WO2011161971A1 - Image pickup optical system - Google Patents

Image pickup optical system Download PDF

Info

Publication number
WO2011161971A1
WO2011161971A1 PCT/JP2011/003607 JP2011003607W WO2011161971A1 WO 2011161971 A1 WO2011161971 A1 WO 2011161971A1 JP 2011003607 W JP2011003607 W JP 2011003607W WO 2011161971 A1 WO2011161971 A1 WO 2011161971A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
imaging optical
image
shows
Prior art date
Application number
PCT/JP2011/003607
Other languages
French (fr)
Japanese (ja)
Inventor
典久 坂上
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to JP2011545580A priority Critical patent/JP4992004B2/en
Publication of WO2011161971A1 publication Critical patent/WO2011161971A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses

Definitions

  • the present invention relates to an imaging optical system used for a digital camera, a mobile phone with an imaging function, and the like.
  • a high-pixel imaging optical system for realizing high image quality is composed of four or more lenses including an achromatic lens using a high dispersion material. By using a diffraction grating, it is possible to remove the achromatic lens.
  • a three-lens imaging optical system that realizes high image quality is as high as or better than a four-lens imaging optical system in terms of aberrations other than chromatic aberration such as spherical aberration and curvature of field, peripheral light amount ratio, and brightness It is necessary to have performance.
  • Patent Document 1 discloses a three-element imaging system including, in order from the object side, a positive first lens, a second lens having a concave surface on the object side, and a negative third lens.
  • This three-element imaging system is small and has a small field curvature.
  • the F number of this three-element imaging system is 3.5, and compared with the imaging optical system of F number 2.8 that is generally used, the contrast near the center is lowered and the image quality is lowered. To do.
  • Patent Document 2 discloses a three-element imaging system including a positive first lens in order from the object side, a positive or negative second lens having a concave surface facing the object side, and a positive or negative third lens.
  • This three-lens imaging system includes a small one having an F number of 3.0 or less.
  • the spherical aberration of this three-element imaging system is relatively large, and the image quality deteriorates due to the deterioration of the spherical aberration.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2008-276200 Patent Document 2 Japanese Unexamined Patent Application Publication No. 2007-264181
  • the imaging optical system includes a positive first lens having a diffraction grating on the image side from the object side to the image side, a second lens that is a meniscus lens having a convex surface facing the image side, and a negative meniscus lens.
  • An imaging optical system that includes a third lens and whose diaphragm is disposed on the object side of the image side surface of the first lens, D12 is a distance on the optical axis between the first lens and the second lens, TTL is the distance from the object-side vertex of the first lens to the image plane, ⁇ 1 is the power of the first lens, ⁇ 2 is the power of the second lens, and ⁇ is the power of the first lens, the second lens, and the third lens.
  • the combined power, Fno is the F number of the optical system, and r1 is the radius of curvature of the object side surface of the first lens. 0.18 ⁇ D12 ⁇ ⁇ ⁇ 0.22 (1) 1.1 ⁇ TTL ⁇ ⁇ ⁇ 1.22 (2) Fno ⁇ 3.0 (3) 0.46 ⁇ r1 ⁇ ⁇ ⁇ 0.49 (4) 0.8 ⁇ / ⁇ 1 ⁇ 1.0 (5)
  • the imaging optical system it is easy to reduce the size of the optical system by using the first lens as a positive lens.
  • the first lens By attaching a diffraction grating to the image side of the first lens, axial chromatic aberration is improved and high resolution can be realized.
  • the second lens By making the second lens a meniscus lens having a convex surface facing the image side, field curvature can be reduced.
  • the third lens By making the third lens a negative lens, the exit pupil position can be brought to the object side, and the incident angle to the peripheral edge of the image element can be reduced while maintaining the back focus.
  • the optical system can be miniaturized by disposing the stop closer to the object side than the image side surface of the first lens. Furthermore, by satisfying the formulas (1) to (6), an optical system that is small and easy to manufacture, has a small curvature of field, and generates a bright, high-quality image can be obtained.
  • the second lens is a zero-power meniscus lens in which the negative power of the image side surface increases from the paraxial region toward the periphery.
  • the negative power of the image side surface of the second lens increases from the paraxial region toward the periphery, the light beam around the central light beam is maintained while maintaining the light beam height around the peripheral light beam. Since the height can be reduced, the peripheral light quantity ratio can be increased. Further, by setting the power of the second lens to 0, it is possible to reduce the eccentric sensitivity of the second lens with respect to the first lens during assembly, and it is possible to reduce the manufacturing cost. Further, even if a highly dispersed material is used, axial chromatic aberration is not changed, and peripheral chromatic aberration can be improved.
  • the first lens is a convex flat or biconvex lens in the paraxial region.
  • the object side surface of the third lens has positive power in the paraxial region and the peripheral region, and negative power in the intermediate region between the paraxial region and the peripheral region.
  • the image plane Since the height of the central ray of the peripheral rays can be increased while the curvature is reduced, the incident angle of the rays on the peripheral edge of the image sensor can be reduced.
  • the image side surface of the third lens has negative power in the paraxial region and positive power in the peripheral region.
  • the image side surface of the third lens is formed so as to have a negative power in the paraxial region and a positive power in the peripheral region, and the paraxial region of the first to third lenses is made uneven.
  • ⁇ 3 is the power of the third lens. -3.3 ⁇ / ⁇ 3 ⁇ -2.6 (7) Satisfied.
  • v d 1 is the Abbe number of the first lens material on the d-line (wavelength 587.6 nm)
  • v d 3 is the third lens material d-line (wavelength 587.6 nm).
  • N d 1 is the refractive index of the first lens material at the d-line (wavelength 587.6 nm)
  • n d 3 is the refraction of the third lens material at the d-line (wavelength 587.6 nm).
  • Resin materials such as olefins can be used for the first lens and the third lens, and the cost can be reduced compared to the case of using glass.
  • n d 2 is the refractive index of the second lens material at the d-line (wavelength 587.6 nm)
  • r 3 is the radius of curvature on the second lens object side
  • r 4 is the second lens.
  • the curvature radius on the image side, D2 is the center thickness of the second lens.
  • Equation (10) represents the power of the second lens.
  • the spherical aberration increases.
  • the power of the second lens it is possible to reduce the eccentricity sensitivity of the second lens with respect to the first lens during assembly, thereby reducing the manufacturing cost. Further, even if a highly dispersed material is used, axial chromatic aberration is not changed, and peripheral chromatic aberration can be improved.
  • ⁇ DOE is the power of the diffraction grating of the first lens. 0.05 ⁇ DOE / ⁇ ⁇ 0.07 (11) Satisfied.
  • the depth of focus becomes shallow, the eccentricity sensitivity at the time of assembly increases, and the manufacturing cost increases.
  • the F number is larger than the upper limit value of the equation (12), the resolution is deteriorated due to the diffraction limit.
  • FIG. 1 is a diagram illustrating a configuration of an imaging optical system according to Example 1.
  • FIG. FIG. 6 is a diagram illustrating aberrations of the imaging optical system according to Example 1.
  • FIG. 6 is a diagram illustrating a configuration of an imaging optical system according to a second embodiment.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 2.
  • 6 is a diagram illustrating a configuration of an imaging optical system according to Example 3.
  • FIG. FIG. 6 is a diagram illustrating aberrations of the imaging optical system according to Example 3.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 4.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 4.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 5.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 5.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 6.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 6.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 7.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 7.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 8.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 8.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 9.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 9.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 9. FIG.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 10.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 10.
  • FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 11.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 11.
  • FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 12.
  • FIG. 14 shows aberrations of the image pickup optical system according to the twelfth embodiment.
  • FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 13. It is a figure which shows the aberration of the imaging optical system by Example 13.
  • FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 14.
  • FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 15.
  • FIG. 20 is a diagram illustrating aberrations of the image pickup optical system according to the fifteenth embodiment.
  • FIG. 1 is a diagram showing a configuration of an imaging optical system according to an embodiment of the present invention.
  • the imaging optical system according to the present embodiment light that has passed through the first lens E1, the second lens E2, and the third lens E3 from the object side to the image side passes through the glass plate E4 and reaches the image plane IS.
  • An imaging optical system includes a first lens that is a positive lens having a diffraction grating on the image side from the object side to the image side, and a meniscus lens having a convex surface on the image side. And a third lens which is a negative meniscus lens. The stop is disposed closer to the object side than the image side surface of the first lens.
  • the second lens as a meniscus lens having a convex surface facing the image side, curvature of field can be reduced.
  • the exit pupil position can be brought to the object side, and the incident angle to the peripheral edge of the image element can be reduced while maintaining the back focus.
  • the optical system can be miniaturized by disposing the aperture stop on the object side with respect to the image side surface of the first lens.
  • the product of the distance D12 on the optical axis between the first and second lenses and the combined power ⁇ of the three lenses is an optical system according to an embodiment of the present invention. 0.18 ⁇ D12 ⁇ ⁇ ⁇ 0.22 (1) Configured to meet.
  • D12 ⁇ ⁇ is lower than the lower limit value of the expression (1), the eccentricity sensitivity of the second lens with respect to the first lens during assembly increases, and the manufacturing cost increases.
  • D12 ⁇ ⁇ exceeds the upper limit value of the formula (1) the optical system becomes large.
  • the product of the distance TTL from the object-side vertex of the first lens to the image plane and the combined power ⁇ of the three lenses is an optical system according to an embodiment of the present invention.
  • 1.1 ⁇ TTL ⁇ ⁇ ⁇ 1.22 (2) Configured to meet.
  • TTL ⁇ ⁇ is lower than the lower limit value of the expression (2), resolution degradation due to curvature of field of the optical system increases.
  • TTL ⁇ ⁇ exceeds the upper limit value of the formula (2), the optical system becomes large.
  • the lens power means the power of the lens near the paraxial axis.
  • F number Fno An optical system according to an embodiment of the present invention includes: Fno ⁇ 3.0 (3) Configured to meet. When Fno is larger than 3, resolution is degraded due to the diffraction limit.
  • the product of the radius of curvature r1 of the object side surface of the first lens and the combined power ⁇ of the three lenses is an optical system according to an embodiment of the present invention. 0.46 ⁇ r1 ⁇ ⁇ ⁇ 0.49 (4) Configured to meet.
  • r1 ⁇ ⁇ is less than the lower limit value of the equation (4), spherical aberration increases and resolution is degraded. Further, when the F number is increased to reduce the brightness in order to reduce the spherical aberration, the contrast is lowered. Thus, in any case, the image quality is degraded. If r1 ⁇ ⁇ exceeds the upper limit value of the equation (4), the optical system becomes large.
  • Ratio of combined power [phi] of the three lenses and power [phi] 1 of the first lens The optical system according to the embodiment of the present invention is 0.8 ⁇ / ⁇ 1 ⁇ 1.0 (5) Configured to meet. If ⁇ / ⁇ 1 is below the lower limit of the equation (5), the eccentricity sensitivity of the second lens to the first lens during assembly increases, and the manufacturing cost increases. When ⁇ / ⁇ 1 exceeds the upper limit value of the equation (5), the optical system becomes large.
  • the absolute value of the ratio of the power [phi] 2 of the second lens and the combined power [phi] of the three lenses is the optical system according to the embodiment of the present invention.
  • the lenses are all formed of a plastic (resin) material. Therefore, all the lenses can be manufactured by molding, which is suitable for mass production.
  • the material of the first and third lenses is a cycloolefin polymer (COP) resin
  • the material of the second lens is a cycloolefin polymer (COP) resin or a polycarbonate (PC) resin or a cycloolefin copolymer (COC).
  • COP cycloolefin polymer
  • PC polycarbonate
  • COC cycloolefin copolymer
  • Table 1 and Table 2 of the imaging optical system according to the examples are tables showing the specifications of the imaging optical systems of Examples 1 to 15.
  • the unit of length is millimeter.
  • FIG. 1 is a diagram illustrating a configuration of an imaging optical system according to the first embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 2 is a diagram illustrating aberrations of the image pickup optical system according to the first embodiment.
  • FIG. 2A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.2 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.2 (a) shows the passage position in the aperture_diaphragm
  • FIG. 2B is a diagram showing astigmatism and field curvature.
  • the horizontal axis of FIG.2 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.2 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 2C is a diagram showing distortion.
  • the horizontal axis of FIG.2 (c) shows a distortion aberration (distortion).
  • shaft of FIG.2 (c) shows image height (a unit is a millimeter).
  • Table 3 is a table showing lens data of the imaging optical system according to Example 1.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 4 is a table showing coefficients and constants of expressions representing the aspheric shapes of the second surface to the seventh surface.
  • the aspherical shape is a quadratic curve represented by the following formula: That is, it is an optical axis symmetric rotation surface rotated about the z axis.
  • k is a constant that determines the shape of the quadratic curve
  • c is the central curvature.
  • a i is a correction coefficient.
  • R on the second surface corresponds to r1.
  • A10E-N is A ⁇ 10 -N Represents.
  • Table 5 is a table showing coefficients of the optical path difference function of the diffraction grating.
  • the optical path difference function is defined by the following equation.
  • FIG. 3 is a diagram illustrating a configuration of the imaging optical system according to the second embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 4 is a diagram illustrating aberrations of the imaging optical system according to the second embodiment.
