 UE之间通过设置的 Y接口交互。 所 述离线 /去附着过程是 UE通过固定网络接入 /附着到 EPS核心网后, 又从固 定网络离线 /去附着或者是删除某个 PDN连接。 具体的, 本发明 UE从移动 网络离线 /去附着流程如图 12所示, 包括以下步骤:
步骤 1201 : UE通过固定网络接入 EPS核心网, 并建立至少一个 PDN 连接。
步骤 1202: UE发送 PPP会话终止请求给 X-MAG, 请求离线 /去附着 / 删除 PDN连接;
这里, 所述 PPP会话为 LCP或 NCP, 对应的, PPP会话终止请求为 PPP LCP终止请求、或为 PPP NCP终止请求;一般, UE由于某些原因需要, 可能发起离线 /去附着、 或删除某个 PDN连接的操作。
步骤 1203: X-MAG发送 PBU消息给 P-GW, 并携带生命期置零指示, 请求与 P-GW解除隧道绑定;
这里, 如果是单独的 PDN连接删除, 可以仅解除要释放的那个 PDN 连接的 PMIPv6隧道; 如果是离线 /去附着, 则要分别拆除每个 PMIPv6隧 道; 相应的, P-GW收到 PBU消息后, 会删除与 X-MAG的隧道绑定上下 文。
步骤 1204: P-GW拆除与 PCRF之间的 IP-CAN会话。
步骤 1205: P-GW通过 Diameter信令向 3GPP HSS/AAA发送 APN/P-GW 标识对, 通知 3GPP HSS/AAA删除 P-GW的标识。
步骤 1206: P-GW向 X-MAG回应 PBA消息。
步骤 1207: X-MAG通过 Y接口向 UE返回 PPP终止应答, 通知 UE 离线 /去附着 /PDN连接删除完成;
这里, 所述 PPP终止应答可以是 PPP LCP终止应答、 或 PPP NCP终止 应答; 所述通知 UE离线 /去附着 /PDN连接删除包括: 通知 UE PPP会话拆 除、 PDN连接删除。
步骤 1208:如果是去附着 /离线操作, 固定网络还需完成本地连接释放、 本地资源释放; 如果是只删除某个 PDN连接, 则仅释放对应的资源, 其他 PDN连接的资源继续保留。
图 13为本发明网络融合架构下 UE从 3GPP接入网向固定网络切换的 实现流程, 所基于的网络架构是在移动网络和固定网络之间设置 X-MAG, X-MAG能实现 PMIPv6中的 MAG功能, X-MAG与 UE之间通过设置的 Y 接口交互。 所述切换过程是指 UE已通过固定网络接入 /附着到 EPS核心网 后, 由于某些原因又需要向固定网络切换。 具体的, 本发明 UE从 3GPP接 入网向固定网络的切换流程如图 13所示, 包括以下步骤:
步骤 1301 : UE通过固定网络完成可信任 3GPP IP接入。
步骤 1302: UE由于某些原因决定向固定网络切换;
这里, 所述原因可以是 3GPP无线接入信号变差等。
步骤 1303: UE经由 BNG/BRAS与 BBF AAA完成本地接入认证和鉴 权。
步骤 1304: UE与 BNG/BRAS建立固定网络的本地连接, 并获取固定 网络为自身分配的本地 IP地址 IP1。
步骤 1305: 收到本地连接建立步骤和 /或鉴权步骤的触发, BNG/BRAS 向 BPCF发起固网策略会话建立请求; BNG/BRAS与 BPCF建立申请 /下发 动态策略的会话, 以便对网络资源分配和用户接纳实现准确控制。
步骤 1306: 基于步骤 1305的触发, BPCF向 PCRF发起策略会话建立 请求, 建立策略会话;
这里, 所述的策略会话类似于 3GPP中定义的网关控制会话; 通过该会 话, BPCF向策略统一控制点 PCRF获取相关的 QoS和计费策略;
一般, 在漫游场景下, BPCF会经过 vPCRF到达 hPCRF; 非漫游场景 下, 不存在 vPCRF。
步骤 1307a: UE通过 Y接口向 X-MAG发送 PPP LCP配置请求, 与 X-MAG进行 PPP LCP协商;
本实施例中的 PPP LCP配置请求属于一种接入 /附着请求。
步骤 1307b: UE基于 X-MAG与 3GPP HSS/AAA之间进行用户接入移 动网络的接入鉴权;
这里, 釆用基于 3GPP 的认证方式完成对用户的接入鉴权, 所述基于 3GPP的认证方式可以是 EAP-AKA。
步骤 1307c: UE向 X-MAG发送 PPP NCP配置请求 , 与 X-MAG进行 PPP NCP协商;
这里, 所述配置请求中至少携带 UE的移动网 ID、 APN等参数; UE 发送给 X-MAG的 PPP NCP配置请求中, 可以携带或者不携带 UE在固定 网络获取的 IP地址 IP 1。
