WO2012001728A1 - Organic el display panel, display device provided with organic el display panel, and method for manufacturing organic el display panel - Google Patents

Organic el display panel, display device provided with organic el display panel, and method for manufacturing organic el display panel Download PDF

Info

Publication number
WO2012001728A1
WO2012001728A1 PCT/JP2010/004265 JP2010004265W WO2012001728A1 WO 2012001728 A1 WO2012001728 A1 WO 2012001728A1 JP 2010004265 W JP2010004265 W JP 2010004265W WO 2012001728 A1 WO2012001728 A1 WO 2012001728A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary electrode
electrode
intermediate layer
organic
region
Prior art date
Application number
PCT/JP2010/004265
Other languages
French (fr)
Japanese (ja)
Inventor
年代健一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/004265 priority Critical patent/WO2012001728A1/en
Publication of WO2012001728A1 publication Critical patent/WO2012001728A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes

Definitions

  • the present invention relates to an organic EL display panel, a display device including the organic EL display panel, and a method for manufacturing the organic EL display panel.
  • organic EL display panels that have been researched and developed are display panels that utilize the electroluminescence phenomenon of organic materials.
  • the panel has a structure in which an organic light emitting layer is interposed between a pair of electrodes of a lower electrode (anode) and an upper electrode (cathode).
  • Top emission type organic EL display panels generally use ITO (indium tin oxide) or IZO (indium zinc oxide), which are light transmissive materials, as the upper electrode. Since these are higher in resistance than Al (aluminum) used for the lower electrode, for example, the organic EL display panel causes variations in luminance due to a voltage drop at the upper electrode. Specifically, the portion (center portion of the organic EL display panel) far from the terminal is darker than the vicinity of the upper electrode terminal (end portion of the organic EL display panel). In particular, in recent years, the organic EL display panel has been increased in size, and accordingly, the variation in luminance has become remarkable.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • FIG. 18 is a partial cross-sectional view showing an example of the configuration of the organic EL display panel 1000 in which auxiliary electrodes are arranged.
  • a planarization layer 202 is formed on a substrate 201 on which a TFT (thin film transistor) (not shown) or the like is formed, and the planarization layer 202 is formed on the planarization layer 202.
  • a lower electrode 203 and an auxiliary electrode 204 are formed at positions separated from each other along the surface of the activating layer 202.
  • the region where the lower electrode 203 is formed is the pixel portion 1000a
  • the region where the auxiliary electrode 204 is formed is the non-pixel portion 1000b.
  • a bank 206 is formed between the pixel portion 1000 a and the non-pixel portion 1000 b, and the bank 206 rides on the upper surfaces of the side electrodes of the lower electrode 203 and the auxiliary electrode 204.
  • a hole transport layer 207 that is a charge intermediate layer having hole transport properties, an organic light emitting layer 208, and a charge intermediate layer having electron transport properties are formed on the lower electrode 203.
  • An electron transport layer 209 and an upper electrode 210 are sequentially stacked.
  • the electron transport layer 209 and the upper electrode 210 are continuously formed in the adjacent non-pixel portion 1000b over the bank 206.
  • the upper electrode 210 is in contact with the upper surface portion of the auxiliary electrode 204 that is not covered by the bank 206 via the electron transport layer 209.
  • the cathode 210 is covered with a sealing layer 211.
  • the reason why the auxiliary electrode 204 is in contact with the upper electrode 210 through the electron transport layer 209 is that the electron transport layer 209 is collectively formed on the entire display panel so as not to increase the manufacturing process and the manufacturing cost. Therefore, there is no technical significance that the electron transport layer 209 is interposed between the auxiliary electrode 204 and the upper electrode 210. Rather, from the viewpoint of the role of the auxiliary electrode 204, the electron transport layer 209 formed on the auxiliary electrode 204 is unnecessary. Because the electron transport layer 209 is a high-resistance semiconductor material, the electron transport layer 209 is interposed between the auxiliary electrode 204 and the upper electrode 210, so that the space between the auxiliary electrode 204 and the upper electrode 210 is reduced. This is because the electrical resistance increases.
  • patterning may be performed so that the electron transport layer 209 is not formed on the auxiliary electrode 204 in the manufacturing process of the organic EL display panel. This method is not preferable because it causes an increase in cost.
  • the present invention eliminates the charge intermediate layer on the auxiliary electrode, that is, forms the charge intermediate layer on the entire display panel, and reduces the electric resistance when supplying voltage to the upper electrode.
  • the purpose is to provide a panel.
  • an organic EL display panel includes a substrate, a lower electrode formed on the substrate, and the substrate, which is along the main surface of the substrate.
  • An auxiliary electrode formed in a region away from the lower electrode in a direction, and between the lower electrode and the auxiliary electrode from the side of the lower electrode on the side facing the auxiliary electrode above the substrate.
  • the side surface of the auxiliary electrode is between the auxiliary electrode and the partition wall.
  • the upper electrode is a side of the auxiliary electrode, it was in contact with the exposed from the charge interlayer region.
  • the partition wall is formed from a side portion of the lower electrode facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode.
  • a charge intermediate layer is formed in a region between the auxiliary electrode and the partition above the substrate.
  • the side surface of the auxiliary electrode is not covered with the partition wall, and the charge intermediate layer comes into contact with the side surface of the auxiliary electrode.
  • auxiliary electrode is thicker than the charge intermediate layer, a region exposed from the charge intermediate layer is formed on the side surface of the auxiliary electrode, and the upper electrode is in direct contact with this region. is doing.
  • the side surface of the auxiliary electrode is in direct contact with the upper electrode without passing through the charge intermediate layer, even when a charge intermediate layer is formed on the auxiliary electrode, electric resistance when supplying a voltage to the upper electrode Can be reduced.
  • the upper electrode is in contact with the side surface of the auxiliary electrode, so that the charge intermediate layer formed on the auxiliary electrode is not excluded by patterning, that is, The reduction in electrical resistance can be realized without increasing the number of manufacturing steps.
  • FIG. 1 is a block diagram schematically showing an overall configuration of a display device 1 according to a first embodiment.
  • 1 is a partial cross-sectional view illustrating a configuration of an organic EL display panel 10 according to a first embodiment.
  • FIG. 2 is a diagram schematically showing an arrangement relationship between an anode 103, an auxiliary electrode 104, and a bank 106 in the organic EL display panel 10 according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a manufacturing process of the organic EL display panel 10 according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a part subsequent to the process illustrated in FIG. 4 in the manufacturing process of the organic EL display panel 10 according to the first embodiment.
  • FIG. 10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-1.
  • FIG. 10 is a partial cross-sectional view and a partially enlarged view showing a configuration of an organic EL display panel 10 of Modification 1-2.
  • 11 is a diagram illustrating an example of a manufacturing process of the organic EL display panel 10 of Modification 1-2.
  • FIG. FIG. 10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-1.
  • FIG. 10 is a partial cross-sectional view and a partially enlarged view showing a configuration of an organic EL display panel 10 of Modification 1-2.
  • 11 is a diagram illustrating an example of a manufacturing process of the organic EL display panel 10 of Modification 1-2.
  • FIG. 10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-3.
  • FIG. 10 is a diagram schematically showing an arrangement relationship of an anode 103, an auxiliary electrode 104, and a bank 106 in an organic EL display panel 10 of Modification 1-4.
  • 10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-4.
  • FIG. FIG. 10 is a diagram schematically showing an arrangement relationship between an anode 103, an auxiliary electrode 104, and a bank 141 in an organic EL display panel 10 of Modification 1-5.
  • FIG. 10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-5.
  • FIG. 11 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-6.
  • 1 is an external perspective view showing an external appearance of a display device 1.
  • FIG. It is a fragmentary sectional view showing an example of composition of organic EL display panel 1000 by which an auxiliary electrode is arranged.
  • An organic EL display panel includes a substrate, a lower electrode formed on the substrate, and the substrate on the substrate and separated from the lower electrode in a direction along the main surface of the substrate.
  • An auxiliary electrode formed in a region, and a partition wall formed from a side of the lower electrode on the side facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode.
  • an organic light emitting layer formed above the lower electrode, a region on the organic light emitting layer, on the partition, a region between the auxiliary electrode and the partition above the substrate, and on the auxiliary electrode A charge intermediate layer formed on the charge intermediate layer; and an upper electrode formed on the charge intermediate layer, wherein the auxiliary electrode is thicker than the charge intermediate layer, and the side surface of the auxiliary electrode is The charge intermediate existing in the region between the electrode and the partition Has a region exposed from the upper electrode is a side of the auxiliary electrode, was in contact with the exposed from the charge interlayer region.
  • the partition wall is formed from a side portion of the lower electrode facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode.
  • a charge intermediate layer is formed in a region between the auxiliary electrode and the partition above the substrate.
  • the side surface of the auxiliary electrode is not covered with the partition wall, and the charge intermediate layer comes into contact with the side surface of the auxiliary electrode.
  • auxiliary electrode is thicker than the charge intermediate layer, a region exposed from the charge intermediate layer is formed on the side surface of the auxiliary electrode, and the upper electrode is in direct contact with this region. is doing.
  • the side surface of the auxiliary electrode is in direct contact with the upper electrode without passing through the charge intermediate layer, even when a charge intermediate layer is formed on the auxiliary electrode, electric resistance when supplying a voltage to the upper electrode Can be reduced.
  • the upper electrode is in contact with the side surface of the auxiliary electrode, so that the charge intermediate layer formed on the auxiliary electrode is not excluded by patterning, that is, The reduction in electrical resistance can be realized without increasing the number of manufacturing steps.
  • aluminum or an aluminum alloy is suitable as a lower electrode of an organic EL display panel because of its low electric resistance.
  • the lower electrode is made of aluminum or an aluminum alloy, for example, in the manufacturing process, the lower electrode An aluminum oxide film or an aluminum alloy oxide film having a high electric resistance is formed on the side surface and surface of the film.
  • the auxiliary electrode is made of aluminum or an aluminum alloy, and at least a region of the side surface of the auxiliary electrode exposed from the charge intermediate layer has a side surface of the auxiliary electrode.
  • a conductive metal oxide film that prevents oxidation may be formed.
  • the conductive metal oxide film is formed at least in a region exposed from the charge intermediate layer on the side surface of the auxiliary electrode. With this conductive metal oxide film, oxidation of the side surface of the auxiliary electrode made of aluminum or aluminum alloy can be suppressed.
  • the upper electrode is in electrical contact with the side surface of the auxiliary electrode via a conductive metal oxide film formed on the side surface of the auxiliary electrode. Therefore, the electrical resistance on the side surface of the auxiliary electrode can be reduced.
  • the auxiliary electrode is made of an aluminum alloy containing at least one of nickel and cobalt, and the side surface of the auxiliary electrode has nickel included in the aluminum alloy, or A precipitate containing cobalt may be formed.
  • a precipitate containing nickel or cobalt contained in the aluminum alloy is formed on the side surface of the auxiliary electrode.
  • a precipitate containing nickel or cobalt has a low electric resistance and has a characteristic that it is less likely to be oxidized than aluminum or an aluminum alloy, and also has conductivity even when oxidized.
  • the upper electrode is in electrical contact with the side surface of the auxiliary electrode via a precipitate containing nickel or cobalt having a low electrical resistance formed on the side surface of the auxiliary electrode.
  • the electrical resistance on the side surface of the auxiliary electrode can be reduced.
  • the precipitate may be particles.
  • the precipitate is a particle. Since the particles are formed on the side surface of the auxiliary electrode, the side surface of the auxiliary electrode has an uneven shape. Accordingly, the contact area between the upper electrode and the side surface of the auxiliary electrode can be increased, so that the contact resistance between the upper electrode and the side surface of the auxiliary electrode can be reduced.
  • a second charge intermediate layer is formed on the upper surface of the lower electrode and the auxiliary electrode, and the second charge intermediate layer is formed on the lower electrode and the lower electrode. It may be interposed between the organic light emitting layer and interposed between the auxiliary electrode and the charge intermediate layer on the auxiliary electrode.
  • the second charge intermediate layer further exists in a region between the auxiliary electrode and the partition wall, and the charge intermediate layer is formed on the second charge intermediate layer in the region, and the auxiliary charge layer is formed.
  • the thickness of the electrode is thicker than the total thickness of the charge intermediate layer and the second charge intermediate layer, and the side surface of the auxiliary electrode is a region exposed from the stacked portion of the charge intermediate layer and the second charge intermediate layer.
  • the upper electrode may be in contact with a side surface of the auxiliary electrode that is exposed from a stacked portion of the charge intermediate layer and the second charge intermediate layer.
  • the second charge intermediate layer further exists in a region between the auxiliary electrode and the partition wall, and the second charge intermediate layer is disposed on the second charge intermediate layer in the region.
  • the charge intermediate layer is formed.
  • the charge intermediate layer and the second charge intermediate layer come into contact with the side surface of the auxiliary electrode.
  • the auxiliary electrode has a thickness greater than the total thickness of the charge intermediate layer and the second charge intermediate layer, the side surface of the auxiliary electrode is separated from the charge intermediate layer and the second charge intermediate layer. An exposed area is formed, and the upper electrode is in direct contact with this area.
  • the side surface of the auxiliary electrode is in direct contact with the upper electrode without the charge intermediate layer and the second charge intermediate layer, the charge intermediate layer and the second charge intermediate layer are formed on the auxiliary electrode. In addition, it is possible to reduce electrical resistance when supplying a voltage to the upper electrode.
  • the upper electrode is in contact with the side surface of the auxiliary electrode. Therefore, the charge intermediate layer and the second charge intermediate layer formed on the auxiliary electrode are patterned. A reduction in electrical resistance can be realized without exclusion, that is, without increasing the number of manufacturing steps.
  • the side portion of the lower electrode on which the partition wall is formed may include an upper surface of the lower electrode within a predetermined range formed on a side surface of the lower electrode.
  • the thickness of the side surface of the auxiliary electrode exposed from the charge intermediate layer may be smaller than the thickness of the upper electrode.
  • the upper electrode is formed of the auxiliary electrode. It is formed without interruption from the side surface to the upper surface.
  • the electric resistance when a voltage is supplied to the upper electrode can be further reduced.
  • the thickness of the side surface of the auxiliary electrode exposed from the charge intermediate layer may be larger than the thickness of the upper electrode.
  • the thickness of the region exposed from the charge intermediate layer on the side surface of the auxiliary electrode is thicker than the film thickness of the upper electrode. Will contact the side surface of the auxiliary electrode. Therefore, the electrical resistance can be further reduced.
  • an inner angle formed between the side surface of the auxiliary electrode and the substrate may be 90 degrees or more.
  • the charge intermediate layer is likely to be disconnected at the side surface of the auxiliary electrode. Therefore, it becomes easy to form a region exposed from the charge intermediate layer on the side surface of the auxiliary electrode. That is, it becomes easier to bring the upper electrode into contact with the side surface of the auxiliary electrode, which is exposed from the charge intermediate layer.
  • an internal angle formed between the side surface of the partition wall and the substrate may be less than 90 degrees.
  • the auxiliary electrode may be thicker than the lower electrode.
  • the partition wall is formed from the side of the lower electrode on the side facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode.
  • an area where the partition wall adheres to the substrate is reduced as compared with a case where the partition wall is formed so as to run on the upper surface of the side portion of the auxiliary electrode.
  • a substrate, a first lower electrode formed on the substrate, and the first lower electrode on the substrate in a direction along the main surface of the substrate are separated from each other.
  • a partition formed over the first lower electrode, a first organic light emitting layer formed above the first lower electrode, a second organic light emitting layer formed above the second lower electrode, and the first organic light emitting layer A charge intermediate layer formed on the barrier ribs and on the second organic light emitting layer And an upper electrode formed on the charge intermediate layer, the partition wall having an opening for exposing a part of the auxiliary electrode on an upper surface of the partition wall.
  • the charge intermediate layer is formed on the auxiliary electrode exposed from the opening, and the auxiliary electrode is thicker than the charge intermediate layer.
  • the side surface of the auxiliary electrode exposed from the side has a region exposed from the charge intermediate layer, and the upper electrode may be in contact with the side surface of the auxiliary electrode and exposed from the charge intermediate layer. Good.
  • the side of the first lower electrode facing the auxiliary electrode, the side of the first lower electrode, the upper portion of the auxiliary electrode, and the auxiliary electrode of the second lower electrode is configured to have an opening.
  • the partition can be prevented from peeling off from the substrate.
  • a side surface of the auxiliary electrode exposed from the opening has a region exposed from the charge intermediate layer, and the upper electrode is in contact with a region exposed from the charge intermediate layer on the side surface of the auxiliary electrode. is doing. Therefore, it is possible to reduce the electric resistance when supplying a voltage to the upper electrode.
  • a part of the auxiliary electrode exposed by the opening is a region on the first lower electrode side of the auxiliary electrode, and the auxiliary electrode exposed from the opening
  • a side surface of the first lower electrode side region has a region exposed from the charge intermediate layer
  • the upper electrode is a side surface of the auxiliary electrode side region of the first lower electrode side, It may be in contact with the area exposed from the layer.
  • a part of the auxiliary electrode exposed by the opening is a region on the first lower electrode side of the auxiliary electrode. Reduction can be suppressed. Further, since the upper electrode is in contact with a side surface of the auxiliary electrode on the side of the first lower electrode and exposed from the charge intermediate layer, an electric resistance when a voltage is supplied to the upper electrode Can be reduced.
  • a part of the auxiliary electrode exposed by the opening is formed on a region of the auxiliary electrode on the first lower electrode side and on the second lower electrode side of the auxiliary electrode.
  • Each side surface of the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode exposed from the opening has a region exposed from the charge intermediate layer, and
  • the electrode may be in contact with a region exposed from the charge intermediate layer on each side surface of the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode.
  • the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode are exposed from the opening.
  • the side surfaces of these regions have regions exposed from the charge intermediate layer, and the upper electrodes are in contact with the exposed regions.
  • a display device including the organic EL display panel according to one aspect of the present invention may be used.
  • a first step of preparing a substrate a second step of forming a lower electrode on the substrate, a direction on the substrate and along the main surface of the substrate
  • a fourth step of forming a partition wall in a predetermined region between the first electrode a fifth step of forming an organic light emitting layer above the lower electrode, and on the organic light emitting layer, on the partition wall, and above the substrate.
  • a sixth step of forming a charge intermediate layer on the region between the auxiliary electrode and the partition and the auxiliary electrode, and a seventh step of forming an upper electrode on the charge intermediate layer The electrode is formed to be thicker than the charge intermediate layer.
  • a region exposed from the charge intermediate layer existing in a region between the auxiliary electrode and the partition wall is formed on a side surface of the auxiliary electrode, and the upper electrode is a side surface of the auxiliary electrode, and the charge The region exposed from the intermediate layer may be in contact.
  • the upper electrode may be formed by a sputtering method.
  • the upper electrode is formed by sputtering. Since the sputtering method has better wraparound of the electrode material constituting the upper electrode to the side surface of the auxiliary electrode than the vacuum vapor deposition method or the plasma vapor deposition method, the upper electrode is disposed on the side surface of the auxiliary electrode. It becomes easy to deposit.
  • the upper electrode forming target member disposed opposite to the substrate is disposed on the back surface of the surface facing the substrate in the sputtering apparatus in which the substrate is disposed.
  • a magnet member may be arranged, and sputtering may be performed while moving and scanning the magnet member with respect to the target member during the seventh step.
  • the upper electrode is formed by performing the sputtering while moving and scanning the magnet member with respect to the target member during the sputtering in the seventh step. Therefore, the angle at which the sputtered particles are incident on the side surface of the auxiliary electrode and exposed from the charge intermediate layer is gentler than the incident angle when the magnet is not moved and scanned. As a result, the sputtered particles are likely to be incident on a side surface of the auxiliary electrode that is exposed from the charge intermediate layer, so that the sputtered particles can be more easily deposited on the side surface of the auxiliary electrode. it can.
  • the auxiliary electrode is formed of an aluminum alloy containing at least one of nickel and cobalt, and the auxiliary electrode is interposed between the third step and the fourth step.
  • a step of forming a precipitate containing nickel or cobalt on the side surface of the auxiliary electrode by heating the auxiliary electrode may be provided.
  • a step of forming a second charge intermediate layer on the upper surface of the lower electrode and the auxiliary electrode is provided between the third step and the fourth step,
  • the organic light emitting layer is formed on the second charge intermediate layer
  • the charge intermediate layer is formed on the organic light emitting layer, the partition, and the auxiliary electrode.
  • the auxiliary electrode has a thickness greater than the total thickness of the charge intermediate layer and the second charge intermediate layer, and the auxiliary electrode has a side surface in a region between the auxiliary electrode and the partition wall. A region exposed from the charge intermediate layer and the second charge intermediate layer is formed, and the upper electrode is on a side surface of the auxiliary electrode and exposed to the region exposed from the charge intermediate layer and the second charge intermediate layer. It may be in contact.
  • FIG. 1 is a block diagram schematically showing the overall configuration of the display device 1.
  • the display device 1 includes an organic EL display panel 10 and a drive control unit 20 connected thereto.
  • the organic EL display panel 10 is a top emission type organic EL display panel using an electroluminescence phenomenon of an organic material.
  • the drive control unit 20 includes four drive circuits 21 to 24 and a control circuit 25.
  • FIG. 2 is a partial cross-sectional view (cross section along AA ′ in FIG. 3) showing the configuration of the organic EL display panel 10 of the first embodiment.
  • an interlayer insulating film 102 is formed on the surface of the TFT substrate 101 on the upper side in the Z-axis direction.
  • the pixel portion 10a and the non-pixel portion 10b exist on the XY plane (see FIGS. 1 and 3), and the anode 103 is formed on the interlayer insulating film 102 in the pixel portion 10a.
  • the auxiliary electrode 104 is formed on the interlayer insulating film 102 in the non-pixel portion 10b.
  • the anode 103 and the auxiliary electrode 104 are formed from the same material and have the same film thickness.
  • the auxiliary electrode 104 formed in the non-pixel portion 10b serves to supply a voltage to the cathode 110, and the auxiliary electrode 104 suppresses variations in luminance due to a voltage drop at the cathode 110. Further, the inner angle ang1 formed between the side surface of the auxiliary electrode 104 and the interlayer insulating film 102 is 90 degrees or more.
  • a hole injection layer 105 is formed on the anode 103 and the auxiliary electrode 104, on the interlayer insulating film 102, and in a region between the anode 103 and the auxiliary electrode 104.
  • the hole injection layer 105 Since the role of the hole injection layer 105 is to improve hole injection properties, from the viewpoint, the hole injection layer 105 only needs to exist on the anode 103, but does not increase the manufacturing process and manufacturing cost. In addition, the hole injection layer 105 is formed collectively on the entire panel. Therefore, as described above, the hole injection layer 105 is also formed in a region other than on the anode 103.
  • a bank 106 is formed between the anode 103 and the auxiliary electrode 104.
  • a hole transport layer 107, an organic light emitting layer 108, an electron transport layer 109, and a cathode 110 are formed in this order on the hole injection layer 105 defined by the bank 106.
  • the electron transport layer 109 and the cathode 110 are formed continuously over the upper surface of the bank 106 and also in the non-pixel portion 10b.