  • FIG. 4A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.4 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • the vertical axis in FIG. 4A indicates the passing position in the aperture of the light beam. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop.
  • FIG. 4B is a diagram showing astigmatism and field curvature.
  • the horizontal axis of FIG.4 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.4 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 4C is a diagram showing distortion.
  • the horizontal axis of FIG.4 (c) shows a distortion aberration (distortion).
  • shaft of FIG.4 (c) shows image height (a unit is a millimeter).
  • Table 6 is a table showing lens data of the imaging optical system according to Example 2.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 7 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 8 is a table showing coefficients of the optical path difference function of the diffraction grating.
  • FIG. 5 is a diagram illustrating a configuration of an imaging optical system according to the third embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 6 is a diagram illustrating aberrations of the image pickup optical system according to the third embodiment.
  • FIG. 6A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.6 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.6 (a) shows the passage position in the aperture_diaphragm
  • FIG. 6B is a diagram showing astigmatism and field curvature.
  • the horizontal axis of FIG.6 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.6 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 6C is a diagram showing distortion.
  • the horizontal axis of FIG.6 (c) shows a distortion aberration (distortion).
  • shaft of FIG.6 (c) shows image height (a unit is a millimeter).
  • Table 9 is a table showing lens data of the imaging optical system according to Example 3.
  • the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 10 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 11 is a table showing the coefficients of the optical path difference function of the diffraction grating.
  • FIG. 7 is a diagram illustrating a configuration of an imaging optical system according to the fourth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 8 is a diagram illustrating aberrations of the imaging optical system according to the fourth example.
  • FIG. 8A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.8 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.8 (a) shows the passage position in the aperture_diaphragm
  • FIG. 8B is a diagram showing astigmatism and field curvature.
  • the horizontal axis of FIG.8 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.8 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 8C is a diagram showing distortion.
  • the horizontal axis of FIG.8 (c) shows a distortion aberration (distortion).
  • shaft of FIG.8 (c) shows image height (a unit is a millimeter).
  • Table 12 is a table showing lens data of the imaging optical system according to Example 4.
  • the distance between the surfaces of the diaphragms is the position of the second surface when the position of the diaphragm is a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 13 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 14 is a table
  • FIG. 9 is a diagram illustrating the configuration of the imaging optical system according to the fifth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to the fifth example.
  • FIG. 10A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.10 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.10 (a) shows the passage position in the aperture_diaphragm
  • FIG. 10B is a diagram showing astigmatism and curvature of field.
  • the horizontal axis of FIG.10 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.10 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG.10 (c) is a figure which shows a distortion aberration.
  • the horizontal axis of FIG.10 (c) shows a distortion aberration (distortion).
  • shaft of FIG.10 (c) shows image height (a unit is a millimeter).
  • Table 15 is a table showing lens data of the imaging optical system according to Example 5.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 16 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 17 is a table showing coefficients of the optical path difference function of the diffraction grating.
  • FIG. 11 is a diagram illustrating a configuration of an imaging optical system according to the sixth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 12 is a diagram illustrating aberrations of the imaging optical system according to the sixth example.
  • FIG. 12A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.12 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.12 (a) shows the passage position in the aperture_diaphragm
  • FIG. 12B is a diagram showing astigmatism and curvature of field.
  • the horizontal axis of FIG.12 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.12 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 12C is a diagram showing distortion.
  • the horizontal axis of FIG.12 (c) shows a distortion aberration (distortion).
  • shaft of FIG.12 (c) shows image height (a unit is a millimeter).
  • Table 18 is a table showing lens data of the imaging optical system according to Example 6.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 19 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 20 is a table
  • FIG. 13 is a diagram illustrating a configuration of an imaging optical system according to the seventh embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 14 is a diagram illustrating aberrations of the image pickup optical system according to the seventh embodiment.
  • FIG. 14A shows axial chromatic aberration.
  • the horizontal axis of Fig.14 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.14 (a) shows the passage position in the aperture_diaphragm
  • FIG. 14B is a diagram showing astigmatism and curvature of field.
  • the horizontal axis of FIG.14 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.14 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 14C is a diagram showing distortion.
  • the horizontal axis of FIG.14 (c) shows a distortion aberration (distortion).
  • shaft of FIG.14 (c) shows image height (a unit is a millimeter).
  • Table 21 is a table showing lens data of the imaging optical system according to Example 7.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 22 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 23 is a table showing coefficients of the optical path difference function of the diffraction grating.
  • FIG. 15 is a diagram illustrating a configuration of an imaging optical system according to the eighth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 16 is a diagram showing aberrations of the image pickup optical system according to the eighth embodiment.
  • FIG. 16A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.16 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.16 (a) shows the passage position in the aperture_diaphragm
  • FIG. 16B is a diagram showing astigmatism and field curvature.
  • FIG. 16B indicates the focal position in the optical axis direction (unit: millimeter).
  • shaft of FIG.16 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 16C is a diagram illustrating distortion.
  • the horizontal axis of FIG.16 (c) shows a distortion aberration (distortion).
  • shaft of FIG.16 (c) shows image height (a unit is a millimeter).
  • Table 24 is a table showing lens data of the imaging optical system according to Example 8.
  • the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 25 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 26 is a table
  • FIG. 17 is a diagram illustrating the configuration of the imaging optical system according to the ninth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 18 is a diagram illustrating aberrations of the imaging optical system according to the ninth example.
  • FIG. 18A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.18 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.18 (a) shows the passage position in the aperture_diaphragm
  • FIG. 18B is a diagram showing astigmatism and field curvature.
  • the horizontal axis of FIG.18 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.18 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 18C is a diagram showing distortion.
  • the horizontal axis of FIG.18 (c) shows a distortion aberration (distortion).
  • shaft of FIG.18 (c) shows image height (a unit is a millimeter).
  • Table 27 is a table showing lens data of the imaging optical system according to Example 9.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 28 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 29 is a table showing coefficients of the optical path difference function of the diffraction grating.
  • FIG. 19 is a diagram illustrating the configuration of the imaging optical system according to the tenth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 20 is a diagram illustrating aberrations of the imaging optical system according to the tenth embodiment.
  • FIG. 20A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.20 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • the vertical axis in FIG. 20A indicates the passage position of the light beam in the aperture stop. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop.
  • FIG. 20B is a diagram showing astigmatism and curvature of field.
  • the horizontal axis in FIG. 20B indicates the focal position in the optical axis direction (unit: millimeter).
  • FIG. 20B indicates the image height (unit: millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG.20 (c) is a figure which shows a distortion aberration.
  • the horizontal axis of FIG.20 (c) shows a distortion aberration (distortion).
  • shaft of FIG.20 (c) shows image height (a unit is a millimeter).
  • Table 30 is a table showing lens data of the imaging optical system according to Example 10.
  • the diaphragm surface interval is the position of the second surface when the position of the diaphragm is a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 31 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 32 is a table
  • FIG. 21 is a diagram illustrating the configuration of the imaging optical system according to the eleventh embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 22 shows aberrations of the image pickup optical system according to the eleventh embodiment.
  • FIG. 22A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.22 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.22 (a) shows the passage position in the aperture_diaphragm
  • FIG. 22B is a diagram showing astigmatism and field curvature.
  • the horizontal axis of FIG.22 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.22 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 22C is a diagram showing distortion.
  • the horizontal axis of FIG.22 (c) shows a distortion aberration (distortion).
  • shaft of FIG.22 (c) shows image height (a unit is a millimeter).
  • Table 33 is a table showing lens data of the imaging optical system according to Example 11.
  • the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 34 is a table showing the coefficients and constants of the expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 35 is a table
  • FIG. 23 is a diagram illustrating the configuration of the imaging optical system according to the twelfth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 24 is a diagram showing aberrations of the image pickup optical system according to the twelfth embodiment.
  • FIG. 24A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.24 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.24 (a) shows the passage position in the aperture_diaphragm
  • FIG. 24B is a diagram showing astigmatism and field curvature.
  • the horizontal axis of FIG.24 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.24 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 24C is a diagram showing distortion.
  • the horizontal axis of FIG.24 (c) shows a distortion aberration (distortion).
  • shaft of FIG.24 (c) shows image height (a unit is a millimeter).
  • Table 36 is a table showing lens data of the imaging optical system according to Example 12.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 37 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 38 is a table
  • FIG. 25 is a diagram illustrating the configuration of the imaging optical system according to the thirteenth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 26 is a diagram illustrating aberrations of the imaging optical system according to the thirteenth embodiment.
  • FIG. 26A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.26 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.26 (a) shows the passage position in the aperture_diaphragm
  • FIG. 26B is a diagram showing astigmatism and curvature of field.
  • the horizontal axis of FIG.26 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.26 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 26C is a diagram showing distortion.
  • the horizontal axis of FIG.26 (c) shows a distortion aberration (distortion).
  • shaft of FIG.26 (c) shows image height (a unit is a millimeter).
  • Table 39 is a table showing lens data of the imaging optical system according to Example 13.
  • the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 40 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 41 is a table
  • FIG. 27 is a diagram illustrating the configuration of the imaging optical system according to the fourteenth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 28 is a diagram showing aberrations of the imaging optical system according to Example 14.
  • FIG. 28A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.28 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • shaft of Fig.28 (a) shows the passage position in the aperture_diaphragm
  • FIG. 28B is a diagram showing astigmatism and curvature of field.
  • FIG. 28 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.28 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG. 28 (c) is a diagram showing distortion aberration.
  • the horizontal axis of FIG.28 (c) shows a distortion aberration (distortion).
  • shaft of FIG.28 (c) shows image height (a unit is a millimeter).
  • Table 42 is a table showing lens data of the imaging optical system according to Example 14.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 43 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
  • Table 44 is a table
  • FIG. 29 is a diagram illustrating the configuration of the imaging optical system according to the fifteenth embodiment.
  • the imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side.
  • the light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
  • FIG. 30 is a diagram illustrating aberrations of the imaging optical system according to the fifteenth embodiment.
  • FIG. 30A is a diagram showing axial chromatic aberration.
  • the horizontal axis of Fig.30 (a) shows the focus position (a unit is a millimeter) of an optical axis direction.
  • the vertical axis in FIG. 30 (a) indicates the passage position of the light beam. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop.
  • FIG. 30B is a diagram showing astigmatism and curvature of field.
  • the horizontal axis of FIG.30 (b) shows the focus position of an optical axis direction (a unit is a millimeter).
  • shaft of FIG.30 (b) shows image height (a unit is a millimeter).
  • the dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane.
  • FIG.30 (c) is a figure which shows a distortion aberration.
  • the horizontal axis of FIG.30 (c) shows a distortion aberration (distortion).
  • shaft of FIG.30 (c) shows image height (a unit is a millimeter).
  • Table 45 is a table showing lens data of the imaging optical system according to Example 15.
  • the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive.
  • the surface interval of the second surface is the interval between the second surface and the third surface (the image side surface of the second lens).
  • Table 46 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the fifth surface and the seventh surface.
  • Table 47 is a table showing coefficients of the optical path difference function of the diffraction grating.
  • Table 48 is a table
  • the special surface shape is a quadratic curve represented by the following equation: That is, it is an optical axis symmetric rotation surface rotated about the z axis.
  • k j is a constant that determines the shape of the quadratic curve
  • c j is the center curvature
  • d j is a constant that determines the position of the surface.
  • a ij is a correction coefficient.
  • the special surface is composed of a central region including the optical axis and a belt-like region around it.