步骤 1308: X-MAG接收到 UE发送的 PPP NCP配置请求后, 解析出 信令中携带的固定网络为 UE分配的 IP地址 IP1 , 或者从信令头中获取 UE 在固定网络获取的 IP地址 IP 1; 待后续 PMIPv6隧道建立完成后 , X-MAG 会建立 IP1和 PMIPv6地址的对应关系并存储。
步骤 1309: X-MAG作为 PMIPv6的 MAG, 发送 PBU消息给 P-GW, 请求与 P-GW的隧道绑定。 步骤 1310: P-GW收到 PBU消息后, 建立自身与 X-MAG的 PMIPv6 隧道绑定关系, 并触发 3GPP接入的资源删除。
步骤 1311 : P-GW向 X-MAG回应 PBA消息, 并在该 PBA消息中携带 3GPP核心网为 UE分配的 IP地址 IP2。
步骤 1312: X-MAG通过 Y接口与 UE完成 PPP NCP协商,通过 PPP NCP 配置应答将分配给 UE的 IP地址 IP2发送给 UE。
步骤 1313: 如果 PCRF中的 PCC策略有改动, 则 PCRF会通过已建立 的 BPCF和 PCRF之间的策略会话将更新的 PCC策略发送给 BPCF, BPCF 也会根据实际情况向 BNG/BRAS更新策略, BNG/BRAS会根据更新的策略 执行相应的操作。
步骤 1314: P-GW发起 3GPP接入网资源去激活流程;
这里, 因为 UE已经切换到固定网络接入, 因此, 3GPP接入网的相关 资源都会去激活或者删除, 本步骤为现有技术。
图 14为本发明网络融合架构下建立附加 PDN连接的实现流程, 所基 于的网络架构是在移动网络和固定网络之间设置 X-MAG, X-MAG能实现 ΡΜΙΡνό中的 MAG功能, X-MAG与 UE之间通过设置的 Y接口交互。 由 于在 EPS中, UE可以同时拜访多个 PDN, 建立多个 PDN连接, 获取多个 /对 IPv4/IPv6地址, 本流程描述的就是在 UE附着之后, 建立附加 PDN连 接的操作过程。 具体的, 本发明建立附加 PDN连接的流程如图 14所示, 包括以下步骤:
步骤 1401: UE 已经由固定网络接入 /附着到 EPS核心网, 具体接入 / 附着流程如图 12所述。
步骤 1402: UE需要附加 PDN连接时, 向 X-MAG发送 PPP NCP配置 请求, 与 X-MAG进行 PPP NCP协商;
这里, 所述配置请求中至少携带 UE的移动网 ID、 APN等参数; UE 发送给 X-MAG的 PPP NCP配置请求中, 可以携带或者不携带 UE在固定 网络获取的 IP地址 IP 1。
步骤 1403: X-MAG接收到 UE发送的 PPP NCP配置请求后, 解析出 信令中携带的固定网络为 UE分配的 IP地址 IP1 , 或者从信令头中获取 UE 在固定网络获取的 IP地址 IP 1; 待后续 PMIPv6隧道建立完成后 , X-MAG 会建立 IP1和 PMIPv6地址的对应关系并存储。
步骤 1404: X-MAG作为 PMIPv6的 MAG, 发送 PBU消息给 P-GW, 请求与 P-GW的隧道绑定。
步骤 1405: P-GW收到 PBU消息后, 创建 BCE, 并为 UE分配 3GPP 核心网分配的 IP地址 IP2;
这里, P-GW如何与 PCRF建立 IP-CAN会话为现有技术; 其中, PCRF 在漫游场景下区分 v/hPCRF, 非漫游场景下不存在 vPCRF。
步骤 1406: P-GW通过 Diameter信令向 3GPP HSS/AAA发送 APN/P-GW 标识对, 存储该 P-GW的标识。
步骤 1407: P-GW向 X-MAG回应 PBA消息, 并在该 PBA消息中携带 3GPP核心网为 UE分配的 IP地址 IP2。
步骤 1408: X-MAG通过 Y接口与 UE完成 PPP NCP协商,通过 PPP NCP 配置应答将分配给 UE的 IP地址 IP2发送给 UE。
步骤 1409: 如果 PCRF中的 PCC策略有改动, 则 PCRF会通过已建立 的 BPCF和 PCRF之间的策略会话将更新的 PCC策略发送给 BPCF, BPCF 也会根据实际情况向 BNG/BRAS更新策略, BNG/BRAS会根据更新的策略 执行相应的操作。
