WO2011162756A1 - Therapeutic oral composition - Google Patents

Therapeutic oral composition Download PDF

Info

Publication number
WO2011162756A1
WO2011162756A1 PCT/US2010/039677 US2010039677W WO2011162756A1 WO 2011162756 A1 WO2011162756 A1 WO 2011162756A1 US 2010039677 W US2010039677 W US 2010039677W WO 2011162756 A1 WO2011162756 A1 WO 2011162756A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
salts
oral
arginine
pyrophosphate
Prior art date
Application number
PCT/US2010/039677
Other languages
French (fr)
Inventor
Sarita V. Mello
Evangelia Arvanitidou
Original Assignee
Colgate-Palmolive Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43877170&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011162756(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP10727321.1A priority Critical patent/EP2585025B2/en
Priority to BR112012030037-7A priority patent/BR112012030037B1/en
Priority to JP2013516555A priority patent/JP5723001B2/en
Priority to PL10727321T priority patent/PL2585025T3/en
Priority to US13/701,844 priority patent/US9579269B2/en
Priority to MX2012013955A priority patent/MX2012013955A/en
Priority to PCT/US2010/039677 priority patent/WO2011162756A1/en
Priority to CN2010800675933A priority patent/CN102946841A/en
Priority to RU2013102892/15A priority patent/RU2535088C2/en
Priority to ES10727321.1T priority patent/ES2529216T3/en
Priority to SG2012084661A priority patent/SG185631A1/en
Priority to CA2800475A priority patent/CA2800475C/en
Priority to AU2010356102A priority patent/AU2010356102B2/en
Application filed by Colgate-Palmolive Company filed Critical Colgate-Palmolive Company
Priority to TW100121734A priority patent/TWI504415B/en
Publication of WO2011162756A1 publication Critical patent/WO2011162756A1/en
Priority to ZA2012/09156A priority patent/ZA201209156B/en
Priority to HK13111211.5A priority patent/HK1183802A1/en
Priority to US15/411,211 priority patent/US11369553B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8164Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers, e.g. poly (methyl vinyl ether-co-maleic anhydride)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/006Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels

Definitions

  • the three mineralized tissues of teeth are enamel, cementum and dentine.
  • enamel covers the crown dentine whereas cementum covers the root dentine.
  • the dentine encloses the pulp of the tooth which provides the dentine with vascular and neural support.
  • the dentine is transversed by numerous tubules.
  • the tubule walls are comprised of the calcified matrix of the dentine and the tubule space is filled with fluid (dentinal fluid) derived from pulp tissue fluid and serum.
  • the matrix mineral is comprised mainly of the calcium phosphate salt, hydroxyapatite, which is poorly soluble at neutral and alkaline pH, and progressively more soluble as the pH becomes progressively more acidic.
  • the fluid that fills the narrow dentinal tubules enables cold, tactile, evaporative and osmotic stimuli to be transmitted through the dentine to the pulp in the form of fluid movement.
  • This movement of dentinal fluid is sensed as sharp pain of short duration.
  • This pain is elicited when the odontoblasts that protrude into the pulpal ends of the tubules are disturbed and as a result, the mechano-receptors of the pulpal nerve fibers attached thereto are stimulated.
  • the neural response is usually referred to as dentinal pain and the involved dentine as hypersensitive dentine.
  • Dentinal hypersensitivity results when protective enamel or cementum covering dentine is lost. Cementum is easier to breach than enamel, because cementum is thinner and more easily eroded by acids. However, breach of cementum cannot happen until there is gingival recession and exposure of the root surface to the oral milieu. Individuals with breached cementum and suffering with dentinal hypersensitivity often experience pain when the exposed area of the tooth comes into contact with cold air or hot and cold liquids or foods that are sweet or acidic or is touched with a metal object.
  • Blockage of the tubules through the formation of a calcium phosphate precipitate is a common approach. This includes the mixing of a soluble calcium salt with a soluble phosphate salt and immediately applying the combination to the open tubules. Alternatively, application of one salt before the other to try to get a precipitate to form within tubules is also used.
  • Substances other than calcium phosphate also have been utilized.
  • U.S. Pat. No. 3,683,006 describes using potassium, lithium or sodium nitrate.
  • Another example is calcium oxalate particles of small and large size.
  • Application of a protein denaturing agent, such as an alcohol, a surfactant, or a chaotropic salt can also plug an exposed dentinal tubule since there is protein material within the dentinal tubules and denaturation can sometimes result in partial or complete tubule plugging.
  • Still another but more drastic approach is to place a dental restoration in the affected area or cover the area with an adhesive material.
  • Potassium salts especially potassium nitrate
  • U.S. Pat. Nos. 4,751 ,072 and 4,631 , 185 describe using potassium bicarbonate and potassium chloride.
  • U.S. Patent No. 6,524,558 discloses an oral composition containing arginine and a calcium salt to treat dentinal hypersensitivity.
  • Arginine and other basic amino acids have been proposed for use in oral care and are believed to have significant benefits in combating cavity formation and tooth sensitivity.
  • the basic amino acid may raise the pH and facilitate dissociation of calcium ions that can react with fluoride ions to form an insoluble precipitate.
  • the higher pH has the potential to cause irritation.
  • a system utilizing arginine bicarbonate (which the art teaches is preferred) may release carbon dioxide, leading to bloating and bursting of the containers.
  • arginine-based toothpaste such as ProClude® and DenClude®, for example, contain arginine bicarbonate and calcium carbonate, but not fluoride nor any antimicrobial agent.
  • Mouthwash and mouthrinse formulations also are well known in the art.
  • Various formulations include antibacterial agents, flavorants, colorants, sweeteners, breath freshening agents, and the like. While a variety of agents can be included in rinse of wash formulations, their concurrent use may not be possible due to interactivity, adverse reactions among reactive agents, resulting in loss of activity. It would be desirable to provide a mouthwash or mouthrinse composition useful in the treatment of a variety of ailments, including for example, dentinal hypersensitivity, anticaries, bad breath, plaque formation, tartar control, stain prevention/whitening, dry mouth, erosion, gingivitis, etc.
  • an oral care composition comprising arginine in free or salt form, a mucoadhesive polymer, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof.
  • the composition is a mouthwash.
  • Another embodiment of the invention includes a method of one or more of:
  • reducing hypersensitivity of the teeth comprising applying to the oral cavity of a patient in need thereof an oral care composition comprising arginine in free or salt form, a mucoadhesive polymer, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof.
  • references herein does not constitute an admission that those references are prior art or have any relevance to the patentability of the invention disclosed herein. Any discussion of the content of references cited in the Introduction is intended merely to provide a general summary of assertions made by the authors of the references, and does not constitute an admission as to the accuracy of the content of such references.
  • compositions and the methods may comprise, consist essentially of, or consist of the elements described therein.
  • antibacterial activity herein means activity as determined by any generally accepted in vitro or in vivo antibacterial assay or test.
  • Anti-inflammatory activity herein means activity as determined by any generally accepted in vitro or in vivo assay or test, for example an assay or test for inhibition of prostaglandin production or
  • Antioxidant activity herein means activity as determined by any generally accepted in vitro or in vivo antioxidant assay or test.
  • an "oral surface” herein encompasses any soft or hard surface within the mouth including surfaces of the tongue, hard and soft palate, buccal mucosa, gums and dental surfaces.
  • a "dental surface” herein is a surface of a natural tooth or a hard surface of artificial dentition including a crown, cap, filling, bridge, denture, dental implant and the like.
  • the term “inhibiting” herein with respect to a condition such as inflammation in an oral tissue encompasses prevention, suppression, reduction in extent or severity, or amelioration of the condition.
  • the oral care composition of the preferred embodiments includes arginine in free or salt form, a mucoadhesive polymer, optionally at least one antibacterial agent, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof.
  • the composition preferably is in the form of a mouthwash or mouthrinse.
  • the mouthwash or mouthrinse can include sweetners, pH ajusters, acids, salts, anti-caries agents, and other conventional mouthwash agents.
  • the compositions preferably are useful in total or complete treatment of the oral cavity, including treatment of hypersensitivity, anticaries, bad breath, plaque formation, tartar control, stain prevention/whitening, dry mouth, erosion, gingivitis, etc.
  • compositions provide enhanced tubule occlusion efficacy with a coating on their surface that delivers and retains beneficial agents to that surface.
  • the compositions provide mucoadhesivity and film-forming properties that can be used to address hypersensitivity, dry mouth, acid resistance, deminerialization, and the like.
  • compositions described herein contain arginine in free or salt form.
  • Suitable arginine compounds, derivatives and salts are disclosed in, for example, U.S. Patent
  • Arginine may be present by itself, and can include arginine, and D and L forms thereof. Arginine also may be present in salt form (or as a derivative of arginine). Any salt of arginine can be used in the invention so long as it is capable of releasing arginine in solution.
  • Suitable arginine salts include salts of arginine and one or more of the following: (a) an acidic polymer; (b) a conjugate acid of an anionic surfactant salt; (c) a polyphosphoric or polyphosphonic acid; or (d) an acidic antimicrobial agent.
  • the arginine salt preferably is a salt of arginine and lauroyl sulfuric acid.
  • the conjugate acid of an anionic surfactant salt may be selected from (i) water- soluble salts of higher fatty acid monoglyceride monosulfate (e.g., salt of the monosulfated monoglyceride of hydrogenated coconut oil fatty acids such as sodium N-methyl N-cocoyl taurate, sodium cocomo-glyceride sulfate); (ii) higher alkyl sulfates, e.g., sodium lauryl sulfate; (iii) higher alkyl-ether sulfates, e.g., of formula CH 3 (CH2) m CH2(OCH2CH 2 ) n OS0 3 H, wherein m is 6-16, e.g., 10, n is 1 -6, e.g., 2, 3 or 4, and X is Na or K (for example sodium laureth-2 sulfate (C ⁇ CHa ⁇ oiC ⁇ OCHaCH ⁇ OSOaNa));
  • the arginine salt may include arginine polyphosphate or polyphosphonate salts, including, for example, a salt of arginine and polyvinyl phosphonic acid, a salt of arginine and a polyphosphoric acid, a salt of arginine and hexametaphosphoric acid, a salt of arginine and pyrophosphoric acid, a salt of arginine and a tripolyphosphate salt, and mixtures thereof.
  • arginine polyphosphate or polyphosphonate salts including, for example, a salt of arginine and polyvinyl phosphonic acid, a salt of arginine and a polyphosphoric acid, a salt of arginine and hexametaphosphoric acid, a salt of arginine and pyrophosphoric acid, a salt of arginine and a tripolyphosphate salt, and mixtures thereof.
  • the arginine salt also may include salts of arginine and an antibacterial acid.
  • the invention provides salts of arginine and a benzoic acid optionally substituted with carboxy and/or one or more, e.g., 1, 2, or 3 hydroxys, e.g., benzoic acid, phthalic acid, salicylic acid or trihydroxybenzoic acid, for example, gallic acid.
  • the arginine in free or salt form may be present in the compositions described herein in an amount of 0.1 wt. % to 20 wt. % of the total composition weight, preferably from 0.25 wt. % to 5 wt. % of the total composition weight, for example from 0.4% to 2.5%, or from 0.5% to 2%, or from 0.6% to 1%, or from 0.75% to 0.9% by weight, based on the total weight of the composition.
  • compositions of the present invention also contain a mucoadhesive polymer.
  • Mucoadhesive polymers generally are known and may be selected from one or more of an orally acceptable polyvinylmethylether/maleic anhydride (PVME/MA) copolymer, acrylic acid methylacrylate/styrene/2-acryloamido-2-methylpropane sufonic acid copolymer (Lupasol FF4243/Lupasol DVFR), poly(vinylpyrrolidone) (PVP), carboxymethylcellulose (CMC), xanthan, and mixtures thereof.
  • PVME/MA polyvinylmethylether/maleic anhydride
  • PVME/MA acrylic acid methylacrylate/styrene/2-acryloamido-2-methylpropane sufonic acid copolymer
  • PVP poly(vinylpyrrolidone)
  • CMC carboxymethylcellulose
  • xanthan and mixtures thereof.
  • the mucoadhesive polymer preferably is present in an amount of from 0.1% to 20%, for example from 0.25% to 10% by weight, more preferably from 0.4% to 2.5%, or from 0.5% to 2%, or from 0.6% to 1% by weight, based on the total weight of the composition.
  • Preferred mucoadhesive polymers are those that enhance the delivery and retention of the agents to, and retention thereof on oral surfaces. Such agents useful in the present invention are disclosed in U.S. Pat. Nos. 5,188,821 and 5,192,531. Suitable
  • PVME/MA copolymers include those in which the methyl vinyl ether to maleic anhydride ratio in the copolymer is from 1 :4 to 4: 1 , and the copolymer has an average molecular weight of 30,000 to 1,000,000, for example 30,000 to 500,000.
  • Preferred PVME/MA copolymers include those under the GANTREZ® brand from ISP (Bound Brook, N.J., 08805).
  • the PVME/MA copolymer may also act as an antibacterial enhancing agent if present in an antibacterial enhancing effective amount.
  • the GANTREZ® copolymers may include, for example, GANTREZ® AN 139 (M.W.
  • the mucoadhesive polymer useful in the oral care compositions of the invention also include one or more polymers, such as poly(vinylpyrrolidone) (PVP), polyethylene glycols, polyvinylmethyl ether maleic acid copolymers, polysaccharides (e.g., cellulose derivatives, for example carboxymethyl cellulose, or polysaccharide gums, for example xanthan gum or carrageenan gum).
  • PVP poly(vinylpyrrolidone)
  • PVP polyethylene glycols
  • polyvinylmethyl ether maleic acid copolymers polysaccharides (e.g., cellulose derivatives, for example carboxymethyl cellulose, or polysaccharide gums, for example xanthan gum or carrageenan gum).
  • Acidic polymers, for example polyacrylate gels may be provided in the form of their free acids or partially or fully neutralized water soluble alkali metal (e.g., potassium and sodium) or ammonium salts.
  • operative polymers include those such as the 1 : 1 copolymers of maleic anhydride with ethyl acrylate, hydroxyethyl methacrylate, N-vinyl-2-pyrollidone, or ethylene, the latter being available for example as Monsanto EMA No. 1 103, M.W. 10,000 and EM A Grade 61 , and 1 : 1 copolymers of acrylic acid with methyl or hydroxyethyl methacrylate, methyl or ethyl acrylate, isobutyl vinyl ether or N-vinyl-2-pyrrolidone.
  • Suitable generally are polymerized olefinically or ethylenically unsaturated carboxylic acids containing an activated carbon-to-carbon olefinic double bond and at least one carboxyl group, that is, an acid containing an olefinic double bond which readily functions in polymerization because of its presence in the monomer molecule either in the alpha-beta position with respect to a carboxyl group or as part of a terminal methylene grouping.
  • Such acids are acrylic, methacrylic, ethacrylic, alpha-chloroacrylic, crotonic, beta-acryloxy propionic, sorbic, alpha-chlorsorbic, cinnamic, beta-styrylacrylic, muconic, itaconic, citraconic, mesaconic, glutaconic, aconitic, alpha-phenylacrylic, 2-benzyl acrylic. 2-cyclohexylacrylic, angelic, umbellic, fumaric, maleic acids and anhydrides.
  • Other different olefinic monomers copolymerizable with such carboxylic monomers include vinylacetate, vinyl chloride, dimethyl maleate and the like. Copolymers contain sufficient carboxylic salt groups for water-solubility.
  • a further class of polymeric agents includes a composition containing
  • homopolymers of substituted acrylamides and/or homopolymers of unsaturated sulfonic acids and salts thereof in particular where polymers are based on unsaturated sulfonic acids selected from acrylamidoalykane sulfonic acids such as 2-acrylamide 2 methylpropane sulfonic acid having a molecular weight of about 1 ,000 to about 2,000,000, described in U.S. Pat. No. 4,842,847, the disclosure of which is incorporated herein by reference herein in its entirety.
  • a particularly preferred polymer in this regard is acrylic
  • Lupasol FF4243 is a copolymer containing 20% acrylic acid, 20% methyl acrylate, 59% 2-acrylamide 2 methylpropanesulfonic acid, and 1% styrene.
  • Another useful class of polymeric agents includes polyamino acids, particularly those containing proportions of anionic surface-active amino acids such as aspartic acid, glutamic acid and phosphoserine, as disclosed in U.S. Pat. No. 4,866,161, the disclosure of which is incorporated herein by reference in its entirety.
  • compositions of the preferred embodiments also may optionally contain one or more antibacterial agents.
  • the antibacterial agent may be selected from halogenated diphenyl ether (e.g. triclosan), herbal extracts and essential oils (e.g., rosemary extract, tea extract, magnolia extract, thymol, menthol, eucalyptol, geraniol, carvacrol, citral, hinokitol, catechol, methyl salicylate, epigallocatechin gallate, epigallocatechin, gallic acid, miswak extract, sea-buckthorn extract), bisguanide antiseptics (e.g., chlorhexidine, alexidine or octenidine), quaternary ammonium compounds (e.g., cetylpyridinium chloride (CPC), benzalkonium chloride, tetradecylpyridinium chloride (TPC), N-tetradecyl-4-ethylpyridinium chloride (TDEPC)
  • the antibacterial agent preferably is present in an amount of from 0.01% to 10%, for example from 0.025% to 5% by weight, more preferably from 0.05% to 1 %, or from 0.075% to .5% by weight, based on the total weight of the composition.
  • compositions of the preferred embodiments also include at least one or more components selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof.
  • pyrophosphate salts useful in the present compositions include the dialkali metal pyrophosphate salts, tetra alkali metal pyrophosphate salts, and mixtures thereof. Disodium dihydrogen pyrophosphate
  • the pyrophosphate salt may be present in one of three ways: predominately dissolved, predominately undissolved, or a mixture of dissolved and undissolved pyrophosphate.
  • Pyrophosphate ions in different protonated states e.g., HP 2 O 7 "3
  • HP 2 O 7 "3 may also exist depending upon the pH of the composition and if part of the tetrasodium pyrophosphate is dissolved.
  • the pyrophosphate salts may be present in an amount ranging from 0.1% to 5% by weight, preferably from 0.2% to 2% by weight, and more preferably from 0.4 to 2% by weight, based on the total weight of the composition. Combinations of pyrophosphate salts may be used.
  • Zinc salts useful in the embodiments include, for example, any physiologically acceptable zinc compound including water soluble (inclusive of sparingly water soluble) organic and inorganic zinc compounds.
  • the water-soluble zinc compounds (at least 1% soluble) are preferred.
  • suitable zinc compounds include: zinc acetate, zinc fluoride, zinc ammonium sulfate, zinc formate, zinc bromide, zinc iodide, zinc chloride, zinc oxide, zinc nitrate, zinc chromate, zinc phenol sulfonate, zinc citrate, zinc salicylate, zinc dithionate, zinc sulfate, zinc fluosilicate, zinc gluconate, zinc tartarate, zinc succinate, zinc glycerophosphate, and mixtures thereof.
  • Other zinc compounds disclosed in U.S. Pat. No. 4,138,477 having a solubility of a least about 0.01 mg of zinc ions per ml water are incorporated by reference.
  • the zinc salts may be present in amounts within the range of from 0.01 -5% by weight, more preferably from 0.1-1% of zinc salt weight, based on the total weight of the composition.
  • Suitable nitrate and carbonate salts include, for example, any physiologically acceptable salts for use in mouth rinse formulations.
  • Nitrates include the aforementioned zinc nitrate, as well as potassium and sodium nitrates.
  • Suitable carbonates include, for example, calcium carbonate, alkali metal carbonate salts, sodium carbonate, and the like.
  • the nitrate and carbonate salts typically are present in the compositin in an amount of from 0.1% to 30%, preferably from 1% to 10%, and more preferably from 1.5% to 5%, by weight of the present composition.
  • the oral compositions described in accordance with the embodiments may contain conventional ingredients typically used in oral compositions.
  • liquid mouthwashes may contain solvents such as distilled or deionized water and ethanol; a sweetening agent such as saccharine, aspartame, sorbitol, mannitol, and xylitol; and a flavoring agent such as peppermint oil and spearmint oil (see U.S. Pat. Nos. 4,226,851 and 4,606,912, the disclosures of which are incorporated by reference in their entirety).
  • Dentifrices may contain, for example, a conventional abrasive such as resins, silica, and insoluble alkali metal metaphosphates in a standard amount of 20% to 60% by weight; a binder such as hydroxyethylcellulose, xanthan gum, and sodium carboxymethylcellulose in a standard amount ranging from 0.05% to 5.0% by weight; a foaming agent such as sodium lauryl sulfate, sodium coconut monoglyceride sulfonate, and sodium-N-methyl-N-palmitoyl taurine in a standard amount ranging from 0.5% to 3.0% by weight; a flavoring agent; a sweetening agent; an antiseptic agent and any other ingredient required for the particular composition as recognized by those skilled in the art (see U.S.
  • a conventional abrasive such as resins, silica, and insoluble alkali metal metaphosphates in a standard amount of 20% to 60% by weight
  • a binder such as hydroxyethylcellulose
  • Tablets and powders may contain, for example, a vehicle such as lactose and mannitol, a binder such as corn starch and carboxymethylcellulose, and a disintegrator.
  • a vehicle such as lactose and mannitol
  • a binder such as corn starch and carboxymethylcellulose
  • a dentifrice or paste for localized application to a sensitive tooth site such as breeched cementum of an orally exposed root surface may be one that is simpler in composition and applied with a soft applicator.
