WO2011160187A1 - An absorption probe for measuring dissolved organic carbon in an aqueous sample - Google Patents
An absorption probe for measuring dissolved organic carbon in an aqueous sample Download PDFInfo
- Publication number
- WO2011160187A1 WO2011160187A1 PCT/AU2011/000779 AU2011000779W WO2011160187A1 WO 2011160187 A1 WO2011160187 A1 WO 2011160187A1 AU 2011000779 W AU2011000779 W AU 2011000779W WO 2011160187 A1 WO2011160187 A1 WO 2011160187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- absorption probe
- reflector
- light
- probe according
- aqueous sample
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 96
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 53
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 239000004411 aluminium Substances 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 11
- 239000010453 quartz Substances 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 5
- 235000013405 beer Nutrition 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- 239000005357 flat glass Substances 0.000 claims description 3
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 3
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000002835 absorbance Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 238000000576 coating method Methods 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 0 C(C1)*11*(C2)C=C2C1 Chemical compound C(C1)*11*(C2)C=C2C1 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- 235000012206 bottled water Nutrition 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- IWZKICVEHNUQTL-UHFFFAOYSA-M potassium hydrogen phthalate Chemical compound [K+].OC(=O)C1=CC=CC=C1C([O-])=O IWZKICVEHNUQTL-UHFFFAOYSA-M 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920004943 Delrin® Polymers 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1886—Water using probes, e.g. submersible probes, buoys
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/21—Dissolved organic carbon [DOC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
Definitions
- Embodiments generally relate to absorption probes that may be used for measuring dissolved organic carbon in an aqueous sample.
- Dissolved organic carbon is generally defined as the organic matter that is able to pass through a filter, which removes material between 0.70mm and 0.22um in size. Determining the concentration of DOC in an aqueous sample, such as a sample of waste water or potable water, is important in diverse fields including pollution abatement and industrial processing situations.
- DOC Cost effective management of DOC is one of the key challenges facing today's water treatment industry.
- DOC has a major impact on treated water quality by for instance, acting as a food source for micro-organisms, reducing the capacity of membrane filtration by fouling, and influencing the taste and odour of water.
- Techniques for the determination of DOC in an aqueous sample may involve the removal of inorganic carbon from the sample, oxidation of the organic carbon to carbon dioxide (CO 2 ), and quantitative determination of the resulting CO 2 .
- DOC can be oxidized to CO 2 by wet chemical oxidation methods (e.g. persulfate oxidation), by high temperature combustion of the liquid or dried sample in the presence of an oxidizing or surface catalyst, or photochemically by UV-irradiation, with or without the presence of an oxidizing agent.
- Carbon dioxide is typically quantified by infrared absorption.
- Some embodiments relate to an absorption probe for measuring an amount of dissolved organic carbon in an aqueous sample, the absorption probe comprising:
- a housing defining an analysis zone for the containment or passage of an aqueous sample
- a light reflector disposed within said housing
- an ultraviolet light emitting device disposed within said housing and operable to radiate ultraviolet light along an optical path that passes through the aqueous sample to impinge on said reflector;
- a light detector disposed within said housing and operable to detect radiated light reflected from said reflector and to output a received signal from said detected reflected light, said received signal indicative of a measure of an amount of dissolved organic carbon in the aqueous sample.
- the light reflector may be back surface reflector or a front surface reflector.
- aluminium, silver, a metal with a high UV reflectance or a dielectric reflector layer may be deposited on an ultraviolet transmitting quartz disc or UV transmitting glass.
- UV transmitting glasses include sapphire or high fluoride content glasses.
- aluminium, silver, a metal with a high UV reflectance or a dielectric reflector layer is deposited on a layer of plate glass, common glass or a non-ultraviolet transmitting flat substrate.
- the front surface reflector further comprises a protective overcoat of silicon dioxide or magnesium fluoride when a metal deposit such as aluminium or silver is used.
