WO2011161533A1 - Wiring duct, wiring duct system, and electric device connected to the wiring duct - Google Patents

Wiring duct, wiring duct system, and electric device connected to the wiring duct Download PDF

Info

Publication number
WO2011161533A1
WO2011161533A1 PCT/IB2011/001464 IB2011001464W WO2011161533A1 WO 2011161533 A1 WO2011161533 A1 WO 2011161533A1 IB 2011001464 W IB2011001464 W IB 2011001464W WO 2011161533 A1 WO2011161533 A1 WO 2011161533A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
wiring duct
communication
core
duct
Prior art date
Application number
PCT/IB2011/001464
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 紳一郎
基樹 吉田
智彦 森田
小林 浩治
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010143819A external-priority patent/JP2012010482A/en
Priority claimed from JP2010143822A external-priority patent/JP5807184B2/en
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to CN2011800284559A priority Critical patent/CN103038964A/en
Publication of WO2011161533A1 publication Critical patent/WO2011161533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/08Distribution boxes; Connection or junction boxes
    • H02G3/10Distribution boxes; Connection or junction boxes for surface mounting on a wall
    • H02G3/105Distribution boxes; Connection or junction boxes for surface mounting on a wall in association with a plinth, channel, raceway or similar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/14Rails or bus-bars constructed so that the counterparts can be connected thereto at any point along their length