Abstract

Provided is an image pickup optical system configured from three lenses and having optical properties, such as aberration, peripheral light amount ratio, and brightness, equal to or higher than those of an image pickup optical system configured from four lenses. Specifically provided is an image pickup optical system which comprises, from the object side to the image side, a positive first lens with a diffraction grating on the image side, a second lens that is a meniscus lens with a convex surface directed to the image side, and a third lens that is a negative meniscus lens, and in which a stop is disposed closer to the object side than the surface on the image side of the first lens. The image pickup optical system satisfies the following expressions: 0.18<D12×φ<0.22 (1) 1.1<TTL×φ<1.22 (2) Fno<3.0 (3) 0.46<r1×φ<0.49 (4) 0.8<φ/φ1<1.0 (5) |φ2/φ|<0.1 (6) Where D12 is the distance on the optical axis between the first lens and the second lens, TTL is the distance from the vertex on the object side of the first lens to the image surface, φ1 is the power of the first lens, φ2 is the power of the second lens, φ is the combined power of the first lens, the second lens, and the third lens, Fno is the f-number of the optical system, and r1 is the curvature radius of the surface on the object side of the first lens.

Description

撮像光学系Imaging optical system
 本発明は、デジタルカメラ、撮像機能付き携帯電話などに使用される撮像光学系に関する。 The present invention relates to an imaging optical system used for a digital camera, a mobile phone with an imaging function, and the like.
 携帯電話などに使用される撮像光学系には、高画質、小型、低コストであることに対するニーズがある。高画質を実現するための高画素の撮像光学系は、高分散材料を使用する色消し用のレンズを含む、4枚以上のレンズから構成される。回折格子を使用することにより、色消し用のレンズを取り除くことが可能である。しかし、高画質を実現する3枚構成の撮像光学系は、球面収差や像面湾曲などの色収差以外の収差、周辺光量比、明るさなどで4枚構成の撮像光学系と同等以上の高い光学性能を備える必要がある。 There is a need for an imaging optical system used for a mobile phone or the like for high image quality, small size, and low cost. A high-pixel imaging optical system for realizing high image quality is composed of four or more lenses including an achromatic lens using a high dispersion material. By using a diffraction grating, it is possible to remove the achromatic lens. However, a three-lens imaging optical system that realizes high image quality is as high as or better than a four-lens imaging optical system in terms of aberrations other than chromatic aberration such as spherical aberration and curvature of field, peripheral light amount ratio, and brightness It is necessary to have performance.
 特許文献1は、物体側から順に、正の第1レンズ、物体側の面が凹形状となっている第2レンズ及び負の第3レンズからなる3枚構成撮像系を開示している。この3枚構成撮像系は、小型で像面湾曲も小さい。しかし、この3枚構成撮像系のエフ・ナンバーは3.5であり、一般的に使用されているエフ・ナンバー2.8の撮像光学系と比較すると、中心付近のコントラストが低下し画質が低下する。 Patent Document 1 discloses a three-element imaging system including, in order from the object side, a positive first lens, a second lens having a concave surface on the object side, and a negative third lens. This three-element imaging system is small and has a small field curvature. However, the F number of this three-element imaging system is 3.5, and compared with the imaging optical system of F number 2.8 that is generally used, the contrast near the center is lowered and the image quality is lowered. To do.
 特許文献2は、物体側から順に正の第1レンズ、物体側に凹面を向けた正または負の第2レンズ及び正または負の第3レンズからなる3枚構成撮像系を開示している。この3枚構成撮像系は、小型でエフ・ナンバーが3.0以下のものも含む。しかし、しかし、この3枚構成撮像系の球面収差は比較的大きく、球面収差の劣化により画質が低下する。 Patent Document 2 discloses a three-element imaging system including a positive first lens in order from the object side, a positive or negative second lens having a concave surface facing the object side, and a positive or negative third lens. This three-lens imaging system includes a small one having an F number of 3.0 or less. However, the spherical aberration of this three-element imaging system is relatively large, and the image quality deteriorates due to the deterioration of the spherical aberration.
 このように、収差、周辺光量比、明るさなどで4枚構成の撮像光学系と同等以上の高い光学性能を備えた3枚構成の撮像光学系は開発されていない。 Thus, a three-lens imaging optical system having high optical performance equivalent to or higher than that of a four-lens imaging optical system in terms of aberration, peripheral light amount ratio, brightness, etc. has not been developed.
 特許文献1 特開2008-276200号公報
 特許文献2 特開2007-264181号公報
Patent Document 1 Japanese Unexamined Patent Application Publication No. 2008-276200 Patent Document 2 Japanese Unexamined Patent Application Publication No. 2007-264181
 したがって、収差、周辺光量比、明るさなどで4枚構成の撮像光学系と同等以上の高い光学性能を備えた3枚構成の撮像光学系に対するニーズがある。 Accordingly, there is a need for a three-lens imaging optical system having high optical performance equivalent to or higher than that of a four-lens imaging optical system in terms of aberration, peripheral light amount ratio, brightness, and the like.
 本発明による撮像光学系は、物体側から像側に、像側に回折格子が付された正の第1レンズ、像側に凸面を向けたメニスカスレンズである第2レンズ、負のメニスカスレンズである第3レンズから構成され、絞りが第1レンズの像側の面よりも物体側に配置された撮像光学系であって、D12は第1レンズ及び第2レンズ間の光軸上の距離、TTLは第1レンズの物体側の頂点から像面までの距離、φ1は、第1レンズのパワー、φ2は、第2レンズのパワー、φは、第1レンズ、第2レンズ及び第3レンズの合成パワー、Fnoは光学系のエフ・ナンバー、r1は、第1レンズの物体側の面の曲率半径であるとして、
 0.18<D12×φ<0.22    (1)
 1.1<TTL×φ<1.22      (2)
 Fno<3.0         (3)
 0.46<r1×φ<0.49     (4)
 0.8<φ/φ1<1.0       (5)
 |φ2/φ|<0.1       (6)
を満足する。
The imaging optical system according to the present invention includes a positive first lens having a diffraction grating on the image side from the object side to the image side, a second lens that is a meniscus lens having a convex surface facing the image side, and a negative meniscus lens. An imaging optical system that includes a third lens and whose diaphragm is disposed on the object side of the image side surface of the first lens, D12 is a distance on the optical axis between the first lens and the second lens, TTL is the distance from the object-side vertex of the first lens to the image plane, φ1 is the power of the first lens, φ2 is the power of the second lens, and φ is the power of the first lens, the second lens, and the third lens. The combined power, Fno is the F number of the optical system, and r1 is the radius of curvature of the object side surface of the first lens.
0.18 <D12 × φ <0.22 (1)
1.1 <TTL × φ <1.22 (2)
Fno <3.0 (3)
0.46 <r1 × φ <0.49 (4)
0.8 <φ / φ1 <1.0 (5)
| φ2 / φ | <0.1 (6)
Satisfied.
 本発明による撮像光学系において、第1レンズを正のレンズとすることによって光学系を小型化しやすくなる。第1レンズの像側に回折格子を付することによって、軸上の色収差が改善され、高解像度を実現することが可能となる。第2レンズを像側に凸面を向けたメニスカスレンズとすることによって、像面湾曲を低減させることができる。第3レンズを負のレンズとすることにより、射出瞳位置を物体側に持っていくことができ、バックフォーカスを維持しながら画像素子の周縁部への入射角度を低減することができる。また、 絞りを第1レンズの像側の面より物体側に配置することにより、光学系を小型化することができる。さらに、式(1)乃至(6)を満たすことにより、小型でありながら、製造しやすく、像面湾曲が小さく、明るい、高画質の画像を生成する光学系が得られる。 In the imaging optical system according to the present invention, it is easy to reduce the size of the optical system by using the first lens as a positive lens. By attaching a diffraction grating to the image side of the first lens, axial chromatic aberration is improved and high resolution can be realized. By making the second lens a meniscus lens having a convex surface facing the image side, field curvature can be reduced. By making the third lens a negative lens, the exit pupil position can be brought to the object side, and the incident angle to the peripheral edge of the image element can be reduced while maintaining the back focus. Also, the optical system can be miniaturized by disposing the stop closer to the object side than the image side surface of the first lens. Furthermore, by satisfying the formulas (1) to (6), an optical system that is small and easy to manufacture, has a small curvature of field, and generates a bright, high-quality image can be obtained.
 本発明の実施形態による撮像光学系において、第2レンズは、近軸領域から周辺に向かって像側の面の負のパワーが強くなる、パワー0のメニスカスレンズである。 In the imaging optical system according to the embodiment of the present invention, the second lens is a zero-power meniscus lens in which the negative power of the image side surface increases from the paraxial region toward the periphery.
 本実施形態において、第2レンズは、近軸領域から周辺に向かって像側の面の負のパワーが強くなるので、周辺光線の周辺の光線高さを維持したまま、中心光線の周辺の光線高さを小さくすることができるので周辺光量比を大きくすることができる。また、第2レンズのパワーを0とすることにより、組み立ての際の、第1レンズに対する第2レンズの偏芯感度を低減することが可能となり、製造コストを低減することができる。また、高分散の材料を使用しても軸上色収差を変化させることがなく、周辺の色倍率収差を改善することができる。 In the present embodiment, since the negative power of the image side surface of the second lens increases from the paraxial region toward the periphery, the light beam around the central light beam is maintained while maintaining the light beam height around the peripheral light beam. Since the height can be reduced, the peripheral light quantity ratio can be increased. Further, by setting the power of the second lens to 0, it is possible to reduce the eccentric sensitivity of the second lens with respect to the first lens during assembly, and it is possible to reduce the manufacturing cost. Further, even if a highly dispersed material is used, axial chromatic aberration is not changed, and peripheral chromatic aberration can be improved.
 本発明の実施形態による撮像光学系において、第1レンズが近軸領域において、凸平または両凸レンズである。 In the imaging optical system according to the embodiment of the present invention, the first lens is a convex flat or biconvex lens in the paraxial region.
 第1レンズの像面側を凹面にしないことにより、レンズのコバ部分に迷光が導入されにくくなり、コバ部分の内部反射を経て撮像素子の像面に入射する迷光を削減することができる。この結果、画質を向上させることができる。 By not making the image surface side of the first lens concave, stray light is less likely to be introduced into the edge portion of the lens, and stray light incident on the image surface of the image sensor through internal reflection of the edge portion can be reduced. As a result, the image quality can be improved.
 本発明の実施形態による撮像光学系において、第3レンズの物体側の面は、近軸領域及び周辺領域において正のパワーを有し、該近軸領域と該周辺領域の中間領域で負のパワーを有する。 In the imaging optical system according to the embodiment of the present invention, the object side surface of the third lens has positive power in the paraxial region and the peripheral region, and negative power in the intermediate region between the paraxial region and the peripheral region. Have
 第3レンズの物体側の面が、近軸領域及び周辺領域において正のパワーを有し、該近軸領域と該周辺領域の中間領域で負のパワーを有するように形成することによって、像面湾曲を天元させながら、周辺光線の中心光線の光線高さを大きくすることができるので、撮像素子の周縁部への光線の入射角度を低減させることができる。 By forming the object side surface of the third lens so as to have a positive power in the paraxial region and the peripheral region, and to have a negative power in the intermediate region between the paraxial region and the peripheral region, the image plane Since the height of the central ray of the peripheral rays can be increased while the curvature is reduced, the incident angle of the rays on the peripheral edge of the image sensor can be reduced.
 本発明の実施形態による撮像光学系において、第3レンズの像側の面は、近軸領域において負のパワーを有し、周辺領域において正のパワーを有する。 In the imaging optical system according to the embodiment of the present invention, the image side surface of the third lens has negative power in the paraxial region and positive power in the peripheral region.
 第3レンズの像側の面が、近軸領域において負のパワーを有し、周辺領域において正のパワーを有するように形成し、第1乃至第3レンズの近軸領域を凸凸凹とし、第1乃至第3レンズの周辺領域を凸凹凸とすることによって、周辺光量比を大きくし、結像性能を向上させることができる。 The image side surface of the third lens is formed so as to have a negative power in the paraxial region and a positive power in the peripheral region, and the paraxial region of the first to third lenses is made uneven. By making the peripheral areas of the first to third lenses convex and concave, the peripheral light quantity ratio can be increased and the imaging performance can be improved.
 本発明の実施形態による撮像光学系において、φ3は、第3レンズのパワーであるとして、
 -3.3<φ/φ3<-2.6     (7)
を満足する。
In the imaging optical system according to the embodiment of the present invention, φ3 is the power of the third lens.
-3.3 <φ / φ3 <-2.6 (7)
Satisfied.
 φ/φ3が式(7)の下限値よりも小さくなると、撮像素子への入射角度が大きくなり、画質の低下を生じる。φ/φ3が式(7)の上限値よりも大きくなると、像面湾曲が劣化し、レンズの解像度が低下する。 When φ / φ3 is smaller than the lower limit value of the equation (7), the incident angle to the image sensor increases and the image quality is deteriorated. When φ / φ3 becomes larger than the upper limit value of the equation (7), the field curvature is deteriorated and the resolution of the lens is lowered.
 本発明の実施形態による撮像光学系において、vd1は第1レンズの材料のd線(波長587.6nm)でのアッべ数、vd3は第3レンズの材料のd線(波長587.6nm)でのアッべ数、 nd1は第1レンズの材料のd線(波長587.6nm)での屈性率、nd3は第三レンズの材料のd線(波長587.6nm)での屈折率であるとして、
 54<vd1,vd3<58        (8)
 1.5<nd1,nd3<1.54      (9)
を満足する。
In the imaging optical system according to the embodiment of the present invention, v d 1 is the Abbe number of the first lens material on the d-line (wavelength 587.6 nm), and v d 3 is the third lens material d-line (wavelength 587.6 nm). ), N d 1 is the refractive index of the first lens material at the d-line (wavelength 587.6 nm), and n d 3 is the refraction of the third lens material at the d-line (wavelength 587.6 nm). As a rate
54 <v d 1, v d 3 <58 (8)
1.5 <n d 1, n d 3 <1.54 (9)
Satisfied.
 第1レンズ及び第3レンズにオレフィン系などの樹脂材料を使用することができ、ガラスを使用する場合と比較してコストを低減することができる。 Resin materials such as olefins can be used for the first lens and the third lens, and the cost can be reduced compared to the case of using glass.
 本発明の実施形態による撮像光学系において、nd2は第2レンズの材料のd線(波長587.6nm)での屈折率、r3は第2レンズ物体側の曲率半径、r4は第2レンズの像側の曲率半径、D2は第2レンズの中心厚であるとして、
  (nd2-1)×(1/r3-1/r4)+(nd2-1)2×D2/(nd2×r3×r4)=0   (10)
を満足する。
In the imaging optical system according to the embodiment of the present invention, n d 2 is the refractive index of the second lens material at the d-line (wavelength 587.6 nm), r 3 is the radius of curvature on the second lens object side, and r 4 is the second lens. The curvature radius on the image side, D2, is the center thickness of the second lens.
(n d 2-1) × (1 / r3-1 / r4) + (n d 2-1) 2 × D2 / (n d 2 × r3 × r4) = 0 (10)
Satisfied.
 式(10)の左辺は第2レンズのパワーを表す。第2レンズの正または負のパワーの絶対値が大きくなるほど球面収差が大きくなる。第2レンズのパワーを0とすることにより、組み立ての際の、第1レンズに対する第2レンズの偏芯感度を低減することが可能となり、製造コストを低減することができる。また、高分散の材料を使用しても軸上色収差を変化させることがなく、周辺の色倍率収差を改善することができる。 The left side of Equation (10) represents the power of the second lens. As the absolute value of the positive or negative power of the second lens increases, the spherical aberration increases. By setting the power of the second lens to 0, it is possible to reduce the eccentricity sensitivity of the second lens with respect to the first lens during assembly, thereby reducing the manufacturing cost. Further, even if a highly dispersed material is used, axial chromatic aberration is not changed, and peripheral chromatic aberration can be improved.
 本発明の実施形態による撮像光学系において、φDOEは第1レンズの回折格子のパワーであるとして、
 0.05<φDOE/φ<0.07   (11)
を満足する。
In the imaging optical system according to the embodiment of the present invention, φDOE is the power of the diffraction grating of the first lens.
0.05 <φDOE / φ <0.07 (11)
Satisfied.