- Non-ultraviolet transmitting flat substrates may comprise injection moulded polymers such as polycarbonate or PMMA or metals such as polished stainless steel or aluminium.
- the light reflector is a mirror.
- the housing may comprise a first member detachably connected to a second member.
- the second member may comprise a sheath which engages with an outer surface of said first member.
- the sheath may slidably engage with the outer surface of said first member.
- the first member may comprise a sheath which slidably engages the outer surface of the second member.
- the first and second member may be attached by a screw thread mechanism where their separation is conducted by rotation relative to each other.
- the second member may comprise a cavity which defines the analysis zone.
- the first member, and/or the second member may be provided with a limit means to limit the extent of slidability or extension of the second member over the first member, and which therefore defines the path length through the analysis zone. This feature has the advantage of adjustment of the path length and the resultant response of the probe.
- the analysis zone may have a passageway through it to allow transport of the aqueous sample through the analysis zone.
- a wall of the second member surrounding the cavity may have two or more apertures configured to permit circulation of the sample when at least a portion of the absorption probe is immersed in a body of water. In such a configuration the probe may be hand held and readily portable.
- a wall of the second member surrounding the cavity may have engagement means to engage the output of a faucet.
- the engagement means for attachment to a faucet may be incorporated in a sheath which is extended from the first member, with the second member slidably or rotationally connected to the first member.
- the light reflector and light detector may be disposed proximate a first end of the first member.
- the first end of the first member may be capped by an ultraviolet radiation transparent element.
- the ultraviolet radiation transparent element may comprise quartz.
- the ultraviolet radiation transparent element may comprise sapphire.
- the absorption probe may further comprise a power source operable to supply energy to said absorption probe.
- the absorption probe may include a signal processing unit operable to process said received signal to calculate a measure of the amount of dissolved organic carbon in the aqueous sample according to Beer's-Lamberts Law.
- the signal processing unit may be a physically separate unit from the housing.
- the signal processing unit may be in signal communication with the light detector and light source.
- the ultraviolet light emitting device may be broad spectrum or may be monochromatic.
- the ultraviolet light emitting device may be operable to emit light in the wavelength band of approximately 200nm to 400 nm.
- the ultraviolet light emitting device may be operable to emit light in the wavelength band of approximately 170nm to 280nm, or preferably 200nm to 270nm.
- the ultraviolet light emitting device may comprise a light emitting diode operable to emit light at approximately 253nm, 254nm, 255nm, 256nm or 257nm.
- the absorption probe may further comprise a collimator to collimate the ultraviolet light radiated from the light emitting diode.
- the ultraviolet light emitting device may comprise a low pressure mercury lamp.
- UV absorbance at around about 254nm is a convenient measure because it corresponds to the clearly defined spectral line of a low pressure mercury lamp (253.7nm). If a low pressure mercury lamp is used then the absorption probe may further comprise an interference filter capable of selecting the ultraviolet component and substantially rejecting the visible light component.
- aqueous includes reference to potable water, waste water, water in streams, rivers and dams, runoff water from homes and domestic storage tanks. The readings are referenced against de-ionized water or distilled water containing no dissolved organic carbon as a standard.
- the signal processing unit may include or be in communication with a memory to which is stored a measure I 0 of the intensity of the light as measured through a sample of distilled or deionised water containing substantially no carbon.
- Figure 1 is a diagrammatic sectional view of a first embodiment of an absorption probe.
- Figure 2 is a diagrammatic sectional view of a second embodiment of an absorption probe.
- Figure 3 is a diagrammatic sectional view of the first member of either the first embodiment illustrated in Fig. l, or the second embodiment illustrated in Fig.2.
- Figure 4 is a diagrammatic sectional view of the second member of the first embodiment illustrated in Fig.1.
- Figure 5 is a diagrammatic sectional view of the second member of the second embodiment illustrated in Fig.2.
- Figure 6 is a perspective view of an assembled probe in accordance with the first embodiment illustrated in Fig.1.