本发明所提供的 UE接入移动网络的系统、设备及方法, 不需要对固定 网络中的每个 BNG/BRAS进行改进, 使其支持 PMIPv6中的 MAG功能, 只要在固定网络和移动网络之间增加设置 X-MAG , 且使 X-MAG 支持 ΡΜΙΡνό的 MAG功能, 即可实现 UE接入移动网络; 不仅使网络布局简单 方便、 易于实现, 并且对于运营商而言可减少运营成本。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种用户设备(UE )接入移动网络的系统, 包括 UE、 固定网络和 移动网络; 其特征在于, 该系统还包括设置于固定网络和移动网络之间的 移动锚点网关( X-MAG ); 所述 X-MAG设置有 Y接口, 且所述 UE设置有 Y接口, X-MAG与 UE通过 Y接口相连;
所述 X-MAG, 用于处理 UE接入移动网络的控制信令, 以及路由 UE 经移动网络外发或接收的数据;
所述 X-MAG的控制面协议栈中连接 UE一侧设置有 Y接口控制面层 Y-C , 所述 X-MAG的用户面协议栈中连接 UE—侧设置有 Y接口用户面层 Y-U; 所述 Y-C层, 用于承载在网络协议(IP )层之上的控制面信令; 所述 Y-U层, 用于实现数据包的双层 IP封装 /解封装。
2、 根据权利要求 1所述的系统, 其特征在于, 所述 X-MAG的控制面 协议栈中连接 UE一侧还设置有 IP层和底层承载层,依次位于 Y-C层之下; 所述 X-MAG的用户面协议栈中连接 UE—侧还设置有 IP层和底层承 载层, 依次位于 Y-U层之下。
3、 根据权利要求 1所述的系统, 其特征在于, 所述 X-MAG与位于移 动网络中的分组数据网关 (P-GW )相连;
所述 X-MAG的控制面协议栈中连接 P-GW一侧从下向上依次设置有 底层承载层、 IP层、 代理移动 IPv6 ( ΡΜΙΡνό )层;
所述 X-MAG的用户面协议栈中连接 P-GW一侧从下向上依次设置有 底层承载层、 IP层、 隧道层。
4、 根据权利要求 1、 2或 3所述的系统, 其特征在于, 所述 X-MAG 通过固定网络中的宽带论坛认证授权计费 (BBF AAA )服务器与第三代合 作伙伴计划认证授权计费 (3GPP AAA )服务器或 3GPP AAA代理相连; 或者, 所述 X-MAG直接与 3GPP AAA或 3GPP AAA代理相连。
5、 根据权利要求 4所述的系统, 其特征在于, 所述移动网络为本地网 络; 所述 X-MAG通过本地接口与位于本地网络的 P-GW相连;
所述移动网络分为家乡网络和拜访网络;所述 X-MAG通过漫游接口与 位于家乡网络的 P-GW相连; 或者, 所述 X-MAG通过本地接口与位于拜 访网络的 P-GW相连。
6、一种 X-MAG ,其特征在于,所述 X-MAG设置有 Y接口,且在 X-MAG 的控制面协议栈中连接 UE一侧设置有 Y-C层,在 X-MAG的用户面协议栈 中连接 UE一侧设置有 Y-U层;
所述 Y-C层, 用于承载在 IP层之上的控制面信令; 所述 Y-U层, 用于 实现数据包的双层 IP封装 /解封装。
7、 根据权利要求 6所述的 X-MAG, 其特征在于, 所述 X-MAG的控 制面协议栈中连接 UE—侧还设置有 IP层和底层承载层, 依次位于 Y-C层 之下;
所述 X-MAG的用户面协议栈中连接 UE—侧还设置有 IP层和底层承 载层, 依次位于 Y-U层之下。
8、 根据权利要求 6或 7所述的 X-MAG, 其特征在于, 所述 X-MAG 的控制面协议栈中连接 P-GW一侧从下向上依次设置有底层承载层、 IP层、 PMIPv6层;
所述 X-MAG的用户面协议栈中连接 P-GW一侧从下向上依次设置有 底层承载层、 IP层、 隧道层。
9、 一种 UE接入移动网络的方法, 其特征在于, 设置连接于固定网络 和移动网络之间的 X-M AG , 并为 X-M AG和 UE设置 Y接口;
在所述 X-MAG的控制面协议栈中连接 UE一侧设置 Y-C层, 在所述 X-MAG的用户面协议栈中连接 UE一侧设置 Y-U层; 并在 UE的控制面协 议栈和用户面协议栈中分别设置 Y-C层和 Y-U层; UE经由移动网络外发数据时, UE将数据发送给 X-MAG,经由 X-MAG 发送到移动网络侧; 或者, UE通过 X-MAG接收由移动网络侧转发来的数 据;
UE与移动网络交互控制信息时, UE将携带有控制信息的控制信令发 送给 X-MAG, 触发 X-MAG发起移动网络内的相关操作; 或者, X-MAG 收到来自移动网络侧网元或自身事件的信令触发后, 发送下行控制信息给 UE。