 φDOE/φが式(7)の上限値より大きいと、回折格子の作用によるゴースト・フレアの影響が大きくなる。φDOE/φが式(7)の下限値より小さいと、回折格子による色消し効果が弱くレンズの解像度を向上させることができない。 If φDOE / φ is larger than the upper limit of equation (7), the influence of ghost and flare due to the action of the diffraction grating becomes large. If φDOE / φ is smaller than the lower limit of equation (7), the achromatic effect by the diffraction grating is weak and the resolution of the lens cannot be improved.
 本発明の実施形態による撮像光学系において、
 0.27<Fno<3.0      (12)
を満足する。
In the imaging optical system according to the embodiment of the present invention,
0.27 <Fno <3.0 (12)
Satisfied.
 エフ・ナンバーが式(12)の下限値よりも小さいと、焦点深度が浅くなり、組み立ての際の偏芯感度が大きくなり、製造コストが上昇する。エフ・ナンバーが式(12)の上限値よりも大きいと、回折限界により解像度の劣化を生じる。 When the F number is smaller than the lower limit value of the equation (12), the depth of focus becomes shallow, the eccentricity sensitivity at the time of assembly increases, and the manufacturing cost increases. When the F number is larger than the upper limit value of the equation (12), the resolution is deteriorated due to the diffraction limit.
実施例1による撮像光学系の構成を示す図である。1 is a diagram illustrating a configuration of an imaging optical system according to Example 1. FIG. 実施例1による撮像光学系の収差を示す図である。FIG. 6 is a diagram illustrating aberrations of the imaging optical system according to Example 1. 実施例2による撮像光学系の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an imaging optical system according to a second embodiment. 実施例2による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 2. 実施例3による撮像光学系の構成を示す図である。6 is a diagram illustrating a configuration of an imaging optical system according to Example 3. FIG. 実施例3による撮像光学系の収差を示す図である。FIG. 6 is a diagram illustrating aberrations of the imaging optical system according to Example 3. 実施例4による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 4. 実施例4による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 4. 実施例5による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 5. 実施例5による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 5. 実施例6による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 6. 実施例6による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 6. 実施例7による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 7. 実施例7による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 7. 実施例8による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 8. 実施例8による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 8. 実施例9による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 9. 実施例9による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 9. 実施例10による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 10. 実施例10による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 10. 実施例11による撮像光学系の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an imaging optical system according to Example 11. 実施例11による撮像光学系の収差を示す図である。FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to Example 11. 実施例12による撮像光学系の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 12. 実施例12による撮像光学系の収差を示す図である。FIG. 14 shows aberrations of the image pickup optical system according to the twelfth embodiment. 実施例13による撮像光学系の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 13. 実施例13による撮像光学系の収差を示す図である。It is a figure which shows the aberration of the imaging optical system by Example 13. 実施例14による撮像光学系の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 14. 実施例14による撮像光学系の収差を示す図である。It is a figure which shows the aberration of the imaging optical system by Example 14. 実施例15による撮像光学系の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of an imaging optical system according to Example 15. 実施例15による撮像光学系の収差を示す図である。FIG. 20 is a diagram illustrating aberrations of the image pickup optical system according to the fifteenth embodiment.
 図1は、本発明の一実施形態による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。 FIG. 1 is a diagram showing a configuration of an imaging optical system according to an embodiment of the present invention. In the imaging optical system according to the present embodiment, light that has passed through the first lens E1, the second lens E2, and the third lens E3 from the object side to the image side passes through the glass plate E4 and reaches the image plane IS.
 以下において、本発明による撮像光学系の特徴について説明する。 Hereinafter, features of the imaging optical system according to the present invention will be described.
3枚レンズの種類
 本発明の実施形態による撮像光学系は、物体側から像側に、像側に回折格子が付された正のレンズである第1レンズ、像側に凸面を向けたメニスカスレンズである第2レンズ及び負のメニスカスレンズである第3レンズを備える。絞りは、第1レンズの像側の面よりも物体側に配置されている。
Types of Three Lenses An imaging optical system according to an embodiment of the present invention includes a first lens that is a positive lens having a diffraction grating on the image side from the object side to the image side, and a meniscus lens having a convex surface on the image side. And a third lens which is a negative meniscus lens. The stop is disposed closer to the object side than the image side surface of the first lens.
 第1レンズを正のレンズとすることによって光学系を小型化しやすくなる。 ¡By making the first lens a positive lens, it becomes easy to miniaturize the optical system.
 第1レンズの像側に回折格子を付することによって、軸上の色収差が改善され、高解像度を実現することが可能となる。 By attaching a diffraction grating to the image side of the first lens, axial chromatic aberration is improved and high resolution can be realized.
 第2レンズを像側に凸面を向けたメニスカスレンズとすることによって、像面湾曲を低減させることができる。 By using the second lens as a meniscus lens having a convex surface facing the image side, curvature of field can be reduced.
 第3レンズを負のレンズとすることにより、射出瞳位置を物体側に持っていくことができ、バックフォーカスを維持しながら画像素子の周縁部への入射角度を低減することができる。 When the third lens is a negative lens, the exit pupil position can be brought to the object side, and the incident angle to the peripheral edge of the image element can be reduced while maintaining the back focus.
絞りの位置
 絞りを第1レンズの像側の面より物体側に配置することにより、光学系を小型化することができる。
The optical system can be miniaturized by disposing the aperture stop on the object side with respect to the image side surface of the first lens.
第1及び第2レンズ間の光軸上の距離D12と3枚のレンズの合成パワーφとの積
本発明の実施形態による光学系は、
 0.18<D12×φ<0.22    (1)
を満たすように構成される。D12×φが式(1)の下限値を下回ると、組み立ての際の、第2レンズの第1レンズに対する偏芯感度が増加し、製造コストが増加する。D12×φが式(1)の上限値を上回ると、光学系が大型化する。
The product of the distance D12 on the optical axis between the first and second lenses and the combined power φ of the three lenses is an optical system according to an embodiment of the present invention.
0.18 <D12 × φ <0.22 (1)
Configured to meet. When D12 × φ is lower than the lower limit value of the expression (1), the eccentricity sensitivity of the second lens with respect to the first lens during assembly increases, and the manufacturing cost increases. When D12 × φ exceeds the upper limit value of the formula (1), the optical system becomes large.
第1レンズの物体側の頂点から像面までの距離TTLと3枚のレンズの合成パワーφとの積
本発明の実施形態による光学系は、
  1.1<TTL×φ<1.22    (2)
を満たすように構成される。TTL×φが式(2)の下限値を下回ると、光学系の像面湾曲による解像度の劣化が大きくなる。TTL×φが式式(2)の上限値を上回ると、光学系が大型化する。なお、本明細書においてレンズのパワーとは、近軸付近のレンズのパワーを意味する。
The product of the distance TTL from the object-side vertex of the first lens to the image plane and the combined power φ of the three lenses is an optical system according to an embodiment of the present invention.
1.1 <TTL × φ <1.22 (2)
Configured to meet. When TTL × φ is lower than the lower limit value of the expression (2), resolution degradation due to curvature of field of the optical system increases. If TTL × φ exceeds the upper limit value of the formula (2), the optical system becomes large. In this specification, the lens power means the power of the lens near the paraxial axis.
エフ・ナンバーFno
本発明の実施形態による光学系は、
 Fno<3.0         (3)
を満たすように構成される。Fnoが3より大きくなると、回折限界により解像度の劣化が生じる。
F number Fno
An optical system according to an embodiment of the present invention includes:
Fno <3.0 (3)
Configured to meet. When Fno is larger than 3, resolution is degraded due to the diffraction limit.
第1レンズの物体側の面の曲率半径r1と3枚のレンズの合成パワーφとの積
本発明の実施形態による光学系は、
 0.46<r1×φ<0.49     (4)
を満たすように構成される。r1×φが式(4)の下限値を下回ると、球面収差が大きくなり、解像度の劣化が生じる。また、球面収差を小さくするために、エフ・ナンバーを大きくして明るさを減少させるとコントラストの低下を生じる。このように、いずれにしても、画質が低下する。r1×φが式(4)の上限値を上回ると、光学系が大型化する。
The product of the radius of curvature r1 of the object side surface of the first lens and the combined power φ of the three lenses is an optical system according to an embodiment of the present invention.
0.46 <r1 × φ <0.49 (4)
Configured to meet. When r1 × φ is less than the lower limit value of the equation (4), spherical aberration increases and resolution is degraded. Further, when the F number is increased to reduce the brightness in order to reduce the spherical aberration, the contrast is lowered. Thus, in any case, the image quality is degraded. If r1 × φ exceeds the upper limit value of the equation (4), the optical system becomes large.
3枚のレンズの合成パワーφと第1レンズのパワーφ1との比
本発明の実施形態による光学系は、
  0.8<φ/φ1<1.0     (5)
を満たすように構成される。φ/φ1が式(5)の下限値を下回ると、組み立ての際の、第2レンズの第1レンズに対する偏芯感度が増加し、製造コストが増加する。φ/φ1が式(5)の上限値を上回ると、光学系が大型化する。
Ratio of combined power [phi] of the three lenses and power [phi] 1 of the first lens The optical system according to the embodiment of the present invention is
0.8 <φ / φ1 <1.0 (5)
Configured to meet. If φ / φ1 is below the lower limit of the equation (5), the eccentricity sensitivity of the second lens to the first lens during assembly increases, and the manufacturing cost increases. When φ / φ1 exceeds the upper limit value of the equation (5), the optical system becomes large.
第2レンズのパワーφ2と3枚のレンズの合成パワーφとの比の絶対値
本発明の実施形態による光学系は、
 |φ2/φ|<0.1       (6)
を満たすように構成される。|φ2/φ|が式(6)の上限値を上回ると、組み立ての際の、第2レンズの第1レンズに対する偏芯感度が増加し、製造コストが増加する。
The absolute value of the ratio of the power [phi] 2 of the second lens and the combined power [phi] of the three lenses is the optical system according to the embodiment of the present invention.
| φ2 / φ | <0.1 (6)
Configured to meet. If | φ2 / φ | exceeds the upper limit value of Expression (6), the eccentricity sensitivity of the second lens to the first lens during assembly increases, and the manufacturing cost increases.
レンズの材料
 本発明の実施形態による撮像光学系は、レンズが全てプラスチック(樹脂)材料で形成されている。したがって、レンズをすべてモールド成形で製作でき、量産に適している。一例として、第1及び第3レンズの材料は、シクロオレフィンポリマー(COP)樹脂)であり、第2レンズの材料は、シクロオレフィンポリマー(COP)樹脂またはポリカーボネード(PC)樹脂またはシクロオレフィンコポリマー(COC)樹脂である。
Lens Material In the imaging optical system according to the embodiment of the present invention, the lenses are all formed of a plastic (resin) material. Therefore, all the lenses can be manufactured by molding, which is suitable for mass production. As an example, the material of the first and third lenses is a cycloolefin polymer (COP) resin, and the material of the second lens is a cycloolefin polymer (COP) resin or a polycarbonate (PC) resin or a cycloolefin copolymer (COC). ) Resin.
実施例による撮像光学系の仕様
 表1及び表2は、実施例1乃至15の撮像光学系の仕様を表す表である。表1及び表2において長さの単位はミリメータである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Specifications Table 1 and Table 2 of the imaging optical system according to the examples are tables showing the specifications of the imaging optical systems of Examples 1 to 15. In Tables 1 and 2, the unit of length is millimeter.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例1
 図1は、実施例1による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 1
FIG. 1 is a diagram illustrating a configuration of an imaging optical system according to the first embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図2は、実施例1による撮像光学系の収差を示す図である。図2(a)は、軸上色収差を示す図である。図2(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図2(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図2(b)は、非点収差および像面湾曲を示す図である。図2(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図2(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図2(c)は、歪曲収差を示す図である。図2(c)の横軸は、歪曲収差(ディストーション)を示す。図2(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 2 is a diagram illustrating aberrations of the image pickup optical system according to the first embodiment. FIG. 2A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.2 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.2 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 2B is a diagram showing astigmatism and field curvature. The horizontal axis of FIG.2 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.2 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 2C is a diagram showing distortion. The horizontal axis of FIG.2 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.2 (c) shows image height (a unit is a millimeter).
 表3は、実施例1による撮像光学系のレンズデータを示す表である。表3において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 3 is a table showing lens data of the imaging optical system according to Example 1. In Table 3, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表4は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。撮像光学系の光軸をz軸とし、光軸に垂直な面の座標をx、yとする直交座標系において、非球面形状は、以下の式で表される2次曲線を、光軸、すなわちz軸の周りに回転させた光軸対称回転面である。ただし、kは2次曲線の形状を定める定数、cは中心曲率である。また、Aは補正係数である。なお、表4における第2面のRが、r1に相当する。 Table 4 is a table showing coefficients and constants of expressions representing the aspheric shapes of the second surface to the seventh surface. In an orthogonal coordinate system in which the optical axis of the imaging optical system is the z-axis and the coordinates of the plane perpendicular to the optical axis are x and y, the aspherical shape is a quadratic curve represented by the following formula: That is, it is an optical axis symmetric rotation surface rotated about the z axis. Here, k is a constant that determines the shape of the quadratic curve, and c is the central curvature. A i is a correction coefficient. In Table 4, R on the second surface corresponds to r1.
 表4以下の表において、Aが実数、Nが整数であるとして、A10E-Nは、
 A・10-N
を表す。
Figure JPOXMLDOC01-appb-M000001
In the tables below, assuming that A is a real number and N is an integer, A10E-N is
A ・ 10 -N
Represents.
Figure JPOXMLDOC01-appb-M000001
 表5は、回折格子の光路差関数の係数を示す表である。光路差関数は、以下の式で定義される。光路差関数は、550nmの規格化波長の1次光で定義されている。
φ=C2×h+C4×h4+C6×h6+C8×h8+C10×h10
Table 5 is a table showing coefficients of the optical path difference function of the diffraction grating. The optical path difference function is defined by the following equation. The optical path difference function is defined by primary light having a normalized wavelength of 550 nm.
φ = C2 × h 2 + C4 × h 4 + C6 × h 6 + C8 × h 8 + C10 × h 10
 非球面形状の式及び光路差関数の式は、以下の実施例においても同様である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
The formula for the aspheric shape and the formula for the optical path difference function are the same in the following embodiments.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
実施例2
 図3は、実施例2による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 2