- Figure 7 is a perspective view of an assembled probe in accordance with the second embodiment illustrated in Fig.2.
- Figure 8 is a perspective view of a kit.
- Figure 9 is a schematic illustration of the sensor having a rear surface reflective mirror.
- Figure 10 is a schematic illustration of the sensor having a front surface reflective mirror.
- Figure 1 1 is a graph illustrating a calibration curve for the new sensor showing good sensitivity down to low PPB ranges.
- Figure 12 is a graph illustrating sensor response at higher concentrations of dissolved organic carbon.
- FIGs 1, 3, 4 and 6 illustrate a first embodiment of a hand-held portable absorption probe 100 for measuring an amount of dissolved organic carbon in an aqueous sample.
- the hand-held absorption probe 100 measures the transmission or absorbance of water at a wavelength of approximately 255nm, which is an industry standard for detection of dissolved organic carbon (DOC) and "aromatic" dissolved carbon.
- DOC dissolved organic carbon
- Waters contaminated with dissolved organic carbon have a broad absorption spectrum which extends from below 250nm to 400nm. The absorption of light in these waters increases significantly as the wavelength is reduced from 400 to 250 nm.
- UV 254 is selected as an industry standard because traditionally a mercury discharge lamp is used to generate the UV light where mercury has a strong emission at 253.7nm.
- the exact wavelength is not critical to the analysis, but preferably a wavelength close to 254- 255 nm is chosen to maximise the sensitivity.
- the absorption probe 100 comprises a housing made up of a first member 105 and a second member 110.
- Each of the first and second members comprise hollow cylinders which are machined from acetal polymer (Delrin).
- acetal polymer Delrin
- other materials such as machinable polymers, metals such as aluminium alloy, stainless steel or injection mouldable polymers can be used for construction, where resistance to corrosion by immersion in water is desirable.
- a first end of the first member 105 is capped with an ultraviolet radiation transparent element in the form of a quartz window 140.
- an ultraviolet light emitting device (UV Led) in the form of a UV light emitting diode 145 operable to radiate light at approximately 254- 255 nm.
- a quartz ball lens 150 is provided to collimate the radiation emitted from the UVLed 145.
- a light detector in the form of a UV-sensitive photodiode 155 is also situated behind the quartz window 140. Contained within a first end of the second member 1 10 is a light reflector 160.
- the light reflector 160 can either be a back surface reflector 160a as illustrated with reference to figure 9, or a front surface reflector 160b as illustrated with reference to figure 10.
- an ultraviolet-transparent quartz disc 310 is provided with a rear aluminium, silver, a metal with a high UV reflectance or a dielectric reflector layer 320 deposited thereon.
- 310 could comprise of a suitable UV transmitting glass. Examples of suitable UV transmitting glasses include sapphire or high fluoride content glasses.
- a first layer of plate glass 330 or other non-UV transmitting material is provided and deposited thereon is a layer of aluminium coating, silver, a metal with a high UV reflectance or a dielectric reflector layer 320.
- 330 could comprise of common glass or non-ultraviolet transmitting flat substrate.
- non-ultraviolet transmitting flat substrate include injection moulded polymers such as polycarbonate or PMMA, or metals such as polished stainless steel or aluminium. If a metal coating such as aluminium or silver is used, a thin protective overcoat of silicon dioxide (not shown) may be applied to the front surface to prevent corrosion.
- the aluminium mirror coating is applied to the glass rear or front surface by vacuum sputtering or electron beam or thermal evaporation to a thickness of 100-200 nm. It may be protected on the front surface by application of a thin layer of silicon oxide, which is electron beam evaporated in high vacuum. Other materials such as magnesium fluoride may also be used as a protective layer to prevent water corrosion of the thin film. If a rear surface reflector is used, it may be sealed from contact with water on the rear surface by enclosing it in a plastic housing or applying a lacquer layer. Alternatively, for the UV reflective coating, multilayer dielectric coatings may be used to substitute for protected metal coatings.
