WO2012001183A1 - Receptor solar de serpentín para disco stirling y el método de fabricación - Google Patents

Receptor solar de serpentín para disco stirling y el método de fabricación Download PDF

Info

Publication number
WO2012001183A1
WO2012001183A1 PCT/ES2011/000178 ES2011000178W WO2012001183A1 WO 2012001183 A1 WO2012001183 A1 WO 2012001183A1 ES 2011000178 W ES2011000178 W ES 2011000178W WO 2012001183 A1 WO2012001183 A1 WO 2012001183A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
collector
tube
stirling
receiver
Prior art date
Application number
PCT/ES2011/000178
Other languages
English (en)
French (fr)
Inventor
Juan Pablo NUÑEZ BOOTELLO
Cristina Sosa Naranjo
Carlos Miguel Monne Bailo
Francisco Moreno Gomez
Mariano MUÑOZ RODRIGUEZ
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Priority to EP11800211.2A priority Critical patent/EP2578962A1/en
Priority to US13/701,093 priority patent/US20130213388A1/en
Publication of WO2012001183A1 publication Critical patent/WO2012001183A1/es
Priority to ZA2012/08955A priority patent/ZA201208955B/en
Priority to IL223323A priority patent/IL223323A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/742Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/748Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being otherwise bent, e.g. zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/30Heat inputs using solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2255/00Heater tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49355Solar energy device making

