WO2012000249A1 - Method and system for realizing co-channel interference monitoring and disposal - Google Patents

Method and system for realizing co-channel interference monitoring and disposal Download PDF

Info

Publication number
WO2012000249A1
WO2012000249A1 PCT/CN2010/077719 CN2010077719W WO2012000249A1 WO 2012000249 A1 WO2012000249 A1 WO 2012000249A1 CN 2010077719 W CN2010077719 W CN 2010077719W WO 2012000249 A1 WO2012000249 A1 WO 2012000249A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
frequency interference
serving base
monitoring
rrm
Prior art date
Application number
PCT/CN2010/077719
Other languages
French (fr)
Chinese (zh)
Inventor
王忠磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012000249A1 publication Critical patent/WO2012000249A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and system for realizing co-channel interference monitoring and disposal are provided. The method includes: obtaining the wireless configuration information of a service base station and a target base station; according to the obtained wireless configuration information, calculating whether the co-channel interference exists and the degree of the co-channel interference; according to the wireless configuration status of the service base station and the target base station, providing the optimum scheme for reducing the co-channel interference, thereby controlling and changing the frequency band of the service base station, and reducing the degree of the co-channel interference in Worldwide Interoperability for Microwave Access(WiMAX) network effectively.

Description

一种实现同频干扰监测与处理的方法和系统 技术领域 本发明涉及 WiMAX无线通信系统中同频千扰的监测与处理技术, 具体 涉及一种在相邻小区间实现同频千 4尤监测与处理的方法和系统。 背景技术  TECHNICAL FIELD The present invention relates to the same-frequency interference monitoring and processing technology in a WiMAX wireless communication system, and particularly relates to a similar frequency monitoring between adjacent cells. Processing methods and systems. Background technique
WiMAX (Worldwide Interoperability for Microwave Access,微波存耳又全球 互通,又称 802.16无线城域网)系统, 和所有其他通信系统一样, 也存在着一 个固有问题, 那就是频段资源问题。 在艮多商用环境下, WiMAX运营商通 常只能获取到有限的频段资源, 所以在某些热点区域就会出现相邻小区使用 同一个频点的情况。 在大量开站以及多家设备厂商共同组网的时候, 整个网 络配置情况无法准确知道, 或是较易出现人为操作失误, 导致在网络中存在 相邻小区间的同频千扰, 从而影响到这些地区的网络覆盖质量和用户体验感 觉。 发明内容 本发明要解决的主要技术问题是, 提供一种 WiMAX系统中的相邻小区 间实现同频千扰监测与处理的方法和系统, 它能有效降低 WiMAX网络中同 频千扰程度。 为解决上述技术问题,本发明提供一种实现同频千扰监测与处理的方法, 包括: 获取艮务基站和目标基站的无线配置信息; 根据获取的无线配置信息,监测服务基站与目标基站是否存在同频千扰, 以及同频千扰程度; 根据监测的同频千扰信息, 对服务基站进行无线配置优化。 在一种实施例中, 该方法还包括对 RRM (无线资源管理)应答消息进行 扩展, 在所述 RRM应答消息体中增加所属基站的无线配置信息构成扩展的 RRM应答消息; 所述获取服务基站和目标基站的无线配置信息包括: 通过向 服务基站和目标基站发送 RRM请求消息, 根据服务基站和目标基站反馈扩 展的 RRM应答消息, 从扩展的应答消息中获取服务基站和目标基站的无线 配置信息。 所述监测服务基站与目标基站是否存在同频千扰, 以及同频千扰程度包 括: 根据相同逻辑子信道在服务基站和目标基站中映射出的物理子信道是否 存在重复判断是否存在同频千扰; 并根据重复比例确定同频千扰程度。 所述物理子信道重复的判断包括: 根据上下行子帧中物理子信道和逻辑 子信道的映射关系分别进行下行子帧的同频千扰监测和上行子帧的同频千扰 监测。 所述 居监测的同频千 4尤信息, 对艮务基站进行无线配置优化的包括: 根据服务基站的无线配置参数的调整空间, 确定出可以降低上下行子帧中物 理子信道重复程度的服务基站无线配置参数, 使用服务基站无线配置参数对 服务基站进行无线配置优化。 一种实现同频千 4尤自动监测与处理的系统, 包括: 无线配置信息获取单 元, 设置为获取艮务基站和目标基站的无线配置信息; 同频千 4尤监测单元, 设置为根据获取的无线配置信息, 监测服务基站与目标基站是否存在同频千 扰, 以及同频千扰程度; 优化单元, 设置为根据监测的同频千扰信息, 对服 务基站进行无线配置优化。 在一种实施例中,所述系统还包括 RRM应答消息扩展单元,用于在 RRM 应答消息体中增加所属基站的无线配置信息构成扩展的 RRM应答消息; 所 述无线配置信息获取单元获取信息方式包括: 通过向服务基站和目标基站发 送 RRM请求消息,根据服务基站和目标基站反馈的扩展的 RRM应答消息获 取基站的无线配置信息, 从扩展的应答消息中获取月艮务基站和目标基站的无 线配置消息。 所述同频千 4尤监测单元进行同频监测的方式包括: 才艮据相同逻辑子信道 在服务基站和目标基站中映射出的物理子信道是否存在重复判断是否存在同 频千扰; 并根据重复比例确定同频千扰程度。 所述同频千扰监测单元进行物理子信道重复的判断包括: 根据上下行子 帧中物理子信道和逻辑子信道的映射关系分别进行下行子帧的同频千扰监测 和上行子帧的同频千 4尤监测。 所述优化单元通过以下方式根据监测的同频千扰信息, 对服务基站进行 无线配置优化: 才艮据月艮务基站的无线配置参数的调整空间, 确定出可以降氐 上下行子帧中物理子信道重复程度的服务基站无线配置参数, 使用服务基站 参数对服务基站进行无线配置优化。 一种实现同频千扰自动监测与处理的系统, 包括: 服务基站、 目标基站、 接入网关和后台配置单元; 其中所述服务基站设置为发送的 RRM请求通过 所述接入网关转发到所述目标基站, 所述目标基站设置为通过所述接入网关 向所述艮务基站反馈扩展的 RRM应答消息; 所述艮务基站还设置为从所述 RRM 应答信息中获取所述目标基站的无线配置信息, 监测是否存在同频千 4尤, 以及同频千 4尤程度, 并将监测结果发送到后台配置单元; 所述后台配置 单元设置为根据收到的监测结果对服务基站进行无线配置优化。 在一类实施例中, 所述的服务基站中包括同频千扰监测与处理单元, 所 述同频千扰监测与处理单元设置为监测是否存在同频千扰, 以及同频千扰程 度, 以及将监测结果发送到后台配置单元。 本发明的有益效果是: 通过获取服务基站和目标基站的无线配置信息, 监测服务基站与目标基站是否存在同频千扰, 以及同频千扰程度, 并确定降 低同频千扰的服务基站无线配置优化方案, 对服务基站进行无线配置优化, 有效降低 WiMAX网络中同频千扰程度, 提高网络覆盖质量。 附图说明 图 1是本发明 WiMAX无线通信系统实施例的工作原理示意图; 图 2是本发明实施例中相邻小区间 zone size划分一致的模型图; 图 3是本发明实施例中相邻小区间 zone size划分不一致的模型图; 图 4是本发明在 WiMAX无线通信系统中同频千扰监测与处理方法实施 例流程图。 具体实施方式 下面通过具体实施方式结合附图对本发明作进一步详细说明。 如图 1所示本发明一种 WiMAX系统中实现相邻小区间同频千扰自动监 测与处理的方法的优选实施例在 WiMAX无线通信系统的工作原理示意图。 其中, 月艮务基站 110的 RRM消息处理单元 112发送无线配置请求消息给接 入网关 (AGW ) 100, 接入网关直接将该消息转发到目标基站 120 的 RRM 消息处理单元 122, 目标基站 120的 RRM消息处理单元 122向目标基站 120 的配置处理单元 121获取目标基站 120的无线配置信息, 然后将这些信息通 过 RRM应答消息回复到接入网关 100, 该 RRM应答消息为扩展的 RRM应 答消息, 即在现有协议的 RRM应答消息体中增加同频千扰检测的相关参数 构成扩展的 RRM应答消息; 接入网关 100再转发该消息回给服务基站 110, 完成 RRM消息的 4艮告流程。月艮务基站 110的 RRM消息处理单元 112接收到 接入网关 100转发过来的 RRM应答消息后, 经过对消息的处理, 提取出同 频千扰监测与处理单元 113需要的参数集。 服务基站的同频千扰监测与处理 单元 113在接收到 RRM消息处理单元 112提供的目标基站 120的无线配置 信息后, 利用本发明提供的同频千扰监测机制(参见后述), 判断并输出相邻 小区的同频千扰程度, 以及最佳降低同频千扰的配置优化方案。 并将该方案 发送到后台配置单元 (EMS ) 200。 后台配置单元 200才艮据同频千 4尤监测与 处理单元 113上 4艮的优化方案作出对艮务基站 110的配置优化。 如图 4并结合图 1 , 本发明一种 WiMAX系统中实现相邻小区间同频千 扰自动监测与处理的方法的具体实施例, 在服务基站对相邻小区同频千扰监 测与处理过程具体实施例的流程如下: S401 , 月艮务基站 110启动, 通过 RRM消息处理单元 112发送无线配置 请求消息给接入网关 100。 WiMAX (Worldwide Interoperability for Microwave Access, also known as 802.16 wireless metropolitan area network) system, like all other communication systems, also has an inherent problem, that is, the frequency band resource problem. In many commercial environments, WiMAX operators usually only have access to limited frequency band resources. Therefore, in some hotspot areas, neighboring cells use the same frequency point. When a large number of stations are opened and a number of device vendors are co-networking, the entire network configuration cannot be accurately known, or human error is more likely to occur, resulting in the same frequency interference between adjacent cells in the network, thus affecting The network coverage quality and user experience feel in these areas. SUMMARY OF THE INVENTION The main technical problem to be solved by the present invention is to provide a method and system for implementing the same-frequency interference monitoring and processing between adjacent cells in a WiMAX system, which can effectively reduce the same-frequency interference in the WiMAX network. To solve the above technical problem, the present invention provides a method for implementing the same-frequency interference monitoring and processing, including: acquiring wireless configuration information of a service