- apertures 135 formed within a lower portion of the wall of the second member 110 are six apertures 135 (of which only three are shown) configured to permit circulation of an aqueous sample when at least a portion of the absorption probe 100 is immersed in a body of water which is subject to testing.
- the second end of the second member 110 forms a sheath 115 and the diameter of the first member 105 is less than that of at least the sheath 1 15 of the second member 110 to enable the second member 110 to slide over the outer surface of the first member 105.
- a limit means in the form of a stop pin 120 projects from the outer wall of the first member 105 and a lip 125 of the sheath 115 abuts with the stop pin 120. The location of the stop pin 120 defines the path length of the analysis zone 130 subsequently formed.
- the UV light emitting diode 145 is angled with respect to the UV-sensitive photodiode 155 to allow the reflected radiated light to impinge on the photodiode 155 after transiting the water, and to optimise the signal extracted from the photodiode 155 when the lip 125 of the sheath 115 optionally abuts with the stop pin 120.
- the lip of the sheath 1 15 need not abut the stop pin 120, and the distance of the sheath 1 15 relative to the stop pin 120 may be varied to adjust the sensitivity of the instrument.
- the first member 105 and second member 110 are releasably connectable with one another such that when they are connected with one another they form a compact hand- held absorption probe.
- the separability of the first member 105 from the second member 1 10 facilitates cleaning of the light reflector 160, quartz window 140, as well as other surfaces exposed to the aqueous sample.
- the absorption probe 100 comprises a container (not shown) containing a signal processing unit and memory.
- the container is physically separate from the housing yet is in signal communication with the light detector and light-emitting diode.
- the signal processing unit supplies power to the LED 145, processes signals received from the UV-sensitive photodiode 155 and calculates a measure of an amount of dissolved organic carbon in the aqueous sample according to Beer's-Lamberts Law.
- a measure of the transmission of light in substantially pure distilled or de- ionised water containing no dissolved organic carbon I 0 is required.
- the reference water sample is preferably 100% deionized (DI) water. This can either be obtained in real-time, prior to testing the aqueous sample whereafter the measured value is stored to memory. Alternatively Io may have been previously obtained and stored to memory for later use.
- UV light emitting diode 145 is pulsed at a particular frequency and the reflected light is sensed by the UV-sensitive photodiode 155 as an AC signal.
- the signal is amplified by a pre-amplifier before being passed through a band pass filter to remove unwanted noise.
- the filtered signal is then rectified and further filtered to produce an analog output voltage which is proportional to the transmission intensity I T .
- the circuitry should preferably be designed to minimise interference from stray visible light from fluorescent lights or other sources.
- concentration expressed by Beer's Law. See, e.g., G. W. Ewing, Instrumental Methods of Chemical Analysis, 5th ed., pp. 32-35 (McGraw-Hill, New York, 1985) incorporated herein by reference. Since absorptivity is an inherent property of a chemical compound, it is a constant for a given compound at a given wavelength.
- the sensitivity of the method of the invention depends on the use of a sample of sufficient size so that sample absorbances are observable after reference sample absorbances are subtracted out but not so great so as to exceed the capacity of the detector.
- a second embodiment of a hand-held absorption probe 200 is illustrated.
- the absorption probe 200 in the second embodiment is suitable for an in-line or flow through application where the probe 200 is attached, for instance, to a faucet.
- the second member 210 all remaining components of the flow through application absorption probe 200 are identical to the hand held probe 100 and will not be repeated here.
- An engagement means 220 is affixed to each of the apertures 215, such means being operable to engage the output of a faucet.
- the second end of the second member 210 forms a sheath 115 which slides over the outer surface of the first member 105 and enables releasable engagement, although it should be appreciated that the probe of the second embodiment 200 will be subject to much higher fluid flows and therefore pressure than the first embodiment that the engagement means 220 will be significantly more fluid tight.