  • a dentifrice or paste may or may not contain conventional abrasive, foaming agent, and flavoring agents.
  • Localized sites such as the dentine following tooth preparation for a dental restoration also involve simpler compositions and include fillers used in dental pulp cappings, cavity liners and cements and any other ingredients required for the composition by those skilled in the art (Craig et al., 1989, Restorative Dental Materials. Mosby, St. Louis, pp. 189-225). For example, zinc oxide and eugenol at levels of (20 and 25%, respectively) would be appropriate for dental cement compositions.
  • the present embodiments further provide an article of manufacture that includes packaging material and the oral compositions described herein contained within the packaging material.
  • the oral composition is effective in retarding or preventing dentinal hypersensitivity.
  • the packaging material preferably contains a label that indicates that the oral composition is effective in retarding or preventing dentinal hypersensitivity.
  • the packaging material used to contain the oral compositions may induce glass, plastic, metal or any other suitably inert material.
  • a dentifrice containing the oral composition may be contained in a collapsible tube, typically aluminum, lead-lined, or plastic, or a squeeze pump or pressurized dispenser to measure out the contents, or in a tearable sachet.
  • the compositions also may be included in a plastic bottle typically used for dispensing liquids.
  • the oral composition of the embodiments also may be used in a prophylaxis paste for polishing teeth or treating sensitive teeth or preventing the development of sensitive teeth after scaling, root planing or stain removal by a dentist or hygienist, in a small dental container, such as a tub of a size that permits easy access of the rotary attachments used in dental offices on dental hand-pieces.
  • An oral care composition of the present invention can take any liquid or gel form suitable for application to an oral surface.
  • the composition can be a liquid solution suitable for irrigating, rinsing or spraying; a dentifrice such as a dental gel; a periodontal gel; a liquid suitable for painting a dental surface (e.g., a liquid whitener); a mouthrinse, a foam; etc.
  • the composition can contain active and/or carrier ingredients additional to those recited above.
  • Preferred oral care compositions include those selected from dentifrices, oral rinses, oral strips, lozenges, beads, liposomes, micelles, reverse micelles, micro- or nano- encapsulated containers, enzymes, proteins, gels, sol-gels, hydrogels, silicas, organic zeolites, inorganic silicas such as those present in dentifrice, paint-ons, oral patches, polymers, sprays, smoke inhalatation devices, foams, chewing gums, from the back or through a toothbrush head, oils or other products used for oral hygiene or benefit.
  • These products can also include food stuffs, liquids and probiotics that endogenously contain or can be laced with photoabsorbing species for oral treatment.
  • the compositions comprise an orally acceptable source of fluoride ions, which serves as an anticaries agent.
  • sources of fluoride ions include fluoride, monofluorophosphate and fluorosilicate salts as well as amine fluorides, including olaflur (N'-octadecyltrimethylendiamine-N,N,N'- tris(2-ethanol)-dihydrofluoride) and stannous fluoride.
  • olaflur N'-octadecyltrimethylendiamine-N,N,N'- tris(2-ethanol)-dihydrofluoride
  • Other anticaries agents can be used, such as arginine and arginine derivatives (e.g., ethyl lauroyl arginine (ELAH)).
  • ELAH ethyl lauroyl arginine
  • one or more fluoride-releasing salts are optionally present in an amount providing a total of 100 to 20,000 ppm, 200 to 5,000 ppm, or 500 to 2,500 ppm, fluoride ions.
  • sodium fluoride is the sole fluoride-releasing salt present, illustratively an amount of 0.01% to 5%, 0.02% to 1% or 0.04% to 0.5%, sodium fluoride by weight can be present in the composition.
  • Phenolic compounds may be used, and include, subject to determination of oral acceptability, those identified as having anti-inflammatory activity by Dewhirst (1980), Prostaglandins 20(2), 209-222, but are not limited thereto.
  • antibacterial phenolic compounds include 4-allylcatechol, />-hydroxybenzoic acid esters including benzylparaben, butylparaben, ethylparaben, methylparaben and propylparaben,
  • the composition comprises an orally acceptable stannous ion source useful, for example, in helping reduce gingivitis, plaque, calculus, caries or sensitivity.
  • stannous ion sources include without limitation stannous fluoride, other stannous halides such as stannous chloride dihydrate, stannous pyrophosphate, organic stannous carboxylate salts such as stannous formate, acetate, gluconate, lactate, tartrate, oxalate, malonate and citrate, stannous ethylene glyoxide and the like.
  • stannous ion sources are optionally and illustratively present in a total amount of 0.01% to 5%, for example 0.03% to 2% or 0.05% to 1% by weight of the composition.
  • the composition comprises an orally acceptable breath- freshening agent.
  • breath-freshening agents include without limitation zinc salts such as zinc gluconate, zinc citrate and zinc chlorite, a-ionone and the like.
  • the composition comprises an orally acceptable antiplaque, including plaque disrupting, agent.
  • agents can be present in an antiplaque effective total amount.
  • Suitable antiplaque agents include without limitation stannous, copper, magnesium and strontium salts, dimethicone copolyols such as cetyl dimethicone copolyol, papain, glucoamylase, glucose oxidase, urea, calcium lactate, calcium
  • glycerophosphate glycerophosphate, strontium polyacrylates and chelating agents such as citric and tartaric acids and alkali metal salts thereof.
  • the composition comprises an orally acceptable antiinflammatory agent.
  • Suitable anti-inflammatory agents include without limitation steroidal agents such as flucinolone and hydrocortisone, and nonsteroidal agents (NSAIDs) such as ketorolac, flurbiprofen, ibuprofen, naproxen, indomethacin, diclofenac, etodolac, indomethacin, sulindac, tolmetin, ketoprofen, fenoprofen, piroxicam, nabumetone, aspirin, diflunisal, meclofenamate, mefenamic acid, oxyphenbutazone and phenylbutazone.
  • One or more anti-inflammatory agents are optionally present in the composition in an antiinflammatory effective amount.
  • compositions of the inventions optionally contain other ingredients such as enzymes, vitamins and anti-adhesion agents.
  • Enzymes such as proteases can be added for anti-stain and other effects.
  • Non-limiting examples of vitamins include vitamin C, vitamin E, vitamin B5, and folic acid.
  • the vitamins have antioxidant properties.
  • Anti-adhesion agents include ethyl lauroyl arginine (ELAH), solbrol, ficin, silicone polymers and derivatives, and quorum sensing inhibitors.
  • diluents for optional inclusion in a composition of the invention are diluents, abrasives, bicarbonate salts, pH modifying agents, surfactants, foam modulators, thickening agents, viscosity modifiers, humectants, sweeteners, flavorants and colorants.
  • One carrier material, or more than one carrier material of the same or different classes, can optionally be present. Carriers should be selected for compatibility with each other and with other ingredients of the composition.
  • Water is a preferred diluent and in some compositions such as mouthwashes and whitening liquids is commonly accompanied by an alcohol, e.g., ethanol.
  • the weight ratio of water to alcohol in a mouthwash composition is generally 1 : 1 to 20: 1, for example 3: 1 to 20: 1 or 4: 1 to 10 : 1.
  • the weight ratio of water to alcohol can be within or below the above ranges, for example 1 : 10 to 2: 1.
  • a composition of the invention comprises at least one pH modifying agent.
  • pH modifying agents include acidifying agents to lower pH, basifying agents to raise pH and buffering agents to control pH within a desired range.
  • one or more compounds selected from acidifying, basifying and buffering agents can be included to provide a pH of 2 to 10, or in various illustrative embodiments 2 to 8, 3 to 9, 4 to 8, 5 to 7, 6 to 10, 7 to 9, etc.
  • Any orally acceptable pH modifying agent can be used, including without limitation carboxylic, phosphoric and sulfonic acids, acid salts (e.g., monosodium citrate, disodium citrate, monosodium malate, etc.), citric acids, alkali metal hydroxides such as sodium hydroxide, carbonates such as sodium carbonate, bicarbonates, sesquicarbonates, borates, silicates, phosphates (e.g. , monosodium phosphate, trisodium phosphate,
  • a composition of the invention comprises at least one surfactant, useful for example to compatibilize other components of the composition and thereby provide enhanced stability, to help in cleaning the dental surface through detergency, and to provide foam upon agitation, e.g., during brushing with a dentifrice composition of the invention.
  • Any orally acceptable surfactant most of which are anionic, nonionic or amphoteric, can be used.
  • Suitable anionic surfactants include without limitation water- soluble salts of Cs 20 alkyl sulfates, sulfonated monoglycerides of Cg 20 fatty acids, sarcosinates, taurates and the like.
  • Illustrative examples of these and other classes include sodium lauryl sulfate, sodium coconut monoglyceride sulfonate, sodium lauryl sarcosinate, sodium lauryl isoethionate, sodium laureth carboxylate and sodium dodecyl
  • Suitable nonionic surfactants include without limitation poloxamers, polyoxyethylene sorbitan esters, fatty alcohol ethoxylates, alkylphenol ethoxylates, tertiary amine oxides, tertiary phosphine oxides, dialkyl sulfoxides and the like.
  • Suitable amphoteric surfactants include without limitation derivatives of Cs 20 aliphatic secondary and tertiary amines having an anionic group such as carboxylate, sulfate, sulfonate, phosphate or phosphonate.
  • a suitable example is cocoamidopropyl betaine.
  • One or more surfactants are optionally present in a total amount of 0.01% to 10%, for example 0.05% to 5% or 0.1% to 2% by weight of the composition.
  • a composition of the invention comprises at least one foam modulator, useful for example to increase amount, thickness or stability of foam generated by the composition upon agitation.
  • foam modulator can be used, including without limitation polyethylene glycols (PEGs), also known as PEGs
  • High molecular weight PEGs are suitable, including those having an average molecular weight of about 200,000 to about 7,000,000, for example about 500,000 to about 5,000,000 or about 1 ,000,000 to about 2,500,000.
  • One or more PEGs are optionally present in a total amount of about 0.1% to about 10%, for example about 0.2% to about 5% or about 0.25% to about 2% by weight of the composition.
  • a composition described herein may comprise at least one thickening agent, useful for example to impart a desired consistency and/or mouth feel to the composition.
  • Any orally acceptable thickening agent can be used, including without limitation carbomers, also known as carboxyvinyl polymers, carrageenans, also known as Irish moss and more particularly i-carrageenan (iota-carrageenan), cellulosic polymers such as hydroxyethylcellulose, carboxymethylcellulose (CMC) and salts thereof, e.g., CMC sodium, natural gums such as karaya, xanthan, gum arabic and tragacanth, colloidal magnesium aluminum silicate, colloidal silica and the like.
  • CMC carboxymethylcellulose
  • a preferred class of thickening or gelling agents includes a class of homopolymers of acrylic acid crosslinked with an alkyl ether of pentaerythritol or an alkyl ether of sucrose, or carbomers.
  • Carbomers are commercially available from B. F. Goodrich as the Carbopol® series.
  • Particularly preferred Carbopols include Carbopol 934, 940, 941 , 956, 974P, and mixtures thereof.
  • One or more thickening agents are optionally present in a total amount of 0.01% to 15%, for example 0.1% to 10% or 0.2% to 5% by weight of the composition.
  • the composition may include at least one viscosity modifier, useful for example to inhibit settling or separation of ingredients or to promote redispersibility upon agitation of a liquid composition.
  • Any orally acceptable viscosity modifier can be used, including without limitation mineral oil, petrolatum, clays and organomodified clays, silica and the like.
  • One or more viscosity modifiers are optionally present in a total amount of 0.01% to 10%, for example 0.1% to 5% by weight of the composition.
  • the composition may include at least one humectant, useful for example to prevent hardening of a tooth paste upon exposure to air.
  • humectant useful for example to prevent hardening of a tooth paste upon exposure to air.
  • Any orally acceptable humectant can be used, including without limitation polyhydric alcohols such as glycerin, sorbitol, xylitol or low molecular weight PEGs. Most humectants also function as sweeteners.
  • One or more humectants are optionally present in a total amount of 1% to 70%, for example 1% to 50%, 2% to 25%, or 5% to 15% by weight of the composition.
  • the composition may include at least one sweetener, useful for example to enhance taste of the composition.
  • Any orally acceptable natural or artificial sweetener can be used, including without limitation dextrose, sucrose, maltose, dextrin, dried invert sugar, mannose, xylose, ribose, fructose, levulose, galactose, corn syrup (including high fructose corn syrup and corn syrup solids), partially hydrolyzed starch, hydrogenated starch hydrolysate, sorbitol, mannitol, xylitol, maltitol, isomalt, aspartame, neotame, saccharin and salts thereof, dipeptide-based intense sweeteners, cyclamates and the like.
  • One or more sweeteners are optionally present in a total amount depending strongly on the particular sweetener(s) selected, but typically 0.005% to 5% by weight of the sweetener(s) selected, but typically 0.005% to 5%
  • the composition may include at least one flavorant, useful for example to enhance taste of the composition.
  • Any orally acceptable natural or synthetic flavorant can be used, including without limitation vanillin, sage, marjoram, parsley oil, spearmint oil, cinnamon oil, oil of wintergreen (methylsalicylate), peppermint oil, clove oil, bay oil, anise oil, eucalyptus oil, citrus oils, fruit oils and essences including those derived from lemon, orange, lime, grapefruit, apricot, banana, grape, apple, strawberry, cherry, pineapple, etc., bean- and nut-derived flavors such as coffee, cocoa, cola, peanut, almond, etc., adsorbed and encapsulated flavorants and the like.
  • ingredients that provide fragrance and/or other sensory effect in the mouth, including cooling or warming effects.
  • Such ingredients illustratively include menthol, menthyl acetate, menthyl lactate, camphor, eucalyptus oil, eucalyptol, anethole, eugenol, cassia, oxanone, a-irisone, propenyl guaiethol, thymol, linalool, benzaldehyde,
  • cinnamaldehyde N-ethyl-/?-menthan-3-carboxamine, N,2,3-trimethyl-2- isopropylbutanamide, 3-(l-menthoxy)-propane-l,2-diol, cinnamaldehyde glycerol acetal (CGA), menthone glycerol acetal (MGA) and the like.
  • One or more flavorants are optionally present in a total amount of 0.01% to 5%, for example 0.1% to 2.5% by weight of the composition.
  • the composition may comprise at least one colorant.
  • Colorants herein include pigments, dyes, lakes and agents imparting a particular luster or reflectivity such as pearling agents.
  • a colorant can serve a number of functions, including for example to provide a white or light-colored coating on a dental surface, to act as an indicator of locations on a dental surface that have been effectively contacted by the composition, and/or to modify appearance, in particular color and/or opacity, of the composition to enhance attractiveness to the consumer.
  • Any orally acceptable colorant can be used, including without limitation talc, mica, magnesium carbonate, calcium carbonate, magnesium silicate, magnesium aluminum silicate, silica, titanium dioxide, zinc oxide, red, yellow, brown and black iron oxides, ferric ammonium ferrocyanide, manganese violet, ultramarine, titaniated mica, bismuth oxychloride and the like.
  • One or more colorants are optionally present in a total amount of 0.001 % to 20%, for example 0.01% to 10% or 0.1% to 5% by weight of the composition.
  • the invention provides chewing gum compositions comprising a gum base and an effective amount of the combination of extracts discussed above.
  • Chewing gum formulations typically contain, in addition, one or more plasticizing agents, at least one sweetening agent and at least one flavoring agent.
  • the chewing gum formulations preferably are prepared using optically clear carriers to provide an optically clear chewing gum composition.
  • Gum base materials are well known in the art and include natural or synthetic gum bases or mixtures thereof.
  • Representative natural gums or elastomers include chicle, natural rubber, jelutong, balata, guttapercha, lechi caspi, sorva, guttakay, crown gum, and perillo.
  • Synthetic gums or elastomers include butadiene-styrene copolymers, polyisobutylene and isobutylene-isoprene copolymers.
  • the gum base is incorporated in the chewing gum product at a concentration of 10 to 40% and preferably 20 to 35%.
  • the oral compositions comprise an edible oral strip comprising one or more polymeric film forming agents and an effective amount of the combination of extracts discussed above.
  • the one or more polymeric film forming agents are selected from the group consisting of orally acceptable polymers such as pullulan, cellulose derivatives, and other soluble polymers including those well-known in the art.
  • the polymer strip preferabl is optically clear.
  • inventions are directed to methods for one or more of the following:
  • the composition be applied to the oral cavity periodically (at least once a day, twice a day, three times a day) for a period of from 1 day to more than 6 months, more preferably for at least 2 weeks.
  • Sections containing dentin and free of enamel were selected for testing and then etched with citric acid solution to remove the smear layer.
  • Each disc was mounted into a split chambered device described in J Dent. Research, 57: 187 (1978) which is a special leak- proof chamber connected to a pressurized fluid reservoir containing a tissue culture fluid. By using a mixture of pressurized nitrogen and carbon dioxide gas, the fluid can be made at physiological pH. To further ensure accuracy, the discs were wetted with artificial saliva (phosphate buffer saline , PBS) to approximate intra-oral conditions.
  • the apparatus includes a glass capillary tube attached to a flow sensor (FLODEC, DeMarco Engineering SA, Geneva). An air bubble is injected into the glass capillary tube. By measuring the displacement of the bubble as a function of time, fluid flow through the dentin disc can be measured. Fluid flow is equivalent to the dentin permeability.
  • Dentin permeability is measured before (baseline) and after the mouthwash application. Baseline measurement reflects maximum tubular openness which results in higher permeability. Following measurement of the baseline fluid flow in the dentin disc, 400uL of the compositions were applied to the external surface with a micropipette. After a period of 10 minutes, the compositions were rinsed off the surface 6 times with 400uL PBS. The percent flow reduction induced by treating with the experimental compositions can be calculated, and the higher the flow reduction, the greater the occlusion efficacy of the composition. Tubular occlusion is calculated as percentage of flow reduction or permeability reduction ((Baseline flow - Treatment flow/ Baseline flow)* 100). It is preferred that the compositions of the invention have flow reduction above 50%, preferably above 56%, and even more preferably above 60%.
  • Table 1 below includes mouthwash formulations: Table 1
  • inventive compositions provided superior flow reduction, when compared to comparative mouthrinses A and B. While all of the samples exhibited occlusion efficacy with flow reductions above 40%, the inventive samples all had hydraulic conductance flow reduction of greater than 60%. These examples reveal that the inventive compositions provide superior results.
  • Example VII included the addition of pyrophosphate salts, but otherwise was identical to comparative example F.
  • Example VII provided a greater than doubling of the reduction in flow rate, achieving a flow reduction of 65% (compared to only 30% for comparative example F).
  • the addition of a minor amount of calcium salts in example VIII (contrasted with the use of large amounts of calcium carbonate abrasives, which would not produce calcium salts), improved the flow reduction even more, achieving a flow reduction of 79%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