FIG. 3 is a diagram illustrating a configuration of the imaging optical system according to the second embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図4は、実施例2による撮像光学系の収差を示す図である。図4(a)は、軸上色収差を示す図である。図4(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図4(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図4(b)は、非点収差および像面湾曲を示す図である。図4(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図4(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図4(c)は、歪曲収差を示す図である。図4(c)の横軸は、歪曲収差(ディストーション)を示す。図4(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 4 is a diagram illustrating aberrations of the imaging optical system according to the second embodiment. FIG. 4A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.4 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis in FIG. 4A indicates the passing position in the aperture of the light beam. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 4B is a diagram showing astigmatism and field curvature. The horizontal axis of FIG.4 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.4 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 4C is a diagram showing distortion. The horizontal axis of FIG.4 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.4 (c) shows image height (a unit is a millimeter).
 表6は、実施例2による撮像光学系のレンズデータを示す表である。表6において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 6 is a table showing lens data of the imaging optical system according to Example 2. In Table 6, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表7は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 7 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表8は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Table 8 is a table showing coefficients of the optical path difference function of the diffraction grating.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
実施例3
 図5は、実施例3による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 3
FIG. 5 is a diagram illustrating a configuration of an imaging optical system according to the third embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図6は、実施例3による撮像光学系の収差を示す図である。図6(a)は、軸上色収差を示す図である。図6(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図6(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図6(b)は、非点収差および像面湾曲を示す図である。図6(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図6(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図6(c)は、歪曲収差を示す図である。図6(c)の横軸は、歪曲収差(ディストーション)を示す。図6(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 6 is a diagram illustrating aberrations of the image pickup optical system according to the third embodiment. FIG. 6A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.6 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.6 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 6B is a diagram showing astigmatism and field curvature. The horizontal axis of FIG.6 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.6 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 6C is a diagram showing distortion. The horizontal axis of FIG.6 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.6 (c) shows image height (a unit is a millimeter).
 表9は、実施例3による撮像光学系のレンズデータを示す表である。表9において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 9 is a table showing lens data of the imaging optical system according to Example 3. In Table 9, the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表10は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 10 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表11は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Table 11 is a table showing the coefficients of the optical path difference function of the diffraction grating.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
実施例4
 図7は、実施例4による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 4
FIG. 7 is a diagram illustrating a configuration of an imaging optical system according to the fourth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図8は、実施例4による撮像光学系の収差を示す図である。図8(a)は、軸上色収差を示す図である。図8(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図8(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図8(b)は、非点収差および像面湾曲を示す図である。図8(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図8(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図8(c)は、歪曲収差を示す図である。図8(c)の横軸は、歪曲収差(ディストーション)を示す。図8(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 8 is a diagram illustrating aberrations of the imaging optical system according to the fourth example. FIG. 8A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.8 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.8 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 8B is a diagram showing astigmatism and field curvature. The horizontal axis of FIG.8 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.8 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 8C is a diagram showing distortion. The horizontal axis of FIG.8 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.8 (c) shows image height (a unit is a millimeter).
 表12は、実施例4による撮像光学系のレンズデータを示す表である。表12において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 12 is a table showing lens data of the imaging optical system according to Example 4. In Table 12, the distance between the surfaces of the diaphragms is the position of the second surface when the position of the diaphragm is a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表13は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 13 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表14は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Table 14 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
実施例5
 図9は、実施例5による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 5
FIG. 9 is a diagram illustrating the configuration of the imaging optical system according to the fifth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図10は、実施例5による撮像光学系の収差を示す図である。図10(a)は、軸上色収差を示す図である。図10(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図10(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図10(b)は、非点収差および像面湾曲を示す図である。図10(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図10(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図10(c)は、歪曲収差を示す図である。図10(c)の横軸は、歪曲収差(ディストーション)を示す。図10(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 10 is a diagram illustrating aberrations of the imaging optical system according to the fifth example. FIG. 10A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.10 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.10 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 10B is a diagram showing astigmatism and curvature of field. The horizontal axis of FIG.10 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.10 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG.10 (c) is a figure which shows a distortion aberration. The horizontal axis of FIG.10 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.10 (c) shows image height (a unit is a millimeter).
 表15は、実施例5による撮像光学系のレンズデータを示す表である。表15において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 15 is a table showing lens data of the imaging optical system according to Example 5. In Table 15, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表16は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 16 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表17は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Table 17 is a table showing coefficients of the optical path difference function of the diffraction grating.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
実施例6
 図11は、実施例6による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 6
FIG. 11 is a diagram illustrating a configuration of an imaging optical system according to the sixth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図12は、実施例6による撮像光学系の収差を示す図である。図12(a)は、軸上色収差を示す図である。図12(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図12(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図12(b)は、非点収差および像面湾曲を示す図である。図12(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図12(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図12(c)は、歪曲収差を示す図である。図12(c)の横軸は、歪曲収差(ディストーション)を示す。図12(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 12 is a diagram illustrating aberrations of the imaging optical system according to the sixth example. FIG. 12A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.12 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.12 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 12B is a diagram showing astigmatism and curvature of field. The horizontal axis of FIG.12 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.12 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 12C is a diagram showing distortion. The horizontal axis of FIG.12 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.12 (c) shows image height (a unit is a millimeter).
 表18は、実施例6による撮像光学系のレンズデータを示す表である。表18において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 18 is a table showing lens data of the imaging optical system according to Example 6. In Table 18, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表19は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 19 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表20は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000020
Table 20 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000020
実施例7
 図13は、実施例7による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 7
FIG. 13 is a diagram illustrating a configuration of an imaging optical system according to the seventh embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図14は、実施例7による撮像光学系の収差を示す図である。図14(a)は、軸上色収差を示す図である。図14(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図14(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図14(b)は、非点収差および像面湾曲を示す図である。図14(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図14(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図14(c)は、歪曲収差を示す図である。図14(c)の横軸は、歪曲収差(ディストーション)を示す。図14(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 14 is a diagram illustrating aberrations of the image pickup optical system according to the seventh embodiment. FIG. 14A shows axial chromatic aberration. The horizontal axis of Fig.14 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.14 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 14B is a diagram showing astigmatism and curvature of field. The horizontal axis of FIG.14 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.14 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 14C is a diagram showing distortion. The horizontal axis of FIG.14 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.14 (c) shows image height (a unit is a millimeter).
 表21は、実施例7による撮像光学系のレンズデータを示す表である。表21において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 21 is a table showing lens data of the imaging optical system according to Example 7. In Table 21, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表22は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 22 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表23は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Table 23 is a table showing coefficients of the optical path difference function of the diffraction grating.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
実施例8
 図15は、実施例8による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 8
FIG. 15 is a diagram illustrating a configuration of an imaging optical system according to the eighth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図16は、実施例8による撮像光学系の収差を示す図である。図16(a)は、軸上色収差を示す図である。図16(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図16(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図16(b)は、非点収差および像面湾曲を示す図である。図16(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図16(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図16(c)は、歪曲収差を示す図である。図16(c)の横軸は、歪曲収差(ディストーション)を示す。図16(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 16 is a diagram showing aberrations of the image pickup optical system according to the eighth embodiment. FIG. 16A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.16 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.16 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 16B is a diagram showing astigmatism and field curvature. The horizontal axis in FIG. 16B indicates the focal position in the optical axis direction (unit: millimeter). The vertical axis | shaft of FIG.16 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 16C is a diagram illustrating distortion. The horizontal axis of FIG.16 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.16 (c) shows image height (a unit is a millimeter).
 表24は、実施例8による撮像光学系のレンズデータを示す表である。表24において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 24 is a table showing lens data of the imaging optical system according to Example 8. In Table 24, the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表25は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 25 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表26は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Table 26 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
実施例9
 図17は、実施例9による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 9
FIG. 17 is a diagram illustrating the configuration of the imaging optical system according to the ninth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図18は、実施例9による撮像光学系の収差を示す図である。図18(a)は、軸上色収差を示す図である。図18(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図18(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図18(b)は、非点収差および像面湾曲を示す図である。図18(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図18(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図18(c)は、歪曲収差を示す図である。図18(c)の横軸は、歪曲収差(ディストーション)を示す。図18(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 18 is a diagram illustrating aberrations of the imaging optical system according to the ninth example. FIG. 18A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.18 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.18 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 18B is a diagram showing astigmatism and field curvature. The horizontal axis of FIG.18 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.18 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 18C is a diagram showing distortion. The horizontal axis of FIG.18 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.18 (c) shows image height (a unit is a millimeter).
 表27は、実施例9による撮像光学系のレンズデータを示す表である。表27において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 27 is a table showing lens data of the imaging optical system according to Example 9. In Table 27, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表28は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 28 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表29は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Table 29 is a table showing coefficients of the optical path difference function of the diffraction grating.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