Definitions

  • the invention falls within the technology of solar collectors and more specifically focuses on the design of solar receivers for Stirling disk.
  • Stirling disk systems are electricity generating units that use solar radiation as a source of energy.
  • the capacity of a single unit is between 3 and 50 kWe.
  • the operating mode of a Stirling disk system is as follows: the concentrator reflects solar radiation towards the receiver that is located at the focal point of the concentrator. Solar radiation is absorbed into the receiver and it heats the gas (helium or hydrogen) of the Stirling engine at temperatures around 650 ° C. This heat is converted into mechanical energy in the Stirling engine. An electric generator converts this mechanical energy into electricity. To ensure that the reflected radiation affects the focal point throughout the day, a solar tracking system moves the concentrator continuously to follow the sun's path.
  • the technology of solar receivers is developed based on the type of process in which it will be used, that is, the type of plant and the cycle used.
  • the invention presented refers to the solar reception plant with disk and the cycle is that of Stirling.
  • the technologies used for solar tower receiver plants are an application reference.
  • Cavity receptor systems External receivers have absorption surfaces in direct view with the concentrators and depend on the direct absorption of the radiation.
  • the cavity receptors on the other hand, have an opening through which the concentrated radiation passes until it reaches the surface of the receiver. The cavity ensures that most of the incoming radiation is absorbed by the internal surface of the receiver.
  • the most used receivers for Stirling disk systems are cavity receptors.
  • the receiver is located behind the opening to reduce the amount of heat lost and to decrease the intensity of the concentrated flow on its surface.
  • the concentrated radiation that enters through the opening of the receiver diffuses into the cavity. Most of the energy is absorbed directly by the receiver, and virtually all of the rest is reflected or re-irradiated within the cavity to be subsequently absorbed.
  • a cavity receiver two methods for transferring absorbed solar radiation to the working fluid of the Stirling engine have been identified.
  • the first method consists in using a receiver of directly illuminated tubes, where small tubes through which the working fluid of the motor circulates are located directly in the region where the concentrated solar flow affects.
  • the tubes form the surface of the receiver. In this way, the working gas is heated as it passes through the tubes heated by solar radiation.
  • the second method that of reflux, uses a liquid metal as an intermediate heat transfer fluid.
  • the liquid metal vaporizes on the rear surface of the receiver and condenses in the tubes through which the working fluid of the motor circulates. That is, it absorbs heat from the material that forms the receiver (which is hot from exposure to solar radiation) and then transfers it to the tubes through which the working gas of the engine circulates.
  • This second type of receiver is called reflux because the vapor condenses and returns to be evaporated again.
  • HTC Solar Solar heater head for generation of electric current from solar energy.
  • Absorber with highly conductive and blackened (oxidized) material to homogenize the heat concentration.
  • copper material which is welded to the exchanger tubes with high performance stainless steel (such as a tube jacket).
  • Hybrid receiver system with sodium heat pipe Structure of the nickel powder element. Describes integration with burner system (hybrid).
  • Combustion system for a hybrid solar receiver comprising a premixer that combines air and fuel to form the mixture to burn. There is an associated heat exchanger and in contact with the combustion chamber. This heat exchanger provides heat for the hybrid receiver when the sun's heat cannot be used as an energy source.
  • US6818818 2004 Plano, TX Concentrating solar energy receiver It describes a system composed of a parabolic concentrator of high reflectivity to reflect the sun's rays on its concave side and a conversion module to which the concentrated solar radiation arrives.
  • this conversion module there are two different receivers; a photovoltaic receiver and a receiving surface coupled to a thermal engine to produce electricity.
  • the solar receiver includes a heat pipe that has a fluid inside.
  • the heat pipe has two condenser portions arranged at two ends.
  • an evaporator is included between both ends.
  • An air manifold is coupled to one of the ends. This manifold has an air inlet and outlet.
  • a liquid collector is coupled to the other end, with its respective inlet and outlet.
  • the invention is a receiver with an internal cavity that reflects radiation.
  • the receiver is contained in a reducing or inert atmosphere to maintain the properties of the reflective surfaces of the cavity. Heat absorption occurs in tubes arranged symmetrically with respect to the main axis of the receiver. In addition there is a quartz window at the entrance of the device to reduce convection losses
  • the new design thus increases the efficiency of the disk and reduces manufacturing and operation and maintenance costs. It also offers the possibility of:
  • the invention consists of a new stirling disk receiver that meets the previously defined requirements.
  • the designed receivers comprise the following components: tubes, manifolds, tanks and domes.
  • Tubes form the surface where the concentrated sunlight beam strikes. They are arranged very close to each other so that the surface has few holes and the incident radiation can be used to the maximum.
  • collectors are the areas where the pipes are welded, so that the flow that flows through the pipes communicates with the tanks.
  • Deposits The deposits are the interior areas of the collectors, from here the working gas is distributed to each of the tubes.
  • Domes There are two domes: the one in charge of housing inside the regenerator (or heat exchanger capable of absorbing heat from the working gas, storing it and transferring it to close the cycle being, of the intercarriators that contains the engine, which greater volume of thermal energy handles) and the expansion dome (or dome), which is the area where the working gas is at a higher temperature.
  • the receiver design claimed in this invention called a coil receiver, is composed of a series of tubes that run perpendicularly from one collector and arrive perpendicularly to the other.
  • the surfaces where the tubes are welded to the collectors are parallel to each other and perpendicular to the entrance of the tubes.
  • Each tube has two 180 ° curves in its path so that each tube travels almost three times the distance between the two collectors.
  • each tube leaves the collector of perpendicular origin and in a straight line towards the destination manifold and before reaching the destination manifold it rotates 180 ° down slightly in height and returns in a straight line, by a horizontal plane parallel and inferior to that of the gone, towards the origin collector and before reaching the origin collector, rotate again 180 °, going down a little more in height, heading straight again by a parallel horizontal plane and inferior towards the destination collector, where it enters perpendicular and connects by welding.