Disclosed are therapeutic oral compositions useful in the treatment of a variety of oral disorders, in which the composition can provide blockage of dentinal tubes, while at the same time provide antibacterial and anti-caries efficacy. The compositions include arginine in free or salt form, a mucoadhesive polymer, and at least one component selected from pyrophosphates, zinc salts, potassium salts, strontium salts, and mixtures thereof.

Description

Therapeutic Oral Compositions
BACKGROUND OF THE INVENTION
[0001] The three mineralized tissues of teeth are enamel, cementum and dentine. In human teeth, enamel covers the crown dentine whereas cementum covers the root dentine. In turn, the dentine encloses the pulp of the tooth which provides the dentine with vascular and neural support. Unlike enamel and cementum, the dentine is transversed by numerous tubules. The tubule walls are comprised of the calcified matrix of the dentine and the tubule space is filled with fluid (dentinal fluid) derived from pulp tissue fluid and serum. The matrix mineral is comprised mainly of the calcium phosphate salt, hydroxyapatite, which is poorly soluble at neutral and alkaline pH, and progressively more soluble as the pH becomes progressively more acidic.
[0002] Because of their rigid walls, the fluid that fills the narrow dentinal tubules enables cold, tactile, evaporative and osmotic stimuli to be transmitted through the dentine to the pulp in the form of fluid movement. This movement of dentinal fluid is sensed as sharp pain of short duration. This pain is elicited when the odontoblasts that protrude into the pulpal ends of the tubules are disturbed and as a result, the mechano-receptors of the pulpal nerve fibers attached thereto are stimulated. The neural response is usually referred to as dentinal pain and the involved dentine as hypersensitive dentine.
[0003] Dentinal hypersensitivity results when protective enamel or cementum covering dentine is lost. Cementum is easier to breach than enamel, because cementum is thinner and more easily eroded by acids. However, breach of cementum cannot happen until there is gingival recession and exposure of the root surface to the oral milieu. Individuals with breached cementum and suffering with dentinal hypersensitivity often experience pain when the exposed area of the tooth comes into contact with cold air or hot and cold liquids or foods that are sweet or acidic or is touched with a metal object.
[0004] One way that loss of cementum occurs (and the same is true of enamel) is by the process of dental caries. Acids are produced as end-products of the bacterial degradation of fermentable carbohydrate and these acids dissolve hydroxyapatite, which, like dentine and enamel, is the main calcium phosphate mineral that comprises most of the mineral of the cementum. Another source is acidic foods which, if ingested frequently and for prolonged periods of time, will cause tooth demineralization. These include fruit juices and many beverages, both alcoholic and non-alcoholic. Other acidic agents leading to chemical erosion include various oral personal care products. Amongst these are many of the commercially available mouthwashes and some toothpastes. Abrasive toothpastes and vigorous brushing can aid the erosion process. Another way in which dentinal tubules lose their protective cementum and enamel coverings is through procedures performed by the dentist or hygienist in the dental office. This includes cavity and crown preparation of teeth for fillings and other restorations. It also includes cementum removal during scaling and root planing by the periodontist or dental hygienist.
[0005] Many attempts have been made with limited success to plug exposed dentinal tubules and to thereby reduce or stop the ability of stimuli to reach the pulp and cause pain. Materials either singly or in combination have been tried to produce an effective plug.
Blockage of the tubules through the formation of a calcium phosphate precipitate is a common approach. This includes the mixing of a soluble calcium salt with a soluble phosphate salt and immediately applying the combination to the open tubules. Alternatively, application of one salt before the other to try to get a precipitate to form within tubules is also used.
[0006] Substances other than calcium phosphate also have been utilized. For example, U.S. Pat. No. 3,683,006 describes using potassium, lithium or sodium nitrate. Another example is calcium oxalate particles of small and large size. Application of a protein denaturing agent, such as an alcohol, a surfactant, or a chaotropic salt, can also plug an exposed dentinal tubule since there is protein material within the dentinal tubules and denaturation can sometimes result in partial or complete tubule plugging. Still another but more drastic approach is to place a dental restoration in the affected area or cover the area with an adhesive material. U.S. Pat. No. 5, 139,768 describes using a varnish containing strontium salt in a sustained hydrophobic polymer. Adherence without leakage of fluid from the tubules is not always easy to accomplish because adherence to a wet surface is difficult to achieve considering that the continual outward flow or leakage of dentinal fluid from the tubules while a filling or adhesive is setting is hard to stop.
[0007] Attempts to treat tooth sensitivity other than by plugging have involved
depolarization of the nerve fiber membranes essential for nerve impulse transmission.
Potassium salts, especially potassium nitrate, have been largely used for this purpose. For example, U.S. Pat. Nos. 4,751 ,072 and 4,631 , 185 describe using potassium bicarbonate and potassium chloride. U.S. Patent No. 6,524,558 discloses an oral composition containing arginine and a calcium salt to treat dentinal hypersensitivity.
[0008] Arginine and other basic amino acids have been proposed for use in oral care and are believed to have significant benefits in combating cavity formation and tooth sensitivity. Combining these basic amino acids with minerals having oral care benefits, e.g., fluoride and calcium, to form an oral care product having acceptable long term stability, however, has proven challenging. In particular, the basic amino acid may raise the pH and facilitate dissociation of calcium ions that can react with fluoride ions to form an insoluble precipitate. Moreover, the higher pH has the potential to cause irritation. At neutral pH or acidic pH, however, a system utilizing arginine bicarbonate (which the art teaches is preferred) may release carbon dioxide, leading to bloating and bursting of the containers. Moreover, it might be expected that lowering the pH to neutral or acidic conditions would reduce the efficacy of the formulation because the arginine may form an insoluble arginine-calcium complex that has a poorer affinity for the tooth surface, and moreover that lowering the pH would reduce any effect the formulation might have on buffering cariogenic lactic acid in the mouth. Use of antimicrobial agents together with arginine and salts also have posed difficulties.
Commercially available arginine-based toothpaste, such as ProClude® and DenClude®, for example, contain arginine bicarbonate and calcium carbonate, but not fluoride nor any antimicrobial agent.
[0009] Mouthwash and mouthrinse formulations also are well known in the art. Various formulations include antibacterial agents, flavorants, colorants, sweeteners, breath freshening agents, and the like. While a variety of agents can be included in rinse of wash formulations, their concurrent use may not be possible due to interactivity, adverse reactions among reactive agents, resulting in loss of activity. It would be desirable to provide a mouthwash or mouthrinse composition useful in the treatment of a variety of ailments, including for example, dentinal hypersensitivity, anticaries, bad breath, plaque formation, tartar control, stain prevention/whitening, dry mouth, erosion, gingivitis, etc. SUMMARY OF THE INVENTION
[00010] It is a feature of an embodiment of the invention to provide a therapeutic oral composition useful in the treatment of dentinal hypersensitivity, anticaries, bad breath, plaque formation, tartar control, stain prevention/whitening, dry mouth, erosion, gingivitis, etc. It is a feature of the invention to provide a composition that can achieve intrinsic blockage of dentinal tubes, e.g., by taking advantage of the presence of calcium and phosphate ions in dentinal fluid, while at the same time provide antibacterial and anti-caries efficacy, ameliorate dry mouth, and treat erosion and gingivitis. It also is a feature of an embodiment of the invention to provide a composition that provides improved hydraulic conductance exhibiting flow reductions greater than about 50%.
[00011] In accordance with these and other features of the embodiments, there is provided an oral care composition comprising arginine in free or salt form, a mucoadhesive polymer, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof. Preferably, the composition is a mouthwash.
[00012] Another embodiment of the invention includes a method of one or more of:
reducing hypersensitivity of the teeth; reducing or inhibiting formation of dental caries; reducing or inhibiting demineralization and promoting remineralization of the teeth; reducing or inhibiting gingivitis; inhibiting microbial biofilm formation in the oral cavity; reducing accumulation of plaque; treating dry mouth; reducing erosion of the teeth; protecting enamel after erosive challenges; and cleaning and/or whitening the teeth and cleaning the oral cavity, comprising applying to the oral cavity of a patient in need thereof an oral care composition comprising arginine in free or salt form, a mucoadhesive polymer, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof.
[00013] These and other features will be readily apparent from a review of the detailed description of the preferred embodiments that follows. DETAILED DESCRIPTION
[00014] The following definitions and non-limiting guidelines must be considered in reviewing the description of this invention set forth herein. The headings (such as
"Background" and "Summary,") and sub-headings (such as "Compositions" and "Methods") used herein are intended only for general organization of topics within the disclosure of the invention, and are not intended to limit the disclosure of the invention or any aspect thereof. In particular, subject matter disclosed in the "Background" may include aspects of technology within the scope of the invention, and may not constitute a recitation of prior art. Subject matter disclosed in the "Summary" is not an exhaustive or complete disclosure of the entire scope of the invention or any embodiments thereof. Classification or discussion of a material within a section of this specification as having a particular utility (e.g., as being an "active" or a "carrier" ingredient) is made for convenience, and no inference should be drawn that the material must necessarily or solely function in accordance with its classification herein when it is used in any given composition.
[00015] The citation of references herein does not constitute an admission that those references are prior art or have any relevance to the patentability of the invention disclosed herein. Any discussion of the content of references cited in the Introduction is intended merely to provide a general summary of assertions made by the authors of the references, and does not constitute an admission as to the accuracy of the content of such references.
[00016] The description and specific examples, while indicating embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features, or other embodiments incorporating different combinations the stated of features. Specific Examples are provided for illustrative purposes of how to make and use the compositions and methods of this invention and, unless explicitly stated otherwise, are not intended to be a
representation that given embodiments of this invention have, or have not, been made or tested.
[00017] As used herein, the words "preferred" and "preferably" refer to embodiments of the invention that afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the invention. In addition, the compositions and the methods may comprise, consist essentially of, or consist of the elements described therein.
[00018] As used throughout, ranges are used as a shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
[00019] Unless otherwise specified, all percentages and amounts expressed herein and elsewhere in the specification should be understood to refer to percentages by weight. The amounts given are based on the active weight of the material. The recitation of a specific value herein, whether referring to respective amounts of components, or other features of the embodiments, is intended to denote that value, plus or minus a degree of variability to account for errors in measurements. For example, an amount of 10% may include 9.5% or 10.5%, given the degree of error in measurement that will be appreciated and understood by those having ordinary skill in the art.
[00020] As used herein, "antibacterial activity" herein means activity as determined by any generally accepted in vitro or in vivo antibacterial assay or test. "Anti-inflammatory activity" herein means activity as determined by any generally accepted in vitro or in vivo assay or test, for example an assay or test for inhibition of prostaglandin production or
cyclooxygenase activity. "Antioxidant activity" herein means activity as determined by any generally accepted in vitro or in vivo antioxidant assay or test.
[00021] An "oral surface" herein encompasses any soft or hard surface within the mouth including surfaces of the tongue, hard and soft palate, buccal mucosa, gums and dental surfaces. A "dental surface" herein is a surface of a natural tooth or a hard surface of artificial dentition including a crown, cap, filling, bridge, denture, dental implant and the like. The term "inhibiting" herein with respect to a condition such as inflammation in an oral tissue encompasses prevention, suppression, reduction in extent or severity, or amelioration of the condition.
[00022] The oral care composition of the preferred embodiments includes arginine in free or salt form, a mucoadhesive polymer, optionally at least one antibacterial agent, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof. The composition preferably is in the form of a mouthwash or mouthrinse. In addition to these ingredients, the mouthwash or mouthrinse can include sweetners, pH ajusters, acids, salts, anti-caries agents, and other conventional mouthwash agents. The compositions preferably are useful in total or complete treatment of the oral cavity, including treatment of hypersensitivity, anticaries, bad breath, plaque formation, tartar control, stain prevention/whitening, dry mouth, erosion, gingivitis, etc.
[00023] While not intending on being bound by any theory of operation, the inventors believe that use of the combination of components in the compositions provides enhanced tubule occlusion efficacy with a coating on their surface that delivers and retains beneficial agents to that surface. The compositions provide mucoadhesivity and film-forming properties that can be used to address hypersensitivity, dry mouth, acid resistance, deminerialization, and the like.
[00024] The compositions described herein contain arginine in free or salt form. Suitable arginine compounds, derivatives and salts are disclosed in, for example, U.S. Patent
Application Publication Nos. 2005/0031551, 2009/0202465, and 2009/0202454, the disclosures of which are incorporated by reference herein in their entireties. Arginine may be present by itself, and can include arginine, and D and L forms thereof. Arginine also may be present in salt form (or as a derivative of arginine). Any salt of arginine can be used in the invention so long as it is capable of releasing arginine in solution. Suitable arginine salts include salts of arginine and one or more of the following: (a) an acidic polymer; (b) a conjugate acid of an anionic surfactant salt; (c) a polyphosphoric or polyphosphonic acid; or (d) an acidic antimicrobial agent. The arginine salt preferably is a salt of arginine and lauroyl sulfuric acid.
f 00025] The conjugate acid of an anionic surfactant salt may be selected from (i) water- soluble salts of higher fatty acid monoglyceride monosulfate (e.g., salt of the monosulfated monoglyceride of hydrogenated coconut oil fatty acids such as sodium N-methyl N-cocoyl taurate, sodium cocomo-glyceride sulfate); (ii) higher alkyl sulfates, e.g., sodium lauryl sulfate; (iii) higher alkyl-ether sulfates, e.g., of formula CH3(CH2)mCH2(OCH2CH2)nOS03H, wherein m is 6-16, e.g., 10, n is 1 -6, e.g., 2, 3 or 4, and X is Na or K (for example sodium laureth-2 sulfate (C^CHa^oiC^OCHaCH^OSOaNa)); (iv), higher alkyl aryl sulfonates (such as sodium dodecyl benzene sulfonate (sodium lauryl benzene sulfonate)); (v) higher alkyl sulfoacetates (such as sodium lauryl sulfoacetate (dodecyl sodium sulfoacetate), higher fatty acid esters of 1 ,2 dihydroxy propane sulfonate, sulfocolaurate (N-2-ethyl laurate potassium sulfoacetamide) and sodium lauryl sarcosinate); (vi) and mixtures thereof, e.g., wherein by "higher alkyl" is meant c6-30 alkyl, for example Cg_ig.
[00026] The arginine salt may include arginine polyphosphate or polyphosphonate salts, including, for example, a salt of arginine and polyvinyl phosphonic acid, a salt of arginine and a polyphosphoric acid, a salt of arginine and hexametaphosphoric acid, a salt of arginine and pyrophosphoric acid, a salt of arginine and a tripolyphosphate salt, and mixtures thereof.
[00027] The arginine salt also may include salts of arginine and an antibacterial acid. In a particularly preferred embodiment the invention provides salts of arginine and a benzoic acid optionally substituted with carboxy and/or one or more, e.g., 1, 2, or 3 hydroxys, e.g., benzoic acid, phthalic acid, salicylic acid or trihydroxybenzoic acid, for example, gallic acid.
[00028] The arginine in free or salt form may be present in the compositions described herein in an amount of 0.1 wt. % to 20 wt. % of the total composition weight, preferably from 0.25 wt. % to 5 wt. % of the total composition weight, for example from 0.4% to 2.5%, or from 0.5% to 2%, or from 0.6% to 1%, or from 0.75% to 0.9% by weight, based on the total weight of the composition.
[00029) The compositions of the present invention also contain a mucoadhesive polymer. Mucoadhesive polymers generally are known and may be selected from one or more of an orally acceptable polyvinylmethylether/maleic anhydride (PVME/MA) copolymer, acrylic acid methylacrylate/styrene/2-acryloamido-2-methylpropane sufonic acid copolymer (Lupasol FF4243/Lupasol DVFR), poly(vinylpyrrolidone) (PVP), carboxymethylcellulose (CMC), xanthan, and mixtures thereof. The mucoadhesive polymer preferably is present in an amount of from 0.1% to 20%, for example from 0.25% to 10% by weight, more preferably from 0.4% to 2.5%, or from 0.5% to 2%, or from 0.6% to 1% by weight, based on the total weight of the composition.
[00030] Preferred mucoadhesive polymers are those that enhance the delivery and retention of the agents to, and retention thereof on oral surfaces. Such agents useful in the present invention are disclosed in U.S. Pat. Nos. 5,188,821 and 5,192,531. Suitable
polyvinylmethylether/maleic anhydride (PVME/MA) copolymers include those in which the methyl vinyl ether to maleic anhydride ratio in the copolymer is from 1 :4 to 4: 1 , and the copolymer has an average molecular weight of 30,000 to 1,000,000, for example 30,000 to 500,000. Preferred PVME/MA copolymers include those under the GANTREZ® brand from ISP (Bound Brook, N.J., 08805). The PVME/MA copolymer may also act as an antibacterial enhancing agent if present in an antibacterial enhancing effective amount. The GANTREZ® copolymers may include, for example, GANTREZ® AN 139 (M.W. 500,000), GANTREZ® AN 1 19 (M.W. 250,000) and preferably GANTREZ®S-97 Pharmaceutical Grade (M.W. 700,000) available from ISP Technologies, Inc., Bound Brook, N.J. 08805. [00031] The mucoadhesive polymer useful in the oral care compositions of the invention also include one or more polymers, such as poly(vinylpyrrolidone) (PVP), polyethylene glycols, polyvinylmethyl ether maleic acid copolymers, polysaccharides (e.g., cellulose derivatives, for example carboxymethyl cellulose, or polysaccharide gums, for example xanthan gum or carrageenan gum). Acidic polymers, for example polyacrylate gels, may be provided in the form of their free acids or partially or fully neutralized water soluble alkali metal (e.g., potassium and sodium) or ammonium salts.
[00032] Other operative polymers include those such as the 1 : 1 copolymers of maleic anhydride with ethyl acrylate, hydroxyethyl methacrylate, N-vinyl-2-pyrollidone, or ethylene, the latter being available for example as Monsanto EMA No. 1 103, M.W. 10,000 and EM A Grade 61 , and 1 : 1 copolymers of acrylic acid with methyl or hydroxyethyl methacrylate, methyl or ethyl acrylate, isobutyl vinyl ether or N-vinyl-2-pyrrolidone.
[00033] Suitable generally, are polymerized olefinically or ethylenically unsaturated carboxylic acids containing an activated carbon-to-carbon olefinic double bond and at least one carboxyl group, that is, an acid containing an olefinic double bond which readily functions in polymerization because of its presence in the monomer molecule either in the alpha-beta position with respect to a carboxyl group or as part of a terminal methylene grouping. Illustrative of such acids are acrylic, methacrylic, ethacrylic, alpha-chloroacrylic, crotonic, beta-acryloxy propionic, sorbic, alpha-chlorsorbic, cinnamic, beta-styrylacrylic, muconic, itaconic, citraconic, mesaconic, glutaconic, aconitic, alpha-phenylacrylic, 2-benzyl acrylic. 2-cyclohexylacrylic, angelic, umbellic, fumaric, maleic acids and anhydrides. Other different olefinic monomers copolymerizable with such carboxylic monomers include vinylacetate, vinyl chloride, dimethyl maleate and the like. Copolymers contain sufficient carboxylic salt groups for water-solubility.
[00034] A further class of polymeric agents includes a composition containing
homopolymers of substituted acrylamides and/or homopolymers of unsaturated sulfonic acids and salts thereof, in particular where polymers are based on unsaturated sulfonic acids selected from acrylamidoalykane sulfonic acids such as 2-acrylamide 2 methylpropane sulfonic acid having a molecular weight of about 1 ,000 to about 2,000,000, described in U.S. Pat. No. 4,842,847, the disclosure of which is incorporated herein by reference herein in its entirety. A particularly preferred polymer in this regard is acrylic
acid/methylacrylate/styrene/2-acryloamido-2-methylpropane sufonic acid copolymer (Lupasol FF4243/Lupasol DVFR). Lupasol FF4243 is a copolymer containing 20% acrylic acid, 20% methyl acrylate, 59% 2-acrylamide 2 methylpropanesulfonic acid, and 1% styrene. Another useful class of polymeric agents includes polyamino acids, particularly those containing proportions of anionic surface-active amino acids such as aspartic acid, glutamic acid and phosphoserine, as disclosed in U.S. Pat. No. 4,866,161, the disclosure of which is incorporated herein by reference in its entirety.
[00035] The compositions of the preferred embodiments also may optionally contain one or more antibacterial agents. The antibacterial agent may be selected from halogenated diphenyl ether (e.g. triclosan), herbal extracts and essential oils (e.g., rosemary extract, tea extract, magnolia extract, thymol, menthol, eucalyptol, geraniol, carvacrol, citral, hinokitol, catechol, methyl salicylate, epigallocatechin gallate, epigallocatechin, gallic acid, miswak extract, sea-buckthorn extract), bisguanide antiseptics (e.g., chlorhexidine, alexidine or octenidine), quaternary ammonium compounds (e.g., cetylpyridinium chloride (CPC), benzalkonium chloride, tetradecylpyridinium chloride (TPC), N-tetradecyl-4-ethylpyridinium chloride (TDEPC)), phenolic antiseptics, hexetidine, octenidine, sanguinarine, povidone iodine, deknopinol, salifluor, metal ions (e.g., zinc salts, for example, zinc citrate, zinc oxide, stannous salts, copper salts, iron salts), sanguinarine propolis and oxygenating agents (e.g., hydrogen peroxide, buffered sodium peroxyborate or peroxycarbonate), phthalic acid and its salts, monoperthalic acid and its salts and esters, ascorbyl stearate, oleoyl sarcosine, alkyl sulfate, dioctyl sulfosuccinate, salicylanilide, domiphen bromide, deknopinol, octapinol and other piperidino derivatives, nicin preparations, chlorite salts; and mixtures of any of the foregoing. The antibacterial agent preferably is not triclosan, and may be CPC,
chlorhexidine, zinc citrate, zinc oxide, and mixtures thereof. If used, the antibacterial agent preferably is present in an amount of from 0.01% to 10%, for example from 0.025% to 5% by weight, more preferably from 0.05% to 1 %, or from 0.075% to .5% by weight, based on the total weight of the composition.
[00036] The compositions of the preferred embodiments also include at least one or more components selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof. The pyrophosphate salts useful in the present compositions include the dialkali metal pyrophosphate salts, tetra alkali metal pyrophosphate salts, and mixtures thereof. Disodium dihydrogen pyrophosphate
Figure imgf000011_0001
tetrasodium pyrophosphate (Na4P20v), and tetrapotassium pyrophosphate (K4P2O7) in their unhydrated as well as hydrated forms are the preferred species. In compositions of the present invention, the pyrophosphate salt may be present in one of three ways: predominately dissolved, predominately undissolved, or a mixture of dissolved and undissolved pyrophosphate. Pyrophosphate ions in different protonated states (e.g., HP2O7 "3) may also exist depending upon the pH of the composition and if part of the tetrasodium pyrophosphate is dissolved. The pyrophosphate salts may be present in an amount ranging from 0.1% to 5% by weight, preferably from 0.2% to 2% by weight, and more preferably from 0.4 to 2% by weight, based on the total weight of the composition. Combinations of pyrophosphate salts may be used.
[00037] Zinc salts useful in the embodiments include, for example, any physiologically acceptable zinc compound including water soluble (inclusive of sparingly water soluble) organic and inorganic zinc compounds. The water-soluble zinc compounds (at least 1% soluble) are preferred. Examples of suitable zinc compounds that may be employed include: zinc acetate, zinc fluoride, zinc ammonium sulfate, zinc formate, zinc bromide, zinc iodide, zinc chloride, zinc oxide, zinc nitrate, zinc chromate, zinc phenol sulfonate, zinc citrate, zinc salicylate, zinc dithionate, zinc sulfate, zinc fluosilicate, zinc gluconate, zinc tartarate, zinc succinate, zinc glycerophosphate, and mixtures thereof. Other zinc compounds disclosed in U.S. Pat. No. 4,138,477 having a solubility of a least about 0.01 mg of zinc ions per ml water are incorporated by reference. The zinc salts may be present in amounts within the range of from 0.01 -5% by weight, more preferably from 0.1-1% of zinc salt weight, based on the total weight of the composition.
[00038] Suitable nitrate and carbonate salts include, for example, any physiologically acceptable salts for use in mouth rinse formulations. Nitrates include the aforementioned zinc nitrate, as well as potassium and sodium nitrates. Suitable carbonates include, for example, calcium carbonate, alkali metal carbonate salts, sodium carbonate, and the like. The nitrate and carbonate salts typically are present in the compositin in an amount of from 0.1% to 30%, preferably from 1% to 10%, and more preferably from 1.5% to 5%, by weight of the present composition.