  • the electron transport layer 109 Since the role of the electron transport layer 109 is to enhance the electron transport property, from this point of view, the electron transport layer 109 only needs to exist on the organic light emitting layer 108, but the hole injection layer 105 is formed. As in the case, the electron transport layer 109 is collectively formed on the entire panel so as not to increase the manufacturing process and the manufacturing cost. Therefore, as described above, the electron transport layer 109 is also formed in a region other than on the organic light emitting layer 108.
  • the electron transport layer 109 and the cathode 110 are continuously formed also in the non-pixel portion 10b, the electron transport layer 109 and the cathode 111 are also formed in this order on the hole injection layer 105 formed on the upper surface of the auxiliary electrode 104. Has been.
  • a sealing layer 111 is formed on the cathode 110.
  • the bank 106 is formed between the anode 103 and the auxiliary electrode 104.
  • One end of the bank 106 rides on the upper surface of the side portion of the anode 103, whereas the other end is the auxiliary electrode. It does not reach 104 and is located between the anode 103 and the auxiliary electrode 104. Therefore, the side surface of the auxiliary electrode 104 is not covered with the bank 106.
  • FIG. 3 is a diagram schematically showing the arrangement relationship between the anode 103, the auxiliary electrode 104, and the bank 106 in the organic EL display panel 10.
  • a plurality of banks 106 are formed in a line shape in the Y-axis direction (so-called line banks).
  • the anode 103 is formed in units of pixels between the banks 106 adjacent to each other in the X-axis direction, and in the portion corresponding to the non-pixel portion, auxiliary lines are assisted between the banks 106 adjacent in the X-axis direction.
  • An electrode 104 is formed.
  • one pixel is configured by a combination of three sub-pixels adjacent in the X-axis direction, and the auxiliary electrode 104 is formed for each pixel.
  • a region drawn with diagonal lines is a region exposed from the bank 106
  • a region drawn with broken lines is a region covered with the bank 106.
  • the side of the anode 103 is covered with the bank 106, whereas the bank 106 does not reach the side of the auxiliary electrode 104, and the side of the auxiliary electrode 104 is 106 is not covered.
  • the electron transport layer 109 and the cathode 110 are continuously formed not only in the pixel portion 10a but also in the non-pixel portion 10b. Therefore, the electron transport layer 110 and the cathode 111 are also formed in this order on the hole injection layer 105 between the bank 106 and the auxiliary electrode 104.
  • the film thickness of the auxiliary electrode 104 is larger than the total film thickness of the hole injection layer 105 and the electron transport layer 109.
  • the side surface of the auxiliary electrode 104 not covered by the bank 106 is in contact with the hole injection layer 105 and the electron transport layer 109, and there is a region exposed from the hole injection layer 105 and the electron transport layer 109.
  • the cathode 110 is in contact.
  • the thickness of the portion exposed from the hole injection layer 105 and the electron transport layer 109 on the side surface of the auxiliary electrode 104 is thinner than the thickness of the cathode 110.
  • the film thickness of the cathode 110 here is the film thickness of the cathode 110 formed on the electron transport layer 108 and in a flat portion (for example, the film thickness th1 in FIG. 2).
  • the cathode 110 Since the film thickness of the exposed portion is thinner than the film thickness of the cathode 110, the cathode 110 is formed without interruption from the side surface to the upper surface of the auxiliary electrode 104. Therefore, all portions exposed from the hole injection layer 105 and the electron transport layer 109 on the side surface of the auxiliary electrode 104 are in contact with the cathode 110.
  • the cathode 111 is continuously formed from the side surface to the upper surface of the auxiliary electrode 104, whereas the electron transport layer 109 is formed discontinuously from the side surface to the upper surface of the auxiliary electrode 104 (hereinafter referred to as “step break”). It is said).
  • the auxiliary electrode 104 is electrically connected to the cathode 110 via the hole injection layer 105 and the electron transport layer 109 on the upper surface thereof, and at the same time, directly connected to the cathode 110 on the side surface. It is connected.
  • the electric resistance when supplying voltage to the cathode 110 can be reduced.
  • the electrical resistance between the auxiliary electrode 104 and the cathode 110 is 2 Although it is about 0.0E + 6 ⁇ , with the configuration shown in this embodiment mode, since the side surface of the auxiliary electrode 104 is directly connected to the cathode 110, the electrical resistance can be reduced to about 1/1000 to 1/100. .
  • the electron transport layer 109 is likely to be disconnected at the side surface of the auxiliary electrode 104. Therefore, it becomes easy to form a region exposed from the hole injection layer 105 and the electron transport layer 109 on the side surface of the auxiliary electrode. That is, the cathode 110 can be easily brought into contact with the side surface of the auxiliary electrode 104 and exposed from the hole injection layer 105 and the electron transport layer 109.
  • the other end of the bank 106 and the side surface of the auxiliary electrode 104 may be in contact with each other.
  • the film thickness of the bank 106, the film thickness of the hole injection layer 105, and the total film thickness of the electron transport layer 109 to be described later are the film thickness of the auxiliary electrode 104 in the portion in contact with the side surface of the auxiliary electrode 104. It must be thinner than the thickness. This is because a region for directly contacting the cathode 110 described later is required on the side surface of the auxiliary electrode 104.
  • the inner angle ang2 formed between the side surface at the other end of the bank 106 and the interlayer insulating film 102 is less than 90 degrees.
  • the other end of the bank 106 is drawn with the inner angle ang2 close to 90 degrees, but it is actually about 30 to 60 degrees and is very gentle. Therefore, even if the side surface of the auxiliary electrode 104 and the other end of the bank 106 are in contact with each other, the total film thickness described above can be smaller than the film thickness of the auxiliary electrode 104.
  • the TFT substrate 101 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, and silicone.
  • a TFT, a wiring member, and a passivation film (not shown) for covering the TFT are formed on a substrate body of an insulating material such as resin or alumina.
  • the substrate body may be an organic resin film.
  • the interlayer insulating film 102 is provided to adjust the surface step of the TFT substrate 101 to be flat, and is made of an insulating material such as polyimide resin or acrylic resin.
  • the anode 103 and the auxiliary electrode 104 are made of Al (aluminum) or an aluminum alloy.
  • the anode 103 is made of, for example, Ag (silver), an alloy of silver, palladium, and copper, an alloy of silver, rubidium, and gold, MoCr (alloy of molybdenum and chromium), NiCr (alloy of nickel and chromium), or the like. It may be formed. Since the organic EL display panel 10 according to the first embodiment is a top emission type, the anode 103 is preferably formed of a light reflective material.
  • the width of the auxiliary electrode 104 is preferably 10-50 ⁇ m and the film thickness is preferably 50-300 nm.
  • the hole injection layer 105 is made of MoOx (molybdenum oxide), WOx (tungsten oxide) or MoxWyOz (molybdenum-tungsten oxide).
  • the hole injection layer 105 only needs to be formed of a material that performs a hole injection function. Examples of such a material include metal oxide, metal nitride, and metal oxynitride.
  • the film thickness of the hole injection layer 105 is preferably 40 nm-80 nm.
  • the bank 106 is made of an organic material such as resin and has an insulating property. Examples of organic materials include acrylic resins, polyimide resins, novolac type phenol resins, and the like.
  • the bank 106 preferably has organic solvent resistance. Furthermore, since the bank 106 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 106 be formed of a highly resistant material that does not excessively deform or alter the process.
  • the hole transport layer 107 has a function of blocking electrons from being transported from the organic light emitting layer 108 to the hole injection layer 105, a function of efficiently transporting holes to the organic light emitting layer 108, and the like.
  • the hole transport layer 107 includes, for example, a triphenyldiamine derivative (TPD), a porphyrin compound such as porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, 1,1-bis [4- (di-P -Tolylamino) phenyl] cyclohexane, 4,4 ', 4 "-trimethyltriphenylamine, N, N, N', N'-tetrakis (P-tolyl) -P-phenylenediamine, 1- (N, N-di -P-tolylamino) naphthalene, 4,4'-bis (dimethylamino) -2-2'-dimethyltriphenylmethane, N, N, N ', N'-tetraphenyl-4,4'-diaminobiphenyl, N N'-diphenyl-N, N'-d
  • the hole transport layer 107 can be formed by using a polymer dispersion material in which an organic material for a low molecular hole transport layer is dispersed in a polymer such as polycarbonate.
  • Inorganic materials such as MoO 3 , V 2 O 5 , WO 3 , TiO 2 , SiO 2 , and MgO can also be used.
  • the organic light emitting layer 108 includes, for example, an oxinoid compound, a perylene compound, a coumarin compound, an azacoumarin compound, an oxazole compound, an oxadiazole compound, a perinone compound, a pyrrolopyrrole compound, a naphthalene compound, and an anthracene compound described in JP-A-5-163488.
  • the electron transport layer 109 has a function of transporting electrons injected from the cathode 110 to the organic light emitting layer 108.
  • Derivatives, perylene tetracarboxyl derivatives, anthraquinodimethane derivatives, fluorenylidenemethane derivatives, anthrone derivatives, oxadiazole derivatives, perinone derivatives, and quinoline complex derivatives are preferable.
  • the film thickness of the electron transport layer 109 is preferably 20 nm-80 nm.
  • the cathode 110 is made of, for example, ITO (indium tin oxide) or IZO (indium zinc oxide). Since the organic EL display panel 10 is a top emission type, the cathode 110 is preferably formed of a light transmissive material. The film thickness of the cathode 110 is preferably about 100 nm.
  • the sealing layer 111 has a function of preventing the organic light emitting layer 108 or the like from being exposed to moisture or air, for example, SiO (silicon oxide), SiN (silicon nitride), SiON (acidic). It is made of a material such as silicon nitride), SiC (silicon carbide), SiOC (carbon-containing silicon oxide), AlN (aluminum nitride), Al2O3 (aluminum oxide). Since the organic EL display panel 10 is a top emission type, the sealing layer 111 is preferably formed of a light transmissive material.
  • FIG. 4-6 is a diagram illustrating an example of the manufacturing process of the organic EL display panel 10.
  • an interlayer insulating film 102 is formed on the TFT substrate 101.
  • an Al thin film or an aluminum alloy thin film is formed by sputtering, and the Al thin film or the aluminum alloy thin film is patterned by, for example, photolithography and etching.
  • the auxiliary electrode 104 is formed.
  • the anode 103 and the auxiliary electrode 104 are formed thicker than the total thickness of the hole injection layer 105 and the electron transport layer 108 to be formed in the subsequent process.
  • the formed auxiliary electrode 104 has an internal angle of 90 degrees or more formed between the side surface and the interlayer insulating film 102.
  • the Al thin film or the aluminum alloy thin film may be formed by vacuum deposition or the like.
  • a hole injection layer 105 of WOx or MoxWyOz is formed by a technique such as vacuum deposition or sputtering using a target composition containing WOx or MoxWyOz.
  • a film made of an insulating organic material is formed on the hole injection layer 105, and a photoresist is uniformly applied thereon.
  • a mask having an opening (a pattern of a bank to be formed) having a predetermined shape for removing a part of the insulating organic material layer and exposing a part of the hole injection layer 105 is overlaid on the applied photoresist. .
  • it is exposed from above the mask to form a resist pattern.
  • excess insulating organic material and uncured photoresist are washed out with an aqueous or non-aqueous etching solution (peeling agent). Thereby, patterning of the insulating organic material is completed.
  • peeling agent aqueous or non-aqueous etching solution
  • the photoresist (resist residue) on the patterned insulating organic material is removed by washing with pure water.
  • the bank 106 is completed (see FIG. 4D).
  • One end of the bank 106 rides on the anode 103 and the other end is positioned between the anode 103 and the auxiliary electrode 104.
  • a hole transport layer 107 is formed on the anode 103 in each region partitioned by the bank 106.
  • a composition ink (hereinafter simply referred to as “ink”) containing an organic EL material is dropped into each region partitioned by the bank 106 by, for example, an ink jet method.
  • the organic light emitting layer 108 is formed by drying the ink.
  • the organic light emitting layer 108 may be formed by a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, or the like.
  • the electron transport layer 109 is formed by, for example, vacuum deposition. Since the inner angle of the auxiliary electrode 104 formed between the side surface and the interlayer insulating film 102 is 90 degrees or more, the electron transport layer 109 is disconnected.
  • FIG. 7 is a diagram illustrating a method of forming the cathode 110 using a sputtering method.
  • a target member 122 is fixed above the substrate, and a magnet 121 is disposed on the fixed target member 122.
  • the magnet 121 moves (scans) along the surface of the target member 122.
  • a voltage is applied between the target member 122 and the substrate, the ions 123 collide with the target member 122.
  • the ions 123 are attracted to the magnet 121 and collide with a target portion under the magnet 121.
  • Target particles ejected by the colliding ions adhere to the substrate. Some of the ejected target particles are incident in a direction perpendicular to the substrate, while others are incident in an oblique direction. That is, the particle group generated in the target portion under the magnet 121 has a predetermined incident distribution 124 with respect to the substrate.
  • a particle group having such an incident distribution is generated in the entire target, so that the particles are easily incident on the substrate from an oblique direction. Therefore, ITO easily adheres to the side surface of the auxiliary electrode 104.
  • the sputtering method is more likely to adhere to the side surface of the auxiliary electrode 104 due to the wraparound than the vacuum vapor deposition method or the plasma vapor deposition method, but by using the magnet 121, The incident angle of the particles with respect to the substrate becomes gentler. Therefore, the particles are more easily incident on the side surface of the auxiliary electrode 104, and the particles are more easily attached.
  • the scanning of the magnet 121 is repeated until the formed ITO has a predetermined film thickness.
  • a sealing layer 111 is then formed on the cathode 110 as shown in FIG.
  • the hole injection layer 105 and the electron transport layer formed on the auxiliary electrode 104 are used.
  • the electrical resistance can be reduced without eliminating 109 by patterning, that is, without increasing the number of manufacturing steps.
  • Modification 1-1 A modification in which a known conductive metal oxide film 131 is provided on the surface of the auxiliary electrode 104 will be described.
  • the conductive metal oxide film 131 functions as a protective layer that prevents the anode 103 and the auxiliary electrode 104 from spontaneously oxidizing immediately after the formation of the anode 103 and the auxiliary electrode 104 in the manufacturing process.
  • the material of the conductive metal oxide film 131 may be formed of a conductive material having sufficient translucency with respect to the light generated in the organic light emitting layer 108. For example, ITO or IZO is preferable. This is because good conductivity can be obtained even if the film is formed at room temperature.
  • FIG. 8 is a partial cross-sectional view showing the configuration of the organic EL display panel 10 of Modification 1-1.
  • the conductive metal oxide film 131 is interposed between the anode 103 and the hole injection layer 105 and between the auxiliary electrode 104 and the hole injection layer 105 to improve the bondability. Yes.
  • the conductive metal oxide film 131 is also formed on the side surfaces of the anode 103 and the auxiliary electrode 104 continuously from the upper surface.
  • the side surface of the auxiliary electrode 104 is in contact with the cathode 110 via the conductive metal oxide film 131. Since the conductive metal oxide film 131 has a lower electric resistance than an oxide of aluminum or aluminum alloy, the electric resistance on the side surface of the auxiliary electrode 104 can be further reduced.
  • the conductive metal oxide film 131 is formed on the interlayer insulating film 102 and also in a region where the anode 103 and the auxiliary electrode 104 are not formed, in a state of being continuous from their side surfaces.
  • nickel is deposited on at least a part of the surface of the anode 103 and the auxiliary electrode 104, and the surface of the deposited nickel is oxidized to form a nickel oxide layer.
  • FIG. 9 is a partial cross-sectional view and a partially enlarged view showing the configuration of the organic EL display panel 10 of Modification 1-2.
  • the side surface of the auxiliary electrode 104 of the organic display panel 10 and its peripheral portion are extracted.
  • a precipitate containing nickel is formed on the surface of the side surface of the aluminum (Al) layer 1040 as the main component (deposited nickel 1041).
  • the deposited nickel 1041 has low electrical resistance and is less susceptible to oxidation than aluminum or an aluminum alloy, and also has conductivity even when oxidized.
  • the deposited nickel 1041 is not deposited on the entire surface of the side surface of the auxiliary electrode 104, but is deposited on a part of the surface.
  • a nickel oxide layer 1043 is formed on the deposited portion of the surface of the deposited nickel 1041.
  • an aluminum oxide layer 1042 is formed on the surface of the aluminum layer 1040 where the deposited nickel 1041 does not exist.
  • the cathode 110 is in electrical contact with the side surface of the auxiliary electrode 104 via the deposited nickel 1041 formed on the side surface of the auxiliary electrode 104. It is possible to further reduce the electrical resistance on the side surface.
  • the above-described deposited nickel 1041 is a particle. Since the nickel particles are formed on the side surface of the auxiliary electrode 104, the side surface of the auxiliary electrode 104 has an uneven shape. Thereby, the contact area between the cathode 110 and the side surface of the auxiliary electrode 104 can be increased, and the contact resistance between the cathode 110 and the side surface of the auxiliary electrode 104 can be reduced.
  • the nickel oxide layer 1043 formed on the surface of the deposited nickel 1041 has a hole injection property, and the anode 103 has a hole injection property. Therefore, in this modification, the hole injection layer is not separately formed.
  • nickel oxide layer 1043 which is an oxide layer of a transition metal, has hole injecting properties has also been confirmed in the following references.
  • FIG. 10 is a diagram illustrating an example of a manufacturing process of the organic EL display panel 10 of the present modification.
  • 10 (a) and 10 (b) are the same as FIGS. 4 (a) and 4 (b), and the description thereof is omitted here.
  • the anode 103 and the auxiliary electrode 104 are baked in an oxygen atmosphere.
  • the firing conditions were a firing temperature of 230 [° C.] or higher and a firing time of 30 [min. ] That's it.
  • nickel is deposited on a part of the surface of the aluminum layer 1041 (deposited nickel 1042), as shown in the partially enlarged view of FIG.
  • the surface of the nickel 1042 is oxidized to form a nickel oxide layer 1044.
  • the surface of the aluminum layer 1041 is also oxidized to form an aluminum oxide layer 1043, and the fired anode 103 and auxiliary electrode 104 are completed.
  • FIG. 11 is a partial cross-sectional view showing the configuration of the organic EL display panel 10 of Modification 1-3. As shown in FIG. 11, the auxiliary electrode 104 is formed thicker than the anode 103. Thereby, since the contact area with the cathode 110 can be increased on the side surface of the auxiliary electrode 104, the electrical resistance can be further reduced.
  • FIG. 12 is a diagram schematically illustrating an arrangement relationship of the anode 103, the auxiliary electrode 104, and the bank 106 in the organic EL display panel 10 of Modification 1-4.
  • a plurality of banks 106 are formed in a line shape in the Y-axis direction, and a bank adjacent to the X-axis direction in a portion corresponding to the pixel portion.
  • the anode 103 is formed between the pixels 106 in units of pixels, and the auxiliary electrode 104 is formed in a line shape in a portion corresponding to the non-pixel portion.
  • the bank 106 in the portion corresponding to the non-pixel portion has a plurality of openings at the top, and each opening has a plurality of openings.
  • a part of the auxiliary electrode 104 is exposed.
  • a region drawn with diagonal lines indicates a region exposed from the bank 106
  • a region drawn with broken lines shows a region covered with the bank 106.
  • the bank runs on the upper surface of one side, whereas the bank 106 does not reach the other side, These sides are not covered by the bank 106.
  • auxiliary electrode 104 exposed from each opening, it is not unified which side upper surface of the auxiliary electrode 104 is on the bank, but the bank 106 is on the upper surface of one side. It may be a configuration.
  • the opening 106 adjacent in the Y-axis direction is covered with the bank 106.
  • FIG. 13 is a partial cross-sectional view (B-B ′ cross-section of FIG. 3) showing the configuration of the organic EL display panel 10 of Modification 1-4.
  • a bank 106 rides on the upper surface of one side of the auxiliary electrode 104. Accordingly, the side face on which the bank 106 rides cannot directly contact the cathode 110. However, since the bank 106 rides on the upper surface of one side of the auxiliary electrode 104, the contact area between the bank 106 and the hole injection layer 105 can be increased.
  • the width of the bank 106 is narrowed in the X-axis direction in order to increase the formation area of the organic light emitting layer 108, it is possible to suppress a decrease in the area where the bank 106 adheres to the hole injection layer 105. As a result, a decrease in the adhesion strength of the bank 106 to the hole injection layer 105 can be suppressed, so that the bank 106 can be prevented from peeling from the hole injection layer 105.
  • the side surface on which the bank 106 is not mounted has a region exposed from the hole injection layer 105 and the electron transport layer 109 as described above, and thus directly contacts the cathode 110 in the region. can do.
  • the structure is in contact with the cathode 110 on one side, so the electrical resistance increases, but the width of the bank 106 is increased. be able to.
  • FIG. 14 is a diagram schematically showing the arrangement relationship of the anode 103, the auxiliary electrode 104, and the bank 141 in the organic EL display panel 10 of Modification 1-5.
  • the bank 141 of the organic EL display panel 10 according to this modification has a so-called pixel in which a portion 141a extending in the X-axis direction and a portion 141b extending in the Y-axis direction are integrally formed. It is a bank.
  • subpixels adjacent in the X-axis direction are partitioned by a portion 141b
  • subpixels adjacent in the Y-axis direction are partitioned by a portion 141a.
  • An anode 103 is formed in each region defined by the portion 141a and the portion 141b.
  • the auxiliary electrode 104 is formed in a line shape for each pixel.
  • the bank 141b has a plurality of openings at the top of each pixel, and a part of the auxiliary electrode 104 is exposed from each opening.
  • the hatched area indicates the area exposed from the bank 106, and the broken line area is covered by the bank 106. Is shown.
  • the auxiliary electrode 104 exposed from the intersection of the portion 141a and the portion 141b does not reach the sides 141b and is not covered with the portion 141b.
  • both sides of the auxiliary electrode 104 exposed from the portion 141a between the anodes 103 are covered with the portion 141a.
  • FIG. 15 is a partial cross-sectional view (cross-section C-C ′ of FIG. 14) showing the configuration of the organic EL display panel 10 of Modification 1-5.
  • both side surfaces of the auxiliary electrode 104 are exposed without being covered by the bank 106, and the exposed both side surfaces have regions exposed from the hole injection layer 105 and the electron transport layer 108. is doing. In that region, the cathode 110 is in direct contact.
  • both sides of the auxiliary electrode 104 exposed from the portion 141a between the anodes 103 are covered with the portion 141a, whereas the auxiliary electrode 104 exposed from the intersection of the portion 141a and the portion 141b in FIG. Both side surfaces are exposed and are in direct contact with the cathode 110.
  • Modification 1-6 A modification in which the thickness of the region exposed from the hole injection layer 105 and the electron transport layer 108 on the side surface of the auxiliary electrode 104 is thicker than the thickness of the cathode 110 will be described.
  • FIG. 16 is a partial cross-sectional view showing the configuration of the organic EL display panel 10 of Modification 1-6. As shown in FIG. 16, the thickness th3 of the region exposed from the hole injection layer 105 and the electron transport layer 108 on the side surface of the auxiliary electrode 104 is thicker than the film thickness th4 of the cathode 110.
  • the organic EL display panel 10 according to the present invention has been described based on the embodiment, but the present invention is not limited to the above embodiment.
  • MoOx, WOx or MoxWyOz is used as the material constituting the hole injection layer 105.
  • Mo molecular weight
  • W tungsten
  • the external appearance of the display device 1 is not shown in the above embodiment, for example, it may have an external appearance as shown in FIG. (3)
  • the side portion of the anode 103 on which the bank 106 is formed is a region including the upper surface of the anode 103 within a predetermined range formed on the side surface of the anode 103.
  • the predetermined range will be described.
  • the center direction of the anode 103 There is no particular limitation on the center direction of the anode 103.
  • it is desirable that the area of the bank 106 formed on the upper surface of the anode 103 is as small as possible.
  • the formation position of the bank 106 can be brought closer to the side direction of the anode 103 as long as the side surfaces of the anode 103 and the hole injection layer 105 are not exposed.
  • the bank 106 rides on the upper surface of one side of the auxiliary electrode 104, and the other side is not covered with the bank 106. A configuration in which both sides are not covered by the bank 106 may be employed. Thereby, electrical resistance can be further reduced.
  • the above embodiment and the above modifications may be combined.
  • the present invention can be used, for example, for home or public facilities, various display devices for business use, television devices, displays for portable electronic devices, and the like.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic EL display panel which includes: a substrate; a lower electrode (103) formed on the substrate; an auxiliary electrode (104) which is formed in a region on the substrate, said region being spaced apart from the lower electrode in the direction along the main surface of the substrate; a barrier rib (106) which is formed above the substrate, from a lower electrode side portion on the side that faces the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode; an organic light emitting layer (108) which is formed above the lower electrode; a charge intermediate layer (109), which is formed on the organic light emitting layer, on the barrier rib, in the region above the substrate, said region being between the auxiliary electrode and the barrier rib, and on the auxiliary electrode; and an upper electrode (110) which is formed on the charge intermediate layer. The film thickness of the auxiliary electrode is more than that of the charge intermediate layer, and the side surface of the auxiliary electrode has a region that is exposed from the charge intermediate layer in the region between the auxiliary electrode and the barrier rib, and the upper electrode is in contact with the region, which is the side surface of the auxiliary electrode, and is exposed from the charge intermediate layer.