  • the welding point of the tube to the source manifold is higher in height than the welding point of the tube to the destination manifold.
  • each tube consists of two semicircles (the 180 ° curves) and three straight parts that are: the central part, between curvature and curvature, and the two straight lines of the ends of the tube, which are the ones that connect to the collectors
  • the three straight parts are parallel to each other according to horizontal planes, since they are all at different heights, while the straight lines of the ends are in the same vertical plane, parallel to the vertical plane that contains the center line.
  • each tube Seen from the face of incidence of solar radiation, each tube is arranged in such a way that the straight parts of the tube form a surface without gaps between tubes and without shading of some parts on others.
  • This design of the receiver in the form of a coil allows having the tube developed in two different planes, the dilatations (consequence of high temperatures) are very little restricted, which will initially reduce the appearance of tensions in the tube. Therefore, a priori, this design will present few breakage problems due to excessive stresses in the material.
  • the arrangement in different planes of the tubes will also allow a better cooling of the receiver by means of a fan when the temperature of the material is excessively high. As there is greater gap between tube and tube, the heat transfer by convection between the fan air and the outer surface of the tubes becomes more effective.
  • the surface seen by the concentrated solar radiation beam is completely compact, that is, there are no gaps between the tubes if viewed from the predominant direction in which the radiation strikes.
  • a drawback that can be found in this design is that by increasing the length of the tubes and decreasing the overall passage area (sum of the passage areas of all the tubes) the associated head loss increases. This could result in a loss of unquantified engine power. But the loss of power discussed above is compensated by the increase in gas temperature. Having tubes of greater length, the temperature reached by the gas after passing through the receiver is higher, for the same surface temperature.
  • Another advantage is that the manufacture of the tubes does not involve technical complications.
  • the simplest procedure would be to cut a straight tube to the appropriate length and then make the corresponding curvatures and angles to give it the desired final shape.
  • the manufacturing process of the receiver it comprises the following stages:
  • the receiver model presented as well as its manufacturing procedure comply with the design restrictions and improve the overall thermo-mechanical behavior of the receivers known in the state of the art.
  • FIG 1 Solar receiver of the prior art. DE19527272 patent.
  • Figure 2 Plan, elevation and profile of the receiver of the invention
  • FIG. 3 Exploded view of the receiver of the invention
  • Figure 4 Perspective view of a tube
  • Figure 1 shows the design of a state-of-the-art receiver, corresponding to patent DE19527272, in which it can be seen that it is formed by the tubes (1), the collectors (2), the expansion dome or of the dome (3) and the dome that houses the regenerator (4).
  • the tubes (1) are identical to each other and have a loop-shaped geometry (note: the references that appear here do not correspond to those of the original document, have been modified to achieve greater consistency with the description of the invention claimed in this document).
  • Figure 2 shows the different views of the solar serpentine model receiver and in figure 3 the exploded view.
  • the receiver is formed by a series of tubes (1), which are held at both ends by two collectors and resting on the dome regeneration (4) and expansion (3).
  • the receiver comprises 28 tubes (1) of approximately 800 mm in length, identical to each other and leaving perpendicularly from one collector (2) to reach perpendicularly to the other (2).
  • the surfaces or plates (5) where the collectors (2) are welded are parallel to each other and perpendicular to the entrance of the tubes (1).
  • Each tube (1) leaves the source manifold (2) in a straight line (12) towards the destination manifold (2) and before reaching the destination manifold it rotates along a 180 ° curve (10) down slightly in height and returns in a straight line (11), along a parallel horizontal plane and inferior to that of the first leg (12), towards the original collector (2) and before reaching the original collector it rotates again according to a 180 ° curve (10 ), lowering a little more in height, heading straight (12) along a parallel horizontal plane and lower, again towards the destination manifold (2), where it enters perpendicular and is connected by welding.
  • each tube has two curves (10) of 180 ° in its path so that each tube (1) travels almost three times the distance between the two collectors (2).
  • each tube consists of three straight parts (12, 11, 12) and two curved parts (10).
  • the two curves (10) are 11.1125 mm radius semicircles. and the straight parts are: the center (11) (between curvature (10) and curvature (10)) of 220 mm and the ends (12) (between curvature (10) and exit or entry of a collector (2)) of 255 mm (here are included the 3 mm of tube (1) that are inserted into the manifold (2) for welding).
  • the central part (11), between curvature (10) and curvature (10), and the two straight lines of the ends (12) of the tube, are parallel to each other according to horizontal planes, since all of them are at a different height, while the straight lines of the ends (12) are in the same vertical plane, parallel to the vertical plane that contains the center line (11).
  • each tube (1) Seen from the face of incidence of solar radiation, each tube (1) is arranged in such a way that the straight parts (11, 12) of the tube form a surface without gaps between tubes and without shading of some parts on others.
  • Figure 6 shows the manifold (2).
  • a row (20) all tubes (1) that have that collector as origin are welded and in the parallel row (21) all tubes that have that collector as destination are welded. This arrangement prevents the tubes of one (20) and another row (21) from coming into contact.
  • the distance between centers of tubes (1) of the same vertical row is equal to six times the diameter of the tube.
  • This system is specially designed for application in Stirling disk receivers but its extension to other fields of the industry that require similar characteristics is not ruled out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Receptor solar de serpentín para disco Stirling cuyos componentes principales son tubos (donde incide la luz solar), colectores, depósitos y cúpulas (hay de dos tipos, la encargada de alojar en su interior el regenerador y la cúpula de expansión que es la zona donde el gas de trabajo se encuentra a una mayor temperatura) que comprende una serie de tubos (1) que salen perpendicularmente de un colector (2) y llegan perpendicularmente al otro (2) y donde cada tubo consta de dos partes curvas (10) en forma de semicircunferencias y tres partes rectas (11) paralelas entre si: una parte recta central (entre curvatura y curvatura) y dos partes rectas en los extremos (entre curvatura y salida de un colector (2)), encontrándose las dos partes rectas de los extremos en un mismo plano, mientras que la parte recta del centro se encuentra en otro plano distinto.