10、根据权利要求 9所述的方法, 其特征在于, 所述 UE将数据发送给 X-MAG, 经由 X-MAG发送到移动网络侧为: UE对上行数据先用 3GPP核 心网分配的 IP地址作为内层源 IP地址、通信对端 IP地址作为目的 IP地址 进行封装,再用固定网络为 UE分配的 IP地址作为外层源 IP地址、 X-MAG 地作为外层目的 IP地址进行封装址, 之后经 Y-U层将封装后的上行数据传 输给 X-MAG; X-MAG对收到的来自 UE侧的数据包, 解封装掉外层源 IP 地址和目的 IP地址,保留内层源 IP地址和目的 IP地址 ,之后封装入 ΡΜΙΡνό 隧道中发送;
UE通过 X-MAG接收由移动网络侧转发来的数据为: X-MAG对下行 数据解 PMIPv6封装, 保留内层源 IP地址和目的 IP地址, 然后用固定网络 为 UE分配的 IP地址作为外层目的 IP地址、 X-MAG的地址作为外层源 IP 地址封装后, 经 Y-U层传输给 UE; UE对收到的来自 X-MAG的下行数据, 进行两层 IP地址的解封装处理, 获取有效载荷。
11、根据权利要求 9所述的方法, 其特征在于, 所述 UE将携带有控制 信息的控制信令发送给 X-MAG, 触发 X-MAG发起移动网络内的相关操作 为: UE对上行控制信令用固定网络为 UE分配的 IP地址为源 IP地址、 X-MAG的地址作为目的 IP地址后 , 经 Y-C层发送给 X-MAG; X-MAG收 到封装的控制信令后, 解除 IP地址封装, 获取控制信令的内容, 并根据控 制信令的内容发起后续相关操作;
X-MAG收到来自移动网络侧网元或自身事件的信令触发后,发送下行 控制信令给 UE为: X-MAG收到来自移动网络侧的 P-GW和 /或 3GPP AAA 的信令触发、或者自身事件的信令触发,将控制信令用固定网络为 UE分配 的 IP地址作为目的地址、 X-MAG地址作为源地址进行封装后 ,发送给 UE; UE收到后解除 IP地址封装, 得到控制信令内容。
12、 根据权利要求 9或 11所述的方法, 其特征在于, 所述上行控制信 令为: UE向 X-MAG发送的点到点协议 ( PPP ) 的链路控制协议(LCP ) 配置请求、 或 PPP的网络控制协议 ( NCP ) 配置请求、 或 PPP LCP终止请 求、 或 PPP NCP终止请求;
所述下行控制信令为: X-MAG向 UE发送的 PPP NCP配置应答、 或 PPP LCP配置应答、 或 PPP LCP终止应答、 或 PPP NCP终止应答。
13、根据权利要求 9所述的方法, 其特征在于, 所述 UE与移动网络交 互还包括: UE通过 X-MAG与 3GPP HSS/AAA之间进行用户接入移动网络 的接入鉴权。
14、根据权利要求 9所述的方法, 其特征在于, UE接入 /附着到移动网 络时, 所述 UE与移动网络交互控制信息包括:
al. UE通过认证并获取固定网络为自身分配的 IP地址后, 经由固定网 络与策略和计费规则功能 PCRF建立策略会话;
a2. UE向 X-MAG发送接入 /附着请求, 并携带固定网络为 UE分配的 IP地址, X-MAG收到请求根据固定网络为 UE分配的 IP地址与 UE建立关 联关系;
a3. 基于 X-MAG进行用户接入移动网络的接入鉴权;
a4. X-MAG作为 PMIPv6的 MAG与 P-GW交互,获取 3GPP核心网为 UE分配的 IP地址, 并将获取的 IP地址发送给 UE; a5. UE通过获取的两个 IP地址完成数据收发。
15、 根据权利要求 9所述的方法, 其特征在于, UE从移动网络离线 / 去附着时, 所述 UE与移动网络交互控制信息包括:
bl. UE需要离线 /去附着或删除 PDN连接时, UE通过 Y接口向 X-MAG 发送终止请求;
b2. X-MAG与 P-GW交互, 请求与 P-GW解除隧道绑定, P-GW拆除 与 PCRF之间的 IP-CAN会话, 并通知 3GPP AAA删除 P-GW的标识; b3. X-MAG通过 Y接口向 UE返回终止应答,通知 UE离线 /去附着 /PDN 连接删除完成。
16、 根据权利要求 9所述的方法, 其特征在于, UE从 3GPP接入网向 固定网络切换时, 所述 UE与移动网络交互控制信息包括:
cl. UE决定切换到固定网络时, 先获取固定网络为自身分配的 IP地址 后, 并经由固定网络与策略和计费规则功能 PCRF建立策略会话;
c2. UE向 X-MAG发送接入 /附着请求, 并携带固定网络为 UE分配的 IP地址, X-MAG收到请求根据固定网络为 UE分配的 IP地址与 UE建立关 联关系;
c3. 基于 X-MAG进行用户接入移动网络的接入鉴权;
c4. X-MAG作为 PMIPv6的 MAG与 P-GW交互,获取 3GPP核心网为 UE分配的 IP地址, 并将获取的 IP地址发送给 UE;
c5. P-GW发起 3GPP接入网资源去激活流程。
