WO2012000266A1 - 一种自适应调整上下行带宽的方法和装置 - Google Patents

一种自适应调整上下行带宽的方法和装置 Download PDF

Info

Publication number
WO2012000266A1
WO2012000266A1 PCT/CN2010/078412 CN2010078412W WO2012000266A1 WO 2012000266 A1 WO2012000266 A1 WO 2012000266A1 CN 2010078412 W CN2010078412 W CN 2010078412W WO 2012000266 A1 WO2012000266 A1 WO 2012000266A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
uplink
downlink
coordinated
absolute value
Prior art date
Application number
PCT/CN2010/078412
Other languages
English (en)
French (fr)
Inventor
李岩
彭爱华
赵楠
李峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10853969.3A priority Critical patent/EP2533476B1/en
Priority to US13/583,005 priority patent/US8730900B2/en
Priority to BR112012022725A priority patent/BR112012022725A2/pt
Publication of WO2012000266A1 publication Critical patent/WO2012000266A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to bandwidth allocation techniques in wireless communication systems, and more particularly to a method and apparatus for adaptively adjusting uplink and downlink bandwidth. Background technique
  • Spectrum resources are the basic medium for communication, and the limited spectrum resources make users want to maximize spectrum utilization.
  • Different wireless access technologies are also being developed to increase spectrum utilization.
  • the spectrum and load switching between the various radio access technologies of the existing communication network are almost non-existent, that is, there is almost no cooperative operation with each other, which results in relatively solid use of the spectrum, is not flexible enough, and reduces spectrum usage, for example:
  • the spectrum load of the radio access technology is relatively light, and the spectrum load of some radio access technologies is relatively heavy. Since there is no interaction and cooperation between the access technologies, dynamic allocation of flexible spectrum cannot be realized.
  • the industry is currently researching wireless sensing technology to dynamically adjust the network through cognitive radio, including the adjustment of operating parameters such as radio access technology and frequency band in a region.
  • the uplink and downlink services are generally asymmetric.
  • the downlink traffic is larger than the uplink traffic. Therefore, in some cases (especially when the uplink and downlink bandwidths are symmetric), there will be a relatively surplus of uplink system bandwidth, and the downlink system bandwidth will be relatively tight.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • the uplink and downlink bandwidths are usually configured symmetrically, that is, the uplink and downlink bandwidths are the same, which may cause uplink system bandwidth. Idle, which leads to spectrum utilization The rate is declining, while the downlink band is insufficient, but there is no spectrum supplement.
  • the uplink traffic is large, which will result in insufficient uplink bandwidth. If there is idle bandwidth in the downlink, the fixed spectrum configuration will result in a decrease in downlink spectrum utilization.
  • the main object of the present invention is to provide a method and apparatus for adaptively adjusting uplink and downlink bandwidth to improve spectrum utilization efficiency in an LTE FDD system.
  • the present invention provides a method for adaptively adjusting the uplink and downlink bandwidths, the method includes: the base station statistics usage of the uplink and downlink bandwidths in a preset time period, and the number of bandwidths that need to be coordinated in the downlink bandwidth, the number of bandwidths to be coordinated by the uplink bandwidth and the number of bandwidths to be coordinated.
  • the base station carries the determined direction, number and location of the uplink and downlink bandwidths to be changed, and carries and notifies the terminal through the remaining ten bits in the logical channel message corresponding to the physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • the base station determines, according to the obtained, the direction in which the uplink and downlink bandwidths need to be changed, and the number and location of the changes, specifically:
  • the base station is The maximum value of the absolute value less than AW ⁇ is selected in the set of RB numbers as the coordinated bandwidth allocated to the downlink bandwidth;
  • a W3 ⁇ 4 at zero, AW ⁇ is greater than zero, the absolute value is less than or equal to the absolute value of AW ⁇ , and the absolute value of AW ⁇ is greater than or equal to a certain element in the preset RB number set, the base station The maximum value of the absolute value less than AW ⁇ is selected in the set of RB numbers as the coordinated bandwidth is allocated to the uplink bandwidth.
  • the method further includes: determining, by the base station, the preset RB number set according to the default bandwidth configurations of the uplink and the downlink.
  • the method further includes:
  • the identifier information indicating that the coordinated bandwidth is downlink borrowing or uplink borrowing, the number of borrowed bandwidths, and the location of borrowing bandwidth;
  • the remaining ten bits in the logical channel message corresponding to the PBCH are carried: the identifier information indicating that the coordinated bandwidth is downlink borrowing or uplink borrowing, and the amount of borrowed bandwidth; the location of the borrowing bandwidth is pre-configured.
  • the method further includes:
  • the terminal obtains the direction, quantity, and location of the uplink and downlink bandwidths by parsing the logical channel message, and re-coordinates the uplink and downlink bandwidths accordingly.
  • the present invention also provides an apparatus for adaptively adjusting the uplink and downlink bandwidth.
  • the apparatus includes: a bandwidth statistics module, configured to collect statistics of uplink and downlink bandwidth usage in a preset time period, and obtain a bandwidth amount Afi w and uplink that need to be coordinated in downlink bandwidth. Bandwidth needs to coordinate the number of bandwidth ABJV UL ;
  • a bandwidth coordination allocation module configured to determine a direction in which the uplink and downlink bandwidth needs to be changed according to the obtained, and a quantity and a location of the change;
  • a sending module configured to carry, by the remaining ten bits in the logical channel message corresponding to the PBCH, the direction, the quantity, and the location of the determined uplink and downlink bandwidths to be sent to the terminal.
  • the bandwidth coordination allocation module is further configured to: at J, at zero, and the ABWUL is greater than zero,
  • the maximum value of the absolute value less than ABJV DL is selected from the RB number set.
  • the coordinated bandwidth is allocated to the downlink bandwidth; at ⁇ ⁇ 3 ⁇ 4 ⁇ , at zero, the absolute value of the DL is greater than zero, the absolute value of the WL is less than or equal to the absolute value of AW ⁇ , and the absolute value is greater than or equal to a certain one of the preset RB number set.
  • a maximum value smaller than the absolute value of ABiv UL is selected from the set of RB numbers as the coordinated bandwidth is allocated to the uplink bandwidth.
  • the device further includes: a set determining module, configured to determine the preset RB number set according to the uplink and downlink default bandwidth configurations after the usage of the uplink and downlink bandwidths in the statistical preset time.
  • a set determining module configured to determine the preset RB number set according to the uplink and downlink default bandwidth configurations after the usage of the uplink and downlink bandwidths in the statistical preset time.
  • the identifier information indicating that the coordinated bandwidth is downlink borrowing or uplink borrowing, the number of borrowed bandwidths, and the location of borrowing bandwidth;
  • the remaining ten bits in the logical channel message corresponding to the PBCH are carried: the identifier information indicating that the coordinated bandwidth is downlink borrowing or uplink borrowing, and the amount of borrowed bandwidth; the location of the borrowing bandwidth is pre-configured.
  • the terminal After receiving the logical channel message, the terminal obtains the direction, quantity, and location of the uplink and downlink bandwidths by parsing the logical channel message, and re-coordinates the uplink and downlink bandwidths accordingly.
  • the method and device for adaptively adjusting uplink and downlink bandwidth provided by the present invention solve the coordinated dynamic allocation of uplink and downlink bandwidth in the LTE FDD system, and improve the spectrum utilization efficiency; the implementation complexity of the present invention is low, for the base station and the terminal
  • the modification is smaller than the cognitive radio technology, and does not modify the network structure; through the RRC (Radio Resource Control) layer configuration, it has better compatibility for LTE Release8 users; media access control (MAC, Medium) Access Control) layer scheduling can avoid interference between uplink and downlink.
  • RRC Radio Resource Control
  • FIG. 1 is a flowchart of a method for adaptively adjusting uplink and downlink bandwidth according to the present invention
  • FIG. 2 is a schematic diagram of a set of RB numbers in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of remaining ten bits in a logical channel message corresponding to a PBCH according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of two bits describing the amount of borrowed bandwidth in the embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for adaptively adjusting uplink and downlink bandwidth according to the present invention. detailed description
  • the method for adaptively adjusting the uplink and downlink bandwidths provided by the present invention mainly includes the following steps:
  • Step 101 The base station counts the usage of the uplink and downlink bandwidths in the preset time period, and obtains the number of bandwidths that need to be coordinated in the downlink bandwidth, and the number of bandwidths to be coordinated by the ABWDL and the uplink bandwidth.
  • AW ⁇ bandwidths that need to be coordinated for the upstream bandwidth
  • AW ⁇ and AW ⁇ are integers. When AW ⁇ is greater than zero, it indicates that the downlink bandwidth can be reduced. When AW ⁇ is less than zero, it indicates that the downlink bandwidth needs to be increased. When AW ⁇ is equal to zero, the downlink bandwidth does not need to be changed. If it is greater than zero, it means that the uplink band can be reduced. When Afiffra is less than zero, it means that the boost port is required to be uplinked. When ABWUL is equal to zero, the uplink bandwidth does not need to be changed.
  • Step 102 The base station determines, according to the obtained ⁇ , the direction in which the uplink and downlink bandwidths need to be changed, and the number and location of the changes.