[00039] In addition to the arginine, mucoadhesive polymer, and salts, the oral compositions described in accordance with the embodiments may contain conventional ingredients typically used in oral compositions. For example, liquid mouthwashes may contain solvents such as distilled or deionized water and ethanol; a sweetening agent such as saccharine, aspartame, sorbitol, mannitol, and xylitol; and a flavoring agent such as peppermint oil and spearmint oil (see U.S. Pat. Nos. 4,226,851 and 4,606,912, the disclosures of which are incorporated by reference in their entirety). Dentifrices may contain, for example, a conventional abrasive such as resins, silica, and insoluble alkali metal metaphosphates in a standard amount of 20% to 60% by weight; a binder such as hydroxyethylcellulose, xanthan gum, and sodium carboxymethylcellulose in a standard amount ranging from 0.05% to 5.0% by weight; a foaming agent such as sodium lauryl sulfate, sodium coconut monoglyceride sulfonate, and sodium-N-methyl-N-palmitoyl taurine in a standard amount ranging from 0.5% to 3.0% by weight; a flavoring agent; a sweetening agent; an antiseptic agent and any other ingredient required for the particular composition as recognized by those skilled in the art (see U.S. Pat. Nos. 4, 177,258 and 4,721,614, the disclosures of which are incorporated by reference in their entirety). Tablets and powders may contain, for example, a vehicle such as lactose and mannitol, a binder such as corn starch and carboxymethylcellulose, and a disintegrator.
[00040] A dentifrice or paste for localized application to a sensitive tooth site such as breeched cementum of an orally exposed root surface may be one that is simpler in composition and applied with a soft applicator. Such a dentifrice or paste may or may not contain conventional abrasive, foaming agent, and flavoring agents. Localized sites such as the dentine following tooth preparation for a dental restoration also involve simpler compositions and include fillers used in dental pulp cappings, cavity liners and cements and any other ingredients required for the composition by those skilled in the art (Craig et al., 1989, Restorative Dental Materials. Mosby, St. Louis, pp. 189-225). For example, zinc oxide and eugenol at levels of (20 and 25%, respectively) would be appropriate for dental cement compositions.
[00041] The present embodiments further provide an article of manufacture that includes packaging material and the oral compositions described herein contained within the packaging material. The oral composition is effective in retarding or preventing dentinal hypersensitivity. The packaging material preferably contains a label that indicates that the oral composition is effective in retarding or preventing dentinal hypersensitivity. The packaging material used to contain the oral compositions may induce glass, plastic, metal or any other suitably inert material. For example, a dentifrice containing the oral composition may be contained in a collapsible tube, typically aluminum, lead-lined, or plastic, or a squeeze pump or pressurized dispenser to measure out the contents, or in a tearable sachet. The compositions also may be included in a plastic bottle typically used for dispensing liquids.
[00042] The oral composition of the embodiments also may be used in a prophylaxis paste for polishing teeth or treating sensitive teeth or preventing the development of sensitive teeth after scaling, root planing or stain removal by a dentist or hygienist, in a small dental container, such as a tub of a size that permits easy access of the rotary attachments used in dental offices on dental hand-pieces.
[00043] An oral care composition of the present invention can take any liquid or gel form suitable for application to an oral surface. In various illustrative embodiments the composition can be a liquid solution suitable for irrigating, rinsing or spraying; a dentifrice such as a dental gel; a periodontal gel; a liquid suitable for painting a dental surface (e.g., a liquid whitener); a mouthrinse, a foam; etc. The composition can contain active and/or carrier ingredients additional to those recited above.
[00044] Preferred oral care compositions include those selected from dentifrices, oral rinses, oral strips, lozenges, beads, liposomes, micelles, reverse micelles, micro- or nano- encapsulated containers, enzymes, proteins, gels, sol-gels, hydrogels, silicas, organic zeolites, inorganic silicas such as those present in dentifrice, paint-ons, oral patches, polymers, sprays, smoke inhalatation devices, foams, chewing gums, from the back or through a toothbrush head, oils or other products used for oral hygiene or benefit. These products can also include food stuffs, liquids and probiotics that endogenously contain or can be laced with photoabsorbing species for oral treatment.
[00045] In various embodiments, the compositions comprise an orally acceptable source of fluoride ions, which serves as an anticaries agent. One or more such sources can be present. Suitable sources of fluoride ions include fluoride, monofluorophosphate and fluorosilicate salts as well as amine fluorides, including olaflur (N'-octadecyltrimethylendiamine-N,N,N'- tris(2-ethanol)-dihydrofluoride) and stannous fluoride. Other anticaries agents can be used, such as arginine and arginine derivatives (e.g., ethyl lauroyl arginine (ELAH)).
[00046] As anticaries agent, one or more fluoride-releasing salts are optionally present in an amount providing a total of 100 to 20,000 ppm, 200 to 5,000 ppm, or 500 to 2,500 ppm, fluoride ions. Where sodium fluoride is the sole fluoride-releasing salt present, illustratively an amount of 0.01% to 5%, 0.02% to 1% or 0.04% to 0.5%, sodium fluoride by weight can be present in the composition.
[00047] Phenolic compounds may be used, and include, subject to determination of oral acceptability, those identified as having anti-inflammatory activity by Dewhirst (1980), Prostaglandins 20(2), 209-222, but are not limited thereto. Examples of antibacterial phenolic compounds include 4-allylcatechol, />-hydroxybenzoic acid esters including benzylparaben, butylparaben, ethylparaben, methylparaben and propylparaben,
2-benzylphenol, butylated hydroxyanisole, butylated hydroxytoluene, capsaicin, carvacrol, creosol, eugenol, guaiacol, halogenated bisphenolics including hexachlorophene and bromochlorophene, 4-hexylresorcinol, 8-hydroxyquinoline and salts thereof, salicylic acid esters including menthyl salicylate, methyl salicylate and phenyl salicylate, phenol, pyrocatechol, salicylanilide, and thymol. These phenolic compounds typically are present in one or more of the natural extracts described above.
[00048] In another embodiment the composition comprises an orally acceptable stannous ion source useful, for example, in helping reduce gingivitis, plaque, calculus, caries or sensitivity. One or more such sources can be present. Suitable stannous ion sources include without limitation stannous fluoride, other stannous halides such as stannous chloride dihydrate, stannous pyrophosphate, organic stannous carboxylate salts such as stannous formate, acetate, gluconate, lactate, tartrate, oxalate, malonate and citrate, stannous ethylene glyoxide and the like. One or more stannous ion sources are optionally and illustratively present in a total amount of 0.01% to 5%, for example 0.03% to 2% or 0.05% to 1% by weight of the composition.
[00049] In another embodiment the composition comprises an orally acceptable breath- freshening agent. One or more such agents can be present in a breath-freshening effective total amount. Suitable breath-freshening agents include without limitation zinc salts such as zinc gluconate, zinc citrate and zinc chlorite, a-ionone and the like.
[00050] In another embodiment the composition comprises an orally acceptable antiplaque, including plaque disrupting, agent. One or more such agents can be present in an antiplaque effective total amount. Suitable antiplaque agents include without limitation stannous, copper, magnesium and strontium salts, dimethicone copolyols such as cetyl dimethicone copolyol, papain, glucoamylase, glucose oxidase, urea, calcium lactate, calcium
glycerophosphate, strontium polyacrylates and chelating agents such as citric and tartaric acids and alkali metal salts thereof.
[00051] In another embodiment the composition comprises an orally acceptable antiinflammatory agent. One or more such agents can be present in an anti-inflammatory effective total amount. Suitable anti-inflammatory agents include without limitation steroidal agents such as flucinolone and hydrocortisone, and nonsteroidal agents (NSAIDs) such as ketorolac, flurbiprofen, ibuprofen, naproxen, indomethacin, diclofenac, etodolac, indomethacin, sulindac, tolmetin, ketoprofen, fenoprofen, piroxicam, nabumetone, aspirin, diflunisal, meclofenamate, mefenamic acid, oxyphenbutazone and phenylbutazone. One or more anti-inflammatory agents are optionally present in the composition in an antiinflammatory effective amount.
[00052] Compositions of the inventions optionally contain other ingredients such as enzymes, vitamins and anti-adhesion agents. Enzymes such as proteases can be added for anti-stain and other effects. Non-limiting examples of vitamins include vitamin C, vitamin E, vitamin B5, and folic acid. In various embodiments, the vitamins have antioxidant properties. Anti-adhesion agents include ethyl lauroyl arginine (ELAH), solbrol, ficin, silicone polymers and derivatives, and quorum sensing inhibitors.
[00053J Among useful carriers for optional inclusion in a composition of the invention are diluents, abrasives, bicarbonate salts, pH modifying agents, surfactants, foam modulators, thickening agents, viscosity modifiers, humectants, sweeteners, flavorants and colorants. One carrier material, or more than one carrier material of the same or different classes, can optionally be present. Carriers should be selected for compatibility with each other and with other ingredients of the composition.
[00054] Water is a preferred diluent and in some compositions such as mouthwashes and whitening liquids is commonly accompanied by an alcohol, e.g., ethanol. The weight ratio of water to alcohol in a mouthwash composition is generally 1 : 1 to 20: 1, for example 3: 1 to 20: 1 or 4: 1 to 10 : 1. In a whitening liquid, the weight ratio of water to alcohol can be within or below the above ranges, for example 1 : 10 to 2: 1.
[00055] In a still further embodiment a composition of the invention comprises at least one pH modifying agent. Such agents include acidifying agents to lower pH, basifying agents to raise pH and buffering agents to control pH within a desired range. For example, one or more compounds selected from acidifying, basifying and buffering agents can be included to provide a pH of 2 to 10, or in various illustrative embodiments 2 to 8, 3 to 9, 4 to 8, 5 to 7, 6 to 10, 7 to 9, etc. Any orally acceptable pH modifying agent can be used, including without limitation carboxylic, phosphoric and sulfonic acids, acid salts (e.g., monosodium citrate, disodium citrate, monosodium malate, etc.), citric acids, alkali metal hydroxides such as sodium hydroxide, carbonates such as sodium carbonate, bicarbonates, sesquicarbonates, borates, silicates, phosphates (e.g. , monosodium phosphate, trisodium phosphate,
pyrophosphate salts, etc.), imidazole and the like. One or more pH modifying agents are optionally present in a total amount effective to maintain the composition in an orally acceptable pH range. [00056] In a still further embodiment a composition of the invention comprises at least one surfactant, useful for example to compatibilize other components of the composition and thereby provide enhanced stability, to help in cleaning the dental surface through detergency, and to provide foam upon agitation, e.g., during brushing with a dentifrice composition of the invention. Any orally acceptable surfactant, most of which are anionic, nonionic or amphoteric, can be used. Suitable anionic surfactants include without limitation water- soluble salts of Cs 20 alkyl sulfates, sulfonated monoglycerides of Cg 20 fatty acids, sarcosinates, taurates and the like. Illustrative examples of these and other classes include sodium lauryl sulfate, sodium coconut monoglyceride sulfonate, sodium lauryl sarcosinate, sodium lauryl isoethionate, sodium laureth carboxylate and sodium dodecyl
benzenesulfonate. Suitable nonionic surfactants include without limitation poloxamers, polyoxyethylene sorbitan esters, fatty alcohol ethoxylates, alkylphenol ethoxylates, tertiary amine oxides, tertiary phosphine oxides, dialkyl sulfoxides and the like. Suitable amphoteric surfactants include without limitation derivatives of Cs 20 aliphatic secondary and tertiary amines having an anionic group such as carboxylate, sulfate, sulfonate, phosphate or phosphonate. A suitable example is cocoamidopropyl betaine. One or more surfactants are optionally present in a total amount of 0.01% to 10%, for example 0.05% to 5% or 0.1% to 2% by weight of the composition.
[00057] In a still further embodiment a composition of the invention comprises at least one foam modulator, useful for example to increase amount, thickness or stability of foam generated by the composition upon agitation. Any orally acceptable foam modulator can be used, including without limitation polyethylene glycols (PEGs), also known as
polyoxyethylenes. High molecular weight PEGs are suitable, including those having an average molecular weight of about 200,000 to about 7,000,000, for example about 500,000 to about 5,000,000 or about 1 ,000,000 to about 2,500,000. One or more PEGs are optionally present in a total amount of about 0.1% to about 10%, for example about 0.2% to about 5% or about 0.25% to about 2% by weight of the composition.
[00058] In a still further embodiment a composition described herein may comprise at least one thickening agent, useful for example to impart a desired consistency and/or mouth feel to the composition. Any orally acceptable thickening agent can be used, including without limitation carbomers, also known as carboxyvinyl polymers, carrageenans, also known as Irish moss and more particularly i-carrageenan (iota-carrageenan), cellulosic polymers such as hydroxyethylcellulose, carboxymethylcellulose (CMC) and salts thereof, e.g., CMC sodium, natural gums such as karaya, xanthan, gum arabic and tragacanth, colloidal magnesium aluminum silicate, colloidal silica and the like. A preferred class of thickening or gelling agents includes a class of homopolymers of acrylic acid crosslinked with an alkyl ether of pentaerythritol or an alkyl ether of sucrose, or carbomers. Carbomers are commercially available from B. F. Goodrich as the Carbopol® series. Particularly preferred Carbopols include Carbopol 934, 940, 941 , 956, 974P, and mixtures thereof. One or more thickening agents are optionally present in a total amount of 0.01% to 15%, for example 0.1% to 10% or 0.2% to 5% by weight of the composition.
[00059] In a still further embodiment, the composition may include at least one viscosity modifier, useful for example to inhibit settling or separation of ingredients or to promote redispersibility upon agitation of a liquid composition. Any orally acceptable viscosity modifier can be used, including without limitation mineral oil, petrolatum, clays and organomodified clays, silica and the like. One or more viscosity modifiers are optionally present in a total amount of 0.01% to 10%, for example 0.1% to 5% by weight of the composition.
[00060] In a still further embodiment the composition may include at least one humectant, useful for example to prevent hardening of a tooth paste upon exposure to air. Any orally acceptable humectant can be used, including without limitation polyhydric alcohols such as glycerin, sorbitol, xylitol or low molecular weight PEGs. Most humectants also function as sweeteners. One or more humectants are optionally present in a total amount of 1% to 70%, for example 1% to 50%, 2% to 25%, or 5% to 15% by weight of the composition.
[00061] In a still further embodiment the composition may include at least one sweetener, useful for example to enhance taste of the composition. Any orally acceptable natural or artificial sweetener can be used, including without limitation dextrose, sucrose, maltose, dextrin, dried invert sugar, mannose, xylose, ribose, fructose, levulose, galactose, corn syrup (including high fructose corn syrup and corn syrup solids), partially hydrolyzed starch, hydrogenated starch hydrolysate, sorbitol, mannitol, xylitol, maltitol, isomalt, aspartame, neotame, saccharin and salts thereof, dipeptide-based intense sweeteners, cyclamates and the like. One or more sweeteners are optionally present in a total amount depending strongly on the particular sweetener(s) selected, but typically 0.005% to 5% by weight of the
composition.
[00062] In a still further embodiment the composition may include at least one flavorant, useful for example to enhance taste of the composition. Any orally acceptable natural or synthetic flavorant can be used, including without limitation vanillin, sage, marjoram, parsley oil, spearmint oil, cinnamon oil, oil of wintergreen (methylsalicylate), peppermint oil, clove oil, bay oil, anise oil, eucalyptus oil, citrus oils, fruit oils and essences including those derived from lemon, orange, lime, grapefruit, apricot, banana, grape, apple, strawberry, cherry, pineapple, etc., bean- and nut-derived flavors such as coffee, cocoa, cola, peanut, almond, etc., adsorbed and encapsulated flavorants and the like. Also encompassed within flavorants herein are ingredients that provide fragrance and/or other sensory effect in the mouth, including cooling or warming effects. Such ingredients illustratively include menthol, menthyl acetate, menthyl lactate, camphor, eucalyptus oil, eucalyptol, anethole, eugenol, cassia, oxanone, a-irisone, propenyl guaiethol, thymol, linalool, benzaldehyde,
cinnamaldehyde, N-ethyl-/?-menthan-3-carboxamine, N,2,3-trimethyl-2- isopropylbutanamide, 3-(l-menthoxy)-propane-l,2-diol, cinnamaldehyde glycerol acetal (CGA), menthone glycerol acetal (MGA) and the like. One or more flavorants are optionally present in a total amount of 0.01% to 5%, for example 0.1% to 2.5% by weight of the composition.
[00063] In a still further embodiment the composition may comprise at least one colorant. Colorants herein include pigments, dyes, lakes and agents imparting a particular luster or reflectivity such as pearling agents. A colorant can serve a number of functions, including for example to provide a white or light-colored coating on a dental surface, to act as an indicator of locations on a dental surface that have been effectively contacted by the composition, and/or to modify appearance, in particular color and/or opacity, of the composition to enhance attractiveness to the consumer. Any orally acceptable colorant can be used, including without limitation talc, mica, magnesium carbonate, calcium carbonate, magnesium silicate, magnesium aluminum silicate, silica, titanium dioxide, zinc oxide, red, yellow, brown and black iron oxides, ferric ammonium ferrocyanide, manganese violet, ultramarine, titaniated mica, bismuth oxychloride and the like. One or more colorants are optionally present in a total amount of 0.001 % to 20%, for example 0.01% to 10% or 0.1% to 5% by weight of the composition.
[00064] In various embodiments, the invention provides chewing gum compositions comprising a gum base and an effective amount of the combination of extracts discussed above. Chewing gum formulations typically contain, in addition, one or more plasticizing agents, at least one sweetening agent and at least one flavoring agent. The chewing gum formulations preferably are prepared using optically clear carriers to provide an optically clear chewing gum composition.
[00065] Gum base materials are well known in the art and include natural or synthetic gum bases or mixtures thereof. Representative natural gums or elastomers include chicle, natural rubber, jelutong, balata, guttapercha, lechi caspi, sorva, guttakay, crown gum, and perillo. Synthetic gums or elastomers include butadiene-styrene copolymers, polyisobutylene and isobutylene-isoprene copolymers. The gum base is incorporated in the chewing gum product at a concentration of 10 to 40% and preferably 20 to 35%.
[00066] In other embodiments, the oral compositions comprise an edible oral strip comprising one or more polymeric film forming agents and an effective amount of the combination of extracts discussed above. The one or more polymeric film forming agents are selected from the group consisting of orally acceptable polymers such as pullulan, cellulose derivatives, and other soluble polymers including those well-known in the art. Again, the polymer strip preferabl is optically clear.
[00067] The embodiments are directed to methods for one or more of the following:
reducing hypersensitivity of the teeth; reducing or inhibiting formation of dental caries; reducing or inhibiting demineralization and promoting remineralization of the teeth; reducing or inhibiting gingivitis; inhibiting microbial biofilm formation in the oral cavity; reducing accumulation of plaque; treating dry mouth; reducing erosion of the teeth; protecting enamel after erosive challenges; and cleaning and/or whitening the teeth and cleaning the oral cavity, by applying to the oral cavity an oral composition according to any of the embodiments described herein. It is preferred that the composition be applied to the oral cavity periodically (at least once a day, twice a day, three times a day) for a period of from 1 day to more than 6 months, more preferably for at least 2 weeks.
[00068] The preferred embodiments now will be described in more detail with reference to the following non-limiting examples.
SPECIFIC EMBODIMENTS OF THE INVENTION
Example 1
[00069] In order to test the desensitizing properties of the compositions described herein, several oral compositions were tested using the method described in U.S. Pat. No. 5,589,159, the disclosure of which is incorporated by reference herein in its entirely. This method measures the hydraulic conductance of materials, providing an objective reduction in fluid flow that correlates with reduction in fluid flow in dentinal tubules. In this method, intact human molars free from caries and restorations are sectioned perpendicularly to the long axis of the tooth with a metallurgical saw to form thin sections, or discs, from about 0.4 to about 0.8 mm thick. Sections containing dentin and free of enamel were selected for testing and then etched with citric acid solution to remove the smear layer. Each disc was mounted into a split chambered device described in J Dent. Research, 57: 187 (1978) which is a special leak- proof chamber connected to a pressurized fluid reservoir containing a tissue culture fluid. By using a mixture of pressurized nitrogen and carbon dioxide gas, the fluid can be made at physiological pH. To further ensure accuracy, the discs were wetted with artificial saliva (phosphate buffer saline , PBS) to approximate intra-oral conditions. The apparatus includes a glass capillary tube attached to a flow sensor (FLODEC, DeMarco Engineering SA, Geneva). An air bubble is injected into the glass capillary tube. By measuring the displacement of the bubble as a function of time, fluid flow through the dentin disc can be measured. Fluid flow is equivalent to the dentin permeability.
[00070] Dentin permeability is measured before (baseline) and after the mouthwash application. Baseline measurement reflects maximum tubular openness which results in higher permeability. Following measurement of the baseline fluid flow in the dentin disc, 400uL of the compositions were applied to the external surface with a micropipette. After a period of 10 minutes, the compositions were rinsed off the surface 6 times with 400uL PBS. The percent flow reduction induced by treating with the experimental compositions can be calculated, and the higher the flow reduction, the greater the occlusion efficacy of the composition. Tubular occlusion is calculated as percentage of flow reduction or permeability reduction ((Baseline flow - Treatment flow/ Baseline flow)* 100). It is preferred that the compositions of the invention have flow reduction above 50%, preferably above 56%, and even more preferably above 60%.
[00071] Table 1 below includes mouthwash formulations: Table 1
Figure imgf000022_0001
[00072] The hydraulic conductance of samples I-IV, and Comparison A and Comparison B were measured. The values are reported in Table 2 below.
Table 2
Figure imgf000022_0002
[00073] The above table reveals that the inventive compositions provided superior flow reduction, when compared to comparative mouthrinses A and B. While all of the samples exhibited occlusion efficacy with flow reductions above 40%, the inventive samples all had hydraulic conductance flow reduction of greater than 60%. These examples reveal that the inventive compositions provide superior results.
Example 2
[00074] Additional mouthrinse formulations (Table 3) were prepared, varying the types of salts employed, as well as the presence or absence of mucoadhesive polymer and arginine.
Table 3
Comp D Comp Comp F Comp VII VIII Comp H
E G
Gantrez 0.65 0.65 0.65 0.65
Arginine 0.80 0.80 0.80 0.80
Cettylpyridinium - - - - - - - Chloride
Polyvinylpyrrolid - - - - - - - one (PVP)
Lupasol FF 4243* - - - - - -
Carboxymethykl 0.15 cellulose
Xanthan Gum 0.08
Propylene Glycol 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Sorbitol 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Glycerin 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Preservative 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Tetrasodium 0.45 0.45 0.45 0.45 0.45
pyrophosphate
Tetrapotassium 1.35 1.35 1.35 1.35 1.35
pyrophosphate
PEG 40 1.20 1.2 1.2 1.00 12 1.20 1.20
Sodium - - 0.05 0.05 0.05 0.05 0.05
Fluoride**
Sucralose 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Saccharin 0.30 0.30 - 0.30 0.30 0.30
Flavor 0.20 0.20 0.20 0.15 0.20 0.20 0.20
Zin citrate - - - - - - -
Zinc oxide - - - - - -
KN03 - - - - - - -
Calcium 0,004
Carbonate
Water balance balanc balance balanc balance balance balance e e
Citric acid/NaOH pH adjuster PH pH PH pH pH adjuster PH
adjust adjuster adjust adjuster adjuster er er
Sodium pH adjuster PH PH PH pH adjuster PH
Hydroxide adjust adjuster adjust adjuster adjuster er er [00075] The hydraulic conductance of each of these samples was measured, and the results are shown in Table 4 below.
Table 4
Figure imgf000024_0001
[00076] The data in Table 4 reveal that when a mucoadhesive polymer is combined with arginine (comparative example F) without the addition of salts, similar to the formulations disclosed in the examples of U.S. Patent Application Publication No. 2009/0202454, the hydraulic conductance test provided only a 30% reduction in flow. While comparative examples A and B from table 1 exhibited occlusion efficiency with flow reductions above 40%, the flow reduction was far inferior to the flow reduction achieved in accordance with the present invention. Indeed, Example VII included the addition of pyrophosphate salts, but otherwise was identical to comparative example F. Example VII provided a greater than doubling of the reduction in flow rate, achieving a flow reduction of 65% (compared to only 30% for comparative example F). Similarly, the addition of a minor amount of calcium salts in example VIII (contrasted with the use of large amounts of calcium carbonate abrasives, which would not produce calcium salts), improved the flow reduction even more, achieving a flow reduction of 79%.
[00077] The invention has been described above with reference to illustrative Examples, but it is to be understood that the invention is not limited to the disclosed embodiments. Alterations and modifications that would occur to one of skill in the art upon reading the specification are also within the scope of the invention, which is defined in the appended claims.