17、 根据权利要求 9所述的方法, 其特征在于, UE建立附加分组数据 网连接时, 所述 UE与移动网络交互控制信息包括:
dl. UE需要附加 PDN连接时 , 向 X-MAG发送 PPP NCP配置请求 , 与 X-MAG进行 PPP NCP协商;
d2. X-MAG接收到 UE发送的 PPP NCP配置请求后, 获取固定网络为 UE分配的 IP地址;
d3. X-MAG作为 PMIPv6的 MAG与 P-GW交互, 请求与 P-GW的隧 道绑定 , 获取 3GPP核心网为 UE分配的 IP地址;
d4. X-MAG通过 Y接口与 UE完成 PPP NCP协商, 并通过 PPP NCP 配置应答将发送给 UE。
PCT/CN2011/076522 2010-07-09 2011-06-28 一种用户设备接入移动网络的系统、设备及方法 WO2012003770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010225291.6 2010-07-09
CN201010225291.6A CN102316602B (zh) 2010-07-09 2010-07-09 一种用户设备接入移动网络的系统、设备及方法

Publications (1)

Publication Number Publication Date
WO2012003770A1 true WO2012003770A1 (zh) 2012-01-12

Family

ID=45429318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076522 WO2012003770A1 (zh) 2010-07-09 2011-06-28 一种用户设备接入移动网络的系统、设备及方法

Country Status (2)

Country Link
CN (1) CN102316602B (zh)
WO (1) WO2012003770A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428779B (zh) * 2012-05-16 2018-04-27 中兴通讯股份有限公司 服务质量信息的传输方法、系统及固网接入网关
CN103517249B (zh) 2012-06-29 2018-11-16 中兴通讯股份有限公司 一种策略控制的方法、装置和系统
CN103533599A (zh) * 2012-07-03 2014-01-22 中兴通讯股份有限公司 一种固网移动融合场景下的策略控制方法
CN103634941B (zh) * 2012-08-23 2018-04-10 中兴通讯股份有限公司 资源释放方法及装置
CN103687049B (zh) * 2012-08-30 2019-07-09 中兴通讯股份有限公司 多连接建立的方法及系统
CN103945559B (zh) 2013-01-18 2019-02-15 中兴通讯股份有限公司 网络接入系统及方法
CN103259736A (zh) * 2013-05-24 2013-08-21 杭州华三通信技术有限公司 一种隧道建立方法和网络设备
EP2887580A1 (en) 2013-12-23 2015-06-24 Telefonica S.A. Method and system for modifying configuration parameters on a user equipment and an Auto Configuration Server-Gateway
CN105530038B (zh) * 2014-09-30 2019-01-08 中国移动通信集团公司 一种中继装置、中继服务器及中继方法
CN108377497B (zh) * 2016-11-21 2020-03-10 华为技术有限公司 连接建立方法、设备及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984021A (zh) * 2006-06-02 2007-06-20 华为技术有限公司 通过非3gpp技术接入3gpp演进网络的系统和方法
CN101155126A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种实现移动性管理的系统、装置和方法