  • AW ⁇ is less than zero, ⁇ is greater than zero, and the absolute value of AW ⁇ is less than or equal to ABW UL absolute value, and ⁇ ⁇ ⁇ absolute value greater than or equal to a preset certain element in the RB number set, is smaller than the base station selected from the RB number set as the maximum absolute value of the ⁇ coordination bandwidth allocated to the downlink Bandwidth; at ⁇ ⁇ 3 ⁇ 4 ⁇ , at zero, AW ⁇ is greater than zero, A W3 ⁇ 4 ⁇ absolute value is less than or equal to the absolute value of Afi w, and the absolute value is greater than or equal to an element within the preset RB number set, The base station selects a maximum value smaller than the absolute value of AW ⁇ from the set of RB numbers as the coordinated bandwidth is allocated to the uplink bandwidth.
  • the absolute value of AW ⁇ is less than or equal to the absolute value, indicating that the amount of bandwidth that can be reduced in the uplink is greater than or equal to the amount of bandwidth that needs to be increased in the downlink, that is, uplink idle.
  • the amount of bandwidth can meet the increasing demand of the downlink bandwidth; when ⁇ ⁇ 3 ⁇ 4 ⁇ , at zero, and AW ⁇ is greater than zero, the absolute value of AW ⁇ is less than or equal to the absolute value of ⁇ , indicating that the downlink can be reduced.
  • the amount of bandwidth is greater than or equal to the amount of bandwidth that needs to be increased in the uplink. That is, the amount of bandwidth that is idle in the downlink can meet the increasing demand of the uplink bandwidth.
  • Step 103 The base station carries the determined tenth and the number of the uplink and downlink bandwidths, and the remaining ten bits in the logical channel message carried by the physical broadcast channel (PBCH, Physical Broadcast Channel) are carried and notified to the terminal.
  • PBCH Physical Broadcast Channel
  • the other message formats in this logical channel message do not change.
  • the remaining ten bits in the logical channel message carried by the PBCH may carry: indication information indicating that the coordinated bandwidth is downlink borrowing or uplink borrowing, the amount of borrowed bandwidth, and the location of borrowing bandwidth.
  • the remaining ten bits in the logical channel message carried by the PBCH may carry only: the identification information indicating that the coordinated bandwidth is downlink borrowing or uplink borrowing, The amount of bandwidth borrowed.
  • the terminal After the base station sends the logical channel message corresponding to the PBCH to the terminal, the terminal obtains the direction, quantity, and location of the uplink and downlink bandwidths by parsing the logical channel message, and re-coordinates the uplink and downlink bandwidth accordingly.
  • the number of coordinated RBs is updated to the uplink and downlink bandwidths to ensure that the uplink and downlink bandwidths of the base station and the terminal are coordinated.
  • the method for adaptively adjusting the uplink and downlink bandwidths is further elaborated below in conjunction with specific embodiments.
  • Embodiment 1 of the present invention mainly includes the following operations:
  • Step 201 The base station collects the usage of the downlink bandwidth, determines that the A W ⁇ needs to be coordinated, and assumes that ⁇ is at zero.
  • the usage of the uplink bandwidth is determined, and it is determined that the A W ⁇ needs to be coordinated, and the ABWUL is assumed to be greater than zero.
  • Step 202 The base station according to the information element of the upper layer, that is, the downlink-bandwidth (dl-Bandwidth) and the uplink-bandwidth (ul-Bandwidth), which are the default bandwidth configurations of the uplink and the downlink, and are preset from FIG.
  • the set of RB numbers is selected from a set of RB numbers that can be coordinated.
  • the first set of the first horizontal row in Figure 2 is selected as A set of RB numbers that can be coordinated; similarly, when dl-Bandwidth is 75 RBs and ul-Bandwidth is 50 RBs, the third set of the second horizontal row in FIG. 2 is selected as a set of RB numbers that can be coordinated.
  • Step 203 Use bit 1 in FIG. 3 to identify that the coordinated bandwidth is downlink borrowing or uplink borrowing, for example: a value of 0 indicates that the downlink is a borrowed bandwidth (ie, the uplink is a borrowed bandwidth), and a value of 1 indicates that the uplink is borrowed.
  • Bandwidth ie, the downlink is borrowed bandwidth
  • use bits 2, 3 in Figure 3 to describe the amount of borrowed bandwidth
  • use bits 4-10 in Figure 3 to describe the location of the borrowed bandwidth.
  • the number of borrowed bandwidths is described by using bits 2 and 3, as shown in FIG. 4, when the value of the two bits is 00, the number of corresponding borrowed bandwidths is 10; when these two bits are taken When the value is 01, the number of borrowed bandwidths corresponding to the description is 25; when the value of the two bits is 10, the number of borrowed bandwidths corresponding to the description is 50; when the value of the two bits is 11, the description corresponds to The amount of borrowed bandwidth is 75.
  • the correspondence between these two bits and the number of RBs can also be set according to actual needs.
  • Step 204 if the absolute value of AW ⁇ is less than or equal to the absolute value, and AW ⁇ If the absolute value is greater than or equal to a certain element in the preset RB number set, the maximum value smaller than the absolute value of the AB WDL is selected as the coordinated bandwidth to the downlink bandwidth in the set of RB numbers that can be coordinated.