base station and a target base station; and monitoring whether the serving base station and the target base station are based on the acquired wireless configuration information. There are the same frequency interference, and the same frequency interference degree; According to the monitored same frequency interference information, the wireless configuration of the serving base station is optimized. In an embodiment, the method further includes: extending an RRM (Radio Resource Management) response message, adding, in the RRM response message body, the radio configuration information of the subordinate base station to form an extended RRM response message; And the wireless configuration information of the target base station includes: The serving base station and the target base station send an RRM request message, and obtain the wireless configuration information of the serving base station and the target base station from the extended response message according to the extended RRM response message fed back by the serving base station and the target base station. Whether the monitoring service base station and the target base station have the same frequency interference, and the same frequency interference degree include: whether the physical subchannel mapped in the serving base station and the target base station is repeatedly determined according to the same logical subchannel, whether there is the same frequency Disturbance; and determine the degree of co-frequency interference according to the repetition ratio. The determining of the physical subchannel repetition includes: performing the same-frequency interference monitoring of the downlink subframe and the same-frequency interference monitoring of the uplink subframe according to the mapping relationship between the physical subchannel and the logical subchannel in the uplink and downlink subframes. The monitoring of the same-frequency information, the wireless configuration optimization of the service base station includes: determining, according to the adjustment space of the wireless base configuration parameter of the serving base station, a service that can reduce the degree of repetition of the physical sub-channel in the uplink-downlink subframe The base station wireless configuration parameters are used to optimize the wireless configuration of the serving base station using the serving base station wireless configuration parameters. A system for realizing automatic frequency monitoring and processing of the same frequency, including: a wireless configuration information acquiring unit, configured to acquire wireless configuration information of the service base station and the target base station; and the same frequency monitoring unit, configured to be acquired according to The wireless configuration information is used to monitor whether the serving base station and the target base station have the same frequency interference and the same frequency interference degree; and the optimization unit is configured to perform wireless configuration optimization on the serving base station according to the monitored same frequency interference information. In an embodiment, the system further includes an RRM response message extension unit, configured to add, in the RRM response message body, the wireless configuration information of the associated base station to form an extended RRM response message; and the wireless configuration information acquiring unit acquires the information mode. The method includes: sending, by using the RRM request message to the serving base station and the target base station, acquiring the wireless configuration information of the base station according to the extended RRM response message fed back by the serving base station and the target base station, and acquiring the wireless information of the monthly base station and the target base station from the extended response message. Configure the message. The manner of performing the same frequency monitoring by the same frequency monitoring unit includes: determining whether there is a same frequency interference in the physical subchannel mapped in the serving base station and the target base station according to the same logical subchannel; The repetition ratio determines the degree of co-frequency interference. The determining, by the same-frequency interference monitoring unit, the physical sub-channel repetition includes: performing the same-frequency interference monitoring of the downlink subframe and the same as the uplink subframe according to the mapping relationship between the physical sub-channel and the logical sub-channel in the uplink-downlink subframe Frequency thousand 4 especially monitoring. The optimization unit performs wireless configuration optimization on the serving base station according to the monitored intra-frequency interference information in the following manner: According to the adjustment space of the wireless configuration parameter of the monthly service base station, it is determined that the physical medium in the uplink and downlink subframes can be lowered. The serving base station radio configuration parameters of the subchannel repetition degree are used to optimize the wireless configuration of the serving base station using the serving base station parameters. A system for implementing automatic monitoring and processing of the same frequency interference includes: a serving base station, a target base station, an access gateway, and a background configuration unit; wherein the serving base station is configured to send the RRM request to be forwarded to the office through the access gateway a target base station, the target base station is configured to feed back an extended RRM response message to the service base station by using the access gateway; the service base station is further configured to acquire the target base station from the RRM response information. Wireless configuration information, monitoring whether there is a same frequency, and the same frequency, and transmitting the monitoring result to the background configuration unit; the background configuration unit is configured to wirelessly configure the serving base station according to the received monitoring result. optimization. In a type of embodiment, the serving base station includes an intra-frequency interference monitoring and processing unit, and the same-frequency interference monitoring and processing unit is configured to monitor whether there is a frequency interference, and a frequency interference degree. And send the monitoring results to the background configuration unit. The invention has the following beneficial effects:: by acquiring the wireless configuration information of the serving base station and the target base station, monitoring whether the serving base station and the target base station have the same frequency interference, and the same frequency interference degree, and determining the wireless base of the serving base station that reduces the same frequency interference. The configuration optimization scheme optimizes the wireless configuration of the serving base station, effectively reducing the frequency interference of the same frequency in the WiMAX network, and improving the network coverage quality. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the working principle of an embodiment of a WiMAX wireless communication system according to the present invention; FIG. 2 is a model diagram showing a consistent zone size division between adjacent cells in the embodiment of the present invention; FIG. 3 is a neighboring cell in the embodiment of the present invention; FIG. 4 is a flow chart of an embodiment of a method for monitoring and processing the same frequency interference in the WiMAX wireless communication system according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be further described in detail by way of specific embodiments with reference to the accompanying drawings. As shown in FIG. 1 , a WiMAX system of the present invention implements automatic monitoring of intra-frequency interference between adjacent cells. A preferred embodiment of the method of measurement and processing is a schematic diagram of the operation of a WiMAX wireless communication system. The RRM message processing unit 112 of the monthly base station 110 sends a radio configuration request message to the access gateway (AGW) 100, and the access gateway directly forwards the message to the RRM message processing unit 122 of the target base station 120, where the target base station 120 The RRM message processing unit 122 acquires the wireless configuration information of the target base station 120 from the configuration processing unit 121 of the target base station 120, and then returns the information to the access gateway 100 through the RRM response message, where the RRM response message is an extended RRM response message, ie Adding the relevant parameters of the same-frequency interference detection to the RRM response message body of the existing protocol constitutes an extended RRM response message; the access gateway 100 forwards the message back to the serving base station 110 to complete the 4 error reporting procedure of the RRM message. After receiving the RRM response message forwarded by the access gateway 100, the RRM message processing unit 112 of the monthly service base station 110 extracts the parameter set required by the intra-frequency interference monitoring and processing unit 113 after processing the message. After receiving the wireless configuration information of the target base station 120 provided by the RRM message processing unit 112, the intra-frequency interference monitoring and processing unit 113 of the serving base station uses the same-frequency interference monitoring mechanism (see below) provided by the present invention to determine and Output the same-frequency interference level of neighboring cells, and optimize the configuration scheme for optimally reducing the same-frequency interference. The scheme is sent to the background configuration unit (EMS) 200. The background configuration unit 200 optimizes the configuration of the service base station 110 according to the optimization scheme of the same frequency on the monitoring and processing unit 113. As shown in FIG. 4 and in conjunction with FIG. 1, a specific embodiment of a method for realizing automatic frequency-interference monitoring and processing between adjacent cells in a WiMAX system, the same-frequency interference monitoring and processing process of a neighboring cell in a serving base station The flow of the specific embodiment is as follows: S401: The monthly service base station 110 starts, and sends a wireless configuration request message to the access gateway 100 through the RRM message processing unit 112.
5402, 接入网关转发该消息到目标基站 120的 RRM消息处理单元 122。 5402. The access gateway forwards the message to the RRM message processing unit 122 of the target base station 120.
5403、 404, 目标基站 120的 RRM消息处理单元 122接) 到 RRM无线 配置请求消息后, 通过目标基站的配置处理单元 121获取目标基站 120的无 线配置信息。 5403, 404, the RRM message processing unit 122 of the target base station 120 receives the RRM radio configuration request message, and obtains the wireless configuration information of the target base station 120 by the configuration processing unit 121 of the target base station.
5405 , 目标基站 120反馈 RRM应答消息到接入网关 100, 该 RRM应答 消息为扩展的 RRM应答消息,即在所述 RRM应答消息体中增加所属基站的 无线配置信息。 S405, the target base station 120 feeds back the RRM response message to the access gateway 100, where the RRM response message is an extended RRM response message, that is, the radio configuration information of the associated base station is added to the RRM response message body.
5406, 接入网关 100转发该消息到服务基站的 RRM消息处理单元 112. S407 ,月艮务基站 110的 RRM消息处理单元 112接收到该 RRM应答消息 后, 将目标基站 120的无线配置信息提取出来, 送到服务基站的同频千扰监 测与处理单元 113。 5406, the access gateway 100 forwards the message to the RRM message processing unit 112 of the serving base station, and the RRM message processing unit 112 of the monthly base station 110 receives the RRM response message. Thereafter, the wireless configuration information of the target base station 120 is extracted and sent to the intra-frequency interference monitoring and processing unit 113 of the serving base station.
5408, 服务基站 110的同频千扰监测与处理单元 113按照本发明提出的 同频千扰监测机制,计算出服务基站 110与目标基站 120间的同频千扰程度, 并将无线配置优化方案发送到后台配置单元 200。 5408. The intra-frequency interference monitoring and processing unit 113 of the serving base station 110 calculates the same-frequency interference degree between the serving base station 110 and the target base station 120 according to the same-frequency interference monitoring mechanism proposed by the present invention, and optimizes the wireless configuration. Send to the background configuration unit 200.