- a light reflector 160 is contained within a first end of the second member 210 and a limit means in the form of a stop pin 120 projects from the outer wall of the first member 105 and a lip 125 of the sheath 115 abuts with the stop pin 120 to optimise the path length.
- Figure 8 illustrates a perspective view of a kit comprising a first member 105, a pair of second members 110 and 210 and a container 230 containing a signal processing unit and in built memory.
- Figure 1 1 is a graph illustrating a calibration curve for the absorption probe 100 which exhibits very good sensitivity down to low parts per billion (PPB) ranges.
- Figure 12 is a graph illustrating the response of the absorption probe 100 at higher concentrations of dissolved organic carbon. In both situations the absorption probe 100 was calibrated with potassium hydrogen phthalate (KHP) at various concentrations. As is evident, the absorption probe 100 exhibits a linear or smooth correlation between absorbance and concentration of DOC which facilitates calibration.
- Table 1 shows measurements of DOC in potable and recycled waters taken with both the hand held sensor and a commercial bench UV-VIS spectrophotometer. A good correlation of the readings is found demonstrating the utility of the instrument in discriminating between different type of potable and recycled waters.
- the foregoing description describes the ability of the second member 110 to slide over the outer surface of the first member 105 and a stop pin 120 which projects from the outer wall of the first member 105
- the first and second member may be engaged by a screw thread mechanism where the separation of the members is adjusted by rotating one against the other.
- the stop pin 120 can be replaced by a locking screw or other clamp mechanism to fix the distance between the two members.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800300091A CN102947691A (en) | 2010-06-23 | 2011-06-23 | An absorption probe for measuring dissolved organic carbon in an aqueous sample |
AU2011269660A AU2011269660B2 (en) | 2010-06-23 | 2011-06-23 | An absorption probe for measuring dissolved organic carbon in an aqueous sample |
US13/806,701 US8957387B2 (en) | 2010-06-23 | 2011-06-23 | Absorption probe for measuring dissolved organic carbon in an aqueous sample |
EP11797401.4A EP2585814A1 (en) | 2010-06-23 | 2011-06-23 | An absorption probe for measuring dissolved organic carbon in an aqueous sample |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010902762A AU2010902762A0 (en) | 2010-06-23 | An absorption probe for measuring dissolved organic carbon in an aqueous sample | |
AU2010902762 | 2010-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011160187A1 true WO2011160187A1 (en) | 2011-12-29 |
Family
ID=45370765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2011/000779 WO2011160187A1 (en) | 2010-06-23 | 2011-06-23 | An absorption probe for measuring dissolved organic carbon in an aqueous sample |
Country Status (5)
Country | Link |
---|---|
US (1) | US8957387B2 (en) |
EP (1) | EP2585814A1 (en) |
CN (1) | CN102947691A (en) |
AU (1) | AU2011269660B2 (en) |
WO (1) | WO2011160187A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9670072B2 (en) * | 2014-10-29 | 2017-06-06 | Horiba Instruments Incorporated | Determination of water treatment parameters based on absorbance and fluorescence |
US9606051B2 (en) * | 2014-12-02 | 2017-03-28 | Mettler-Toledo Gmbh | Apparatus and method for performing a light-absorption measurement of a specified amount of sample subject to pressure force |
FR3036801B1 (en) * | 2015-05-28 | 2019-06-14 | Iprasense Sas | IMMERABLE SENSOR WITH VARIABLE SIZE MEASUREMENT SITE |
US10048242B2 (en) | 2015-06-07 | 2018-08-14 | Shenzhen Yimu Technology Co., Ltd. | Inline water contaminant detector |