  • the first set of the first horizontal row in FIG. 2 is selected as a set of RB numbers that can be coordinated. If the absolute value of AW ⁇ is 30, the absolute value of AW ⁇ is greater than the selected RB number set. 25 (This is the maximum value of less than 30 in the RB number set), so that 25 RBs are selected as the coordinated bandwidth allocated to the downlink bandwidth.
  • Step 205 The base station configures a domain of the coordinated RB in the PBCH corresponding logical channel message. This field contains the number of coordinated RBs.
  • Step 206 The terminal parses the logical channel message to obtain the dl-Bandwidth, and the system information block 2 (SIB2, System Information Block2) in the parsing message obtains the ul-Bandwidth, and parses the domain of the coordinated RB to obtain the coordinated RB number.
  • SIB2 System Information Block2
  • Step 207 The terminal obtains the coordinated downlink bandwidth by using the DL-Bandwidth plus the coordinated RB number, and uses the ul-Bandwidth minus the coordinated RB number to obtain the coordinated uplink bandwidth.
  • Embodiment 2 of the present invention mainly includes the following operations:
  • Step 301 The base station calculates the usage of the downlink bandwidth, determines that the A W ⁇ needs to be coordinated, and assumes that ⁇ is greater than zero.
  • the usage of the uplink bandwidth is determined, and it is determined that A W ⁇ needs to be coordinated, and the ABWUL is assumed to be less than zero.
  • Step 302 The base station determines, according to the indications of FIG. 1, the RB number set that can be coordinated according to the dl-Bandwidth and the ul-Bandwidth.
  • Step 303 The bit 10 of FIG. 3 is used to identify that the coordinated bandwidth is downlink borrowing or uplink borrowing, for example: a value of 0 indicates that the downlink is a borrowed bandwidth (ie, the uplink is a borrowed bandwidth), and a value of 1 indicates that the uplink is a borrowed bandwidth. (ie, the downlink is borrowed bandwidth); ⁇ Use bits 8, 9 in Figure 3 to describe the amount of borrowed bandwidth; ⁇ Use bits 1-7 in Figure 3 to describe the location of the borrowed bandwidth.
  • each bit in this embodiment is different from that in the first embodiment. It should be noted that the definition of each bit function in the specific implementation process can be set as needed, and It is limited to the embodiments of the present invention. In addition, two bits are used to describe the number of borrowed bandwidths, and the correspondence between the number of RBs and the number of RBs can also be variously set according to actual needs.
  • Step 304 If the absolute value is less than or equal to the absolute value of AW ⁇ , and the absolute value of ⁇ 3 ⁇ 4 ⁇ is greater than or equal to a certain element in the preset RB number set, select less than M in the set of RB numbers that can be coordinated.
  • the maximum value of the absolute value of the WUL is allocated to the upstream bandwidth as the coordinated bandwidth.
  • the second set of the first horizontal row in FIG. 2 is selected as a set of RB numbers that can be coordinated. If the absolute value of A w ⁇ is 60, the absolute value of A w ⁇ is greater than the selected set of RB numbers. The inner 50 (this is the maximum value of less than 60 in the RB number set), so that 50 RBs are selected as the coordinated bandwidth allocated to the upstream bandwidth.
  • Step 305 The base station configures a domain of the coordinated RB in the PBCH corresponding logical channel message. This field contains the number of coordinated RBs.
  • Step 306 The terminal parses the logical channel message to obtain the dl-Bandwidth, and the SIB2 in the parsing message obtains the ul-Bandwidth, and parses the domain of the coordinated RB to obtain the coordinated RB number.
  • Step 307 The terminal uses the ul-Bandwidth plus the coordinated RB number to obtain the coordinated uplink bandwidth, and uses the dl-Bandwidth minus the coordinated RB number to obtain the coordinated downlink bandwidth.
  • Embodiment 3 of the present invention mainly includes the following operations:
  • Step 401 The base station calculates the usage of the downlink bandwidth, determines that the A W ⁇ needs to be coordinated, and assumes that ⁇ is at zero.
  • the usage of the uplink bandwidth is determined, and it is determined that A W ⁇ needs to be coordinated, and the ABWUL is assumed to be greater than zero.
  • Step 402 The base station determines, according to the indications of FIG. 1, the RB number set that can be coordinated according to the dl-Bandwidth and the ul-Bandwidth.
  • Step 403 Use bit 1 of FIG. 3 to identify the coordinated bandwidth as downlink borrowing or uplink borrowing, and use bits 2 and 3 in FIG. 3 to describe the amount of borrowed bandwidth; the location of the borrowed RB is pre-configured.
  • Step 404 if the absolute value of AW ⁇ is less than or equal to the absolute value, and AW ⁇ If the absolute value is greater than or equal to a certain element in the preset RB number set, the maximum value smaller than the absolute value of the AB WDL is selected as the coordinated bandwidth to the downlink bandwidth in the set of RB numbers that can be coordinated.
  • Step 405 The base station configures a domain of the coordinated RB in the PBCH corresponding logical channel message. This field contains the number of coordinated RBs.
  • Step 406 The terminal parses the logical channel message to obtain the dl-Bandwidth, and the SIB2 in the parsing message obtains the ul-Bandwidth, and parses the domain of the coordinated RB to obtain the coordinated RB number.