5409, 后台配置单元 200按照 艮务基站 110的无线配置优化方案通知月艮 务基站 110的配置处理单元 111 , 完成对艮务基站 110的无线配置优化。 5409. The background configuration unit 200 notifies the configuration processing unit 111 of the monthly base station 110 according to the wireless configuration optimization scheme of the service base station 110, and completes wireless configuration optimization for the service base station 110.
5410, 411、 412, 月艮务基站 110的配置处理单元 111在完成配置变更后, 通知月艮务基站的 RRM消息处理单元 112 同频千 4尤监测与处理优化完成, 服 务基站 RRM消息处理单元 112随后通过接入网关 100的转发,接入网关 100 向目标基站 120发送 RRM确认消息。 综上所述, 本发明使得 WiMAX系统在釆用同频组网情况下, 对同频千 扰进行系统的自动监测与处理, 大大提高了系统的覆盖质量, 降低了同频千 扰对网络服务的影响。 本发明的一个主要创新点是对 RRM 应答消息的扩展, 在标准的5410, 411, 412, the configuration processing unit 111 of the monthly service base station 110 notifies the RRM message processing unit 112 of the monthly service base station to complete the monitoring and processing optimization after the configuration change is completed, and the serving base station RRM message processing unit The access gateway 100 then transmits an RRM acknowledgement message to the target base station 120 by forwarding of the access gateway 100. In summary, the present invention enables the WiMAX system to automatically monitor and process the same-frequency interference in the case of using the same-frequency networking, thereby greatly improving the coverage quality of the system and reducing the network interference of the same-frequency interference. Impact. A major innovation of the present invention is the extension of the RRM response message, in the standard
NWG1.3.1版本中, RRM应答消息中携带了部分无线配置信息, 但是这些信 息不能实现完整的同频千扰检测, 因此本发明提出在 RRM应答消息中增加 同频千扰检测的所有参数。 以下详细介绍本发明的同频千扰监测与处理机制的实施方式。 当细化到以 ZONE (区域) 为基本单元, 该机制的原则是在相邻基站釆 用相同频点时, 判断这两个基站对应位置的 ZONE是否存在同频千扰, 以及 同频千扰程度, 并通过服务基站的同频千扰监测处理单元计算出最佳降低同 频千 4尤的无线配置优化方案。 在 ZONE的判断中, 主要通过判断相邻基站对 应位置 ZONE相同逻辑子信道映射出的物理子信道是否存在重复, 存在重复 则必然有同频千 4尤, 并才艮据重复比例判断这两个相邻小区在这组对应 ZONE 中的同频千扰程度。 举个简单的例子, 基站在发送数据时, 是按照逻辑子信 道编码的, 如果基站 A和 B都在逻辑子信道 1上发送了数据, 那么 A将逻 辑子信道映射到物理子信道 ^上,而 Β将逻辑子信道映射到物理子信道/?上, 那么基站 Α和 Β实际传输数据就不会产生千扰。 按照这种方式, 将所有逻辑 子信道与其映射的物理子信道统计出重复比例,即可判断基站 A和 B同频千 扰的程度。 根据 IEEE 802. 16e (移动宽带无线接入的标准) 的定义, 每个下行或上 行子帧都可以包含多个 ZONE, 每个 ZONE的大小, 位置, 以及使用的逻辑 子信道和物理子信道都是基站配置决定的, 涉及的参数有: In the NWG version 1.3.1, the RRM response message carries some wireless configuration information, but the information cannot implement complete intra-frequency interference detection. Therefore, the present invention proposes to increase all parameters of the same-frequency interference detection in the RRM response message. The implementation of the same frequency interference monitoring and processing mechanism of the present invention is described in detail below. When refined to ZONE (region) as the basic unit, the principle of the mechanism is to determine whether the ZONE corresponding to the two base stations has the same frequency interference and the same frequency interference when the same frequency point is used by the neighboring base stations. To the extent, and through the co-frequency interference monitoring processing unit of the serving base station, the wireless configuration optimization scheme for optimally reducing the same frequency is calculated. In the judgment of ZONE, it is mainly determined whether there is a repetition of the physical subchannel mapped by the same logical subchannel corresponding to the location ZONE of the neighboring base station, and if there is a repetition, there must be a frequency of the same frequency, and the two are judged according to the repetition ratio. The degree of co-frequency interference of neighboring cells in this group of corresponding ZONEs. For a simple example, when the base station transmits data, it is coded according to a logical subchannel. If both base stations A and B transmit data on logical subchannel 1, then A maps the logical subchannel to the physical subchannel. And 映射 map logical subchannels to physical subchannels/? On, then the base station Α and Β actually transmit data will not cause interference. In this way, all logic will be The subchannels and their mapped physical subchannels are counted in a repeating ratio, and the degree of co-frequency interference of the base stations A and B can be determined. According to the definition of IEEE 802.16e (standard for mobile broadband wireless access), each downlink or uplink subframe can contain multiple ZONEs, the size and location of each ZONE, and the logical subchannels and physical subchannels used. It is determined by the base station configuration. The parameters involved are:
NWG1.3.1 原消息格式包含的参数有 (参见 IEEE 802. 16e 协议的 R6 Radio_Config_Update_Rpt参数表中): Frequency: 频点 ( DCD Setting中); UL allocated subchannels bitmap: 上行子帧指示使用的還辑子信道 ( UCD Setting中;); UL Permbase: 上行子帧强制 zone的 Permbase , 用于计算還辑 子信道映射的物理子信道 (UCD Setting中)。 本发明提出的扩展 RRM应答消息的参数如下表: The NWG1.3.1 original message format contains parameters (see the R6 Radio_Config_Update_Rpt parameter table of the IEEE 802.16e protocol): Frequency: Frequency (in DCD Setting); UL allocated subchannels bitmap: Upstream subframe indicates the used subchannel (UCD Setting;); UL Permbase: Permbase of the uplink subframe mandatory zone, used to calculate the physical subchannel (in UCD Setting) of the subchannel mapping. The parameters of the extended RRM response message proposed by the present invention are as follows:
Figure imgf000008_0001
表中:
Figure imgf000008_0001
In the table:
Preamble Index (前导序号;): 决定使用的 Segment ID (载扇标识;); Used Subchannel bitmap (使用子信道的位图;):决定使用的下行强制 zone 使用的逻辑子信道组,以及可选 zone在不指定使用全部子信道时的逻辑子信 道组; Preamble Index: Determines the segment ID used (the fan ID;); Used Subchannel bitmap (the bitmap using the subchannel;): Determines the downstream mandatory zone to use The logical subchannel group used, and the optional zone do not specify a logical subchannel group when all subchannels are used;
DL Zone Qty: 下行可选 zone个数; DL Zone Index: 下行可选 zone的索引; Indicator to use all DL subchannels (子信道 ): 指示当前下行可选 zone是 否使用全部子信道; DL Zone Qty: Downstream selectable zone number; DL Zone Index: Downstream selectable zone index; Indicator to use all DL subchannels: Indicates whether the current downlink optional zone uses all subchannels;
DL zone permutation base (下行可选区 列基数 ): 指示当前下行可选 zone使用的 Permbase (置换基), 用于计算逻辑子信道映射的物理子信道; DL zone permutation base: Permbase (replacement base) indicating the current downlink optional zone, used to calculate the physical subchannel of the logical subchannel mapping;