Definitions

  • the present invention relates to a wiring duct that is installed along a wall surface or a ceiling surface and to which a wiring device is attached from a desired position, and a wiring duct system including the wiring duct. Moreover, it is related with the electric equipment connected with the wiring duct.
  • the wiring duct used for the wiring duct has a substantially rectangular tube-like appearance having a communication hole 117 opened along the longitudinal direction at the bottom 115 which is one side surface.
  • the opposite side surface of the bottom portion 115 is a fixed portion 114 fixed to a ceiling or the like, and the portion connecting the fixed portion 114 and the bottom portion 115 is a connecting portion 116.
  • a flange 118A is extended from the outside to the inside in the short side direction, and the inner end of the flange 118A has a length for supplying commercial power.
  • a length of power supply wiring 113A is arranged along the longitudinal direction. Therefore, when an apparatus is electrically connected to the wiring duct, an electrical contact of the connected apparatus is inserted into the duct body through the communication hole 117 and connected to the power supply wiring 113A.
  • long communication wires 113B for feeding communication signals are arranged along the longitudinal direction.
  • the communication contact of the connected device is inserted into the duct body through the communication hole 117 and connected to the communication wire 113B.
  • the electrical equipment and communication equipment connected to the wiring duct are connected via a power outlet plug 130 as shown in FIG. 14, for example.
  • a cylindrical rotating body 126 inserted into the inside of the wiring duct through the communication hole 117 of the wiring duct is rotatably provided.
  • a power outlet 121 for power supply and a communication outlet 123 (for example, a LAN cable outlet) are provided on a surface opposite to the surface on which the rotating body 126 is provided, and a knob 127 for rotating the rotating body 126.
  • the peripheral surface of the rotating body 126 communicates with a pair of power supply blades 128 as electrical contacts at symmetrical positions with the central portion of the rotating body 126 interposed therebetween, and with symmetrical positions with the central portion of the rotating body 126 interposed therebetween.
  • a pair of communication plug blades 129 which are contact points for wires and a locking blade 122 for locking the power outlet plug 130 to the wiring duct are projected.
  • the power plug blade 128, the communication plug blade 129, and the locking blade 122 are arranged in a direction substantially parallel to the longitudinal direction of the wiring duct, and the short direction of the wiring duct is substantially the same. It is possible to select the state of being aligned in parallel directions.
  • the rotating body 126 When attaching the power outlet plug 130, first, the rotating body 126 is set such that the long sides of the power plug blade 128, the communication plug blade 129, and the locking blade 122 are substantially parallel to the longitudinal direction of the wiring duct. Is inserted into the wiring duct. In this case, since the lengths of the short sides of the power plug blade 128, the communication plug blade 129, and the locking blade 122 are smaller than the width of the communication hole 117 of the wiring duct, they can be inserted up to the locking blade 122. The rotating body 126 is rotated 90 degrees in the direction of the arrow using the knob 127 with the locking blades 122 inserted inside the receiving portions on both sides of the communication hole 117 of the wiring duct. As a result, as shown in FIG.
  • the power outlet plug 130 is supported on the bottom 115 of the wiring duct by the locking blade 122, and the power plug blade 128 and the communication plug blade 129 are respectively connected to the power supply wiring 113A. And it contacts with the wiring 113B for communication, and is electrically connected.
  • the electrical equipment connected to the wiring duct is supplied with power when connected via the power outlet 121, and the communication equipment is supplied with communication signals when connected via the communication outlet 123. Accordingly, a personal computer or the like which is a communicable electric device can receive both power and a communication signal from one place, so that it can be made a clean wiring.
  • Patent Document 1 discloses a wiring duct provided with two electrode pairs constituted by two conductors for power supply and one electrode pair constituted by two conductors (signal conductors) for signal transmission. Is disclosed. Furthermore, since the wiring duct is installed with the ceiling surface or wall surface as the installation surface, it is desirable that the wiring duct is excellent in aesthetics. In order to improve the aesthetic appearance, it is effective to reduce the size of the wiring duct.
  • the communication duct and the power supply wiring are arranged in the wiring duct in the above wiring duct, noise caused by the induction magnetic field generated from the power supply wiring is generated in the communication wiring, and communication There is a concern that the quality will deteriorate.
  • one electrode pair is configured as a signal transmission conductor as described above, it is necessary to suppress the occurrence of electrical interference between the conductors.
  • the present invention has been made in view of such circumstances, and is a wiring duct having a power supply wiring and a communication wiring, and noise caused by an induced magnetic field generated from the power supply wiring is generated in the communication wiring. It is an object of the present invention to provide an improved wiring duct that can suppress this.
  • Another object of the present invention is to provide a wiring duct and a wiring duct system that can be reduced in size and can suppress electromagnetic interference in a plurality of electrode pairs. Furthermore, the objective of this invention is providing the electrical equipment for the wiring duct which can be reduced in size in the direction parallel to an installation surface, and the wiring duct.
  • the wiring duct according to the present invention is a wiring duct in which a power supply wiring and a communication wiring are arranged, and can supply power to an electrical device at an arbitrary position on the wiring system of the power supply wiring. In addition, an interval for suppressing inductive noise caused by the power supply wiring from being generated in the communication wiring is provided between the power supply wiring and the communication wiring. To do.
  • the interval for suppressing inductive noise caused by the power supply wiring from being generated in the communication wiring is provided between the power supply wiring and the communication wiring, Generation of noise in the communication wiring due to the induction magnetic field generated from the wiring can be suppressed.
  • the interval for suppressing the generation of inductive noise in the communication wiring can be determined purposefully. For example, if the power wiring is a 100-volt AC wiring that is normally used, a near-end attenuation equivalent to the average crosstalk attenuation of the many-to-subscriber line can be secured by setting the interval to 5 cm or more.
  • a blocking wall having an effect of blocking electromagnetic waves is further provided between the power supply wiring and the communication wiring.
  • the shielding wall having an effect of shielding electromagnetic waves is further provided between the power supply wiring and the communication wiring, the above-mentioned distance is set as compared with the case where the shielding wall is not provided. Even if it is made smaller, it is possible to equally suppress the generation of noise in the communication wiring. Therefore, the size of the entire wiring duct can be reduced, which contributes to space saving and cost reduction.
  • it is preferable that a plurality of the communication wirings are arranged, and the plurality of communication wirings are twisted together.
  • the wiring duct according to the present invention it is preferable that at least one of the power supply wiring and the communication wiring is surrounded by an electromagnetic wave blocking member having an effect of blocking electromagnetic waves.
  • the electromagnetic wave shielding member having an effect of blocking electromagnetic waves since at least one of the power supply wiring and the communication wiring is surrounded by the electromagnetic wave shielding member having an effect of blocking electromagnetic waves, inductive noise caused by the power supply wiring is generated in the communication wiring. This can be further suppressed. Therefore, it is possible to further reduce the interval in order to obtain an equivalent suppression effect.
  • the electromagnetic wave shielding member is preferably grounded. Since the electromagnetic shielding member is grounded, the effect of shielding the induced magnetic field is further increased, so that it is possible to further suppress the occurrence of induction noise caused by the power supply wiring in the communication wiring. Therefore, in order to obtain the same suppression effect, the interval can be further reduced.
  • a wiring duct according to a first invention includes a core made of a metal material and a plurality of electrode pairs provided inside the core, and each of the electrode pairs is constituted by two conductors.
  • the blocking wall is formed integrally with the core.
  • the blocking wall may be joined to the core, and the blocking wall may be integrally formed with the core.
  • the core is divided by the blocking wall and has a plurality of internal spaces in which the electrode pairs are provided, and the core is provided with a plurality of openings that open the internal space.
  • the plurality of openings are opened in different directions.
  • the plurality of openings are opened in different directions by forming the core so that the cross-sectional shape is line-symmetric in the predetermined direction.
  • the core is preferably made of a nonmagnetic metal material.
  • the core and the blocking wall are made of a nonmagnetic metal material.
  • the capacitances of the two conductors constituting one electrode pair are equal to each other.
  • a wiring duct comprises a core made of a metal material and a plurality of electrode pairs provided inside the core, and each of the electrode pairs is constituted by two conductors.
  • a plurality of the electrode pairs provided at intervals in a predetermined direction, and the two conductors constituting one electrode pair are spaced from each other in a direction perpendicular to the predetermined direction.
  • the capacitances of the two conductors provided and constituting one electrode pair are equal to each other.
  • the core is provided with an opening that opens an internal space in which the electrode pair is provided, and the core bisects the opening in a cross section perpendicular to the longitudinal direction of the core.
  • the wiring duct system of the present invention is a wiring duct system comprising a plurality of the above wiring ducts, wherein a signal transmission path is formed by connecting the electrode pairs included in each of the wiring ducts to each other, wherein the signal transmission path Has a structure for reversing the direction of magnetic flux generated when a current flows through the electrode pair forming the signal transmission path.
  • the wiring duct system preferably includes a wiring duct connecting member that connects the plurality of wiring ducts to each other, and the direction of the magnetic flux is reversed by the wiring duct connecting member.
  • the wiring duct of the present invention includes a plurality of conductors including at least a power conductor and a housing having the conductors therein, and an installation surface that is one of the outer peripheral surfaces of the housing is installed on the installation surface.
  • a wiring duct capable of supplying electric power to an electrical device at an arbitrary position on the power lead system, all of the plurality of lead wires are arranged in a direction perpendicular to the installation surface.
  • at least one of the plurality of conductors includes a communication conductor.
  • a shielding wall having an effect of shielding electromagnetic waves is further provided between the power conducting wire and the communication conducting wire.
  • the electrical device of the present invention is an electrical device that includes a contact point connected to the connected surface of the conductor and is connected to the wiring duct of the present invention, wherein the contact point is parallel to the installation surface with respect to the electrical device body.
  • the contact point is connected to the connected surface by linearly moving in any direction.
  • a wiring duct including a power supply wiring and a communication wiring, and noise generated due to an induction magnetic field generated from the power supply wiring is suppressed from being generated in the communication wiring.
  • a wiring duct that can be provided can be provided.
  • the wiring duct can be reduced in size, and electromagnetic interference in a plurality of electrode pairs can be suppressed.
  • the electrical equipment for the wiring duct which can be reduced in size in the direction parallel to an installation surface, and the said wiring duct can be provided.
  • (a) is sectional drawing
  • (b) is a side view
  • (c) is a bottom view
  • (d) is a perspective view.
  • About the connection plug used for the wiring duct of the embodiment (a) a perspective view from the non-conductive wire side
  • (b) is a perspective view from the conductive wire side.
  • About the connection plug used for the wiring duct of the embodiment (a) is an exploded perspective view
  • (b) and (c) are sectional views. Sectional drawing which shows the state connected to the wiring duct about the connection plug used for the wiring duct of the embodiment. Sectional drawing of a wiring duct about the wiring duct of 10th Embodiment of this invention. Sectional drawing of a wiring duct about the wiring duct of other embodiment of this invention.
  • the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface.
  • the opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and a portion that connects the fixed portion 14 and the bottom portion 15 is a connecting portion 16.
  • a flange 18A is extended from one side of the inner peripheral surface of the connecting portion 16 from the outside to the inside in the short direction, and commercial power is supplied to the inner end of the flange 18A.
  • a long power supply wiring 13A is arranged along the longitudinal direction. Therefore, when an apparatus is electrically connected to the wiring duct, an electrical contact of the connected apparatus is inserted into the duct body through the communication hole 17 and connected to the power supply wiring 13A.
  • a flange 18B extends from the other side of the inner peripheral surface of the connecting portion 16 from the outside to the inside in the short direction, and a communication is provided at the inner end of the flange 18B.
  • a long communication wire 13B for supplying a signal is arranged along the longitudinal direction.
  • the communication contact of the connected device is inserted into the duct body through the communication hole 17 and connected to the communication wire 13B.
  • the shortest distance between the power supply wiring 13A and the communication wiring 13B is 6 cm.
  • a feature is that a gap d of 6 cm is provided between the power supply wiring 13A and the communication wiring 13B.
  • the size of the distance d is preferably 5 cm or more, and more preferably 10 cm or more.
  • the interval d for suppressing the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B is equal to the distance d between the power supply wiring 13A and the communication wiring 13B. Since it is provided in between, it is possible to suppress the occurrence of noise in the communication wiring 13B due to the induced magnetic field generated from the power supply wiring 13A.
  • the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface.
  • the opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and a portion that connects the fixed portion 14 and the bottom portion 15 is a connecting portion 16.
  • a blocking wall 19 extends from the center of the inner peripheral surface of the fixed portion 14 toward the bottom side from the fixed portion side.
  • the blocking wall 19 is formed by covering a metallic core material 21 with a resin, and has an effect of blocking electromagnetic waves. Although not shown in particular, since the blocking wall 19 is grounded, the effect of shielding the induced magnetic field is further increased. Therefore, the induction noise caused by the power supply wiring 13A can be further suppressed from occurring in the communication wiring 13B.
  • a flange 18 ⁇ / b> A extends from one surface across the blocking wall 19 on the inner peripheral surface of the fixed portion 14 from the fixed portion side toward the bottom side.
  • a long power supply wiring 13A for supplying commercial power is disposed along the longitudinal direction at the inner end of the flange 18A.
  • a flange 18B extends from the other side of the inner wall surface of the fixed portion 14 across the blocking wall 19 from the fixed portion side toward the bottom side.
  • a long communication wire 13B for supplying a communication signal is disposed along the longitudinal direction at the inner end of the flange 18B. Accordingly, when a communication device is connected to the wiring duct, the communication contact of the connected device is inserted into the duct body through the communication hole 17 and connected to the communication wire 13B.
  • the shortest distance between the power supply wiring 13A and the communication wiring 13B is 4 cm.
  • a gap d of 4 cm is provided between the power supply wiring 13A and the communication wiring 13B.
  • the size of the interval d can be arbitrarily determined as long as induction noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B. Therefore, it is appropriately determined depending on the magnitude of the voltage applied to the power supply wiring 13A and the quality required for the communication wiring 13B.
  • the average crosstalk attenuation of the many-to-subscriber line can be reduced.
  • An equivalent near-end attenuation of 52 dB or more can be secured at an equivalent signal frequency of 1 MHz.
  • the same effect as in the first embodiment is obtained even if the distance d is less than 5 cm. . Therefore, the size of the entire wiring duct can be reduced. According to the wiring duct of the said embodiment, in addition to the effect of (1) in 1st Embodiment, the following effects can be acquired.
  • the shielding wall having the effect of shielding electromagnetic waves is further provided between the power supply wiring 13A and the communication wiring 13B, the shielding wall 19 is not provided. Even if the interval is made smaller than this, it is possible to equally suppress the occurrence of noise in the communication wiring. Therefore, the size of the entire wiring duct can be reduced, which contributes to space saving and cost reduction.
  • the blocking wall 19 is grounded, the effect of shielding the induced magnetic field is further increased. Therefore, the induction noise caused by the power supply wiring can be further suppressed from occurring in the communication wiring. Therefore, in order to obtain the same suppression effect, the interval can be further reduced.
  • the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface.
  • the opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and a portion that connects the fixed portion 14 and the bottom portion 15 is a connecting portion 16.
  • a blocking wall 19 extends from the center of the inner peripheral surface of the fixed portion 14 toward the bottom side from the fixed portion side.
  • the bottom portion 15, the fixed portion 14, the connecting portion 16, and the blocking wall 19 are formed by covering the metallic core material 21 with resin, and have an effect of blocking electromagnetic waves.
  • a flange 18A extends from the inner peripheral surface of one connecting portion 16 across the blocking wall 19 on the inner peripheral surface of the bottom portion 15 from the outside to the inside in the short direction.
  • a long power supply wiring 13A for supplying commercial power is disposed along the longitudinal direction. Therefore, except for the communication hole 17, the power supply wiring 13 ⁇ / b> A is surrounded by a blocking member including the bottom 15, the fixed portion 14, the connecting portion 16, and the blocking wall 19 having an effect of blocking electromagnetic waves.
  • an electrical contact of the apparatus to be connected is inserted into the duct body through the communication hole 17 and connected to the power supply wiring 13A.
  • a flange 18B extends from the inner peripheral surface of the other connecting portion 16 across the blocking wall 19 on the inner peripheral surface of the bottom portion 15 from the outside to the inside in the short direction.
  • a long communication wire 13B for feeding a communication signal is arranged along the longitudinal direction at the end of the other side. Therefore, except for the communication hole 17, the communication wiring 13 ⁇ / b> B is surrounded by a blocking member including the bottom 15, the fixed portion 14, the connecting portion 16, and the blocking wall 19 having an effect of blocking electromagnetic waves.
  • the blocking member is grounded, the effect of shielding the induced magnetic field is further increased. Therefore, the induction noise caused by the power supply wiring 13A can be further suppressed from occurring in the communication wiring 13B.
  • the communication contact of the connected device is inserted into the duct body through the communication hole 17 and connected to the communication wire 13B.
  • the shortest distance between the power supply wiring 13A and the communication wiring 13B is 4 cm. In other words, a gap d of 4 cm is provided between the power supply wiring 13A and the communication wiring 13B. By providing this distance d, it is possible to suppress the occurrence of inductive noise caused by the power supply wiring 13A in the communication wiring 13B.
  • the size of the interval d can be arbitrarily determined as long as induction noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B. Therefore, it is appropriately determined depending on the magnitude of the voltage applied to the power supply wiring 13A and the quality required for the communication wiring 13B.
  • the distance d is set to 5 cm or more, which is equivalent to the average crosstalk attenuation of the many-to-subscriber line. A near-end attenuation of 52 dB or more can be secured on average at a signal frequency of 1 MHz.
  • the power supply wiring 13A and the communication wiring 13B are surrounded by a blocking member having an effect of blocking electromagnetic waves, even if the distance d is less than 5 cm, the first The same effects as those of the embodiment are obtained. Therefore, the size of the entire wiring duct can be reduced. According to the wiring duct of the above embodiment, the following effects can be obtained instead of the effects (2) and (3) in the second embodiment.
  • the wiring duct since both the power supply wiring 13A and the communication wiring 13B are surrounded by the electromagnetic wave shielding member having an effect of blocking electromagnetic waves, the induction caused by the power supply wiring 13A Generation of noise in the communication wiring 13B can be further suppressed. Therefore, it is possible to further reduce the interval in order to obtain an equivalent suppression effect.
  • the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface.
  • the opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and the portion that connects the fixed portion 14 and the bottom portion 15 at the end is a connecting portion 16.
  • a flange 18 ⁇ / b> A extends from the outside toward the inside in the short direction, and a long length for supplying commercial power to the inner end of the flange 18 ⁇ / b> A.
  • the power supply wiring 13A is disposed along the longitudinal direction. Therefore, when an apparatus is electrically connected to the wiring duct, an electrical contact of the connected apparatus is inserted into the duct body through the communication hole 17 and connected to the power supply wiring 13A.
  • a flange 18B extends from the center portion of the inner peripheral surface of the fixed portion 14 from the fixed portion side toward the bottom portion side, and a length for supplying a communication signal to the end portion on the bottom portion side of the flange 18B.
  • Two long communication wires 13B are arranged along the longitudinal direction. As shown in FIGS. 4A and 4B, the two communication wires 13B are twisted together. For this reason, it is possible to suppress noise generated from the communication wiring 13B. Therefore, noise can be further suppressed from occurring in the communication wiring.
  • the shortest distance between the power supply wiring 13A and the communication wiring 13B is 5 cm. In other words, a gap d of 5 cm is provided between the power supply wiring 13A and the communication wiring 13B.
  • the size of the interval d can be arbitrarily determined as long as induction noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B. Therefore, it is appropriately determined depending on the magnitude of the voltage applied to the power supply wiring 13A and the quality required for the communication wiring 13B.
  • the signal frequency is 1 MHz which is equivalent to the average crosstalk attenuation of the many-to-subscriber line. A near-end attenuation amount of 52 dB or more on average can be secured.
  • noise generated by the communication wiring 13B itself can be reduced, and generation of induced noise in the communication wiring 13B can be further suppressed.
  • the wiring duct of the said embodiment in addition to the effect of (1) in 1st Embodiment, the following effects can be acquired.
  • the wiring duct since the plurality of communication wires 13B are twisted together, it is possible to suppress noise generated from the communication wires 13B. Therefore, the generation of noise in the communication wiring 13B can be further suppressed.
  • the positional relationship among the flange 18A, the flange 18B, the power supply wiring 13A, and the communication wiring 13B is not limited to the arrangement shown in FIG. In short, it is only necessary to provide an interval d between the power supply wiring 13A and the communication wiring 13B for suppressing the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B. Other arrangements may be used depending on the application. For example, the positional relationship shown in FIGS. 5 to 8 may be used. Similarly, in the second embodiment, the positional relationship between the flange 18A, the flange 18B, the power supply wiring 13A, and the communication wiring 13B is not limited to the arrangement shown in FIG.
  • an interval d is provided between the power supply wiring 13A and the communication wiring 13B to suppress the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B.
  • the blocking wall 19 is provided between the power supply wiring 13A and the communication wiring 13B, and other arrangements may be used depending on the application.
  • the positional relationship shown in FIGS. 9 and 10 may be used.
  • the positional relationship between the flange 18A, the flange 18B, the power supply wiring 13A, and the communication wiring 13B is not limited to the arrangement shown in FIG.
  • an interval d is provided between the power supply wiring 13A and the communication wiring 13B to suppress the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B.
  • the power supply wiring 13A or the communication wiring 13B is surrounded by the electromagnetic wave shielding member, and other arrangements may be employed depending on the application.
  • the communication wiring 13B is completely surrounded by the electromagnetic wave shielding member. good. In this case, it is possible to further suppress the occurrence of inductive noise caused by the power supply wiring 13A in the communication wiring 13B.
  • the shielding wall 19 and the electromagnetic wave shielding member are earth
  • the configurations in the first to fourth embodiments may be used in combination.
  • the blocking wall 19 may be provided and the two communication wires 13B may be twisted together, or the two communication wires 13B may be twisted together and the communication The wiring 13 ⁇ / b> B may be surrounded by an electromagnetic wave shielding member.
  • FIG. 16 A fifth embodiment of a wiring duct embodying the present invention will be described with reference to FIGS. 16 and 17. Further, since the basic structure and method of use of the wiring duct are the same as those of the prior art and the first to fourth embodiments, the description thereof will be omitted and only the characteristic part will be described in detail. As shown in FIG. 16
  • the wiring duct 201 laid on an installation surface such as a ceiling or a wall indoors such as a factory or a store extends in a predetermined linear direction (hereinafter referred to as “longitudinal direction L”). It is a molded body.
  • the wiring duct 201 is a linear molded body having a dimension in the longitudinal direction L of, for example, 1 to 3 m.
  • the wiring duct 201 includes a core 210 made of a metal material, an insulator 220 made of an insulating material provided on the core 210, and a plurality of electrode pairs 230 supported by the insulator 220. , 240.
  • the core 210, the insulator 220, and the electrode pairs 230 and 240 extend along the longitudinal direction L. That is, the longitudinal direction of the core 210 and the longitudinal direction of the electrode pairs 230 and 240 are the longitudinal direction L of the wiring duct 201.
  • the wiring duct 201 has an internal space in which the electrode pairs 230 and 240 are accommodated, and an opening 201a that is continuous with the internal space.
  • the opening 201a that opens in a predetermined direction is provided extending in the longitudinal direction L. Accordingly, by connecting a wiring duct plug (not shown) to the electrode pair 230, 240 through such an opening 201a, an electric device or a communication device connected to the electrode pair 230, 240 via the wiring duct plug.
  • the core 210 that is the core material of the wiring duct 201 has a base portion 211 that is provided facing the installation surface on which the wiring duct 201 is installed.
  • the flat base portion 211 extending in the left-right direction in the cross section perpendicular to the longitudinal direction L extends along the longitudinal direction L.
  • the base portion 211 is provided with a through hole (not shown), and the base portion 211 is fixed to the ceiling by tightening the base portion 211 against the ceiling as the installation surface using a screw inserted through the through hole.
  • the wiring duct 201 is laid on the ceiling which is the installation surface.
  • “upper” means a direction toward the ceiling when the base portion 211 faces the ceiling.
  • the up and down direction including the upper side and the lower side is a direction orthogonal to the longitudinal direction L that is the direction in which the wiring duct 201 extends.
  • the direction orthogonal to the longitudinal direction L and the up-down direction is a left-right direction, and the left side and the right side are directions indicated by arrows in the figure.
  • the core 210 having a substantially rectangular outer shape in a cross section perpendicular to the longitudinal direction L is formed so that the right side wall part 212 provided on the right side, the left side wall part 213 provided on the left side, and the base part 211 provided on the upper side face the lower side.
  • the right side wall 212 connected to the right end of the base 211 extends in the longitudinal direction L and extends downward from the base 211 in the opposite direction.
  • the left side wall portion 213 connected to the left end portion of the base portion 211 extends downward along the longitudinal direction L from the base portion 211. Therefore, the right side wall portion 212 and the left side wall portion 213 face each other in the left-right direction orthogonal to the longitudinal direction L, and are provided in parallel along the longitudinal direction L.
  • the opposing wall 214 connected to the lower end of the right wall 212 and the lower end of the left wall 213 extends along the longitudinal direction L.
  • the opposing wall portion 214 connected to the lower end portion of the right wall portion 212 extends from the right wall portion 212 toward the left.
  • the opposing wall portion 214 connected to the lower end portion of the left side wall portion 213 extends from the left side wall portion 213 toward the right. Therefore, when the base 211 is provided on the ceiling, the base 211 and the opposing wall 214 are opposed to each other in the vertical direction orthogonal to the longitudinal direction L and are provided in parallel along the longitudinal direction L.
  • the core 210 configured as described above has an internal space in which the electrode pairs 230 and 240 are provided.
  • the core 210 is provided with an opening 201a that opens an internal space.
  • An opening 201 a included in the core 210 of the wiring duct 201 is provided in the facing wall 214.
  • the core 210 in which the base portion 211, the right side wall portion 212, the left side wall portion 213, and the opposing wall portion 214 are integrally formed is made of aluminum which is a nonmagnetic metal material.
  • the core 210 shown in FIG. 16 can be formed by casting, for example.
  • a blocking wall 260 extending downward from the base 211 is connected to the central portion of the base 211 in the left-right direction.
  • the blocking wall 260 extending in the up-down direction perpendicular to the left-right direction is made of a metal material, and is provided between the plurality of electrode pairs 230, 240 provided at intervals in the left-right direction.
  • the blocking wall 260 formed integrally with the base portion 211 of the core 210 is made of aluminum which is the same material as the core 210.
  • the insulator 220 provided in the core 210 is provided so as to cover the surface of the core 210 so that the electrode pairs 230 and 240 and the core 210 are not connected.
  • the insulator 220 supports the electrode pairs 230 and 240 inside the core 210. Therefore, the core 210 is insulated from the electrode pairs 230 and 240 and functions as an electromagnetic shield.
  • the insulator 220 may not be provided on the entire surface of the core 210.
  • the plurality of electrode pairs 230 and 240 provided in the core 210 are provided at intervals in the left-right direction which is a direction perpendicular to the longitudinal direction L.
  • the electrode pair 230 is provided so as to be located on the right side of the electrode pair 240, and the electrode pair 240 is provided so as to be located on the left side of the electrode pair 230.
  • One electrode pair 230 includes two conductors 231 and 232 supported by an insulator 220 provided on the right side wall 212 of the core 210.
  • the conductors 231 and 232 extending in the longitudinal direction L are provided at an interval in the longitudinal direction L and the vertical direction orthogonal to the horizontal direction.
  • the conductor 231 is provided so as to be positioned above the conductor 232, and the conductor 232 is provided so as to be positioned below the conductor 231.
  • One electrode pair 240 includes two conductors 241 and 242 supported by an insulator 220 provided on the left side wall 213 of the core 210.
  • the conductors 241 and 242 are also provided at intervals in the up and down direction, which is a direction perpendicular to the right and left direction. That is, the conductor 241 is provided so as to be positioned above the conductor 242, and the conductor 242 is provided so as to be positioned below the conductor 241.
  • each of the electrode pairs 230 and 240 is constituted by two conductors, and the conductors 231, 232, 241, and 242 included in the electrode pairs 230 and 240 are exposed in the wiring duct 201.
  • the conductors 231 and 232 are provided so that the left surface thereof is exposed, and the conductors 241 and 242 are provided so that the right surface thereof is exposed.
  • the capacitance of the conductor 241 constituting the electrode pair 240 and the capacitance of the conductor 242 constituting the electrode pair 240 are configured to be the same. That is, the capacitances of the conductors 241 and 242 constituting one electrode pair 240 are equal to each other.
  • the capacitance of the conductor 241 includes the distance from the conductor 241 to the core 210 and the conductor 242 which are the conductors facing the conductor 241, the area of the portion where the conductor 241 and the core 210 and the conductor 242 face each other, and the conductor 241, the core 210 and the conductor 241. 242 depends on the dielectric constant of the insulator 220 provided between them. Similarly, the capacitance of the conductor 242 includes the distance from the conductor 242 to the core 210 and the conductor 241 that are conductors facing the conductor 242, the area of the portion where the conductor 242 faces the core 210 and the conductor 241, and the conductor 242 and core 241.
  • the capacitances of the conductors 241 and 242 are equal to each other by adjusting the shapes and arrangement of the core 210, the insulator 220, and the conductors 241 and 242.
  • the capacitance of the conductor 241 can be calculated based on the structure within a predetermined range A1 from the center of the conductor 241 in a cross section perpendicular to the longitudinal direction L as shown in FIG.
  • the capacitance of the conductor 242 to be compared with the capacitance of the conductor 241 can also be calculated based on the structure within the predetermined range A2 from the center of the conductor 242 in the cross section perpendicular to the longitudinal direction L. it can. As described above, even in the wiring duct 201 that does not have a structure such as a twisted pair cable, the balance of the conductors 241 and 242 can be increased.
  • the core 210 is formed so that the cross-sectional shape is line-symmetric in the left-right direction, and the electrode pair 230 is provided at a position that is line-symmetric with the electrode pair 240 about the center line of the core 210 in the left-right direction.
  • the capacitances of the conductors 231 and 232 constituting the electrode pair 230 are also equal to each other. According to the present embodiment, when the electrode pair 240 is used as a signal transmission path to be balanced and the electrode pair 230 is used as a power transmission path, the following effects can be obtained. (1) A plurality of electrode pairs 230, 240 are provided at intervals in the left-right direction, which is a predetermined direction, and the two conductors 231, 232 constituting the electrode pair 230 are arranged in the vertical direction, which is a direction perpendicular to the left-right direction. Provided at intervals.
  • the wiring duct 201 can be reduced in size.
  • the conductor 241 and 242 constituting the electrode pair 240 are also provided with an interval in the vertical direction, the conductor 241 and 242 of the wiring duct 201 are compared with the case where the conductors 241 and 242 are provided with an interval in the left and right direction. Miniaturization can be achieved.
  • a blocking wall 260 made of a metal material is provided between the electrode pairs 230 and 240 in the vertical direction.
  • the shielding wall 260 can reduce electromagnetic coupling between the plurality of electrode pairs 230 and 240 and suppress electromagnetic interference in the plurality of electrode pairs 230 and 240.
  • a blocking wall 260 is formed integrally with the core 210. Therefore, the electromagnetic interference in the plurality of electrode pairs 230 and 240 is suppressed as compared with the case where the core 210 and the blocking wall 260 are separated from each other without providing a gap between the core 210 and the blocking wall 260. can do.
  • the core 210 is made of aluminum which is a non-magnetic (non-ferromagnetic) metal material.
  • the electromagnetic wave to the exterior of the wiring duct 201 can be interrupted
  • the core 210 and the blocking wall 260 are made of aluminum which is a non-magnetic metal material. For this reason, compared with the case where the core 210 and the shielding wall 260 are made of iron that is a ferromagnetic material, for example, electromagnetic interference in the plurality of electrode pairs 230 and 240 can be suppressed.
  • the wiring duct 201 has two openings 201b and 201c that are continuous with the internal space. Openings 201b and 201c that open in a predetermined direction are provided extending in the longitudinal direction L.
  • the core 210 according to the present embodiment has an internal space S1 in which the electrode pair 230 is provided and an internal space S2 in which the electrode pair 240 is provided. Thus, the plurality of internal spaces S1 and S2 in which the electrode pairs 230 and 240 are provided are separated by the blocking wall 260.
  • the blocking wall 260 is connected to the center of the opposing wall 214 that extends longer in the left-right direction than the fifth embodiment, and the blocking wall 260 causes the base 211 and the opposing wall 214 to Is connected. Therefore, in the cross section perpendicular to the longitudinal direction L, the internal space S1 and the internal space S2 are not continuous.
  • the core 10 configured as described above has a plurality of internal spaces S1 and S2 in which electrode pairs 230 and 240 are provided.
  • the core 210 is provided with a plurality of openings 201b and 201c that open the internal spaces S1 and S2.
  • the plurality of openings 201b, 201c open in different directions in the left-right direction. ing. That is, the opening 1b that opens the internal space S1 is provided in the right side wall 212, and the opening 201c that opens the internal space S2 is provided in the left side wall 213. Therefore, when the base 211 is provided on the ceiling, the opening 201b opens to the right, and the internal space S1 of the core 210 is open to the right. Furthermore, the opening 201c opens toward the left, and the inner space S2 of the core 210 is open toward the left.
  • the core 210 according to the present embodiment is formed so as to be symmetric with respect to a center line C that bisects the opening 201b in a cross section perpendicular to the longitudinal direction L.
  • the core 210 is formed so as to be line symmetric in the left-right direction, the core 210 is line symmetric about the center line C that bisects the opening 201c in a cross section perpendicular to the longitudinal direction L. It is also formed. That is, the right side wall 212 according to the present embodiment is connected to the right end of the opposing wall 214 as well as the right end of the base 211.
  • the right side wall 212 connected to the right end of the opposing wall 214 extends upward from the opposing wall 214 and extends in the longitudinal direction L.
  • the left side wall 213 is provided not only on the left end of the base 211 but also on the left end of the opposing wall 214.
  • the right side wall 212 connected to the left end of the facing wall 214 extends upward from the facing wall 214 and extends in the longitudinal direction L.
  • the right side wall 212 and the left side wall 213 according to the present embodiment have lengths extending in the vertical direction as compared with the fifth embodiment in order to form openings 201b and 201c having desired sizes. Is formed to be short.
  • the conductors 231 and 232 are supported by the insulator 220 provided on the blocking wall 260, and the conductors 241 and 242 are also supported by the insulator 220 provided on the blocking wall 260. Therefore, in this embodiment, the conductors 231 and 232 are provided so that the right side surfaces thereof are exposed, and the conductors 241 and 242 are provided so that the left side surfaces thereof are exposed.
  • the two conductors 231 and 232 are disposed in positions that are symmetrical with respect to a center line C that bisects the opening 201b in a cross section perpendicular to the longitudinal direction L.
  • the two conductors 241 and 242 are arranged in positions that are symmetric with respect to the center line C that bisects the opening 201 c in the cross section perpendicular to the longitudinal direction L.
  • the capacitances of the conductors 231 and 232 constituting the electrode pair 230 are equal to each other, and the capacitances of the conductors 241 and 242 constituting the electrode pair 240 are the same.
  • the capacitances of the conductors 241 and 242 constituting the electrode pair 240 are the same.
  • the effects (1) to (5) of the fifth embodiment the following effects can be achieved.
  • the core 210 has a plurality of internal spaces S1 and S2 in which electrode pairs 230 and 240 are provided, as well as being separated by a blocking wall 260.
  • the core 210 is provided with a plurality of openings 201b and 201c that open the internal spaces S1 and S2, and the plurality of openings 201b and 201c are opened in different directions. For this reason, the electromagnetic coupling of the plurality of electrode pairs 230 and 240 can be further reduced, and the electromagnetic interference in the plurality of electrode pairs 230 and 240 can be further suppressed.
  • the core 210 By forming the core 210 so that the cross-sectional shape is line symmetric in the left-right direction, which is a predetermined direction, the plurality of openings 201b and 201c are opened in different directions. With such a configuration, the opening 201b can be opened toward the right, which is one side in the left-right direction, and the opening 201c can be opened toward the left, which is the other in the left-right direction.
  • the core 210 is provided with an opening 201c that opens the internal space S2 in which the electrode pair 240 is provided, and the core 210 bisects the opening 201c in a cross section perpendicular to the longitudinal direction L. It is formed so as to be line symmetric about the line C.
  • Two conductors 241 and 242 constituting one electrode pair 240 are arranged at positions that are line-symmetric with respect to the center line C in the cross section perpendicular to the longitudinal direction of the core 210. With such a configuration, the capacitances of the two conductors 241 and 242 constituting one electrode pair 240 can be made equal to each other with a simple shape.
  • the core 210 is provided with an opening 201b that opens the internal space S1 in which the electrode pair 230 is provided, and the core 210 bisects the opening 201b in a cross section perpendicular to the longitudinal direction L. It is formed so as to be line symmetric with respect to C.
  • the two conductors 231 and 232 constituting the other electrode pair 230 are also arranged at positions that are line-symmetric with respect to the center line C in the cross section perpendicular to the longitudinal direction of the core 210. Accordingly, the capacitances of the two conductors 231 and 232 constituting the other electrode pair 230 can be made equal to each other with a simple shape.
  • a seventh embodiment which is an embodiment of the present invention, will be described with reference to FIG.
  • symbol is attached
  • the wiring duct 201 according to the present embodiment has a configuration in which the blocking wall 260 according to the fifth embodiment is not provided. Therefore, although the effect of the above (1) cannot be obtained, since the capacitance of the conductor 241 and the capacitance of the conductor 242 constituting the electrode pair 240 are the same, the above ( The effect 5) can be obtained. According to the present embodiment, when the electrode pair 240 is used as a signal transmission path to be balanced and the electrode pair 230 is used as a power transmission path, the following effects can be obtained.
  • a plurality of electrode pairs 230, 240 are provided at intervals in the left-right direction, which is a predetermined direction, and the two conductors 231, 232 constituting the electrode pair 230 are arranged in the vertical direction, which is a direction perpendicular to the left-right direction. Provided at intervals. For this reason, compared with the case where the conductors 231 and 232 are provided at intervals in the left-right direction, the wiring duct 201 can be reduced in size.
  • the conductor 241 and 242 of the wiring duct 201 are compared with the case where the conductors 241 and 242 are provided with an interval in the left and right direction. Miniaturization can be achieved.
  • the capacitances of the two conductors 241 and 242 constituting one electrode pair 240 are equal to each other. For this reason, the balance of the two conductors 241 and 242 can be increased, and electromagnetic interference in the plurality of electrode pairs 230 and 240 can be suppressed. Further, the capacitances of the two conductors 231 and 232 constituting the other electrode pair 230 are equal to each other.
  • the invention according to this embodiment includes a plurality of wiring ducts 201 according to the fifth embodiment, and the signal transmission path is formed by connecting electrode pairs 240 included in each of the wiring ducts 201 to each other.
  • 204 is a wiring duct system in which 204 is formed.
  • the wiring duct system includes a duct connecting member 207 which is a wiring duct connecting member for connecting a plurality of wiring ducts 201 to each other.
  • a duct connecting member 207 which is a wiring duct connecting member for connecting a plurality of wiring ducts 201 to each other.
  • the power transmission path 203 is formed by the electrode pair 230 connected to each other via the duct connection member 207, and the signal transmission path 204 is formed to be balanced by the electrode pair 240 connected to each other via the duct connection member 207.
  • the signal transmission path 204 has a structure that reverses the direction of magnetic flux generated when a current flows through the electrode pair 240 forming the signal transmission path 204.
  • FIG. 22 is a schematic diagram showing a structure in which the direction of magnetic flux is reversed in the wiring duct system in FIG. As shown in FIG. 22, the two conductors 241 and 242 constituting the signal transmission path 204 are connected so as to cross each other.
  • the conductor 241 of the electrode pair 240 included in one wiring duct 201 is connected to the conductor 242 of the electrode pair 240 included in the other wiring duct 201 by a duct connecting member 207 that connects the two wiring ducts 201. ing.
  • the conductor 242 of the electrode pair 240 included in one wiring duct 201 is connected to the conductor 241 of the electrode pair 240 included in the other wiring duct 201.
  • the duct connecting member 207 is configured to reverse the direction of magnetic flux generated when a current flows through the electrode pair 240.
  • the signal transmission path 204 formed by connecting the electrode pairs 240 included in each of the wiring ducts 201 to each other has a structure that reverses the direction of the magnetic flux generated when a current flows through the electrode pairs 240. ing.
  • the magnetic flux generated by the current flowing through the electrode pair 240 can be canceled to reduce electromagnetic coupling, and electromagnetic interference in the plurality of electrode pairs 230 and 240 can be further suppressed.
  • the direction of the magnetic flux generated by the current flowing through the electrode pair 240 is reversed by the duct connecting member 207 which is a wiring duct connecting member. Therefore, even if the wiring duct 201 does not have a structure for reversing the direction of the magnetic flux generated by the current flowing through the electrode pair 240, a wiring duct system that exhibits the effect (10) can be configured. .
  • this invention is not limited to the said embodiment, A various design change is possible based on the meaning of this invention, and they are not excluded from the scope of the present invention.
  • the core 210 and the blocking wall 260 may be formed of a nonmagnetic metal material other than aluminum. As described above, the core 210 and the blocking wall 260 are preferably formed of a nonmagnetic metal material, but may be formed of a metal material other than the nonmagnetic material. For example, as shown in FIG. 23 according to the modified example of the fifth embodiment, the blocking wall 260 may be joined to the core 210, and the blocking wall 260 may be integrally formed with the core 210. According to such a configuration, the blocking wall 260 can be formed using a material different from that of the core 210. As shown in FIG.
  • the blocking wall 260 formed integrally with the core 210 may be formed by bending the core 210 and processing it. As shown in FIG. 10 according to the modification in which the blocking wall 260 is configured by a member different from the core 210, the blocking wall 260 can be provided without being joined to the core 210. You may change suitably the shape and arrangement
  • the conductors 231, 232, 241, and 242 may be supported by an insulator 220 provided on the blocking wall 260 in the internal space of the core 210 according to the fifth embodiment.
  • the conductors 231, 232, 241 and 242 are provided in parts other than the blocking wall 260. It may be supported by.
  • conductors 233 and 243 other than the conductors 231, 232, 241, and 242 may be provided inside the core 210, as shown in FIG. 28 according to a modification of the fifth embodiment.
  • the conductors 233 and 243 that do not constitute the electrode pairs 230 and 240 are preferably configured as ground electrodes.
  • the wiring duct may include three or more electrode pairs.
  • a plurality of blocking walls are preferably provided in a wiring duct having three or more electrode pairs.
  • the shape and arrangement of the blocking wall may be changed as appropriate.
  • the capacitances of the two conductors constituting the electrode pair are equal to each other.
  • the two conductors constituting the electrode pair May not be equal to each other. That is, in addition to the electrode pair configured by two conductors having the same capacitance, the wiring duct may include an electrode pair configured by two conductors having different capacitances. For example, as shown in FIG.
  • the two conductors 231 and 232 constituting the electrode pair 230 may be provided with a gap in the left-right direction. That is, in all the electrode pairs provided in the wiring duct, the two conductors constituting the electrode pair may not be provided with a gap in the vertical direction. However, in all the electrode pairs, it is most preferable that the two conductors constituting the electrode are provided with an interval in the vertical direction. When two conductors constituting one electrode pair are provided with an interval in the vertical direction, the two conductors do not have to be positioned on a straight line in the vertical direction.
  • wiring ducts other than the wiring duct 201 according to the fifth embodiment may be connected to each other.
  • the wiring duct 201 according to the second or third embodiment may be connected to each other, or the wiring ducts having different structures may be connected to each other.
  • the wiring duct connecting member having a structure that reverses the direction of the magnetic flux may not be the duct connecting member 207 that connects the two wiring ducts 201.
  • a wiring duct connecting member that connects one wiring duct 201 and two wiring ducts 201 may have a structure that reverses the direction of magnetic flux.
  • the wiring duct connecting member may not have a structure for reversing the direction of the magnetic flux. That is, the wiring duct may have a structure for reversing the direction of magnetic flux generated by current flowing through the electrode pair.
  • (Ninth embodiment) 30 to 32 a wiring duct embodying the present invention and a plug as an embodiment of an electric apparatus suitable for the wiring duct will be described below.
  • the direction of the installation surface on which the wiring duct is installed is upward, and the opposite direction is downward. For other directions, the direction and orientation indications shown in FIG.
  • the wiring duct housing 310 has a substantially rectangular tube shape having an opening 317 provided in the lower surface extending in the longitudinal direction.
  • two side wall portions 312 and 313 are provided extending downward from two long sides of the substantially rectangular installation portion 311 fixed to the installation surface. Since the lower end of the side wall 312 and the lower end of the side wall 313 are not connected, the opening 317 described above is formed between the lower end of the side wall 312 and the lower end of the side wall 313.
  • the upper surface of the installation portion 311 among the outer peripheral surface of the housing 310 is an installation surface 311a that is installed on an installation surface such as a ceiling or a wall.
  • An insulating member fixing portion 314 and a plug fixing portion 315 which are concave grooves provided in the longitudinal direction are provided on the inner peripheral surface of one side wall portion 313.
  • Electric power conducting wires 331 and 332 are fixed to the insulating member fixing portion 314 in an up-and-down direction via an insulating member 320. That is, the power conducting wires 331 and 332 are arranged in a direction perpendicular to the installation surface 311a.
  • the power conducting wires 331 and 332 are plate-like metal conductors provided extending in the longitudinal direction.
  • One surface of the power conducting wires 331 and 332 is fixed to the insulating member 320. The other surface is exposed surfaces 331s and 332s that are exposed toward the side of the lead wire.
  • the wiring duct is configured so that power can be supplied to the plug at an arbitrary position on the conductive line.
  • 31 and 32 show a plug 350 connected to this wiring duct. As shown in FIG. 31A, the upper end of the plug 350 can be inserted into the opening 317 of the wiring duct. Moreover, although not shown in figure, the outlet for supplying electric power to another electric equipment is provided in the lower end surface. A lever 365 protrudes on the side of the lead wire in the short direction of the exterior 351 of the plug 350.
  • a contact hole 352 and a fixed blade hole 353 are provided on the conductive wire side in the short direction of the exterior 351 of the plug 350.
  • the contact protrudes from the contact hole 352 and is connected to the conductor of the wiring duct.
  • the fixed blade protrudes from the fixed blade hole 353 and fixes the plug 350 to the wiring duct.
  • FIG. 32A is a partially exploded perspective view with the exterior 351 removed.
  • a fixed blade 361 for fixing the plug 350 to the wiring duct is provided at the upper end of the rotary shaft 360 that extends in the vertical direction.
  • a cylindrical cam 362 is provided below that. The lower end is connected to the lever 365. Therefore, when the lever 365 is switched, the rotation shaft 360 rotates about the rotation center o.
  • the slider 370 provided extending in the longitudinal direction has sliding contact shafts 341 provided extending upward from the base 340 in shaft holes 374 that are vertical through holes provided at both ends in the longitudinal direction. Since it is inserted, it can move only in the vertical direction.
  • a central axis in the longitudinal direction is provided with a rotation shaft hole 375 that is a vertical through hole.
  • a cam receiving portion 376 is formed on the inner peripheral surface of the rotation shaft hole 375 so as to mesh with the cylindrical cam 362 of the rotation shaft 360 and convert the rotational motion of the cylindrical cam 362 into a linear motion. Therefore, when the rotary shaft 360 rotates, the slider 370 moves up and down via the cylindrical cam 362.
  • a plug blade pressing portion 372 and a plug blade pressing portion 373 are provided around the uniaxial hole 374 of the slider 370.
  • a plug blade 381 is provided at a position in contact with the plug blade pressing portion 372 when the slider 370 is moved upward.
  • a plug blade 385 is provided at a position in contact with the plug blade pressing portion 373 when the slider 370 is moved upward.
  • the plug blade 381 and the plug blade 385 are conductive members having a leaf spring structure which is provided extending in the vertical direction and has elasticity in the short direction.
  • a contact 382 is provided at the upper end of the plug blade 381.
  • a contact point 386 is provided at the upper end of the plug blade 385.
  • the lower ends of the plug blade 381 and the plug blade 385 are electrically connected to two insertion ports provided in a not-shown outlet. Further, an inclined portion 383 for ensuring contact between the plug blade pressing portion 372 and the plug blade 381 is provided at a portion that contacts the plug blade pressing portion 372 by the movement of the slider 370. Similarly, an inclined portion 388 for ensuring contact between the plug blade pressing portion 373 and the plug blade 385 is provided at a portion that contacts the plug blade pressing portion 373 by the movement of the slider 370. As shown in FIG. 32 (b), in the detachable state, the slider 370 is positioned downward in the vertical direction, so the plug blade pressing portion 372 is not in contact with the inclined portion 383, and the plug blade pressing portion 373.
  • both the contact 382 and the contact 386 are located on the side opposite to the contact hole from the contact hole 352 due to the elastic force of the plug blade 381 and the plug blade 385. In this state, even if the upper portion of the plug is inserted into the wiring duct from the opening 317 of the wiring duct, the contact 382 is not electrically connected to the power conducting wire 332. Further, the power conducting wire 331 is not electrically connected to the contact point 386. Furthermore, since the fixed blade 361 provided on the rotating shaft 360 is also housed in the exterior 351, the plug 350 is not fixed to the wiring duct.
  • the upper end portion of the plug 350 can be freely put in and out of the opening 317 of the wiring duct. Transition from the detachable state to the fixed state can be performed only by moving the lever 365.
  • the rotation shaft 360 rotates in conjunction with the lever 365. This rotation is converted into a linear motion by the cylindrical cam 362 and the cam receiving portion 376, and the slider 370 is moved upward.
  • the plug blade pressing portion 372 of the slider 370 moved upward pushes the plug blade 381 toward the conductor in the short direction, so that the contact 382 moves toward the conductor, and from the contact hole 352. Projects to the conductor side.
  • the plug blade pressing portion 373 of the slider 370 moved upward pushes the plug blade 385 toward the conducting wire in the short direction, so that the contact 386 moves to the conducting wire and protrudes from the contact hole 352 to the conducting wire.
  • the fixed blade 361 provided at the upper end of the rotating shaft 360 moves to the conducting wire side by rotation and protrudes from the fixed blade hole 353 to the conducting wire side.
  • the contact 382 contacts the exposed surface 332s of the power conducting wire 332 and the contact 386 contacts the exposed surface 331s of the power conducting wire 331, so that the plug 350 is electrically connected to the wiring duct. Connected.
  • both the contact 382 and the contact 386 are connected to the exposed surface 332 s and the exposed surface 331 s by moving linearly in the direction parallel to the installation surface 311 a with respect to the plug body.
  • the plug 350 is fixed to the wiring duct. According to the wiring duct and the plug of the above embodiment, the following effects can be obtained. (1) In the above embodiment, the power conducting wire 331 and the power conducting wire 332 are arranged in a direction perpendicular to the installation surface 311a.
  • the wiring duct can be reduced in size in the direction parallel to the installation surface 311a, that is, in the short direction, as compared with the conventional case where the power conducting wire 331 and the power conducting wire 332 are disposed facing each other in the short direction.
  • the plug 350 is a plug corresponding to the wiring duct, the upper end inserted into the opening 317 is downsized in the direction parallel to the installation surface 311a, that is, in the short direction.
  • a tenth embodiment of a wiring duct embodying the present invention will be described with reference to FIG.
  • the housing of the wiring duct has a substantially rectangular tube shape having an opening 317 provided in the lower surface extending in the longitudinal direction.
  • two side wall portions 312 and 313 are provided so as to extend downward from two long sides of the substantially rectangular installation portion 311 fixed to the installation surface. Since the lower ends of the side walls 312 and 313 are not connected, the above-described opening 317 is formed between the side walls 312 and 313.
  • a plug fixing portion 315 which is a concave groove provided in the longitudinal direction, an insulating member fixing portion 314a, and an insulating member fixing portion 314b are provided in order from the bottom. Yes.
  • a blocking wall 316 having an effect of blocking electromagnetic waves is provided between the insulating member fixing portion 314a and the insulating member fixing portion 314b.
  • Electric power conducting wires 331 and 332 are arranged and fixed to the insulating member fixing portion 314a in the vertical direction via the insulating member 320a.
  • the conducting wires 333 and 334 for communication are fixed to the insulating member fixing portion 314b in the vertical direction via the insulating member 320b.
  • the wiring duct includes power conducting wires 331 and 332 and communication conducting wires 333 and 334 as conducting wires. Moreover, all of these some conducting wire is arranged in the perpendicular
  • the communication conductors 333 and 334 are plate-like metal conductors that extend in the longitudinal direction. One surfaces of the power conducting wires 331 and 332 and the communication conducting wires 333 and 334 are fixed to the insulating member 320a and the insulating member 320b, respectively. Further, the other surfaces are exposed surfaces 331 s and 332 s exposed inward, and exposed surfaces 333 s and 334 s.
  • a communication signal can be transmitted and received at an arbitrary position on the conductor line. Therefore, according to the tenth embodiment, in addition to the effects (1) and (2) described in the ninth embodiment, the following effects can be obtained. (3) In the tenth embodiment, since the communication conductors 333 and 334 are provided as the conductors, a communication signal can be supplied to the electric device simultaneously with the power. In particular, even when an electric device such as a personal computer that requires both power supply and transmission / reception of communication signals is connected, the number of necessary cables can be reduced. (4) Moreover, all the conducting wires are arrange
  • the blocking wall 316 for suppressing the induction noise caused by the power conducting wires 331 and 332 from being generated in the communication conducting wires 333 and 334 includes the power conducting wires 331 and 332 and the communication conducting wires 333 and 334. Provided between. Therefore, it is possible to suppress the occurrence of noise in the communication wires 333 and 334 due to the induction magnetic field generated from the power wires 331 and 332.
  • the power supply plug 350 connected to the power conductors 331 and 332 is illustrated, but a communication plug connected to the communication conductor may be used.
  • a communication outlet such as a USB outlet or a LAN outlet is provided on the lower surface.
  • it may be a power / communication plug connected to both the power lead and the communication lead. In this case, both a power outlet and a communication outlet are provided.
  • the power / communication plug is used for the wiring duct shown in the tenth embodiment, for example.
  • the plug 350 is exemplified as the electric device, but the contact is linearly moved in a direction parallel to the installation surface with respect to the electric device main body, so that the contact is connected to the connected surface.
  • Other electrical devices may be used as long as they are electrical devices.
  • all the conductors are arranged in a straight line in the direction perpendicular to the installation surface 311a, that is, in the vertical direction. For example, as shown in FIG. It suffices if they are lined up and down as a whole. That is, the term “arranged in the vertical direction” in the claims and in the present specification means that “arranged in the completely vertical direction” and “arranged in the completely vertical direction” cannot be said.
  • the wiring ducts are arranged to such an extent that the wiring duct is miniaturized in a direction parallel to the installation surface 311a.
  • the power conducting wires 331 and 332 are arranged in a straight line in a direction perpendicular to the installation surface 311a, that is, in the vertical direction. It only has to be lined up in the direction.
  • a blocking wall 316 is provided for suppressing inductive noise caused by the power conducting wires 331 and 332 in the communication conducting wires 333 and 334.
  • the blocking wall 316 may be omitted as long as induction noise can be suppressed from occurring in the communication wires 333 and 334 by other methods.
  • the noise may be suppressed by increasing the distance between the power conductors 331 and 332 and the communication conductors 333 and 334. . Further, noise may be suppressed externally, such as by providing a core on the communication wires 333 and 334.
  • the wiring duct includes one set each of the power conducting wires 331 and 332 and the communication conducting wires 333 and 334, but may have other configurations. For example, instead of the communication conductors 333 and 334, a power conductor for flowing currents having different voltages and phases may be further provided.
  • communication conductors for communication methods with different standards may be further provided, or for power for flowing currents having different voltages and phases. You may further provide conducting wire. Even in these cases, all the conductive wires are arranged in a direction perpendicular to the installation surface 311a, thereby providing an effect of reducing the size of the wiring duct in a direction parallel to the installation surface 311a. In other words, the size of the wiring duct is constant in the direction parallel to the installation surface regardless of the number of conductors, so that the area of the installation surface on which the wiring duct is installed can be constant regardless of the number of conductors. .
  • the present invention can be widely used for a wiring duct that is installed along a wall surface or a ceiling surface and to which a wiring device is attached from a desired position.