Claims

We claim:
1) An oral care composition comprising at least one arginine compound in free or salt form, at least one mucoadhesive polymer, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof.
2) The composition as claimed in claim 1, wherein the arginine compound is present in D or L form, or as a salt with lauroyl sulfuric acid.
3) The composition as claimed in claim 1, wherein the arginine compound is present in an amount within the range of from 0.1% to 20% by weight.
4) The composition as claimed in claim 1, wherein the mucoadhesive polymer is selected from one or more the group consisting of polyvinylmethylether/maleic anhydride (PVME/MA) copolymer, acrylic acid/methylacrylate/styrene/2-acryloamido-2- methylpropane sufonic acid copolymer, poly(vinylpyrrolidone) (PVP),
carboxymethylcellulose (CMC), xanthan, and mixtures thereof.
5) The composition as claimed in claim 4, wherein the mucoadhesive polymer is a
polyvinylmethylether/maleic anhydride (PVME/MA) copolymer.
6) The composition as claimed in claim 1, wherein the mucoadhesive polymer is present in an amount within the range of from 0.1% to 20% by weight.
7) The composition as claimed in claim 1, further comprising an antibacterial agent.
8) The composition as claimed in claim 1 , wherein the pyrophosphate is selected from the group consisting of disodium dihydrogen pyrophosphate (NailtPiOy), tetrasodium pyrophosphate (Na4P207), tetrapotassium pyrophosphate (K4P207), and mixtures thereof. 9) The composition as claimed in claim 1 , wherein the composition is in a form selected from the group consisting of a mouthwash, a dental gel, a periodontal gel and a liquid suitable for painting a dental surface.
10) The composition as claimed in claim 9, wherein the composition is a mouthwash.
11) The composition as claimed in claim 1, wherein the composition has a flow reduction above 50%, when measured using a hydraulic conductance test.
12) A method of one or more selected from the group consisting of: reducing
hypersensitivity of the teeth; reducing or inhibiting formation of dental caries; reducing or inhibiting demineralization and promoting remineralization of the teeth; reducing or inhibiting gingivitis; inhibiting microbial biofilm formation in the oral cavity; reducing accumulation of plaque; treating dry mouth; reducing erosion of the teeth; protecting enamel after erosive challenges; and cleaning and/or whitening the teeth and cleaning the oral cavity, comprising:
a) preparing an oral composition comprising arginine in free or salt form, a
mucoadhesive polymer, and at least one component selected from the group consisting of pyrophosphate compounds, zinc salts, potassium salts, strontium salts, and mixtures thereof; and
b) applying the oral composition to the oral cavity.
13) The method as claimed in claim 12, wherein the composition is applied to the oral cavity at least once a day for at least two weeks.
14) The method as claimed in claim 12, wherein the arginine compound is present in D or L form, or as a salt with lauroyl sulfuric acid.
15) The method as claimed in claim 12, wherein the arginine compound is present in an amount within the range of from 0.1% to 20% by weight.
16) The method as claimed in claim 12, wherein the mucoadhesive polymer is selected from one or more the group consisting of polyvinylmethylether/maleic anhydride (PVME/MA) copolymer, acrylic acio metliylacrylate/styrene/2-acryloamido-2-methylpropane sufonic acid copolymer, poly(vinylpyrrolidone) (PVP), carboxymethylcellulose (CMC), xanthan, and mixtures thereof.
17) The method as claimed in claim 16, wherein the mucoadhesive polymer is a
polyvinylmethylether/maleic anhydride (PVME/MA) copolymer.
18) The method as claimed in claim 12, wherein the mucoadhesive polymer is present in an amount within the range of from 0.1% to 20% by weight.
19) The method as claimed in claim 12, further comprising an antibacterial agent.
20) An article comprising packaging material and the composition as claimed in claim 1, wherein the packaging material comprises a label that indicates the oral composition is effective in retarding or preventing dentinal hypersensitivity.
PCT/US2010/039677 2010-06-23 2010-06-23 Therapeutic oral composition WO2011162756A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
BR112012030037-7A BR112012030037B1 (en) 2010-06-23 2010-06-23 Oral hygiene composition, use and article
ES10727321.1T ES2529216T3 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
RU2013102892/15A RU2535088C2 (en) 2010-06-23 2010-06-23 Therapeutic oral compositions
PL10727321T PL2585025T3 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
US13/701,844 US9579269B2 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
MX2012013955A MX2012013955A (en) 2010-06-23 2010-06-23 Therapeutic oral composition.
PCT/US2010/039677 WO2011162756A1 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
CN2010800675933A CN102946841A (en) 2010-06-23 2010-06-23 Therapeutic oral composition
JP2013516555A JP5723001B2 (en) 2010-06-23 2010-06-23 Oral composition for treatment
EP10727321.1A EP2585025B2 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
CA2800475A CA2800475C (en) 2010-06-23 2010-06-23 Therapeutic oral compositions
SG2012084661A SG185631A1 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
AU2010356102A AU2010356102B2 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
TW100121734A TWI504415B (en) 2010-06-23 2011-06-22 Therapeutic oral compositions
ZA2012/09156A ZA201209156B (en) 2010-06-23 2012-12-04 Therapeutic oral composition
HK13111211.5A HK1183802A1 (en) 2010-06-23 2013-10-02 Therapeutic oral composition
US15/411,211 US11369553B2 (en) 2010-06-23 2017-01-20 Therapeutic oral composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/039677 WO2011162756A1 (en) 2010-06-23 2010-06-23 Therapeutic oral composition

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/701,844 A-371-Of-International US9579269B2 (en) 2010-06-23 2010-06-23 Therapeutic oral composition
US15/411,211 Continuation US11369553B2 (en) 2010-06-23 2017-01-20 Therapeutic oral composition

Publications (1)

Publication Number Publication Date
WO2011162756A1 true WO2011162756A1 (en) 2011-12-29

Family

ID=43877170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/039677 WO2011162756A1 (en) 2010-06-23 2010-06-23 Therapeutic oral composition

Country Status (16)

Country Link
US (2) US9579269B2 (en)
EP (1) EP2585025B2 (en)
JP (1) JP5723001B2 (en)
CN (1) CN102946841A (en)
AU (1) AU2010356102B2 (en)
BR (1) BR112012030037B1 (en)
CA (1) CA2800475C (en)
ES (1) ES2529216T3 (en)
HK (1) HK1183802A1 (en)
MX (1) MX2012013955A (en)
PL (1) PL2585025T3 (en)
RU (1) RU2535088C2 (en)
SG (1) SG185631A1 (en)
TW (1) TWI504415B (en)
WO (1) WO2011162756A1 (en)
ZA (1) ZA201209156B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078613A1 (en) * 2012-11-15 2014-05-22 Isp Investments Inc. Oral care compositions for treatment of sensitive teeth
WO2014088572A1 (en) * 2012-12-05 2014-06-12 Colgate-Palmolive Company Fluoride-stable zinc containing oral care compositions
WO2015094254A1 (en) * 2013-12-19 2015-06-25 Colgate-Palmolive Company Anti-malodor oral care composition
US9161891B2 (en) 2010-12-20 2015-10-20 Colgate-Palmolive Company Gelatin encapsulated oral care composition containing dental occlusion actives, hydrophobic viscosity modifier and oil carrier
EP2934692A1 (en) * 2012-12-18 2015-10-28 Colgate-Palmolive Company Stable metal ion containing compositions
US20160030327A1 (en) * 2013-03-12 2016-02-04 Emily A. STEIN Dental composition comprising chelator and base
US9289369B2 (en) 2010-12-20 2016-03-22 Colgate-Palmolive Company Non-aqueous oral care composition containing dental occlusion actives
WO2016058140A1 (en) * 2014-10-15 2016-04-21 Colgate-Palmolive Company Oral care compositions comprising zinc, arginine and serine
US20160235698A1 (en) * 2013-09-24 2016-08-18 The Regents Of The University Of Michigan Compositions and method for destabilizing, altering, and dispersing biofilms
US20160296437A1 (en) * 2013-12-02 2016-10-13 Colgate-Palmolive Company Oral care zinc compositions
JP2017500331A (en) * 2013-12-19 2017-01-05 コルゲート・パーモリブ・カンパニーColgate−Palmolive Company Dentifrice composition comprising zinc oxide and zinc citrate
US10058493B2 (en) 2016-12-21 2018-08-28 Colgate-Palmolive Company Oral care compositions and methods of use
WO2018197160A1 (en) 2017-04-27 2018-11-01 Unilever N.V. Oral care composition
RU2676679C1 (en) * 2013-12-19 2019-01-10 Колгейт-Палмолив Компани Oral care composition
WO2019027468A1 (en) * 2017-08-04 2019-02-07 Colgate-Palmolive Company Biphasic oral care compositions
RU2687558C1 (en) * 2013-12-19 2019-05-15 Колгейт-Палмолив Компани Oral care composition containing sulphon and at least zinc salt
RU2701374C2 (en) * 2014-12-26 2019-09-26 Колгейт-Палмолив Компани Oral care compositions and methods for use thereof
WO2020159721A1 (en) * 2019-02-01 2020-08-06 Colgate-Palmolive Company Preservative systems for oral care compositions
RU2741992C2 (en) * 2019-04-12 2021-02-01 Колгейт-Палмолив Компани Oral care composition eliminating unpleasant odor
US10912731B2 (en) 2017-08-04 2021-02-09 Colgate-Palmolive Company Biphasic oral care compositions
RU2820286C1 (en) * 2023-08-09 2024-06-03 Общество с ограниченной ответственностью "Научно-внедренческий центр Агроветзащита" Animal oral care gel