  • Step 407 The terminal obtains the coordinated downlink bandwidth by using the DL-Bandwidth plus the coordinated RB number, and uses the ul-Bandwidth minus the coordinated RB number to obtain the coordinated uplink bandwidth.
  • Embodiment 4 of the present invention mainly includes the following operations:
  • Step 501 The base station calculates the usage of the downlink bandwidth, determines that the A W ⁇ needs to be coordinated, and assumes that ⁇ is at zero. The usage of the uplink bandwidth is determined, and it is determined that the A W ⁇ is still needed to be coordinated.
  • ABWUL is greater than zero.
  • Step 502 The base station determines, according to the indications of FIG. 1, the RB number set that can be coordinated according to the dl-Bandwidth and the ul-Bandwidth.
  • Step 503 using the bit 10 of FIG. 3 to identify the coordinated bandwidth as downlink borrowing or uplink borrowing, and use the bits 8 and 9 in FIG. 3 to describe the amount of borrowed bandwidth; the location of the borrowed RB is pre-configured.
  • Step 504 If the absolute value is less than or equal to the absolute value of AW ⁇ , and the absolute value of ⁇ 3 ⁇ 4 ⁇ is greater than or equal to a certain element in the preset RB number set, select less than AB in the set of RB numbers that can be coordinated.
  • the maximum value of the absolute value of the WUL is allocated as the coordinated bandwidth to the downstream bandwidth.
  • Step 505 The base station configures a domain of the coordinated RB in the PBCH corresponding logical channel message. This field contains the number of coordinated RBs.
  • Step 506 The terminal parses the logical channel message to obtain the dl-Bandwidth, and the SIB2 in the parsing message obtains the ul-Bandwidth, and parses the domain of the coordinated RB to obtain the coordinated RB number.
  • Step 507 the terminal obtains the coordinated uplink band by using the ul-Bandwidth plus the coordinated RB number. Width, using dl-Bandwidth minus the number of coordinated RBs to get the coordinated downlink bandwidth.
  • the present invention further provides an apparatus for adaptively adjusting uplink and downlink bandwidth, where the apparatus is applied to a base station, and includes: a bandwidth statistics module 10, a bandwidth coordination allocation module 20, and a sending module 30. .
  • the bandwidth statistic module 10 is configured to collect the usage of the uplink and downlink bandwidths in the preset time, and obtain the bandwidth AW ⁇ that the downlink bandwidth needs to be coordinated and the bandwidth As Ra that the uplink bandwidth needs to coordinate.
  • the bandwidth coordination allocation module 20 is configured to determine, according to the obtained mill D ABJV UL , a direction in which the uplink and downlink bandwidths need to be changed, and a quantity and a position of the change. Specifically: when A5 z ⁇ , at zero, ⁇ is greater than zero, and the absolute value of AW ⁇ is less than or equal to the absolute value, and the absolute value is greater than or equal to an element in the preset RB number set, The maximum value of the absolute value of AW ⁇ is selected in the RB number set as the coordinated bandwidth allocated to the downlink bandwidth; when A WV ⁇ is zero, AW ⁇ is greater than zero, and the absolute value of AW ⁇ is less than or equal to ⁇ absolute value, When the absolute value of AW ⁇ is greater than or equal to a certain element in the preset RB number set, a maximum value smaller than the absolute value of AW ⁇ is selected from the RB number set as the coordinated bandwidth is allocated to the uplink bandwidth.
  • the sending module 30 is configured to carry, by the remaining
  • the apparatus further includes: a set determining module 40, configured to determine a preset set of RB numbers according to the default bandwidth configuration of the uplink and the downlink after the usage of the uplink and downlink bandwidths in the statistical preset time.
  • a set determining module 40 configured to determine a preset set of RB numbers according to the default bandwidth configuration of the uplink and the downlink after the usage of the uplink and downlink bandwidths in the statistical preset time.
  • the terminal After receiving the logical channel message, the terminal obtains the direction, quantity, and location of the uplink and downlink bandwidths by parsing the logical channel message, and re-coordinates the uplink and downlink bandwidths accordingly.
  • the present invention solves the coordinated dynamic allocation of uplink and downlink bandwidth in an LTE FDD system, and improves spectrum utilization efficiency; the implementation complexity of the present invention is low, and the modification to the base station and the terminal is smaller than the cognitive radio technology, and The network structure will not be modified; the RRC layer configuration has better compatibility for LTE Release 8 users; MAC layer scheduling can avoid the interaction between uplink and downlink. Disturb.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种自适应调整上下行带宽的方法和装置 技术领域
本发明涉及无线通信系统中的带宽分配技术, 尤其涉及一种自适应调 整上下行带宽的方法和装置。 背景技术
频谱资源是通信的基本媒介, 而频谱资源的有限, 使得用户希望最大 限度的提高频谱利用率。 不同的无线接入技术的发展也是为了提高频谱利 用率。 然而, 现有通信网络的各个无线接入技术之间的频谱和负载切换几 乎不存在, 即彼此几乎没有协作操作, 这导致频谱使用相对固化, 不够灵 活, 降低了频谱使用率, 例如: 有的无线接入技术的频谱负载相对较轻, 而有的无线接入技术的频谱负载相对较重, 由于接入技术之间没有交互和 协作, 因此不能实现灵活的频谱的动态分配。 为解决这个问题, 业界目前 正在研究无线感知技术, 通过感知无线电来实现网络的动态调整, 包括一 个地区的无线接入技术和频带等工作参数的调整。 但是, 感知无线电的最 终目标是要求不同的无线接入技术在不同的频带上都能够接入, 并进行通 信; 这对于基站和终端的要求都很高, 甚至有可能在现有网络结构中增加 新的网元, 而且该项技术还处于研究阶段, 现在并没有完整的可实现方案。