DL zone size: 当前下行可选 zone的大小; UL Zone Qty: 上行可选 zone个数; DL zone size: the size of the current downlink optional zone; UL Zone Qty: the number of upstream optional zones;
UL Zone Index: 上行可选 zone的索引; UL Zone Index: index of the upstream optional zone;
Indicator to use all UL subchannels: 指示当前上行可选 zone是否使用全 部子信道; Indicator to use all UL subchannels: Indicates whether the current uplink optional zone uses all subchannels;
UL zone permutation base: 才旨示当前上行可选 zone使用的 Permbase, 用 于计算逻辑子信道映射的物理子信道; UL zone permutation base: Permbase used by the current upstream optional zone to calculate the physical subchannel of the logical subchannel mapping;
UL zone size: 当前上行可选 zone的大小; UL zone size: the size of the current upstream optional zone;
WiMAX OFDMA PUSC 中物理子信道和還辑子信道的映射关系, 在 803.16e协议中均有相应的定义,该协议中分别提供了上行子帧中物理子信道 和逻辑子信道的映射关系以及下行子帧中物理子信道和逻辑子信道的映射关 系。 同频千扰监测与处理算法流程为: 首先判断服务基站与相邻小区是否釆用相同频点, 如果不是, 则直接返 回没有同频千 4尤, 否则进行: 接入网关转发 RRM无线配置请求消息到目标 基站的 RRM消息处理单元, 目标基站的 RRM消息处理单元接收到 RRM无 线配置请求消息后, 向目标基站的配置处理单元获取目标基站的无线配置信 息。 判断下行同频千扰, 具体过程是: 首先, 判断下行强制 zone和不使用全部子信道的可选 zone是否存在同 频千 4尤,在 WiMAX系统中,下行强制 zone和不使用全部子信道的可选 zone, 其逻辑子信道与物理子信道是按照固定的序列 ( RenumberingSeqeunce )进行 映射, 因此, 只需要判断对应位置 zone的逻辑子信道是否重复即可。 而判断 以上两类 zone使用的還辑子信道,按照 802.16e协议规定,通过参数 Preamble Index和 Used Subchannel bitmap , Indicator to use all DL subchannels进行判断。 判断过程具体为: 由于协议中规定了, 通过 Preamble Index (前导序号) 可 以判断基站使用的 Segment (载扇;), 802.16e中还规定 Segment 0必须包含 SubChannel Group 0, Segment 1必须包含 Subchannel Group 2, Segment 2必 须包含 SubChannel Group 4 , 也就是说如果 Segment相同则必然存在同频千The mapping relationship between the physical subchannel and the subchannel in the WiMAX OFDMA PUSC is defined in the 803.16e protocol. The mapping between the physical subchannel and the logical subchannel in the uplink subframe and the downlink subroutine are respectively provided in the protocol. The mapping relationship between physical subchannels and logical subchannels in a frame. The same-frequency interference monitoring and processing algorithm flow is: First, it is determined whether the serving base station and the neighboring cell use the same frequency point. If not, the direct return does not have the same frequency, especially if: The access gateway forwards the RRM wireless configuration request. The message is sent to the RRM message processing unit of the target base station, and after receiving the RRM radio configuration request message, the RRM message processing unit of the target base station acquires the wireless configuration information of the target base station from the configuration processing unit of the target base station. To determine the downlink same-frequency interference, the specific process is as follows: First, determine whether the downlink mandatory zone and the optional zone that does not use all the subchannels have the same frequency. In the WiMAX system, the downlink mandatory zone does not use all the subchannels. The optional zone has a logical subchannel and a physical subchannel mapped according to a fixed sequence (RenumberingSeqeunce). Therefore, it is only necessary to determine whether the logical subchannel of the corresponding location zone is repeated. And judging the sub-channels used by the above two types of zones, according to the 802.16e protocol, the parameters are judged by the parameters Preamble Index and Used Subchannel bitmap, Indicator to use all DL subchannels. The judgment process is specifically as follows: As specified in the protocol, the Preamble Index can be used to determine the segment used by the base station; the 802.16e also specifies that the Segment 0 must include the SubChannel Group 0, and the Segment 1 must include the Subchannel Group 2 , Segment 2 must contain SubChannel Group 4, which means that if the Segment is the same, there must be the same frequency
4尤, 则输出 4艮告条例 Segment冲突, 并给出针对 Preamble Index的一条 优化配置方案, 使得这两个基站以上两类 zone属于不同的 Segment。 如果相 邻基站属于不同的 Segment, 对于上述两类 zone 使用的子信道组由 Used Subchannel bitmap字段描述, 如果判断两基站使用的子信道组有重复则判断 存在同频千扰, 输出报告条例——子信道组冲突, 并给出针对 Used Subchannel bitmap的一条优化配置方案,使得两个基站以上两类 zone上使用 的子信道组不重复。 其次,判断下行使用全部子信道的可选 zone的同频千 4尤程度,在 WiMAX 系统中, 下行使用全部子信道的可选 zone, 逻辑子信道与物理子信道的按照 序歹1 J ( RenumberingSeqeunce ) 和 Permbase 的偏移进行映射, 按照 802.16e 中描述, 通过参数 DL Zone Index, DL Zone Size, DL zone permutation base 和 Indicator to use all DL subchannels,就可以计算出每个使用全部子信道的可 选 zone 每个逻辑子信道映射的物理子信道映射, 然后遍历所有可用的 DL zone permutation base值,选择相同還辑子信道映射后的物理子信道重复比例 最小者作为推荐优化方案。 这里需要指出一点特殊情况, 对于通常情况下, 相邻小区间 zone size的 划分是一致的, 即如图 2所示, 基站 1和基站 2的对应 zone边界是对齐的。 但 802.16e协议允许 zone的灵活配置, 即可以存在图 3所示情况, 因此本发 明在这种情况下,对于 zone与 zone之间的重叠情况如图 3的 BS(基站)2 zone A与 BS l的 zoneA和 zone B,就需要将这两个 zone综合计算,先用 BS2 zone A与 BS 1 zone A按照前面介绍的方法遍历出 DL zone permutation base的 4舞荐 优化队列, 队列按照 DL zone permutation base最优到最差顺序排列, 相同方 法获得 BS2 zone A与 BS 1 zone B的 DL zone permutation base的队歹1 J , 取这 两个队列中对应位置第一个相同的值作为最优 DL zone permutation base值。 接着还需要判断上行同频千扰, 方法同下行子帧一样, 只是在协议中上 下行子帧在使用的子信道分配及使用的字段略有区别。 在 WiMAX系统中, 上行子帧的逻辑子信道与物理子信道之间规定了映射方式。 协议中, 在 Pt 序列固定的情况下, 映射关系即由 UL_Permbase决定。 具体过程是: 首先,判断上行强制 zone是否存在同频千扰,上行强制 zone的 PermBase 值是通过 UCD Setting中的 UL Permbase确定的, 而上行强制 zone使用的還 辑子信道是通过 UL allocated subchannels bitmap确定的, 代入前述公式 2中 即可判断两个相邻基站的上行强制 zone 相同逻辑子信道映射的物理子信道 是否存在重复, 以及存在重复的比例, 据此判断同频千扰程度, 并针对 UL PermBase和 UL allocated subchannels bitmap给出一条配置优 4匕方案, 使 得相邻基站相同逻辑子信道映射出的物理子信道重复比例最小; 其次,上行可选 zone的判断与下行可选 zone类似,使用参数 UL allocated subchannels bitmap , Indicator to use all UL subchannels, UL zone permutation base, UL Zone Index和 UL zone size就可以完成对上行可选 zone的同频千扰 监测与处理, 这里不再赘述。 当完成同频千扰监测与处理流程, 并根据上述流程中的 "接入网关 100 转发无线配置请求消到目标基站 120的 RRM消息处理单元 122, RRM消息 处理单元 122再向目标基站的配置处理单元 121转发"的输出报告汇总后给后 台配置单元。 本发明的核心思想是将上述方法中涉及到的基站配置参数利用 Radio_Config_Update_Rpt应答消息携带给相邻小区基站, 即可完成同频千扰 的监测与处理功能。 月艮务基站的同频千 4尤处理单元将优化方案上 4艮到后台配 置单元, 由后台配置单元完成对月艮务基站的无线配置优化。 在 NWG1.3.1-4.9.3.2.1中定义了 R6口的 Radio_Config_Update_Rpt消息 结构。 该结构体中只包含了相邻小区的 DCD ( downlink channel descriptor, 下行信道描述 ) 和 UCD ( uplink channel descriptor, 上行信道描述 ), 其中涉 及同频千扰监测的参数只有相邻小区的频点,以及上行子帧强制 zone使用的 逻辑子信道和 Permbase, 所以釆用标准的 RRM 应答消息结构并不能准确的 监 测 到 相 邻 小 区 的 同 频 千 扰程度 ; 本发 明 提 出 了 新 的 Radio Config Update Rpt应答消息格式,其中包含了本发明同频检测机制需 要的所有参数。 以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能 认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若千简单推演或 替换, 都应当视为属于本发明的保护范围。 