Description

RECEPTOR SOLAR DE SERPENTÍN PARA DISCO STIRLING Y EL MÉTODO DE
FABRICACIÓN
Sector técnico de la invención
La invención se encuadra dentro la tecnología de los colectores solares y más concretamente se centra en el diseño de receptores solares para disco Stirling.
Antecedentes de la invención
Los sistemas disco Stirling son unidades de generación de electricidad que usan la radiación solar como fuente de energía. La capacidad de una sola unidad está entre 3 y 50 kWe.
Los sistemas disco Stirling transforman con alta eficiencia la radiación solar concentrada en energía eléctrica. Los componentes esenciales del sistema son:
• Concentrador solar parabólico.
• Sistema de seguimiento.
· Motor Stirling con generador eléctrico.
• Intercambiador de calor solar (receptor solar).
El modo de funcionamiento de un sistema de disco Stirling es el siguiente: el concentrador refleja la radiación solar hacia el receptor que está situado en el punto focal del concentrador. La radiación solar se absorbe en el receptor y este calienta el gas (helio o hidrógeno) del motor Stirling a temperaturas que rondan los 650°C. Este calor se convierte en energía mecánica en el motor Stirling. Un generador eléctrico convierte esta energía mecánica en electricidad. Para conseguir que la radiación reflejada incida en el punto focal durante todo el día, un sistema de seguimiento solar mueve el concentrador continuamente para seguir la trayectoria del sol.
La tecnología de los receptores solares se desarrolla en función del tipo de proceso en el que se vaya a utilizar, es decir, el tipo de planta y el ciclo utilizado. La invención que se presenta se refiere a la planta de recepción solar con disco y el ciclo es el de Stirling. Por supuesto, es interesante conocer los antecedentes y desarrollos previos utilizados en aplicaciones solares. Las tecnologías utilizadas para plantas solares de receptores de torre suponen un referente de aplicación.
En particular, para el disco parabólico Stirling se utilizan dos tipologías de sistemas receptores:
• Sistemas receptores externos.
Sistemas receptores de cavidad. Los receptores externos tienen superficies de absorción en vista directa con los concentradores y dependen de la absorción directa de la radiación. Los receptores de cavidad tienen, en cambio, una apertura a través de la cual pasa la radiación concentrada hasta alcanzar la superficie del receptor. La cavidad asegura que la mayor parte de la radiación que entra sea absorbida por la superficie interna del receptor.
Los receptores más usados para los sistemas disco Stirling son los receptores de cavidad. El receptor se sitúa detrás de la apertura para reducir la cantidad de calor perdido y para disminuir la intensidad del flujo concentrado en su superficie. La radiación concentrada que entra a través de la apertura del receptor se difunde dentro de la cavidad. La mayor parte de la energía es absorbida directamente por el receptor, y prácticamente la totalidad de la restante es reflejada o re-irradiada dentro de la cavidad para ser posteriormente absorbida. En un receptor de cavidad, se han identificado dos métodos para transferir la radiación solar absorbida al fluido de trabajo del motor Stirling.
El primer método consiste en utilizar un receptor de tubos directamente iluminados, donde pequeños tubos a través de los cuales circula el fluido de trabajo del motor son situados directamente en la región donde incide el flujo solar concentrado. Los tubos forman la superficie del receptor. De este modo el gas de trabajo se calienta a su paso por el interior de los tubos calentados por la radiación solar.
El segundo método, el de reflujo, usa un metal líquido como fluido intermedio de transferencia de calor. El metal líquido se vaporiza en la superficie posterior del receptor y se condensa en los tubos por los que circula el fluido de trabajo del motor. Es decir, absorbe el calor del material que forma el receptor (que está caliente por la exposición a la radiación solar) y después lo cede a los tubos por los que circula el gas de trabajo del motor. Este segundo tipo de receptor se llama de reflujo porque el vapor se condensa y vuelve para ser evaporado de nuevo.
Un factor importante del diseño del receptor es la exposición a condiciones severas de funcionamiento unido a condiciones cíclicas. La alta temperatura es el factor más importante el cual, unido al funcionamiento en ciclos, da lugar a la fatiga térmica de los componentes. La fatiga térmica está causada por los ciclos de temperatura, desde la temperatura ambiente a la de operación, tanto en los arranques y paradas como durante los momentos de nubosidad. Este tipo de ciclo puede causar fallos prematuros del receptor. Dentro del sistema receptor-cavidad, es especialmente sensible el componente receptor. El diseño de receptor de tubos, que incorpora paredes finas y opera a temperaturas uniformes durante los transitorios, suele tener menos problemas con la fatiga térmica. La fluencia a largo plazo de los materiales del receptor y la oxidación son consideraciones importantes para elegir los materiales. Se suelen utilizar superaleaciones de níquel y cromo (Inconel ®), aceros inoxidables, aleaciones de níquel y titanio, níquel y cobalto, etcétera.
Existen en el estado de la técnica numerosos documentos que desarrollan distintos receptores o aspectos de los mismos. A continuación se destacan algunos de ellos:
- DE4433203 1996 HTC Solar Solar heater head for generation of electric current from solar energy (Intercambiador de calor solar para generación de corriente eléctrica). Absorbedor con material altamente conductivo y ennegrecido (oxidado) para homogeneizar la concentración de calor. Material preferiblemente de cobre, que es soldado a los tubos del intercambiador con acero inoxidable de altas prestaciones (como una camisa del tubo).
- US2002059798 2002 Midwest Research Institute Dish/stirling hybrid-receiver (Receptor híbrido para disco Stirling). Sistema híbrido de receptor con "heat pipe" de sodio. Estructura del elemento de polvo de níquel. Describe integración con sistema de quemador (híbrido).
- US6735946 2004 Boeing Direct illumination free pistón stirling engine solar cavity (Cavidad de motor Stirling con pistón directamente iluminado). Pistón directamente iluminado. Sin intercambiador de tubos. Disposición de pequeños pistones de forma concéntrica al haz solar. El receptor es un elemento metálico de material altamente conductor, como cobre, níquel o grafito. Alternativa al diseño es utilizar "heat pipes".
- US6739136 2003 Boulder, CO Arvada, CO Combustión system for hybrid solar fossil fuel receiver. Sistema de combustión para un receptor solar híbrido que comprende un premezclador que combina aire y combustible para formar la mezcla a quemar. Hay un intercambiador de calor asociado y en contacto con la cámara de combustión. Este intercambiador de calor proporciona el calor para el receptor híbrido cuando no se puede utilizar el calor del sol como fuente de energía.
US6818818 2004 Plano, TX Concentrating solar energy receiver. Describe un sistema compuesto por un concentrador parabólico de alta reflectividad para reflejar los rayos del sol en su lado cóncavo y un módulo de conversión al cual llega la radiación solar concentrada. En este módulo de conversión hay dos receptores distintos; un receptor fotovoltaico y una superficie de recepción acoplada a un motor térmico para producir electricidad.
- EP0996821 2000 STM Corporation Heat engine heater assembly. Se describe un equipo diseñado para utilizar tanto la radiación solar como el calor producido por la combustión de gas natural, como fuente de energía para un motor térmico. Una carcasa que forma el receptor permite la entrada de radiación solar hasta llegar al absorbedor. Series de tubos exteriores e interiores a la cámara del receptor absorben la radiación solar y transmiten calor al fluido que circula por su interior. Un quemador dentro de la cámara produce gases de combustión que también calientan estos tubos. US4665700 1987 STM United Stirling AB Hot gas engine heater head. El objetivo del invento es proporcionar una cabeza calentadora en la cual los regeneradores estén conectados a los cilindros por tubos que rodean a esos mismos cilindros.
US4602614 1986 United Stirling, Inc. Hybrid solar/combustion powered receiver. Es un receptor mejorado que incluye un intercambiador de calor dentro de la cavidad con los tubos espaciados tangencialmente. Hay múltiples quemadores para proporcionar un camino de ios gases de combustión y una ventana para sellar la apertura y no existan fugas de gas fuera del receptor.