在无线通信中, 上下行的业务一般不对称, 通常情况下, 下行的业务 流量大于上行的业务流量。 因此, 在有些情况下 (尤其是上下行带宽对称 的情况), 会出现上行的系统带宽相对有剩余, 而下行的系统带宽会比较紧 张。 具体的, 在长期演进 ( LTE, Long Term Evolution )频分双工 (FDD, Frequency Division Duplex ) 系统中, 通常将上下行带宽配置为对称的, 即 上下行带宽相同, 这可能会造成上行系统带宽的空闲, 继而导致频谱利用 率下降, 而下行频带不足, 却无频谱补充。 类似的, 在少数情况下, 上行 的业务量较大, 会导致上行带宽不足, 如果下行有空闲带宽, 则在固定配 置的网络, 会导致下行频谱利用率下降。
由此可以看出, 在以上场景中釆取固定的网络配置, 无法优化频谱的 使用。 另外, 感知无线电技术还处于研究阶段, 而且感知无线电技术也没 有考虑到这种无线接入技术内的带宽协调场景。 因此, LTE FDD系统中的 频谱利用效率还有待进一步提高。 发明内容
有鉴于此, 本发明的主要目的在于提供一种自适应调整上下行带宽的 方法和装置, 以提高 LTE FDD系统中的频谱利用效率。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种自适应调整上下行带宽的方法, 该方法包括: 基站统计预设时间内上下行带宽的使用情况, 得到下行带宽需要协调 的带宽数 ABWDL和上行带宽需要协调的带宽数
所述基站根据得到的 , 确定上下行带宽需要变化的方向, 以及变化的数量和位置;
所述基站将确定的上下行带宽需要变化的方向、 数量和位置, 通过物 理广播信道(PBCH )对应的逻辑信道消息中的剩余十比特携带并通知给终 端。
所述基站根据得到的 , 确定上下行带宽需要变化的方向, 以及变化的数量和位置, 具体为:
在 A W^小于零, ^^^大于零, A W^的绝对值小于或等于 的绝 对值, 且 A W^的绝对值大于或等于预设 RB数集合内的某一个元素时, 所 述基站从所述 RB数集合内选择小于 A W^的绝对值的最大值作为协调带宽 分配给下行带宽; 在 A W¾ 、于零, A W^大于零, 的绝对值小于或等于 A W^的绝 对值, 且 A W^的绝对值大于或等于预设 RB数集合内的某一个元素时, 所 述基站从所述 RB数集合内选择小于 A W^的绝对值的最大值作为协调带宽 分配给上行带宽。
在所述基站统计预设时间内上下行带宽的使用情况之后, 该方法进一 步包括: 所述基站根据上行和下行的默认带宽配置,确定所述预设 RB数集 合。
该方法进一步包括:
在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指示所述 协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量、 借用带宽 的位置;
或者, 在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指 示所述协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量; 所 述借用带宽的位置为预先配置。
在所述基站将 PBCH对应的逻辑信道消息发送给终端之后, 该方法进 一步包括:
所述终端通过解析所述逻辑信道消息, 获得所述上下行带宽需要变化 的方向、 数量和位置, 并依此对上下行的带宽进行重新协调。
本发明还提供了一种自适应调整上下行带宽的装置, 该装置包括: 带宽统计模块, 用于统计预设时间内上下行带宽的使用情况, 得到下 行带宽需要协调的带宽数 Afi w和上行带宽需要协调的带宽数 ABJVUL
带宽协调分配模块, 用于根据得到的 确定上下行带宽 需要变化的方向, 以及变化的数量和位置;
发送模块, 用于将确定的上下行带宽需要变化的方向、 数量和位置, 通过 PBCH对应的逻辑信道消息中的剩余十比特携带并通知给终端。 所述带宽协调分配模块进一步用于, 在 J、于零, ABWUL大于零,
A W^的绝对值小于或等于 的绝对值, 且 A W^的绝对值大于或等于预 设 RB数集合内的某一个元素时, 从所述 RB数集合内选择小于 ABJVDL的绝 对值的最大值作为协调带宽分配给下行带宽; 在 Δ ^¾^』、于零, 磨 DL大于 零, 的绝对值小于或等于 A W^的绝对值, 且 的绝对值大于或等 于预设 RB数集合内的某一个元素时,从所述 RB数集合内选择小于 ABivUL的 绝对值的最大值作为协调带宽分配给上行带宽。
该装置进一步包括: 集合确定模块, 用于在统计预设时间内上下行带 宽的使用情况之后,根据上行和下行的默认带宽配置,确定所述预设 RB数 集合。
在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指示所述 协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量、 借用带宽 的位置;
或者, 在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指 示所述协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量; 所 述借用带宽的位置为预先配置。
所述终端在接收到所述逻辑信道消息后, 通过解析所述逻辑信道消息, 获得所述上下行带宽需要变化的方向、 数量和位置, 并依此对上下行的带 宽进行重新协调。
本发明所提供的一种自适应调整上下行带宽的方法和装置,解决了 LTE FDD 系统中上下行带宽的协调动态分配, 提高了频谱利用效率; 本发明实 现复杂度偏低, 对于基站和终端的修改相对于感知无线电技术要小, 而且 不会修改网络结构; 通过无线资源控制 (RRC, Radio Resource Control )层 配置, 对于 LTE Release8 用户有较好的兼容性; 媒体接入控制 (MAC , Medium Access Control )层调度, 可以避免上下行间的干扰。 附图说明
图 1为本发明一种自适应调整上下行带宽的方法流程图;
图 2为本发明实施例中 RB数集合的示意图;
图 3为本发明实施例中 PBCH对应的逻辑信道消息中的剩余十比特的 示意图;
图 4为本发明实施例中两比特描述借用带宽数量的示意图;
图 5为本发明一种自适应调整上下行带宽的装置结构示意图。 具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 为解决 LTEFDD系统中上下行带宽的协调动态分配, 提高频谱利用效 率, 本发明提供的一种自适应调整上下行带宽的方法, 如图 1 所示, 主要 包括以下步骤:
步骤 101,基站统计预设时间内上下行带宽的使用情况, 得到下行带宽 需要协调的带宽数 ABWDL和上行带宽需要协调的带宽数 ABWUL。
具体的, 统计得到下行带宽需要协调的带宽数 AW^ , 以资源块(RB,
Resources Block)为单位; 统计得到上行带宽需要协调的带宽数 AW^ , 也 以 RB为单位。 其中, AW^和 AW^都为整数, AW^大于零时, 表示可以 减小下行带宽, AW^小于零时, 表示需要增加下行带宽, AW^等于零时, 表示下行带宽不需要改变; 同样的, 大于零时, 表示可以减小上行带 覔, Afiffra小于零时, 表示需要增力口上行带覔, ABWUL等于零时, 表示上行 带宽不需要改变。
步骤 102,基站根据得到的 Δβ^^θΔ^^ , 确定上下行带宽需要变化的 方向, 以及变化的数量和位置。
具体的: 在 AW^小于零, ^^^大于零, AW^的绝对值小于或等于 ABWUL的绝对值,且 Δ ^ΰΖ的绝对值大于或等于预设 RB数集合内的某一个元 素时, 基站从该 RB数集合内选择小于 ^ 的绝对值的最大值作为协调带 宽分配给下行带宽; 在 Δ ^¾^』、于零, A W^大于零, A W¾ 々绝对值小于或 等于 Afi w的绝对值,且 的绝对值大于或等于预设 RB数集合内的某一 个元素时, 基站从该 RB数集合内选择小于 A W^的绝对值的最大值作为协 调带宽分配给上行带宽。
其中, 在 A W^小于零, A W^大于零的情况下, A W^的绝对值小于或 等于 的绝对值, 则表示上行可以减小的带宽数量大于或等于下行需要 增加的带宽数量, 即上行空闲的带宽数量可以满足下行带宽的增加需求; 在 Δ ^¾^、于零, A W^大于零的情况下, A W^的绝对值小于或等于 Δ ^ζ^々 绝对值, 则表示下行可以减小的带宽数量大于或等于上行需要增加的带宽 数量, 即下行空闲的带宽数量可以满足上行带宽的增加需求。
步骤 103 , 基站将确定的上下行带宽需要变化的方向、 数量和位置, 通 过物理广播信道 ( PBCH, Physical Broadcast Channel ) 载的逻辑信道消息 中的剩余十比特携带并通知给终端。 该逻辑信道消息中的其他消息格式不 变。
在 PBCH承载的逻辑信道消息中的剩余十比特中可以携带: 指示协调 带宽为下行借用或上行借用的标识信息、 借用带宽的数量、 借用带宽的位 置。 另外, 在借用带宽的位置预先配置 (即基站和终端预先约定) 的情况 下, PBCH承载的逻辑信道消息中的剩余十比特中可以只携带:指示协调带 宽为下行借用或上行借用的标识信息、 借用带宽的数量。
在基站将 PBCH对应的逻辑信道消息发送给终端之后, 终端通过解析 逻辑信道消息, 获得上下行带宽需要变化的方向、 数量和位置, 并依此对 上下行的带宽进行重新协调。将协调的 RB数更新到上下行的带宽上, 以保 证基站和终端的上下行带宽协调一致。 下面再结合具体实施例对上述自适应调整上下行带宽的方法进一步详 细阐述。
本发明的实施例一主要包括以下操作:
步骤 201 , 基站统计下行带宽的使用情况, 确定还需要协调 A W^ , 假 设 Δβ^^、于零; 统计上行带宽的使用情况, 确定还需要协调 A W^ , 假设 ABWUL大于零。
步骤 202 , 基站根据高层的信息单元( Information element ), 即下行- 带宽( dl-Bandwidth )和上行 -带宽(ul-Bandwidth ), 此为上行和下行默认的 带宽配置, 从图 2所示预设的 RB数集合中选择可以协调的 RB数集合。
例如: 下行默认的带宽配置 (即 dl-Bandwidth ) 为 100个 RB, 上行默 认的带宽配置(即 ul-Bandwidth )也为 100个 RB时, 选择图 2中第一横排 的第一个集合为可以协调的 RB数集合;类似的, dl-Bandwidth为 75个 RB, ul-Bandwidth为 50个 RB时, 选择图 2中第二横排的第三个集合为可以协 调的 RB数集合。
步骤 203 ,釆用图 3中的比特 1来标识协调带宽为下行借用或上行借用 , 例如: 取值为 0表示下行是借用带宽(即上行是被借用带宽), 取值为 1表 示上行是借用带宽 (即下行是被借用带宽); 釆用图 3中的比特 2、 3来描 述借用带宽的数量; 釆用图 3中的比特 4~10来描述借用带宽的位置。
其中, 釆用比特 2、 3来描述借用带宽的数量, 可以参见图 4所示, 当 这两个比特的取值为 00时,描述对应的借用带宽数量为 10; 当这两个比特 的取值为 01 时, 描述对应的借用带宽数量为 25; 当这两个比特的取值为 10时, 描述对应的借用带宽数量为 50; 当这两个比特的取值为 11 时, 描 述对应的借用带宽数量为 75。 当然, 这两个比特与 RB数的对应关系也可 以根据实际需要进行其他设置。
步骤 204, 如果 A W^的绝对值小于或等于 的绝对值, 且 A W^的 绝对值大于或等于预设 RB数集合内的某一个元素,则在可以协调的 RB数 集合内选择小于 ABWDL的绝对值的最大值作为协调带宽分配给下行带宽。
例如: 步骤 202中选择图 2中第一横排的第一个集合为可以协调的 RB 数集合, 如果 A W^的绝对值为 30, 则 A W^的绝对值即大于所选 RB数集 合内的 25 (此为 RB数集合内小于 30的最大值), 从而选择 25个 RB作为 协调带宽分配给下行带宽。
步骤 205 , 基站配置 PBCH对应逻辑信道消息内协调 RB的域。 该域内 包含协调的 RB数。
步骤 206, 终端解析逻辑信道消息获得 dl-Bandwidth, 解析消息中的系 统信息块 2 ( SIB2 , System Information Block2 )获得 ul-Bandwidth, 解析协 调 RB的域获得协调的 RB数。
步骤 207, 终端用 dl-Bandwidth加上协调的 RB数得到协调后的下行带 宽, 用 ul-Bandwidth减去协调的 RB数得到协调后的上行带宽。
本发明的实施例二主要包括以下操作:
步骤 301 , 基站统计下行带宽的使用情况, 确定还需要协调 A W^ , 假 设 ^^大于零; 统计上行带宽的使用情况, 确定还需要协调 A W^ , 假设 ABWUL小于零。
步骤 302,基站根据 dl-Bandwidth和 ul-Bandwidth,并按照图 1的指示, 确定可以协调的 RB数集合。