Description

有機EL表示パネル、有機EL表示パネルを備えた表示装置、および有機EL表示パネルの製造方法Organic EL display panel, display device including organic EL display panel, and method of manufacturing organic EL display panel
 本発明は、有機EL表示パネル、有機EL表示パネルを備えた表示装置、および有機EL表示パネルの製造方法に関する。 The present invention relates to an organic EL display panel, a display device including the organic EL display panel, and a method for manufacturing the organic EL display panel.
 近年、研究・開発が進んでいる有機EL表示パネルは、有機材料の電界発光現象を利用した表示パネルである。同パネルは、下部電極(陽極)及び上部電極(陰極)の電極対の間に有機発光層が介挿された構造を有している。 In recent years, organic EL display panels that have been researched and developed are display panels that utilize the electroluminescence phenomenon of organic materials. The panel has a structure in which an organic light emitting layer is interposed between a pair of electrodes of a lower electrode (anode) and an upper electrode (cathode).
 トップエミッション型の有機EL表示パネルでは、上部電極として光透過性の材料であるITO(酸化インジウムスズ)やIZO(酸化インジウム亜鉛)が一般的に利用される。これらは、例えば下部電極に利用されるAl(アルミニウム)等に比べ高抵抗であるため、有機EL表示パネルにおいて上部電極での電圧降下による輝度のばらつきが生じる。具体的には、上部電極の端子付近(有機EL表示パネルの端部)よりも当該端子から離れた部分(有機EL表示パネルの中央部)の方が暗くなる。特に近年、有機EL表示パネルの大型化が進んでおり、これに伴って、輝度のばらつきが顕著になっている。 Top emission type organic EL display panels generally use ITO (indium tin oxide) or IZO (indium zinc oxide), which are light transmissive materials, as the upper electrode. Since these are higher in resistance than Al (aluminum) used for the lower electrode, for example, the organic EL display panel causes variations in luminance due to a voltage drop at the upper electrode. Specifically, the portion (center portion of the organic EL display panel) far from the terminal is darker than the vicinity of the upper electrode terminal (end portion of the organic EL display panel). In particular, in recent years, the organic EL display panel has been increased in size, and accordingly, the variation in luminance has become remarkable.
 そこで、有機EL表示パネルにおいて、電圧降下による輝度のばらつきを軽減するために、上部電極に対して電圧供給を図る補助電極を配置する構成が提案されている(例えば、特許文献1参照)。 Therefore, in an organic EL display panel, a configuration in which an auxiliary electrode for supplying voltage to the upper electrode is arranged in order to reduce variation in luminance due to a voltage drop (see, for example, Patent Document 1).
 補助電極が配置された有機EL表示パネルの構成の一例について説明する。図18は、補助電極が配置された有機EL表示パネル1000の構成の一例を示す部分断面図である。図18に示すように、有機EL表示パネル1000では、TFT(薄膜トランジスタ)(不図示)等が形成された基板201上に平坦化層202が形成され、平坦化層202上で、かつ、当該平坦化層202表面に沿って互いに離れた位置に、下部電極203と補助電極204とが形成されている。有機EL表示パネル1000においては、下部電極203が形成された領域が画素部1000a、補助電極204が形成された領域が非画素部1000bである。画素部1000aと非画素部1000bとの間には、バンク206が形成されており、このバンク206は、下部電極203及び補助電極204の側部上面に乗り上げている。 An example of the configuration of an organic EL display panel in which auxiliary electrodes are arranged will be described. FIG. 18 is a partial cross-sectional view showing an example of the configuration of the organic EL display panel 1000 in which auxiliary electrodes are arranged. As shown in FIG. 18, in the organic EL display panel 1000, a planarization layer 202 is formed on a substrate 201 on which a TFT (thin film transistor) (not shown) or the like is formed, and the planarization layer 202 is formed on the planarization layer 202. A lower electrode 203 and an auxiliary electrode 204 are formed at positions separated from each other along the surface of the activating layer 202. In the organic EL display panel 1000, the region where the lower electrode 203 is formed is the pixel portion 1000a, and the region where the auxiliary electrode 204 is formed is the non-pixel portion 1000b. A bank 206 is formed between the pixel portion 1000 a and the non-pixel portion 1000 b, and the bank 206 rides on the upper surfaces of the side electrodes of the lower electrode 203 and the auxiliary electrode 204.
 画素部1000aでは、バンク206で規定された領域内において、下部電極203上に、ホール輸送性を有する電荷中間層であるホール輸送層207、有機発光層208、電子輸送性を有する電荷中間層である電子輸送層209、および上部電極210が順に積層形成されている。電子輸送層209及び上部電極210は、バンク206を乗り越えて、隣接する非画素部1000bにも連続して形成されている。非画素部1000bでは、上部電極210が、電子輸送層209を介して、バンク206に覆われていない補助電極204の上面部分に接している。 In the pixel portion 1000a, in the region defined by the bank 206, a hole transport layer 207 that is a charge intermediate layer having hole transport properties, an organic light emitting layer 208, and a charge intermediate layer having electron transport properties are formed on the lower electrode 203. An electron transport layer 209 and an upper electrode 210 are sequentially stacked. The electron transport layer 209 and the upper electrode 210 are continuously formed in the adjacent non-pixel portion 1000b over the bank 206. In the non-pixel portion 1000 b, the upper electrode 210 is in contact with the upper surface portion of the auxiliary electrode 204 that is not covered by the bank 206 via the electron transport layer 209.
 有機EL表示パネル1000では、陰極210は封止層211で覆われている。 In the organic EL display panel 1000, the cathode 210 is covered with a sealing layer 211.
特開2002-352963号公報JP 2002-352963 A
 ところで、補助電極204が電子輸送層209を介して上部電極210と接しているのは、製造プロセス及び製造コストを増やさないために表示パネル全体に一括して電子輸送層209を形成しているためであり、補助電極204と上部電極210との間に電子輸送層209が介在している技術的意義はない。むしろ、補助電極204の役割の観点から見ると、補助電極204上に形成された電子輸送層209は不要である。なぜなら、電子輸送層209は高抵抗の半導体材料であるため、補助電極204と上部電極210との間に電子輸送層209が介在していることにより、補助電極204と上部電極210との間の電気抵抗が高くなるからである。 By the way, the reason why the auxiliary electrode 204 is in contact with the upper electrode 210 through the electron transport layer 209 is that the electron transport layer 209 is collectively formed on the entire display panel so as not to increase the manufacturing process and the manufacturing cost. Therefore, there is no technical significance that the electron transport layer 209 is interposed between the auxiliary electrode 204 and the upper electrode 210. Rather, from the viewpoint of the role of the auxiliary electrode 204, the electron transport layer 209 formed on the auxiliary electrode 204 is unnecessary. Because the electron transport layer 209 is a high-resistance semiconductor material, the electron transport layer 209 is interposed between the auxiliary electrode 204 and the upper electrode 210, so that the space between the auxiliary electrode 204 and the upper electrode 210 is reduced. This is because the electrical resistance increases.
 補助電極204と上部電極210との間の電気抵抗を低減させるために、有機EL表示パネルの製造プロセスにおいて、補助電極204上に電子輸送層209が形成されないようパターニングすることも考えられるが、この方法ではコストの上昇を招き、好ましくない。 In order to reduce the electrical resistance between the auxiliary electrode 204 and the upper electrode 210, patterning may be performed so that the electron transport layer 209 is not formed on the auxiliary electrode 204 in the manufacturing process of the organic EL display panel. This method is not preferable because it causes an increase in cost.
 本発明は、補助電極上の電荷中間層を排除することなく、すなわち表示パネル全体に一括して電荷中間層を形成しつつ、上部電極に対する電圧供給を行う際の電気抵抗を低減した有機EL表示パネルを提供することを目的とする。 The present invention eliminates the charge intermediate layer on the auxiliary electrode, that is, forms the charge intermediate layer on the entire display panel, and reduces the electric resistance when supplying voltage to the upper electrode. The purpose is to provide a panel.
 上記課題を解決するために、本発明の一態様に係る有機EL表示パネルは、基板と、前記基板上に形成された下部電極と、前記基板上であって、前記基板の主面に沿った方向に前記下部電極と離間した領域に形成された補助電極と、前記基板の上方であって、前記下部電極の補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけて形成された隔壁と、前記下部電極の上方に形成された有機発光層と、前記有機発光層上、前記隔壁上、前記基板の上方で前記補助電極と前記隔壁との間の領域、及び前記補助電極上に形成された電荷中間層と、前記電荷中間層上に形成された上部電極と、を含み、前記補助電極の膜厚は、前記電荷中間層の膜厚より厚く、前記補助電極の側面は、前記補助電極と前記隔壁との間の領域に存在する前記電荷中間層から露出した領域を有し、前記上部電極は、前記補助電極の側面であって、前記電荷中間層から露出した領域に接触しているとした。 In order to solve the above problems, an organic EL display panel according to an aspect of the present invention includes a substrate, a lower electrode formed on the substrate, and the substrate, which is along the main surface of the substrate. An auxiliary electrode formed in a region away from the lower electrode in a direction, and between the lower electrode and the auxiliary electrode from the side of the lower electrode on the side facing the auxiliary electrode above the substrate. A partition formed over a predetermined position, an organic light emitting layer formed above the lower electrode, a region between the auxiliary electrode and the partition on the organic light emitting layer, on the partition, and above the substrate And a charge intermediate layer formed on the auxiliary electrode, and an upper electrode formed on the charge intermediate layer, wherein the auxiliary electrode has a thickness greater than that of the charge intermediate layer, The side surface of the auxiliary electrode is between the auxiliary electrode and the partition wall. Has a region exposed from the charge intermediate layers present in the area, the upper electrode is a side of the auxiliary electrode, it was in contact with the exposed from the charge interlayer region.
 本発明の一態様に係る有機EL表示パネルでは、隔壁が、前記下部電極の前記補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけて形成されており、前記基板の上方で前記補助電極と前記隔壁との間の領域に電荷中間層が形成されている。 In the organic EL display panel according to an aspect of the present invention, the partition wall is formed from a side portion of the lower electrode facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode. A charge intermediate layer is formed in a region between the auxiliary electrode and the partition above the substrate.
 したがって、前記補助電極の側面が前記隔壁に覆われずに、前記電荷中間層が補助電極の側面に接触することになる。 Therefore, the side surface of the auxiliary electrode is not covered with the partition wall, and the charge intermediate layer comes into contact with the side surface of the auxiliary electrode.
 また、前記補助電極の膜厚は、前記電荷中間層の膜厚より厚くなっているので、前記補助電極の側面において前記電荷中間層から露出した領域が生じ、この領域に前記上部電極が直接接触している。 Further, since the auxiliary electrode is thicker than the charge intermediate layer, a region exposed from the charge intermediate layer is formed on the side surface of the auxiliary electrode, and the upper electrode is in direct contact with this region. is doing.
 前記補助電極の側面において、前記電荷中間層を介さずに前記上部電極と直接接触するので、補助電極上に電荷中間層が形成されていても、前記上部電極に電圧を供給する際の電気抵抗を低減することができる。 Since the side surface of the auxiliary electrode is in direct contact with the upper electrode without passing through the charge intermediate layer, even when a charge intermediate layer is formed on the auxiliary electrode, electric resistance when supplying a voltage to the upper electrode Can be reduced.
 上述のように、本態様に係る有機EL表示パネルでは、前記上部電極が前記補助電極の側面で接触する構成のため、補助電極上に形成される電荷中間層をパターニングにより排除することなく、すなわち、製造工程を増やすことなく、電気抵抗の低減を実現することができる。 As described above, in the organic EL display panel according to this aspect, the upper electrode is in contact with the side surface of the auxiliary electrode, so that the charge intermediate layer formed on the auxiliary electrode is not excluded by patterning, that is, The reduction in electrical resistance can be realized without increasing the number of manufacturing steps.
実施の形態1の表示装置1の全体構成を模式的に示すブロック図である。1 is a block diagram schematically showing an overall configuration of a display device 1 according to a first embodiment. 実施の形態1の有機EL表示パネル10の構成を示す部分断面図である。1 is a partial cross-sectional view illustrating a configuration of an organic EL display panel 10 according to a first embodiment. 実施の形態1の有機EL表示パネル10における陽極103、補助電極104、及びバンク106の配置関係を模式的に示す図である。FIG. 2 is a diagram schematically showing an arrangement relationship between an anode 103, an auxiliary electrode 104, and a bank 106 in the organic EL display panel 10 according to the first embodiment. 実施の形態1の有機EL表示パネル10の製造工程の一例を示す図である。FIG. 3 is a diagram illustrating an example of a manufacturing process of the organic EL display panel 10 according to the first embodiment. 実施の形態1の有機EL表示パネル10の製造工程のうち図4に示す工程に後続する部分の一例を示す図である。FIG. 5 is a diagram illustrating an example of a part subsequent to the process illustrated in FIG. 4 in the manufacturing process of the organic EL display panel 10 according to the first embodiment. 実施の形態1の有機EL表示パネル10の製造工程のうち図5に示す工程に後続する部分の一例を示す図である。It is a figure which shows an example of the part following the process shown in FIG. 5 among the manufacturing processes of the organic electroluminescent display panel 10 of Embodiment 1. FIG. スパッタ法を用いた陰極110の形成方法を示す図である。It is a figure which shows the formation method of the cathode 110 using a sputtering method. 変形例1-1の有機EL表示パネル10の構成を示す部分断面図である。10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-1. FIG. 変形例1-2の有機EL表示パネル10の構成を示す部分断面図及び一部拡大図である。FIG. 10 is a partial cross-sectional view and a partially enlarged view showing a configuration of an organic EL display panel 10 of Modification 1-2. 変形例1-2の有機EL表示パネル10の製造工程の一例を示す図である。11 is a diagram illustrating an example of a manufacturing process of the organic EL display panel 10 of Modification 1-2. FIG. 変形例1-3の有機EL表示パネル10の構成を示す部分断面図である。FIG. 10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-3. 変形例1-4の有機EL表示パネル10における陽極103、補助電極104、及びバンク106の配置関係を模式的に示す図である。FIG. 10 is a diagram schematically showing an arrangement relationship of an anode 103, an auxiliary electrode 104, and a bank 106 in an organic EL display panel 10 of Modification 1-4. 変形例1-4の有機EL表示パネル10の構成を示す部分断面図である。10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-4. FIG. 変形例1-5の有機EL表示パネル10における陽極103、補助電極104、及びバンク141の配置関係を模式的に示す図である。FIG. 10 is a diagram schematically showing an arrangement relationship between an anode 103, an auxiliary electrode 104, and a bank 141 in an organic EL display panel 10 of Modification 1-5. 変形例1-5の有機EL表示パネル10の構成を示す部分断面図である。FIG. 10 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-5. 変形例1-6の有機EL表示パネル10の構成を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing a configuration of an organic EL display panel 10 of Modification 1-6. 表示装置1の外観を示す外観斜視図である。1 is an external perspective view showing an external appearance of a display device 1. FIG. 補助電極が配置された有機EL表示パネル1000の構成の一例を示す部分断面図である。It is a fragmentary sectional view showing an example of composition of organic EL display panel 1000 by which an auxiliary electrode is arranged.
  [実施の態様]
 本発明の一態様である有機EL表示パネルは、基板と、前記基板上に形成された下部電極と、前記基板上であって、前記基板の主面に沿った方向に前記下部電極と離間した領域に形成された補助電極と、前記基板の上方であって、前記下部電極の補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけて形成された隔壁と、前記下部電極の上方に形成された有機発光層と、前記有機発光層上、前記隔壁上、前記基板の上方で前記補助電極と前記隔壁との間の領域、及び前記補助電極上に形成された電荷中間層と、前記電荷中間層上に形成された上部電極と、を含み、前記補助電極の膜厚は、前記電荷中間層の膜厚より厚く、前記補助電極の側面は、前記補助電極と前記隔壁との間の領域に存在する前記電荷中間層から露出した領域を有し、前記上部電極は、前記補助電極の側面であって、前記電荷中間層から露出した領域に接触しているとした。
[Aspect]
An organic EL display panel according to an aspect of the present invention includes a substrate, a lower electrode formed on the substrate, and the substrate on the substrate and separated from the lower electrode in a direction along the main surface of the substrate. An auxiliary electrode formed in a region, and a partition wall formed from a side of the lower electrode on the side facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode. And an organic light emitting layer formed above the lower electrode, a region on the organic light emitting layer, on the partition, a region between the auxiliary electrode and the partition above the substrate, and on the auxiliary electrode A charge intermediate layer formed on the charge intermediate layer; and an upper electrode formed on the charge intermediate layer, wherein the auxiliary electrode is thicker than the charge intermediate layer, and the side surface of the auxiliary electrode is The charge intermediate existing in the region between the electrode and the partition Has a region exposed from the upper electrode is a side of the auxiliary electrode, was in contact with the exposed from the charge interlayer region.
 本発明の一態様に係る有機EL表示パネルでは、隔壁が、前記下部電極の前記補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけて形成されており、前記基板の上方で前記補助電極と前記隔壁との間の領域に電荷中間層が形成されている。 In the organic EL display panel according to an aspect of the present invention, the partition wall is formed from a side portion of the lower electrode facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode. A charge intermediate layer is formed in a region between the auxiliary electrode and the partition above the substrate.
 したがって、前記補助電極の側面が前記隔壁に覆われずに、前記電荷中間層が補助電極の側面に接触することになる。 Therefore, the side surface of the auxiliary electrode is not covered with the partition wall, and the charge intermediate layer comes into contact with the side surface of the auxiliary electrode.
 また、前記補助電極の膜厚は、前記電荷中間層の膜厚より厚くなっているので、前記補助電極の側面において前記電荷中間層から露出した領域が生じ、この領域に前記上部電極が直接接触している。 Further, since the auxiliary electrode is thicker than the charge intermediate layer, a region exposed from the charge intermediate layer is formed on the side surface of the auxiliary electrode, and the upper electrode is in direct contact with this region. is doing.
 前記補助電極の側面において、前記電荷中間層を介さずに前記上部電極と直接接触するので、補助電極上に電荷中間層が形成されていても、前記上部電極に電圧を供給する際の電気抵抗を低減することができる。 Since the side surface of the auxiliary electrode is in direct contact with the upper electrode without passing through the charge intermediate layer, even when a charge intermediate layer is formed on the auxiliary electrode, electric resistance when supplying a voltage to the upper electrode Can be reduced.
 上述のように、本態様に係る有機EL表示パネルでは、前記上部電極が前記補助電極の側面で接触する構成のため、補助電極上に形成される電荷中間層をパターニングにより排除することなく、すなわち、製造工程を増やすことなく、電気抵抗の低減を実現することができる。 As described above, in the organic EL display panel according to this aspect, the upper electrode is in contact with the side surface of the auxiliary electrode, so that the charge intermediate layer formed on the auxiliary electrode is not excluded by patterning, that is, The reduction in electrical resistance can be realized without increasing the number of manufacturing steps.
 ところで、例えばアルミニウム、あるいはアルミニウム合金は、電気抵抗が低いため、有機EL表示パネルの下部電極として好適であるが、前記下部電極をアルミニウム、あるいはアルミニウム合金で構成した場合、例えば製造工程で前記下部電極の側面や表面に、電気抵抗が高いアルミニウム酸化膜、あるいはアルミニウム合金酸化膜が形成される。 By the way, for example, aluminum or an aluminum alloy is suitable as a lower electrode of an organic EL display panel because of its low electric resistance. However, when the lower electrode is made of aluminum or an aluminum alloy, for example, in the manufacturing process, the lower electrode An aluminum oxide film or an aluminum alloy oxide film having a high electric resistance is formed on the side surface and surface of the film.
 そこで、本発明の別の態様として、前記補助電極は、アルミニウム、あるいはアルミニウム合金で構成され、少なくとも、前記補助電極の側面の、前記電荷中間層から露出した領域には、前記補助電極の側面の酸化を防止する導電性金属酸化物膜が形成されているとしてもよい。 Therefore, as another aspect of the present invention, the auxiliary electrode is made of aluminum or an aluminum alloy, and at least a region of the side surface of the auxiliary electrode exposed from the charge intermediate layer has a side surface of the auxiliary electrode. A conductive metal oxide film that prevents oxidation may be formed.
 本態様の有機EL表示パネルでは、少なくとも、前記補助電極の側面の、前記電荷中間層から露出した領域に前記導電性金属酸化物膜が形成されている。この導電性金属酸化物膜により、アルミニウム、あるいはアルミニウム合金で構成された補助電極の側面の酸化を抑制することができる。 In the organic EL display panel of this aspect, the conductive metal oxide film is formed at least in a region exposed from the charge intermediate layer on the side surface of the auxiliary electrode. With this conductive metal oxide film, oxidation of the side surface of the auxiliary electrode made of aluminum or aluminum alloy can be suppressed.
 本態様の有機EL表示パネルでは、前記上部電極は、前記補助電極の側面と、前記補助電極の側面に形成された電気抵抗が小さい導電性金属酸化物膜を介して電気的に接触することになるので、前記補助電極の側面における電気抵抗を低減することができる。 In the organic EL display panel according to this aspect, the upper electrode is in electrical contact with the side surface of the auxiliary electrode via a conductive metal oxide film formed on the side surface of the auxiliary electrode. Therefore, the electrical resistance on the side surface of the auxiliary electrode can be reduced.
 ここで、本発明の別の態様として、前記補助電極は、少なくともニッケル、あるいはコバルトのいずれか一方を含むアルミニウム合金で構成され、前記補助電極の側面には、前記アルミニウム合金に含まれるニッケル、あるいはコバルトを含む析出物が形成されているとしてもよい。 Here, as another aspect of the present invention, the auxiliary electrode is made of an aluminum alloy containing at least one of nickel and cobalt, and the side surface of the auxiliary electrode has nickel included in the aluminum alloy, or A precipitate containing cobalt may be formed.
 本態様の有機EL表示パネルでは、前記補助電極の側面には、前記アルミニウム合金に含まれるニッケル、あるいはコバルトを含む析出物が形成されている。 In the organic EL display panel of this embodiment, a precipitate containing nickel or cobalt contained in the aluminum alloy is formed on the side surface of the auxiliary electrode.
 ここで、ニッケル、あるいはコバルトを含む析出物は、電気抵抗が低く、かつ、アルミニウム、あるいはアルミニウム合金よりも酸化されにくい特性を有し、さらに、酸化された場合でも導電性を有する。 Here, a precipitate containing nickel or cobalt has a low electric resistance and has a characteristic that it is less likely to be oxidized than aluminum or an aluminum alloy, and also has conductivity even when oxidized.
 本態様の有機EL表示パネルでは、前記上部電極は、前記補助電極の側面と、前記補助電極の側面に形成された電気抵抗が小さいニッケル、あるいはコバルトを含む析出物を介して電気的に接触することになるので、前記補助電極の側面における電気抵抗を低減することができる。 In the organic EL display panel according to this aspect, the upper electrode is in electrical contact with the side surface of the auxiliary electrode via a precipitate containing nickel or cobalt having a low electrical resistance formed on the side surface of the auxiliary electrode. As a result, the electrical resistance on the side surface of the auxiliary electrode can be reduced.
 ここで、本発明の別の態様として、前記析出物は、粒子であるとしてもよい。 Here, as another aspect of the present invention, the precipitate may be particles.
 本態様の有機EL表示パネルでは、前記析出物は、粒子である。前記補助電極の側面には、前記粒子が形成されているため、前記補助電極の側面は凹凸形状となる。これにより、前記上部電極と前記補助電極の側面との接触面積を増大させることができるので、前記上部電極と前記補助電極の側面との接触抵抗を低減することができる。 In the organic EL display panel of this aspect, the precipitate is a particle. Since the particles are formed on the side surface of the auxiliary electrode, the side surface of the auxiliary electrode has an uneven shape. Accordingly, the contact area between the upper electrode and the side surface of the auxiliary electrode can be increased, so that the contact resistance between the upper electrode and the side surface of the auxiliary electrode can be reduced.
 ここで、本発明の別の態様として、前記下部電極と前記補助電極との上面には第2電荷中間層が形成され、前記第2電荷中間層は、前記下部電極上において前記下部電極と前記有機発光層との間に介在し、前記補助電極上において前記補助電極と前記電荷中間層との間に介在しているとしてもよい。 Here, as another aspect of the present invention, a second charge intermediate layer is formed on the upper surface of the lower electrode and the auxiliary electrode, and the second charge intermediate layer is formed on the lower electrode and the lower electrode. It may be interposed between the organic light emitting layer and interposed between the auxiliary electrode and the charge intermediate layer on the auxiliary electrode.
 その際、前記第2電荷中間層はさらに、前記補助電極と前記隔壁との間の領域に存在し、当該領域において前記第2電荷中間層上に前記電荷中間層が形成されており、前記補助電極の膜厚は、前記電荷中間層及び前記第2電荷中間層の合計膜厚より厚く、前記補助電極の側面は、前記電荷中間層及び前記第2電荷中間層の積層部分から露出した領域を有し、前記上部電極は、前記補助電極の側面であって、前記電荷中間層及び前記第2電荷中間層の積層部分から露出した領域に接触しているとしてもよい。 At this time, the second charge intermediate layer further exists in a region between the auxiliary electrode and the partition wall, and the charge intermediate layer is formed on the second charge intermediate layer in the region, and the auxiliary charge layer is formed. The thickness of the electrode is thicker than the total thickness of the charge intermediate layer and the second charge intermediate layer, and the side surface of the auxiliary electrode is a region exposed from the stacked portion of the charge intermediate layer and the second charge intermediate layer. The upper electrode may be in contact with a side surface of the auxiliary electrode that is exposed from a stacked portion of the charge intermediate layer and the second charge intermediate layer.
 本発明の一態様に係る有機EL表示パネルでは、前記第2電荷中間層がさらに、前記補助電極と前記隔壁との間の領域に存在しており、当該領域において前記第2電荷中間層上に前記電荷中間層が形成されている。 In the organic EL display panel according to one aspect of the present invention, the second charge intermediate layer further exists in a region between the auxiliary electrode and the partition wall, and the second charge intermediate layer is disposed on the second charge intermediate layer in the region. The charge intermediate layer is formed.
 したがって、前記電荷中間層及び前記第2電荷中間層が補助電極の側面に接触することになる。 Therefore, the charge intermediate layer and the second charge intermediate layer come into contact with the side surface of the auxiliary electrode.
 また、前記補助電極の膜厚は、前記電荷中間層及び前記第2電荷中間層の合計膜厚より厚くなっているので、前記補助電極の側面において前記電荷中間層及び前記第2電荷中間層から露出した領域が生じ、この領域に前記上部電極が直接接触している。 In addition, since the auxiliary electrode has a thickness greater than the total thickness of the charge intermediate layer and the second charge intermediate layer, the side surface of the auxiliary electrode is separated from the charge intermediate layer and the second charge intermediate layer. An exposed area is formed, and the upper electrode is in direct contact with this area.
 前記補助電極の側面において、前記電荷中間層及び前記第2電荷中間層を介さずに前記上部電極と直接接触するので、補助電極上に電荷中間層及び前記第2電荷中間層が形成されていても、前記上部電極に電圧を供給する際の電気抵抗を低減することができる。 Since the side surface of the auxiliary electrode is in direct contact with the upper electrode without the charge intermediate layer and the second charge intermediate layer, the charge intermediate layer and the second charge intermediate layer are formed on the auxiliary electrode. In addition, it is possible to reduce electrical resistance when supplying a voltage to the upper electrode.