NL2015580B1 (en) * | 2015-10-07 | 2017-05-02 | Aquacolor Sensors B V | Sensor system for spectrophotometric measurement of components and method there for. |
KR102273852B1 (en) | 2016-03-07 | 2021-07-06 | 와이에스아이 인코포레이티드 | Optical nitrate sensor for multivariate water quality measurement |
CA3016594C (en) | 2016-03-09 | 2021-07-06 | Christopher John Palassis | Optical nitrate sensor compensation algorithm for multiparameter water quality measurement |
CN105891160B (en) * | 2016-04-22 | 2018-12-28 | 华中科技大学 | A kind of portable water quality detecting device and water quality detection method |
GB2556039A (en) * | 2016-11-10 | 2018-05-23 | Natural Environment Res Council | Device |
CN107337307B (en) * | 2017-03-29 | 2022-10-21 | 宁波方太厨具有限公司 | Domestic washing water preparation facilities |
ES2695247A1 (en) * | 2017-06-27 | 2019-01-02 | Fund Tekniker | SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding) |
AU2019279025A1 (en) | 2018-06-01 | 2021-01-07 | Orb Xyz, Inc. | Detecting an analyte in a medium |
EP3803336A4 (en) * | 2018-06-01 | 2022-01-26 | ORB XYZ, Inc. | Detection of biological substances |
EP3767276A1 (en) | 2019-07-19 | 2021-01-20 | Sensirion AG | Total organic carbon sensor with uv-sensitive photodetector comprising a down-converting layer |
CN112304888B (en) * | 2019-07-31 | 2022-11-29 | Tcl科技集团股份有限公司 | Water quality detection method, system and storage medium |
US10761015B1 (en) * | 2019-09-18 | 2020-09-01 | Taiwan Redeye Biomedical Inc. | Handheld hemoglobin detecting device |
CN111157485A (en) * | 2019-12-19 | 2020-05-15 | 郑州轻工业大学 | Rapid water quality detection device and detection method thereof |
JP7543807B2 (en) | 2020-09-24 | 2024-09-03 | 株式会社Jvcケンウッド | LIQUID DETERMINATION SYSTEM AND LIQUID DETERMINATION METHOD |
US11536649B1 (en) * | 2021-12-06 | 2022-12-27 | Taiwan Redeye Biomedical Inc. | Urinal additional device for detecting blood in urine |
CN116930141A (en) * | 2023-09-13 | 2023-10-24 | 国家海洋技术中心 | CDOM deep sea sensor by ultraviolet fluorescence analysis method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5524671A (en) * | 1978-08-10 | 1980-02-21 | Toyobo Co Ltd | Contamination meter for rinsing water |
JPS56106143A (en) * | 1980-01-26 | 1981-08-24 | Denki Kagaku Keiki Co Ltd | Absorbance measuring apparatus |
JP2002277392A (en) * | 2001-03-15 | 2002-09-25 | Kurabo Ind Ltd | Instrument for measuring very small amount of isopropyl alcohol |
US20090073436A1 (en) * | 2006-03-16 | 2009-03-19 | Noboru Higashi | Attenuated total reflection optical probe and apparatus therewith for spectroscopic measurement of aqueous solution |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2661499B1 (en) * | 1990-04-27 | 1992-07-31 | Ponselle Mesure Sarl | WATER TURBIDITY CONTROL PROBE. |
GB9100502D0 (en) | 1991-01-10 | 1991-02-20 | Ici Plc | Monitoring device |
RU1827596C (en) | 1991-03-01 | 1993-07-15 | Киевский институт автоматики | Turbidity meter |
US5304492A (en) * | 1991-11-26 | 1994-04-19 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Spectrophotometer for chemical analyses of fluids |
EP1482298A1 (en) * | 2003-05-26 | 2004-12-01 | Sensorix | Arrangement for continuous determination of a substance |
ATE492796T1 (en) * | 2006-09-20 | 2011-01-15 | Prad Res & Dev Nv | DEVICE AND METHOD FOR OPTICALLY DETERMINING THE PRESENCE OF CARBON DIOXIDE |
WO2011039953A1 (en) * | 2009-09-29 | 2011-04-07 | 三井造船株式会社 | Method and device for fret measurement |
-
2011
- 2011-06-23 US US13/806,701 patent/US8957387B2/en active Active
- 2011-06-23 EP EP11797401.4A patent/EP2585814A1/en not_active Withdrawn
- 2011-06-23 CN CN2011800300091A patent/CN102947691A/en active Pending
- 2011-06-23 AU AU2011269660A patent/AU2011269660B2/en active Active