実施例10
 図19は、実施例10による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 10
FIG. 19 is a diagram illustrating the configuration of the imaging optical system according to the tenth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図20は、実施例10による撮像光学系の収差を示す図である。図20(a)は、軸上色収差を示す図である。図20(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図20(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図20(b)は、非点収差および像面湾曲を示す図である。図20(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図20(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図20(c)は、歪曲収差を示す図である。図20(c)の横軸は、歪曲収差(ディストーション)を示す。図20(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 20 is a diagram illustrating aberrations of the imaging optical system according to the tenth embodiment. FIG. 20A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.20 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis in FIG. 20A indicates the passage position of the light beam in the aperture stop. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 20B is a diagram showing astigmatism and curvature of field. The horizontal axis in FIG. 20B indicates the focal position in the optical axis direction (unit: millimeter). The vertical axis in FIG. 20B indicates the image height (unit: millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG.20 (c) is a figure which shows a distortion aberration. The horizontal axis of FIG.20 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.20 (c) shows image height (a unit is a millimeter).
 表30は、実施例10による撮像光学系のレンズデータを示す表である。表30において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 30 is a table showing lens data of the imaging optical system according to Example 10. In Table 30, the diaphragm surface interval is the position of the second surface when the position of the diaphragm is a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表31は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 31 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表32は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Table 32 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
実施例11
 図21は、実施例11による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 11
FIG. 21 is a diagram illustrating the configuration of the imaging optical system according to the eleventh embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図22は、実施例11による撮像光学系の収差を示す図である。図22(a)は、軸上色収差を示す図である。図22(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図22(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図22(b)は、非点収差および像面湾曲を示す図である。図22(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図22(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図22(c)は、歪曲収差を示す図である。図22(c)の横軸は、歪曲収差(ディストーション)を示す。図22(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 22 shows aberrations of the image pickup optical system according to the eleventh embodiment. FIG. 22A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.22 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.22 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 22B is a diagram showing astigmatism and field curvature. The horizontal axis of FIG.22 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.22 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 22C is a diagram showing distortion. The horizontal axis of FIG.22 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.22 (c) shows image height (a unit is a millimeter).
 表33は、実施例11による撮像光学系のレンズデータを示す表である。表33において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 33 is a table showing lens data of the imaging optical system according to Example 11. In Table 33, the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表34は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 34 is a table showing the coefficients and constants of the expressions representing the aspherical shapes of the second surface to the seventh surface.
 表35は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Table 35 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
実施例12
 図23は、実施例12による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 12
FIG. 23 is a diagram illustrating the configuration of the imaging optical system according to the twelfth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図24は、実施例12による撮像光学系の収差を示す図である。図24(a)は、軸上色収差を示す図である。図24(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図24(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図24(b)は、非点収差および像面湾曲を示す図である。図24(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図24(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図24(c)は、歪曲収差を示す図である。図24(c)の横軸は、歪曲収差(ディストーション)を示す。図24(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 24 is a diagram showing aberrations of the image pickup optical system according to the twelfth embodiment. FIG. 24A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.24 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.24 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 24B is a diagram showing astigmatism and field curvature. The horizontal axis of FIG.24 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.24 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 24C is a diagram showing distortion. The horizontal axis of FIG.24 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.24 (c) shows image height (a unit is a millimeter).
 表36は、実施例12による撮像光学系のレンズデータを示す表である。表36において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 36 is a table showing lens data of the imaging optical system according to Example 12. In Table 36, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表37は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 37 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表38は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Table 38 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
実施例13
 図25は、実施例13による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 13
FIG. 25 is a diagram illustrating the configuration of the imaging optical system according to the thirteenth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図26は、実施例13による撮像光学系の収差を示す図である。図26(a)は、軸上色収差を示す図である。図26(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図26(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図26(b)は、非点収差および像面湾曲を示す図である。図26(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図26(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図26(c)は、歪曲収差を示す図である。図26(c)の横軸は、歪曲収差(ディストーション)を示す。図26(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 26 is a diagram illustrating aberrations of the imaging optical system according to the thirteenth embodiment. FIG. 26A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.26 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.26 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 26B is a diagram showing astigmatism and curvature of field. The horizontal axis of FIG.26 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.26 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 26C is a diagram showing distortion. The horizontal axis of FIG.26 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.26 (c) shows image height (a unit is a millimeter).
 表39は、実施例13による撮像光学系のレンズデータを示す表である。表39において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 39 is a table showing lens data of the imaging optical system according to Example 13. In Table 39, the diaphragm surface interval is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表40は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 40 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表41は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Table 41 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
実施例14
 図27は、実施例14による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 14
FIG. 27 is a diagram illustrating the configuration of the imaging optical system according to the fourteenth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図28は、実施例14による撮像光学系の収差を示す図である。図28(a)は、軸上色収差を示す図である。図28(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図28(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図28(b)は、非点収差および像面湾曲を示す図である。図28(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図28(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図28(c)は、歪曲収差を示す図である。図28(c)の横軸は、歪曲収差(ディストーション)を示す。図28(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 28 is a diagram showing aberrations of the imaging optical system according to Example 14. FIG. 28A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.28 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis | shaft of Fig.28 (a) shows the passage position in the aperture_diaphragm | restriction of a light ray. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 28B is a diagram showing astigmatism and curvature of field. The horizontal axis of FIG.28 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.28 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG. 28 (c) is a diagram showing distortion aberration. The horizontal axis of FIG.28 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.28 (c) shows image height (a unit is a millimeter).
 表42は、実施例14による撮像光学系のレンズデータを示す表である。表42において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 42 is a table showing lens data of the imaging optical system according to Example 14. In Table 42, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表43は、第2面乃至第7面の非球面形状を表す式の係数および定数を示す表である。 Table 43 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the seventh surface.
 表44は、回折格子の光路差関数の係数を示す表である。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Table 44 is a table | surface which shows the coefficient of the optical path difference function of a diffraction grating.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
実施例15
 図29は、実施例15による撮像光学系の構成を示す図である。本実施形態による撮像光学系は、物体側から像側に、第1レンズE1、第2レンズE2及び第3レンズE3を備える。第1レンズE1、第2レンズE2及び第3レンズE3を通過した光は、ガラス板E4を通過して像面ISに至る。
Example 15
FIG. 29 is a diagram illustrating the configuration of the imaging optical system according to the fifteenth embodiment. The imaging optical system according to the present embodiment includes a first lens E1, a second lens E2, and a third lens E3 from the object side to the image side. The light that has passed through the first lens E1, the second lens E2, and the third lens E3 passes through the glass plate E4 and reaches the image plane IS.
 図30は、実施例15による撮像光学系の収差を示す図である。図30(a)は、軸上色収差を示す図である。図30(a)の横軸は、光軸方向の焦点位置(単位はミリメータ)を示す。図30(a)の縦軸は、光線の絞りにおける通過位置を示す。縦軸の0は、光線が絞りの中心を通過することを示し、縦軸の1は、光線が絞りの端を通過することを示す。図30(b)は、非点収差および像面湾曲を示す図である。図30(b)の横軸は、光軸方向の焦点位置を示す(単位はミリメータ)。図30(b)の縦軸は、像高さ(単位はミリメータ)を示す。点線は子午像面の位置を表し、実線は球欠像面の位置を表す。図30(c)は、歪曲収差を示す図である。図30(c)の横軸は、歪曲収差(ディストーション)を示す。図30(c)の縦軸は、像高さ(単位はミリメータ)を示す。 FIG. 30 is a diagram illustrating aberrations of the imaging optical system according to the fifteenth embodiment. FIG. 30A is a diagram showing axial chromatic aberration. The horizontal axis of Fig.30 (a) shows the focus position (a unit is a millimeter) of an optical axis direction. The vertical axis in FIG. 30 (a) indicates the passage position of the light beam. 0 on the vertical axis indicates that the light beam passes through the center of the stop, and 1 on the vertical axis indicates that the light beam passes through the end of the stop. FIG. 30B is a diagram showing astigmatism and curvature of field. The horizontal axis of FIG.30 (b) shows the focus position of an optical axis direction (a unit is a millimeter). The vertical axis | shaft of FIG.30 (b) shows image height (a unit is a millimeter). The dotted line represents the position of the meridian image plane, and the solid line represents the position of the spherical image plane. FIG.30 (c) is a figure which shows a distortion aberration. The horizontal axis of FIG.30 (c) shows a distortion aberration (distortion). The vertical axis | shaft of FIG.30 (c) shows image height (a unit is a millimeter).
 表45は、実施例15による撮像光学系のレンズデータを示す表である。表45において、絞りの面間隔は、絞りの位置を基準とし、像側をプラスとした場合の第2面の位置である。その他の面について、例として、第2面(第1レンズの物体側の面)の面間隔は、第2面と第3面(第2レンズの像側の面)との間隔である。 Table 45 is a table showing lens data of the imaging optical system according to Example 15. In Table 45, the distance between the diaphragm surfaces is the position of the second surface when the position of the diaphragm is used as a reference and the image side is positive. For other surfaces, as an example, the surface interval of the second surface (the object side surface of the first lens) is the interval between the second surface and the third surface (the image side surface of the second lens).
 表46は、第2面乃至第5面及び第7面の非球面形状を表す式の係数および定数を示す表である。 Table 46 is a table showing coefficients and constants of expressions representing the aspherical shapes of the second surface to the fifth surface and the seventh surface.
 表47は、回折格子の光路差関数の係数を示す表である。 Table 47 is a table showing coefficients of the optical path difference function of the diffraction grating.
 表48は、第6面の特殊面形状を表す式の係数および定数を示す表である。撮像光学系の光軸をz軸とし、光軸に垂直な面の座標をx、yとする直交座標系において、特殊面形状は、以下の式で表される2次曲線を、光軸、すなわちz軸の周りに回転させた光軸対称回転面である。ただし、kは2次曲線の形状を定める定数、cは中心曲率、dは面の位置を定める定数である。また、Aijは補正係数である。特殊面は、光軸を含む中心領域とその周囲の帯状領域から構成される。中心領域(j=1)と帯状領域(j≧2)との境界及び複数の帯状領域が存在する場合に隣接する帯状領域の境界は円であり、この円を境界円と呼称する。本例においては、中心領域(j=1)と1個の帯状領域(j=2)が存在する。表48において、j=2の境界円は、中心領域と1個の帯状領域の境界円である。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Table 48 is a table | surface which shows the coefficient and constant of a formula showing the special surface shape of a 6th surface. In an orthogonal coordinate system in which the optical axis of the imaging optical system is the z-axis and the coordinates of the plane perpendicular to the optical axis are x and y, the special surface shape is a quadratic curve represented by the following equation: That is, it is an optical axis symmetric rotation surface rotated about the z axis. Here, k j is a constant that determines the shape of the quadratic curve, c j is the center curvature, and d j is a constant that determines the position of the surface. A ij is a correction coefficient. The special surface is composed of a central region including the optical axis and a belt-like region around it. The boundary between the central region (j = 1) and the belt-like region (j ≧ 2) and the border between adjacent belt-like regions when there are a plurality of belt-like regions are circles, and this circle is called a border circle. In this example, there is a central region (j = 1) and one strip region (j = 2). In Table 48, the boundary circle of j = 2 is a boundary circle between the central region and one strip region.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048

Claims (10)

  1.  物体側から像側に、像側に回折格子が付された正の第1レンズ、像側に凸面を向けたメニスカスレンズである第2レンズ、負のメニスカスレンズである第3レンズから構成され、絞りが第1レンズの像側の面よりも物体側に配置された撮像光学系であって、D12は第1レンズ及び第2レンズ間の光軸上の距離、TTLは第1レンズの物体側の頂点から像面までの距離、φ1は、第1レンズのパワー、φ2は、第2レンズのパワー、φは、第1レンズ、第2レンズ及び第3レンズの合成パワー、Fnoは光学系のエフ・ナンバー、r1は、第1レンズの物体側の面の曲率半径であるとして、
     0.18<D12×φ<0.22    (1)
     1.1<TTL×φ<1.22      (2)
     Fno<3.0         (3)
     0.46<r1×φ<0.49     (4)
     0.8<φ/φ1<1.0       (5)
     |φ2/φ|<0.1       (6)
    を満足する撮像光学系。
    A positive first lens with a diffraction grating attached to the image side from the object side to the image side, a second lens that is a meniscus lens with a convex surface facing the image side, and a third lens that is a negative meniscus lens, An imaging optical system in which the stop is disposed on the object side of the image side surface of the first lens, D12 is the distance on the optical axis between the first lens and the second lens, and TTL is the object side of the first lens The distance from the apex to the image plane, φ1 is the power of the first lens, φ2 is the power of the second lens, φ is the combined power of the first lens, the second lens, and the third lens, and Fno is the optical system The F number, r1, is the radius of curvature of the object side surface of the first lens.
    0.18 <D12 × φ <0.22 (1)
    1.1 <TTL × φ <1.22 (2)
    Fno <3.0 (3)
    0.46 <r1 × φ <0.49 (4)
    0.8 <φ / φ1 <1.0 (5)
    | φ2 / φ | <0.1 (6)
    Imaging optical system that satisfies
  2.  第2レンズは、近軸領域から周辺に向かって像側の面の負のパワーが強くなる、パワー0のメニスカスレンズである請求項1に記載の撮像光学系。 2. The imaging optical system according to claim 1, wherein the second lens is a meniscus lens having a power of 0 in which the negative power of the image side surface increases from the paraxial region toward the periphery.
  3.  第1レンズが近軸領域において、凸平または両凸レンズである請求項1または2に記載の撮像光学系。 The imaging optical system according to claim 1 or 2, wherein the first lens is a convex or biconvex lens in the paraxial region.
  4.  第3レンズの物体側の面は、近軸領域及び周辺領域において正のパワーを有し、該近軸領域と該周辺領域の中間領域で負のパワーを有する請求項1から3のいずれかに記載の撮像光学系。 The object side surface of the third lens has a positive power in the paraxial region and the peripheral region, and has a negative power in an intermediate region between the paraxial region and the peripheral region. The imaging optical system described.
  5.  第3レンズの像側の面は、近軸領域において負のパワーを有し、周辺領域において正のパワーを有する請求項1から4のいずれかに記載の撮像光学系。 5. The imaging optical system according to claim 1, wherein the image side surface of the third lens has a negative power in the paraxial region and a positive power in the peripheral region.
  6.  φ3は、第3レンズのパワーであるとして、
     -3.3<φ/φ3<-2.6     (7)
    を満足する請求項1から5のいずれかに記載の撮像光学系。
    φ3 is the power of the third lens,
    -3.3 <φ / φ3 <-2.6 (7)
    The imaging optical system according to claim 1, wherein:
  7.  vd1は第1レンズの材料のd線(波長587.6nm)でのアッべ数、vd3は第3レンズの材料のd線(波長587.6nm)でのアッべ数、 nd1は第1レンズの材料のd線(波長587.6nm)での屈性率、nd3は第三レンズの材料のd線(波長587.6nm)での屈折率であるとして、
     54<vd1,vd3<58         (8)
     1.5<nd1,nd3<1.54      (9)
    を満足する請求項1から6のいずれかに記載の撮像光学系。
    v d 1 is the Abbe number of the first lens material at the d-line (wavelength 587.6 nm), v d 3 is the Abbe number of the third lens material at the d-line (wavelength 587.6 nm), and n d 1 is It is assumed that the refractive index at the d-line (wavelength 587.6 nm) of the material of the first lens and n d 3 is the refractive index at the d-line (wavelength 587.6 nm) of the material of the third lens.
    54 <v d 1, v d 3 <58 (8)
    1.5 <n d 1, n d 3 <1.54 (9)
    The imaging optical system according to claim 1, wherein:
  8.  nd2は第2レンズの材料のd線(波長587.6nm)での屈折率、r3は第2レンズ物体側の曲率半径、r4は第2レンズの像側の曲率半径、D2は第2レンズの中心厚であるとして、
      (nd2-1)×(1/r3-1/r4)+(nd2-1)2×D2/(nd2×r3×r4)=0   (10)
    を満足する請求項1から7のいずれかに記載の撮像光学系。
    n d 2 is the refractive index of the second lens material at the d-line (wavelength 587.6 nm), r 3 is the radius of curvature on the second lens object side, r 4 is the radius of curvature of the second lens on the image side, and D 2 is the second lens. As the center thickness of
    (n d 2-1) × (1 / r3-1 / r4) + (n d 2-1) 2 × D2 / (n d 2 × r3 × r4) = 0 (10)
    The imaging optical system according to any one of claims 1 to 7, wherein:
  9.  φDOEは第1レンズの回折格子のパワーであるとして、
     0.05<φDOE/φ<0.07   (11)
    を満足する請求項1から8のいずれかに記載の撮像光学系。
    φDOE is the power of the diffraction grating of the first lens.
    0.05 <φDOE / φ <0.07 (11)
    The imaging optical system according to claim 1, wherein:
  10.  0.27<Fno<3.0      (12)
    を満足する請求項1から9のいずれかに記載の撮像光学系。
    0.27 <Fno <3.0 (12)
    The imaging optical system according to any one of claims 1 to 9, wherein:
PCT/JP2011/003607 2010-06-24 2011-06-23 Image pickup optical system WO2011161971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545580A JP4992004B2 (en) 2010-06-24 2011-06-23 Imaging optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35818610P 2010-06-24 2010-06-24
US61/358,186 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011161971A1 true WO2011161971A1 (en) 2011-12-29