步骤 303 ,釆用图 3的比特 10来标识协调带宽为下行借用或上行借用 , 例如: 取值为 0表示下行是借用带宽(即上行是被借用带宽), 取值为 1表 示上行是借用带宽 (即下行是被借用带宽); 釆用图 3中的比特 8、 9来描 述借用带宽的数量; 釆用图 3中的比特 1-7来描述借用带宽的位置。
可以看出, 本实施例中各比特的功能定义与实施例一中不同, 需要说 明的是, 具体实施过程中的各比特功能定义可以根据需要进行设定, 并不 仅限于本发明的实施例所举。 另外, 用以描述借用带宽的数量的两个比特, 其与 RB数的对应关系也可以根据实际需要进行多种设置。
步骤 304, 如果 的绝对值小于或等于 A W^的绝对值, 且 Δ ^¾^々 绝对值大于或等于预设 RB数集合内的某一个元素,则在可以协调的 RB数 集合内选择小于 MWUL的绝对值的最大值作为协调带宽分配给上行带宽。
例如: 步骤 302中选择图 2中第一横排的第 2个集合为可以协调的 RB 数集合, 如果 A w^的绝对值为 60, 则 A w^的绝对值即大于所选 RB数集 合内的 50 (此为 RB数集合内小于 60的最大值), 从而选择 50个 RB作为 协调带宽分配给上行带宽。
步骤 305 , 基站配置 PBCH对应逻辑信道消息内协调 RB的域。 该域内 包含协调的 RB数。
步骤 306 , 终端解析逻辑信道消息获得 dl-Bandwidth, 解析消息中的 SIB2获得 ul-Bandwidth, 解析协调 RB的域获得协调的 RB数。
步骤 307, 终端用 ul-Bandwidth加上协调的 RB数得到协调后的上行带 宽, 用 dl-Bandwidth减去协调的 RB数得到协调后的下行带宽。
本发明的实施例三主要包括以下操作:
步骤 401 , 基站统计下行带宽的使用情况, 确定还需要协调 A W^ , 假 设 Δβ^^、于零; 统计上行带宽的使用情况, 确定还需要协调 A W^ , 假设 ABWUL大于零。
步骤 402,基站根据 dl-Bandwidth和 ul-Bandwidth,并按照图 1的指示, 确定可以协调的 RB数集合。
步骤 403 , 釆用图 3的比特 1来标识协调带宽为下行借用或上行借用, 釆用图 3中的比特 2、 3来描述借用带宽的数量; 借用 RB的位置为预先配 置的。
步骤 404, 如果 A W^的绝对值小于或等于 的绝对值, 且 A W^的 绝对值大于或等于预设 RB数集合内的某一个元素,则在可以协调的 RB数 集合内选择小于 ABWDL的绝对值的最大值作为协调带宽分配给下行带宽。
步骤 405 , 基站配置 PBCH对应逻辑信道消息内协调 RB的域。 该域内 包含协调的 RB数。
步骤 406 , 终端解析逻辑信道消息获得 dl-Bandwidth, 解析消息中的 SIB2获得 ul-Bandwidth, 解析协调 RB的域获得协调的 RB数。
步骤 407, 终端用 dl-Bandwidth加上协调的 RB数得到协调后的下行带 宽, 用 ul-Bandwidth减去协调的 RB数得到协调后的上行带宽。
本发明的实施例四主要包括以下操作:
步骤 501 , 基站统计下行带宽的使用情况, 确定还需要协调 A W^ , 假 设 Δβ^^、于零; 统计上行带宽的使用情况, 确定还需要协调 A W^ , 假设
ABWUL大于零。
步骤 502,基站根据 dl-Bandwidth和 ul-Bandwidth,并按照图 1的指示, 确定可以协调的 RB数集合。
步骤 503 ,釆用图 3的比特 10来标识协调带宽为下行借用或上行借用 , 釆用图 3中的比特 8、 9来描述借用带宽的数量; 借用 RB的位置为预先配 置的。
步骤 504, 如果 的绝对值小于或等于 A W^的绝对值, 且 Δ ^¾^々 绝对值大于或等于预设 RB数集合内的某一个元素,则在可以协调的 RB数 集合内选择小于 ABWUL的绝对值的最大值作为协调带宽分配给下行带宽。
步骤 505 , 基站配置 PBCH对应逻辑信道消息内协调 RB的域。 该域内 包含协调的 RB数。
步骤 506 , 终端解析逻辑信道消息获得 dl-Bandwidth, 解析消息中的 SIB2获得 ul-Bandwidth, 解析协调 RB的域获得协调的 RB数。
步骤 507, 终端用 ul-Bandwidth加上协调的 RB数得到协调后的上行带 宽, 用 dl-Bandwidth减去协调的 RB数得到协调后的下行带宽。 对应上述自适应调整上下行带宽的方法, 本发明还提供了一种自适应 调整上下行带宽的装置, 该装置应用于基站中, 包括: 带宽统计模块 10、 带宽协调分配模块 20和发送模块 30。 其中, 带宽统计模块 10, 用于统计 预设时间内上下行带宽的使用情况, 得到下行带宽需要协调的带宽数 A W^ 和上行带宽需要协调的带宽数 As ra。 带宽协调分配模块 20, 用于根据得到 的磨 D ABJVUL , 确定上下行带宽需要变化的方向, 以及变化的数量和位 置。具体的:在 A5 z^、于零, ^^^大于零, A W^的绝对值小于或等于 的绝对值,且 的绝对值大于或等于预设 RB数集合内的某一个元素时, 从该 RB数集合内选择小于 A W^的绝对值的最大值作为协调带宽分配给下 行带宽; 在 A WV^ 于零, A W^大于零, A W^的绝对值小于或等于 Δ ^ζ^々 绝对值, 且 A W^的绝对值大于或等于预设 RB数集合内的某一个元素时, 从该 RB数集合内选择小于 A W^的绝对值的最大值作为协调带宽分配给上 行带宽。 发送模块 30, 用于将确定的上下行带宽需要变化的方向、 数量和 位置,通过 PBCH对应的逻辑信道消息中的剩余十比特携带并通知给终端。
较佳的, 该装置进一步包括: 集合确定模块 40, 用于在统计预设时间 内上下行带宽的使用情况之后, 根据上行和下行的默认带宽配置, 确定预 设 RB数集合。
另外, 终端在接收到逻辑信道消息后, 通过解析该逻辑信道消息, 获 得上下行带宽需要变化的方向、 数量和位置, 并依此对上下行的带宽进行 重新协调。
综上所述,本发明解决了 LTE FDD系统中上下行带宽的协调动态分配, 提高了频谱利用效率; 本发明实现复杂度偏低, 对于基站和终端的修改相 对于感知无线电技术要小, 而且不会修改网络结构; 通过 RRC层配置, 对 于 LTE Release8用户有较好的兼容性; MAC层调度可以避免上下行间的干 扰。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种自适应调整上下行带宽的方法, 其特征在于, 该方法包括: 基站统计预设时间内上下行带宽的使用情况, 得到下行带宽需要协调 的带宽数 ABWDL和上行带宽需要协调的带宽数
所述基站根据得到的 , 确定上下行带宽需要变化的方向, 以及变化的数量和位置;
所述基站将确定的上下行带宽需要变化的方向、 数量和位置, 通过物 理广播信道(PBCH )对应的逻辑信道消息中的剩余十比特携带并通知给终 端。
2、 根据权利要求 1所述自适应调整上下行带宽的方法, 其特征在于, 所述基站根据得到的 Δβ^^θ Δ ^^ , 确定上下行带宽需要变化的方向, 以 及变化的数量和位置, 具体为:
在 A W^小于零, ^^^大于零, A W^的绝对值小于或等于 的绝 对值, 且 A W^的绝对值大于或等于预设 RB数集合内的某一个元素时, 所 述基站从所述 RB数集合内选择小于 A W^的绝对值的最大值作为协调带宽 分配给下行带宽;
在 A W¾ 、于零, A W^大于零, 的绝对值小于或等于 A W^的绝 对值, 且 A W^的绝对值大于或等于预设 RB数集合内的某一个元素时, 所 述基站从所述 RB数集合内选择小于 A w^的绝对值的最大值作为协调带宽 分配给上行带宽。
3、 根据权利要求 2所述自适应调整上下行带宽的方法, 其特征在于, 在所述基站统计预设时间内上下行带宽的使用情况之后, 该方法进一步包 括: 所述基站根据上行和下行的默认带宽配置, 确定所述预设 RB数集合。
4、 根据权利要求 2或 3所述自适应调整上下行带宽的方法, 其特征在 于, 该方法进一步包括:
在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指示所述 协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量、 借用带宽 的位置;
或者, 在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指 示所述协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量; 所 述借用带宽的位置为预先配置。
5、 根据权利要求 1、 2或 3所述自适应调整上下行带宽的方法, 其特 征在于, 在所述基站将 PBCH对应的逻辑信道消息发送给终端之后, 该方 法进一步包括:
所述终端通过解析所述逻辑信道消息, 获得所述上下行带宽需要变化 的方向、 数量和位置, 并依此对上下行的带宽进行重新协调。
6、 一种自适应调整上下行带宽的装置, 其特征在于, 该装置包括: 带宽统计模块, 用于统计预设时间内上下行带宽的使用情况, 得到下 行带宽需要协调的带宽数 Afi w和上行带宽需要协调的带宽数 ABJVUL
带宽协调分配模块, 用于根据得到的 确定上下行带宽 需要变化的方向, 以及变化的数量和位置;
发送模块, 用于将确定的上下行带宽需要变化的方向、 数量和位置, 通过 PBCH对应的逻辑信道消息中的剩余十比特携带并通知给终端。
7、 根据权利要求 6所述自适应调整上下行带宽的装置, 其特征在于, 所述带宽协调分配模块进一步用于, 在 ABWDL ' J、于零, ABWUL大于零, ABWDL 的绝对值小于或等于 A ^RA的绝对值,且 的绝对值大于或等于预设 RB 数集合内的某一个元素时, 从所述 RB数集合内选择小于 WDL的绝对值的 最大值作为协调带宽分配给下行带宽;在 ABWUL ' J、于零, ABWDL大于零, ABWUL 的绝对值小于或等于 Δ ^Μ的绝对值,且 A ^RA的绝对值大于或等于预设 RB 数集合内的某一个元素时, 从所述 RB数集合内选择小于 ABJVUL的绝对值的 最大值作为协调带宽分配给上行带宽。
8、 根据权利要求 7所述自适应调整上下行带宽的装置, 其特征在于, 该装置进一步包括: 集合确定模块, 用于在统计预设时间内上下行带宽的 使用情况之后,根据上行和下行的默认带宽配置,确定所述预设 RB数集合。
9、 根据权利要求 7或 8所述自适应调整上下行带宽的装置, 其特征在 于, 在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指示所述 协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量、 借用带宽 的位置;
或者, 在所述 PBCH对应的逻辑信道消息中的剩余十比特中携带: 指 示所述协调带宽为下行借用或上行借用的标识信息、 借用带宽的数量; 所 述借用带宽的位置为预先配置。
10、 根据权利要求 6、 7或 8所述自适应调整上下行带宽的装置, 其特 征在于, 所述终端在接收到所述逻辑信道消息后, 通过解析所述逻辑信道 消息, 获得所述上下行带宽需要变化的方向、 数量和位置, 并依此对上下 行的带宽进行重新协调。
PCT/CN2010/078412 2010-06-28 2010-11-04 一种自适应调整上下行带宽的方法和装置 WO2012000266A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10853969.3A EP2533476B1 (en) 2010-06-28 2010-11-04 Method and device for adaptive adjusting uplink and downlink bandwidth
US13/583,005 US8730900B2 (en) 2010-06-28 2010-11-04 Method and device for adaptive adjusting uplink and downlink bandwidth
BR112012022725A BR112012022725A2 (pt) 2010-06-28 2011-11-04 "método para ajustar de modo adptativo a largura de banda de enlance ascendente e enlance descendente e dispositivo para ajustar de modo adaptativo a largura de banda de enlance ascendente e enlance descendente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010220682.9 2010-06-28
CN2010102206829A CN102300316A (zh) 2010-06-28 2010-06-28 一种自适应调整上下行带宽的方法和装置

Publications (1)

Publication Number Publication Date
WO2012000266A1 true WO2012000266A1 (zh) 2012-01-05

Family

ID=45360403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078412 WO2012000266A1 (zh) 2010-06-28 2010-11-04 一种自适应调整上下行带宽的方法和装置

Country Status (5)

Country Link
US (1) US8730900B2 (zh)
EP (1) EP2533476B1 (zh)
CN (1) CN102300316A (zh)
BR (1) BR112012022725A2 (zh)
WO (1) WO2012000266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184819A1 (en) * 2012-06-05 2013-12-12 Qualcomm Incorporated Uplink downlink resource partitions in access point design
CN111357346A (zh) * 2017-11-16 2020-06-30 诺基亚通信公司 蜂窝网络中的自适应传输方向选择

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2807860A4 (en) * 2012-01-23 2016-04-13 Intel Corp NETWORK-SUPPORTED USER LINK AND RELEASE PROCESS FOR INTEGRATED HETEROGENIC MULTI-RAT NETWORKS
CN102905374B (zh) * 2012-10-12 2015-05-27 华为技术有限公司 资源的分配方法和装置
CN103037447A (zh) * 2012-12-21 2013-04-10 深圳市国电科技通信有限公司 一种无线通信系统中动态带宽分配的自适应双工方法
EP2995150B1 (en) * 2013-05-07 2017-04-05 Telefonaktiebolaget LM Ericsson (publ) Mobile station, network node, and methods for assigning resource blocks to the mobile station
CN105009656A (zh) * 2014-01-29 2015-10-28 华为技术有限公司 时钟同步方法和装置
CN103889011A (zh) * 2014-04-09 2014-06-25 上海斐讯数据通信技术有限公司 一种基于wlan无线带宽评估的无线带宽选择方法及系统
US10462792B2 (en) * 2015-05-29 2019-10-29 Apple Inc. Determining a location of a UE within a coverage area
US10581680B2 (en) 2015-11-25 2020-03-03 International Business Machines Corporation Dynamic configuration of network features
US9923839B2 (en) * 2015-11-25 2018-03-20 International Business Machines Corporation Configuring resources to exploit elastic network capability
JP2019501543A (ja) 2016-11-05 2019-01-17 アップル インコーポレイテッドApple Inc. 非対称帯域幅サポート及び動的帯域幅調節
CN108064451A (zh) * 2017-03-23 2018-05-22 深圳市大疆创新科技有限公司 飞行器及其外部设备、通信方法、装置与系统
US11469945B2 (en) * 2017-04-03 2022-10-11 Qualcomm Incorporated Dynamic bandwidth configuration in narrowband communication
KR102702084B1 (ko) * 2018-04-12 2024-09-04 삼성전자주식회사 무선 통신 시스템에서 자원 할당 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166182A (zh) * 2006-10-18 2008-04-23 中国电信股份有限公司 基于面板操作的宽带接入带宽调节方法及系统
CN101212765A (zh) * 2006-12-29 2008-07-02 大唐移动通信设备有限公司 一种资源调度方法及系统
US20090201838A1 (en) * 2008-02-08 2009-08-13 Wenfeng Zhang Dynamic adjustment of downlink/uplink allocation ratio in tdd wireless systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112326A (ja) * 2000-10-02 2002-04-12 Ntt Docomo Inc 無線リソース割当方法及び基地局装置
CN101026468A (zh) * 2006-02-20 2007-08-29 华为技术有限公司 一种业务数据的传输方法及装置
CN101505507B (zh) * 2009-03-05 2011-05-11 华为技术有限公司 调整上行和下行子帧比例的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166182A (zh) * 2006-10-18 2008-04-23 中国电信股份有限公司 基于面板操作的宽带接入带宽调节方法及系统
CN101212765A (zh) * 2006-12-29 2008-07-02 大唐移动通信设备有限公司 一种资源调度方法及系统
US20090201838A1 (en) * 2008-02-08 2009-08-13 Wenfeng Zhang Dynamic adjustment of downlink/uplink allocation ratio in tdd wireless systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184819A1 (en) * 2012-06-05 2013-12-12 Qualcomm Incorporated Uplink downlink resource partitions in access point design
US9119074B2 (en) 2012-06-05 2015-08-25 Qualcomm Incorporated Uplink downlink resource partitions in access point design
CN111357346A (zh) * 2017-11-16 2020-06-30 诺基亚通信公司 蜂窝网络中的自适应传输方向选择
CN111357346B (zh) * 2017-11-16 2023-09-01 诺基亚通信公司 蜂窝网络中的自适应传输方向选择

Also Published As

Publication number Publication date
BR112012022725A2 (pt) 2017-12-12
US8730900B2 (en) 2014-05-20
US20130121268A1 (en) 2013-05-16
EP2533476A4 (en) 2016-12-21
CN102300316A (zh) 2011-12-28
EP2533476B1 (en) 2019-12-04
EP2533476A1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2012000266A1 (zh) 一种自适应调整上下行带宽的方法和装置
EP2509380B1 (en) Method and device for distributing and scheduling wireless resources in orthogonal frequency division multiplexing system
EP2901731B1 (en) Methods and devices for radio communication configuration
JP5602239B2 (ja) 柔軟な搬送波集約のための信号方式
US8040815B2 (en) Spectrum coordination controller
US20150304855A1 (en) Systems and methods for concurrent spectrum usage within actively used spectrum
US20120287885A1 (en) Method and Device for Distributing and Scheduling Wireless Resources in Orthogonal Frequency Division Multiplexing System
US20120127905A1 (en) Scheduling Data Transmissions Between a Mobile Terminal and a Base Station in a Wireless Communications Network
TW201438497A (zh) 通訊設備和方法
CN101860912A (zh) 一种资源分配方法、装置和系统
WO2009155841A1 (zh) 资源分配的方法、系统和装置
CN102065551B (zh) 在毫微微小区之间防止pdcch干扰的方法、系统及装置
JP2015507870A (ja) 半二重および全二重のための通信装置および通信方法
Rakesh et al. A survey of mobile WiMAX IEEE 802.16 m standard
WO2012000278A1 (zh) Tdd系统与fdd系统间实现频谱协调的方法及装置
CN110731113B (zh) 数据传输方法、装置及存储介质
CN105874858B (zh) 多收发机配置方法、多收发机的信道复用方法及装置
CN111698769B (zh) 数据发送方法、装置及系统
Lee et al. Efficient QoS scheduling algorithm for multimedia services in IEEE 802.11 e WLAN
CN102932891A (zh) 上行接入开环功率控制的方法及装置
CN115104342A (zh) 缓冲器状态报告的连续性
CN102802264A (zh) 一种部分频率复用的资源分配方法与装置
WO2010075656A1 (zh) 用于多带时分双工系统的通信方法及装置
WO2019157897A1 (zh) 一种上行数据的发送方法、接收方法和装置
WO2011014991A1 (zh) 帧结构配置方法及相应的基站、用户设备和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7635/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13583005

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010853969

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022725

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012022725

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022725

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120910