WO2009126083A1 (en) * 2008-04-11 2009-10-15 Telefonaktiebolaget L M Ericsson (Publ) Access through non-3gpp access networks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084128A2 (en) * 2004-03-04 2005-09-15 Outsmart Ltd. Integration of packet and cellular telephone networks
CN101707773B (zh) * 2009-11-23 2012-05-30 中国电信股份有限公司 Wlan接入网关、移动网与无线宽带网的融合方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984021A (zh) * 2006-06-02 2007-06-20 华为技术有限公司 通过非3gpp技术接入3gpp演进网络的系统和方法
CN101155126A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种实现移动性管理的系统、装置和方法
WO2009126083A1 (en) * 2008-04-11 2009-10-15 Telefonaktiebolaget L M Ericsson (Publ) Access through non-3gpp access networks

Also Published As

Publication number Publication date
CN102316602B (zh) 2016-04-13
CN102316602A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
US8849273B2 (en) Method and system for reporting fixed network access information
KR101340496B1 (ko) 차징 시스템 및 방법
WO2012003770A1 (zh) 一种用户设备接入移动网络的系统、设备及方法
US9113436B2 (en) Method and system for information transmission
WO2012051897A1 (zh) 一种融合固定网络与移动网络的系统及方法
JP5903728B2 (ja) Wifi端末がパケットデータpsサービスドメインにアクセスするための方法およびトラステッドゲートウェイ
WO2013104234A1 (zh) 一种融合网络中策略控制方法及系统
US9544832B2 (en) Method, apparatus and system for policy control
WO2010081329A1 (zh) 业务流迁移过程中对网络资源进行控制的方法和系统
JP5972467B2 (ja) アクセスネットワークの位置情報を通知する方法及びシステム
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
CN102904856A (zh) 一种共享会话的控制方法及装置
EP2741530A1 (en) Access method, system and mobile intelligent access point
WO2011017979A1 (zh) 支持ip分流的通信系统中资源管理方法与装置
WO2012100611A1 (zh) 接入演进分组系统的方法及系统
WO2012010036A1 (zh) 一种策略控制方法及系统
WO2012019506A1 (zh) 在固网移动网络融合场景下实现资源控制的方法和系统
WO2012146092A1 (zh) 一种ip流迁移的策略控制方法及系统
WO2014177022A1 (zh) 流移动性支持能力处理方法、装置、pdn gw
WO2012171425A1 (zh) 业务处理方法及装置
WO2013020451A1 (zh) 一种建立会话的方法及系统
WO2012041128A1 (zh) 一种通信网络系统、寻找家庭基站策略网元的方法及装置
WO2012079443A1 (zh) 一种基站间切换资源控制的方法
WO2012022218A1 (zh) 一种建立会话、策略下发的方法和系统
WO2013131427A1 (zh) 一种支持无线局域网接入的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803124

Country of ref document: EP

Kind code of ref document: A1