4, in particular, the output 4 report regulations Segment conflict, and an optimized configuration scheme for the Preamble Index, so that the two types of zones above the two base stations belong to different segments. If the neighboring base stations belong to different segments, the subchannel group used by the two types of zones is described by the Used Subchannel bitmap field. If it is determined that the subchannel groups used by the two base stations are duplicated, it is judged that there is the same frequency interference, and the output report regulations are The subchannel group conflicts, and an optimized configuration scheme for the Used Subchannel bitmap is given, so that the subchannel groups used on the two types of zones above the two base stations are not repeated. Secondly, it is judged that the downlink of all the subchannels of the downlink uses the same frequency of the same frequency. In the WiMAX system, the downlink uses all the optional channels of the subchannel, and the logical subchannel and the physical subchannel are in the order of 1 J (RenumberingSeqeunce ) Mapping with Permbase's offset, as described in 802.16e, with the parameters DL Zone Index, DL Zone Size, DL zone permutation base and Indicator to use all DL subchannels, you can calculate the optional for each subchannel. Zone The physical subchannel mapping of each logical subchannel mapping, and then traversing all available DL zone permutation base values, and selecting the smallest of the physical subchannel repetition ratios after the same subchannel mapping is used as the recommended optimization scheme. Here, it is necessary to point out a special case. For the normal case, the division of the zone size between adjacent cells is consistent, that is, as shown in FIG. 2, the corresponding zone boundaries of the base station 1 and the base station 2 are aligned. However, the 802.16e protocol allows for flexible configuration of the zone, that is, the situation shown in FIG. 3 can exist. Therefore, in this case, the overlap between the zone and the zone is as shown in FIG. 3 for the BS (base station) 2 zone A and the BS. l zoneA and zone B, you need to calculate the two zones together, first use BS2 zone A and BS 1 zone A to traverse the DL zone permutation base according to the method described above. Optimization of the queue, the queue according to the DL zone permutation base order of best to worst, in the same manner to obtain BS2 zone A and BS 1 zone B of the DL zone permutation base team bad 1 J, taking both the position corresponding to the first queue The same value is used as the optimal DL zone permutation base value. Then, it is necessary to judge the uplink co-channel interference, and the method is the same as the downlink subframe, except that the sub-channel allocation and the used field in the uplink and downlink subframes in the protocol are slightly different. In a WiMAX system, a mapping manner is defined between a logical subchannel of an uplink subframe and a physical subchannel. In the protocol, when the Pt sequence is fixed, the mapping relationship is determined by UL_Permbase. The specific process is as follows: First, it is determined whether the uplink mandatory zone has the same frequency interference, the PermBase value of the uplink mandatory zone is determined by the UL Permbase in the UCD Setting, and the uplink subchannel used by the uplink mandatory zone is through the UL allocated subchannels bitmap. Determining, by substituting into the foregoing formula 2, it can be judged whether the physical subchannels of the same logical subchannel mapping of the uplink mandatory zone of two neighboring base stations are duplicated, and there is a repetition ratio, according to which the degree of the same frequency interference is determined, and The UL PermBase and UL allocated subchannels bitmaps give a configuration scheme that minimizes the proportion of physical subchannels that are mapped by the same logical subchannel of the neighboring base stations. Second, the judgment of the upstream optional zone is similar to the downlink optional zone. The UL allocated subchannels bitmap, Indicator to use all UL subchannels, UL zone permutation base, UL Zone Index and UL zone size can complete the same-frequency interference monitoring and processing of the uplink optional zone, and details are not described herein. When the same-frequency interference monitoring and processing procedure is completed, and the RMC message processing unit 122 of the target base station 120 is removed according to the "access gateway 100 forwarding wireless configuration request" in the above process, the RRM message processing unit 122 performs configuration processing to the target base station again. Unit 121 forwards the "output report summary to the backend hive. The core idea of the present invention is to carry the monitoring and processing function of the same frequency interference by carrying the Radio_Config_Update_Rpt response message to the neighboring cell base station by using the Radio_Config_Update_Rpt response message involved in the above method. The same-frequency thousand-four processing unit of the monthly base station optimizes the scheme to the background configuration unit, and the background configuration unit completes the wireless configuration optimization of the monthly base station. The Radio_Config_Update_Rpt message structure of the R6 port is defined in NWG 1.3.1-4.9.3.2.1. The structure includes only the DCD (downlink channel descriptor) and the UCD (uplink channel descriptor) of the neighboring cell. The parameters related to the same-frequency interference monitoring are only the frequency of the neighboring cell. And the uplink subframe forces the zone to use Logical subchannel and Permbase, so the standard RRM response message structure cannot accurately detect the same frequency interference level of neighboring cells; the present invention proposes a new Radio Config Update Rpt response message format, which includes the present invention. All parameters required by the same frequency detection mechanism. The above is a further detailed description of the present invention in connection with the specific embodiments, and the specific implementation of the invention is not limited to the description. It will be apparent to those skilled in the art that the present invention may be practiced without departing from the spirit and scope of the invention.