 上述のように、本態様の有機EL表示パネルでは、前記上部電極が前記補助電極の側面で接触する構成のため、補助電極上に形成される電荷中間層及び前記第2電荷中間層をパターニングにより排除することなく、すなわち、製造工程を増やすことなく、電気抵抗の低減を実現することができる。 As described above, in the organic EL display panel according to this aspect, the upper electrode is in contact with the side surface of the auxiliary electrode. Therefore, the charge intermediate layer and the second charge intermediate layer formed on the auxiliary electrode are patterned. A reduction in electrical resistance can be realized without exclusion, that is, without increasing the number of manufacturing steps.
 ここで、本発明の別の態様として、前記隔壁が形成された前記下部電極の側部は、前記下部電極の側面につらなる所定範囲内の前記下部電極の上面を含むとしてもよい。 Here, as another aspect of the present invention, the side portion of the lower electrode on which the partition wall is formed may include an upper surface of the lower electrode within a predetermined range formed on a side surface of the lower electrode.
 ここで、本発明の別の態様として、前記補助電極の側面であって、前記電荷中間層から露出した領域の厚さは、前記上部電極の膜厚より薄いとしてもよい。 Here, as another aspect of the present invention, the thickness of the side surface of the auxiliary electrode exposed from the charge intermediate layer may be smaller than the thickness of the upper electrode.
 本態様の有機EL表示パネルでは、前記補助電極の側面であって、前記電荷中間層から露出した領域の厚さは、前記上部電極の膜厚より薄いので、前記上部電極は、前記補助電極の側面から上面にかけて途切れることなく形成されることになる。 In the organic EL display panel of this aspect, since the thickness of the region exposed from the charge intermediate layer on the side surface of the auxiliary electrode is smaller than the film thickness of the upper electrode, the upper electrode is formed of the auxiliary electrode. It is formed without interruption from the side surface to the upper surface.
 前記補助電極の側面における、前記電荷中間層から露出した全領域が前記上部電極と接触するので、前記上部電極に電圧を供給する際の電気抵抗をより一層低減することができる。 Since the entire region exposed from the charge intermediate layer on the side surface of the auxiliary electrode is in contact with the upper electrode, the electric resistance when a voltage is supplied to the upper electrode can be further reduced.
 ここで、本発明の別の態様として、前記補助電極の側面であって、前記電荷中間層から露出した領域の厚さは、前記上部電極の膜厚より厚いとしてもよい。 Here, as another aspect of the present invention, the thickness of the side surface of the auxiliary electrode exposed from the charge intermediate layer may be larger than the thickness of the upper electrode.
 本態様の有機EL表示パネルでは、前記補助電極の側面であって、前記電荷中間層から露出した領域の厚さは、前記上部電極の膜厚より厚いので、前記上部電極の膜厚分の全てが前記補助電極の側面に接触することになる。したがって、より一層電気抵抗を低減することができる。 In the organic EL display panel of this aspect, the thickness of the region exposed from the charge intermediate layer on the side surface of the auxiliary electrode is thicker than the film thickness of the upper electrode. Will contact the side surface of the auxiliary electrode. Therefore, the electrical resistance can be further reduced.
 ここで、本発明の別の態様として、前記補助電極の側面と前記基板とがなす内角が90度以上であるとしてもよい。 Here, as another aspect of the present invention, an inner angle formed between the side surface of the auxiliary electrode and the substrate may be 90 degrees or more.
 本態様の有機EL表示パネルでは、前記補助電極の側面と前記基板とがなす内角が90度以上であるので、前記電荷中間層が前記補助電極の側面で段切れしやすくなる。そのため、前記補助電極の側面において、前記電荷中間層から露出した領域を形成しやすくなる。すなわち、前記補助電極の側面であって、前記電荷中間層から露出した領域に、前記上部電極を接触させることが一層容易となる。 In the organic EL display panel according to this aspect, since the inner angle formed between the side surface of the auxiliary electrode and the substrate is 90 degrees or more, the charge intermediate layer is likely to be disconnected at the side surface of the auxiliary electrode. Therefore, it becomes easy to form a region exposed from the charge intermediate layer on the side surface of the auxiliary electrode. That is, it becomes easier to bring the upper electrode into contact with the side surface of the auxiliary electrode, which is exposed from the charge intermediate layer.
 ここで、本発明の別の態様として、前記隔壁の側面と前記基板とがなす内角は90度未満であるとしてもよい。 Here, as another aspect of the present invention, an internal angle formed between the side surface of the partition wall and the substrate may be less than 90 degrees.
 ここで、本発明の別の態様として、前記補助電極の膜厚が、前記下部電極の膜厚より厚いとしてもよい。 Here, as another aspect of the present invention, the auxiliary electrode may be thicker than the lower electrode.
 ところで、有機EL表示パネルにおいて、隔壁を、前記基板の上方であって、前記下部電極の補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけて形成した場合には、前記補助電極の側部上面に乗り上げるように隔壁が形成された場合と比較し、前記隔壁が前記基板と接着する面積が減少してしまう。特に、有機EL表示パネルにおいて、輝度をさらに上昇させるために有機発光層の形成面積を拡大したいという要望があり、そうすると、前記隔壁と前記基板との接着面積はただでさえ減少し、前記隔壁の前記基板への密着強度が減少してしまう。このような理由から、有機発光層の形成面積を拡大し、さらに、隔壁を、前記下部電極と前記補助電極との間の所定位置にかけて形成した場合には、前記隔壁が前記基板から剥離する恐れが生じる。 By the way, in the organic EL display panel, the partition wall is formed from the side of the lower electrode on the side facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode. In this case, an area where the partition wall adheres to the substrate is reduced as compared with a case where the partition wall is formed so as to run on the upper surface of the side portion of the auxiliary electrode. In particular, in an organic EL display panel, there is a desire to increase the formation area of the organic light emitting layer in order to further increase the luminance, and as a result, the bonding area between the partition and the substrate is reduced, and the partition The adhesion strength to the substrate is reduced. For this reason, when the formation area of the organic light emitting layer is enlarged and the partition is formed at a predetermined position between the lower electrode and the auxiliary electrode, the partition may be peeled off from the substrate. Occurs.
 そこで、本発明の別の態様として、基板と、前記基板上に形成された第1下部電極と、前記基板上であって、前記基板の主面に沿った方向に前記第1下部電極と離間した領域に形成された補助電極と、前記基板上であって、前記補助電極を挟んで前記第1下部電極の形成位置の反対側に、前記補助電極と離間して形成された第2下部電極と、前記基板の上方であって、前記第1下部電極の前記補助電極と対向する側の側部、前記補助電極の上部、および前記第2下部電極の前記補助電極と対向する側の側部にかけて形成された隔壁と、前記第1下部電極の上方に形成された第1有機発光層と、前記第2下部電極の上方に形成された第2有機発光層と、前記第1有機発光層上、前記隔壁上、及び前記第2有機発光層上に形成された電荷中間層と、前記電荷中間層上に形成された上部電極と、を含み、前記隔壁は、前記隔壁の上面に、前記補助電極の一部を露出する開口部を有し、露出された前記補助電極の一部は、少なくともその側面を含み、前記電荷中間層は、前記開口部から露出した前記補助電極上に形成され、前記補助電極の膜厚は、前記電荷中間層の膜厚より厚く、前記開口部から露出した前記補助電極の側面は、前記電荷中間層から露出した領域を有し、前記上部電極は、前記補助電極の側面であって前記電荷中間層から露出した領域に接触しているとしてもよい。 Therefore, as another aspect of the present invention, a substrate, a first lower electrode formed on the substrate, and the first lower electrode on the substrate in a direction along the main surface of the substrate are separated from each other. An auxiliary electrode formed in the region, and a second lower electrode formed on the substrate and on the opposite side of the formation position of the first lower electrode with the auxiliary electrode interposed therebetween, separated from the auxiliary electrode And the side of the first lower electrode on the side facing the auxiliary electrode, the upper part of the auxiliary electrode, and the side of the second lower electrode on the side facing the auxiliary electrode. A partition formed over the first lower electrode, a first organic light emitting layer formed above the first lower electrode, a second organic light emitting layer formed above the second lower electrode, and the first organic light emitting layer A charge intermediate layer formed on the barrier ribs and on the second organic light emitting layer And an upper electrode formed on the charge intermediate layer, the partition wall having an opening for exposing a part of the auxiliary electrode on an upper surface of the partition wall. The charge intermediate layer is formed on the auxiliary electrode exposed from the opening, and the auxiliary electrode is thicker than the charge intermediate layer. The side surface of the auxiliary electrode exposed from the side has a region exposed from the charge intermediate layer, and the upper electrode may be in contact with the side surface of the auxiliary electrode and exposed from the charge intermediate layer. Good.
 本態様の有機EL表示パネルでは、前記基板の上方であって、前記第1下部電極の前記補助電極と対向する側の側部、前記補助電極の上部、および前記第2下部電極の前記補助電極と対向する側の側部にかけて形成された隔壁が、開口部を有する構成となっている。 In the organic EL display panel of this aspect, the side of the first lower electrode facing the auxiliary electrode, the side of the first lower electrode, the upper portion of the auxiliary electrode, and the auxiliary electrode of the second lower electrode The partition formed over the side part on the opposite side is configured to have an opening.
 したがって、有機発光層の形成面積を拡大するため前記隔壁の幅を狭めた場合でも、前記隔壁が前記基板と接着する面積の減少を抑制することができるので、前記隔壁の前記基板への密着強度の減少を抑制することができる。その結果、前記隔壁が前記基板から剥離することを防止できる。 Therefore, even when the width of the partition is reduced in order to increase the formation area of the organic light emitting layer, it is possible to suppress a decrease in the area where the partition adheres to the substrate, so that the adhesion strength of the partition to the substrate is reduced. Can be suppressed. As a result, the partition can be prevented from peeling off from the substrate.
 また、前記開口部から露出した前記補助電極の側面が、前記電荷中間層から露出した領域を有し、前記上部電極は、前記補助電極の側面であって前記電荷中間層から露出した領域に接触している。よって、前記上部電極に電圧を供給する際の電気抵抗を低減することができる。 In addition, a side surface of the auxiliary electrode exposed from the opening has a region exposed from the charge intermediate layer, and the upper electrode is in contact with a region exposed from the charge intermediate layer on the side surface of the auxiliary electrode. is doing. Therefore, it is possible to reduce the electric resistance when supplying a voltage to the upper electrode.
 このように、隔壁が開口部を有し、この開口部において前記上部電極と前記補助電極の側面とが接する構成を採用することにより、前記隔壁と前記基板との接着面積の減少の抑制と、前記上部電極に電圧を供給する際の電気抵抗の低減とを両立することができる。 In this way, by adopting a configuration in which the partition wall has an opening, and the upper electrode and the side surface of the auxiliary electrode are in contact with each other in this opening portion, suppression of a decrease in the bonding area between the partition wall and the substrate, It is possible to achieve both reduction in electric resistance when supplying voltage to the upper electrode.
 ここで、本発明の別の態様として、前記開口部によって露出される前記補助電極の一部は、前記補助電極の前記第1下部電極側の領域であり、前記開口部から露出した前記補助電極の前記第1下部電極側の領域の側面は、前記電荷中間層から露出した領域を有し、前記上部電極は、前記補助電極の前記第1下部電極側の領域の側面であって前記電荷中間層から露出した領域に接触しているとしてもよい。 Here, as another aspect of the present invention, a part of the auxiliary electrode exposed by the opening is a region on the first lower electrode side of the auxiliary electrode, and the auxiliary electrode exposed from the opening A side surface of the first lower electrode side region has a region exposed from the charge intermediate layer, and the upper electrode is a side surface of the auxiliary electrode side region of the first lower electrode side, It may be in contact with the area exposed from the layer.
 本態様の有機EL表示パネルでは、前記開口部によって露出される前記補助電極の一部は、前記補助電極の前記第1下部電極側の領域であるので、前記隔壁と前記基板との接着面積の減少を抑制することができる。また、前記補助電極の前記第1下部電極側の領域の側面であって前記電荷中間層から露出した領域に前記上部電極が接触しているので、前記上部電極に電圧を供給する際の電気抵抗を低減することができる。 In the organic EL display panel according to this aspect, a part of the auxiliary electrode exposed by the opening is a region on the first lower electrode side of the auxiliary electrode. Reduction can be suppressed. Further, since the upper electrode is in contact with a side surface of the auxiliary electrode on the side of the first lower electrode and exposed from the charge intermediate layer, an electric resistance when a voltage is supplied to the upper electrode Can be reduced.
 ここで、本発明の別の態様として、前記開口部によって露出される前記補助電極の一部は、前記補助電極の前記第1下部電極側の領域及び前記補助電極の前記第2下部電極側の領域であり、前記開口部から露出した前記補助電極の前記第1下部電極側の領域及び前記第2下部電極側の領域の各側面は、前記電荷中間層から露出した領域を有し、前記上部電極は、前記補助電極の前記第1下部電極側の領域及び前記第2下部電極側の領域の各側面であって前記電荷中間層から露出した領域に接触しているとしてもよい。 Here, as another aspect of the present invention, a part of the auxiliary electrode exposed by the opening is formed on a region of the auxiliary electrode on the first lower electrode side and on the second lower electrode side of the auxiliary electrode. Each side surface of the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode exposed from the opening has a region exposed from the charge intermediate layer, and The electrode may be in contact with a region exposed from the charge intermediate layer on each side surface of the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode.
 本態様の有機EL表示パネルでは、前記補助電極の前記第1下部電極側の領域及び前記第2下部電極側の領域が開口部から露出している。そして、これらの領域の側面が前記電荷中間層から露出した領域を有し、当該露出した各領域に前記上部電極が接触している。 In the organic EL display panel of this aspect, the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode are exposed from the opening. The side surfaces of these regions have regions exposed from the charge intermediate layer, and the upper electrodes are in contact with the exposed regions.
 前記補助電極の両側面において前記上部電極と直接接触するので、より一層電気抵抗を低減することができる。 Since it is in direct contact with the upper electrode on both side surfaces of the auxiliary electrode, the electric resistance can be further reduced.
 ここで、本発明の別の態様として、上記本発明の一態様に係る有機EL表示パネルを備えた表示装置としてもよい。 Here, as another aspect of the present invention, a display device including the organic EL display panel according to one aspect of the present invention may be used.
 ここで、本発明の別の態様として、基板を準備する第1工程と、前記基板上に下部電極を形成する第2工程と、前記基板上であって、前記基板の主面に沿った方向に前記下部電極と離間した領域に補助電極を形成する第3工程と、前記基板の上方であって、前記下部電極の補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけた領域に隔壁を形成する第4工程と、前記下部電極の上方に有機発光層を形成する第5工程と、前記有機発光層上、前記隔壁上、前記基板の上方で前記補助電極と前記隔壁との間の領域、及び前記補助電極上に電荷中間層を形成する第6工程と、前記電荷中間層上に上部電極を形成する第7工程と、を含み、前記補助電極の膜厚を、前記電荷中間層の形成予定膜厚より厚く形成し、前記補助電極の側面には、前記補助電極と前記隔壁との間の領域に存在する前記電荷中間層から露出した領域が形成され、前記上部電極は、前記補助電極の側面であって、前記電荷中間層から露出した領域に接触しているとしてもよい。 Here, as another aspect of the present invention, a first step of preparing a substrate, a second step of forming a lower electrode on the substrate, a direction on the substrate and along the main surface of the substrate A third step of forming an auxiliary electrode in a region separated from the lower electrode; and from the side of the lower electrode on the side facing the auxiliary electrode, the lower electrode and the auxiliary electrode, A fourth step of forming a partition wall in a predetermined region between the first electrode, a fifth step of forming an organic light emitting layer above the lower electrode, and on the organic light emitting layer, on the partition wall, and above the substrate. And a sixth step of forming a charge intermediate layer on the region between the auxiliary electrode and the partition and the auxiliary electrode, and a seventh step of forming an upper electrode on the charge intermediate layer, The electrode is formed to be thicker than the charge intermediate layer. A region exposed from the charge intermediate layer existing in a region between the auxiliary electrode and the partition wall is formed on a side surface of the auxiliary electrode, and the upper electrode is a side surface of the auxiliary electrode, and the charge The region exposed from the intermediate layer may be in contact.
 ここで、本発明の別の態様として、前記上部電極は、スパッタ法で形成されるとしてもよい。 Here, as another aspect of the present invention, the upper electrode may be formed by a sputtering method.
 本態様の有機EL表示パネルでは、前記上部電極は、スパッタ法で形成される。スパッタ法は、真空蒸着法やプラズマ蒸着法等と比較して、前記上部電極を構成する電極材料の、前記補助電極の側面への回り込みが良好であるので、前記補助電極の側面に前記上部電極を被着させやすくなる。 In the organic EL display panel of this aspect, the upper electrode is formed by sputtering. Since the sputtering method has better wraparound of the electrode material constituting the upper electrode to the side surface of the auxiliary electrode than the vacuum vapor deposition method or the plasma vapor deposition method, the upper electrode is disposed on the side surface of the auxiliary electrode. It becomes easy to deposit.
 ここで、本発明の別の態様として、前記スパッタ法では、前記基板を配置するスパッタ装置内に、前記基板と対向配置した前記上部電極形成用のターゲット部材の前記基板と対向する面の裏面に、マグネット部材を配置し、前記マグネット部材を前記第7工程の際に前記ターゲット部材に対して移動走査しつつスパッタを行うとしてもよい。 Here, as another aspect of the present invention, in the sputtering method, the upper electrode forming target member disposed opposite to the substrate is disposed on the back surface of the surface facing the substrate in the sputtering apparatus in which the substrate is disposed. In addition, a magnet member may be arranged, and sputtering may be performed while moving and scanning the magnet member with respect to the target member during the seventh step.
 本態様の有機EL表示パネルでは、前記マグネット部材を前記第7工程のスパッタの際に、前記ターゲット部材に対して移動走査しつつ前記スパッタを行うことで、前記上部電極を形成する。したがって、スパッタ粒子が前記補助電極の側面であって前記電荷中間層から露出した領域に入射する角度が、前記マグネットを移動走査しない場合の入射角度に比べて緩やかとなる。その結果、前記スパッタ粒子が、前記補助電極の側面であって前記電荷中間層から露出した領域に入射しやすくなるので、より一層前記補助電極の側面に前記スパッタ粒子を被着させやすくすることができる。 In the organic EL display panel of this aspect, the upper electrode is formed by performing the sputtering while moving and scanning the magnet member with respect to the target member during the sputtering in the seventh step. Therefore, the angle at which the sputtered particles are incident on the side surface of the auxiliary electrode and exposed from the charge intermediate layer is gentler than the incident angle when the magnet is not moved and scanned. As a result, the sputtered particles are likely to be incident on a side surface of the auxiliary electrode that is exposed from the charge intermediate layer, so that the sputtered particles can be more easily deposited on the side surface of the auxiliary electrode. it can.
 ここで、本発明の別の態様として、前記補助電極を、少なくともニッケル、あるいはコバルトのいずれか一方を含むアルミニウム合金で形成し、前記第3工程と前記第4工程との間に、前記補助電極を加熱することにより前記補助電極の側面に、ニッケル、あるいはコバルトを含む析出物を形成させる工程を設けるとしてもよい。 Here, as another aspect of the present invention, the auxiliary electrode is formed of an aluminum alloy containing at least one of nickel and cobalt, and the auxiliary electrode is interposed between the third step and the fourth step. A step of forming a precipitate containing nickel or cobalt on the side surface of the auxiliary electrode by heating the auxiliary electrode may be provided.
 ここで、本発明の別の態様として、前記第3工程と前記第4工程との間に、前記下部電極と前記補助電極との上面に第2電荷中間層を形成する工程を設け、前記第5工程において、前記有機発光層は前記第2電荷中間層上に形成され、前記第6工程において、前記電荷中間層は、前記有機発光層上、前記隔壁上、及び前記補助電極上に形成され、前記補助電極の膜厚は、前記電荷中間層及び前記第2電荷中間層の合計膜厚より厚く形成され、前記補助電極の側面には、前記補助電極と前記隔壁との間の領域に存在する前記電荷中間層及び前記第2電荷中間層から露出した領域が形成され、前記上部電極は、前記補助電極の側面であって、前記電荷中間層及び前記第2電荷中間層から露出した領域に接触しているとしてもよい。 Here, as another aspect of the present invention, a step of forming a second charge intermediate layer on the upper surface of the lower electrode and the auxiliary electrode is provided between the third step and the fourth step, In the fifth step, the organic light emitting layer is formed on the second charge intermediate layer, and in the sixth step, the charge intermediate layer is formed on the organic light emitting layer, the partition, and the auxiliary electrode. The auxiliary electrode has a thickness greater than the total thickness of the charge intermediate layer and the second charge intermediate layer, and the auxiliary electrode has a side surface in a region between the auxiliary electrode and the partition wall. A region exposed from the charge intermediate layer and the second charge intermediate layer is formed, and the upper electrode is on a side surface of the auxiliary electrode and exposed to the region exposed from the charge intermediate layer and the second charge intermediate layer. It may be in contact.
  [実施の形態1]
<表示装置1の全体構成>
 本実施の形態に係る表示装置1の全体構成について、図1を用い説明する。図1は、表示装置1の全体構成を模式的に示すブロック図である。
[Embodiment 1]
<Overall configuration of display device 1>
The overall configuration of the display device 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram schematically showing the overall configuration of the display device 1.
 図1に示すように、表示装置1は、有機EL表示パネル10と、これに接続された駆動制御部20とを有し構成されている。有機EL表示パネル10は、有機材料の電界発光現象を利用したトップエミッション型の有機EL表示パネルである。 As shown in FIG. 1, the display device 1 includes an organic EL display panel 10 and a drive control unit 20 connected thereto. The organic EL display panel 10 is a top emission type organic EL display panel using an electroluminescence phenomenon of an organic material.
 また、駆動制御部20は、4つの駆動回路21~24と制御回路25とから構成されている。 The drive control unit 20 includes four drive circuits 21 to 24 and a control circuit 25.
 なお、実際の表示装置1では、有機EL表示パネル10に対する駆動制御部20の配置については、これに限られない。
<有機EL表示パネル10の構成>
 (有機EL表示パネル10の概略構成)
 有機EL表示パネル10の構成について詳細に説明する。図2は、実施の形態1の有機EL表示パネル10の構成を示す部分断面図(図3のA-A’断面)である。図2に示すように、有機EL表示パネル10では、TFT基板101のZ軸方向上側の表面上に層間絶縁膜102が形成されている。有機EL表示パネル10では、X-Y平面において(図1および図3を参照)、画素部10aと非画素部10bとが存在し、画素部10aにおいては層間絶縁膜102上に陽極103が形成され、非画素部10bにおいては層間絶縁膜102上に補助電極104が形成されている。本実施の形態では、陽極103及び補助電極104は、同一材料から形成され、それらの膜厚も同一である。
In the actual display device 1, the arrangement of the drive control unit 20 with respect to the organic EL display panel 10 is not limited to this.
<Configuration of organic EL display panel 10>
(Schematic configuration of the organic EL display panel 10)
The configuration of the organic EL display panel 10 will be described in detail. FIG. 2 is a partial cross-sectional view (cross section along AA ′ in FIG. 3) showing the configuration of the organic EL display panel 10 of the first embodiment. As shown in FIG. 2, in the organic EL display panel 10, an interlayer insulating film 102 is formed on the surface of the TFT substrate 101 on the upper side in the Z-axis direction. In the organic EL display panel 10, the pixel portion 10a and the non-pixel portion 10b exist on the XY plane (see FIGS. 1 and 3), and the anode 103 is formed on the interlayer insulating film 102 in the pixel portion 10a. The auxiliary electrode 104 is formed on the interlayer insulating film 102 in the non-pixel portion 10b. In the present embodiment, the anode 103 and the auxiliary electrode 104 are formed from the same material and have the same film thickness.
 非画素部10bに形成される補助電極104は、陰極110に対して電圧供給を図るものであり、この補助電極104により陰極110での電圧降下による輝度のばらつきを抑制している。また、補助電極104の側面と層間絶縁膜102とがなす内角ang1は90度以上になっている。 The auxiliary electrode 104 formed in the non-pixel portion 10b serves to supply a voltage to the cathode 110, and the auxiliary electrode 104 suppresses variations in luminance due to a voltage drop at the cathode 110. Further, the inner angle ang1 formed between the side surface of the auxiliary electrode 104 and the interlayer insulating film 102 is 90 degrees or more.
 陽極103及び補助電極104上、並びに層間絶縁膜102上で、かつ、陽極103と補助電極104との間の領域には、ホール注入層105が形成されている。 A hole injection layer 105 is formed on the anode 103 and the auxiliary electrode 104, on the interlayer insulating film 102, and in a region between the anode 103 and the auxiliary electrode 104.
 ホール注入層105の役割は、ホール注入性を高めることであるので、その観点から見ると、ホール注入層105は、陽極103上にさえ存在すればよいが、製造プロセス及び製造コストを増やさないために、ホール注入層105は、パネル全体に一括して形成される。したがって、上述したように、陽極103上以外の領域にもホール注入層105が形成されている。 Since the role of the hole injection layer 105 is to improve hole injection properties, from the viewpoint, the hole injection layer 105 only needs to exist on the anode 103, but does not increase the manufacturing process and manufacturing cost. In addition, the hole injection layer 105 is formed collectively on the entire panel. Therefore, as described above, the hole injection layer 105 is also formed in a region other than on the anode 103.
 陽極103及び補助電極104の間にはバンク106が形成されている。画素部10aにおいては、バンク106で規定されたホール注入層105上に、ホール輸送層107、有機発光層108、電子輸送層109、及び陰極110がこの順に形成されている。 A bank 106 is formed between the anode 103 and the auxiliary electrode 104. In the pixel portion 10a, a hole transport layer 107, an organic light emitting layer 108, an electron transport layer 109, and a cathode 110 are formed in this order on the hole injection layer 105 defined by the bank 106.
 このうち、電子輸送層109と陰極110とは、バンク106の上面を乗り越え、非画素部10bにも連続して形成されている。 Among these, the electron transport layer 109 and the cathode 110 are formed continuously over the upper surface of the bank 106 and also in the non-pixel portion 10b.
 電子輸送層109の役割は、電子輸送性を高めることであるので、その観点から見ると、電子輸送層109は、有機発光層108上にさえ存在すればよいが、ホール注入層105を形成する場合と同様に、製造プロセス及び製造コストを増やさないために、電子輸送層109は、パネル全体に一括して形成される。したがって、上述したように、有機発光層108上以外の領域にも電子輸送層109が形成されている。 Since the role of the electron transport layer 109 is to enhance the electron transport property, from this point of view, the electron transport layer 109 only needs to exist on the organic light emitting layer 108, but the hole injection layer 105 is formed. As in the case, the electron transport layer 109 is collectively formed on the entire panel so as not to increase the manufacturing process and the manufacturing cost. Therefore, as described above, the electron transport layer 109 is also formed in a region other than on the organic light emitting layer 108.
 電子輸送層109及び陰極110が非画素部10bにも連続して形成されているため、補助電極104上面に形成されたホール注入層105上にも、電子輸送層109および陰極111がこの順に形成されている。 Since the electron transport layer 109 and the cathode 110 are continuously formed also in the non-pixel portion 10b, the electron transport layer 109 and the cathode 111 are also formed in this order on the hole injection layer 105 formed on the upper surface of the auxiliary electrode 104. Has been.
 陰極110上には封止層111が形成されている。 A sealing layer 111 is formed on the cathode 110.
 (有機EL表示パネル10の詳細な構成)
 続いて、有機EL表示パネル10の詳細な構成について、非画素部10bの構成を中心に説明する。
(Detailed configuration of organic EL display panel 10)