US6668555 2003 Boeing Company Solar receiver-based power generation system. Este invento proporciona un diseño de receptor solar mejorado que reduce el coste de dichos mecanismos. El receptor solar incluye un heat pipe que tiene un fluido en su interior. El heat pipe tiene dos porciones de condensador dispuestas en dos extremos. Además se incluye un evaporador entre ambos extremos. Un colector de aire se acopla a uno de los extremos. Este colector tiene una entrada y una salida de aire. Un colector de líquido se acopla al otro extremo, con su respectiva entrada y salida.
US4911144 1990 Stirling Thermal Motor, Inc Spherical solar energy collector. Invento relativo a un colector de energía solar y en particular a uno que comprende un evaporador de un sistema de transferencia de calor de tipo heat pipe
US4475538 1984 United Stirling AB Window for solar receiver for a solar-powered hot gas engine. Receptor solar que incluye una ventana para la entrada de la radiación solar como una mejora.
CA2490207A1 2004 Shecs Labs- Solar Hydrogen Solar energy collector. El invento es un receptor con una cavidad interna que refleja la radiación. El receptor está contenido en una atmósfera reductora o inerte para mantener las propiedades de las superficies reflexivas de la cavidad. La absorción de calor se produce en unos tubos dispuestos simétricamente respecto al eje principal del receptor. Además hay una ventana de cuarzo en la entrada del dispositivo para disminuir las pérdidas por convección
DE19527272: Solarer Erhitzer für Stirling-Motoren. Calentador solar (1) para motor Stirling con un campo de absorción (2) de tubos paralelos (8), que se conectan a sendos colectores (4, 5) a través de los cuales circula el gas de trabajo. Siendo los tubos (8) idénticos entre ellos y de geometría en forma de lazo. A la vista del estado de la técnica existente, la presente invención tiene como objetivo proporcionar un receptor solar que, superando las deficiencias encontradas en los anteriores diseños:
- aumente la resistencia a fatiga térmica,
- minimice las sombras entre tubos,
- que sea de tubos directamente iluminados, para simplificar el sistema evitando la inclusión de un fluido caloportador intermedio y de un intercambiador de calor adicional así como para flexibilizar el diseño óptico del concentrador y que el motor pueda funcionar en otras posiciones que no sea de espaldas al sol,
- no deje huecos entre los tubos al deformarse por dilataciones, escapándose la radiación solar concentrada por dichos huecos,
- fácilmente soldable,
- que reduzca las pérdidas de carga.
El nuevo diseño permite pues aumentar la eficiencia del disco y reducir los costes de fabricación y de operación y mantenimiento. Además ofrece la posibilidad de:
- refrigerar fácilmente ante sobretemperaturas (ventilador),
- independizar el receptor de la cavidad y de la carcasa del aislante que lo pueda cubrir, para hacerlo más versátil y facilitar el mantenimiento,
- tener la posibilidad de integrar un quemador para hibridación, es decir, añadir un quemador de gas al motor Stirling para lograr una planta híbrida donde el quemador debe generar una llama que caliente por radiación y convección los tubos del receptor; teniendo en cuenta el diseño del receptor de serpentín, la llama quedaría alojada en el hueco que definen los tubos y la transmisión de calor queda optimizada,
- simplificar los procesos de fabricación y facilitar la construcción.
Descripción de la invención
La invención consiste en un nuevo receptor para disco stirling que cumpla con los requisitos anteriormente definidos.
Los receptores diseñados comprenden los siguientes componentes: tubos, colectores, depósitos y cúpulas.
Tubos: Los tubos forman la superficie donde incide el haz de luz solar concentrada. Se disponen muy próximos unos a otros para que la superficie presente pocos huecos y se pueda aprovechar al máximo la radiación incidente.
Colectores: Los colectores son las zonas donde se sueldan los tubos, de forma que el flujo que discurre por los tubos se comunica con los depósitos. Depósitos: Los depósitos son las zonas interiores de los colectores, desde aquí se distribuye el gas de trabajo a cada uno de los tubos.
Cúpulas: Existen dos cúpulas: la encargada de alojar en su interior el regenerador (o intercambiador de calor capaz de absorber calor del gas de trabajo, almacenarlo y transferirlo al mismo para cerrar el ciclo siendo, de los intercarmbiadores que contiene el motor, el que mayor volumen de energía térmica maneja) y la cúpula de expansión (o del domo), que es la zona donde el gas de trabajo se encuentra a una mayor temperatura. El diseño de receptor reivindicado en esta invención, denominado receptor de serpentín, está compuesto por una serie de tubos que salen perpendicularmente de un colector y llegan perpendicularmente al otro.
Las superficies donde van soldados los tubos a los colectores son paralelas entre sí y perpendiculares a la entrada de los tubos.
Cada tubo presenta dos curvas de 180° en su recorrido de forma que cada tubo recorre casi tres veces la distancia entre los dos colectores.
Concretamente, cada tubo sale del colector de origen perpendicular y en línea recta hacia el colector de destino y antes de llegar al colector de destino gira 180° bajando ligeramente en altura y vuelve en línea recta, por un plano horizontal paralelo e inferior al de la ida, hacía el colector de origen y antes de llegar al colector de origen vuelve a girar 180°, bajando un poco más en altura, dirigiéndose en línea recta de nuevo por un plano horizontal paralelo e inferior hacia el colector de destino, donde entra perpendicular y se conecta por soldadura. De esta forma, el punto de soldadura del tubo al colector de origen se encuentra más elevado en altura que el punto de soldadura del tubo al colector de destino.
Por tanto, cada tubo consta de dos semicircunferencias (las curvas de 180°) y tres partes rectas que son: la parte central, entre curvatura y curvatura, y las dos rectas de los extremos del tubo, que son las que se conectan a los colectores. Las tres partes rectas son paralelas entre sí según planos horizontales, pues se encuentran a distinta altura todas ellas, mientras que las rectas de los extremos se encuentran en el mismo plano vertical, paralelo al plano vertical que contiene a la recta del centro.
Visto desde la cara de incidencia de la radiación solar, cada tubo esta dispuesto de tal forma que las partes rectas del tubo forman una superficie sin huecos entre tubos y sin sombreamíento de unas partes sobre otras.
Hay dos filas verticales de agujeros en cada colector para el soldado de todos los tubos. En una hilera se sueldan todos los tubos que tienen ese colector como origen y en la hilera paralela se sueldan todos los tubos que tienen ese colector como destino, pues se va intercalando. Esta disposición evita que los tubos de una y otra hilera lleguen a entrar en contacto.
Este diseño del receptor en forma de serpentín permite que al tener el tubo desarrollado en dos planos distintos, las dilataciones (consecuencia de las altas temperaturas) están muy poco restringidas, lo que inicialmente disminuirá la aparición de tensiones en el tubo. Por lo tanto, a priori, este diseño presentará pocos problemas de roturas debidas a tensiones excesivas en el material.
La disposición en distintos planos de los tubos permitirá además una mejor refrigeración del receptor por medio de un ventilador cuando la temperatura del material sea excesivamente alta. Al existir mayor hueco entre tubo y tubo la transferencia de calor por convección entre el aire del ventilador y la superficie exterior de los tubos sea más efectiva.
El hecho de que no exista ninguna zona de los tubos que esté sombreada por otros tubos permite que la distribución de temperaturas a lo largo de los tubos sea más uniforme.
La superficie vista por el haz de radiación solar concentrada es totalmente compacta, es decir, no hay huecos entre los tubos si se mira desde la dirección predominante en la que incide la radiación.
Un inconveniente que se puede encontrar a este diseño es que al aumentar la longitud de los tubos y disminuir el área de paso global (suma de las áreas de paso de todos los tubos) la pérdida de carga asociada aumenta. Esto podría derivar en una pérdida de potencia del motor no cuantificada. Pero la pérdida de potencia comentada anteriormente se ve compensada por el aumento de la temperatura del gas. Al tener unos tubos de longitud mayor, la temperatura que alcanza el gas tras pasar por el receptor es mayor, para la misma temperatura superficial.
Otra ventaja más es que la fabricación de los tubos no entraña complicaciones técnicas. El procedimiento más sencillo sería cortar un tubo recto a la longitud adecuada y después realizar las curvaturas y ángulos correspondientes para darle la forma final deseada.
Tampoco la soldadura de los tubos a los colectores plantea problemas ya que la distancia entre los agujeros de los colectores es suficiente para maniobrar en los procesos de soldadura sin inconvenientes.
Por todo ello y a la vista de las simulaciones realizadas, se puede concluir que el comportamiento general de este modelo de receptor es mucho mejor que el de los conocidos del estado de la técnica, pues distribuye de modo eficiente las tensiones y deformaciones provocadas por la temperatura teniendo los tubos una flexibilidad mayor que lo conocido hasta el momento. Otro aspecto que cabe destacar es que la contribución de la presión del gas a las tensiones que debe de soportar el receptor es despreciable respecto a las tensiones causadas por las altas temperaturas. Se puede decir que los modelos diseñados se comportan mejor que los antiguos frente a las cargas térmicas. Sin embargo, existen puntos críticos a la fatiga en la zona de conexión de los tubos al colector debido a que se encuentra una zona flexible (el tubo) con una zona mucho más rígida (el colector). Esto presenta un problema, ya que cuando el tubo se dilata está restringido por la rigidez del colector y se crea un punto donde puede aparecer la fractura debido a la fatiga.
Para solucionar este problema localizado hay varias soluciones:
- Reducir el espesor de la zona de conexión de los tubos para aumentar la flexibilidad del colector en esa zona.
- Colocar un casquillo en el punto crítico que sirva como transición entre las dos zonas de rigideces distintas.
A la vista de los resultados obtenidos para cada una de las tres soluciones adoptadas para mejorar la vida a fatiga se concluye que la mejor solución a priori es la de la colocación del casquillo ya que el número de ciclos que resiste se multiplica por cinco con respecto al caso sin casquillo.
En cuanto al proceso de fabricación del receptor, comprende las siguientes etapas:
- Recepción de tubos
- Doblado de tubos
- Ensamblaje de tubos a colector con soldadura por horno
- Soldadura TIG / plasma / láser para soldar los depósitos (realizados como unión de chapas) a los colectores
- Soldadura TIG / plasma / láser para soldar las cúpulas (realizadas a partir de un bloque de material) a los depósitos.
Así pues, el modelo de receptor presentado así como su procedimiento de fabricación, cumplen con las restricciones de diseño y mejoran el comportamiento termo-mecánico global de los receptores conocidos del estado de la técnica.
Descripción de los dibujos
Para completar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de la invención, se acompaña un juego de dibujos donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 : Receptor solar del estado de la técnica. Patente DE19527272.
Figura 2: Planta, alzado y perfil del receptor de la invención
Figura 3: Despiece del receptor de la invención Figura 4: Vista en perspectiva de un tubo
Figura 5: Vista lateral de un tubo
Figura 6: Colector
Las referencias utilizadas en las figuras corresponden a los siguientes elementos:
1. Tubos
2. Colectores
3. Cúpula de expansión o del domo
4. Cúpula que alberga el regenerador
5. Placa para soldar el colector
10. Partes curvas de cada tubo
11. Parte recta central de cada tubo
12. Partes rectas de los extremos de cada tubo
20. Hilera de taladros del colector como origen
21. Hilera de taladros del colector como destino
22. Taladros del colector
Realización preferente de la invención
Para lograr una mayor comprensión de la invención a continuación se van a describir los nuevos diseños de receptor para disco Stirling, según una realización preferente.
En la figura 1 se muestra el diseño de un receptor del estado de la técnica, correspondiente a la patente DE19527272, en el que se puede ver que está formado por los tubos (1), los colectores (2), la cúpula de expansión o del domo (3) y la cúpula que alberga el regenerador (4). En este diseño los tubos (1) son idénticos entre ellos y de geometría en forma de lazo (nota: las referencias que aquí aparecen no se corresponden con las del documento original, se han modificado para lograr una mayor coherencia con la descripción de la invención reivindicada en este documento).
El diseño preferente del receptor reivindicado y representado en las figuras 2-6, cumple con las siguientes características:
- Materiales comerciales utilizados: Inconel 625 o Multimet.
- Tubos a utilizar: diámetro exterior 3 mm. y espesor 0.5 mm.
- Colectores en chapa de 3 mm.
En la figura 2 se muestran las diferentes vistas del receptor solar modelo serpentín y en la figura 3 el despiece. Se observa, que de la misma forma que en la patente del estado de la técnica de la figura 1 , el receptor está formado por una serie de tubos (1), que se sujetan por ambos extremos a sendos colectores y que descansan sobre la cúpula de regeneración (4) y la de expansión (3). La mayor diferencia con el estado de la técnica y donde se encuentra el gran avance con respecto a lo existente, reside en el diseño de los tubos (1). En la realización preferente, el receptor comprende 28 tubos (1) de 800 mm de longitud aproximadamente, idénticos entre ellos y que salen perpendicularmente de un colector (2) para llegar perpendicularmente al otro (2).
Las superficies o placas (5) donde van soldados los colectores (2) son paralelas entre si y perpendiculares a la entrada de los tubos (1).
En la vista en planta de la invención (figura 2 abajo) como en las figuras 4 y 5 se muestra la geometría de los tubos.
Cada tubo (1) sale del colector (2) de origen en línea recta (12) hacia el colector (2) de destino y antes de llegar al colector de destino gira según una curva de 180° (10) bajando ligeramente en altura y vuelve en línea recta (11), por un plano horizontal paralelo e inferior al de la ida (12), hacia el colector (2) de origen y antes de llegar al colector de origen vuelve a girar según una curva de 180° (10), bajando un poco más en altura, dirigiéndose en línea recta (12) por un plano horizontal paralelo e inferior, de nuevo hacia el colector (2) de destino, donde entra perpendicular y se conecta por soldadura.
Así pues, cada tubo presenta dos curvas (10) de 180° en su recorrido de forma que cada tubo (1) recorre casi tres veces la distancia entre los dos colectores (2).
Con esta distribución se puede decir que cada tubo consta de tres partes rectas (12, 11, 12) y dos partes curvas (10).
En esta realización preferente, las dos curvas (10) son semicircunferencias de radio 11.1125 mm. y las partes rectas son: el centro (11) (entre curvatura (10) y curvatura (10)) de 220 mm y los extremos (12) (entre curvatura (10) y salida o entrada de un colector (2)) de 255 mm (aquí se incluyen los 3 mm de tubo (1) que se introducen en el colector (2) para soldar).
La parte central (11), entre curvatura (10) y curvatura (10), y las dos rectas de los extremos (12) del tubo, son paralelas entre sí según planos horizontales, pues se encuentran a distinta altura todas ellas, mientras que las rectas de los extremos (12) se encuentran en el mismo plano vertical, paralelo al plano vertical que contiene a la recta del centro (11).
Visto desde la cara de incidencia de la radiación solar, cada tubo (1) está dispuesto de tal forma que las partes rectas (11 , 12) del tubo forman una superficie sin huecos entre tubos y sin sombreamiento de unas partes sobre otras.
En la figura 6 se muestra el colector (2). Hay dos hileras (20, 21) verticales de taladros (22) (cada una de 14 taladros) en cada colector (2), donde se sueldan todos los tubos (1). En una hilera (20) se sueldan todos los tubos (1) que tienen ese colector como origen y en la hilera paralela (21) se sueldan todos los tubos que tienen ese colector como destino. Esta disposición evita que los tubos de una (20) y otra hilera (21) lleguen a entrar en contacto. La distancia entre centros de tubos (1) de la misma hilera vertical es igual a seis veces el diámetro del tubo.
Este sistema está especialmente diseñado para su aplicación en receptores de disco Stirling pero no se descarta su extensión a otros campos de la industria que requieran características similares.