Claims

权 利 要 求 书 Claim
1. 一种实现同频千扰监测与处理的方法, 包括: 1. A method for implementing the same frequency interference monitoring and processing, comprising:
获取艮务基站和目标基站的无线配置信息;  Obtaining wireless configuration information of the service base station and the target base station;
根据获取的所述无线配置信息, 监测所述服务基站与所述目标基 站是否存在同频千扰, 以及同频千扰程度;  And monitoring, according to the obtained wireless configuration information, whether the serving base station and the target base station have the same frequency interference and the same frequency interference degree;
根据监测的同频千扰信息, 对所述服务基站进行无线配置优化。  Performing wireless configuration optimization on the serving base station according to the monitored intra-frequency interference information.
2. 根据权利要求 1 所述的方法, 其中, 还包括对无线资源管理 RRM应 答消息进行扩展, 在所述 RRM 应答消息体中增加所属基站的无线配 置信息构成扩展的 RRM 应答消息; 获取服务基站和目标基站的无线 配置信息包括: 通过向所述服务基站和目标基站发送 RRM请求消息, 才艮据所述月艮务基站和目标基站反馈所述扩展的 RRM 应答消息, 从所 述扩展的应答消息中获取所述服务基站和所述目标基站的无线配置信 息。 The method according to claim 1, further comprising: extending a radio resource management RRM response message, adding, in the RRM response message body, the radio configuration information of the subordinate base station to form an extended RRM response message; acquiring the serving base station And the wireless configuration information of the target base station includes: transmitting the RRM request message to the serving base station and the target base station, and reporting the extended RRM response message according to the monthly service base station and the target base station, from the extended response Obtaining, in the message, wireless configuration information of the serving base station and the target base station.
3. 根据权利要求 1或 2所述的方法, 其中, 监测所述服务基站与所述目 标基站是否存在同频千扰, 以及同频千扰程度包括: 根据相同逻辑子 信道在服务基站和所述目标基站中映射出的物理子信道是否存在重复 判断是否存在同频千扰; 并根据重复比例确定同频千扰程度。 The method according to claim 1 or 2, wherein monitoring whether the serving base station and the target base station have the same frequency interference, and the frequency interference level include: according to the same logical subchannel in the serving base station and the Determining whether there is a same frequency interference in the physical subchannel mapped in the target base station; and determining the same frequency interference degree according to the repetition ratio.
4. 根据权利要求 3所述的方法, 其中, 物理子信道重复的判断包括: 根 据上下行子帧中所述物理子信道和所述逻辑子信道的映射关系分别进 行下行子帧的同频千扰监测和上行子帧的同频千扰监测。 The method according to claim 3, wherein the determining of the physical subchannel repetition comprises: performing the same frequency of the downlink subframe according to the mapping relationship between the physical subchannel and the logical subchannel in the uplink and downlink subframes Interference monitoring and co-frequency interference monitoring of uplink subframes.
5. 根据权利要求 4所述的方法, 其中, 所述根据监测的同频千扰信息, 对所述服务基站进行无线配置优化包括: 根据所述服务基站的无线配 置参数的调整空间, 确定出可以降低上下行子帧中物理子信道重复程 度的服务基站无线配置参数, 使用所述服务基站无线配置参数对服务 基站进行无线配置优化。 The method according to claim 4, wherein the performing wireless configuration optimization on the serving base station according to the monitored intra-frequency interference information comprises: determining, according to an adjustment space of a wireless configuration parameter of the serving base station, The serving base station wireless configuration parameter of the physical subchannel repetition degree in the uplink and downlink subframes may be reduced, and the serving base station wireless configuration optimization is performed by using the serving base station wireless configuration parameter.
6. —种实现同频千扰监测与处理的系统, 包括: 6. A system for implementing the same frequency interference monitoring and processing, including:
无线配置信息获取单元, 设置为获取服务基站和目标基站的无线 配置信息; 同频千扰监测单元, 设置为根据获取的所述无线配置信息, 监测 所述服务基站与所述目标基站是否存在同频千扰, 以及同频千扰程度; 优化单元, 设置为根据监测的同频千扰信息, 对所述服务基站进 行无线配置优化。 a wireless configuration information acquiring unit, configured to acquire wireless configuration information of the serving base station and the target base station; The same frequency interference monitoring unit is configured to monitor, according to the obtained wireless configuration information, whether the serving base station and the target base station have the same frequency interference and the same frequency interference degree; the optimization unit is set to be monitored according to The same frequency interference information is used to perform wireless configuration optimization on the serving base station.
7. 根据权利要求 6所述的系统, 其中, 还包括无线资源管理 RRM应答 消息扩展单元, 设置为在 RRM 应答消息体中增加所属基站的无线配 置信息构成扩展的 RRM 应答消息; 所述无线配置信息获取单元获取 无线配置信息方式为: 通过向所述艮务基站和所述目标基站发送 RRM 请求消息 , 居所述艮务基站和所述目标基站反馈所述扩展的 RRM应 答消息, 从所述扩展的应答消息中获取基站的无线配置信息。 The system according to claim 6, further comprising a radio resource management RRM response message extension unit, configured to add, in the RRM response message body, the radio configuration information of the subordinate base station to form an extended RRM response message; The method for obtaining the wireless configuration information by the information acquiring unit is: sending an RRM request message to the service base station and the target base station, and reporting, by the service base station and the target base station, the extended RRM response message, The wireless configuration information of the base station is obtained in the extended response message.
8. 根据权利要求 6或 7所述的系统, 其中, 所述同频千扰监测单元通过 以下方式进行同频监测: 根据相同逻辑子信道在服务基站与所述目标 基站中映射出的物理子信道是否存在重复判断是否存在同频千扰; 并 根据重复比例确定同频千扰程度。 The system according to claim 6 or 7, wherein the intra-frequency interference monitoring unit performs intra-frequency monitoring by: mapping physical sub-objects in the serving base station and the target base station according to the same logical sub-channel Whether there is repeated judgment on the channel whether there is co-frequency interference; and determining the degree of co-frequency interference according to the repetition ratio.
9. 根据权利要求 8所述的系统, 其中, 所述同频千扰监测单元通过以下 方式进行物理子信道重复的判断: 根据上下行子帧中所述物理子信道 和所述逻辑子信道的映射关系分别进行下行子帧的同频千扰监测和上 行子帧的同频千扰监测。 The system according to claim 8, wherein the intra-frequency interference monitoring unit performs the determination of physical sub-channel repetition in the following manner: according to the physical sub-channel and the logical sub-channel in the uplink-downlink subframe The mapping relationship performs the same-frequency interference monitoring of the downlink subframe and the same-frequency interference monitoring of the uplink subframe.
10. 根据权利要求 9所述的系统, 其中, 所述优化单元通过以下方式根据 监测的同频千扰信息, 对服务基站进行无线配置优化: 根据所述服务 基站的无线配置参数的调整空间, 确定出可以降氐上下行子帧中物理 子信道重复程度的服务基站无线配置参数, 使用所述服务基站参数对 服务基站进行无线配置优化。 10. The system according to claim 9, wherein the optimization unit performs wireless configuration optimization on the serving base station according to the monitored intra-frequency interference information in the following manner: according to the adjustment space of the wireless configuration parameter of the serving base station, Determining a serving base station radio configuration parameter that can reduce the degree of repetition of the physical subchannel in the uplink and downlink subframes, and performing radio configuration optimization on the serving base station by using the serving base station parameter.
11. 一种实现同频千 4尤监测与处理的系统, 所述系统包括: 月艮务基站、 目 标基站、 接入网关和后台配置单元; 其中 11. A system for implementing the same frequency monitoring and processing, the system comprising: a monthly base station, a target base station, an access gateway, and a background configuration unit;
所述艮务基站设置为发送的 RRM请求通过所述接入网关转发到 所述目标基站, 所述目标基站用于通过所述接入网关向所述月艮务基站 反馈扩展的 RRM应答消息;  The RRM request that the service base station is configured to send is forwarded to the target base station by using the access gateway, and the target base station is configured to feed back, by using the access gateway, the extended RRM response message to the monthly service base station;
所述服务基站还设置为从所述 RRM应答信息中获取所述目标基 站的无线配置信息, 监测是否存在同频千扰, 以及同频千扰程度, 并 将监测结果发送到后台配置单元; The serving base station is further configured to: obtain the wireless configuration information of the target base station from the RRM response information, monitor whether there is a frequency interference, and a frequency interference degree, and Send the monitoring result to the background configuration unit;
所述后台配置单元设置为根据收到的监测结果对服务基站进行无 线配置优化。  The background configuration unit is configured to perform wireless configuration optimization on the serving base station according to the received monitoring result.
12. 根据权利要求 11所述的系统, 其中, 所述的服务基站中包括同频千扰 监测与处理单元, 所述同频千 4尤监测与处理单元设置为监测是否存在 同频千扰, 以及同频千扰程度, 以及将监测结果发送到后台配置单元。 12. The system according to claim 11, wherein the serving base station includes an intra-frequency interference monitoring and processing unit, and the same frequency monitoring and processing unit is configured to monitor whether there is a frequency interference. And the frequency of the same frequency, and send the monitoring results to the background configuration unit.
PCT/CN2010/077719 2010-06-30 2010-10-13 Method and system for realizing co-channel interference monitoring and disposal WO2012000249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010214668.8 2010-06-30
CN201010214668.8A CN102316490B (en) 2010-06-30 2010-06-30 Method and system for realizing automatic monitoring and processing of co-frequency interference