Abstract

Provided is a wiring duct which is equipped internally with electricity supply wiring and communication wiring, and which can supply electricity to an electrical device at any desired position on a wiring pathway of the electricity supply wiring, wherein spacing is provided between the electricity supply wiring and communication wiring to suppress induction noise that occurs in the communication wiring and is caused by the electrical supply wiring.

Description

配線ダクト及び配線ダクトシステム、配線ダクトに連結された電気機器Wiring duct, wiring duct system, and electrical equipment connected to the wiring duct
 本発明は、壁面や天井面に沿って設置され、所望の位置より配線器具が取り付けられる配線ダクト及びこれを備えた配線ダクトシステムに関する。また、同配線ダクトに連結された電気機器に関する。 The present invention relates to a wiring duct that is installed along a wall surface or a ceiling surface and to which a wiring device is attached from a desired position, and a wiring duct system including the wiring duct. Moreover, it is related with the electric equipment connected with the wiring duct.
 コンセントより室内に設置する電気機器の設置自由度が高くなるため、配線経路のいずれの位置からも電力供給が可能な配線ダクトが、店舗、工場オフィスなどに広く普及している。
 また、近年は電力配線のほかに、制御用の通信ケーブルやLANケーブル等の通信用配線も室内に設置する必要が生じており、係る通信用配線についても、配線ダクトと同様の構造とすることか望まれている。
 そこで、1つの配線ダクト内に電力供給用配線と通信用配線とを備えた配線ダクトが提示されている(例えば、特許文献1)。
 図13に示すように、配線ダクトに使用される配線ダクトは、一方の側面である底部115に長手方向に沿って開口した連通孔117を有する、略角筒状の外観を有する。この底部115の反対側面が天井などに固定される被固定部114であり、被固定部114と底部115とを連結する部分が連結部116である。この連結部116の内周面からは、短手方向において外方から内方に向ってフランジ118Aが延設されており、フランジ118Aの内方の端部には商用電源を給電するための長尺の電力供給用配線113Aが長手方向に沿って配置されている。従って、この配線ダクトに電気的に機器を接続する場合は、接続される機器の電気接点を連通孔117を介してダクト本体内部に挿入し電力供給用配線113Aに接続する。
 また同様に、通信信号を給電するための長尺の通信用配線113Bが長手方向に沿って配置されている。従って、この配線ダクトに通信機器を接続する場合は、接続される機器の通信用接点を連通孔117を介してダクト本体内部に挿入し通信用配線113Bに接続する。
 配線ダクトに接続される電気機器および通信機器は、例えば、図14に示すような電源コンセントプラグ130を介して接続される。略直方体の形状のこの電源コンセントプラグ130の一方面には、配線ダクトの連通孔117を通して配線ダクトの内部に挿入される筒状の回転体126が回転自在に設けられている。回転体126の設けられている面の反対面には電源供給用の電源コンセント121および通信用コンセント123(例えばLANケーブルコンセントなど)が設けられているとともに、回転体126を回転させるための摘み127が配置されている。回転体126の周面には、回転体126の中心部を挟んで対称な位置に電気接点である一対の電源用栓刃128と、同じく回転体126の中心部を挟んで対称な位置に通信線用接点である一対の通信用栓刃129と、電源コンセントプラグ130を配線ダクトに係止させるための係止刃122が突設されている。この摘み127の回転操作に応じて、電源用栓刃128、通信用栓刃129および係止刃122が配線ダクトの長手方向と略平行な方向に並ぶ状態と、配線ダクトの短手方向と略平行な方向に並ぶ状態とを選択できるようになっている。
 この電源コンセントプラグ130を取り付ける際には、まず、電源用栓刃128、通信用栓刃129および係止刃122の長辺が配線ダクトの長手方向と略平行になるようにして、回転体126を配線ダクトに挿入する。この場合、電源用栓刃128、通信用栓刃129および係止刃122の短辺の長さが、配線ダクトの連通孔117の幅より小さいので係止刃122まで挿入することができる。配線ダクトの連通孔117両側の受け部より内側に係止刃122が挿入された状態で、摘み127を用いて回転体126を矢印の方向へ90度回転させる。その結果、図15に示すように、係止刃122により電源コンセントプラグ130が配線ダクトの底部115に支持されるとともに、電源用栓刃128および通信用栓刃129がそれぞれは電力供給用配線113Aおよび通信用配線113Bと接触し、電気的に接続される。
 配線ダクトに接続される電気機器は電源コンセント121を介して接続されることに電力供給を受け、通信機器は通信用コンセント123を介して接続されることに通信信号の供給を受ける。従って、通信可能な電気機器であるパソコン等は、1箇所から電力と通信信号をともに受けることが可能となるため、すっきりとした配線とすることが可能である。また、電気機器または通信機器を専用設計すれば、配線ダクトに直接接続することにより、電源コンセントプラグ130を介さずに電力供給、通信信号の供給またはその双方を受けることができる。
 また、特許文献1には、電力供給用の2つの導体により構成される2つの電極対と、信号伝送用の2つの導体(信号導体)により構成される1つの電極対とを備えた配線ダクトが開示されている。
 更に、配線ダクトは天井面や壁面等を被設置面として設置されるため、美観上優れたものであることが望まれる。美観を向上させるためには、配線ダクトを小型化することが有効である。
米国特許第6,274,817号
Since the degree of freedom of installation of electrical equipment installed in the room is higher than the outlet, wiring ducts that can supply power from any position in the wiring path are widely used in stores, factory offices, and the like.
In recent years, in addition to power wiring, it has become necessary to install communication wiring such as control communication cables and LAN cables indoors, and such communication wiring has the same structure as the wiring duct. Or is desired.
Therefore, a wiring duct provided with a power supply wiring and a communication wiring in one wiring duct is proposed (for example, Patent Document 1).
As shown in FIG. 13, the wiring duct used for the wiring duct has a substantially rectangular tube-like appearance having a communication hole 117 opened along the longitudinal direction at the bottom 115 which is one side surface. The opposite side surface of the bottom portion 115 is a fixed portion 114 fixed to a ceiling or the like, and the portion connecting the fixed portion 114 and the bottom portion 115 is a connecting portion 116. From the inner peripheral surface of the connecting portion 116, a flange 118A is extended from the outside to the inside in the short side direction, and the inner end of the flange 118A has a length for supplying commercial power. A length of power supply wiring 113A is arranged along the longitudinal direction. Therefore, when an apparatus is electrically connected to the wiring duct, an electrical contact of the connected apparatus is inserted into the duct body through the communication hole 117 and connected to the power supply wiring 113A.
Similarly, long communication wires 113B for feeding communication signals are arranged along the longitudinal direction. Accordingly, when a communication device is connected to the wiring duct, the communication contact of the connected device is inserted into the duct body through the communication hole 117 and connected to the communication wire 113B.
The electrical equipment and communication equipment connected to the wiring duct are connected via a power outlet plug 130 as shown in FIG. 14, for example. On one surface of the power outlet plug 130 having a substantially rectangular parallelepiped shape, a cylindrical rotating body 126 inserted into the inside of the wiring duct through the communication hole 117 of the wiring duct is rotatably provided. A power outlet 121 for power supply and a communication outlet 123 (for example, a LAN cable outlet) are provided on a surface opposite to the surface on which the rotating body 126 is provided, and a knob 127 for rotating the rotating body 126. Is arranged. The peripheral surface of the rotating body 126 communicates with a pair of power supply blades 128 as electrical contacts at symmetrical positions with the central portion of the rotating body 126 interposed therebetween, and with symmetrical positions with the central portion of the rotating body 126 interposed therebetween. A pair of communication plug blades 129 which are contact points for wires and a locking blade 122 for locking the power outlet plug 130 to the wiring duct are projected. In accordance with the rotation operation of the knob 127, the power plug blade 128, the communication plug blade 129, and the locking blade 122 are arranged in a direction substantially parallel to the longitudinal direction of the wiring duct, and the short direction of the wiring duct is substantially the same. It is possible to select the state of being aligned in parallel directions.
When attaching the power outlet plug 130, first, the rotating body 126 is set such that the long sides of the power plug blade 128, the communication plug blade 129, and the locking blade 122 are substantially parallel to the longitudinal direction of the wiring duct. Is inserted into the wiring duct. In this case, since the lengths of the short sides of the power plug blade 128, the communication plug blade 129, and the locking blade 122 are smaller than the width of the communication hole 117 of the wiring duct, they can be inserted up to the locking blade 122. The rotating body 126 is rotated 90 degrees in the direction of the arrow using the knob 127 with the locking blades 122 inserted inside the receiving portions on both sides of the communication hole 117 of the wiring duct. As a result, as shown in FIG. 15, the power outlet plug 130 is supported on the bottom 115 of the wiring duct by the locking blade 122, and the power plug blade 128 and the communication plug blade 129 are respectively connected to the power supply wiring 113A. And it contacts with the wiring 113B for communication, and is electrically connected.
The electrical equipment connected to the wiring duct is supplied with power when connected via the power outlet 121, and the communication equipment is supplied with communication signals when connected via the communication outlet 123. Accordingly, a personal computer or the like which is a communicable electric device can receive both power and a communication signal from one place, so that it can be made a clean wiring. In addition, if an electric device or a communication device is specially designed, it is possible to receive power supply, communication signal supply or both without going through the power outlet plug 130 by directly connecting to the wiring duct.
Patent Document 1 discloses a wiring duct provided with two electrode pairs constituted by two conductors for power supply and one electrode pair constituted by two conductors (signal conductors) for signal transmission. Is disclosed.
Furthermore, since the wiring duct is installed with the ceiling surface or wall surface as the installation surface, it is desirable that the wiring duct is excellent in aesthetics. In order to improve the aesthetic appearance, it is effective to reduce the size of the wiring duct.
US Pat. No. 6,274,817
 しかし、上記配線ダクトにおいては配線ダクト内に通信用配線と、電力供給用配線を配設しているため、電力供給用配線から発する誘導磁界を原因とするノイズが通信用配線に発生し、通信品質が低下することが懸念される。
 また、上記のように1つの電極対が信号伝送用の導体として構成される場合には、導体間における電気的干渉の発生を抑制することが必要である。
 本発明はかかる実情を鑑みてなされたもので、電力供給用配線と通信用配線とを備えた配線ダクトであって、電力供給用配線から発する誘導磁界を原因とするノイズが通信用配線に発生することを抑制することのできるよう改善された配線ダクトを提供することを目的とする。
 また、本発明の目的は、小型化を図ることができ、かつ、複数の電極対における電磁干渉を抑制することができる配線ダクト及び配線ダクトシステムを提供することにある。
 さらに、本発明の目的は、設置面に平行な方向において小型化することのできる配線ダクトおよび同配線ダクト用の電気機器を提供することにある。
 本発明にかかる配線ダクトは、電力供給用配線と通信用配線とが内部に配設され、前記電力供給用配線の配線系路上の任意の位置において電気機器に電力供給可能な配線ダクトである。また、前記電力供給用配線を原因とする誘導ノイズが前記通信用配線に発生することを抑制するための間隔が、前記電力供給用配線と前記通信用配線との間に備えられることを特徴とする。
 上記構成によると、電力供給用配線を原因とする誘導ノイズが通信用配線に発生することを抑制するための間隔が、電力供給用配線と通信用配線との間に備えられるため、電力供給用配線から発する誘導磁界を原因とするノイズが通信用配線に発生することを抑制することができる。
 なお、誘導ノイズが通信用配線に発生することを抑制するための間隔は合目的的に決定することができる。例えば、電力配線が通常使用される100ボルト交流用配線であれば、上記間隔を5cm以上とすることにより多対加入者線路の平均的漏話減衰量と同等の近端減衰量が確保できる。
 本発明にかかる配線ダクトは、前記電力供給用配線と前記通信用配線との間に電磁波を遮断する効果を有する遮断壁が更に設けられていることが好ましい。
 上記構成によると、電力供給用配線と前記通信用配線との間に電磁波を遮断する効果を有する遮断壁が更に設けられているため、遮断壁が設けられていない場合に比して上記間隔を小さくしても、ノイズが通信用配線に発生することを同等に抑制することができる。そのため、配線ダクト全体のサイズを小さくすることが可能となり、省スペース化、コストダウンに資する。
 本発明にかかる配線ダクトは、前記通信用配線が複数配設され、前記複数の通信用配線が互いに撚り合されていることが好ましい。
 上記構成によると、複数の通信用配線が互いに撚り合されているため、通信用配線から発生するノイズをも抑制することが可能となる。従って、ノイズが通信用配線に発生することを一層抑制することができる。
 本発明にかかる配線ダクトは、前記電力供給用配線および前記通信用配線の少なくとも一方が電磁波を遮断する効果を有する電磁波遮断部材により取り囲まれていることが好ましい。
 上記構成によると、電力供給用配線および通信用配線の少なくとも一方が電磁波を遮断する効果を有する電磁波遮断部材により取り囲まれているため、電力供給用配線を原因とする誘導ノイズが通信用配線に発生することを一層抑制できる。従って、同等の抑制効果を得るために上記間隔を一層小さくすることが可能となる。
 本発明にかかる配線ダクトは、前記電磁波遮断部材が、接地されていることが好ましい。電磁波遮断部材が接地されることにより、誘導磁界を遮蔽する効果が一層大きくなるため、電力供給用配線を原因とする誘導ノイズが通信用配線に発生することをより一層抑制できる。従って、同等の抑制効果を得るために上記間隔をより一層小さくすることが可能となる。
 上記課題を解決するために第1の発明の配線ダクトは、金属材料からなるコアと、このコアの内部に設けられた複数の電極対とを備え、2つの導体により前記電極対の各々が構成される配線ダクトであって、複数の前記電極対が所定方向において間隔を空けて設けられ、1つの前記電極対を構成する2つの前記導体が、前記所定方向に垂直な方向において間隔を空けて設けられ、複数の前記電極対の間に、前記所定方向に垂直な方向に延びるとともに金属材料からなる遮断壁が設けられている。
 上記配線ダクトにおいて、前記コアに前記遮断壁が一体的に形成されていることが好ましい。
 上記配線ダクトにおいて、前記遮断壁が前記コアに接合されて、前記コアに前記遮断壁が一体的に形成されていてもよい。
 上記配線ダクトにおいて、前記コアは、前記遮断壁により区切られるとともに、前記電極対が設けられた複数の内部空間を有し、前記コアには、前記内部空間を開放する複数の開口部が設けられ、複数の前記開口部が、互いに異なる方向に向けて開口していることが好ましい。
 上記配線ダクトにおいて、断面形状が前記所定方向において線対称となるように前記コアが形成されることにより、複数の前記開口部が互いに異なる方向に向けて開口していることが好ましい。
 上記配線ダクトにおいて、前記コアが非磁性体の金属材料からなることが好ましい。
 上記配線ダクトにおいて、前記コアと前記遮断壁とが非磁性体の金属材料からなることが好ましい。
 上記配線ダクトにおいて、1つの前記電極対を構成する2つの前記導体の静電容量が互いに等しいことが好ましい。
 上記課題を解決するために第2の発明の配線ダクトは、金属材料からなるコアと、このコアの内部に設けられた複数の電極対とを備え、2つの導体により前記電極対の各々が構成される配線ダクトであって、複数の前記電極対が所定方向において間隔を空けて設けられ、1つの前記電極対を構成する2つの前記導体が、前記所定方向に垂直な方向において間隔を空けて設けられ、1つの前記電極対を構成する2つの前記導体の静電容量が互いに等しい。
 上記配線ダクトにおいて、前記コアには、前記電極対が設けられた内部空間を開放する開口部が設けられ、前記コアが、このコアの長手方向に垂直な断面において、前記開口部を二等分する中心線を軸として線対称となるように形成され、1つの前記電極対を構成する2つの前記導体が、前記コアの長手方向に垂直な断面において、前記中心線を軸として線対称となる位置に配設されていることが好ましい。
 本発明の配線ダクトシステムは、上記配線ダクトを複数備え、前記配線ダクトの各々が備える前記電極対が互いに接続されることにより信号伝送路が形成される配線ダクトシステムであって、前記信号伝送路は、この信号伝送路を形成する前記電極対に電流が流れることにより発生する磁束の向きを反転させる構造を有していることを特徴とする。
 上記配線ダクトシステムにおいて、複数の前記配線ダクトを互いに接続する配線ダクト用接続部材を備え、この配線ダクト用接続部材により前記磁束の向きが反転されることが好ましい。
 本発明の配線ダクトは、少なくとも電力用導線を含む複数の導線と、前記導線を内部に有するハウジングとを備え、前記ハウジングの外周面の1つである設置面が被設置面に設置されるものであり、前記電力用導線の系路上の任意の位置において電気機器に電力供給可能な配線ダクトにおいて、前記複数の導線の全てが、前記設置面に対して垂直な方向に配列されていることを特徴とする。
 この配線ダクトにおいて、前記複数の導線の少なくとも1つに通信用導線が含まれることが好ましい。
 この配線ダクトにおいて、前記電力用導線と前記通信用導線との間に電磁波を遮断する効果を有する遮断壁が更に設けられていることが好ましい。
 本発明の電気機器は、導線の被接続面に接続される接点を備え、本発明の配線ダクトに接続される電気機器であって、前記接点が、電気機器本体に対して、設置面に平行な方向に直線的に移動することにより、前記接点が前記被接続面に接続される。
本発明によれば、電力供給用配線と通信用配線とを備えた配線ダクトであって、電力供給用配線から発する誘導磁界を原因とするノイズが通信用配線に発生することを抑制することのできる配線ダクトを提供することができる。
 また、本発明によれば、配線ダクトの小型化を図ることができ、かつ、複数の電極対における電磁干渉を抑制することができる。
 また、本発明によれば、設置面に平行な方向において小型化することのできる配線ダクトおよび同配線ダクト用の電気機器を提供することができる。
However, since the communication duct and the power supply wiring are arranged in the wiring duct in the above wiring duct, noise caused by the induction magnetic field generated from the power supply wiring is generated in the communication wiring, and communication There is a concern that the quality will deteriorate.
In addition, when one electrode pair is configured as a signal transmission conductor as described above, it is necessary to suppress the occurrence of electrical interference between the conductors.
The present invention has been made in view of such circumstances, and is a wiring duct having a power supply wiring and a communication wiring, and noise caused by an induced magnetic field generated from the power supply wiring is generated in the communication wiring. It is an object of the present invention to provide an improved wiring duct that can suppress this.
Another object of the present invention is to provide a wiring duct and a wiring duct system that can be reduced in size and can suppress electromagnetic interference in a plurality of electrode pairs.
Furthermore, the objective of this invention is providing the electrical equipment for the wiring duct which can be reduced in size in the direction parallel to an installation surface, and the wiring duct.
The wiring duct according to the present invention is a wiring duct in which a power supply wiring and a communication wiring are arranged, and can supply power to an electrical device at an arbitrary position on the wiring system of the power supply wiring. In addition, an interval for suppressing inductive noise caused by the power supply wiring from being generated in the communication wiring is provided between the power supply wiring and the communication wiring. To do.
According to the above configuration, since an interval for suppressing inductive noise caused by the power supply wiring from being generated in the communication wiring is provided between the power supply wiring and the communication wiring, Generation of noise in the communication wiring due to the induction magnetic field generated from the wiring can be suppressed.
It should be noted that the interval for suppressing the generation of inductive noise in the communication wiring can be determined purposefully. For example, if the power wiring is a 100-volt AC wiring that is normally used, a near-end attenuation equivalent to the average crosstalk attenuation of the many-to-subscriber line can be secured by setting the interval to 5 cm or more.
In the wiring duct according to the present invention, it is preferable that a blocking wall having an effect of blocking electromagnetic waves is further provided between the power supply wiring and the communication wiring.
According to the above configuration, since the shielding wall having an effect of shielding electromagnetic waves is further provided between the power supply wiring and the communication wiring, the above-mentioned distance is set as compared with the case where the shielding wall is not provided. Even if it is made smaller, it is possible to equally suppress the generation of noise in the communication wiring. Therefore, the size of the entire wiring duct can be reduced, which contributes to space saving and cost reduction.
In the wiring duct according to the present invention, it is preferable that a plurality of the communication wirings are arranged, and the plurality of communication wirings are twisted together.
According to the above configuration, since the plurality of communication wires are twisted together, it is possible to suppress noise generated from the communication wires. Therefore, noise can be further suppressed from occurring in the communication wiring.
In the wiring duct according to the present invention, it is preferable that at least one of the power supply wiring and the communication wiring is surrounded by an electromagnetic wave blocking member having an effect of blocking electromagnetic waves.
According to the above configuration, since at least one of the power supply wiring and the communication wiring is surrounded by the electromagnetic wave shielding member having an effect of blocking electromagnetic waves, inductive noise caused by the power supply wiring is generated in the communication wiring. This can be further suppressed. Therefore, it is possible to further reduce the interval in order to obtain an equivalent suppression effect.
In the wiring duct according to the present invention, the electromagnetic wave shielding member is preferably grounded. Since the electromagnetic shielding member is grounded, the effect of shielding the induced magnetic field is further increased, so that it is possible to further suppress the occurrence of induction noise caused by the power supply wiring in the communication wiring. Therefore, in order to obtain the same suppression effect, the interval can be further reduced.
In order to solve the above problems, a wiring duct according to a first invention includes a core made of a metal material and a plurality of electrode pairs provided inside the core, and each of the electrode pairs is constituted by two conductors. A plurality of the electrode pairs provided at intervals in a predetermined direction, and the two conductors constituting one electrode pair are spaced from each other in a direction perpendicular to the predetermined direction. A barrier wall made of a metal material and extending in a direction perpendicular to the predetermined direction is provided between the plurality of electrode pairs.
In the wiring duct, it is preferable that the blocking wall is formed integrally with the core.
In the wiring duct, the blocking wall may be joined to the core, and the blocking wall may be integrally formed with the core.
In the wiring duct, the core is divided by the blocking wall and has a plurality of internal spaces in which the electrode pairs are provided, and the core is provided with a plurality of openings that open the internal space. Preferably, the plurality of openings are opened in different directions.
In the wiring duct, it is preferable that the plurality of openings are opened in different directions by forming the core so that the cross-sectional shape is line-symmetric in the predetermined direction.
In the wiring duct, the core is preferably made of a nonmagnetic metal material.
In the wiring duct, it is preferable that the core and the blocking wall are made of a nonmagnetic metal material.
In the wiring duct, it is preferable that the capacitances of the two conductors constituting one electrode pair are equal to each other.
In order to solve the above problems, a wiring duct according to a second invention comprises a core made of a metal material and a plurality of electrode pairs provided inside the core, and each of the electrode pairs is constituted by two conductors. A plurality of the electrode pairs provided at intervals in a predetermined direction, and the two conductors constituting one electrode pair are spaced from each other in a direction perpendicular to the predetermined direction. The capacitances of the two conductors provided and constituting one electrode pair are equal to each other.
In the wiring duct, the core is provided with an opening that opens an internal space in which the electrode pair is provided, and the core bisects the opening in a cross section perpendicular to the longitudinal direction of the core. The two conductors forming one electrode pair are symmetrical with respect to the center line in the cross section perpendicular to the longitudinal direction of the core. It is preferable to be disposed at a position.
The wiring duct system of the present invention is a wiring duct system comprising a plurality of the above wiring ducts, wherein a signal transmission path is formed by connecting the electrode pairs included in each of the wiring ducts to each other, wherein the signal transmission path Has a structure for reversing the direction of magnetic flux generated when a current flows through the electrode pair forming the signal transmission path.
The wiring duct system preferably includes a wiring duct connecting member that connects the plurality of wiring ducts to each other, and the direction of the magnetic flux is reversed by the wiring duct connecting member.
The wiring duct of the present invention includes a plurality of conductors including at least a power conductor and a housing having the conductors therein, and an installation surface that is one of the outer peripheral surfaces of the housing is installed on the installation surface. In a wiring duct capable of supplying electric power to an electrical device at an arbitrary position on the power lead system, all of the plurality of lead wires are arranged in a direction perpendicular to the installation surface. Features.
In this wiring duct, it is preferable that at least one of the plurality of conductors includes a communication conductor.
In this wiring duct, it is preferable that a shielding wall having an effect of shielding electromagnetic waves is further provided between the power conducting wire and the communication conducting wire.
The electrical device of the present invention is an electrical device that includes a contact point connected to the connected surface of the conductor and is connected to the wiring duct of the present invention, wherein the contact point is parallel to the installation surface with respect to the electrical device body. The contact point is connected to the connected surface by linearly moving in any direction.
According to the present invention, there is provided a wiring duct including a power supply wiring and a communication wiring, and noise generated due to an induction magnetic field generated from the power supply wiring is suppressed from being generated in the communication wiring. A wiring duct that can be provided can be provided.
Further, according to the present invention, the wiring duct can be reduced in size, and electromagnetic interference in a plurality of electrode pairs can be suppressed.
Moreover, according to this invention, the electrical equipment for the wiring duct which can be reduced in size in the direction parallel to an installation surface, and the said wiring duct can be provided.
本発明にかかる配線ダクトの一実施形態について説明する図面であって、(a)は配線ダクトの断面図であり、(b)は配線ダクトの側面図であり、(c)は配線ダクトの底面図であり、(d)は配線ダクトの斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing explaining one Embodiment of the wiring duct concerning this invention, Comprising: (a) is sectional drawing of a wiring duct, (b) is a side view of a wiring duct, (c) is a bottom face of a wiring duct. It is a figure and (d) is a perspective view of a wiring duct. 本発明にかかる配線ダクトの第2の実施形態について説明する図面であって、配線ダクトの断面図である。It is drawing explaining 2nd Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第3の実施形態について説明する図面であって、配線ダクトの断面図である。It is drawing explaining 3rd Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第4の実施形態について説明する図面であって(a)は配線ダクトの断面図であり、(b)は配線ダクトの側面図である。It is drawing explaining 4th Embodiment of the wiring duct concerning this invention, (a) is sectional drawing of a wiring duct, (b) is a side view of a wiring duct. 本発明にかかる配線ダクトの第1の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 1st Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第1の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 1st Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第1の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 1st Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第1の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 1st Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第2の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 2nd Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第2の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 2nd Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第3の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 3rd Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 本発明にかかる配線ダクトの第3の実施形態の変形例について説明する図面であって、配線ダクトの断面図である。It is drawing explaining the modification of 3rd Embodiment of the wiring duct concerning this invention, Comprising: It is sectional drawing of a wiring duct. 従来の配線ダクトの一実施形態について説明する図面であって、(a)は配線ダクトの断面図であり、(b)は配線ダクトの側面図であり、(c)は配線ダクトの底面図である。It is drawing explaining one Embodiment of the conventional wiring duct, Comprising: (a) is sectional drawing of a wiring duct, (b) is a side view of a wiring duct, (c) is a bottom view of a wiring duct. is there. 従来の配線ダクトの一実施形態について説明する図面であって、配線ダクトに取り付けることができる電源コンセントプラグの斜視図である。It is drawing explaining one Embodiment of the conventional wiring duct, Comprising: It is a perspective view of the power outlet plug which can be attached to a wiring duct. 従来の配線ダクトの一実施形態について説明する図面であって、配線ダクトに電源コンセントプラグを取り付けた状態を示す斜視図である。It is drawing explaining one Embodiment of the conventional wiring duct, Comprising: It is a perspective view which shows the state which attached the power outlet plug to the wiring duct. 本発明の第5の実施形態に係る配線ダクトを示す斜視図。The perspective view which shows the wiring duct which concerns on the 5th Embodiment of this invention. 同実施形態に係る配線ダクトの、長手方向に垂直な断面を示す断面図。Sectional drawing which shows the cross section perpendicular | vertical to the longitudinal direction of the wiring duct which concerns on the embodiment. 本発明の第6の実施形態に係る配線ダクトを示す斜視図。The perspective view which shows the wiring duct which concerns on the 6th Embodiment of this invention. 同実施形態に係る配線ダクトの、長手方向に垂直な断面を示す断面図。Sectional drawing which shows the cross section perpendicular | vertical to the longitudinal direction of the wiring duct which concerns on the embodiment. 本発明の第7の実施形態に係る配線ダクトの、長手方向に垂直な断面を示す断面図。Sectional drawing which shows the cross section perpendicular | vertical to a longitudinal direction of the wiring duct which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係る配線ダクトシステムと、複数の配線ダクトを接続する配線ダクト用接続部材とを示す斜視図。The perspective view which shows the wiring duct system which concerns on the 8th Embodiment of this invention, and the connection member for wiring ducts which connects several wiring ducts. 同実施形態に係る配線ダクトシステムの構成図であって、電極対に電流が流れることにより発生する磁束の向きを示す図。It is a block diagram of the wiring duct system which concerns on the embodiment, Comprising: The figure which shows direction of the magnetic flux which generate | occur | produces when an electric current flows into an electrode pair. 本発明に係る配線ダクトの変形例を示す断面図。Sectional drawing which shows the modification of the wiring duct which concerns on this invention. 本発明に係る配線ダクトの変形例を示す断面図。Sectional drawing which shows the modification of the wiring duct which concerns on this invention. 本発明に係る配線ダクトの変形例を示す断面図。Sectional drawing which shows the modification of the wiring duct which concerns on this invention. 本発明に係る配線ダクトの変形例を示す断面図。Sectional drawing which shows the modification of the wiring duct which concerns on this invention. 本発明に係る配線ダクトの変形例を示す断面図。Sectional drawing which shows the modification of the wiring duct which concerns on this invention. 本発明に係る配線ダクトの変形例を示す断面図。Sectional drawing which shows the modification of the wiring duct which concerns on this invention. 本発明に係る配線ダクトの変形例を示す断面図。Sectional drawing which shows the modification of the wiring duct which concerns on this invention. 本発明の第9実施形態の配線ダクトについて、(a)は断面図、(b)は側面図、(c)は底面図、(d)は斜視図。About the wiring duct of 9th Embodiment of this invention, (a) is sectional drawing, (b) is a side view, (c) is a bottom view, (d) is a perspective view. 同実施形態の配線ダクトに用いる接続プラグについて、(a)反導線側からの斜視図、(b)は導線側からの斜視図。About the connection plug used for the wiring duct of the embodiment, (a) a perspective view from the non-conductive wire side, (b) is a perspective view from the conductive wire side. 同実施形態の配線ダクトに用いる接続プラグについて、(a)は分解斜視図、(b)および(c)は断面図。About the connection plug used for the wiring duct of the embodiment, (a) is an exploded perspective view, (b) and (c) are sectional views. 同実施形態の配線ダクトに用いる接続プラグについて、配線ダクトに接続された状態を示す断面図。Sectional drawing which shows the state connected to the wiring duct about the connection plug used for the wiring duct of the embodiment. 本発明の第10実施形態の配線ダクトについて、配線ダクトの断面図。Sectional drawing of a wiring duct about the wiring duct of 10th Embodiment of this invention. 本発明のその他の実施形態の配線ダクトについて、配線ダクトの断面図。Sectional drawing of a wiring duct about the wiring duct of other embodiment of this invention.
 (第1の実施形態)
 本発明を具体化した配線ダクトの一実施形態を図1を用いて、以下に説明する。なお、配線ダクトの基本的構造および使用方法は従来と同様であるため、その説明を省略し、改善部分のみ詳説する。
 図1(a)~(d)に示すように、配線ダクトは、一方の側面である底部15に長手方向に沿って開口した連通孔17を有する、略角筒状の外観を有する。この底部15の反対側面が天井などに固定される被固定部14であり、被固定部14と底部15とを連結する部分が連結部16である。この連結部16の内周面の一方面からは、短手方向において外方から内方に向ってフランジ18Aが延設されており、フランジ18Aの内方の端部には商用電源を給電するための長尺の電力供給用配線13Aが長手方向に沿って配置されている。従って、この配線ダクトに電気的に機器を接続する場合は、接続される機器の電気接点を連通孔17を介してダクト本体内部に挿入し電力供給用配線13Aに接続する。
 また同様に、この連結部16の内周面の他方面からは、短手方向において外方から内方に向ってフランジ18Bが延設されており、フランジ18Bの内方の端部には通信信号を給電するための長尺の通信用配線13Bが長手方向に沿って配置されている。従って、この配線ダクトに通信機器を接続する場合は、接続される機器の通信用接点を連通孔17を介してダクト本体内部に挿入し通信用配線13Bに接続する。
 ここで、電力供給用配線13Aと通信用配線13Bとの最短距離は6cmである。言い換えると、電力供給用配線13Aと通信用配線13Bとの間には6cmの間隔dが備えられることが特徴である。この間隔dが備えられることにより、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制することができる。
 この間隔dの大きさは、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制することができる範囲で任意に決定することができる。従って、電力供給用配線13Aにかけられている電圧の大きさや、通信用配線13Bに求められる品質によって合目的的に決定される。例えば、電力として通常の家庭用電力に用いられる100V交流を用いるときは、間隔dを5cm以上とすることにより多対加入者線路の平均的漏話減衰量と同等である信号周波数1MHzにおいて平均52dB以上の近端減衰量が確保できる(2002年電子情報通信学会総合大会 論文B−8−32「電力線ケーブルから宅内通信線への漏話減衰量」)。また、間隔dが10cm以上であれば、50dB程度の漏話減衰量となる(同上)。従って、間隔dの大きさは、好ましくは5cm以上であり、一層好ましくは、10cm以上である。
 上記実施形態の配線ダクトによれば、以下のような効果を得ることができる。
 (1)上記配線ダクトによると、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制するための間隔dが、電力供給用配線13Aと通信用配線13Bとの間に備えられるため、電力供給用配線13Aから発する誘導磁界を原因とするノイズが通信用配線13Bに発生することを抑制することができる。
 (第2の実施形態)
 本発明を具体化した配線ダクトの第2の実施形態を図2を用いて、以下に説明する。なお、配線ダクトの基本的構造および使用方法は従来および第1の実施形態と同様であるため、その説明を省略し、特徴部分のみ詳説する。
 図2に示すように、配線ダクトは、一方の側面である底部15に長手方向に沿って開口した連通孔17を有する、略角筒状の外観を有する。この底部15の反対側面が天井などに固定される被固定部14であり、被固定部14と底部15とを連結する部分が連結部16である。被固定部14の内周面中央部からは、遮断壁19が被固定部側から底部側に向って延設されている。この遮断壁19は金属性の心材21を樹脂で被服して形成されており、電磁波を遮断する効果を有する。また、特に図示しないが、遮断壁19は接地されているため、誘導磁界を遮蔽する効果が一層大きくなっている。従って、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することをより一層抑制できる。
 被固定部14の内周面の遮断壁19を挟んで一方面からは、被固定部側から底部側に向ってフランジ18Aが延設されている。フランジ18Aの内方の端部には商用電源を給電するための長尺の電力供給用配線13Aが長手方向に沿って配置されている。従って、この配線ダクトに電気的に機器を接続する場合は、接続される機器の電気接点を連通孔17を介してダクト本体内部に挿入し電力供給用配線13Aに接続する。
 被固定部14の内周面の遮断壁19を挟んで他方面からは、被固定部側から底部側に向ってフランジ18Bが延設されている。フランジ18Bの内方の端部には通信信号を給電するための長尺の通信用配線13Bが長手方向に沿って配置されている。従って、この配線ダクトに通信機器を接続する場合は、接続される機器の通信用接点を連通孔17を介してダクト本体内部に挿入し通信用配線13Bに接続する。
 ここで、電力供給用配線13Aと通信用配線13Bとの最短距離は4cmである。言い換えると、電力供給用配線13Aと通信用配線13Bとの間には4cmの間隔dが備えられている。この間隔dが備えられることにより、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制することができる。
 この間隔dの大きさは、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生を抑制することができる範囲で任意に決定することができる。従って、電力供給用配線13Aにかけられている電圧の大きさや、通信用配線13Bに求められる品質によって合目的的に決定される。上述のように、遮断壁19がなければ、電力として通常の家庭用電力に用いられる100V交流を用いるときは、間隔dを5cm以上とすることにより多対加入者線路の平均的漏話減衰量と同等である信号周波数1MHzにおいて平均52dB以上の近端減衰量が確保できる。第2の実施形態においては、電磁波を遮断する効果を有する遮断壁19を更に用いることにより、間隔dの大きさが、5cm未満であっても第1の実施形態と同等の効果を得ている。従って、配線ダクト全体の大きさを小さくすることができる。