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2713964B1 (en) 2011-06-01 2017-12-06 Gorman, DDS, Martin N. Adhesive strip
AU2013406790B2 (en) 2013-12-03 2017-09-28 Colgate-Palmolive Company Oral care compositions
US10772908B2 (en) 2014-12-10 2020-09-15 Elevate Oral Care, Llc Composition for the relief of dry mouth
CN107106428B (en) 2014-12-26 2020-07-03 高露洁-棕榄公司 Zinc phosphate complex
BR112017012806B1 (en) 2014-12-26 2020-11-17 Colgate-Palmolive Company soluble zinc polyphosphate complex and zinc polyphosphate production method
CA2972236C (en) 2014-12-26 2022-09-20 Colgate-Palmolive Company Personal care compositions with zinc phosphate active
US12005076B2 (en) 2014-12-26 2024-06-11 Colgate-Palmolive Company Zinc phosphate complex
KR102076268B1 (en) * 2015-04-17 2020-02-11 주식회사 엘지생활건강 Oral composition
WO2016167600A1 (en) * 2015-04-17 2016-10-20 주식회사 엘지생활건강 Oral composition
CN107205895B (en) * 2015-07-01 2021-11-05 高露洁-棕榄公司 Oral care compositions and methods of use
US20180243175A1 (en) * 2015-09-10 2018-08-30 The University Of Florida Research Foundation, Inc. Arginine-containing restorative dental materials and methods of preventing and controlling caries associated with dental work
EP3347005B1 (en) * 2015-09-11 2021-07-07 Wm. Wrigley Jr. Company Synergistic antibacterial effects of magnolia bark extract and l-arginine, n-alpha-lauroyl ethyl ester on plaque biofilm
JP6742339B2 (en) * 2015-12-14 2020-08-19 花王株式会社 Liquid oral composition
WO2018089394A1 (en) * 2016-11-08 2018-05-17 Colgate-Palmolive Company Oral care compositions
EP3522856B1 (en) * 2016-11-08 2022-03-23 Colgate-Palmolive Company Oral care compositions
US10813855B2 (en) * 2016-12-21 2020-10-27 Oral Health Innovations, LLC Oral care products and methods
US20180318191A1 (en) * 2017-05-04 2018-11-08 Phoenix Dental, Inc. Dental Composition and Method
BR112020006262B1 (en) * 2017-09-29 2023-03-21 3M Innovative Properties Company AQUEOUS COMPOSITION FOR ORAL TREATMENT WITH FLUORIDE AND ITS USE
EP3723702A1 (en) * 2017-12-13 2020-10-21 Colgate-Palmolive Company Oral care compositions
TWI686194B (en) * 2018-02-27 2020-03-01 林蕭水銀 Multiple effective pharmaceutical composition with antimicrobial and anticancer effects and use thereof
CN113226272A (en) * 2018-10-16 2021-08-06 高露洁-棕榄公司 Oral care compositions and methods thereof
BR112021012342A2 (en) * 2018-12-26 2021-08-31 Colgate-Palmolive Company SPECIFIC CO-AGGREGATION INHIBITION BY ARGININE
JP2022540664A (en) * 2019-07-12 2022-09-16 スティヒティング・ヘット・ネーデルランズ・カンカー・インスティテュート-アントニ・ファン・レーウェンフック・ゼィークンホイス Oral disodium pyrophosphate for calcification reduction
EP4021585A1 (en) * 2020-03-27 2022-07-06 Colgate-Palmolive Company Oral care compositions and methods of use

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683006A (en) 1970-09-09 1972-08-08 Syntex Corp Cyclodecapentaene compounds
US4138477A (en) 1976-05-28 1979-02-06 Colgate Palmolive Company Composition to control mouth odor
US4177258A (en) 1978-10-13 1979-12-04 Colgate Palmolive Company Dentifrice for dental remineralization
US4226851A (en) 1979-07-11 1980-10-07 Sompayrac Hewitt A Stable dental composition containing hydrogen peroxide
US4606912A (en) 1981-07-22 1986-08-19 Caries Research Group Of Rochester, Inc. Method of making a clear, stable aqueous mouthwash solution and the solution made by that method for the enhancement of cells of the oral cavity and the remineralization of teeth
US4631185A (en) 1984-03-13 1986-12-23 The Trustees Of Columbia University In The City Of New York Method of desensitizing hypersensitive dentin employing compositions containing potassium salts
US4721614A (en) 1985-06-13 1988-01-26 Church & Dwight Co., Inc. Sodium bicarbonate containing toothpaste
US4842847A (en) 1987-12-21 1989-06-27 The B. F. Goodrich Company Dental calculus inhibiting compositions
US4866161A (en) 1987-08-24 1989-09-12 University Of South Alabama Inhibition of tartar deposition by polyanionic/hydrophobic peptides and derivatives thereof which have a clustered block copolymer structure
US5139768A (en) 1989-01-31 1992-08-18 Yissum Research Development Company Of The Hebrew University Of Jerusalem Dental composition for hypersensitive teeth
US5188821A (en) 1987-01-30 1993-02-23 Colgate-Palmolive Company Antibacterial antiplaque oral composition mouthwash or liquid dentifrice
US5192531A (en) 1988-12-29 1993-03-09 Colgate-Palmolive Company Antibacterial antiplaque oral composition
EP0569666A2 (en) * 1992-05-15 1993-11-18 Kao Corporation Composition comprising a monophosphate for use in the oral cavity
US5589159A (en) 1995-04-11 1996-12-31 Block Drug Company Inc. Dispersible particulate system for desensitizing teeth
WO1997032565A1 (en) * 1996-03-05 1997-09-12 The Research Foundation Of The State University Of New York Anti-caries oral compositions
US6436370B1 (en) * 1999-06-23 2002-08-20 The Research Foundation Of State University Of New York Dental anti-hypersensitivity composition and method
US20050031551A1 (en) 2003-06-23 2005-02-10 Michael Prencipe Stable dentifrice compositions
WO2008069622A1 (en) * 2006-12-07 2008-06-12 Seoul National University Industry Foundation Teeth whitening functional materials delivery system
US20080267891A1 (en) * 2007-04-30 2008-10-30 Colgate-Palmolive Company Oral Care Composition To Reduce Or Eliminate Dental Sensitivity
US20090202450A1 (en) * 2008-02-08 2009-08-13 Colgate-Palmolive Company Oral care product and methods of use and manufacture thereof
US20090202465A1 (en) 2005-07-01 2009-08-13 Nathalie Mougin Neutralised cationic polymer, composition containing said polymer and a cosmetic treatment method

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538230A (en) 1966-12-05 1970-11-03 Lever Brothers Ltd Oral compositions containing silica xerogels as cleaning and polishing agents
US3678154A (en) 1968-07-01 1972-07-18 Procter & Gamble Oral compositions for calculus retardation
US3535421A (en) 1968-07-11 1970-10-20 Procter & Gamble Oral compositions for calculus retardation
US4152418A (en) 1970-04-01 1979-05-01 Lever Brothers Company Zinc and enzyme mouthwash and mouthwash concentrate for reducing dental plaque and calculus formation
US3696191A (en) 1970-11-10 1972-10-03 Monsanto Co Dental creams containing enzymes
US3932608A (en) 1971-08-30 1976-01-13 General Mills, Inc. Food composition
US3943241A (en) 1971-08-30 1976-03-09 General Mills, Inc. Cariostatic composition
US4058595A (en) 1971-10-13 1977-11-15 Colgate-Palmolive Company Stabilized toothpastes containing an enzyme
US3932605A (en) 1972-06-12 1976-01-13 Jaroslav Vit Dental treatment
US3988434A (en) 1972-08-07 1976-10-26 Schole Murray L Dental preparation
US3959458A (en) 1973-02-09 1976-05-25 The Procter & Gamble Company Oral compositions for calculus retardation
US3937807A (en) 1973-03-06 1976-02-10 The Procter & Gamble Company Oral compositions for plaque, caries, and calculus retardation with reduced staining tendencies
US4025616A (en) 1973-03-06 1977-05-24 The Procter & Gamble Company Oral compositions for plaque, caries and calculus retardation with reduced staining tendencies
US3862307A (en) 1973-04-09 1975-01-21 Procter & Gamble Dentifrices containing a cationic therapeutic agent and improved silica abrasive
US4100269A (en) 1973-06-28 1978-07-11 Lever Brothers Company Anticalculus dentifrice
US4022880A (en) 1973-09-26 1977-05-10 Lever Brothers Company Anticalculus composition
US3925543A (en) 1973-11-01 1975-12-09 Colgate Palmolive Co Antibacterial oral compositions containing preservative-antioxidants
US3991177A (en) 1973-11-27 1976-11-09 Colgate-Palmolive Company Oral compositions containing dextranase
US4011309A (en) 1975-01-20 1977-03-08 Marion Laboratories, Inc. Dentifrice composition and method for desensitizing sensitive teeth
US4051234A (en) 1975-06-06 1977-09-27 The Procter & Gamble Company Oral compositions for plaque, caries, and calculus retardation with reduced staining tendencies
US4064138A (en) 1975-11-12 1977-12-20 General Mills, Inc. Amino acid derivatives
NL180807C (en) 1975-12-26 1987-05-04 Morishita Jintan Co DEVICE FOR MANUFACTURING SEAMLESS MATERIAL FILLED CAPSULES.
ZA773318B (en) 1976-06-18 1978-04-26 I Kleinberg Means and method for improving natural defenses against caries
USRE31181E (en) 1976-06-18 1983-03-15 Means and method for improving natural defenses against caries
US4042680A (en) 1976-08-02 1977-08-16 Indiana University Foundation Anticariogenic maloaluminate complexes
US4108981A (en) 1976-08-02 1978-08-22 Indiana University Foundation Alkaline oral compositions comprising aluminum and a carboxylic acid
US4108979A (en) 1976-08-02 1978-08-22 Indiana University Foundation Dentifrice preparations comprising aluminum and a compatible abrasive
US4146607A (en) 1977-11-07 1979-03-27 Lever Brothers Company Synergistic anti-plaque mixture with tetradecylamine plus aluminum and/or zinc
US4160821A (en) 1978-02-27 1979-07-10 Johnson & Johnson Treatment for gingivitis
US4213961A (en) 1978-03-23 1980-07-22 Beecham, Inc. Oral compositions
GB1573727A (en) 1978-05-19 1980-08-28 Colgate Palmolive Co Dentifrices
US4216961A (en) 1978-08-04 1980-08-12 Mcquillan Mary J Table baseball apparatus
US4225579A (en) 1979-02-27 1980-09-30 Israel Kleinberg Means and method for improving defenses against caries
US4340583A (en) 1979-05-23 1982-07-20 J. M. Huber Corporation High fluoride compatibility dentifrice abrasives and compositions
US4339432A (en) 1979-06-20 1982-07-13 Lever Brothers Company Oral mouthwash containing zinc and glycine
US4269822A (en) 1979-07-20 1981-05-26 Laclede Professional Products, Inc. Antiseptic dentifrice
JPS5835965B2 (en) 1979-07-31 1983-08-05 ライオン株式会社 Oral composition
JPS5846483B2 (en) 1979-09-20 1983-10-17 ライオン株式会社 Oral composition
US4292304A (en) 1980-09-30 1981-09-29 Barels Ronald R Oil based dentifrice
US4355022A (en) 1981-07-01 1982-10-19 Interon, Inc. Method of dental treatment
US4532124A (en) 1981-08-19 1985-07-30 Development Finance Corporation Of New Zealand Dental rinse
JPS58118509A (en) 1981-12-29 1983-07-14 Lion Corp Composition for oral cavity
US4885155A (en) 1982-06-22 1989-12-05 The Procter & Gamble Company Anticalculus compositions using pyrophosphate salt
US4422985A (en) 1982-09-24 1983-12-27 Morishita Jintan Co., Ltd. Method and apparatus for encapsulation of a liquid or meltable solid material
JPS6092208A (en) 1983-10-25 1985-05-23 Kao Corp Dentifrice composition containing sodium chloride
US4521551A (en) 1983-12-02 1985-06-04 Block Drug Company, Inc. Denture fixative composition containing partially neutralized copolymers of maleic acid or anhydride and alkyl vinyl ethers which are optionally partially crosslinked
US4725576A (en) 1983-12-29 1988-02-16 Research Foundation Of State University Of New York Fungicidal polypeptide compositions containing L-histidine and methods for use therefore
US4528181A (en) 1984-02-01 1985-07-09 Colgate-Palmolive Company Dentifrice containing dual sources of fluoride
US5334617A (en) 1984-03-19 1994-08-02 The Rockefeller University Amino acids useful as inhibitors of the advanced glycosylation of proteins
GB8411731D0 (en) 1984-05-09 1984-06-13 Unilever Plc Oral compositions
US5000939A (en) 1984-06-12 1991-03-19 Colgate-Palmolive Company Dentifrice containing stabilized enzyme
JPH0742219B2 (en) 1984-07-26 1995-05-10 ライオン株式会社 Oral composition
US4538990A (en) 1984-09-24 1985-09-03 Medical College Of Ga. Research Institute, Inc. Method of decreasing the permeability of a dental cavity
US4889712A (en) * 1986-03-20 1989-12-26 Colgate-Palmolive Company Anticalculus oral composition
US5192530A (en) 1987-01-30 1993-03-09 Colgate-Palmolive Company Antibacterial antiplaque oral composition
CH671879A5 (en) 1987-02-26 1989-10-13 Nestle Sa
US5004597A (en) 1987-09-14 1991-04-02 The Procter & Gamble Company Oral compositions comprising stannous flouride and stannous gluconate
US4898760A (en) 1987-11-17 1990-02-06 Amesbury Industries, Inc. Process and apparatus for extruding a low density elastomeric thermoplastic foam
GB8729564D0 (en) 1987-12-18 1988-02-03 Unilever Plc Oral compositions
US5160737A (en) * 1988-05-03 1992-11-03 Perio Products Ltd. Liquid polymer composition, and method of use
US5438076A (en) 1988-05-03 1995-08-01 Perio Products, Ltd. Liquid polymer composition, and method of use
US5334375A (en) 1988-12-29 1994-08-02 Colgate Palmolive Company Antibacterial antiplaque oral composition
SU1754104A1 (en) 1989-01-05 1992-08-15 Одесский научно-исследовательский институт стоматологии Tooth powder
GB8904182D0 (en) 1989-02-23 1989-04-05 Glaxo Canada Pharmaceutical compositions
GB8922594D0 (en) 1989-10-06 1989-11-22 Unilever Plc Oral compositions
US4992258A (en) * 1989-10-23 1991-02-12 Colgate-Palmolive Company Dentrifice composition
US5197531A (en) 1990-06-13 1993-03-30 Leybold Aktiengesellschaft Method of manufacturing directionally solidified castings
US5096700A (en) 1990-09-28 1992-03-17 The Procter & Gamble Company Halogenated aminohexanoates and aminobutyrates antimicrobial agents
AU8733491A (en) * 1990-10-25 1992-05-26 Boots Company Plc, The Mouthwash
US5543443A (en) 1992-01-27 1996-08-06 The Procter & Gamble Company Denture stabilizing compositions
DE69204656T2 (en) 1992-04-28 1996-02-08 Boucherie Nv G B Method of making toothbrushes.
US5286480A (en) 1992-06-29 1994-02-15 The Procter & Gamble Company Use of N-acetylated amino acid complexes in oral care compositions
JPH0627137A (en) * 1992-07-08 1994-02-04 Murata Mfg Co Ltd Acceleration sensor
CA2127392C (en) 1993-07-08 2008-05-27 Hideki Sunohara Process for producing capsule and capsule obtained thereby
US5531791A (en) 1993-07-23 1996-07-02 Bioscience Consultants Composition for repair of defects in osseous tissues, method of making, and prosthesis
JP3566374B2 (en) 1994-02-03 2004-09-15 花王株式会社 Oral composition
GB2288564B (en) 1994-04-19 1998-09-23 Boucherie Nv G B A molding machine for injection molding of tooth brushes
GB2289236B (en) 1994-05-09 1997-08-06 Boucherie Nv G B A brush making machine
JP3803695B2 (en) 1994-11-28 2006-08-02 サンスター株式会社 Antibacterial preparation
US5561177A (en) 1995-06-27 1996-10-01 The Block Drug Company Hydrocarbon free denture adhesive
WO1997002802A1 (en) 1995-07-10 1997-01-30 Unilever N.V. Self-heating dentifrice
US5571502A (en) 1995-08-08 1996-11-05 Enamelon Research Stable single-part compositions and the use thereof for remineralization of lesions in teeth
US6488961B1 (en) 1996-09-20 2002-12-03 Ethypharm, Inc. Effervescent granules and methods for their preparation
US5906811A (en) 1997-06-27 1999-05-25 Thione International, Inc. Intra-oral antioxidant preparations
DK1021204T3 (en) * 1997-09-26 2006-05-08 Noven Pharma Bioadhesive compositions and methods for topical administration of active agents
US5922346A (en) 1997-12-01 1999-07-13 Thione International, Inc. Antioxidant preparation
FI116642B (en) 1998-02-09 2006-01-13 Nokia Corp Processing procedure for speech parameters, speech coding process unit and network elements
US5997301A (en) 1998-10-20 1999-12-07 Linden; Lars Ake Treatment of tooth surfaces and substances therefor
GB2354441A (en) 1999-08-06 2001-03-28 Mccormack Ltd Composition for treating dentine hypersensitivity
GB2354442A (en) * 1999-09-23 2001-03-28 Allied Bio Corp Ltd Sterilising block comprising a compound which produces sulphur dioxide on reaction with moisture absorbed by the block, eg a metabisulphite
WO2001072262A2 (en) * 2000-03-27 2001-10-04 Schott Glas New cosmetic, personal care, cleaning agent, and nutritional supplement compositions comprising bioactive glass and methods of making and using the same
US6558654B2 (en) 2000-04-11 2003-05-06 Mclaughlin Gerald Composition and method for whitening teeth
US6500409B1 (en) 2000-05-10 2002-12-31 Colgate Palmolive Company Synergistic antiplaque/antigingivitis oral composition
US6306435B1 (en) 2000-06-26 2001-10-23 Yung Shin Pharmaceutical Industrial Co. Ltd. Oral pharmaceutical preparation embedded in an oily matrix and methods of making the same
US8283135B2 (en) 2000-06-30 2012-10-09 The Procter & Gamble Company Oral care compositions containing combinations of anti-bacterial and host-response modulating agents
US20020081360A1 (en) 2000-12-27 2002-06-27 Andreas Burgard Salts of L-amino acid having improved taste and their preparation
ATE525113T1 (en) 2001-07-05 2011-10-15 Sunstar Inc ORAL PREPARATION
DE60138971D1 (en) 2001-11-15 2009-07-23 Miret Lab USE OF CATIONIC SURFACTANT TO INCREASE ANTIMICROBIAL ACTIVITY IN DEODORANTS AND MOUTHPROOF MATERIALS
WO2003045344A2 (en) 2001-11-28 2003-06-05 The Procter & Gamble Company Dentifrice compositions
DE50211883D1 (en) 2002-04-30 2008-04-24 Cognis Ip Man Gmbh Use of active substance mixtures with azelaic acid and glycyrrhetinic acid as anti-acne agents
US20040220264A1 (en) 2003-03-17 2004-11-04 Yu Ruey J Bioavailability and improved delivery of acidic pharmaceutical drugs
US7087219B2 (en) 2003-05-28 2006-08-08 Stanislaw R. Burzynski Toothpaste containing anticancer agents
JP4934266B2 (en) 2003-07-09 2012-05-16 花王株式会社 Oral composition
US20070166243A1 (en) * 2004-03-19 2007-07-19 Kao Corporation Composition for toothbrushing
US20090020245A1 (en) * 2005-04-06 2009-01-22 Vicente Garcia Juez Security paper or special paper incorporating high resistance synthetic elements and a procedure for obtaining said papers
US20070014740A1 (en) 2005-07-15 2007-01-18 Colgate-Palmolive Company Oral compositions having cationic active ingredients
JP2009517400A (en) 2005-11-23 2009-04-30 コルゲート・パーモリブ・カンパニー Oral care compositions and methods of stannous salts and sodium tripolyphosphate
GB0525369D0 (en) 2005-12-14 2006-01-18 Ineos Silicas Ltd Silicas
US20070258916A1 (en) 2006-04-14 2007-11-08 Oregon Health & Science University Oral compositions for treating tooth hypersensitivity
US20090186090A1 (en) 2007-04-30 2009-07-23 Colgate-Palmolive Oral Care Composition to Reduce or Eliminate Dental Sensitivity
CA2724689A1 (en) 2008-02-04 2009-08-13 Dakim, Inc. A method and system for providing adaptive rule based cognitive stimulation to a user
EP3100716B1 (en) 2008-02-08 2018-09-26 Colgate-Palmolive Company Novel salts and their uses
EP2249791A4 (en) 2008-02-08 2014-01-08 Colgate Palmolive Co Compositions and devices
AR070356A1 (en) 2008-02-08 2010-03-31 Colgate Palmolive Co PRODUCT FOR ORAL CARE AND METHODS OF USE OF THE SAME
BRPI0913610A2 (en) 2008-06-04 2015-10-20 Procter & Gamble methods and compositions for oral care
US9724278B2 (en) 2008-06-13 2017-08-08 Colgate-Palmolive Company Oral compositions and uses thereof
US8282298B2 (en) 2008-06-26 2012-10-09 Colgate-Palmolive Company Oral care implement
EP2349489B1 (en) 2008-11-25 2015-11-11 The Procter and Gamble Company Low ph oral care compositions with fused silica and a fluoride source
TWI395595B (en) 2009-04-01 2013-05-11 Colgate Palmolive Co Oral compositions for treating tooth sensitivity and methods of use and manufacture thereof

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683006A (en) 1970-09-09 1972-08-08 Syntex Corp Cyclodecapentaene compounds
US4138477A (en) 1976-05-28 1979-02-06 Colgate Palmolive Company Composition to control mouth odor
US4177258A (en) 1978-10-13 1979-12-04 Colgate Palmolive Company Dentifrice for dental remineralization
US4226851A (en) 1979-07-11 1980-10-07 Sompayrac Hewitt A Stable dental composition containing hydrogen peroxide
US4606912A (en) 1981-07-22 1986-08-19 Caries Research Group Of Rochester, Inc. Method of making a clear, stable aqueous mouthwash solution and the solution made by that method for the enhancement of cells of the oral cavity and the remineralization of teeth
US4631185A (en) 1984-03-13 1986-12-23 The Trustees Of Columbia University In The City Of New York Method of desensitizing hypersensitive dentin employing compositions containing potassium salts
US4751072A (en) 1984-03-13 1988-06-14 The Trustees Of Columbia University In The City Of New York Method of desensitizing hypersensitive dentin employing compositions containing potassium chloride
US4721614A (en) 1985-06-13 1988-01-26 Church & Dwight Co., Inc. Sodium bicarbonate containing toothpaste
US5188821A (en) 1987-01-30 1993-02-23 Colgate-Palmolive Company Antibacterial antiplaque oral composition mouthwash or liquid dentifrice
US4866161A (en) 1987-08-24 1989-09-12 University Of South Alabama Inhibition of tartar deposition by polyanionic/hydrophobic peptides and derivatives thereof which have a clustered block copolymer structure
US4842847A (en) 1987-12-21 1989-06-27 The B. F. Goodrich Company Dental calculus inhibiting compositions
US5192531A (en) 1988-12-29 1993-03-09 Colgate-Palmolive Company Antibacterial antiplaque oral composition
US5139768A (en) 1989-01-31 1992-08-18 Yissum Research Development Company Of The Hebrew University Of Jerusalem Dental composition for hypersensitive teeth
EP0569666A2 (en) * 1992-05-15 1993-11-18 Kao Corporation Composition comprising a monophosphate for use in the oral cavity
US5589159A (en) 1995-04-11 1996-12-31 Block Drug Company Inc. Dispersible particulate system for desensitizing teeth
WO1997032565A1 (en) * 1996-03-05 1997-09-12 The Research Foundation Of The State University Of New York Anti-caries oral compositions
US6436370B1 (en) * 1999-06-23 2002-08-20 The Research Foundation Of State University Of New York Dental anti-hypersensitivity composition and method
US6524558B2 (en) 1999-06-23 2003-02-25 The Research Foundation Of The State University Of New York Dental anti-hypersensitivity composition and method
US20050031551A1 (en) 2003-06-23 2005-02-10 Michael Prencipe Stable dentifrice compositions
US20090202465A1 (en) 2005-07-01 2009-08-13 Nathalie Mougin Neutralised cationic polymer, composition containing said polymer and a cosmetic treatment method
WO2008069622A1 (en) * 2006-12-07 2008-06-12 Seoul National University Industry Foundation Teeth whitening functional materials delivery system
US20080267891A1 (en) * 2007-04-30 2008-10-30 Colgate-Palmolive Company Oral Care Composition To Reduce Or Eliminate Dental Sensitivity
US20090202450A1 (en) * 2008-02-08 2009-08-13 Colgate-Palmolive Company Oral care product and methods of use and manufacture thereof
US20090202454A1 (en) 2008-02-08 2009-08-13 Colgate-Palmolive Company Oral care product and methods of use and manufacture thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEWHIRST, PROSTAGLANDINS, vol. 20, no. 2, 1980, pages 209 - 222
J. DENT. RESEARCH, vol. 57, 1978, pages 187

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289369B2 (en) 2010-12-20 2016-03-22 Colgate-Palmolive Company Non-aqueous oral care composition containing dental occlusion actives
US9161891B2 (en) 2010-12-20 2015-10-20 Colgate-Palmolive Company Gelatin encapsulated oral care composition containing dental occlusion actives, hydrophobic viscosity modifier and oil carrier
WO2014078613A1 (en) * 2012-11-15 2014-05-22 Isp Investments Inc. Oral care compositions for treatment of sensitive teeth
WO2014088572A1 (en) * 2012-12-05 2014-06-12 Colgate-Palmolive Company Fluoride-stable zinc containing oral care compositions
EP3195850A1 (en) * 2012-12-05 2017-07-26 Colgate-Palmolive Company Fluoride-stable zinc containing oral care compositions
EP2928440B1 (en) 2012-12-05 2017-05-03 Colgate-Palmolive Company Fluoride-stable zinc containing oral care compositions
EP2934692A4 (en) * 2012-12-18 2016-07-27 Colgate Palmolive Co Stable metal ion containing compositions
EP2934692A1 (en) * 2012-12-18 2015-10-28 Colgate-Palmolive Company Stable metal ion containing compositions
US10117823B2 (en) * 2013-03-12 2018-11-06 Primal Therapies, Inc. Dental composition comprising chelator and base
US20160030327A1 (en) * 2013-03-12 2016-02-04 Emily A. STEIN Dental composition comprising chelator and base
US11491100B2 (en) 2013-03-12 2022-11-08 Primal Therapies, Inc. Dermal composition comprising chelator and base
CN115177607A (en) * 2013-09-24 2022-10-14 密歇根大学董事会 Compositions and methods for destabilizing, altering and dispersing biofilms
US20160235698A1 (en) * 2013-09-24 2016-08-18 The Regents Of The University Of Michigan Compositions and method for destabilizing, altering, and dispersing biofilms
CN106029062A (en) * 2013-09-24 2016-10-12 密执安大学评议会 Compositions and method for destabilizing, altering, and dispersing biofilms
AU2021202650B2 (en) * 2013-09-24 2022-09-08 The Regents Of The University Of Michigan Compositions and method for destabilizing, altering, and dispersing biofilms
AU2019271937B2 (en) * 2013-09-24 2021-01-28 The Regents Of The University Of Michigan Compositions and method for destabilizing, altering, and dispersing biofilms
EP3049073B1 (en) 2013-09-24 2020-11-04 The Regents Of The University Of Michigan Compositions and method for destabilizing, altering, and dispersing biofilms
US10570401B2 (en) 2013-09-24 2020-02-25 The Regents Of The University Of Michigan Compositions and method for destabilizing, altering, and dispersing biofilms
AU2014326756B2 (en) * 2013-09-24 2019-08-29 The Regents Of The University Of Michigan Compositions and method for destabilizing, altering, and dispersing biofilms
US20160296437A1 (en) * 2013-12-02 2016-10-13 Colgate-Palmolive Company Oral care zinc compositions
CN111214388A (en) * 2013-12-02 2020-06-02 高露洁-棕榄公司 Oral care zinc compositions
CN106413670A (en) * 2013-12-02 2017-02-15 高露洁-棕榄公司 Oral care zinc compositions
RU2676679C1 (en) * 2013-12-19 2019-01-10 Колгейт-Палмолив Компани Oral care composition
WO2015094254A1 (en) * 2013-12-19 2015-06-25 Colgate-Palmolive Company Anti-malodor oral care composition
RU2687558C1 (en) * 2013-12-19 2019-05-15 Колгейт-Палмолив Компани Oral care composition containing sulphon and at least zinc salt
JP2017500331A (en) * 2013-12-19 2017-01-05 コルゲート・パーモリブ・カンパニーColgate−Palmolive Company Dentifrice composition comprising zinc oxide and zinc citrate
AU2013408274B2 (en) * 2013-12-19 2017-03-02 Colgate-Palmolive Company Anti-malodor oral care composition
WO2016058140A1 (en) * 2014-10-15 2016-04-21 Colgate-Palmolive Company Oral care compositions comprising zinc, arginine and serine
RU2674684C2 (en) * 2014-10-15 2018-12-12 Колгейт-Палмолив Компани Oral care composition, containing zinc, arginine and serine
US12109442B2 (en) 2014-12-26 2024-10-08 Colgate-Palmolive Company Oral care compositions and methods of use
RU2701374C2 (en) * 2014-12-26 2019-09-26 Колгейт-Палмолив Компани Oral care compositions and methods for use thereof
US10058493B2 (en) 2016-12-21 2018-08-28 Colgate-Palmolive Company Oral care compositions and methods of use
US10744077B2 (en) 2016-12-21 2020-08-18 Colgate-Palmolive Company Oral care compositions and methods of use
US11806416B2 (en) 2016-12-21 2023-11-07 Colgate-Palmolive Company Oral care compositions and methods of use
CN110573131A (en) * 2017-04-27 2019-12-13 荷兰联合利华有限公司 Oral care compositions
WO2018197160A1 (en) 2017-04-27 2018-11-01 Unilever N.V. Oral care composition
US10912731B2 (en) 2017-08-04 2021-02-09 Colgate-Palmolive Company Biphasic oral care compositions
AU2017425660B2 (en) * 2017-08-04 2021-04-01 Colgate-Palmolive Company Biphasic oral care compositions
WO2019027468A1 (en) * 2017-08-04 2019-02-07 Colgate-Palmolive Company Biphasic oral care compositions
CN110944721A (en) * 2017-08-04 2020-03-31 高露洁-棕榄公司 Dual phase oral care composition
CN110944721B (en) * 2017-08-04 2023-12-26 高露洁-棕榄公司 Dual phase oral care compositions
WO2020159721A1 (en) * 2019-02-01 2020-08-06 Colgate-Palmolive Company Preservative systems for oral care compositions
RU2741992C2 (en) * 2019-04-12 2021-02-01 Колгейт-Палмолив Компани Oral care composition eliminating unpleasant odor
RU2820286C1 (en) * 2023-08-09 2024-06-03 Общество с ограниченной ответственностью "Научно-внедренческий центр Агроветзащита" Animal oral care gel

Also Published As

Publication number Publication date
US20170128340A1 (en) 2017-05-11
RU2535088C2 (en) 2014-12-10
JP2013529634A (en) 2013-07-22
HK1183802A1 (en) 2014-01-10
JP5723001B2 (en) 2015-05-27
RU2013102892A (en) 2014-07-27
AU2010356102A1 (en) 2012-12-13
US20130078197A1 (en) 2013-03-28
SG185631A1 (en) 2012-12-28
ES2529216T3 (en) 2015-02-18
CA2800475C (en) 2015-11-03
EP2585025A1 (en) 2013-05-01
BR112012030037A2 (en) 2016-08-02
ZA201209156B (en) 2016-08-31
CA2800475A1 (en) 2011-12-29
MX2012013955A (en) 2013-01-24
PL2585025T3 (en) 2015-04-30
US9579269B2 (en) 2017-02-28
EP2585025B1 (en) 2014-12-03
CN102946841A (en) 2013-02-27
AU2010356102B2 (en) 2013-09-05
TWI504415B (en) 2015-10-21
BR112012030037B1 (en) 2017-06-27
US11369553B2 (en) 2022-06-28
EP2585025B2 (en) 2022-10-26
TW201215410A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
US11369553B2 (en) Therapeutic oral composition
RU2388456C2 (en) Compositions for oral cavity containing rosmarinus extracts and associated methods
AU2010358075B2 (en) Mouthwash formulations for use with toothbrush delivery device
US11957778B2 (en) Oral care compositions and methods of use
US8263048B2 (en) Calcium phosphate complex for oral care applications, its preparation method, and compositions containing the same
CN110636887A (en) Oral care compositions and methods of use
AU2021397286B2 (en) Oral care compositions comprising ascorbic acid derivatives
CN105748305A (en) Oral treatment composition
AU2021394866B2 (en) Oral care compositions with a natural sweetener system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067593.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10727321

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2800475

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10171/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12212917

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/013955

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13701844

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010356102

Country of ref document: AU

Date of ref document: 20100623

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12012502464

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1201006685

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013516555

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010727321

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013102892

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012030037

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012030037

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121126