- 2011-06-23 WO PCT/AU2011/000779 patent/WO2011160187A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5524671A (en) * | 1978-08-10 | 1980-02-21 | Toyobo Co Ltd | Contamination meter for rinsing water |
JPS56106143A (en) * | 1980-01-26 | 1981-08-24 | Denki Kagaku Keiki Co Ltd | Absorbance measuring apparatus |
JP2002277392A (en) * | 2001-03-15 | 2002-09-25 | Kurabo Ind Ltd | Instrument for measuring very small amount of isopropyl alcohol |
US20090073436A1 (en) * | 2006-03-16 | 2009-03-19 | Noboru Higashi | Attenuated total reflection optical probe and apparatus therewith for spectroscopic measurement of aqueous solution |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN * |
Also Published As
Publication number | Publication date |
---|---|
US8957387B2 (en) | 2015-02-17 |
AU2011269660B2 (en) | 2015-08-13 |
CN102947691A (en) | 2013-02-27 |
AU2011269660A1 (en) | 2013-01-31 |
US20130153777A1 (en) | 2013-06-20 |
EP2585814A1 (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011269660B2 (en) | An absorption probe for measuring dissolved organic carbon in an aqueous sample | |
US9976953B2 (en) | Optical density monitor and comparator systems and methods | |
CA2090820C (en) | Simultaneous monitoring of multiple water treatment performance indicators | |
Ahmad et al. | Monitoring of water quality using fluorescence technique: prospect of on-line process control | |
CA2656860C (en) | Multiple path length transmittance measuring device | |
CA2789971C (en) | Handheld optical measuring device and method of use | |
EP1228358B1 (en) | Device for measuring water colour and turbidity using a single detector | |
IE920884A1 (en) | Organic pollutant monitor | |
US11885743B2 (en) | Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium | |
CN116148200B (en) | Water quality analyzer | |
CN109540842B (en) | Double-fluorescence signal and water quality monitoring probe based on LED light source and use method | |
KR101809021B1 (en) | System and sensor measuring total organic carbon using conductivity method | |
Ishtiak et al. | Graphene-based surface plasmon resonance sensor for water salinity concentration detection using multiple light source techniques | |
Nimbalkar et al. | Optical detection of melamine in raw milk | |
JP2021507249A (en) | Blackening optical components that do not emit fluorescence | |
Feng et al. | An instrument for on-line chemical oxygen demand and nitrate in water monitoring | |
RU2377541C1 (en) | Method of measuring optical characteristics of liquid or gas | |
HUT59489A (en) | Sensor for detecting absorption of the electromagnetic radiation | |
Ozaki et al. | Introduction to FUV and DUV Spectroscopy | |
RU2207501C2 (en) | Method for measuring thickness of film on substrate | |
Janowiak et al. | Development of a mobile sensing system for in situ water analysis based on solid-phase extraction–reflection spectroscopy | |
Bakar et al. | Localized surface plasmon resonance sensor using gold nanoparticles for detection of bisphenol A | |
Ndukaife | Discrete opto-fluidic chemical spectrophotometry system (DOCSS) for online batch-sampling of heavy metals and fabrication of dithizone based evanescent wave optical fiber sensor | |
Matjafri et al. | Multi-spectral optical sensor based on light scattering for measuring total suspended solids | |
GB2585629A (en) | Ultra-violet transmission in water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180030009.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11797401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011797401 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011797401 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011269660 Country of ref document: AU Date of ref document: 20110623 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13806701 Country of ref document: US |