Next, the detailed configuration of the organic EL display panel 10 will be described focusing on the configuration of the non-pixel portion 10b.
  ─バンク106の形成位置─
 上述したように、陽極103及び補助電極104の間にはバンク106が形成されているが、このバンク106の一端が陽極103の側部上面に乗り上げているのに対し、他端は、補助電極104に達しておらず、陽極103及び補助電極104の間に位置している。そのため、補助電極104の側面が、バンク106に覆われていない構成となっている。
--Formation position of bank 106--
As described above, the bank 106 is formed between the anode 103 and the auxiliary electrode 104. One end of the bank 106 rides on the upper surface of the side portion of the anode 103, whereas the other end is the auxiliary electrode. It does not reach 104 and is located between the anode 103 and the auxiliary electrode 104. Therefore, the side surface of the auxiliary electrode 104 is not covered with the bank 106.
  ─陽極103、補助電極104、及びバンク106の配置─
 有機EL表示パネル10における陽極103、補助電極104、及びバンク106の配置について詳細に説明する。図3は、有機EL表示パネル10における陽極103、補助電極104、及びバンク106の配置関係を模式的に示す図である。図3に示すように、本実施の形態に係る有機EL表示パネル10では、バンク106は、Y軸方向にライン状に複数形成されている(所謂、ラインバンク)。画素部に相当する部分では、X軸方向に隣接するバンク106間に陽極103が画素単位に形成され、非画素部に相当する部分では、X軸方向に隣接するバンク106間にライン状に補助電極104が形成されている。
-Arrangement of anode 103, auxiliary electrode 104, and bank 106-
The arrangement of the anode 103, the auxiliary electrode 104, and the bank 106 in the organic EL display panel 10 will be described in detail. FIG. 3 is a diagram schematically showing the arrangement relationship between the anode 103, the auxiliary electrode 104, and the bank 106 in the organic EL display panel 10. As shown in FIG. 3, in the organic EL display panel 10 according to the present embodiment, a plurality of banks 106 are formed in a line shape in the Y-axis direction (so-called line banks). In the portion corresponding to the pixel portion, the anode 103 is formed in units of pixels between the banks 106 adjacent to each other in the X-axis direction, and in the portion corresponding to the non-pixel portion, auxiliary lines are assisted between the banks 106 adjacent in the X-axis direction. An electrode 104 is formed.
 また、X軸方向に隣り合う3つのサブピクセルの組み合わせにより1画素(ピクセル)が構成され、補助電極104は画素毎に形成されている。 In addition, one pixel (pixel) is configured by a combination of three sub-pixels adjacent in the X-axis direction, and the auxiliary electrode 104 is formed for each pixel.
 図中の陽極103において、斜線で描かれた領域が、バンク106から露出している領域であり、破線で描かれた領域が、バンク106に覆われている領域である。図3からも明らかなように、陽極103の側部がバンク106に覆われているのに対し、補助電極104の側部にはバンク106が達しておらず、補助電極104の側部はバンク106に覆われていない。 In the anode 103 in the figure, a region drawn with diagonal lines is a region exposed from the bank 106, and a region drawn with broken lines is a region covered with the bank 106. As apparent from FIG. 3, the side of the anode 103 is covered with the bank 106, whereas the bank 106 does not reach the side of the auxiliary electrode 104, and the side of the auxiliary electrode 104 is 106 is not covered.
  ─補助電極104とバンク106との間の領域─
 図2に戻って、上述したように、電子輸送層109及び陰極110は、画素部10aだけではなく、非画素部10bにも連続して形成されている。このため、バンク106と補助電極104との間のホール注入層105上にも電子輸送層110および陰極111がこの順に形成されている。ここで、補助電極104の膜厚は、ホール注入層105と電子輸送層109との合計膜厚よりも厚くなっている。ゆえに、バンク106に覆われていない補助電極104の側面には、ホール注入層105及び電子輸送層109が接するとともに、ホール注入層105及び電子輸送層109から露出した領域が存在し、その領域に陰極110が接触している。
--Area between auxiliary electrode 104 and bank 106--
Returning to FIG. 2, as described above, the electron transport layer 109 and the cathode 110 are continuously formed not only in the pixel portion 10a but also in the non-pixel portion 10b. Therefore, the electron transport layer 110 and the cathode 111 are also formed in this order on the hole injection layer 105 between the bank 106 and the auxiliary electrode 104. Here, the film thickness of the auxiliary electrode 104 is larger than the total film thickness of the hole injection layer 105 and the electron transport layer 109. Therefore, the side surface of the auxiliary electrode 104 not covered by the bank 106 is in contact with the hole injection layer 105 and the electron transport layer 109, and there is a region exposed from the hole injection layer 105 and the electron transport layer 109. The cathode 110 is in contact.
 また、補助電極104の側面においてホール注入層105及び電子輸送層109から露出した部分の膜厚、すなわち露出した領域の厚さ方向の長さth1は、陰極110の膜厚より薄くなっている。ここでいう陰極110の膜厚は、電子輸送層108上で、かつ平坦な部分に形成された陰極110の膜厚(例えば、図2の膜厚th1)である。 Further, the thickness of the portion exposed from the hole injection layer 105 and the electron transport layer 109 on the side surface of the auxiliary electrode 104, that is, the length th1 of the exposed region in the thickness direction is thinner than the thickness of the cathode 110. The film thickness of the cathode 110 here is the film thickness of the cathode 110 formed on the electron transport layer 108 and in a flat portion (for example, the film thickness th1 in FIG. 2).
 露出した部分の膜厚が陰極110の膜厚より薄くなっているため、陰極110は、補助電極104の側面から上面にかけて途切れることなく形成されている。したがって、補助電極104の側面においてホール注入層105及び電子輸送層109から露出した全部分が陰極110と接触している。 Since the film thickness of the exposed portion is thinner than the film thickness of the cathode 110, the cathode 110 is formed without interruption from the side surface to the upper surface of the auxiliary electrode 104. Therefore, all portions exposed from the hole injection layer 105 and the electron transport layer 109 on the side surface of the auxiliary electrode 104 are in contact with the cathode 110.
 また、陰極111が、補助電極104の側面から上面にかけて連続して形成されているのに対し、電子輸送層109は、補助電極104の側面から上面にかけて不連続に形成(以下、「段切れ」という)されている。 Further, the cathode 111 is continuously formed from the side surface to the upper surface of the auxiliary electrode 104, whereas the electron transport layer 109 is formed discontinuously from the side surface to the upper surface of the auxiliary electrode 104 (hereinafter referred to as “step break”). It is said).
 上述した構成によれば、補助電極104は、その上面において、ホール注入層105及び電子輸送層109を介して陰極110と電気的に接続されているのと同時に、その側面において、陰極110と直接接続されている。 According to the configuration described above, the auxiliary electrode 104 is electrically connected to the cathode 110 via the hole injection layer 105 and the electron transport layer 109 on the upper surface thereof, and at the same time, directly connected to the cathode 110 on the side surface. It is connected.
 補助電極104の側面において陰極110と直接接続されているため、陰極110に電圧供給する際の電気抵抗を低減することができる。 Since it is directly connected to the cathode 110 on the side surface of the auxiliary electrode 104, the electric resistance when supplying voltage to the cathode 110 can be reduced.
 例えば、補助電極104の幅が20μm、その膜厚が200nm、補助電極104と陰極110との接触面積が6.7E+3μm2の場合では、補助電極104と陰極110との間の電気抵抗は、2.0E+6Ω程度となるが、本実施の形態で示した構成とすることにより、補助電極104の側面において直接陰極110と接続されているため、電気抵抗を1/1000ないし1/100程度に低減できる。 For example, when the width of the auxiliary electrode 104 is 20 μm, the film thickness is 200 nm, and the contact area between the auxiliary electrode 104 and the cathode 110 is 6.7E + 3 μm 2 , the electrical resistance between the auxiliary electrode 104 and the cathode 110 is 2 Although it is about 0.0E + 6Ω, with the configuration shown in this embodiment mode, since the side surface of the auxiliary electrode 104 is directly connected to the cathode 110, the electrical resistance can be reduced to about 1/1000 to 1/100. .
 また、補助電極104の側面と層間絶縁膜102とがなす内角ang1は90度以上になっているので、電子輸送層109が補助電極104の側面で段切れしやすくなる。そのため、補助電極の側面において、ホール注入層105及び電子輸送層109から露出した領域を形成しやすくなる。すなわち、補助電極104の側面であって、ホール注入層105及び電子輸送層109から露出した領域に陰極110を接触させ易くなる。 Further, since the inner angle ang1 formed between the side surface of the auxiliary electrode 104 and the interlayer insulating film 102 is 90 degrees or more, the electron transport layer 109 is likely to be disconnected at the side surface of the auxiliary electrode 104. Therefore, it becomes easy to form a region exposed from the hole injection layer 105 and the electron transport layer 109 on the side surface of the auxiliary electrode. That is, the cathode 110 can be easily brought into contact with the side surface of the auxiliary electrode 104 and exposed from the hole injection layer 105 and the electron transport layer 109.
  ─バンク106の他端の形成位置─
 バンク106の他端が陽極103及び補助電極104の間のどこに位置するのかについて、位置することが可能な範囲を説明する。まず、バンク106の他端を陽極103方向にどれだけ近づけることができるのかを説明すると、陽極103の側部は少なくともバンク106で覆われている必要がある。そのため、その条件を満たす範囲において、バンク106の他端を陽極103に近づけることができる。
--Formation position of the other end of the bank 106--
The range in which the other end of the bank 106 is located between the anode 103 and the auxiliary electrode 104 will be described. First, how close the other end of the bank 106 can be in the direction of the anode 103 will be described. At least the side portion of the anode 103 needs to be covered with the bank 106. Therefore, the other end of the bank 106 can be brought close to the anode 103 within a range that satisfies the condition.
 バンク106の他端を補助電極104方向にどれだけ近づけることができるのかを説明すると、バンク106の他端と補助電極104の側面とは接していてもよい。ただし、その場合には、補助電極104の側面に接している部分におけるバンク106の膜厚、ホール注入層105の膜厚、及び後述する電子輸送層109の合計膜厚が、補助電極104の膜厚より薄い必要がある。後述する陰極110と直接接するための領域が補助電極104の側面に必要だからである。 To explain how close the other end of the bank 106 can be in the direction of the auxiliary electrode 104, the other end of the bank 106 and the side surface of the auxiliary electrode 104 may be in contact with each other. However, in that case, the film thickness of the bank 106, the film thickness of the hole injection layer 105, and the total film thickness of the electron transport layer 109 to be described later are the film thickness of the auxiliary electrode 104 in the portion in contact with the side surface of the auxiliary electrode 104. It must be thinner than the thickness. This is because a region for directly contacting the cathode 110 described later is required on the side surface of the auxiliary electrode 104.
 また、バンク106の他端における側面と層間絶縁膜102とがなす内角ang2は、90度未満になっている。なお、図2では、バンク106の他端は、内角ang2が90度に近い状態で描かれているが、実際は30度~60度程度であり、非常に緩やかである。そのため、補助電極104の側面とバンク106の他端が接していたとしても、前述の合計膜厚が、補助電極104の膜厚より薄くなり得る。 Further, the inner angle ang2 formed between the side surface at the other end of the bank 106 and the interlayer insulating film 102 is less than 90 degrees. In FIG. 2, the other end of the bank 106 is drawn with the inner angle ang2 close to 90 degrees, but it is actually about 30 to 60 degrees and is very gentle. Therefore, even if the side surface of the auxiliary electrode 104 and the other end of the bank 106 are in contact with each other, the total film thickness described above can be smaller than the film thickness of the auxiliary electrode 104.
 以下、有機EL表示パネル10における各部の材料等について詳細に説明する。 Hereinafter, materials of each part in the organic EL display panel 10 will be described in detail.
  <各部構成>
 TFT基板101は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料の基板本体上に、TFT、配線部材、および前記TFTを被覆するパッシベーション膜など(図示せず)を形成した構成である。また、前記基板本体は有機樹脂フィルムであってもかまわない。
<Configuration of each part>
The TFT substrate 101 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, and silicone. A TFT, a wiring member, and a passivation film (not shown) for covering the TFT are formed on a substrate body of an insulating material such as resin or alumina. The substrate body may be an organic resin film.
 層間絶縁膜102は、TFT基板101の表面段差を平坦に調整するために設けられ、ポリイミド系樹脂またはアクリル系樹脂等の絶縁材料で構成されている。 The interlayer insulating film 102 is provided to adjust the surface step of the TFT substrate 101 to be flat, and is made of an insulating material such as polyimide resin or acrylic resin.
 陽極103及び補助電極104は、Al(アルミニウム)、あるいはアルミニウム合金で形成されている。なお、陽極103は、例えば、Ag(銀)、銀とパラジウムと銅との合金、銀とルビジウムと金との合金、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)等で形成されていても良い。本実施の形態1に係る有機EL表示パネル10はトップエミッション型であるので、陽極103は、光反射性の材料で形成されていることが好ましい。また、補助電極104の幅は、10-50μm、その膜厚は50-300nmであることが好ましい。 The anode 103 and the auxiliary electrode 104 are made of Al (aluminum) or an aluminum alloy. The anode 103 is made of, for example, Ag (silver), an alloy of silver, palladium, and copper, an alloy of silver, rubidium, and gold, MoCr (alloy of molybdenum and chromium), NiCr (alloy of nickel and chromium), or the like. It may be formed. Since the organic EL display panel 10 according to the first embodiment is a top emission type, the anode 103 is preferably formed of a light reflective material. The width of the auxiliary electrode 104 is preferably 10-50 μm and the film thickness is preferably 50-300 nm.
 ホール注入層105は、MoOx(酸化モリブデン)、WOx(酸化タングステン)又はMoxWyOz(モリブデン-タングステン酸化物)で形成されている。なお、ホール注入層105は、ホール注入機能を果たす材料で形成されていれば良く、そのような材料としては、例えば、金属酸化物、金属窒化物又は金属酸窒化物が挙げられる。ホール注入層105の膜厚は、40nm-80nmであることが好ましい。 The hole injection layer 105 is made of MoOx (molybdenum oxide), WOx (tungsten oxide) or MoxWyOz (molybdenum-tungsten oxide). The hole injection layer 105 only needs to be formed of a material that performs a hole injection function. Examples of such a material include metal oxide, metal nitride, and metal oxynitride. The film thickness of the hole injection layer 105 is preferably 40 nm-80 nm.
 バンク106は、樹脂等の有機材料で形成されており絶縁性を有する。有機材料の例として、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等が挙げられる。バンク106は、有機溶剤耐性を有することが好ましい。さらに、バンク106はエッチング処理、ベーク処理等がされることがあるので、それらの処理に対して過度に変形、変質などをしないような耐性の高い材料で形成されることが好ましい。 The bank 106 is made of an organic material such as resin and has an insulating property. Examples of organic materials include acrylic resins, polyimide resins, novolac type phenol resins, and the like. The bank 106 preferably has organic solvent resistance. Furthermore, since the bank 106 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 106 be formed of a highly resistant material that does not excessively deform or alter the process.
 ホール輸送層107は、有機発光層108からホール注入層105に電子が輸送されるのをブロックする機能や、有機発光層108に効率良くホールを運ぶ機能等を有する。 The hole transport layer 107 has a function of blocking electrons from being transported from the organic light emitting layer 108 to the hole injection layer 105, a function of efficiently transporting holes to the organic light emitting layer 108, and the like.
 ホール輸送層107は、例えば、トリフェニルジアミン誘導体(TPD)や、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイドなどのポリフィリン化合物や、1,1-ビス[4-(ジ-P-トリルアミノ)フェニル]シクロヘキサン、4,4',4"-トリメチルトリフェニルアミン、N,N,N', N'-テトラキス(P-トリル)-P-フェニレンジアミン、1-(N,N-ジ-P-トリルアミノ)ナフタレン、4,4'-ビス(ジメチルアミノ)-2-2'-ジメチルトリフェニルメタン、N,N,N', N'-テトラフェニル-4,4'-ジアミノビフェニル、N,N'-ジフェニル-N、N'-ジ-m-トリル-4、4'-ジアミノビフェニル、N-フェニルカルバゾールなどの芳香族第三級アミンや、4-ジ-P-トリルアミノスチルベン、4-(ジ-P-トリルアミノ)-4'-〔4-(ジ-P-トリルアミノ)スチリル〕スチルベンなどのスチルベン化合物や、トリアゾール誘導体や、オキサジザゾール誘導体や、イミダゾール誘導体や、ポリアリールアルカン誘導体や、ピラゾリン誘導体や、ピラゾロン誘導体や、フェニレンジアミン誘導体や、アニールアミン誘導体や、アミノ置換カルコン誘導体や、オキサゾール誘導体や、スチリルアントラセン誘導体や、フルオレノン誘導体や、ヒドラゾン誘導体や、シラザン誘導体や、ポリシラン誘導体や、ポリシラン系アニリン系共重合体や、高分子オリゴマーや、スチリンアミン化合物や、芳香族ジメチリディン系化合物や、ポリ-3,4エチレンジオキシチオフェン(PEDOT)、テトラジヘクシルフルオレニルフェニル(TFB)、あるいは、ポリ3-メチルチオフェン(PMeT)といったポリチオフェン誘導体などの有機材料を用い形成されている。 The hole transport layer 107 includes, for example, a triphenyldiamine derivative (TPD), a porphyrin compound such as porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, 1,1-bis [4- (di-P -Tolylamino) phenyl] cyclohexane, 4,4 ', 4 "-trimethyltriphenylamine, N, N, N', N'-tetrakis (P-tolyl) -P-phenylenediamine, 1- (N, N-di -P-tolylamino) naphthalene, 4,4'-bis (dimethylamino) -2-2'-dimethyltriphenylmethane, N, N, N ', N'-tetraphenyl-4,4'-diaminobiphenyl, N N'-diphenyl-N, N'-di-m-tolyl-4, 4'-diaminobiphenyl, N-phenylcarbazole And stilbene compounds such as 4-di-P-tolylaminostilbene, 4- (di-P-tolylamino) -4 ′-[4- (di-P-tolylamino) styryl] stilbene, , Triazole derivatives, oxazizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives Fluorenone derivatives, hydrazone derivatives, silazane derivatives, polysilane derivatives, polysilane aniline copolymers, polymer oligomers, styrinamine compounds, aromatic dimethylidin compounds, poly-3,4 ethylene diene. Oxythio E emissions (PEDOT), tetra Hye click sill fluorenyl phenyl (TFB), or is formed using an organic material such as a polythiophene derivative such as poly-3-methylthiophene (pMET).
 また、ホール輸送層107の形成には、上記の他にポリカーボネートなどの高分子中に低分子のホール輸送層用の有機材料を分散させた、高分子分散系材料を用いることもできる。また、MoO3、V25、WO3、TiO2、SiO2、MgOなどの無機材料を用いることもできる。 In addition to the above, the hole transport layer 107 can be formed by using a polymer dispersion material in which an organic material for a low molecular hole transport layer is dispersed in a polymer such as polycarbonate. Inorganic materials such as MoO 3 , V 2 O 5 , WO 3 , TiO 2 , SiO 2 , and MgO can also be used.
 有機発光層108は、例えば、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質で形成されることが好ましい。 The organic light emitting layer 108 includes, for example, an oxinoid compound, a perylene compound, a coumarin compound, an azacoumarin compound, an oxazole compound, an oxadiazole compound, a perinone compound, a pyrrolopyrrole compound, a naphthalene compound, and an anthracene compound described in JP-A-5-163488. , Fluorene compounds, fluoranthene compounds, tetracene compounds, pyrene compounds, coronene compounds, quinolone compounds and azaquinolone compounds, pyrazoline derivatives and pyrazolone derivatives, rhodamine compounds, chrysene compounds, phenanthrene compounds, cyclopentadiene compounds, stilbene compounds, diphenylquinone compounds, styryl compounds , Butadiene compounds, dicyanomethylenepyran compounds, dicyanomethylenethiopyran compounds, fluorescein compounds, Lilium compound, thiapyrylium compound, serenapyrylium compound, telluropyrylium compound, aromatic aldadiene compound, oligophenylene compound, thioxanthene compound, cyanine compound, acridine compound, metal complex of 8-hydroxyquinoline compound, metal complex of 2-bipyridine compound, It is preferably formed of a fluorescent material such as a complex of a Schiff salt and a group III metal, an oxine metal complex, or a rare earth complex.
 電子輸送層109は、陰極110から注入された電子を有機発光層108へ輸送する機能を有し、例えば、特開平5-163488号公報に記載のニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体で形成されることが好ましい。電子輸送層109の膜厚は、20nm-80nmであることが好ましい。 The electron transport layer 109 has a function of transporting electrons injected from the cathode 110 to the organic light emitting layer 108. For example, a nitro-substituted fluorenone derivative, a thiopyrandioxide derivative, a diphequinone described in JP-A-5-163488. Derivatives, perylene tetracarboxyl derivatives, anthraquinodimethane derivatives, fluorenylidenemethane derivatives, anthrone derivatives, oxadiazole derivatives, perinone derivatives, and quinoline complex derivatives are preferable. The film thickness of the electron transport layer 109 is preferably 20 nm-80 nm.
 陰極110は、例えば、ITO(酸化インジウムスズ)やIZO(酸化インジウム亜鉛)等で形成される。有機EL表示パネル10はトップエミッション型であるので、陰極110は、光透過性の材料で形成されることが好ましい。陰極110の膜厚は、100nm程度であることが好ましい。 The cathode 110 is made of, for example, ITO (indium tin oxide) or IZO (indium zinc oxide). Since the organic EL display panel 10 is a top emission type, the cathode 110 is preferably formed of a light transmissive material. The film thickness of the cathode 110 is preferably about 100 nm.
 封止層111は、有機発光層108等が水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、SiO(酸化シリコン),SiN(窒化シリコン)、SiON(酸窒化シリコン)、SiC(炭化ケイ素),SiOC(炭素含有酸化シリコン),AlN(窒化アルミニウム),Al2O3(酸化アルミニウム)等の材料で形成される。有機EL表示パネル10はトップエミッション型であるので、封止層111は、光透過性の材料で形成されることが好ましい。 The sealing layer 111 has a function of preventing the organic light emitting layer 108 or the like from being exposed to moisture or air, for example, SiO (silicon oxide), SiN (silicon nitride), SiON (acidic). It is made of a material such as silicon nitride), SiC (silicon carbide), SiOC (carbon-containing silicon oxide), AlN (aluminum nitride), Al2O3 (aluminum oxide). Since the organic EL display panel 10 is a top emission type, the sealing layer 111 is preferably formed of a light transmissive material.
  <製造方法>
 続いて、有機EL表示パネル10の製造工程を例示する。図4-6は、有機EL表示パネル10の製造工程の一例を示す図である。
<Manufacturing method>
Then, the manufacturing process of the organic electroluminescence display panel 10 is illustrated. FIG. 4-6 is a diagram illustrating an example of the manufacturing process of the organic EL display panel 10.
 まず、図4(a)に示すように、TFT基板101上に層間絶縁膜102を形成する。 First, as shown in FIG. 4A, an interlayer insulating film 102 is formed on the TFT substrate 101.
 次に、例えばスパッタリングによりAl薄膜、あるいはアルミニウム合金薄膜を形成し、当該Al薄膜、あるいはアルミニウム合金薄膜を例えばフォトリソグラフィ及びエッチングでパターニングすることにより、図4(b)に示すように、陽極103及び補助電極104を形成する。その際、後続する工程において形成されるホール注入層105及び電子輸送層108の形成予定膜厚の合計よりも、陽極103及び補助電極104の膜厚を厚く形成する。また、エッチング時のサイドエッチングのために、形成された補助電極104は、その側面と層間絶縁膜102とがなす内角が90度以上になっている。 Next, for example, an Al thin film or an aluminum alloy thin film is formed by sputtering, and the Al thin film or the aluminum alloy thin film is patterned by, for example, photolithography and etching. The auxiliary electrode 104 is formed. At that time, the anode 103 and the auxiliary electrode 104 are formed thicker than the total thickness of the hole injection layer 105 and the electron transport layer 108 to be formed in the subsequent process. In addition, due to side etching during etching, the formed auxiliary electrode 104 has an internal angle of 90 degrees or more formed between the side surface and the interlayer insulating film 102.
 なお、Al薄膜、あるいはアルミニウム合金薄膜は、真空蒸着等で形成しても良い。 The Al thin film or the aluminum alloy thin film may be formed by vacuum deposition or the like.
 次に、図4(c)に示すように、WOx又はMoxWyOzを含むターゲット組成物を用いて真空蒸着、スパッタリングなどの技術によりWOx又はMoxWyOzのホール注入層105を形成する。 Next, as shown in FIG. 4C, a hole injection layer 105 of WOx or MoxWyOz is formed by a technique such as vacuum deposition or sputtering using a target composition containing WOx or MoxWyOz.
 次に、ホール注入層105上に絶縁性有機材料からなる膜を形成し、その上にフォトレジストを一様に塗布する。塗布したフォトレジストの上に、絶縁性有機材料層の一部を除去してホール注入層105の一部を露出させるための所定形状の開口部(形成すべきバンクのパターン)を持つマスクを重ねる。そして、マスクの上から感光させ、レジストパターンを形成する。その後は、余分な絶縁性有機材料及び未硬化のフォトレジストを水系もしくは非水系エッチング液(剥離剤)で洗い出す。これにより絶縁性有機材料のパターニングが完了する。その後、パターニングされた絶縁性有機材料の上のフォトレジスト(レジスト残渣)を純水で洗浄して除去する。以上でバンク106が完成する(図4(d)参照)。バンク106は、その一端が陽極103に乗り上げており、他端が陽極103と補助電極104との間に位置している。 Next, a film made of an insulating organic material is formed on the hole injection layer 105, and a photoresist is uniformly applied thereon. A mask having an opening (a pattern of a bank to be formed) having a predetermined shape for removing a part of the insulating organic material layer and exposing a part of the hole injection layer 105 is overlaid on the applied photoresist. . Then, it is exposed from above the mask to form a resist pattern. Thereafter, excess insulating organic material and uncured photoresist are washed out with an aqueous or non-aqueous etching solution (peeling agent). Thereby, patterning of the insulating organic material is completed. Thereafter, the photoresist (resist residue) on the patterned insulating organic material is removed by washing with pure water. Thus, the bank 106 is completed (see FIG. 4D). One end of the bank 106 rides on the anode 103 and the other end is positioned between the anode 103 and the auxiliary electrode 104.
 次に、図5(a)に示すように、バンク106で区画された各領域内において、陽極103上にホール輸送層107を形成する。 Next, as shown in FIG. 5A, a hole transport layer 107 is formed on the anode 103 in each region partitioned by the bank 106.
 次に、図5(b)に示すように、バンク106で区画された各領域内に例えばインクジェット法により有機EL材料を含む組成物インク(以下、単に「インク」という。)を滴下し、そのインクを乾燥させて有機発光層108を形成する。なお、有機発光層108は、ディスペンサー法、ノズルコート法、スピンコート法、凹版印刷、凸版印刷等により形成しても良い。 Next, as shown in FIG. 5B, a composition ink (hereinafter simply referred to as “ink”) containing an organic EL material is dropped into each region partitioned by the bank 106 by, for example, an ink jet method. The organic light emitting layer 108 is formed by drying the ink. The organic light emitting layer 108 may be formed by a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, or the like.
 次に、図5(c)に示すように、例えば真空蒸着により電子輸送層109を形成する。補助電極104は、その側面と層間絶縁膜102とがなす内角が90度以上になっているため、電子輸送層109は、段切れする。 Next, as shown in FIG. 5C, the electron transport layer 109 is formed by, for example, vacuum deposition. Since the inner angle of the auxiliary electrode 104 formed between the side surface and the interlayer insulating film 102 is 90 degrees or more, the electron transport layer 109 is disconnected.
 次に、図6(a)に示すように、陰極110となるITO薄膜を形成する。ここで、陰極110の形成は、例えばスパッタ法によりなされる。図7は、スパッタ法を用いた陰極110の形成方法を示す図である。図7に示すように、スパッタ装置(不図示)内において、基板上方にターゲット部材122が固定されており、固定されたターゲット部材122上にマグネット121が配置されている。このマグネット121は、ターゲット部材122の表面に沿って移動(走査)する。ターゲット部材122と基板との間に電圧が印加されると、イオン123がターゲット部材122に衝突する。その際、イオン123は、マグネット121に引き付けられ、マグネット121下のターゲット部分に衝突する。衝突したイオンにより弾き出されたターゲットの粒子は、基板に付着する。弾き出されたターゲットの粒子には、基板に対して垂直方向に入射するものもあれば、斜め方向に入射するものもある。すなわち、マグネット121下のターゲット部分に発生する粒子群は、基板に対し所定の入射分布124を持つ。マグネット121が走査されることにより、このような入射分布を持つ粒子群がターゲット全体に発生するので、基板全体において当該基板に対して斜めから粒子が入射し易くなる。したがって、補助電極104の側面にITOが付着し易くなる。 Next, as shown in FIG. 6A, an ITO thin film to be the cathode 110 is formed. Here, the cathode 110 is formed, for example, by sputtering. FIG. 7 is a diagram illustrating a method of forming the cathode 110 using a sputtering method. As shown in FIG. 7, in a sputtering apparatus (not shown), a target member 122 is fixed above the substrate, and a magnet 121 is disposed on the fixed target member 122. The magnet 121 moves (scans) along the surface of the target member 122. When a voltage is applied between the target member 122 and the substrate, the ions 123 collide with the target member 122. At that time, the ions 123 are attracted to the magnet 121 and collide with a target portion under the magnet 121. Target particles ejected by the colliding ions adhere to the substrate. Some of the ejected target particles are incident in a direction perpendicular to the substrate, while others are incident in an oblique direction. That is, the particle group generated in the target portion under the magnet 121 has a predetermined incident distribution 124 with respect to the substrate. When the magnet 121 is scanned, a particle group having such an incident distribution is generated in the entire target, so that the particles are easily incident on the substrate from an oblique direction. Therefore, ITO easily adheres to the side surface of the auxiliary electrode 104.