 上記実施形態の配線ダクトによれば、第1の実施形態における(1)の効果に加えて以下の効果を得ることができる。
 (2)上記配線ダクトによると、電力供給用配線13Aと通信用配線13Bとの間に電磁波を遮断する効果を有する遮断壁が更に設けられているため、遮断壁19が設けられていない場合に比して上記間隔を小さくしても、ノイズが通信用配線に発生することを同等に抑制することができる。そのため、配線ダクト全体のサイズを小さくすることが可能となり、省スペース化、コストダウンに資する。
 (3)遮断壁19は接地されているため、誘導磁界を遮蔽する効果が一層大きくなっている。従って、電力供給用配線を原因とする誘導ノイズが通信用配線に発生することをより一層抑制できる。従って、同等の抑制効果を得るために上記間隔をより一層小さくすることが可能となる。
 (第3の実施形態)
 本発明を具体化した配線ダクトの第3の実施形態を図3を用いて、以下に説明する。なお、配線ダクトの基本的構造および使用方法は従来および第1,第2の実施形態と同様であるため、その説明を省略し、特徴部分のみ詳説する。
 図3に示すように、配線ダクトは、一方の側面である底部15に長手方向に沿って開口した連通孔17を有する、略角筒状の外観を有する。この底部15の反対側面が天井などに固定される被固定部14であり、被固定部14と底部15とを連結する部分が連結部16である。被固定部14の内周面中央部からは、遮断壁19が被固定部側から底部側に向って延設されている。底部15、被固定部14、連結部16および遮断壁19は、金属性の心材21を樹脂で被服して形成されており、電磁波を遮断する効果を有する。
 底部15の内周面の遮断壁19を挟んで一方の連結部16の内周面からは、短手方向において外方から内方に向ってフランジ18Aが延設されており、フランジ18Aの内方の端部には商用電源を給電するための長尺の電力供給用配線13Aが長手方向に沿って配置されている。従って、連通孔17部分をのぞいて、電力供給用配線13Aは、電磁波を遮断する効果を有する底部15、被固定部14、連結部16および遮断壁19からなる遮断部材により取り囲まれている。また、この配線ダクトに電気的に機器を接続する場合は、接続される機器の電気接点を連通孔17を介してダクト本体内部に挿入し電力供給用配線13Aに接続する。
 底部15の内周面の遮断壁19を挟んで他方の連結部16の内周面からは、短手方向において外方から内方に向ってフランジ18Bが延設されており、フランジ18Bの内方の端部には通信信号を給電するための長尺の通信用配線13Bが長手方向に沿って配置されている。従って、連通孔17部分をのぞいて、通信用配線13Bは、電磁波を遮断する効果を有する底部15、被固定部14、連結部16および遮断壁19からなる遮断部材により取り囲まれている。なお、特に図示しないが、遮断部材は接地されているため、誘導磁界を遮蔽する効果が一層大きくなっている。従って、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することをより一層抑制できる。また、この配線ダクトに通信機器を接続する場合は、接続される機器の通信用接点を連通孔17を介してダクト本体内部に挿入し通信用配線13Bに接続する。
 ここで、電力供給用配線13Aと通信用配線13Bとの最短距離は4cmである。言い換えると、電力供給用配線13Aと通信用配線13Bとの間には4cmの間隔dが備えられている。この間隔dが備えられることにより、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制することができる。
 この間隔dの大きさは、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生を抑制することができる範囲で任意に決定することができる。従って、電力供給用配線13Aにかけられている電圧の大きさや、通信用配線13Bに求められる品質によって合目的的に決定される。上述のように、遮断部材がなければ、電力として通常の家庭用電力に用いられる100V交流を用いるときは、間隔dを5cm以上とすることにより多対加入者線路の平均的漏話減衰量と同等である信号周波数1MHzにおいて平均52dB以上の近端減衰量が確保できる。第3の実施形態においては、電磁波を遮断する効果を有する遮断部材により電力供給用配線13Aおよび通信用配線13Bが取り囲まれているため、間隔dの大きさが、5cm未満であっても第1の実施形態と同等の効果を得ている。従って、配線ダクト全体の大きさを小さくすることができる。
 上記実施形態の配線ダクトによれば、第2の実施形態における(2)および(3)の効果に変えて以下の効果を得ることができる。
 (2)上記配線ダクトによると、電力供給用配線13Aおよび通信用配線13Bのいずれもが電磁波を遮断する効果を有する電磁波遮断部材により取り囲まれているため、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを一層抑制できる。従って、同等の抑制効果を得るために上記間隔を一層小さくすることが可能となる。
 (3)遮断部材は接地されているため、誘導磁界を遮蔽する効果が一層大きくなっている。従って、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することをより一層抑制できる。
 (第4の実施形態)
 本発明を具体化した配線ダクトの一実施形態を図4を用いて、以下に説明する。なお、配線ダクトの基本的構造および使用方法は従来および第1~第3の実施形態と同様であるため、その説明を省略し、特徴部分のみ詳説する。
 図4(a),(b)に示すように、配線ダクトは、一方の側面である底部15に長手方向に沿って開口した連通孔17を有する、略角筒状の外観を有する。この底部15の反対側面が天井などに固定される被固定部14であり、被固定部14と底部15とを端部で連結する部分が連結部16である。連結部16の内周面からは、短手方向において外方から内方に向ってフランジ18Aが延設されており、フランジ18Aの内方の端部には商用電源を給電するための長尺の電力供給用配線13Aが長手方向に沿って配置されている。従って、この配線ダクトに電気的に機器を接続する場合は、接続される機器の電気接点を連通孔17を介してダクト本体内部に挿入し電力供給用配線13Aに接続する。
 被固定部14の内周面中央部からは、被固定部側から底部側に向ってフランジ18Bが延設されており、フランジ18Bの底部側の端部には通信信号を給電するための長尺の通信用配線13Bが2本、長手方向に沿って配置されている。図4(a),(b)に示すように、この2本の通信用配線13Bは互いに撚り合されている。そのため、通信用配線13Bから発生するノイズをも抑制することが可能となる。従って、ノイズが通信用配線に発生することを一層抑制することができる。
 本実施形態においては、電力供給用配線13Aと通信用配線13Bとの最短距離は5cmである。言い換えると、電力供給用配線13Aと通信用配線13Bとの間には5cmの間隔dが備えられている。この間隔dが備えられることにより、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制することができる。
 この間隔dの大きさは、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生を抑制することができる範囲で任意に決定することができる。従って、電力供給用配線13Aにかけられている電圧の大きさや、通信用配線13Bに求められる品質によって合目的的に決定される。上述のように、電力として通常の家庭用電力に用いられる100V交流を用いるときは、間隔dを5cm以上とすることにより多対加入者線路の平均的漏話減衰量と同等である信号周波数1MHzにおいて平均52dB以上の近端減衰量が確保できる。第4の実施形態においては係る効果に加え、通信用配線13B自身が発生させるノイズをも減少させることができ、誘導ノイズが通信用配線13Bに発生することを一層抑制することができる。
 上記実施形態の配線ダクトによれば、第1の実施形態における(1)の効果に加えて以下の効果を得ることができる。
 (4)上記配線ダクトによると、複数の通信用配線13Bが互いに撚り合されているため、通信用配線13Bから発生するノイズをも抑制することが可能となる。従って、ノイズが通信用配線13Bに発生することを一層抑制することができる。
 なお、上記実施形態は以下のように変更してもよい。
 第1の実施形態において、フランジ18A、フランジ18B、電力供給用配線13Aおよび通信用配線13Bの位置関係は図1に示した配置に限定されない。要は、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制するための間隔dが、電力供給用配線13Aと通信用配線13Bとの間に備えられれば良いのであり、用途、によって他の配置であっても良い。例えば、図5~図8に示したような位置関係であっても良い。
 また同様に第2の実施形態において、フランジ18A、フランジ18B、電力供給用配線13Aおよび通信用配線13Bの位置関係は図2に示した配置に限定されない。要は、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制するための間隔dが、電力供給用配線13Aと通信用配線13Bとの間に備えられているとともに、電力供給用配線13Aと通信用配線13Bとの間に遮断壁19が設けられていれば良いのであり、用途、によって他の配置であっても良い。例えば、図9および図10に示したような位置関係であっても良い。
 また同様に第3の実施形態において、フランジ18A、フランジ18B、電力供給用配線13Aおよび通信用配線13Bの位置関係は図3に示した配置に限定されない。要は、電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制するための間隔dが、電力供給用配線13Aと通信用配線13Bとの間に備えられているとともに、電力供給用配線13Aまたは通信用配線13Bの少なくとも一方が電磁波遮断部材により取り囲まれていれば良いのであり、用途によって他の配置であっても良い。通信用配線13Bからの信号取出しが、任意の場所から出なくとも良い場合は、例えば、図11および図12に示したように、通信用配線13Bが電磁波遮断部材により完全に取り囲まれていても良い。この場合電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを一層抑制できる。
 上記実施形態において、遮断壁19および電磁波遮断部材は接地されているが、必須ではない。電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制する効果が十分であれば、接地を省略することによりコストダウンしうる。
 また、第1~第4の実施形態における構成は併用しても良い。例えば、遮断壁19を設けるとともに、2本の通信用配線13Bを互いに撚り合されている構造としてもよいし、2本の通信用配線13Bを互いに撚り合されている構造とするとともに、同通信用配線13Bを電磁波遮断部材により取り囲まれている構造としても良い。係る構造とすることにより場合電力供給用配線13Aを原因とする誘導ノイズが通信用配線13Bに発生することを抑制できるとともに、通信用配線13Bから発生するノイズをも抑制することができる。
 (第5の実施形態)
 本発明を具体化した配線ダクトの第5の実施形態について、図16及び図17を参照しながら説明する。また、配線ダクトの基本的構造及び使用方法は従来及び第1~第4の実施形態と同様であるため、その説明を省略し、特徴部分のみ詳説する。
 図16に示すように、工場や店舗等の屋内における天井や壁等の設置面(図示略)に敷設される配線ダクト201は、所定の直線方向(以下、「長手方向L」)に延びた成形体である。具体的には、配線ダクト201は、長手方向Lの寸法が例えば1~3mである直線状の成形体である。
 図16及び図17に示すように、配線ダクト201は、金属材料からなるコア210と、コア210に設けられた絶縁材料からなる絶縁体220と、絶縁体220により支持された複数の電極対230,240とを備えている。コア210及び絶縁体220及び電極対230,240は、長手方向Lに沿って延びている。即ち、コア210の長手方向及び電極対230,240の長手方向は、配線ダクト201の長手方向Lである。
 配線ダクト201は、電極対230,240を収納する内部空間を有するとともに、この内部空間に連続する開口部201aを有している。所定方向に向けて開口する開口部201aは、長手方向Lにおいて延びて設けられている。従って、このような開口部201aを通して配線ダクト用プラグ(不図示)を電極対230,240に接続することによって、配線ダクト用プラグを介して電極対230,240に接続される電気機器や通信機器を、配線ダクト201に沿って屋内に設けることができる。
 図17に示すように、配線ダクト201の芯材であるコア210は、配線ダクト201が設置される設置面に向かい合わせて設けられる基部211を有している。長手方向Lに垂直な断面において左右方向に延びる平板状の基部211は、長手方向Lに沿って延びている。基部211には貫通孔(不図示)が設けられ、この貫通孔を挿通させたねじを用いて、基部211を設置面としての天井に対して締め付けることにより、基部211が天井に固定されて、配線ダクト201が設置面である天井に敷設される。
 以下、配線ダクト201の説明において、上方とは、基部211を天井に向かい合わせたときにその天井に向かう方向である。上方及び下方を含む上下方向は、配線ダクト201が延びる方向である長手方向Lに対して直交する方向である。また、長手方向Lと上下方向とに直交する方向を左右方向として、左方及び右方は図中の矢印で示す方向をいう。
 長手方向Lに垂直な断面において略四角形の外形を有するコア210は、右側に設けられる右側壁部212と、左側に設けられる左側壁部213と、上側に設けられる基部211と向き合うように下側に設けられる対向壁部214とを有している。
 基部211の右側端部に接続されている右側壁部212は、基部211から上方の反対側方向である下方に向けて延びるとともに、長手方向Lに沿って延びている。また、基部211の左側端部に接続されている左側壁部213は、基部211から下方に向けて延びるとともに、長手方向Lに沿って延びている。従って、右側壁部212及び左側壁部213は、長手方向Lに直交する左右方向において互いに対向するとともに、長手方向Lに沿って平行に設けられる。
 右側壁部212の下側端部及び左側壁部213の下側端部に接続されている対向壁部214は、長手方向Lに沿って延びている。右側壁部212の下側端部に接続された対向壁部214は、右側壁部212から左方に向けて延びている。左側壁部213の下側端部に接続された対向壁部214は、左側壁部213から右方に向けて延びている。従って、基部211及び対向壁部214は、基部211が天井に設けられたときに、長手方向Lに直交する上下方向において互いに対向するとともに、長手方向Lに沿って平行に設けられる。
 以上のように構成されたコア210は、電極対230,240が設けられた内部空間を有している。そして、コア210には内部空間を開放する開口部201aが設けられている。配線ダクト201のコア210が有する開口部201aは、対向壁部214に設けられている。従って、基部211が天井に設けられたときには、開口部201aは下方に向けて開口して、コア210の内部空間が下方に向けて開放された状態となる。
 基部211と右側壁部212と左側壁部213と対向壁部214とが一体的に形成されているコア210は、非磁性体の金属材料であるアルミニウムからなる。図16に示すコア210は、例えば鋳造により形成することができる。
 基部211の左右方向における中央部には、基部211から下方に向けて延びる遮断壁260が接続されている。左右方向に垂直な上下方向に延びる遮断壁260は、金属材料からなるとともに、左右方向に間隔を空けて設けられた複数の電極対230,240の間に設けられている。コア210の基部211に一体的に形成されている遮断壁260は、コア210と同じ材料であるアルミニウムからなる。
 コア210に設けられた絶縁体220は、電極対230,240とコア210とが接続されないようにコア210の表面を覆うように設けられている。そして、絶縁体220は、コア210の内部において電極対230,240を支持している。従って、コア210は、電極対230,240と絶縁され、電磁シールドとして機能する。なお、絶縁体220は、コア210の表面全体に設けられていなくてもよい。
 コア210の内部に設けられた複数の電極対230,240は、上述のごとく、長手方向Lに対して垂直な方向である左右方向において間隔を空けて設けられている。電極対230は、電極対240よりも右方に位置するように設けられ、電極対240は、電極対230よりも左方に位置するように設けられている。
 1つの電極対230は、コア210の右側壁部212に設けられた絶縁体220によって支持されている2つの導体231,232により構成されている。長手方向Lに延びる導体231,232は、長手方向L及び左右方向に直交する上下方向において間隔を空けて設けられている。即ち、導体231は、導体232よりも上方に位置するように設けられ、導体232は、導体231よりも下方に位置するように設けられている。
 また、1つの電極対240は、コア210の左側壁部213に設けられた絶縁体220によって支持されている2つの導体241,242により構成されている。導体241,242も、左右方向右に垂直な方向である上下方向において間隔を空けて設けられている。即ち、導体241は、導体242よりも上方に位置するように設けられ、導体242は、導体241よりも下方に位置するように設けられている。
 以上のように、2つの導体により電極対230,240の各々が構成され、電極対230,240が備える導体231,232,241,242は、配線ダクト201内において露出している。具体的には、導体231,232は、その左側表面が露出するように設けられ、導体241,242は、その右側表面が露出するように設けられている。
 配線ダクト201において、電極対240を構成する導体241の静電容量と、電極対240を構成する導体242の静電容量は、同じとなるように構成されている。即ち、1つの電極対240を構成する導体241,242の静電容量は互いに等しい。
 導体241の静電容量は、導体241から導体241と向かい合う導体であるコア210及び導体242までの距離、導体241とコア210及び導体242とが向かい合う部分の面積、及び導体241とコア210及び導体242との間に設けられた絶縁体220の誘電率に依存する。同様に、導体242の静電容量は、導体242から導体242と向かい合う導体であるコア210及び導体241までの距離、導体242とコア210及び導体241とが向かい合う部分の面積、及び導体242とコア210及び導体241との間に設けられた絶縁体220の誘電率に依存する。従って、コア210及び絶縁体220及び導体241,242の形状と配置が調整されることによって、導体241,242の静電容量が互いに等しくなっている。
 導体241の静電容量の算出は、例えば図17に示すように、長手方向Lに垂直な断面において、導体241の中心から所定範囲A1内における構造に基づいて算出することができる。また、導体241の静電容量の比較対象となる導体242の静電容量の算出も、長手方向Lに垂直な断面において、導体242の中心から所定範囲A2内における構造に基づいて算出することができる。
 以上のようにして、ツイストペアケーブルのような構造を有していない配線ダクト201においても、導体241,242の平衡度を高めることができる。なお、断面形状が左右方向において線対称となるようにコア210が形成され、左右方向におけるコア210の中心線を軸として電極対240と線対称となる位置に電極対230が設けられているため、電極対230を構成する導体231,232の静電容量も互いに等しい。
 本実施形態によれば、電極対240が平衡接続される信号伝送路として用いられ、電極対230が電力伝送路として用いられた場合に、以下の効果を奏することができる。
 (1)複数の電極対230,240が所定方向である左右方向において間隔を空けて設けられ、電極対230を構成する2つの導体231,232が、左右方向に垂直な方向である上下方向において間隔を空けて設けられる。このため、導体231,232が左右方向に間隔を空けて設けられる場合に比べて、配線ダクト201の小型化を図ることができる。また、電極対240を構成する2つの導体241,242も、上下方向において間隔を空けて設けられるため、導体241,242が左右方向に間隔を空けて設けられる場合に比べて、配線ダクト201の小型化を図ることができる。そして、複数の電極対230,240の間に、上下方向に延びるとともに金属材料からなる遮断壁260が設けられている。このため、遮断壁260によって、複数の電極対230,240の電磁結合を低減し、複数の電極対230,240における電磁干渉を抑制することができる。
 (2)コア210に遮断壁260が一体的に形成されている。このため、コア210と遮断壁260との間に隙間を設けないようにして、コア210と遮断壁260とが分離されている場合に比べて、複数の電極対230,240における電磁干渉を抑制することができる。
 (3)コア210が非磁性体(強磁性体でない磁性体)の金属材料であるアルミニウムからなる。このため、例えばコア210が強磁性体である鉄からなる場合に比べて、配線ダクト201の外部への電磁波を遮断することができる。
 (4)コア210と遮断壁260とが非磁性体の金属材料であるアルミニウムからなる。このため、例えばコア210と遮断壁260とが強磁性体である鉄からなる場合に比べて、複数の電極対230,240における電磁干渉を抑制することができる。
 (5)1つの電極対240を構成する2つの導体241,242の静電容量が互いに等しいため、2つの導体241,242の平衡度を高めて、複数の電極対230,240における電磁干渉を抑制することができる。
 また、他の1つの電極対230を構成する2つの導体231,232の静電容量が互いに等しい。このため、2つの導体231,232により平衡接続される信号伝送路が形成される場合であっても、複数の電極対230,240における電磁干渉を抑制することができる。
 (第6の実施形態)
 次に、本発明の一実施形態である第2の実施形態について、図18及び図19を参照しながら説明する。なお、第1の実施形態と同様の構成については、同一の符号を付してその重複する説明を省略または簡略化して説明する。
 図18に示すように、本実施形態に係る配線ダクト201は、内部空間に連続する2つの開口部201b,201cを有している。所定方向に向けて開口する開口部201b,201cは、長手方向Lにおいて延びて設けられている。
 図19に示すように、本実施形態に係るコア210は、電極対230が設けられた内部空間S1と、電極対240が設けられた内部空間S2とを有している。このように電極対230,240が設けられた複数の内部空間S1,S2は、遮断壁260により区切られている。
 本実施形態に係る遮断壁260は、上記第5の実施形態に比べて左右方向に長く延びている対向壁部214の中央部に接続されて、遮断壁260により基部211と対向壁部214とが接続されている。従って、長手方向Lに垂直な断面において、内部空間S1と内部空間S2とが連続していない構成となっている。
 以上のように構成されたコア10は、電極対230,240が設けられた複数の内部空間S1,S2を有している。そして、コア210には内部空間S1,S2を開放する複数の開口部201b,201cが設けられている。
 長手方向Lに垂直な断面形状が所定方向である左右方向において線対称となるようにコア210が形成されることにより、複数の開口部201b,201cは左右方向において互いに異なる方向に向けて開口している。即ち、内部空間S1を開放する開口部1bは右側壁部212に設けられ、内部空間S2を開放する開口部201cは左側壁部213に設けられている。
 従って、基部211が天井に設けられたときには、開口部201bは右方に向けて開口して、コア210の内部空間S1が右方に向けて開放された状態となる。さらに、開口部201cは左方に向けて開口して、コア210の内部空間S2が左方に向けて開放された状態となる。
 また、本実施形態に係るコア210は、長手方向Lに垂直な断面において、開口部201bを二等分する中心線Cを軸として線対称となるように形成されている。なお、左右方向において線対称となるようにコア210が形成されているため、コア210は、長手方向Lに垂直な断面において、開口部201cを二等分する中心線Cを軸として線対称となるようにも形成されている。
 即ち、本実施形態に係る右側壁部212は、基部211の右側端部だけでなく、対向壁部214の右側端部にも接続されて設けられている。対向壁部214の右側端部に接続されている右側壁部212は、対向壁部214から上方に向けて延びるとともに、長手方向Lに沿って延びている。
 また、右側壁部212と同様に、左側壁部213も、基部211の左側端部だけでなく、対向壁部214の左側端部に接続されて設けられている。対向壁部214の左側端部に接続されている右側壁部212は、対向壁部214から上方に向けて延びるとともに、長手方向Lに沿って延びている。
 本実施形態に係る右側壁部212及び左側壁部213は、所望の大きさの開口部201b,201cが形成されるために、上記第5の実施形態に比べて上下方向に延びている長さが短くなるように形成されている。
 本実施形態においては、導体231,232は、遮断壁260に設けられた絶縁体220によって支持されるとともに、導体241,242も、遮断壁260に設けられた絶縁体220によって支持されている。従って、本実施形態においては、導体231,232は、その右側表面が露出するように設けられ、導体241,242は、その左側表面が露出するように設けられている。
 2つの導体231,232は、長手方向Lに垂直な断面において、開口部201bを二等分する中心線Cを軸として線対称となる位置に配設されている。また、2つの導体241,242は、長手方向Lに垂直な断面において、開口部201cを二等分する中心線Cを軸として線対称となる位置に配設されている。
 以上のよう構成されている本実施形態に係る配線ダクト201においても、電極対230を構成する導体231,232の静電容量は互いに等しく、電極対240を構成する導体241,242の静電容量も互いに等しい。
 本実施形態によれば、上記第5の実施形態の(1)~(5)の効果に加えて、以下の効果を奏することができる。
 (6)コア210は、遮断壁260により区切られるとともに、電極対230,240が設けられた複数の内部空間S1,S2を有している。そして、コア210には、内部空間S1,S2を開放する複数の開口部201b,201cが複数設けられ、複数の開口部201b,201cは互いに異なる方向に向けて開口している。このため、複数の電極対230,240の電磁結合をより低減し、複数の電極対230,240における電磁干渉をより抑制することができる。
 (7)断面形状が所定方向である左右方向において線対称となるようにコア210が形成されることにより、複数の開口部201b,201cが互いに異なる方向に向けて開口している。このような構成により、左右方向における一方である右方に向けて開口部201bを開口させ、左右方向における他方である左方に向けて開口部201cを開口させることができる。
 (8)コア210には、電極対240が設けられた内部空間S2を開放する開口部201cが設けられ、コア210が、長手方向Lに垂直な断面において、開口部201cを二等分する中心線Cを軸として線対称となるように形成されている。そして、1つの電極対240を構成する2つの導体241,242が、コア210の長手方向に垂直な断面において、中心線Cを軸として線対称となる位置に配設されている。このような構成により、1つの電極対240を構成する2つの導体241,242の静電容量を、簡単な形状で互いに等しくすることができる。
 また、コア210には、電極対230が設けられた内部空間S1を開放する開口部201bが設けられ、コア210が、長手方向Lに垂直な断面において、開口部201bを二等分する中心線Cを軸として線対称となるように形成されている。そして、他の1つの電極対230を構成する2つの導体231,232も、コア210の長手方向に垂直な断面において、中心線Cを軸として線対称となる位置に配設されている。従って、他の1つの電極対230を構成する2つの導体231,232の静電容量も、簡単な形状で互いに等しくすることができる。
 (第7の実施形態)
 次に、本発明の一実施形態である第7の実施形態について、図20を参照しながら説明する。なお、第5の実施形態と同様の構成については、同一の符号を付してその重複する説明を省略または簡略化して説明する。
 図20に示すように、本実施形態に係る配線ダクト201は、第5の実施形態に係る遮断壁260が設けられていない構成である。従って、上記(1)の効果を得ることはできないが、導体241の静電容量と、電極対240を構成する導体242の静電容量とが同じとなるように構成されているため、上記(5)の効果を得ることができる。
 本実施形態によれば、電極対240が平衡接続される信号伝送路として用いられ、電極対230が電力伝送路として用いられた場合に、以下の効果を奏することができる。
 (9)複数の電極対230,240が所定方向である左右方向において間隔を空けて設けられ、電極対230を構成する2つの導体231,232が、左右方向に垂直な方向である上下方向において間隔を空けて設けられる。このため、導体231,232が左右方向に間隔を空けて設けられる場合に比べて、配線ダクト201の小型化を図ることができる。また、電極対240を構成する2つの導体241,242も、上下方向において間隔を空けて設けられるため、導体241,242が左右方向に間隔を空けて設けられる場合に比べて、配線ダクト201の小型化を図ることができる。そして、1つの電極対240を構成する2つの導体241,242の静電容量が互いに等しい。このため、2つの導体241,242の平衡度を高めて、複数の電極対230,240における電磁干渉を抑制することができる。
 また、他の1つの電極対230を構成する2つの導体231,232の静電容量が互いに等しい。このため、2つの導体231,232により平衡接続される信号伝送路が形成される場合であっても、複数の電極対230,240における電磁干渉を抑制することができる。
 (第8の実施形態)
 次に、本発明の一実施形態である第4の実施形態について、図21及び図22を参照しながら説明する。なお、本実施形態に係る配線ダクト201の構成については、上記第1の実施形態と同様であるため、その説明を省略する。
 図21に示すように、本実施形態に係る発明は、上記第5の実施形態に係る配線ダクト201を複数備え、配線ダクト201の各々が備える電極対240が互いに接続されることにより信号伝送路204が形成される配線ダクトシステムである。
 配線ダクトシステムは、複数の配線ダクト201を互いに接続するための配線ダクト用接続部材であるダクト接続部材207を備えている。ダクト接続部材207が、長手方向Lから配線ダクト201に挿入されることにより、配線ダクト201と他の配線ダクト201とが接続される。
 配線ダクト201と他の配線ダクト201とが接続されることにより、配線ダクト201の各々が備える電極対230が互いに接続されるとともに、配線ダクト201の各々が備える電極対230が互いに接続されるとともに、電極対240が互いに接続される。ダクト接続部材207を介して互いに接続された電極対230により電力伝送路203が形成されるとともに、ダクト接続部材207を介して互いに接続された電極対240により平衡接続される信号伝送路204が形成されている。
 本実施形態においては、信号伝送路204は、この信号伝送路204を形成する電極対240に電流が流れることにより発生する磁束の向きを反転させる構造を有している。図22は、図21における配線ダクトシステムにおいて、磁束の向きが反転する構造を示す模式図である。
 図22に示すように、信号伝送路204を構成する2つの導体241,242は交差するように接続されている。具体的には、2つの配線ダクト201を接続するダクト接続部材207により、一方の配線ダクト201が備える電極対240の導体241が、他方の配線ダクト201が備える電極対240の導体242に接続されている。そして、一方の配線ダクト201が備える電極対240の導体242が、他方の配線ダクト201が備える電極対240の導体241に接続されている。
 以上のようにして電極対240の導体241,242が接続されることにより、ダクト接続部材207により、電極対240に電流が流れることにより発生する磁束の向きが反転される構成となっている。
 なお、交流電力を伝送する電力伝送路203において、2つの導体231,232は交差するように接続されていない。即ち、ダクト接続部材7により、2つの配線ダクト201が備える電極対230の各々の導体231が互いに接続され、電極対230の各々の導体232が互いに接続されている。
 本実施形態によれば、以下の効果を奏することができる。
 (10)配線ダクト201の各々が備える電極対240が互いに接続されることにより形成される信号伝送路204は、電極対240に電流が流れることにより発生する磁束の向きを反転させる構造を有している。このため、電極対240に電流が流れることにより発生する磁束を打ち消して電磁結合を低減することができ、複数の電極対230,240における電磁干渉をより一層抑制することができる。
 (11)配線ダクト用接続部材であるダクト接続部材207により、電極対240に電流が流れることにより発生する磁束の向きが反転される。このため、配線ダクト201が電極対240に電流が流れることにより発生する磁束の向きを反転させる構造を有していなくても、上記(10)の効果を奏する配線ダクトシステムを構成することができる。
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨に基づいて種々の設計変更をすることが可能であり、それらを本発明の範囲から除外するものではない。例えば、上記実施形態を以下のように変更してもよく、以下の変更を組み合わせて実施してもよい。
 コア210及び遮断壁260を、アルミニウム以外の非磁性体の金属材料により形成してもよい。なお、上述のごとく、コア210及び遮断壁260は、非磁性体の金属材料により形成されることが好ましいが、非磁性体以外の金属材料により形成することもできる。
 例えば、上記第5の実施形態の変形例に係る図23に示すように、遮断壁260がコア210に接合されて、コア210に遮断壁260が一体的に形成されていてもよい。このような構成によれば、コア210と異なる材料を用いて遮断壁260を形成することができる。
 上記第5の実施形態の変形例に係る図24に示すように、コア210に一体的に形成される遮断壁260が、コア210が折り曲げられて加工されて形成されていてもよい。
 コア210と異なる部材により遮断壁260を構成した変形例に係る図10に示すように、コア210に接合することなく遮断壁260を設けることもできる。
 電極対240を構成する2つの導体241,242の形状及び配置を適宜変更してもよい。また、他の電極対230を構成する2つの導体231,232の形状及び配置を適宜変更してもよい。
 例えば図26に示すように、上記第5の実施形態に係るコア210の内部空間において、導体231,232,241,242が遮断壁260に設けられた絶縁体220によって支持されていてもよい。
 また、例えば図27に示すように、上記第6の実施形態に係るコア210の内部空間S1,S2において、導体231,232,241,242が遮断壁260以外の部位に設けられた絶縁体220によって支持されていてもよい。
 例えば、上記第5の実施形態の変形例に係る図28に示すように、導体231,232,241,242以外の導体233,243がコア210の内部に設けられていてもよい。電極対230,240を構成しない導体233,243は、接地極として構成されることが好ましい。
 配線ダクトが、3つ以上の電極対を備えていてもよい。3つ以上の電極対を備えた配線ダクトにおいては、遮断壁も複数設けられていることが好ましい。遮断壁の形状及び配置は適宜変更してもよい。
 配線ダクトが備える全ての電極対において、その電極対を構成する2つの導体の静電容量が互いに等しいことが好ましいが、配線ダクトが備える全ての電極対において、その電極対を構成する2つの導体の静電容量が互いに等しくなくてもよい。即ち、静電容量が同じである2つの導体により構成される電極対の他に、静電容量が互いに異なる2つの導体により構成される電極対を配線ダクトが備えていてもよい。
 例えば、上記第5の実施形態の変形例に係る図29に示すように、電極対230を構成する2つの導体231,232が左右方向において間隔を空けて設けられていてもよい。即ち、配線ダクトが備える全ての電極対において、その電極対を構成する2つの導体が、上下方向において間隔を空けて設けられていなくてもよい。但し、全ての電極対において、その電極を構成する2つの導体が上下方向において間隔を空けて設けられていることが最も好ましい。
 1つの電極対を構成する2つの導体が、上下方向において間隔を空けて設けられる場合に、それら2つの導体は、上下方向において一直線上に位置していなくてもよい。即ち、1つの電極対において、所定方向に垂直な方向において間隔を空けて設けられた2つの導体が、所定方向においても間隔が空けられて設けられていてもよい。
 上記第8の実施形態において、第5の実施形態に係る配線ダクト201以外の配線ダクトが互いに接続されていてもよい。例えば、第2または第3の実施形態に係る配線ダクト201が互いに接続される構成であってもよく、構造の異なる配線ダクトが互いに接続される構成であってもよい。
 上記第8の実施形態において、磁束の向きを反転させる構造を有する配線ダクト用接続部材は、2つの配線ダクト201を接続するダクト接続部材207でなくてもよい。例えば、1つの配線ダクト201と、2つの配線ダクト201とを接続する配線ダクト用接続部材が、磁束の向きを反転させる構造を有していてもよい。
 上記第8の実施形態において、配線ダクト用接続部材が磁束の向きを反転させる構造を有していなくてもよい。即ち、配線ダクトが、電極対に電流が流れることにより発生する磁束の向きを反転させる構造を有していてもよい。
 (第9実施形態)
 図30~32を用いて、本発明を具体化した配線ダクトおよび同配線ダクトに適合する電気機器の一実施形態であるプラグを以下に説明する。なお、以下の説明において、図30に示したように、配線ダクトが設置される被設置面の方向を上方、反対方向を下方とする。また、その他の方向についても、図30に示した方向および向き表示を使用する。
 図30(a)~(d)に示すように、配線ダクトのハウジング310は長手方向に伸びて設けられた開口部317を下方面に有する略角筒型を成している。具体的には、被設置面に固定される略長方形状の設置部311の2つの長辺から、2つの側壁部312,313が下方に伸びて設けられている。側壁部312の下方端と側壁部313の下方端とは接続されていないため、側壁部312の下方端と側壁部313の下方端との間が上述の開口部317となっている。また、ハウジング310の外周面のうち設置部311の上方面が、天井や壁などの被設置面に設置される設置面311aである。
 一方の側壁部313の内周面には、長手方向に伸びて設けられた凹溝である絶縁部材固定部314とプラグ固定部315とが設けられている。絶縁部材固定部314には、絶縁部材320を介して電力用導線331,332が上下方向に配列して固定されている。すなわち、電力用導線331,332は、設置面311aに対して、垂直な方向に配列されている。この電力用導線331,332は長手方向に伸びて設けられた板状の金属導体である。電力用導線331,332の一方面は絶縁部材320に固定されている。また、他方面は反導線側に向けて露出した露出面331s,332sとなっている。この露出面331s,332sにプラグの接点を接続することにより、導線系路上の任意の位置においてプラグに電力供給が可能となるように、この配線ダクトは構成されている。
 図31および図32に、この配線ダクトに接続されるプラグ350を示す。
 図31(a)に示すように、プラグ350の上方端部が配線ダクトの開口部317に挿入できる形態となっている。また、図示していないが、他の電気機器に電力を供給するためのコンセントが下方端面に設けられている。また、プラグ350の外装351の短手方向における反導線側にはレバー365が突出している。このレバー365を長手方向に移動させることにより、プラグ350を配線ダクトに固定させることができる固定状態と、配線ダクトから導線プラグを着脱することができる着脱可能状態とを切り替えることができる。
 図31(b)に示すように、プラグ350の外装351の短手方向における導線側には接点孔352および固定刃孔353が設けられている。前記固定状態において、接点孔352から接点が突出し、配線ダクトの導線と接続される。また同時に、固定刃孔353から固定刃が突出し、プラグ350を配線ダクトに固定する。一方、着脱可能状態においては、図に示されているように、接点および固定刃は外装内部に没入しているため、プラグ350の上方端部を配線ダクトの開口部へ挿入することが可能となる。
 図32(a)~(c)を用いてプラグ350の構造についてより詳細に説明する。図32(a)は外装351を取り外した状態における一部分解斜視図である。上下方向に伸びて設けられた回転軸360の上方端には、プラグ350を配線ダクトに固定するための固定刃361が備えられている。その下方には円筒カム362が設けられている。また、下端部はレバー365に接続されている。したがって、レバー365を切り替えると、回転軸360が、回転中心oを中心として回転する。
 一方、長手方向に伸びて設けられたスライダ370は、長手方向の両端部に設けられた上下方向の貫通孔である軸孔374に、基部340から上方に伸びて設けられた摺接軸341が挿入されているため、上下方向にのみ移動可能となっている。長手方向の中心部には、上下方向の貫通孔である回転軸孔375が設けられている。更に、回転軸孔375の内周面には、回転軸360の円筒カム362と噛合するとともに円筒カム362の回転運動を直進運動に変換するためのカム受け部376が形成されている。そのため回転軸360が回転運動すると円筒カム362を介して、スライダ370が上下方向に移動する。
 スライダ370の一軸孔374の周囲には、栓刃押部372および栓刃押部373が設けられている。スライダ370が上方に移動した状態において、この栓刃押部372と接触する位置に、栓刃381が備えられている。同様に、スライダ370が上方に移動した状態において、栓刃押部373と接触する位置に、栓刃385が備えられている。
 この栓刃381および栓刃385は上下方向に伸びて設けられるとともに、短手方向に弾性を有する板バネ構造の導電性部材である。栓刃381の上方端には接点382が備えられている。また、栓刃385の上方端には接点386が備えられている。栓刃381および栓刃385の下方端は不図示のコンセントに設けられた2つの差込口にそれぞれ電気的に接続されている。更に、栓刃押部372と栓刃381との接触を確実するための斜部383が、スライダ370の移動により栓刃押部372と接触する部分に設けられている。同様に、栓刃押部373と栓刃385との接触を確実するための斜部388が、スライダ370の移動により栓刃押部373と接触する部分に設けられている。
 図32(b)に示すように、着脱可能状態において、スライダ370は上下方向において下方に位置しているため、栓刃押部372は斜部383に接触しておらず、栓刃押部373は斜部388に接触していない。そのため、栓刃381および栓刃385のいずれにもスライダ370からの応力はかけられていない。従って、栓刃381および栓刃385が有する弾性力により接点382および接点386はいずれも接点孔352よりも反導線側に位置している。この状態で配線ダクトの開口部317からプラグの上部が配線ダクト内に挿入されていても、接点382は電力用導線332と電気的に接続されることはない。また、電力用導線331は接点386と電気的に接続されることはない。更に、回転軸360に備えられた固定刃361も外装351の内部に収納されているため、プラグ350が配線ダクトに固定されることもない。従って、配線ダクトの開口部317にプラグ350の上端部を自由に出し入れすることができる。
 脱着可能状態から固定状態への移行はレバー365の移動のみで行うことができる。レバー365を移動させることにより、レバー365に連動して回転軸360が回転する。この回転が円筒カム362とカム受け部376とによって直線運動に変換され、スライダ370を上方に移動させる。
 図32(c)に示すように、上方に移動したスライダ370の栓刃押部372が栓刃381を短手方向において導線側に押すため、接点382が導線側に移動し、接点孔352から導線側に突出する。同様に、上方に移動したスライダ370の栓刃押部373が栓刃385を短手方向において導線側に押すため、接点386が導線側に移動するとともに、接点孔352から導線側に突出する。また、回転軸360が回転することに伴い、回転軸360の上端部に備えられた固定刃361も回転により導線側に移動するとともに、固定刃孔353から導線側に突出する。
 図33に示すように、固定状態においては、接点382が電力用導線332の露出面332sに接触するとともに接点386が電力用導線331の露出面331sに接触するため、プラグ350は配線ダクトと電気的に接続される。このように接点382および接点386はいずれもプラグ本体に対して、設置面311aに平行な方向に直線的に移動することにより、それぞれ露出面332sおよび露出面331sに接続される。一方、固定刃孔353から突出した固定刃361が凹溝であるプラグ固定部315に噛合されるため、プラグ350が配線ダクトに固定される。
 上記実施形態の配線ダクトおよびプラグによれば、以下のような効果を得ることができる。
 (1)上記実施形態では、電力用導線331および電力用導線332が設置面311aに対して垂直な方向に配列されている。従って、電力用導線331および電力用導線332が短手方向に対向して設置されていた従来に比して、設置面311aに平行な方向、すなわち、短手方向において配線ダクトを小型化することができる。
 (2)上記実施形態では、プラグ350は配線ダクトに対応したプラグであるため、開口部317に挿入される上端部を、設置面311aに平行な方向、すなわち、短手方向において小型化することができる。
 (第10実施形態)
 図34を用いて、本発明を具体化した配線ダクトの第10実施形態を説明する。なお、第10実施形態は、第9実施形態の配線ダクトのハウジングの形状や導線の数および位置を変更した構成であるため、同様の部分についてはその詳細な説明を省略する。
 図34に示すように、配線ダクトのハウジングは長手方向に伸びて設けられた開口部317を下方面に有する略角筒型を成している。具体的には、被設置面に固定される略長方形状の設置部311の2つの長辺から、2つの側壁部312および313が下方に延びるように設けられている。側壁部312および313の下方端は接続されていないため、側壁部312および313の間が上述の開口部317となっている。
 一方の側壁部313の内周面には下方より順に、長手方向に伸びて設けられた凹溝であるプラグ固定部315と、絶縁部材固定部314aと、絶縁部材固定部314bとが設けられている。また、絶縁部材固定部314aと絶縁部材固定部314bとの間には、電磁波を遮断する効果を有する遮断壁316が設けられている。
 絶縁部材固定部314aには絶縁部材320aを介して電力用導線331および332が上下方向に配列して固定されている。また、絶縁部材固定部314bには絶縁部材320bを介して通信用導線333および334が上下方向に配列して固定されている。すなわち、配線ダクトは導線として電力用導線331,332と、通信用導線333,334とを備えている。また、これら複数の導線の全てが、配線ダクトが設置される設置面311aに対して、垂直な方向に配列されている。具体的には、通信用導線333,334は、長手方向に伸びて設けられた板状の金属導体である。電力用導線331,332、並びに、通信用導線333,334の一方面は、絶縁部材320a、並びに、絶縁部材320bにそれぞれ固定されている。また、他方面が内方に向けて露出した露出面331s,332s、並びに、露出面333s,334sとなっている。この露出面333s,334sにプラグの接点を接続することにより、導線系路上の任意の位置において通信信号の送受信が可能な構成となっている。
 従って、第10実施形態によれば、第9実施形態に記載した(1)および(2)の効果に加えて以下の効果を得ることができる。
 (3)第10実施形態では、導線として通信用導線333,334を備えるため、電力と同時に通信信号を電気機器に供給できる。特に、パソコンなど電力供給と通信信号の送受信とをともに必要とする電気機器を接続する場合であっても、必要なケーブル数を少なくすることができる。
 (4)また、設置面311aに対して垂直な方向に全ての導線が配置されている。従って、電力用導線331,332と通信用導線333,334とをともに備えていても、設置面311aに平行な方向、すなわち、配線ダクトの短手方向の大きさを第9実施形態に示した配線ダクトと同等にすることができる。
 (5)電力用導線331,332を原因とする誘導ノイズが通信用導線333,334に発生することを抑制するための遮断壁316が、電力用導線331,332と通信用導線333,334との間に備えられる。従って、電力用導線331,332から発する誘導磁界を原因とするノイズが通信用導線333,334に発生することを抑制することができる。
 なお、上記実施形態は以下のように変更してもよい。
 第9実施形態においては、電力用導線331,332に接続される電力供給用のプラグ350を例示したが、通信用導線に接続される通信用プラグであってもよい。その場合には、下方面にUSBコンセント、LANコンセント等の通信用コンセントを有する。また、電力用導線および通信用導線の両方に接続される電力・通信両用プラグであってもよい。この場合は、電力用コンセントおよび通信用コンセントをともに有する。また、この電力・通信両用プラグは例えば、第10の実施の形態で示した配線ダクトに用いられる。
 ・第9実施形態においては、電気機器としてプラグ350を例示したが、電気機器本体に対して、設置面に平行な方向に接点が直線的に移動することにより接点が被接続面に接続される電気機器であれば、他の電気機器であっても良い。例えば、照明器具等であっても
良い。
 第10実施形態において、全ての導線は設置面311aに対して垂直な方向、すなわち上下方向に一直線上に配列されているが、例えば、図35に示すように、多少の位置ずれがあっても全体として上下方向に並んでいればよい。すなわち、特許請求の範囲および本明細書における「垂直な方向に配列」とは、「完全に垂直な方向に配列」されている場合と、「完全に垂直な方向に配列」とはいえないまでも、設置面311aに平行な方向において配線ダクトを小型化する効果を具備する程度に配列されている場合とを含むものとする。
 同様に、第9実施形態において、電力用導線331,332は設置面311aに対して垂直な方向、すなわち上下方向に一直線上に配列されているが、多少の位置ずれがあっても全体として上下方向に並んでいればよい。
 第10実施形態において、電力用導線331および332を原因とする誘導ノイズが通信用導線333,334に発生することを抑制するための遮断壁316が設けられている。しかし、他の方法で誘導ノイズが通信用導線333,334に発生することを抑制できるのであれば、遮断壁316を割愛しても良い。例えば、配線ダクトの上下方向の大きさが問題とならない場合は、電力用導線331,332と、通信用導線333,334との間の距離を大きくとることによって、上記ノイズを抑制しても良い。また、通信用導線333,334の経路上にコアを設ける等、外的にノイズを抑制しても良い。
 第10実施形態において、配線ダクトは電力用導線331,332と通信用導線333,334とをそれぞれ1組ずつ備えているが、他の構成であっても良い。例えば、通信用導線333,334に換えて電圧や位相の異なる電流を流すための電力用導線を更に備えても良い。また、電力用導線331,332および通信用導線333,334に加えて、規格の異なる通信方法用の通信用導線を更に備えていても良いし、電圧や位相の異なる電流を流すための電力用導線を更に備えても良い。これらの場合であっても全ての導線は設置面311aに対して垂直な方向に配置することによって、設置面311aに平行な方向において配線ダクトを小型化する効果を具備する。すなわち、導線の数によらず、設置面に平行な方向において配線ダクトの大きさは一定であるため、導線数に関わらず配線ダクトが設置される被設置面の面積を一定とすることができる。
(First embodiment)
An embodiment of a wiring duct embodying the present invention will be described below with reference to FIG. Since the basic structure and method of use of the wiring duct are the same as in the prior art, the description thereof will be omitted and only the improved part will be described in detail.
As shown in FIGS. 1 (a) to 1 (d), the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface. The opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and a portion that connects the fixed portion 14 and the bottom portion 15 is a connecting portion 16. A flange 18A is extended from one side of the inner peripheral surface of the connecting portion 16 from the outside to the inside in the short direction, and commercial power is supplied to the inner end of the flange 18A. For this purpose, a long power supply wiring 13A is arranged along the longitudinal direction. Therefore, when an apparatus is electrically connected to the wiring duct, an electrical contact of the connected apparatus is inserted into the duct body through the communication hole 17 and connected to the power supply wiring 13A.
Similarly, a flange 18B extends from the other side of the inner peripheral surface of the connecting portion 16 from the outside to the inside in the short direction, and a communication is provided at the inner end of the flange 18B. A long communication wire 13B for supplying a signal is arranged along the longitudinal direction. Accordingly, when a communication device is connected to the wiring duct, the communication contact of the connected device is inserted into the duct body through the communication hole 17 and connected to the communication wire 13B.
Here, the shortest distance between the power supply wiring 13A and the communication wiring 13B is 6 cm. In other words, a feature is that a gap d of 6 cm is provided between the power supply wiring 13A and the communication wiring 13B. By providing this distance d, it is possible to suppress the occurrence of inductive noise caused by the power supply wiring 13A in the communication wiring 13B.
The size of the interval d can be arbitrarily determined within a range in which induction noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B. Therefore, it is appropriately determined depending on the magnitude of the voltage applied to the power supply wiring 13A and the quality required for the communication wiring 13B. For example, when 100V AC used for ordinary household power is used as power, an average of 52 dB or more at a signal frequency of 1 MHz, which is equivalent to the average crosstalk attenuation of many-to-subscriber lines, by setting the interval d to 5 cm or more. Can be secured (2002 IEICE General Conference Paper B-8-32 “Crosstalk Attenuation from Power Line Cable to Home Communication Line”). If the distance d is 10 cm or more, the crosstalk attenuation is about 50 dB (same as above). Therefore, the size of the distance d is preferably 5 cm or more, and more preferably 10 cm or more.
According to the wiring duct of the above embodiment, the following effects can be obtained.
(1) According to the wiring duct, the interval d for suppressing the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B is equal to the distance d between the power supply wiring 13A and the communication wiring 13B. Since it is provided in between, it is possible to suppress the occurrence of noise in the communication wiring 13B due to the induced magnetic field generated from the power supply wiring 13A.
(Second Embodiment)
A second embodiment of a wiring duct embodying the present invention will be described below with reference to FIG. In addition, since the basic structure and usage method of a wiring duct are the same as that of the past and 1st Embodiment, the description is abbreviate | omitted and only a characteristic part is explained in full detail.
As shown in FIG. 2, the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface. The opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and a portion that connects the fixed portion 14 and the bottom portion 15 is a connecting portion 16. A blocking wall 19 extends from the center of the inner peripheral surface of the fixed portion 14 toward the bottom side from the fixed portion side. The blocking wall 19 is formed by covering a metallic core material 21 with a resin, and has an effect of blocking electromagnetic waves. Although not shown in particular, since the blocking wall 19 is grounded, the effect of shielding the induced magnetic field is further increased. Therefore, the induction noise caused by the power supply wiring 13A can be further suppressed from occurring in the communication wiring 13B.
A flange 18 </ b> A extends from one surface across the blocking wall 19 on the inner peripheral surface of the fixed portion 14 from the fixed portion side toward the bottom side. A long power supply wiring 13A for supplying commercial power is disposed along the longitudinal direction at the inner end of the flange 18A. Therefore, when an apparatus is electrically connected to the wiring duct, an electrical contact of the connected apparatus is inserted into the duct body through the communication hole 17 and connected to the power supply wiring 13A.
A flange 18B extends from the other side of the inner wall surface of the fixed portion 14 across the blocking wall 19 from the fixed portion side toward the bottom side. A long communication wire 13B for supplying a communication signal is disposed along the longitudinal direction at the inner end of the flange 18B. Accordingly, when a communication device is connected to the wiring duct, the communication contact of the connected device is inserted into the duct body through the communication hole 17 and connected to the communication wire 13B.
Here, the shortest distance between the power supply wiring 13A and the communication wiring 13B is 4 cm. In other words, a gap d of 4 cm is provided between the power supply wiring 13A and the communication wiring 13B. By providing this distance d, it is possible to suppress the occurrence of inductive noise caused by the power supply wiring 13A in the communication wiring 13B.
The size of the interval d can be arbitrarily determined as long as induction noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B. Therefore, it is appropriately determined depending on the magnitude of the voltage applied to the power supply wiring 13A and the quality required for the communication wiring 13B. As described above, when 100V alternating current used for ordinary household power is used as power without the blocking wall 19, by setting the interval d to 5 cm or more, the average crosstalk attenuation of the many-to-subscriber line can be reduced. An equivalent near-end attenuation of 52 dB or more can be secured at an equivalent signal frequency of 1 MHz. In the second embodiment, by further using a blocking wall 19 having an effect of blocking electromagnetic waves, the same effect as in the first embodiment is obtained even if the distance d is less than 5 cm. . Therefore, the size of the entire wiring duct can be reduced.
According to the wiring duct of the said embodiment, in addition to the effect of (1) in 1st Embodiment, the following effects can be acquired.
(2) According to the wiring duct, since the shielding wall having the effect of shielding electromagnetic waves is further provided between the power supply wiring 13A and the communication wiring 13B, the shielding wall 19 is not provided. Even if the interval is made smaller than this, it is possible to equally suppress the occurrence of noise in the communication wiring. Therefore, the size of the entire wiring duct can be reduced, which contributes to space saving and cost reduction.
(3) Since the blocking wall 19 is grounded, the effect of shielding the induced magnetic field is further increased. Therefore, the induction noise caused by the power supply wiring can be further suppressed from occurring in the communication wiring. Therefore, in order to obtain the same suppression effect, the interval can be further reduced.
(Third embodiment)