Claims

REIVINDICACIONES
1. Receptor solar de serpentín para disco Stirling cuyos componentes principales son tubos (los cuales forman la superficie donde incide el haz de luz solar concentrada), colectores (se sueldan a los tubos y comunican el fluido que discurre por los tubos con los depósitos), depósitos (son las zonas interiores de los colectores desde donde se distribuye el gas de trabajo a cada uno de los tubos) y cúpulas (hay de dos tipos, la encargada de alojar en su interior el regenerador y la cúpula de expansión que es la zona donde el gas de trabajo se encuentra a una mayor temperatura) caracterizado porque comprende una serie de tubos (1) donde cada tubo (1) tiene un diseño tal que sale del colector (2) de origen en línea recta (12) hacia el colector (2) de destino y antes de llegar al colector de destino gira según una curva de 180° (10) bajando ligeramente en altura y vuelve en línea recta (11), por un plano horizontal paralelo e inferior al de la ida (12), hacia el colector (2) de origen y antes de llegar al colector de origen vuelve a girar según una curva de 180° (10), bajando un poco más en altura, dirigiéndose en línea recta (12) por un plano horizontal paralelo e inferior, de nuevo hacia el colector (2) de destino, donde entra perpendicular y se conecta por soldadura.
2. Receptor solar de serpentín para disco Stirling según reivindicación 1 caracterizado porque las superficies o placas (5) donde van soldados los colectores (2) son paralelas entre si y perpendiculares a la entrada de los tubos (1).
3. Receptor solar de serpentín para disco Stirling según reivindicación 1 caracterizado porque cada tubo (1) está dispuesto de tal forma que las partes rectas (11) del tubo forman una superficie sin huecos entre tubos y sin sombreamiento de unas partes sobre otras.
4. Receptor solar de serpentín para disco Stirling según reivindicación 3 caracterizado porque está formado por 28 tubos de aproximadamente 800 mm de longitud cada uno.
5. Receptor solar de serpentín para disco Stirling según reivindicación 4 caracterizado porque las dos curvas (10) de 180° son semicircunferencias de radio 11.1125 mm y las partes rectas son: el centro (11) (entre curvatura y curvatura) de 220 mm y los extremos (12) (entre curvatura y salida de un colector (2)) de 255 mm, incluyendo los 3 mm de tubo (1) que se introducen en el colector (2) para soldar.
6. Receptor solar de serpentín para disco Stirling según reivindicación 1 caracterizado porque los materiales utilizados son aleaciones a base de níquel-cromo (como los comercializados Inconel ® 625 o Multimet ®).
7. Receptor solar de serpentín para disco Stirling según reivindicación 1 caracterizado porque los tubos (1) a utilizar tienen un diámetro exterior de 3 mm. y un espesor 0.5 mm y los colectores (2) son de chapa de 3 mm.
8. Receptor solar de serpentín para disco Stirling según reivindicación 1 caracterizado porque hay dos hileras (20, 21) verticales de taladros (22) en cada colector
(2), en una hilera (20) se sueldan todos los tubos (1) que tienen ese colector como origen y en la hilera paralela (21) se sueldan todos los tubos que tienen ese colector como destino, no estando los tubos de una (20) y otra hilera (21) en contacto.
9. Receptor solar de serpentín para disco Stirling según reivindicación 8 caracterizado porque cada hilera vertical (20, 21) del colector (2) consta de 14 agujeros
(6).
10. Receptor solar de serpentín para disco Stirling según reivindicación 8 caracterizado porque en cada colector (2) la distancia entre centros de tubos de la misma hilera vertical es igual a seis veces el diámetro del tubo (1).
11. Receptor solar de serpentín para disco Stirling según reivindicación 1 caracterizado porque se coloca un casquillo o segmento de tubo (por soldadura, sinterizado u otros métodos) en cada uno de los tubos (1) del receptor en la zona de unión a los colectores (2), sirviendo como transición entre las dos zonas de rigideces distintas.
12. Método de fabricación del receptor solar de serpentín para disco Stirling descrito en las reivindicaciones anteriores que comprende las siguientes etapas:
- Recepción de tubos
- Doblado de tubos
- Ensamblaje de tubos a colector con soldadura por horno
- Soldadura TIG / plasma / láser para soldar los depósitos (realizados como unión de chapas) a los colectores
- Soldadura TIG / plasma / láser para soldar las cúpulas (realizadas a partir de un bloque de material) a los depósitos.
PCT/ES2011/000178 2010-06-02 2011-06-01 Receptor solar de serpentín para disco stirling y el método de fabricación WO2012001183A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11800211.2A EP2578962A1 (en) 2010-06-02 2011-06-01 Coil solar receiver for a stirling disk and method for manufacturing same
US13/701,093 US20130213388A1 (en) 2010-06-02 2011-06-01 Coil solar receiver for a stirling disk and method for manufacturing same
ZA2012/08955A ZA201208955B (en) 2010-06-02 2012-11-27 Coil solar receiver for a stirling disk and method for manufacturing same
IL223323A IL223323A (en) 2010-06-02 2012-11-28 Cylindrical solar receiver for Stirling disk and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000729 2010-06-02
ES201000729A ES2370730B1 (es) 2010-06-02 2010-06-02 Receptor solar de serpentín para disco stirling y el método de fabricación.

Publications (1)

Publication Number Publication Date
WO2012001183A1 true WO2012001183A1 (es) 2012-01-05

Family

ID=45094883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000178 WO2012001183A1 (es) 2010-06-02 2011-06-01 Receptor solar de serpentín para disco stirling y el método de fabricación

Country Status (7)

Country Link
US (1) US20130213388A1 (es)
EP (1) EP2578962A1 (es)
CL (1) CL2012003369A1 (es)
ES (1) ES2370730B1 (es)
IL (1) IL223323A (es)
WO (1) WO2012001183A1 (es)
ZA (1) ZA201208955B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705188A (zh) * 2012-05-23 2012-10-03 南京航空航天大学 太阳能-燃气互补型发电装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2742411T3 (es) * 2013-09-04 2020-02-14 Bae Systems Plc Procedimiento de fabricación de un sistema de conductos