 なお、マグネット121を用いない場合であっても、スパッタ法は、真空蒸着法やプラズマ蒸着法等に比べ、回り込みにより補助電極104の側面にITOが付着し易いが、マグネット121を用いることにより、基板に対する粒子の入射角度がより緩やかになる。そのため、補助電極104の側面に粒子がさらに入射し易くなり、より一層粒子が付着し易くなる。 Even when the magnet 121 is not used, the sputtering method is more likely to adhere to the side surface of the auxiliary electrode 104 due to the wraparound than the vacuum vapor deposition method or the plasma vapor deposition method, but by using the magnet 121, The incident angle of the particles with respect to the substrate becomes gentler. Therefore, the particles are more easily incident on the side surface of the auxiliary electrode 104, and the particles are more easily attached.
 マグネット121の走査は、形成されるITOが所定の膜厚になるまで繰り返される。 The scanning of the magnet 121 is repeated until the formed ITO has a predetermined film thickness.
 陰極110が形成されると、次に、図6(b)に示すように、陰極110上に封止層111を形成する。 Once the cathode 110 is formed, a sealing layer 111 is then formed on the cathode 110 as shown in FIG.
 本実施の形態に係る有機EL表示パネル10の製造方法によれば、補助電極104の側面が陰極110と直接接触する構成のため、補助電極104上に形成されるホール注入層105及び電子輸送層109をパターニングにより排除することなく、すなわち、製造工程を増やすことなく、電気抵抗の低減を実現することができる。 According to the method of manufacturing the organic EL display panel 10 according to the present embodiment, since the side surface of the auxiliary electrode 104 is in direct contact with the cathode 110, the hole injection layer 105 and the electron transport layer formed on the auxiliary electrode 104 are used. The electrical resistance can be reduced without eliminating 109 by patterning, that is, without increasing the number of manufacturing steps.
  [変形例1-1]
 補助電極104の表面に公知の導電性金属酸化物膜131を設けた一変形例について説明する。
[Modification 1-1]
A modification in which a known conductive metal oxide film 131 is provided on the surface of the auxiliary electrode 104 will be described.
 導電性金属酸化物膜131は、製造過程において陽極103及び補助電極104の形成直後に陽極103及び補助電極104が自然酸化するのを防止する保護層として機能する。導電性金属酸化物膜131の材料は、有機発光層108で発生した光に対して十分な透光性を有する導電性材料により形成されればよく、例えば、ITOやIZOなどが好ましい。室温で成膜しても良好な導電性を得ることができるからである。 The conductive metal oxide film 131 functions as a protective layer that prevents the anode 103 and the auxiliary electrode 104 from spontaneously oxidizing immediately after the formation of the anode 103 and the auxiliary electrode 104 in the manufacturing process. The material of the conductive metal oxide film 131 may be formed of a conductive material having sufficient translucency with respect to the light generated in the organic light emitting layer 108. For example, ITO or IZO is preferable. This is because good conductivity can be obtained even if the film is formed at room temperature.
 図8は、変形例1-1の有機EL表示パネル10の構成を示す部分断面図である。図8に示すように、導電性金属酸化物膜131は、陽極103とホール注入層105との間、補助電極104とホール注入層105との間に介在してこれらの接合性を良好にしている。また、導電性金属酸化物膜131は、陽極103及び補助電極104の上面から連続してそれらの側面にも形成されている。 FIG. 8 is a partial cross-sectional view showing the configuration of the organic EL display panel 10 of Modification 1-1. As shown in FIG. 8, the conductive metal oxide film 131 is interposed between the anode 103 and the hole injection layer 105 and between the auxiliary electrode 104 and the hole injection layer 105 to improve the bondability. Yes. The conductive metal oxide film 131 is also formed on the side surfaces of the anode 103 and the auxiliary electrode 104 continuously from the upper surface.
 したがって、変形例1-1に係る有機EL表示パネル10では、補助電極104の側面が、導電性金属酸化物膜131を介して陰極110と接している。導電性金属酸化物膜131は、アルミニウム、あるいはアルミニウム合金の酸化物に比べ、電気抵抗が小さいので、補助電極104の側面における電気抵抗をより一層低減することができる。 Therefore, in the organic EL display panel 10 according to the modified example 1-1, the side surface of the auxiliary electrode 104 is in contact with the cathode 110 via the conductive metal oxide film 131. Since the conductive metal oxide film 131 has a lower electric resistance than an oxide of aluminum or aluminum alloy, the electric resistance on the side surface of the auxiliary electrode 104 can be further reduced.
 導電性金属酸化物膜131は、層間絶縁膜102上であって、陽極103及び補助電極104が形成されていない領域にも、それらの側面から連続する状態で形成されている。 The conductive metal oxide film 131 is formed on the interlayer insulating film 102 and also in a region where the anode 103 and the auxiliary electrode 104 are not formed, in a state of being continuous from their side surfaces.
  [変形例1-2]
 補助電極104がニッケルを含むアルミニウム合金で形成された一変形例について説明する。
[Modification 1-2]
A modification in which the auxiliary electrode 104 is formed of an aluminum alloy containing nickel will be described.
 本変形例においては、陽極103および補助電極104では、表面の少なくとも一部にニッケルが析出し、当該析出したニッケルの表面が酸化されて酸化ニッケル層が形成されている。 In this modification, nickel is deposited on at least a part of the surface of the anode 103 and the auxiliary electrode 104, and the surface of the deposited nickel is oxidized to form a nickel oxide layer.
 図9は、変形例1-2の有機EL表示パネル10の構成を示す部分断面図及び一部拡大図である。一部拡大図は、有機表示パネル10の補助電極104の側面およびその周辺部分を抜き出して描いている。図9に示すように、主成分であるアルミニウム(Al)層1040側面の表面には、ニッケルを含む析出物が形成されている(析出ニッケル1041)。 FIG. 9 is a partial cross-sectional view and a partially enlarged view showing the configuration of the organic EL display panel 10 of Modification 1-2. In the partially enlarged view, the side surface of the auxiliary electrode 104 of the organic display panel 10 and its peripheral portion are extracted. As shown in FIG. 9, a precipitate containing nickel is formed on the surface of the side surface of the aluminum (Al) layer 1040 as the main component (deposited nickel 1041).
 析出ニッケル1041は、電気抵抗が低く、かつ、アルミニウム、あるいはアルミニウム合金よりも酸化されにくい特性を有し、さらに、酸化された場合でも導電性を有する。 The deposited nickel 1041 has low electrical resistance and is less susceptible to oxidation than aluminum or an aluminum alloy, and also has conductivity even when oxidized.
 また、析出ニッケル1041は、補助電極104側面の表面全体に析出しているのではなく、表面の一部に析出した状態になっている。そして、析出ニッケル1041の表面の内、析出部分には、酸化ニッケル層1043が形成されている。 Further, the deposited nickel 1041 is not deposited on the entire surface of the side surface of the auxiliary electrode 104, but is deposited on a part of the surface. A nickel oxide layer 1043 is formed on the deposited portion of the surface of the deposited nickel 1041.
 また、アルミニウム層1040の表面であって、析出ニッケル1041が存在しない部分には、酸化アルミニウム層1042が形成されている。 Also, an aluminum oxide layer 1042 is formed on the surface of the aluminum layer 1040 where the deposited nickel 1041 does not exist.
 本変形例の有機EL表示パネル10では、陰極110は、補助電極104の側面と、補助電極104の側面に形成された析出ニッケル1041を介して電気的に接触することになるので、補助電極104の側面における電気抵抗をより一層低減することができる。 In the organic EL display panel 10 of this modification, the cathode 110 is in electrical contact with the side surface of the auxiliary electrode 104 via the deposited nickel 1041 formed on the side surface of the auxiliary electrode 104. It is possible to further reduce the electrical resistance on the side surface.
 さらに、上述した析出ニッケル1041は、粒子である。ニッケル粒子が補助電極104の側面に形成されているため、補助電極104の側面は凹凸形状となる。これにより、陰極110と補助電極104の側面との接触面積を増大させることができ、陰極110と補助電極104の側面との接触抵抗を低減することができる。 Furthermore, the above-described deposited nickel 1041 is a particle. Since the nickel particles are formed on the side surface of the auxiliary electrode 104, the side surface of the auxiliary electrode 104 has an uneven shape. Thereby, the contact area between the cathode 110 and the side surface of the auxiliary electrode 104 can be increased, and the contact resistance between the cathode 110 and the side surface of the auxiliary electrode 104 can be reduced.
 なお、析出ニッケル1041の表面に形成された酸化ニッケル層1043は、ホール注入性を有し、陽極103がホール注入性を備えることとなる。したがって、本変形例では、ホール注入層が別途形成されていない。 Note that the nickel oxide layer 1043 formed on the surface of the deposited nickel 1041 has a hole injection property, and the anode 103 has a hole injection property. Therefore, in this modification, the hole injection layer is not separately formed.
 遷移金属の酸化物層である酸化ニッケル層1043が、ホール注入性を有することについては、次に示す参考文献でも確認されている。 The fact that the nickel oxide layer 1043, which is an oxide layer of a transition metal, has hole injecting properties has also been confirmed in the following references.
 (参考文献)「Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode」、I-Min Chan,Tsung-Yi Hsu,and Franklin C.Hong、“2002 American Institute of Physics、Applied Physics Letters、volume 81,number 10”
 なお、補助電極104がコバルトを含むアルミニウム合金で形成された場合であっても、上述した内容と同様の効果を奏する。
(Reference) “Enhanced hole injections in organic light-emitting devices by developing nickel oxide on indium tin oxide nano, I-Min Chan, Tsun Y. Hong, “2002 American Institute of Physics, Applied Physics Letters, volume 81, number 10”.
Even when the auxiliary electrode 104 is formed of an aluminum alloy containing cobalt, the same effects as described above can be obtained.
  <製造方法>
 続いて、本変形例の有機EL表示パネル10の製造工程を例示する。図10は、本変形例の有機EL表示パネル10の製造工程の一例を示す図である。図10(a)、(b)は図4(a)、(b)と同様であるため、ここではその説明を省略する。
<Manufacturing method>
Then, the manufacturing process of the organic electroluminescence display panel 10 of this modification is illustrated. FIG. 10 is a diagram illustrating an example of a manufacturing process of the organic EL display panel 10 of the present modification. 10 (a) and 10 (b) are the same as FIGS. 4 (a) and 4 (b), and the description thereof is omitted here.
 陽極103及び補助電極104形成後、陽極103及び補助電極104に対して、酸素雰囲気下で焼成を行う。焼成の条件は、焼成温度が230[℃]以上、焼成時間が30[min.]以上である。このように陽極103及び補助電極104を焼成することにより、図10(c)の一部拡大図に示すように、アルミニウム層1041の表面の一部にニッケルが析出し(析出ニッケル1042)、析出ニッケル1042の表面が酸化されて酸化ニッケル層1044が形成される。また、アルミニウム層1041の表面も酸化されて酸化アルミニウム層1043が形成され、焼成後の陽極103及び補助電極104が完成する。 After the anode 103 and the auxiliary electrode 104 are formed, the anode 103 and the auxiliary electrode 104 are baked in an oxygen atmosphere. The firing conditions were a firing temperature of 230 [° C.] or higher and a firing time of 30 [min. ] That's it. By firing the anode 103 and the auxiliary electrode 104 in this way, nickel is deposited on a part of the surface of the aluminum layer 1041 (deposited nickel 1042), as shown in the partially enlarged view of FIG. The surface of the nickel 1042 is oxidized to form a nickel oxide layer 1044. Further, the surface of the aluminum layer 1041 is also oxidized to form an aluminum oxide layer 1043, and the fired anode 103 and auxiliary electrode 104 are completed.
  [変形例1-3]
 補助電極104の膜厚を陽極103の膜厚より厚く形成した一変形例について説明する。図11は、変形例1-3の有機EL表示パネル10の構成を示す部分断面図である。図11に示すように、補助電極104の膜厚は陽極103の膜厚より厚く形成されている。これにより、補助電極104の側面において、陰極110との接触面積を増大させることができるので、より一層電気抵抗を低減することができる。
[Modification 1-3]
A modification in which the auxiliary electrode 104 is formed thicker than the anode 103 will be described. FIG. 11 is a partial cross-sectional view showing the configuration of the organic EL display panel 10 of Modification 1-3. As shown in FIG. 11, the auxiliary electrode 104 is formed thicker than the anode 103. Thereby, since the contact area with the cathode 110 can be increased on the side surface of the auxiliary electrode 104, the electrical resistance can be further reduced.
  [変形例1-4]
 図12は、変形例1-4の有機EL表示パネル10における陽極103、補助電極104、及びバンク106の配置関係を模式的に示す図である。図12に示すように、変形例1-4の有機EL表示パネル10では、Y軸方向にライン状に複数のバンク106が形成され、画素部に相当する部分では、X軸方向に隣接するバンク106間に陽極103が画素単位に形成され、非画素部に相当する部分では、補助電極104がライン状に形成されている。これらの点については、図3と同様である。ただし、本変形例に係る有機EL表示パネル10では、図12に示すように、非画素部に相当する部分におけるバンク106が、その頂部に複数の開口部を有しており、各開口部から補助電極104の一部が露出している。図中の補助電極104において、斜線で描かれた領域が、バンク106から露出している領域を示し、破線で描かれた領域が、バンク106に覆われている領域を示している。図12から明らかなように、各開口部から露出した補助電極104において、一方の側部上面にバンクが乗り上げているのに対し、他方の側部には、バンク106が達しておらず、他方の側部はバンク106に覆われていない。
[Modification 1-4]
FIG. 12 is a diagram schematically illustrating an arrangement relationship of the anode 103, the auxiliary electrode 104, and the bank 106 in the organic EL display panel 10 of Modification 1-4. As shown in FIG. 12, in the organic EL display panel 10 of Modification 1-4, a plurality of banks 106 are formed in a line shape in the Y-axis direction, and a bank adjacent to the X-axis direction in a portion corresponding to the pixel portion. The anode 103 is formed between the pixels 106 in units of pixels, and the auxiliary electrode 104 is formed in a line shape in a portion corresponding to the non-pixel portion. These points are the same as in FIG. However, in the organic EL display panel 10 according to the present modification, as shown in FIG. 12, the bank 106 in the portion corresponding to the non-pixel portion has a plurality of openings at the top, and each opening has a plurality of openings. A part of the auxiliary electrode 104 is exposed. In the auxiliary electrode 104 in the figure, a region drawn with diagonal lines indicates a region exposed from the bank 106, and a region drawn with broken lines shows a region covered with the bank 106. As apparent from FIG. 12, in the auxiliary electrode 104 exposed from each opening, the bank runs on the upper surface of one side, whereas the bank 106 does not reach the other side, These sides are not covered by the bank 106.
 なお、ここでは、各開口部から露出した補助電極104において、当該補助電極104におけるどちらの側部上面にバンクが乗り上げているかを統一していないが、一方の側部の上面にバンク106が乗り上げる構成であってもよい。 Here, in the auxiliary electrode 104 exposed from each opening, it is not unified which side upper surface of the auxiliary electrode 104 is on the bank, but the bank 106 is on the upper surface of one side. It may be a configuration.
 また、Y軸方向に隣接する開口部間はバンク106に覆われている。 Further, the opening 106 adjacent in the Y-axis direction is covered with the bank 106.
 続いて、図13は、変形例1-4の有機EL表示パネル10の構成を示す部分断面図(図3のB-B’断面)である。ここでは、図2との差異を中心に説明する。図13に示すように、変形例1-4の有機EL表示パネル10では、補助電極104の一方の側部上面にバンク106が乗り上げている。したがって、バンク106が乗り上げた側の側面においては、陰極110と直接接触することはできない。ただし、補助電極104の一方の側部上面にバンク106が乗り上げていることにより、バンク106とホール注入層105との接触面積を増大させることができる。 Subsequently, FIG. 13 is a partial cross-sectional view (B-B ′ cross-section of FIG. 3) showing the configuration of the organic EL display panel 10 of Modification 1-4. Here, the difference from FIG. 2 will be mainly described. As shown in FIG. 13, in the organic EL display panel 10 of Modification 1-4, a bank 106 rides on the upper surface of one side of the auxiliary electrode 104. Accordingly, the side face on which the bank 106 rides cannot directly contact the cathode 110. However, since the bank 106 rides on the upper surface of one side of the auxiliary electrode 104, the contact area between the bank 106 and the hole injection layer 105 can be increased.
 したがって、例えば有機発光層108の形成面積を拡大するためバンク106の幅をX軸方向に狭めた場合でも、バンク106がホール注入層105と接着する面積の減少を抑制することができる。その結果、バンク106のホール注入層105への密着強度の減少を抑制することができるので、バンク106がホール注入層105から剥離することを防止することができる。 Therefore, for example, even when the width of the bank 106 is narrowed in the X-axis direction in order to increase the formation area of the organic light emitting layer 108, it is possible to suppress a decrease in the area where the bank 106 adheres to the hole injection layer 105. As a result, a decrease in the adhesion strength of the bank 106 to the hole injection layer 105 can be suppressed, so that the bank 106 can be prevented from peeling from the hole injection layer 105.
 一方、バンク106が乗り上げていない側の側面においては、これまで説明してきたように、ホール注入層105及び電子輸送層109から露出している領域を有するので、当該領域にて陰極110と直接接触することができる。 On the other hand, the side surface on which the bank 106 is not mounted has a region exposed from the hole injection layer 105 and the electron transport layer 109 as described above, and thus directly contacts the cathode 110 in the region. can do.
 上述のように、補助電極104の両側面で陰極110と直接接触する場合と比較し、一方の側面で陰極110と接触する構成であるので電気抵抗は増大するものの、バンク106の幅を広くすることができる。 As described above, compared with the case where the both sides of the auxiliary electrode 104 are in direct contact with the cathode 110, the structure is in contact with the cathode 110 on one side, so the electrical resistance increases, but the width of the bank 106 is increased. be able to.
 したがって、バンク106とホール注入層105との接着面積の減少の抑制と、陰極110に電圧を供給する際の電気抵抗の低減とを両立することができる。 Therefore, it is possible to achieve both the suppression of the decrease in the bonding area between the bank 106 and the hole injection layer 105 and the reduction in the electric resistance when supplying a voltage to the cathode 110.
  [変形例1-5]
 続いて、バンクの106の形態が相違する一変形例について説明する。
[Modification 1-5]
Next, a modification in which the form of the bank 106 is different will be described.
 図14は、変形例1-5の有機EL表示パネル10における陽極103、補助電極104、及びバンク141の配置関係を模式的に示す図である。 FIG. 14 is a diagram schematically showing the arrangement relationship of the anode 103, the auxiliary electrode 104, and the bank 141 in the organic EL display panel 10 of Modification 1-5.
 図14に示すように、本変形例に係る有機EL表示パネル10のバンク141は、X軸方向に延伸する部分141aとY軸方向に延伸する部分141bとが一体に形成された、所謂、ピクセルバンクとなっている。本変形例に係る有機EL表示パネル10では、X軸方向に隣接するサブピクセルが部分141bで区画され、Y軸方向に隣接するサブピクセルが部分141aで区画される。部分141a及び部分141bで規定される各領域に陽極103が形成されている。非画素部に相当する部分では、補助電極104が画素毎にライン状に形成されている。そして、補助電極104に対応するように、画素単位でバンク141bがその頂部に複数の開口部を有し、各開口部から補助電極104の一部が露出している。図14中の補助電極104において、図12と同様に、斜線で描かれた領域が、バンク106から露出している領域を示し、破線で描かれた領域が、バンク106に覆われている領域を示している。図14から明らかなように、部分141aと部分141bとの交点部分から露出した補助電極104については、その両側部に部分141bが達しておらず、部分141bに覆われていない。 As shown in FIG. 14, the bank 141 of the organic EL display panel 10 according to this modification has a so-called pixel in which a portion 141a extending in the X-axis direction and a portion 141b extending in the Y-axis direction are integrally formed. It is a bank. In the organic EL display panel 10 according to this modification, subpixels adjacent in the X-axis direction are partitioned by a portion 141b, and subpixels adjacent in the Y-axis direction are partitioned by a portion 141a. An anode 103 is formed in each region defined by the portion 141a and the portion 141b. In the portion corresponding to the non-pixel portion, the auxiliary electrode 104 is formed in a line shape for each pixel. In order to correspond to the auxiliary electrode 104, the bank 141b has a plurality of openings at the top of each pixel, and a part of the auxiliary electrode 104 is exposed from each opening. In the auxiliary electrode 104 in FIG. 14, similarly to FIG. 12, the hatched area indicates the area exposed from the bank 106, and the broken line area is covered by the bank 106. Is shown. As is apparent from FIG. 14, the auxiliary electrode 104 exposed from the intersection of the portion 141a and the portion 141b does not reach the sides 141b and is not covered with the portion 141b.
 一方、陽極103間の部分141aから露出した補助電極104については、その両側部が部分141aに覆われている。 On the other hand, both sides of the auxiliary electrode 104 exposed from the portion 141a between the anodes 103 are covered with the portion 141a.
 続いて、図15は、変形例1-5の有機EL表示パネル10の構成を示す部分断面図(図14のC-C’断面)である。図15に示すように、補助電極104の両側面がバンク106に覆われずに露出しており、当該露出している両側面は、ホール注入層105及び電子輸送層108から露出した領域を有している。そして、その領域において、陰極110と直接接触する構成となっている。 Subsequently, FIG. 15 is a partial cross-sectional view (cross-section C-C ′ of FIG. 14) showing the configuration of the organic EL display panel 10 of Modification 1-5. As shown in FIG. 15, both side surfaces of the auxiliary electrode 104 are exposed without being covered by the bank 106, and the exposed both side surfaces have regions exposed from the hole injection layer 105 and the electron transport layer 108. is doing. In that region, the cathode 110 is in direct contact.
 図14における、陽極103間の部分141aから露出した補助電極104の両側部が部分141aに覆われているのに対し、図14における部分141aと部分141bとの交点部分から露出した補助電極104の両側面は、露出されており、陰極110と直接接触する。 14, both sides of the auxiliary electrode 104 exposed from the portion 141a between the anodes 103 are covered with the portion 141a, whereas the auxiliary electrode 104 exposed from the intersection of the portion 141a and the portion 141b in FIG. Both side surfaces are exposed and are in direct contact with the cathode 110.
 したがって、バンク106とホール注入層105との接着面積の減少の抑制と、陰極110に電圧を供給する際の電気抵抗の低減とを両立することができる。 Therefore, it is possible to achieve both the suppression of the decrease in the bonding area between the bank 106 and the hole injection layer 105 and the reduction in the electric resistance when supplying a voltage to the cathode 110.
  [変形例1-6]
 補助電極104の側面であって、ホール注入層105及び電子輸送層108から露出した領域の厚さが陰極110の膜厚より厚いとした一変形例について説明する。
[Modification 1-6]
A modification in which the thickness of the region exposed from the hole injection layer 105 and the electron transport layer 108 on the side surface of the auxiliary electrode 104 is thicker than the thickness of the cathode 110 will be described.
 図16は、変形例1-6の有機EL表示パネル10の構成を示す部分断面図である。図16に示すように、補助電極104の側面であって、ホール注入層105及び電子輸送層108から露出した領域の厚さth3が、陰極110の膜厚th4より厚くなっている。 FIG. 16 is a partial cross-sectional view showing the configuration of the organic EL display panel 10 of Modification 1-6. As shown in FIG. 16, the thickness th3 of the region exposed from the hole injection layer 105 and the electron transport layer 108 on the side surface of the auxiliary electrode 104 is thicker than the film thickness th4 of the cathode 110.
 このため、陰極110の膜厚分の全てが補助電極104の側面に接触することになる。したがって、より一層電気抵抗を低減することができる。
(補足)
 以上、本発明に係る有機EL表示パネル10について、実施の形態に基づいて説明したが、本発明は上記実施の形態に限られないことは勿論である。
(1)上記実施の形態では、ホール注入層105を構成する材料としてMoOx、WOx又はMoxWyOzを用いて説明しているが、Mo(モリブデン)、W(タングステン)以外の金属を用いた場合でも本実施の形態を適用することにより同様の効果を奏することができる。
(2)上記実施の形態では、表示装置1の外観を示さなかったが、例えば、図17に示すような外観を有するものとすることができる。
(3)上記実施の形態において、バンク106が形成された陽極103の側部は、当該陽極103の側面につらなる所定範囲内の当該陽極103の上面を含む領域である。ここで、所定範囲について説明すると、陽極103の中央方向へは特に制限はない。ただし、有機発光層108の形成面積を確保する観点から、陽極103上面に形成されるバンク106の領域はなるべく小さいほうが望ましい。陽極103の側部方向へは、陽極103及びホール注入層105の側面が露出しないことを満たす範囲で、バンク106の形成位置を陽極103の側部方向に近づけることができる。ただし、フォトリソグラフィの精度を考慮し、たとえ形成位置がずれたとしても、陽極103及びホール注入層105の側面が露出しないことが保証される位置にバンク106を形成することが望ましい。
(4)上記変形例1-4では、補助電極104の一方の側部上面にバンク106が乗り上げており、他方の側部は、バンク106に覆われていない構成としたが、補助電極104の両側部がバンク106に覆われていない構成であってもよい。これにより、より一層電気抵抗を低減することができる。
(5)上記実施の形態及び上記各変形例をそれぞれ組み合わせるとしてもよい。
For this reason, the entire thickness of the cathode 110 is in contact with the side surface of the auxiliary electrode 104. Therefore, the electrical resistance can be further reduced.
(Supplement)
As described above, the organic EL display panel 10 according to the present invention has been described based on the embodiment, but the present invention is not limited to the above embodiment.
(1) In the above embodiment, MoOx, WOx or MoxWyOz is used as the material constituting the hole injection layer 105. However, even when a metal other than Mo (molybdenum) or W (tungsten) is used, the present embodiment is used. By applying the embodiment, a similar effect can be obtained.
(2) Although the external appearance of the display device 1 is not shown in the above embodiment, for example, it may have an external appearance as shown in FIG.
(3) In the above embodiment, the side portion of the anode 103 on which the bank 106 is formed is a region including the upper surface of the anode 103 within a predetermined range formed on the side surface of the anode 103. Here, the predetermined range will be described. There is no particular limitation on the center direction of the anode 103. However, from the viewpoint of securing the formation area of the organic light emitting layer 108, it is desirable that the area of the bank 106 formed on the upper surface of the anode 103 is as small as possible. In the side direction of the anode 103, the formation position of the bank 106 can be brought closer to the side direction of the anode 103 as long as the side surfaces of the anode 103 and the hole injection layer 105 are not exposed. However, considering the accuracy of photolithography, it is desirable to form the bank 106 at a position where it is guaranteed that the side surfaces of the anode 103 and the hole injection layer 105 are not exposed even if the formation position is shifted.
(4) In the above modified example 1-4, the bank 106 rides on the upper surface of one side of the auxiliary electrode 104, and the other side is not covered with the bank 106. A configuration in which both sides are not covered by the bank 106 may be employed. Thereby, electrical resistance can be further reduced.
(5) The above embodiment and the above modifications may be combined.
 本発明は、例えば、家庭用もしくは公共施設、あるいは業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等に利用可能である。 The present invention can be used, for example, for home or public facilities, various display devices for business use, television devices, displays for portable electronic devices, and the like.
1     表示装置
10    有機EL表示パネル
20    駆動制御部
21-24 駆動回路
25    制御回路
101   TFT基板
102   層間絶縁膜
103   陽極
104   補助電極
105   ホール注入層
106   バンク
107   ホール輸送層
108   有機発光層
109   電子輸送層
110   陰極
111   封止層
DESCRIPTION OF SYMBOLS 1 Display apparatus 10 Organic EL display panel 20 Drive control part 21-24 Drive circuit 25 Control circuit 101 TFT substrate 102 Interlayer insulation film 103 Anode 104 Auxiliary electrode 105 Hole injection layer 106 Bank 107 Hole transport layer 108 Organic light emitting layer 109 Electron transport layer 110 Cathode 111 Sealing layer