A third embodiment of a wiring duct embodying the present invention will be described below with reference to FIG. Since the basic structure and usage of the wiring duct are the same as those of the conventional and first and second embodiments, the description thereof will be omitted and only the characteristic part will be described in detail.
As shown in FIG. 3, the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface. The opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and a portion that connects the fixed portion 14 and the bottom portion 15 is a connecting portion 16. A blocking wall 19 extends from the center of the inner peripheral surface of the fixed portion 14 toward the bottom side from the fixed portion side. The bottom portion 15, the fixed portion 14, the connecting portion 16, and the blocking wall 19 are formed by covering the metallic core material 21 with resin, and have an effect of blocking electromagnetic waves.
A flange 18A extends from the inner peripheral surface of one connecting portion 16 across the blocking wall 19 on the inner peripheral surface of the bottom portion 15 from the outside to the inside in the short direction. On the other end, a long power supply wiring 13A for supplying commercial power is disposed along the longitudinal direction. Therefore, except for the communication hole 17, the power supply wiring 13 </ b> A is surrounded by a blocking member including the bottom 15, the fixed portion 14, the connecting portion 16, and the blocking wall 19 having an effect of blocking electromagnetic waves. Further, when an apparatus is electrically connected to the wiring duct, an electrical contact of the apparatus to be connected is inserted into the duct body through the communication hole 17 and connected to the power supply wiring 13A.
A flange 18B extends from the inner peripheral surface of the other connecting portion 16 across the blocking wall 19 on the inner peripheral surface of the bottom portion 15 from the outside to the inside in the short direction. A long communication wire 13B for feeding a communication signal is arranged along the longitudinal direction at the end of the other side. Therefore, except for the communication hole 17, the communication wiring 13 </ b> B is surrounded by a blocking member including the bottom 15, the fixed portion 14, the connecting portion 16, and the blocking wall 19 having an effect of blocking electromagnetic waves. Although not specifically shown, since the blocking member is grounded, the effect of shielding the induced magnetic field is further increased. Therefore, the induction noise caused by the power supply wiring 13A can be further suppressed from occurring in the communication wiring 13B. When a communication device is connected to the wiring duct, the communication contact of the connected device is inserted into the duct body through the communication hole 17 and connected to the communication wire 13B.
Here, the shortest distance between the power supply wiring 13A and the communication wiring 13B is 4 cm. In other words, a gap d of 4 cm is provided between the power supply wiring 13A and the communication wiring 13B. By providing this distance d, it is possible to suppress the occurrence of inductive noise caused by the power supply wiring 13A in the communication wiring 13B.
The size of the interval d can be arbitrarily determined as long as induction noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B. Therefore, it is appropriately determined depending on the magnitude of the voltage applied to the power supply wiring 13A and the quality required for the communication wiring 13B. As described above, when there is no blocking member, when 100V AC used for ordinary household power is used as power, the distance d is set to 5 cm or more, which is equivalent to the average crosstalk attenuation of the many-to-subscriber line. A near-end attenuation of 52 dB or more can be secured on average at a signal frequency of 1 MHz. In the third embodiment, since the power supply wiring 13A and the communication wiring 13B are surrounded by a blocking member having an effect of blocking electromagnetic waves, even if the distance d is less than 5 cm, the first The same effects as those of the embodiment are obtained. Therefore, the size of the entire wiring duct can be reduced.
According to the wiring duct of the above embodiment, the following effects can be obtained instead of the effects (2) and (3) in the second embodiment.
(2) According to the wiring duct, since both the power supply wiring 13A and the communication wiring 13B are surrounded by the electromagnetic wave shielding member having an effect of blocking electromagnetic waves, the induction caused by the power supply wiring 13A Generation of noise in the communication wiring 13B can be further suppressed. Therefore, it is possible to further reduce the interval in order to obtain an equivalent suppression effect.
(3) Since the blocking member is grounded, the effect of shielding the induced magnetic field is further increased. Therefore, the induction noise caused by the power supply wiring 13A can be further suppressed from occurring in the communication wiring 13B.
(Fourth embodiment)
An embodiment of a wiring duct embodying the present invention will be described below with reference to FIG. Since the basic structure and method of use of the wiring duct are the same as those of the conventional and first to third embodiments, the description thereof will be omitted and only the characteristic part will be described in detail.
As shown in FIGS. 4A and 4B, the wiring duct has a substantially rectangular tube-like appearance having a communication hole 17 opened along the longitudinal direction at the bottom 15 which is one side surface. The opposite side surface of the bottom portion 15 is a fixed portion 14 that is fixed to a ceiling or the like, and the portion that connects the fixed portion 14 and the bottom portion 15 at the end is a connecting portion 16. From the inner peripheral surface of the connecting portion 16, a flange 18 </ b> A extends from the outside toward the inside in the short direction, and a long length for supplying commercial power to the inner end of the flange 18 </ b> A. The power supply wiring 13A is disposed along the longitudinal direction. Therefore, when an apparatus is electrically connected to the wiring duct, an electrical contact of the connected apparatus is inserted into the duct body through the communication hole 17 and connected to the power supply wiring 13A.
A flange 18B extends from the center portion of the inner peripheral surface of the fixed portion 14 from the fixed portion side toward the bottom portion side, and a length for supplying a communication signal to the end portion on the bottom portion side of the flange 18B. Two long communication wires 13B are arranged along the longitudinal direction. As shown in FIGS. 4A and 4B, the two communication wires 13B are twisted together. For this reason, it is possible to suppress noise generated from the communication wiring 13B. Therefore, noise can be further suppressed from occurring in the communication wiring.
In the present embodiment, the shortest distance between the power supply wiring 13A and the communication wiring 13B is 5 cm. In other words, a gap d of 5 cm is provided between the power supply wiring 13A and the communication wiring 13B. By providing this distance d, it is possible to suppress the occurrence of inductive noise caused by the power supply wiring 13A in the communication wiring 13B.
The size of the interval d can be arbitrarily determined as long as induction noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B. Therefore, it is appropriately determined depending on the magnitude of the voltage applied to the power supply wiring 13A and the quality required for the communication wiring 13B. As described above, when 100V AC used for normal household power is used as the power, by setting the interval d to 5 cm or more, the signal frequency is 1 MHz which is equivalent to the average crosstalk attenuation of the many-to-subscriber line. A near-end attenuation amount of 52 dB or more on average can be secured. In the fourth embodiment, in addition to the effects, noise generated by the communication wiring 13B itself can be reduced, and generation of induced noise in the communication wiring 13B can be further suppressed.
According to the wiring duct of the said embodiment, in addition to the effect of (1) in 1st Embodiment, the following effects can be acquired.
(4) According to the wiring duct, since the plurality of communication wires 13B are twisted together, it is possible to suppress noise generated from the communication wires 13B. Therefore, the generation of noise in the communication wiring 13B can be further suppressed.
In addition, you may change the said embodiment as follows.
In the first embodiment, the positional relationship among the flange 18A, the flange 18B, the power supply wiring 13A, and the communication wiring 13B is not limited to the arrangement shown in FIG. In short, it is only necessary to provide an interval d between the power supply wiring 13A and the communication wiring 13B for suppressing the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B. Other arrangements may be used depending on the application. For example, the positional relationship shown in FIGS. 5 to 8 may be used.
Similarly, in the second embodiment, the positional relationship between the flange 18A, the flange 18B, the power supply wiring 13A, and the communication wiring 13B is not limited to the arrangement shown in FIG. In short, an interval d is provided between the power supply wiring 13A and the communication wiring 13B to suppress the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B. In addition, it is only necessary that the blocking wall 19 is provided between the power supply wiring 13A and the communication wiring 13B, and other arrangements may be used depending on the application. For example, the positional relationship shown in FIGS. 9 and 10 may be used.
Similarly, in the third embodiment, the positional relationship between the flange 18A, the flange 18B, the power supply wiring 13A, and the communication wiring 13B is not limited to the arrangement shown in FIG. In short, an interval d is provided between the power supply wiring 13A and the communication wiring 13B to suppress the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B. In addition, it is sufficient that at least one of the power supply wiring 13A or the communication wiring 13B is surrounded by the electromagnetic wave shielding member, and other arrangements may be employed depending on the application. In the case where the signal extraction from the communication wiring 13B does not have to be output from an arbitrary place, for example, as shown in FIGS. 11 and 12, the communication wiring 13B is completely surrounded by the electromagnetic wave shielding member. good. In this case, it is possible to further suppress the occurrence of inductive noise caused by the power supply wiring 13A in the communication wiring 13B.
In the said embodiment, although the shielding wall 19 and the electromagnetic wave shielding member are earth | grounded, it is not essential. If the effect of suppressing the induction noise caused by the power supply wiring 13A from occurring in the communication wiring 13B is sufficient, the cost can be reduced by omitting the grounding.
The configurations in the first to fourth embodiments may be used in combination. For example, the blocking wall 19 may be provided and the two communication wires 13B may be twisted together, or the two communication wires 13B may be twisted together and the communication The wiring 13 </ b> B may be surrounded by an electromagnetic wave shielding member. With such a structure, inductive noise caused by the power supply wiring 13A can be suppressed from occurring in the communication wiring 13B, and noise generated from the communication wiring 13B can also be suppressed.
(Fifth embodiment)
A fifth embodiment of a wiring duct embodying the present invention will be described with reference to FIGS. 16 and 17. Further, since the basic structure and method of use of the wiring duct are the same as those of the prior art and the first to fourth embodiments, the description thereof will be omitted and only the characteristic part will be described in detail.
As shown in FIG. 16, the wiring duct 201 laid on an installation surface (not shown) such as a ceiling or a wall indoors such as a factory or a store extends in a predetermined linear direction (hereinafter referred to as “longitudinal direction L”). It is a molded body. Specifically, the wiring duct 201 is a linear molded body having a dimension in the longitudinal direction L of, for example, 1 to 3 m.
As shown in FIGS. 16 and 17, the wiring duct 201 includes a core 210 made of a metal material, an insulator 220 made of an insulating material provided on the core 210, and a plurality of electrode pairs 230 supported by the insulator 220. , 240. The core 210, the insulator 220, and the electrode pairs 230 and 240 extend along the longitudinal direction L. That is, the longitudinal direction of the core 210 and the longitudinal direction of the electrode pairs 230 and 240 are the longitudinal direction L of the wiring duct 201.
The wiring duct 201 has an internal space in which the electrode pairs 230 and 240 are accommodated, and an opening 201a that is continuous with the internal space. The opening 201a that opens in a predetermined direction is provided extending in the longitudinal direction L. Accordingly, by connecting a wiring duct plug (not shown) to the electrode pair 230, 240 through such an opening 201a, an electric device or a communication device connected to the electrode pair 230, 240 via the wiring duct plug. Can be provided indoors along the wiring duct 201.
As shown in FIG. 17, the core 210 that is the core material of the wiring duct 201 has a base portion 211 that is provided facing the installation surface on which the wiring duct 201 is installed. The flat base portion 211 extending in the left-right direction in the cross section perpendicular to the longitudinal direction L extends along the longitudinal direction L. The base portion 211 is provided with a through hole (not shown), and the base portion 211 is fixed to the ceiling by tightening the base portion 211 against the ceiling as the installation surface using a screw inserted through the through hole. The wiring duct 201 is laid on the ceiling which is the installation surface.
Hereinafter, in the description of the wiring duct 201, “upper” means a direction toward the ceiling when the base portion 211 faces the ceiling. The up and down direction including the upper side and the lower side is a direction orthogonal to the longitudinal direction L that is the direction in which the wiring duct 201 extends. Moreover, the direction orthogonal to the longitudinal direction L and the up-down direction is a left-right direction, and the left side and the right side are directions indicated by arrows in the figure.
The core 210 having a substantially rectangular outer shape in a cross section perpendicular to the longitudinal direction L is formed so that the right side wall part 212 provided on the right side, the left side wall part 213 provided on the left side, and the base part 211 provided on the upper side face the lower side. And an opposing wall 214 provided on the surface.
The right side wall 212 connected to the right end of the base 211 extends in the longitudinal direction L and extends downward from the base 211 in the opposite direction. Further, the left side wall portion 213 connected to the left end portion of the base portion 211 extends downward along the longitudinal direction L from the base portion 211. Therefore, the right side wall portion 212 and the left side wall portion 213 face each other in the left-right direction orthogonal to the longitudinal direction L, and are provided in parallel along the longitudinal direction L.
The opposing wall 214 connected to the lower end of the right wall 212 and the lower end of the left wall 213 extends along the longitudinal direction L. The opposing wall portion 214 connected to the lower end portion of the right wall portion 212 extends from the right wall portion 212 toward the left. The opposing wall portion 214 connected to the lower end portion of the left side wall portion 213 extends from the left side wall portion 213 toward the right. Therefore, when the base 211 is provided on the ceiling, the base 211 and the opposing wall 214 are opposed to each other in the vertical direction orthogonal to the longitudinal direction L and are provided in parallel along the longitudinal direction L.
The core 210 configured as described above has an internal space in which the electrode pairs 230 and 240 are provided. The core 210 is provided with an opening 201a that opens an internal space. An opening 201 a included in the core 210 of the wiring duct 201 is provided in the facing wall 214. Therefore, when the base 211 is provided on the ceiling, the opening 201a opens downward, and the internal space of the core 210 is open downward.
The core 210 in which the base portion 211, the right side wall portion 212, the left side wall portion 213, and the opposing wall portion 214 are integrally formed is made of aluminum which is a nonmagnetic metal material. The core 210 shown in FIG. 16 can be formed by casting, for example.
A blocking wall 260 extending downward from the base 211 is connected to the central portion of the base 211 in the left-right direction. The blocking wall 260 extending in the up-down direction perpendicular to the left-right direction is made of a metal material, and is provided between the plurality of electrode pairs 230, 240 provided at intervals in the left-right direction. The blocking wall 260 formed integrally with the base portion 211 of the core 210 is made of aluminum which is the same material as the core 210.
The insulator 220 provided in the core 210 is provided so as to cover the surface of the core 210 so that the electrode pairs 230 and 240 and the core 210 are not connected. The insulator 220 supports the electrode pairs 230 and 240 inside the core 210. Therefore, the core 210 is insulated from the electrode pairs 230 and 240 and functions as an electromagnetic shield. Note that the insulator 220 may not be provided on the entire surface of the core 210.
As described above, the plurality of electrode pairs 230 and 240 provided in the core 210 are provided at intervals in the left-right direction which is a direction perpendicular to the longitudinal direction L. The electrode pair 230 is provided so as to be located on the right side of the electrode pair 240, and the electrode pair 240 is provided so as to be located on the left side of the electrode pair 230.
One electrode pair 230 includes two conductors 231 and 232 supported by an insulator 220 provided on the right side wall 212 of the core 210. The conductors 231 and 232 extending in the longitudinal direction L are provided at an interval in the longitudinal direction L and the vertical direction orthogonal to the horizontal direction. That is, the conductor 231 is provided so as to be positioned above the conductor 232, and the conductor 232 is provided so as to be positioned below the conductor 231.
One electrode pair 240 includes two conductors 241 and 242 supported by an insulator 220 provided on the left side wall 213 of the core 210. The conductors 241 and 242 are also provided at intervals in the up and down direction, which is a direction perpendicular to the right and left direction. That is, the conductor 241 is provided so as to be positioned above the conductor 242, and the conductor 242 is provided so as to be positioned below the conductor 241.
As described above, each of the electrode pairs 230 and 240 is constituted by two conductors, and the conductors 231, 232, 241, and 242 included in the electrode pairs 230 and 240 are exposed in the wiring duct 201. Specifically, the conductors 231 and 232 are provided so that the left surface thereof is exposed, and the conductors 241 and 242 are provided so that the right surface thereof is exposed.
In the wiring duct 201, the capacitance of the conductor 241 constituting the electrode pair 240 and the capacitance of the conductor 242 constituting the electrode pair 240 are configured to be the same. That is, the capacitances of the conductors 241 and 242 constituting one electrode pair 240 are equal to each other.
The capacitance of the conductor 241 includes the distance from the conductor 241 to the core 210 and the conductor 242 which are the conductors facing the conductor 241, the area of the portion where the conductor 241 and the core 210 and the conductor 242 face each other, and the conductor 241, the core 210 and the conductor 241. 242 depends on the dielectric constant of the insulator 220 provided between them. Similarly, the capacitance of the conductor 242 includes the distance from the conductor 242 to the core 210 and the conductor 241 that are conductors facing the conductor 242, the area of the portion where the conductor 242 faces the core 210 and the conductor 241, and the conductor 242 and core 241. It depends on the dielectric constant of the insulator 220 provided between 210 and the conductor 241. Therefore, the capacitances of the conductors 241 and 242 are equal to each other by adjusting the shapes and arrangement of the core 210, the insulator 220, and the conductors 241 and 242.
The capacitance of the conductor 241 can be calculated based on the structure within a predetermined range A1 from the center of the conductor 241 in a cross section perpendicular to the longitudinal direction L as shown in FIG. Further, the capacitance of the conductor 242 to be compared with the capacitance of the conductor 241 can also be calculated based on the structure within the predetermined range A2 from the center of the conductor 242 in the cross section perpendicular to the longitudinal direction L. it can.
As described above, even in the wiring duct 201 that does not have a structure such as a twisted pair cable, the balance of the conductors 241 and 242 can be increased. The core 210 is formed so that the cross-sectional shape is line-symmetric in the left-right direction, and the electrode pair 230 is provided at a position that is line-symmetric with the electrode pair 240 about the center line of the core 210 in the left-right direction. The capacitances of the conductors 231 and 232 constituting the electrode pair 230 are also equal to each other.
According to the present embodiment, when the electrode pair 240 is used as a signal transmission path to be balanced and the electrode pair 230 is used as a power transmission path, the following effects can be obtained.
(1) A plurality of electrode pairs 230, 240 are provided at intervals in the left-right direction, which is a predetermined direction, and the two conductors 231, 232 constituting the electrode pair 230 are arranged in the vertical direction, which is a direction perpendicular to the left-right direction. Provided at intervals. For this reason, compared with the case where the conductors 231 and 232 are provided at intervals in the left-right direction, the wiring duct 201 can be reduced in size. In addition, since the two conductors 241 and 242 constituting the electrode pair 240 are also provided with an interval in the vertical direction, the conductor 241 and 242 of the wiring duct 201 are compared with the case where the conductors 241 and 242 are provided with an interval in the left and right direction. Miniaturization can be achieved. A blocking wall 260 made of a metal material is provided between the electrode pairs 230 and 240 in the vertical direction. Therefore, the shielding wall 260 can reduce electromagnetic coupling between the plurality of electrode pairs 230 and 240 and suppress electromagnetic interference in the plurality of electrode pairs 230 and 240.
(2) A blocking wall 260 is formed integrally with the core 210. Therefore, the electromagnetic interference in the plurality of electrode pairs 230 and 240 is suppressed as compared with the case where the core 210 and the blocking wall 260 are separated from each other without providing a gap between the core 210 and the blocking wall 260. can do.
(3) The core 210 is made of aluminum which is a non-magnetic (non-ferromagnetic) metal material. For this reason, compared with the case where the core 210 consists of iron which is a ferromagnetic material, the electromagnetic wave to the exterior of the wiring duct 201 can be interrupted | blocked, for example.
(4) The core 210 and the blocking wall 260 are made of aluminum which is a non-magnetic metal material. For this reason, compared with the case where the core 210 and the shielding wall 260 are made of iron that is a ferromagnetic material, for example, electromagnetic interference in the plurality of electrode pairs 230 and 240 can be suppressed.
(5) Since the capacitances of the two conductors 241 and 242 constituting one electrode pair 240 are equal to each other, the balance between the two conductors 241 and 242 is increased, and electromagnetic interference in the plurality of electrode pairs 230 and 240 is reduced. Can be suppressed.
Further, the capacitances of the two conductors 231 and 232 constituting the other electrode pair 230 are equal to each other. For this reason, even when a signal transmission path that is balancedly connected by the two conductors 231 and 232 is formed, electromagnetic interference in the plurality of electrode pairs 230 and 240 can be suppressed.
(Sixth embodiment)
Next, a second embodiment, which is an embodiment of the present invention, will be described with reference to FIGS. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted or simplified and demonstrated.
As shown in FIG. 18, the wiring duct 201 according to the present embodiment has two openings 201b and 201c that are continuous with the internal space. Openings 201b and 201c that open in a predetermined direction are provided extending in the longitudinal direction L.
As shown in FIG. 19, the core 210 according to the present embodiment has an internal space S1 in which the electrode pair 230 is provided and an internal space S2 in which the electrode pair 240 is provided. Thus, the plurality of internal spaces S1 and S2 in which the electrode pairs 230 and 240 are provided are separated by the blocking wall 260.
The blocking wall 260 according to the present embodiment is connected to the center of the opposing wall 214 that extends longer in the left-right direction than the fifth embodiment, and the blocking wall 260 causes the base 211 and the opposing wall 214 to Is connected. Therefore, in the cross section perpendicular to the longitudinal direction L, the internal space S1 and the internal space S2 are not continuous.
The core 10 configured as described above has a plurality of internal spaces S1 and S2 in which electrode pairs 230 and 240 are provided. The core 210 is provided with a plurality of openings 201b and 201c that open the internal spaces S1 and S2.
By forming the core 210 so that the cross-sectional shape perpendicular to the longitudinal direction L is axisymmetric in the left-right direction, which is the predetermined direction, the plurality of openings 201b, 201c open in different directions in the left-right direction. ing. That is, the opening 1b that opens the internal space S1 is provided in the right side wall 212, and the opening 201c that opens the internal space S2 is provided in the left side wall 213.
Therefore, when the base 211 is provided on the ceiling, the opening 201b opens to the right, and the internal space S1 of the core 210 is open to the right. Furthermore, the opening 201c opens toward the left, and the inner space S2 of the core 210 is open toward the left.
Further, the core 210 according to the present embodiment is formed so as to be symmetric with respect to a center line C that bisects the opening 201b in a cross section perpendicular to the longitudinal direction L. In addition, since the core 210 is formed so as to be line symmetric in the left-right direction, the core 210 is line symmetric about the center line C that bisects the opening 201c in a cross section perpendicular to the longitudinal direction L. It is also formed.
That is, the right side wall 212 according to the present embodiment is connected to the right end of the opposing wall 214 as well as the right end of the base 211. The right side wall 212 connected to the right end of the opposing wall 214 extends upward from the opposing wall 214 and extends in the longitudinal direction L.
Similarly to the right side wall 212, the left side wall 213 is provided not only on the left end of the base 211 but also on the left end of the opposing wall 214. The right side wall 212 connected to the left end of the facing wall 214 extends upward from the facing wall 214 and extends in the longitudinal direction L.
The right side wall 212 and the left side wall 213 according to the present embodiment have lengths extending in the vertical direction as compared with the fifth embodiment in order to form openings 201b and 201c having desired sizes. Is formed to be short.
In the present embodiment, the conductors 231 and 232 are supported by the insulator 220 provided on the blocking wall 260, and the conductors 241 and 242 are also supported by the insulator 220 provided on the blocking wall 260. Therefore, in this embodiment, the conductors 231 and 232 are provided so that the right side surfaces thereof are exposed, and the conductors 241 and 242 are provided so that the left side surfaces thereof are exposed.
The two conductors 231 and 232 are disposed in positions that are symmetrical with respect to a center line C that bisects the opening 201b in a cross section perpendicular to the longitudinal direction L. Further, the two conductors 241 and 242 are arranged in positions that are symmetric with respect to the center line C that bisects the opening 201 c in the cross section perpendicular to the longitudinal direction L.
Also in the wiring duct 201 according to the present embodiment configured as described above, the capacitances of the conductors 231 and 232 constituting the electrode pair 230 are equal to each other, and the capacitances of the conductors 241 and 242 constituting the electrode pair 240 are the same. Are also equal to each other.
According to this embodiment, in addition to the effects (1) to (5) of the fifth embodiment, the following effects can be achieved.
(6) The core 210 has a plurality of internal spaces S1 and S2 in which electrode pairs 230 and 240 are provided, as well as being separated by a blocking wall 260. The core 210 is provided with a plurality of openings 201b and 201c that open the internal spaces S1 and S2, and the plurality of openings 201b and 201c are opened in different directions. For this reason, the electromagnetic coupling of the plurality of electrode pairs 230 and 240 can be further reduced, and the electromagnetic interference in the plurality of electrode pairs 230 and 240 can be further suppressed.