Family

ID=45371176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003607 WO2011161971A1 (en) 2010-06-24 2011-06-23 Image pickup optical system

Country Status (2)

Country Link
JP (1) JP4992004B2 (en)
WO (1) WO2011161971A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017434A1 (en) * 2014-07-28 2016-02-04 コニカミノルタ株式会社 Projection optical system and projection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090347B (en) * 2014-07-01 2017-03-22 北京天诚盛业科技有限公司 Iris imaging lens and optical imaging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086485A (en) * 2005-09-22 2007-04-05 Fujinon Corp Imaging lens
JP2007127960A (en) * 2005-11-07 2007-05-24 Konica Minolta Opto Inc Imaging optical system, imaging lens device and digital equipment
JP2007264181A (en) * 2006-03-28 2007-10-11 Fujinon Corp Imaging lens
JP2008065305A (en) * 2006-09-07 2008-03-21 Largan Precision Co Ltd Photographing optical lens set
JP2008276200A (en) * 2007-03-30 2008-11-13 Fujinon Corp Imaging lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086485A (en) * 2005-09-22 2007-04-05 Fujinon Corp Imaging lens
JP2007127960A (en) * 2005-11-07 2007-05-24 Konica Minolta Opto Inc Imaging optical system, imaging lens device and digital equipment
JP2007264181A (en) * 2006-03-28 2007-10-11 Fujinon Corp Imaging lens
JP2008065305A (en) * 2006-09-07 2008-03-21 Largan Precision Co Ltd Photographing optical lens set
JP2008276200A (en) * 2007-03-30 2008-11-13 Fujinon Corp Imaging lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017434A1 (en) * 2014-07-28 2016-02-04 コニカミノルタ株式会社 Projection optical system and projection device

Also Published As

Publication number Publication date
JP4992004B2 (en) 2012-08-08
JPWO2011161971A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
CN108279471B (en) Optical imaging system
CN113640971B (en) Image pickup lens
JP6699949B2 (en) Imaging lens
CN109581624B (en) Wide-angle lens
CN108139569B (en) Wide-angle lens
US11175479B2 (en) Optical lens
CN108267837B (en) Optical imaging system
CN108303781B (en) Camera lens
JP2014145961A (en) Imaging lens
KR20130016223A (en) Optical unit and imaging apparatus
JP7396788B2 (en) imaging lens
JP2014134741A (en) Imaging lens
CN108020906B (en) Optical imaging system
TW201310057A (en) Optical lens assembly for image pickup
CN107589521B (en) Optical imaging system
CN107305279B (en) Optical imaging system
CN113640947B (en) Camera lens
JP7409859B2 (en) imaging lens
US11435553B2 (en) Optical imaging lens
JP4822033B2 (en) Imaging lens system
JP4992004B2 (en) Imaging optical system
CN112799217B (en) Optical imaging lens
CN112305709B (en) Optical lens
WO2020162094A1 (en) Wide-angle lens
CN110174744B (en) Wide-angle lens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011545580

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797859

Country of ref document: EP

Kind code of ref document: A1