Claims (21)

  1.  基板と、
     前記基板上に形成された下部電極と、
     前記基板上であって、前記基板の主面に沿った方向に前記下部電極と離間した領域に形成された補助電極と、
     前記基板の上方であって、前記下部電極の補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけて形成された隔壁と、
     前記下部電極の上方に形成された有機発光層と、
     前記有機発光層上、前記隔壁上、前記基板の上方で前記補助電極と前記隔壁との間の領域、及び前記補助電極上に形成された電荷中間層と、
     前記電荷中間層上に形成された上部電極と、を含み、
     前記補助電極の膜厚は、前記電荷中間層の膜厚より厚く、
     前記補助電極の側面は、前記補助電極と前記隔壁との間の領域に存在する前記電荷中間層から露出した領域を有し、
     前記上部電極は、前記補助電極の側面であって、前記電荷中間層から露出した領域に接触している
     有機EL表示パネル。
    A substrate,
    A lower electrode formed on the substrate;
    An auxiliary electrode formed on the substrate and in a region separated from the lower electrode in a direction along the main surface of the substrate;
    A partition formed above the substrate and from a side of the lower electrode facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode;
    An organic light emitting layer formed above the lower electrode;
    A charge intermediate layer formed on the organic light emitting layer, on the barrier ribs, above the substrate, between the auxiliary electrode and the barrier ribs, and on the auxiliary electrode;
    An upper electrode formed on the charge intermediate layer,
    The auxiliary electrode is thicker than the charge intermediate layer,
    The side surface of the auxiliary electrode has a region exposed from the charge intermediate layer present in a region between the auxiliary electrode and the partition wall,
    The organic EL display panel, wherein the upper electrode is in contact with a region exposed from the charge intermediate layer on a side surface of the auxiliary electrode.
  2.  前記補助電極は、アルミニウム、あるいはアルミニウム合金で構成され、
     少なくとも、前記補助電極の側面の、前記電荷中間層から露出した領域には、前記補助電極の側面の酸化を防止する導電性金属酸化物膜が形成されている
     請求項1に記載の有機EL表示パネル。
    The auxiliary electrode is made of aluminum or an aluminum alloy,
    The organic EL display according to claim 1, wherein a conductive metal oxide film that prevents oxidation of the side surface of the auxiliary electrode is formed at least in a region exposed from the charge intermediate layer on the side surface of the auxiliary electrode. panel.
  3.  前記補助電極は、少なくともニッケル、あるいはコバルトのいずれか一方を含むアルミニウム合金で構成され、
     前記補助電極の側面には、前記アルミニウム合金に含まれるニッケル、あるいはコバルトを含む析出物が形成されている
     請求項1に記載の有機EL表示パネル。
    The auxiliary electrode is made of an aluminum alloy containing at least one of nickel and cobalt,
    The organic EL display panel according to claim 1, wherein a precipitate containing nickel or cobalt contained in the aluminum alloy is formed on a side surface of the auxiliary electrode.
  4.  前記析出物は、粒子である
     請求項3に記載の有機EL表示パネル。
    The organic EL display panel according to claim 3, wherein the precipitate is a particle.
  5.  前記下部電極と前記補助電極との上面には第2電荷中間層が形成され、
     前記第2電荷中間層は、前記下部電極上において前記下部電極と前記有機発光層との間に介在し、
     前記補助電極上において、前記補助電極と前記電荷中間層との間に介在している
     請求項1ないし請求項4のいずれか1項に記載の有機EL表示パネル。
    A second charge intermediate layer is formed on upper surfaces of the lower electrode and the auxiliary electrode;
    The second charge intermediate layer is interposed between the lower electrode and the organic light emitting layer on the lower electrode,
    The organic EL display panel according to any one of claims 1 to 4, wherein the organic EL display panel is interposed between the auxiliary electrode and the charge intermediate layer on the auxiliary electrode.
  6.  前記第2電荷中間層はさらに、前記補助電極と前記隔壁との間の領域に存在し、当該領域において前記第2電荷中間層上に前記電荷中間層が形成されており、
     前記補助電極の膜厚は、前記電荷中間層及び前記第2電荷中間層の合計膜厚より厚く、
    前記補助電極の側面は、前記電荷中間層及び前記第2電荷中間層の積層部分から露出した領域を有し、
     前記上部電極は、前記補助電極の側面であって、前記電荷中間層及び前記第2電荷中間層の積層部分から露出した領域に接触している
     請求項5記載の有機EL表示パネル。
    The second charge intermediate layer is further present in a region between the auxiliary electrode and the partition wall, and the charge intermediate layer is formed on the second charge intermediate layer in the region,
    The auxiliary electrode is thicker than the total thickness of the charge intermediate layer and the second charge intermediate layer,
    The side surface of the auxiliary electrode has a region exposed from a stacked portion of the charge intermediate layer and the second charge intermediate layer,
    The organic EL display panel according to claim 5, wherein the upper electrode is in contact with a side surface of the auxiliary electrode, which is exposed from a stacked portion of the charge intermediate layer and the second charge intermediate layer.
  7.  前記隔壁が形成された前記下部電極の側部は、前記下部電極の側面につらなる所定範囲内の前記下部電極の上面を含む
     請求項1ないし請求項5のいずれか1項に記載の有機EL表示パネル。
    The organic EL display according to any one of claims 1 to 5, wherein a side portion of the lower electrode on which the partition wall is formed includes an upper surface of the lower electrode within a predetermined range formed on a side surface of the lower electrode. panel.
  8.  前記補助電極の側面であって、前記電荷中間層から露出した領域の厚さは、前記上部電極の膜厚より薄い
     請求項1ないし請求項7のいずれか1項に記載の有機EL表示パネル。
    The organic EL display panel according to any one of claims 1 to 7, wherein a thickness of a region exposed from the charge intermediate layer on a side surface of the auxiliary electrode is thinner than a film thickness of the upper electrode.
  9.  前記補助電極の側面であって、前記電荷中間層から露出した領域の厚さは、前記上部電極の膜厚より厚い
     請求項1ないし請求項7のいずれか1項に記載の有機EL表示パネル。
    The organic EL display panel according to any one of claims 1 to 7, wherein a thickness of a region exposed from the charge intermediate layer on a side surface of the auxiliary electrode is thicker than a film thickness of the upper electrode.
  10.  前記補助電極の側面と前記基板とがなす内角が90度以上である
     請求項1ないし請求項9のいずれか1項に記載の有機EL表示パネル。
    The organic EL display panel according to any one of claims 1 to 9, wherein an inner angle formed between a side surface of the auxiliary electrode and the substrate is 90 degrees or more.
  11.  前記隔壁の側面と前記基板とがなす内角は90度未満である
     請求項1ないし請求項10のいずれか1項に記載の有機EL表示パネル。
    The organic EL display panel according to any one of claims 1 to 10, wherein an inner angle formed by a side surface of the partition wall and the substrate is less than 90 degrees.
  12.  前記補助電極の膜厚が、前記下部電極の膜厚より厚い
     請求項1ないし請求項11のいずれか1項に記載の有機EL表示パネル。
    The organic EL display panel according to claim 1, wherein a film thickness of the auxiliary electrode is larger than a film thickness of the lower electrode.
  13.  基板と、
     前記基板上に形成された第1下部電極と、
     前記基板上であって、前記基板の主面に沿った方向に前記第1下部電極と離間した領域に形成された補助電極と、
     前記基板上であって、前記補助電極を挟んで前記第1下部電極の形成位置の反対側に、前記補助電極と離間して形成された第2下部電極と、
     前記基板の上方であって、前記第1下部電極の前記補助電極と対向する側の側部、前記補助電極の上部、および前記第2下部電極の前記補助電極と対向する側の側部にかけて形成された隔壁と、
     前記第1下部電極の上方に形成された第1有機発光層と、
     前記第2下部電極の上方に形成された第2有機発光層と、
     前記第1有機発光層上、前記隔壁上、及び前記第2有機発光層上に形成された電荷中間層と、
     前記電荷中間層上に形成された上部電極と、を含み、
     前記隔壁は、前記隔壁の上面に、前記補助電極の一部を露出する開口部を有し、
     露出された前記補助電極の一部は、少なくともその側面を含み、
     前記電荷中間層は、前記開口部から露出した前記補助電極上に形成され、
     前記補助電極の膜厚は、前記電荷中間層の膜厚より厚く、
     前記開口部から露出した前記補助電極の側面は、前記電荷中間層から露出した領域を有し、
     前記上部電極は、前記補助電極の側面であって前記電荷中間層から露出した領域に接触している
     有機EL表示パネル。
    A substrate,
    A first lower electrode formed on the substrate;
    An auxiliary electrode formed on the substrate and in a region separated from the first lower electrode in a direction along the main surface of the substrate;
    A second lower electrode formed on the substrate opposite to the formation position of the first lower electrode across the auxiliary electrode and spaced from the auxiliary electrode;
    Formed over the substrate and on the side of the first lower electrode facing the auxiliary electrode, the upper part of the auxiliary electrode, and the side of the second lower electrode facing the auxiliary electrode A partition wall,
    A first organic light emitting layer formed above the first lower electrode;
    A second organic light emitting layer formed above the second lower electrode;
    A charge intermediate layer formed on the first organic light emitting layer, on the partition, and on the second organic light emitting layer;
    An upper electrode formed on the charge intermediate layer,
    The barrier rib has an opening exposing a part of the auxiliary electrode on the upper surface of the barrier rib,
    A portion of the exposed auxiliary electrode includes at least a side surface thereof;
    The charge intermediate layer is formed on the auxiliary electrode exposed from the opening,
    The auxiliary electrode is thicker than the charge intermediate layer,
    The side surface of the auxiliary electrode exposed from the opening has a region exposed from the charge intermediate layer,
    The organic EL display panel, wherein the upper electrode is in contact with a side surface of the auxiliary electrode that is exposed from the charge intermediate layer.
  14.  前記開口部によって露出される前記補助電極の一部は、前記補助電極の前記第1下部電極側の領域であり、
     前記開口部から露出した前記補助電極の前記第1下部電極側の領域の側面は、前記電荷中間層から露出した領域を有し、
     前記上部電極は、前記補助電極の前記第1下部電極側の領域の側面であって前記電荷中間層から露出した領域に接触している
     請求項13記載の有機EL表示パネル。
    A part of the auxiliary electrode exposed by the opening is a region on the first lower electrode side of the auxiliary electrode,
    The side surface of the region on the first lower electrode side of the auxiliary electrode exposed from the opening has a region exposed from the charge intermediate layer,
    The organic EL display panel according to claim 13, wherein the upper electrode is in contact with a side surface of a region of the auxiliary electrode on the first lower electrode side and exposed from the charge intermediate layer.
  15.  前記開口部によって露出される前記補助電極の一部は、前記補助電極の前記第1下部電極側の領域及び前記補助電極の前記第2下部電極側の領域であり、
     前記開口部から露出した前記補助電極の前記第1下部電極側の領域及び前記第2下部電極側の領域の各側面は、前記電荷中間層から露出した領域を有し、
     前記上部電極は、前記補助電極の前記第1下部電極側の領域及び前記第2下部電極側の領域の各側面であって前記電荷中間層から露出した領域に接触している
     請求項13記載の有機EL表示パネル。
    A part of the auxiliary electrode exposed by the opening is a region on the first lower electrode side of the auxiliary electrode and a region on the second lower electrode side of the auxiliary electrode,
    Each side surface of the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode exposed from the opening has a region exposed from the charge intermediate layer,
    The upper electrode is in contact with a region exposed from the charge intermediate layer on each side surface of the region on the first lower electrode side and the region on the second lower electrode side of the auxiliary electrode. Organic EL display panel.
  16.  請求項1ないし請求項15のいずれか1項に記載の有機EL表示パネルを備えた
     表示装置。
    A display device comprising the organic EL display panel according to any one of claims 1 to 15.
  17.  基板を準備する第1工程と、
     前記基板上に下部電極を形成する第2工程と、
     前記基板上であって、前記基板の主面に沿った方向に前記下部電極と離間した領域に補助電極を形成する第3工程と、
     前記基板の上方であって、前記下部電極の補助電極と対向する側の側部から、前記下部電極と前記補助電極との間の所定位置にかけた領域に隔壁を形成する第4工程と、
     前記下部電極の上方に有機発光層を形成する第5工程と、
     前記有機発光層上、前記隔壁上、前記基板の上方で前記補助電極と前記隔壁との間の領域、及び前記補助電極上に電荷中間層を形成する第6工程と、
     前記電荷中間層上に上部電極を形成する第7工程と、を含み、
     前記補助電極の膜厚を、前記電荷中間層の形成予定膜厚より厚く形成し、
     前記補助電極の側面には、前記補助電極と前記隔壁との間の領域に存在する前記電荷中間層から露出した領域が形成され、
     前記上部電極は、前記補助電極の側面であって、前記電荷中間層から露出した領域に接触している
     有機EL表示パネルの製造方法。
    A first step of preparing a substrate;
    A second step of forming a lower electrode on the substrate;
    A third step of forming an auxiliary electrode on the substrate in a region separated from the lower electrode in a direction along the main surface of the substrate;
    A fourth step of forming a partition wall in a region extending from the side of the lower electrode facing the auxiliary electrode to a predetermined position between the lower electrode and the auxiliary electrode, above the substrate;
    A fifth step of forming an organic light emitting layer above the lower electrode;
    A sixth step of forming a charge intermediate layer on the organic light emitting layer, on the partition, above the substrate, between the auxiliary electrode and the partition, and on the auxiliary electrode;
    A seventh step of forming an upper electrode on the charge intermediate layer,
    The auxiliary electrode is formed to have a film thickness that is greater than the planned film thickness of the charge intermediate layer,
    A region exposed from the charge intermediate layer present in a region between the auxiliary electrode and the partition is formed on a side surface of the auxiliary electrode,
    The method for manufacturing an organic EL display panel, wherein the upper electrode is in contact with a region exposed from the charge intermediate layer on a side surface of the auxiliary electrode.
  18.  前記上部電極は、スパッタ法で形成される
     請求項17に記載の有機EL表示パネルの製造方法。
    The method for manufacturing an organic EL display panel according to claim 17, wherein the upper electrode is formed by a sputtering method.
  19.  前記スパッタ法では、
     前記基板を配置するスパッタ装置内に、前記基板と対向配置した前記上部電極形成用のターゲット部材の前記基板と対向する面の裏面に、マグネット部材を配置し、
     前記マグネット部材を前記第7工程の際に前記ターゲット部材に対して移動走査しつつスパッタを行う
     請求項18に記載の有機EL表示パネルの製造方法。
    In the sputtering method,
    In the sputtering apparatus for arranging the substrate, a magnet member is arranged on the back surface of the upper electrode forming target member arranged to face the substrate, the surface facing the substrate,
    The method of manufacturing an organic EL display panel according to claim 18, wherein sputtering is performed while moving and scanning the magnet member with respect to the target member during the seventh step.
  20.  前記補助電極を、少なくともニッケル、あるいはコバルトのいずれか一方を含むアルミニウム合金で形成し、
     前記第3工程と前記第4工程との間に、前記補助電極を加熱することにより前記補助電極の側面に、ニッケル、あるいはコバルトを含む析出物を形成させる工程を設ける
     請求項17記載の有機EL表示パネルの製造方法。
    The auxiliary electrode is formed of an aluminum alloy containing at least one of nickel and cobalt,
    The organic EL according to claim 17, wherein a step of forming a precipitate containing nickel or cobalt on a side surface of the auxiliary electrode by heating the auxiliary electrode is provided between the third step and the fourth step. Manufacturing method of display panel.
  21.  前記第3工程と前記第4工程との間に、前記下部電極と前記補助電極との上面に第2電荷中間層を形成する工程を設け、
     前記第5工程において、前記有機発光層は前記第2電荷中間層上に形成され、
     前記第6工程において、前記電荷中間層は、前記有機発光層上、前記隔壁上、及び前記補助電極上に形成され、
     前記補助電極の膜厚は、前記電荷中間層及び前記第2電荷中間層の合計膜厚より厚く形成され、
     前記補助電極の側面には、前記補助電極と前記隔壁との間の領域に存在する前記電荷中間層及び前記第2電荷中間層から露出した領域が形成され、
     前記上部電極は、前記補助電極の側面であって、前記電荷中間層及び前記第2電荷中間層から露出した領域に接触している
     請求項17ないし請求項20のいずれか1項に記載の有機EL表示パネルの製造方法。
    A step of forming a second charge intermediate layer on the upper surface of the lower electrode and the auxiliary electrode between the third step and the fourth step;
    In the fifth step, the organic light emitting layer is formed on the second charge intermediate layer,
    In the sixth step, the charge intermediate layer is formed on the organic light emitting layer, on the partition, and on the auxiliary electrode,
    The auxiliary electrode is formed to be thicker than the total thickness of the charge intermediate layer and the second charge intermediate layer,
    On the side surface of the auxiliary electrode, a region exposed from the charge intermediate layer and the second charge intermediate layer present in a region between the auxiliary electrode and the partition is formed,
    The organic material according to any one of claims 17 to 20, wherein the upper electrode is in contact with a region exposed from the charge intermediate layer and the second charge intermediate layer on a side surface of the auxiliary electrode. Manufacturing method of EL display panel.
PCT/JP2010/004265 2010-06-28 2010-06-28 Organic el display panel, display device provided with organic el display panel, and method for manufacturing organic el display panel WO2012001728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004265 WO2012001728A1 (en) 2010-06-28 2010-06-28 Organic el display panel, display device provided with organic el display panel, and method for manufacturing organic el display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004265 WO2012001728A1 (en) 2010-06-28 2010-06-28 Organic el display panel, display device provided with organic el display panel, and method for manufacturing organic el display panel