(7) By forming the core 210 so that the cross-sectional shape is line symmetric in the left-right direction, which is a predetermined direction, the plurality of openings 201b and 201c are opened in different directions. With such a configuration, the opening 201b can be opened toward the right, which is one side in the left-right direction, and the opening 201c can be opened toward the left, which is the other in the left-right direction.
(8) The core 210 is provided with an opening 201c that opens the internal space S2 in which the electrode pair 240 is provided, and the core 210 bisects the opening 201c in a cross section perpendicular to the longitudinal direction L. It is formed so as to be line symmetric about the line C. Two conductors 241 and 242 constituting one electrode pair 240 are arranged at positions that are line-symmetric with respect to the center line C in the cross section perpendicular to the longitudinal direction of the core 210. With such a configuration, the capacitances of the two conductors 241 and 242 constituting one electrode pair 240 can be made equal to each other with a simple shape.
The core 210 is provided with an opening 201b that opens the internal space S1 in which the electrode pair 230 is provided, and the core 210 bisects the opening 201b in a cross section perpendicular to the longitudinal direction L. It is formed so as to be line symmetric with respect to C. The two conductors 231 and 232 constituting the other electrode pair 230 are also arranged at positions that are line-symmetric with respect to the center line C in the cross section perpendicular to the longitudinal direction of the core 210. Accordingly, the capacitances of the two conductors 231 and 232 constituting the other electrode pair 230 can be made equal to each other with a simple shape.
(Seventh embodiment)
Next, a seventh embodiment, which is an embodiment of the present invention, will be described with reference to FIG. In addition, about the structure similar to 5th Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted or simplified and demonstrated.
As shown in FIG. 20, the wiring duct 201 according to the present embodiment has a configuration in which the blocking wall 260 according to the fifth embodiment is not provided. Therefore, although the effect of the above (1) cannot be obtained, since the capacitance of the conductor 241 and the capacitance of the conductor 242 constituting the electrode pair 240 are the same, the above ( The effect 5) can be obtained.
According to the present embodiment, when the electrode pair 240 is used as a signal transmission path to be balanced and the electrode pair 230 is used as a power transmission path, the following effects can be obtained.
(9) A plurality of electrode pairs 230, 240 are provided at intervals in the left-right direction, which is a predetermined direction, and the two conductors 231, 232 constituting the electrode pair 230 are arranged in the vertical direction, which is a direction perpendicular to the left-right direction. Provided at intervals. For this reason, compared with the case where the conductors 231 and 232 are provided at intervals in the left-right direction, the wiring duct 201 can be reduced in size. In addition, since the two conductors 241 and 242 constituting the electrode pair 240 are also provided with an interval in the vertical direction, the conductor 241 and 242 of the wiring duct 201 are compared with the case where the conductors 241 and 242 are provided with an interval in the left and right direction. Miniaturization can be achieved. The capacitances of the two conductors 241 and 242 constituting one electrode pair 240 are equal to each other. For this reason, the balance of the two conductors 241 and 242 can be increased, and electromagnetic interference in the plurality of electrode pairs 230 and 240 can be suppressed.
Further, the capacitances of the two conductors 231 and 232 constituting the other electrode pair 230 are equal to each other. For this reason, even when a signal transmission path that is balancedly connected by the two conductors 231 and 232 is formed, electromagnetic interference in the plurality of electrode pairs 230 and 240 can be suppressed.
(Eighth embodiment)
Next, a fourth embodiment, which is an embodiment of the present invention, will be described with reference to FIGS. Note that the configuration of the wiring duct 201 according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
As shown in FIG. 21, the invention according to this embodiment includes a plurality of wiring ducts 201 according to the fifth embodiment, and the signal transmission path is formed by connecting electrode pairs 240 included in each of the wiring ducts 201 to each other. 204 is a wiring duct system in which 204 is formed.
The wiring duct system includes a duct connecting member 207 which is a wiring duct connecting member for connecting a plurality of wiring ducts 201 to each other. By inserting the duct connecting member 207 into the wiring duct 201 from the longitudinal direction L, the wiring duct 201 and another wiring duct 201 are connected.
By connecting the wiring duct 201 and the other wiring duct 201, the electrode pairs 230 included in each of the wiring ducts 201 are connected to each other, and the electrode pairs 230 included in each of the wiring ducts 201 are connected to each other. The electrode pair 240 is connected to each other. The power transmission path 203 is formed by the electrode pair 230 connected to each other via the duct connection member 207, and the signal transmission path 204 is formed to be balanced by the electrode pair 240 connected to each other via the duct connection member 207. Has been.
In the present embodiment, the signal transmission path 204 has a structure that reverses the direction of magnetic flux generated when a current flows through the electrode pair 240 forming the signal transmission path 204. FIG. 22 is a schematic diagram showing a structure in which the direction of magnetic flux is reversed in the wiring duct system in FIG.
As shown in FIG. 22, the two conductors 241 and 242 constituting the signal transmission path 204 are connected so as to cross each other. Specifically, the conductor 241 of the electrode pair 240 included in one wiring duct 201 is connected to the conductor 242 of the electrode pair 240 included in the other wiring duct 201 by a duct connecting member 207 that connects the two wiring ducts 201. ing. The conductor 242 of the electrode pair 240 included in one wiring duct 201 is connected to the conductor 241 of the electrode pair 240 included in the other wiring duct 201.
By connecting the conductors 241 and 242 of the electrode pair 240 as described above, the duct connecting member 207 is configured to reverse the direction of magnetic flux generated when a current flows through the electrode pair 240.
In the power transmission path 203 for transmitting AC power, the two conductors 231 and 232 are not connected so as to intersect. In other words, the conductors 231 of the electrode pairs 230 included in the two wiring ducts 201 are connected to each other by the duct connecting member 7, and the conductors 232 of the electrode pairs 230 are connected to each other.
According to this embodiment, the following effects can be achieved.
(10) The signal transmission path 204 formed by connecting the electrode pairs 240 included in each of the wiring ducts 201 to each other has a structure that reverses the direction of the magnetic flux generated when a current flows through the electrode pairs 240. ing. For this reason, the magnetic flux generated by the current flowing through the electrode pair 240 can be canceled to reduce electromagnetic coupling, and electromagnetic interference in the plurality of electrode pairs 230 and 240 can be further suppressed.
(11) The direction of the magnetic flux generated by the current flowing through the electrode pair 240 is reversed by the duct connecting member 207 which is a wiring duct connecting member. Therefore, even if the wiring duct 201 does not have a structure for reversing the direction of the magnetic flux generated by the current flowing through the electrode pair 240, a wiring duct system that exhibits the effect (10) can be configured. .
In addition, this invention is not limited to the said embodiment, A various design change is possible based on the meaning of this invention, and they are not excluded from the scope of the present invention. For example, the above embodiment may be modified as follows, or the following modifications may be combined.
The core 210 and the blocking wall 260 may be formed of a nonmagnetic metal material other than aluminum. As described above, the core 210 and the blocking wall 260 are preferably formed of a nonmagnetic metal material, but may be formed of a metal material other than the nonmagnetic material.
For example, as shown in FIG. 23 according to the modified example of the fifth embodiment, the blocking wall 260 may be joined to the core 210, and the blocking wall 260 may be integrally formed with the core 210. According to such a configuration, the blocking wall 260 can be formed using a material different from that of the core 210.
As shown in FIG. 24 according to the modified example of the fifth embodiment, the blocking wall 260 formed integrally with the core 210 may be formed by bending the core 210 and processing it.
As shown in FIG. 10 according to the modification in which the blocking wall 260 is configured by a member different from the core 210, the blocking wall 260 can be provided without being joined to the core 210.
You may change suitably the shape and arrangement | positioning of the two conductors 241,242 which comprise the electrode pair 240. FIG. Moreover, you may change suitably the shape and arrangement | positioning of the two conductors 231 and 232 which comprise the other electrode pair 230. FIG.
For example, as shown in FIG. 26, the conductors 231, 232, 241, and 242 may be supported by an insulator 220 provided on the blocking wall 260 in the internal space of the core 210 according to the fifth embodiment.
For example, as shown in FIG. 27, in the internal spaces S1 and S2 of the core 210 according to the sixth embodiment, the conductors 231, 232, 241 and 242 are provided in parts other than the blocking wall 260. It may be supported by.
For example, conductors 233 and 243 other than the conductors 231, 232, 241, and 242 may be provided inside the core 210, as shown in FIG. 28 according to a modification of the fifth embodiment. The conductors 233 and 243 that do not constitute the electrode pairs 230 and 240 are preferably configured as ground electrodes.
The wiring duct may include three or more electrode pairs. In a wiring duct having three or more electrode pairs, a plurality of blocking walls are preferably provided. The shape and arrangement of the blocking wall may be changed as appropriate.
In all the electrode pairs provided in the wiring duct, it is preferable that the capacitances of the two conductors constituting the electrode pair are equal to each other. However, in all the electrode pairs provided in the wiring duct, the two conductors constituting the electrode pair. May not be equal to each other. That is, in addition to the electrode pair configured by two conductors having the same capacitance, the wiring duct may include an electrode pair configured by two conductors having different capacitances.
For example, as shown in FIG. 29 according to the modification of the fifth embodiment, the two conductors 231 and 232 constituting the electrode pair 230 may be provided with a gap in the left-right direction. That is, in all the electrode pairs provided in the wiring duct, the two conductors constituting the electrode pair may not be provided with a gap in the vertical direction. However, in all the electrode pairs, it is most preferable that the two conductors constituting the electrode are provided with an interval in the vertical direction.
When two conductors constituting one electrode pair are provided with an interval in the vertical direction, the two conductors do not have to be positioned on a straight line in the vertical direction. That is, in one electrode pair, two conductors provided at intervals in a direction perpendicular to the predetermined direction may be provided at intervals in the predetermined direction.
In the eighth embodiment, wiring ducts other than the wiring duct 201 according to the fifth embodiment may be connected to each other. For example, the wiring duct 201 according to the second or third embodiment may be connected to each other, or the wiring ducts having different structures may be connected to each other.
In the eighth embodiment, the wiring duct connecting member having a structure that reverses the direction of the magnetic flux may not be the duct connecting member 207 that connects the two wiring ducts 201. For example, a wiring duct connecting member that connects one wiring duct 201 and two wiring ducts 201 may have a structure that reverses the direction of magnetic flux.
In the eighth embodiment, the wiring duct connecting member may not have a structure for reversing the direction of the magnetic flux. That is, the wiring duct may have a structure for reversing the direction of magnetic flux generated by current flowing through the electrode pair.
(Ninth embodiment)
30 to 32, a wiring duct embodying the present invention and a plug as an embodiment of an electric apparatus suitable for the wiring duct will be described below. In the following description, as shown in FIG. 30, the direction of the installation surface on which the wiring duct is installed is upward, and the opposite direction is downward. For other directions, the direction and orientation indications shown in FIG. 30 are used.
As shown in FIGS. 30 (a) to 30 (d), the wiring duct housing 310 has a substantially rectangular tube shape having an opening 317 provided in the lower surface extending in the longitudinal direction. Specifically, two side wall portions 312 and 313 are provided extending downward from two long sides of the substantially rectangular installation portion 311 fixed to the installation surface. Since the lower end of the side wall 312 and the lower end of the side wall 313 are not connected, the opening 317 described above is formed between the lower end of the side wall 312 and the lower end of the side wall 313. In addition, the upper surface of the installation portion 311 among the outer peripheral surface of the housing 310 is an installation surface 311a that is installed on an installation surface such as a ceiling or a wall.
An insulating member fixing portion 314 and a plug fixing portion 315 which are concave grooves provided in the longitudinal direction are provided on the inner peripheral surface of one side wall portion 313. Electric power conducting wires 331 and 332 are fixed to the insulating member fixing portion 314 in an up-and-down direction via an insulating member 320. That is, the power conducting wires 331 and 332 are arranged in a direction perpendicular to the installation surface 311a. The power conducting wires 331 and 332 are plate-like metal conductors provided extending in the longitudinal direction. One surface of the power conducting wires 331 and 332 is fixed to the insulating member 320. The other surface is exposed surfaces 331s and 332s that are exposed toward the side of the lead wire. By connecting the plug contacts to the exposed surfaces 331 s and 332 s, the wiring duct is configured so that power can be supplied to the plug at an arbitrary position on the conductive line.
31 and 32 show a plug 350 connected to this wiring duct.
As shown in FIG. 31A, the upper end of the plug 350 can be inserted into the opening 317 of the wiring duct. Moreover, although not shown in figure, the outlet for supplying electric power to another electric equipment is provided in the lower end surface. A lever 365 protrudes on the side of the lead wire in the short direction of the exterior 351 of the plug 350. By moving the lever 365 in the longitudinal direction, it is possible to switch between a fixed state in which the plug 350 can be fixed to the wiring duct and a detachable state in which the conductor plug can be attached to and detached from the wiring duct.
As shown in FIG. 31 (b), a contact hole 352 and a fixed blade hole 353 are provided on the conductive wire side in the short direction of the exterior 351 of the plug 350. In the fixed state, the contact protrudes from the contact hole 352 and is connected to the conductor of the wiring duct. At the same time, the fixed blade protrudes from the fixed blade hole 353 and fixes the plug 350 to the wiring duct. On the other hand, in the detachable state, as shown in the figure, the contact and the fixed blade are immersed in the exterior, so that the upper end of the plug 350 can be inserted into the opening of the wiring duct. Become.
The structure of the plug 350 will be described in more detail with reference to FIGS. FIG. 32A is a partially exploded perspective view with the exterior 351 removed. A fixed blade 361 for fixing the plug 350 to the wiring duct is provided at the upper end of the rotary shaft 360 that extends in the vertical direction. Below that, a cylindrical cam 362 is provided. The lower end is connected to the lever 365. Therefore, when the lever 365 is switched, the rotation shaft 360 rotates about the rotation center o.
On the other hand, the slider 370 provided extending in the longitudinal direction has sliding contact shafts 341 provided extending upward from the base 340 in shaft holes 374 that are vertical through holes provided at both ends in the longitudinal direction. Since it is inserted, it can move only in the vertical direction. A central axis in the longitudinal direction is provided with a rotation shaft hole 375 that is a vertical through hole. Further, a cam receiving portion 376 is formed on the inner peripheral surface of the rotation shaft hole 375 so as to mesh with the cylindrical cam 362 of the rotation shaft 360 and convert the rotational motion of the cylindrical cam 362 into a linear motion. Therefore, when the rotary shaft 360 rotates, the slider 370 moves up and down via the cylindrical cam 362.
A plug blade pressing portion 372 and a plug blade pressing portion 373 are provided around the uniaxial hole 374 of the slider 370. A plug blade 381 is provided at a position in contact with the plug blade pressing portion 372 when the slider 370 is moved upward. Similarly, a plug blade 385 is provided at a position in contact with the plug blade pressing portion 373 when the slider 370 is moved upward.
The plug blade 381 and the plug blade 385 are conductive members having a leaf spring structure which is provided extending in the vertical direction and has elasticity in the short direction. A contact 382 is provided at the upper end of the plug blade 381. A contact point 386 is provided at the upper end of the plug blade 385. The lower ends of the plug blade 381 and the plug blade 385 are electrically connected to two insertion ports provided in a not-shown outlet. Further, an inclined portion 383 for ensuring contact between the plug blade pressing portion 372 and the plug blade 381 is provided at a portion that contacts the plug blade pressing portion 372 by the movement of the slider 370. Similarly, an inclined portion 388 for ensuring contact between the plug blade pressing portion 373 and the plug blade 385 is provided at a portion that contacts the plug blade pressing portion 373 by the movement of the slider 370.
As shown in FIG. 32 (b), in the detachable state, the slider 370 is positioned downward in the vertical direction, so the plug blade pressing portion 372 is not in contact with the inclined portion 383, and the plug blade pressing portion 373. Is not in contact with the oblique portion 388. Therefore, no stress from the slider 370 is applied to any of the plug blade 381 and the plug blade 385. Therefore, both the contact 382 and the contact 386 are located on the side opposite to the contact hole from the contact hole 352 due to the elastic force of the plug blade 381 and the plug blade 385. In this state, even if the upper portion of the plug is inserted into the wiring duct from the opening 317 of the wiring duct, the contact 382 is not electrically connected to the power conducting wire 332. Further, the power conducting wire 331 is not electrically connected to the contact point 386. Furthermore, since the fixed blade 361 provided on the rotating shaft 360 is also housed in the exterior 351, the plug 350 is not fixed to the wiring duct. Accordingly, the upper end portion of the plug 350 can be freely put in and out of the opening 317 of the wiring duct.
Transition from the detachable state to the fixed state can be performed only by moving the lever 365. By moving the lever 365, the rotation shaft 360 rotates in conjunction with the lever 365. This rotation is converted into a linear motion by the cylindrical cam 362 and the cam receiving portion 376, and the slider 370 is moved upward.
As shown in FIG. 32C, the plug blade pressing portion 372 of the slider 370 moved upward pushes the plug blade 381 toward the conductor in the short direction, so that the contact 382 moves toward the conductor, and from the contact hole 352. Projects to the conductor side. Similarly, the plug blade pressing portion 373 of the slider 370 moved upward pushes the plug blade 385 toward the conducting wire in the short direction, so that the contact 386 moves to the conducting wire and protrudes from the contact hole 352 to the conducting wire. As the rotating shaft 360 rotates, the fixed blade 361 provided at the upper end of the rotating shaft 360 moves to the conducting wire side by rotation and protrudes from the fixed blade hole 353 to the conducting wire side.
As shown in FIG. 33, in the fixed state, the contact 382 contacts the exposed surface 332s of the power conducting wire 332 and the contact 386 contacts the exposed surface 331s of the power conducting wire 331, so that the plug 350 is electrically connected to the wiring duct. Connected. Thus, both the contact 382 and the contact 386 are connected to the exposed surface 332 s and the exposed surface 331 s by moving linearly in the direction parallel to the installation surface 311 a with respect to the plug body. On the other hand, since the fixed blade 361 protruding from the fixed blade hole 353 is engaged with the plug fixing portion 315 that is a concave groove, the plug 350 is fixed to the wiring duct.
According to the wiring duct and the plug of the above embodiment, the following effects can be obtained.
(1) In the above embodiment, the power conducting wire 331 and the power conducting wire 332 are arranged in a direction perpendicular to the installation surface 311a. Accordingly, the wiring duct can be reduced in size in the direction parallel to the installation surface 311a, that is, in the short direction, as compared with the conventional case where the power conducting wire 331 and the power conducting wire 332 are disposed facing each other in the short direction. Can do.
(2) In the above embodiment, since the plug 350 is a plug corresponding to the wiring duct, the upper end inserted into the opening 317 is downsized in the direction parallel to the installation surface 311a, that is, in the short direction. Can do.
(10th Embodiment)
A tenth embodiment of a wiring duct embodying the present invention will be described with reference to FIG. Since the tenth embodiment has a configuration in which the shape of the housing of the wiring duct and the number and position of the conductive wires of the ninth embodiment are changed, detailed description of the same parts is omitted.
As shown in FIG. 34, the housing of the wiring duct has a substantially rectangular tube shape having an opening 317 provided in the lower surface extending in the longitudinal direction. Specifically, two side wall portions 312 and 313 are provided so as to extend downward from two long sides of the substantially rectangular installation portion 311 fixed to the installation surface. Since the lower ends of the side walls 312 and 313 are not connected, the above-described opening 317 is formed between the side walls 312 and 313.
On the inner peripheral surface of one side wall portion 313, a plug fixing portion 315 which is a concave groove provided in the longitudinal direction, an insulating member fixing portion 314a, and an insulating member fixing portion 314b are provided in order from the bottom. Yes. In addition, a blocking wall 316 having an effect of blocking electromagnetic waves is provided between the insulating member fixing portion 314a and the insulating member fixing portion 314b.
Electric power conducting wires 331 and 332 are arranged and fixed to the insulating member fixing portion 314a in the vertical direction via the insulating member 320a. In addition, the conducting wires 333 and 334 for communication are fixed to the insulating member fixing portion 314b in the vertical direction via the insulating member 320b. That is, the wiring duct includes power conducting wires 331 and 332 and communication conducting wires 333 and 334 as conducting wires. Moreover, all of these some conducting wire is arranged in the perpendicular | vertical direction with respect to the installation surface 311a in which a wiring duct is installed. Specifically, the communication conductors 333 and 334 are plate-like metal conductors that extend in the longitudinal direction. One surfaces of the power conducting wires 331 and 332 and the communication conducting wires 333 and 334 are fixed to the insulating member 320a and the insulating member 320b, respectively. Further, the other surfaces are exposed surfaces 331 s and 332 s exposed inward, and exposed surfaces 333 s and 334 s. By connecting plug contacts to the exposed surfaces 333s and 334s, a communication signal can be transmitted and received at an arbitrary position on the conductor line.
Therefore, according to the tenth embodiment, in addition to the effects (1) and (2) described in the ninth embodiment, the following effects can be obtained.
(3) In the tenth embodiment, since the communication conductors 333 and 334 are provided as the conductors, a communication signal can be supplied to the electric device simultaneously with the power. In particular, even when an electric device such as a personal computer that requires both power supply and transmission / reception of communication signals is connected, the number of necessary cables can be reduced.
(4) Moreover, all the conducting wires are arrange | positioned in the direction perpendicular | vertical with respect to the installation surface 311a. Therefore, even if both the power conducting wires 331 and 332 and the communication conducting wires 333 and 334 are provided, the size in the direction parallel to the installation surface 311a, that is, the short direction of the wiring duct is shown in the ninth embodiment. It can be equivalent to a wiring duct.
(5) The blocking wall 316 for suppressing the induction noise caused by the power conducting wires 331 and 332 from being generated in the communication conducting wires 333 and 334 includes the power conducting wires 331 and 332 and the communication conducting wires 333 and 334. Provided between. Therefore, it is possible to suppress the occurrence of noise in the communication wires 333 and 334 due to the induction magnetic field generated from the power wires 331 and 332.
In addition, you may change the said embodiment as follows.
In the ninth embodiment, the power supply plug 350 connected to the power conductors 331 and 332 is illustrated, but a communication plug connected to the communication conductor may be used. In that case, a communication outlet such as a USB outlet or a LAN outlet is provided on the lower surface. Further, it may be a power / communication plug connected to both the power lead and the communication lead. In this case, both a power outlet and a communication outlet are provided. The power / communication plug is used for the wiring duct shown in the tenth embodiment, for example.
In the ninth embodiment, the plug 350 is exemplified as the electric device, but the contact is linearly moved in a direction parallel to the installation surface with respect to the electric device main body, so that the contact is connected to the connected surface. Other electrical devices may be used as long as they are electrical devices. For example, a lighting fixture
good.
In the tenth embodiment, all the conductors are arranged in a straight line in the direction perpendicular to the installation surface 311a, that is, in the vertical direction. For example, as shown in FIG. It suffices if they are lined up and down as a whole. That is, the term “arranged in the vertical direction” in the claims and in the present specification means that “arranged in the completely vertical direction” and “arranged in the completely vertical direction” cannot be said. And the case where the wiring ducts are arranged to such an extent that the wiring duct is miniaturized in a direction parallel to the installation surface 311a.
Similarly, in the ninth embodiment, the power conducting wires 331 and 332 are arranged in a straight line in a direction perpendicular to the installation surface 311a, that is, in the vertical direction. It only has to be lined up in the direction.
In the tenth embodiment, a blocking wall 316 is provided for suppressing inductive noise caused by the power conducting wires 331 and 332 in the communication conducting wires 333 and 334. However, the blocking wall 316 may be omitted as long as induction noise can be suppressed from occurring in the communication wires 333 and 334 by other methods. For example, when the vertical size of the wiring duct is not a problem, the noise may be suppressed by increasing the distance between the power conductors 331 and 332 and the communication conductors 333 and 334. . Further, noise may be suppressed externally, such as by providing a core on the communication wires 333 and 334.
In the tenth embodiment, the wiring duct includes one set each of the power conducting wires 331 and 332 and the communication conducting wires 333 and 334, but may have other configurations. For example, instead of the communication conductors 333 and 334, a power conductor for flowing currents having different voltages and phases may be further provided. Further, in addition to the power conductors 331 and 332 and the communication conductors 333 and 334, communication conductors for communication methods with different standards may be further provided, or for power for flowing currents having different voltages and phases. You may further provide conducting wire. Even in these cases, all the conductive wires are arranged in a direction perpendicular to the installation surface 311a, thereby providing an effect of reducing the size of the wiring duct in a direction parallel to the installation surface 311a. In other words, the size of the wiring duct is constant in the direction parallel to the installation surface regardless of the number of conductors, so that the area of the installation surface on which the wiring duct is installed can be constant regardless of the number of conductors. .
 本発明は、壁面や天井面に沿って設置され、所望の位置より配線器具が取り付けられる配線ダクトに広く利用可能である。 The present invention can be widely used for a wiring duct that is installed along a wall surface or a ceiling surface and to which a wiring device is attached from a desired position.