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475538A (en) 1983-11-30 1984-10-09 United Stirling Ab Window for solar receiver for a solar-powered hot gas engine
US4512336A (en) * 1982-10-14 1985-04-23 The Babcock & Wilcox Company Panel of vapor generating and superheating tubes
US4602614A (en) 1983-11-30 1986-07-29 United Stirling, Inc. Hybrid solar/combustion powered receiver
US4665700A (en) 1984-01-18 1987-05-19 United Stirling Ab Hot gas engine heater head
US4911144A (en) 1989-05-01 1990-03-27 Stirling Thermal Motors, Inc. Spherical solar energy collector
DE4433203A1 (de) 1994-09-17 1996-03-21 Htc Solar Forschung Solarerhitzerkopf
DE19527272A1 (de) 1995-07-26 1997-01-30 Solo Kleinmotoren Gmbh Solarer Erhitzer für Stirling-Motoren
EP0996821A1 (en) 1997-07-14 2000-05-03 Stm Corporation Heat engine heater assembly
US20020059798A1 (en) 2000-08-03 2002-05-23 Mehos Mark S. Dish/stirling hybrid-receiver
US6668555B1 (en) 2002-12-09 2003-12-30 The Boeing Company Solar receiver-based power generation system
US6735946B1 (en) 2002-12-20 2004-05-18 The Boeing Company Direct illumination free piston stirling engine solar cavity
US6818818B2 (en) 2002-08-13 2004-11-16 Esmond T. Goei Concentrating solar energy receiver
CA2490207A1 (en) 2004-12-15 2006-06-15 Shec Labs - Solar Hydrogen Energy Corporation Solar energy collector
EP2218978A1 (fr) * 2009-02-17 2010-08-18 Cockerill Maintenance & Ingéniérie Echangeur de chaleur en drapeau.

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512336A (en) * 1982-10-14 1985-04-23 The Babcock & Wilcox Company Panel of vapor generating and superheating tubes
US4475538A (en) 1983-11-30 1984-10-09 United Stirling Ab Window for solar receiver for a solar-powered hot gas engine
US4602614A (en) 1983-11-30 1986-07-29 United Stirling, Inc. Hybrid solar/combustion powered receiver
US4665700A (en) 1984-01-18 1987-05-19 United Stirling Ab Hot gas engine heater head
US4911144A (en) 1989-05-01 1990-03-27 Stirling Thermal Motors, Inc. Spherical solar energy collector
DE4433203A1 (de) 1994-09-17 1996-03-21 Htc Solar Forschung Solarerhitzerkopf
DE19527272A1 (de) 1995-07-26 1997-01-30 Solo Kleinmotoren Gmbh Solarer Erhitzer für Stirling-Motoren
EP0996821A1 (en) 1997-07-14 2000-05-03 Stm Corporation Heat engine heater assembly
US20020059798A1 (en) 2000-08-03 2002-05-23 Mehos Mark S. Dish/stirling hybrid-receiver
US6739136B2 (en) 2000-08-03 2004-05-25 Midwest Research Institute Combustion system for hybrid solar fossil fuel receiver
US6818818B2 (en) 2002-08-13 2004-11-16 Esmond T. Goei Concentrating solar energy receiver
US6668555B1 (en) 2002-12-09 2003-12-30 The Boeing Company Solar receiver-based power generation system
US6735946B1 (en) 2002-12-20 2004-05-18 The Boeing Company Direct illumination free piston stirling engine solar cavity
CA2490207A1 (en) 2004-12-15 2006-06-15 Shec Labs - Solar Hydrogen Energy Corporation Solar energy collector
EP2218978A1 (fr) * 2009-02-17 2010-08-18 Cockerill Maintenance & Ingéniérie Echangeur de chaleur en drapeau.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1997-100879, XP003030231 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705188A (zh) * 2012-05-23 2012-10-03 南京航空航天大学 太阳能-燃气互补型发电装置及方法

Also Published As

Publication number Publication date
US20130213388A1 (en) 2013-08-22
EP2578962A1 (en) 2013-04-10
ES2370730B1 (es) 2012-08-06
ZA201208955B (en) 2013-08-28
CL2012003369A1 (es) 2013-08-09
IL223323A0 (en) 2013-02-03
IL223323A (en) 2015-09-24
ES2370730A1 (es) 2011-12-22

Similar Documents

Publication Publication Date Title
US8613278B2 (en) Solar thermal receiver for medium- and high-temperature applications
ES2375389B1 (es) Planta de concentración solar tipo fresnel con reconcentrador secundario optimizado.
CN102356284B (zh) 太阳能收集器及包括所述太阳能收集器的发电设备
US20120240577A1 (en) Thermal generation systems
ES2711835T3 (es) Módulo para absorbedor térmico de receptor solar, absorbedor que consta de al menos tal módulo y receptor que consta de al menos tal absorbedor
WO2006120260A1 (es) Central termoeléctrica solar
US20160327312A1 (en) Linear receivers for solar collectors
ES2370731B1 (es) Receptor cóncavo para disco stirling y método de fabricación.
ES2370730B1 (es) Receptor solar de serpentín para disco stirling y el método de fabricación.
CN102422098B (zh) 用于太阳能热电设施的吸气剂支撑结构
WO2013168074A1 (en) Concentration solar thermodynamic plant
US8997734B2 (en) Solar concentrating heat receiver and system thereof
WO2013098453A1 (es) Concentrador solar
ES2381698B1 (es) Colector solar con receptor multitubular, plantas termosolares que contienen dicho colector y método de operación de dichas plantas.
JP2007205646A (ja) 太陽熱集熱器およびこれを有する太陽熱利用装置
CN111023599A (zh) 一种以超临界二氧化碳为循环工质的光热发电系统
CN104158488B (zh) 太阳能利用系统
US20210088255A1 (en) Concentrating solar power module
US20140238386A1 (en) Radiation absorbing metal pipe
WO2014207269A1 (es) Receptor solar con fluido caloportador gaseoso
CN102486343B (zh) 内聚光真空太阳能集热管
Khokhar et al. A Research: High Efficiency Solar Thermal Power Plant
Kang et al. An experimental study on the heat transfer characteristics of the hybrid solar receiver for a dish concentrating system
ES2396858B1 (es) Captador solar de alto rendimiento para turbina de gas modificada
ES2415005A2 (es) Colector termosolar post-concentrador de alta temperatura.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 223323

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2012003369

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011800211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011800211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13701093

Country of ref document: US