Publications (1)

Publication Number Publication Date
WO2012000249A1 true WO2012000249A1 (en) 2012-01-05

Family

ID=45401342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077719 WO2012000249A1 (en) 2010-06-30 2010-10-13 Method and system for realizing co-channel interference monitoring and disposal

Country Status (2)

Country Link
CN (1) CN102316490B (en)
WO (1) WO2012000249A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047430A (en) * 2006-06-16 2007-10-03 华为技术有限公司 Method and system for selecting base station
CN101365224A (en) * 2007-08-07 2009-02-11 鼎桥通信技术有限公司 Method and apparatus reducing interference between adjacent cells
CN101420734A (en) * 2008-11-28 2009-04-29 华为技术有限公司 Downlink interference collaboration method and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047430A (en) * 2006-06-16 2007-10-03 华为技术有限公司 Method and system for selecting base station
CN101365224A (en) * 2007-08-07 2009-02-11 鼎桥通信技术有限公司 Method and apparatus reducing interference between adjacent cells
CN101420734A (en) * 2008-11-28 2009-04-29 华为技术有限公司 Downlink interference collaboration method and base station

Also Published As

Publication number Publication date
CN102316490B (en) 2014-04-09
CN102316490A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
CN108370587B (en) System and method for determining air interface configuration
US10306637B2 (en) Radio base station and user terminal
KR101850800B1 (en) Devices and method for retrieving and utilizing neighboring wlan information for lte laa operation
JP6419962B2 (en) Apparatus configured to report aperiodic channel state information for dual connectivity
US20220141670A1 (en) Virtualized base station and its controller
EP3713281B1 (en) Measurement methods, csi-rs resource sharing methods and apparatuses
TWI451712B (en) Method and apparatus for signalling measurement signalling
KR102341993B1 (en) User terminal and wireless communication method
CN109644486A (en) Terminal in a wireless communication system the method for sending side link control message and using this method terminal
CN103348720A (en) Radio communication system, base station apparatus, radio resource control method, and non-transitory computer readable medium
JP5512822B2 (en) Wireless communication system, base station, and wireless communication method
WO2013127310A1 (en) Interference coordination method and device
US20190229840A1 (en) User terminal and radio communication method
KR20150016237A (en) Wireless communication system, wireless base station device, user terminal and communication control method
US20200374837A1 (en) User terminal and radio communication method
WO2016045051A1 (en) Radio signal measurement method and device
CN103313337A (en) Method for eliminating inter-cell downlink interference
US10567990B2 (en) Method and apparatus for performing measurement using permission list by terminal in which multiple carriers are set
WO2014094504A1 (en) Method and system for processing configuration information
US20220039133A1 (en) Centralized intercell interference coordination
WO2012000249A1 (en) Method and system for realizing co-channel interference monitoring and disposal
KR102083024B1 (en) Method and apparatus of small cell autonomous configuration to avoid inter-cell interference
JP2012147208A (en) Base station device
CN115699653A (en) Universal resource model for observability
KR20160080079A (en) Method and apparatus for determining transmission priority of multiple-frequency allocation in mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853952

Country of ref document: EP

Kind code of ref document: A1