Claims (21)

  1.  電力供給用配線と通信用配線とが内部に配設され、
    前記電力供給用配線の配線系路上の任意の位置において電気機器に電力供給可能な配線ダクトにおいて、
     前記電力供給用配線を原因とする誘導ノイズが前記通信用配線に発生することを抑制するための間隔が、前記電力供給用配線と前記通信用配線との間に備えられることを特徴とする配線ダクト。
    Power supply wiring and communication wiring are arranged inside,
    In a wiring duct capable of supplying power to an electrical device at an arbitrary position on the wiring system of the power supply wiring,
    Wiring characterized in that an interval is provided between the power supply wiring and the communication wiring to suppress the occurrence of inductive noise caused by the power supply wiring in the communication wiring. duct.
  2.  前記電力供給用配線と前記通信用配線との間に電磁波を遮断する効果を有する遮断壁が更に設けられていることを特徴とする請求項1に記載の配線ダクト。 The wiring duct according to claim 1, further comprising a blocking wall having an effect of blocking electromagnetic waves between the power supply wiring and the communication wiring.
  3.  前記通信用配線が複数配設され、前記複数の通信用配線が互いに撚り合されていることを特徴とする請求項1または2に記載の配線ダクト。 The wiring duct according to claim 1 or 2, wherein a plurality of the communication wirings are arranged, and the plurality of communication wirings are twisted together.
  4.  前記電力供給用配線および前記通信用配線の少なくとも一方が電磁波を遮断する効果を有する電磁波遮断部材により取り囲まれていることを特徴とする請求項1~3のいずれか1項に記載の配線ダクト。 The wiring duct according to any one of claims 1 to 3, wherein at least one of the power supply wiring and the communication wiring is surrounded by an electromagnetic wave blocking member having an effect of blocking electromagnetic waves.
  5.  前記電磁波遮断部材が、接地されていることを特徴とする請求項4に記載の配線ダクト。 The wiring duct according to claim 4, wherein the electromagnetic wave shielding member is grounded.
  6.  金属材料からなるコアと、このコアの内部に設けられた複数の電極対とを備え、2つの導体により前記電極対の各々が構成される配線ダクトであって、
     複数の前記電極対が所定方向において間隔を空けて設けられ、
     1つの前記電極対を構成する2つの前記導体が、前記所定方向に垂直な方向において間隔を空けて設けられ、
    複数の前記電極対の間に、前記所定方向に垂直な方向に延びるとともに金属材料からなる遮断壁が設けられている
    ことを特徴とする配線ダクト。
    A wiring duct comprising a core made of a metal material and a plurality of electrode pairs provided inside the core, each of the electrode pairs being constituted by two conductors,
    A plurality of the electrode pairs are provided at intervals in a predetermined direction,
    The two conductors constituting one electrode pair are provided at a distance in a direction perpendicular to the predetermined direction;
    A wiring duct characterized in that a shielding wall made of a metal material is provided between the plurality of electrode pairs, extending in a direction perpendicular to the predetermined direction.
  7.  前記コアに前記遮断壁が一体的に形成されていることを特徴とする請求項6に記載の配線ダクト。 The wiring duct according to claim 6, wherein the blocking wall is formed integrally with the core.
  8.  前記遮断壁が前記コアに接合されて、前記コアに前記遮断壁が一体的に形成されていることを特徴とする請求項7に記載の配線ダクト。 The wiring duct according to claim 7, wherein the blocking wall is joined to the core, and the blocking wall is integrally formed with the core.
  9.  前記コアは、前記遮断壁により区切られるとともに、前記電極対が設けられた複数の内部空間を有し、
     前記コアには、前記内部空間を開放する複数の開口部が設けられ、複数の前記開口部が、互いに異なる方向に向けて開口している
     ことを特徴とする請求項6~8のいずれか一項に記載の配線ダクト。
    The core is divided by the blocking wall and has a plurality of internal spaces provided with the electrode pairs,
    9. The core according to claim 6, wherein the core is provided with a plurality of openings for opening the internal space, and the plurality of openings are opened in different directions. Wiring duct according to item.
  10.  断面形状が前記所定方向において線対称となるように前記コアが形成されることにより、複数の前記開口部が互いに異なる方向に向けて開口していることを特徴とする請求項9に記載の配線ダクト。 The wiring according to claim 9, wherein the core is formed so that a cross-sectional shape is line-symmetric in the predetermined direction, so that the plurality of openings are opened in different directions. duct.
  11.  前記コアが非磁性体の金属材料からなることを特徴とする請求項6~10のいずれか一項に記載の配線ダクト。 The wiring duct according to any one of claims 6 to 10, wherein the core is made of a nonmagnetic metal material.
  12.  前記コアと前記遮断壁とが非磁性体の金属材料からなることを特徴とする請求項6~11のいずれか一項に記載の配線ダクト。 The wiring duct according to any one of claims 6 to 11, wherein the core and the blocking wall are made of a non-magnetic metal material.
  13.  1つの前記電極対を構成する2つの前記導体の静電容量が実質的に互いに等しいことを特徴とする請求項6~12のいずれか一項に記載の配線ダクト。 The wiring duct according to any one of claims 6 to 12, wherein the capacitances of the two conductors constituting one electrode pair are substantially equal to each other.
  14.  金属材料からなるコアと、このコアの内部に設けられた複数の電極対とを備え、2つの導体により前記電極対の各々が構成される配線ダクトであって、
     複数の前記電極対が所定方向において間隔を空けて設けられ、
     1つの前記電極対を構成する2つの前記導体が、前記所定方向に垂直な方向において間隔を空けて設けられ、
     1つの前記電極対を構成する2つの前記導体の静電容量が実質的に互いに等しい
     ことを特徴とする配線ダクト。
    A wiring duct comprising a core made of a metal material and a plurality of electrode pairs provided inside the core, each of the electrode pairs being constituted by two conductors,
    A plurality of the electrode pairs are provided at intervals in a predetermined direction,
    The two conductors constituting one electrode pair are provided at a distance in a direction perpendicular to the predetermined direction;
    The wiring duct characterized in that the capacitances of the two conductors constituting one electrode pair are substantially equal to each other.
  15.  前記コアには、前記電極対が設けられた内部空間を開放する開口部が設けられ、
     前記コアが、このコアの長手方向に垂直な断面において、前記開口部を二等分する中心線を軸として線対称となるように形成され、
     1つの前記電極対を構成する2つの前記導体が、前記コアの長手方向に垂直な断面において、前記中心線を軸として線対称となる位置に配設されている
     ことを特徴とする請求項12または13に記載の配線ダクト。
    The core is provided with an opening that opens an internal space in which the electrode pair is provided,
    The core is formed so as to be symmetrical with respect to a center line that bisects the opening in a cross section perpendicular to the longitudinal direction of the core;
    The two conductors constituting one electrode pair are arranged at positions that are line-symmetric with respect to the center line in a cross section perpendicular to the longitudinal direction of the core. Or the wiring duct of 13.
  16.  請求項6~15のいずれか一項に記載の配線ダクトを複数備え、前記配線ダクトの各々が備える前記電極対が互いに接続されることにより信号伝送路が形成される配線ダクトシステムであって、
     前記信号伝送路は、この信号伝送路を形成する前記電極対に電流が流れることにより発生する磁束の向きを反転させる構造を有している
     ことを特徴とする配線ダクトシステム。
    A wiring duct system comprising a plurality of wiring ducts according to any one of claims 6 to 15, wherein a signal transmission path is formed by connecting the electrode pairs provided in each of the wiring ducts,
    The wiring duct system, wherein the signal transmission path has a structure that reverses the direction of magnetic flux generated when a current flows through the electrode pair forming the signal transmission path.
  17.  複数の前記配線ダクトを互いに接続する配線ダクト用接続部材を備え、この配線ダクト用接続部材により前記磁束の向きが反転されることを特徴とする請求項16に記載の配線ダクトシステム。 The wiring duct system according to claim 16, further comprising a wiring duct connecting member that connects the plurality of wiring ducts to each other, and the direction of the magnetic flux is reversed by the wiring duct connecting member.
  18.  少なくとも電力用導線を含む複数の導線と、
     前記導線を内部に有するハウジングとを備え、
     前記ハウジングの外周面の1つである設置面が被設置面に設置されるものであり、
     前記電力用導線の系路上の任意の位置において電気機器に電力供給可能な配線ダクトにおいて、
     前記複数の導線の全てが、前記設置面に対して垂直な方向に配列されていることを特徴とする配線ダクト。
    A plurality of conductors including at least a power conductor;
    A housing having the conducting wire therein,
    An installation surface that is one of the outer peripheral surfaces of the housing is installed on the installation surface;
    In a wiring duct capable of supplying electric power to an electrical device at an arbitrary position on the power line of the power conductor
    The wiring duct, wherein all of the plurality of conducting wires are arranged in a direction perpendicular to the installation surface.
  19.  前記複数の導線の少なくとも1つに通信用導線が含まれる請求項18に記載の配線ダクト。 19. The wiring duct according to claim 18, wherein a communication conductor is included in at least one of the plurality of conductors.
  20.  前記電力用導線と前記通信用導線との間に電磁波を遮断する効果を有する遮断壁が設けられている請求項19に記載の配線ダクト。 The wiring duct according to claim 19, wherein a blocking wall having an effect of blocking electromagnetic waves is provided between the power conducting wire and the communication conducting wire.
  21.  導線の被接続面に接続される接点を備え、請求項18~20のいずれか一項に記載の配線ダクトに接続される電気機器であって、
     前記接点が、電気機器本体に対して、前記設置面に平行な方向に直線的に移動することにより、前記被接続面に接続される電気機器。
    An electrical device comprising a contact point connected to a connected surface of a conducting wire and connected to the wiring duct according to any one of claims 18 to 20,
    The electric device connected to the connected surface by the contact moving linearly in a direction parallel to the installation surface with respect to the electric device main body.
PCT/IB2011/001464 2010-06-24 2011-06-24 Wiring duct, wiring duct system, and electric device connected to the wiring duct WO2011161533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800284559A CN103038964A (en) 2010-06-24 2011-06-24 Wiring duct, wiring duct system, and electric device connected to the wiring duct

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-143819 2010-06-24
JP2010143819A JP2012010482A (en) 2010-06-24 2010-06-24 Wiring duct and electrical equipment for the same
JP2010143822A JP5807184B2 (en) 2010-06-24 2010-06-24 Wiring duct and wiring duct system provided with the same
JP2010-143822 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011161533A1 true WO2011161533A1 (en) 2011-12-29

Family

ID=45370911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/001464 WO2011161533A1 (en) 2010-06-24 2011-06-24 Wiring duct, wiring duct system, and electric device connected to the wiring duct

Country Status (2)

Country Link
CN (1) CN103038964A (en)
WO (1) WO2011161533A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015110059A1 (en) * 2015-06-23 2016-12-29 Wago Verwaltungsgesellschaft Mbh Connector and mounting rail profile
EP3654460A1 (en) * 2018-11-14 2020-05-20 Legrand AV Inc. Distributable modular chassis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033745B2 (en) * 2017-09-29 2022-03-11 パナソニックIpマネジメント株式会社 Power distribution system
CN112332331B (en) * 2020-11-14 2022-02-22 南京乔天自动化科技有限公司 Wiring system convenient to overhaul

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153362A (en) * 1992-11-09 1994-05-31 Murata Mach Ltd Wiring duct
JP2004206962A (en) * 2002-12-24 2004-07-22 Nippei Toyama Corp Grounded circuit and wiring duct in mechanical equipment
JP2005123316A (en) * 2003-10-15 2005-05-12 Sekisui Jushi Co Ltd Wiring rail
JP2008295201A (en) * 2007-05-24 2008-12-04 Furukawa Electric Co Ltd:The Wiring structure and wiring method for power supply cable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103276A (en) * 1980-10-28 1982-06-26 Erekutoraku Intern Ltd Distributor
JPS57211920A (en) * 1981-06-23 1982-12-25 Matsushita Electric Works Ltd Wiring duct
CN1061305A (en) * 1990-11-06 1992-05-20 尤大千 Sealed insulating plug-in wire way wiring device
JP2010177138A (en) * 2009-01-30 2010-08-12 Panasonic Electric Works Co Ltd Wiring duct

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153362A (en) * 1992-11-09 1994-05-31 Murata Mach Ltd Wiring duct
JP2004206962A (en) * 2002-12-24 2004-07-22 Nippei Toyama Corp Grounded circuit and wiring duct in mechanical equipment
JP2005123316A (en) * 2003-10-15 2005-05-12 Sekisui Jushi Co Ltd Wiring rail
JP2008295201A (en) * 2007-05-24 2008-12-04 Furukawa Electric Co Ltd:The Wiring structure and wiring method for power supply cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015110059A1 (en) * 2015-06-23 2016-12-29 Wago Verwaltungsgesellschaft Mbh Connector and mounting rail profile
DE102015110059B4 (en) * 2015-06-23 2019-04-25 Wago Verwaltungsgesellschaft Mbh Connector and mounting rail
EP3654460A1 (en) * 2018-11-14 2020-05-20 Legrand AV Inc. Distributable modular chassis
US10993349B2 (en) 2018-11-14 2021-04-27 Legrand Av Inc. Distributable modular chassis

Also Published As

Publication number Publication date
CN103038964A (en) 2013-04-10

Similar Documents

Publication Publication Date Title
CN103378495B (en) Circuit board and wire component
US7771239B1 (en) Power receptacle device with rotatable sockets
MX2007006087A (en) Reorientable electrical receptacle.
WO2011161533A1 (en) Wiring duct, wiring duct system, and electric device connected to the wiring duct
TWM486184U (en) Plug connector
JP2010177138A (en) Wiring duct
CN104115240A (en) Data cable
EP2631923B1 (en) Wireless power connector and wireless power connector system
JP4501245B2 (en) Network connection device
US7399209B2 (en) Coaxial cable with plug
JP2011014393A (en) Shielded electric wire
TW201014066A (en) Coaxial cable connector housing
CN205790632U (en) Electric connector
JP5654132B2 (en) Communication plug with improved crosstalk
EP3115793B1 (en) Accessory device for low or medium voltage electric equipment
KR101139531B1 (en) Apparatus for cable connecting
US20100035448A1 (en) Ultrasonic linear motor
NZ529061A (en) Isolated phase bus duct joint assembly
WO2022262664A1 (en) Electronic device
JP5611063B2 (en) Wiring duct system
JPH0775180B2 (en) Data connector and its shield overcoat
JP2012010482A (en) Wiring duct and electrical equipment for the same
US4345804A (en) Flexible bushing connector
JP5807184B2 (en) Wiring duct and wiring duct system provided with the same
JP4235055B2 (en) Series unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028455.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797689

Country of ref document: EP

Kind code of ref document: A1