Publications (1)

Publication Number Publication Date
WO2012001728A1 true WO2012001728A1 (en) 2012-01-05

Family

ID=45401493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004265 WO2012001728A1 (en) 2010-06-28 2010-06-28 Organic el display panel, display device provided with organic el display panel, and method for manufacturing organic el display panel

Country Status (1)

Country Link
WO (1) WO2012001728A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118462A1 (en) * 2012-02-06 2013-08-15 パナソニック株式会社 El display apparatus and manufacturing method thereof
CN103915479A (en) * 2013-01-03 2014-07-09 三星显示有限公司 Organic light-emitting display device and method of manufacturing the same
DE102016125867A1 (en) * 2016-08-26 2018-03-01 Lg Display Co., Ltd. display device
JP2018077499A (en) * 2013-04-01 2018-05-17 パイオニア株式会社 Optical device
CN109360900A (en) * 2018-09-14 2019-02-19 深圳市华星光电半导体显示技术有限公司 A kind of display panel and preparation method thereof
KR20190141239A (en) * 2017-04-26 2019-12-23 오티아이 루미오닉스 인크. Methods of Patterning Coatings on Surfaces and Devices Including Patterned Coatings
WO2020188768A1 (en) * 2019-03-19 2020-09-24 シャープ株式会社 Display device
CN113013362A (en) * 2021-02-26 2021-06-22 云谷(固安)科技有限公司 Display panel, preparation method of display panel and display device
JP7390739B2 (en) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド Materials for forming nucleation-inhibiting coatings and devices incorporating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214687A (en) * 2007-03-02 2008-09-18 Toppan Printing Co Ltd Film deposition method, sputtering system, sputtering target, and manufacturing method of organic electroluminescent apparatus
JP2009283304A (en) * 2008-05-22 2009-12-03 Seiko Epson Corp Light-emitting device, method of manufacturing the same, and electronic equipment
JP2010135300A (en) * 2008-11-10 2010-06-17 Kobe Steel Ltd Reflecting anodic electrode for organic el display, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214687A (en) * 2007-03-02 2008-09-18 Toppan Printing Co Ltd Film deposition method, sputtering system, sputtering target, and manufacturing method of organic electroluminescent apparatus
JP2009283304A (en) * 2008-05-22 2009-12-03 Seiko Epson Corp Light-emitting device, method of manufacturing the same, and electronic equipment
JP2010135300A (en) * 2008-11-10 2010-06-17 Kobe Steel Ltd Reflecting anodic electrode for organic el display, and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118462A1 (en) * 2012-02-06 2013-08-15 パナソニック株式会社 El display apparatus and manufacturing method thereof
US9111891B2 (en) 2012-02-06 2015-08-18 Joled Inc. EL display apparatus and manufacturing method thereof
CN103915479A (en) * 2013-01-03 2014-07-09 三星显示有限公司 Organic light-emitting display device and method of manufacturing the same
JP2018077499A (en) * 2013-04-01 2018-05-17 パイオニア株式会社 Optical device
DE102016125867A1 (en) * 2016-08-26 2018-03-01 Lg Display Co., Ltd. display device
DE102016125867B4 (en) 2016-08-26 2024-05-08 Lg Display Co., Ltd. Display device
US10403684B2 (en) 2016-08-26 2019-09-03 Lg Display Co., Ltd. Display device
US11437439B2 (en) 2016-08-26 2022-09-06 Lg Display Co., Ltd. Display device
CN110785867A (en) * 2017-04-26 2020-02-11 Oti照明公司 Method for patterning a surface overlayer and device comprising a patterned overlayer
JP2020518107A (en) * 2017-04-26 2020-06-18 オーティーアイ ルミオニクス インコーポレーテッドOti Lumionics Inc. Method for patterning a coating on a surface and device containing the patterned coating
KR20190141239A (en) * 2017-04-26 2019-12-23 오티아이 루미오닉스 인크. Methods of Patterning Coatings on Surfaces and Devices Including Patterned Coatings
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
JP2023053021A (en) * 2017-04-26 2023-04-12 オーティーアイ ルミオニクス インコーポレーテッド Method for patterning coating on surface and device including patterned coating
KR102563713B1 (en) * 2017-04-26 2023-08-07 오티아이 루미오닉스 인크. Methods of patterning the coating of a surface and apparatus comprising the patterned coating
CN109360900A (en) * 2018-09-14 2019-02-19 深圳市华星光电半导体显示技术有限公司 A kind of display panel and preparation method thereof
JP7390739B2 (en) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド Materials for forming nucleation-inhibiting coatings and devices incorporating the same
WO2020188768A1 (en) * 2019-03-19 2020-09-24 シャープ株式会社 Display device
US20220181577A1 (en) * 2019-03-19 2022-06-09 Sharp Kabushiki Kaisha Display device
CN113013362A (en) * 2021-02-26 2021-06-22 云谷(固安)科技有限公司 Display panel, preparation method of display panel and display device

Similar Documents

Publication Publication Date Title
WO2012001728A1 (en) Organic el display panel, display device provided with organic el display panel, and method for manufacturing organic el display panel
JP5357194B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE HAVING LIGHT EMITTING ELEMENT, AND METHOD FOR MANUFACTURING LIGHT EMITTING ELEMENT
US8519425B2 (en) Light-emitting device and manufacturing method thereof
JP5677290B2 (en) Organic EL display panel and manufacturing method thereof
US10720478B2 (en) Organic EL display panel, organic EL display device, and organic EL display panel manufacturing method
JP5543441B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD, ORGANIC DISPLAY PANEL, ORGANIC DISPLAY DEVICE
US10305068B2 (en) Organic EL display element, organic EL display panel, and method of manufacturing organic EL display element
WO2012073269A1 (en) Organic electroluminescence panel, method of manufacturing organic electroluminescence panel, organic light emitting apparatus using organic electroluminescence panel, and organic display apparatus using organic electroluminescence panel
US9620560B2 (en) EL display device and method for manufacturing same
JP6019376B2 (en) Organic EL display panel
JP6831257B2 (en) Organic EL display panel and manufacturing method of organic EL display panel
WO2013118462A1 (en) El display apparatus and manufacturing method thereof
WO2013031076A1 (en) Organic el display panel and method for manufacturing same
JPWO2012017492A1 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
JP5330545B2 (en) Method for manufacturing light emitting device
JP5620495B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE HAVING LIGHT EMITTING ELEMENT, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
JP5745046B2 (en) Light emitting panel, light emitting panel manufacturing method, and film forming system
JP6861495B2 (en) Organic EL device and its manufacturing method
JP2018133242A (en) Organic el display panel, and method for manufacturing the same
JP2018060677A6 (en) Organic EL device and manufacturing method thereof
US9490451B2 (en) Light-emitting element and light-emitting element manufacturing method
WO2013035136A1 (en) Light-emitting device and manufacturing method thereof
JP2018055937A (en) Organic el display element and method of manufacturing organic el display element
JP2011014496A (en) Light-emitting element and display device
JP2018129264A (en) Organic el display panel, and method of manufacturing organic el display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP