ES2695247A1 - SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding) - Google Patents

SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2695247A1
ES2695247A1 ES201730848A ES201730848A ES2695247A1 ES 2695247 A1 ES2695247 A1 ES 2695247A1 ES 201730848 A ES201730848 A ES 201730848A ES 201730848 A ES201730848 A ES 201730848A ES 2695247 A1 ES2695247 A1 ES 2695247A1
Authority
ES
Spain
Prior art keywords
fluid
light
monitoring system
optical element
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
ES201730848A
Other languages
Spanish (es)
Inventor
Alvarez Jon Mabe
Alonso Patricia Lopez
Castrillo Andoni Delgado
Beristain Ion Iturbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fundacion Tekniker
Original Assignee
Fundacion Tekniker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Tekniker filed Critical Fundacion Tekniker
Priority to ES201730848A priority Critical patent/ES2695247A1/en
Priority to PCT/ES2018/070455 priority patent/WO2019002651A1/en
Publication of ES2695247A1 publication Critical patent/ES2695247A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2200/00Condition of lubricant
    • F16N2200/02Oxidation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2200/00Condition of lubricant
    • F16N2200/04Detecting debris, chips, swarfs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/34Transparency; Light; Photo sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • G01N2021/4752Geometry
    • G01N2021/4754Diffuse illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8514Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

System and method of monitoring the state of a fluid. A monitoring system (3, 13) for the inspection of a fluid (2, 71, 72) contained in a tank (1) by inserting it in a socket (5) of the tank (1), which comprises: an area of measure (20, 120) configured to circulate therein a sample of said fluid (2, 71, 72); light emitting/receiving means (41) consisting of a lighting system (411) and a light detection system (412) located on the same side of the monitoring system (3, 13) with respect to said area of measurement (20, 120); an optical window (44) disposed between said light emitting/receiving means (41) and said measuring area (20, 120); and a rear optical element (45, 451, 452, 453) located on the other side of the monitoring system (3, 13) with respect to said measurement area (20, 120). The lighting system (411) is configured to emit optical radiation to said measurement zone (20, 120), and the light detection system (412) is configured to detect an optical radiation comprising the light (i) reflected by said fluid (2, 71, 72) and/or light (ii) transmitted through said fluid (2, 71, 72) and reflected in said rear optical element (45, 451, 452, 453). The monitoring system (3, 13) further comprises an electronic subsystem (150) comprising processing means (51) configured to control the activation/deactivation of the lighting system (411) and to process the signals obtained from the detector system of light (412). (Machine-translation by Google Translate, not legally binding)

Description

DESCRIPCIONDESCRIPTION

SISTEMA Y METODO DE MONITORIZACION DEL ESTADO DE UN FLUIDOSYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID

CAMPO DE LA INVENCIONFIELD OF THE INVENTION

La presente invention pertenece al campo de los metodos y sistemas de monitorizacion de fluidos, tales como aceites, y en particular aceites lubricantes, para determinar su estado general (degradation, contenido de partlculas, etc.). Mas concretamente, la invencion pertenece al campo de la medicion del estado de fluidos, tales como aceites, por colorimetrla o espectroscopia optica.The present invention belongs to the field of fluid monitoring methods and systems, such as oils, and in particular lubricating oils, to determine their general state (degradation, content of particles, etc.). More specifically, the invention pertains to the field of the measurement of the state of fluids, such as oils, by colorimetry or optical spectroscopy.

ANTECEDENTES DE LA INVENCIONBACKGROUND OF THE INVENTION

La maquinaria industrial utiliza a menudo fluidos lubricantes para el correcto funcionamiento de los componentes de la maquina en cuestion. Ejemplos de estos fluidos incluyen lubricantes y aceites que pueden estar basados en hidrocarburos, productos sinteticos y/o basados en petroleo, asl como fluidos hidraulicos. Estos fluidos deben mantenerse dentro de un intervalo preferido de composition y limpieza para un rendimiento eficiente de la maquina. Por ejemplo, la adicion no deseada de agua o residuos puede hacer que la maquina pierda eficiencia o sufra danos. Es decir, la maquinaria industrial sufre a menudo fallos o interrupciones imprevistas ocasionados por problemas asociados a la lubrication. Estos fallos o interrupciones pueden reducir la vida de servicio de la maquinaria, asl como costos innecesarios de mantenimiento. Es por tanto necesario supervisar el fluido (normalmente, aceite) utilizado para la lubricacion y determinar el estado de dicho fluido.The industrial machinery often uses lubricating fluids for the correct functioning of the components of the machine in question. Examples of these fluids include lubricants and oils that may be based on hydrocarbons, synthetic and / or petroleum based products, as well as hydraulic fluids. These fluids must be maintained within a preferred range of composition and cleanliness for efficient machine performance. For example, the unwanted addition of water or waste can cause the machine to lose efficiency or suffer damage. That is, the industrial machinery often suffers failures or unexpected interruptions caused by problems associated with lubrication. These failures or interruptions can reduce the service life of the machinery, as well as unnecessary maintenance costs. It is therefore necessary to monitor the fluid (normally, oil) used for the lubrication and to determine the state of said fluid.

Una forma convencional de supervision del estado del aceite lubricante es mediante medicion "off-line”, es decir, mediante analisis de muestras de aceite en laboratorio. Sin embargo, las tecnicas "off-line” no proporcionan una detection suficientemente temprana del proceso de degradacion debido a que no se realizan con suficiente frecuencia debido a su vez al esfuerzo humano y material que la toma y analisis de estas muestras requiere. Por ejemplo, es frecuente que al tomar la muestra el lubricante se mezcle con sedimento, complicando el control del aceite. Tambien puede ocurrir que el muestreo requiera que la maquina se detenga o incluso se vacle de lubricante, causando una perdida de produccion de la maquina. A conventional way of monitoring the condition of the lubricating oil is by "off-line" measurement, that is, by analyzing oil samples in the laboratory, however, the "off-line" techniques do not provide a sufficiently early detection of the process. degradation because they are not performed often enough due to the human and material effort that the sampling and analysis of these samples requires. For example, it is common that when taking the sample the lubricant is mixed with sediment, complicating the control of the oil. It can also happen that the sampling requires the machine to stop or even to empty the lubricant, causing a loss of production of the machine.

Para superar los inconvenientes inherentes a las tecnicas de analisis "off-line”, se han desarrollado tecnicas "on-line” para analizar el estado del fluido en cuestion durante su propio funcionamiento, en movimiento, sin necesidad de extraer muestras del mismo para su analisis posterior y sin perdida temporal de production. Por ejemplo, la patente espanola ES2455465B1 describe un sistema para la inspection de la degradation de un fluido lubricante "on-line” en una celda de medida mediante un sensor optico. Para la inspeccion "on-line”, el sistema necesita elementos externos de control de flujo para detener el fluido, desairear la celda de medida y asegurar que la muestra de fluido no presenta burbujas. Ademas, este sistema requiere una diferencia de presion entre la entrada y la salida del sensor, lo que limita su uso a configuraciones e instalaciones en bypass.To overcome the inherent drawbacks of "off-line" analysis techniques, "on-line" techniques have been developed to analyze the state of the fluid in question during its own operation, in motion, without the need to extract samples from it for its subsequent analysis and without temporary loss of production. For example, the Spanish patent ES2455465B1 describes a system for inspecting the degradation of an "on-line" lubricating fluid in a measuring cell by means of an optical sensor.For the "on-line" inspection, the system needs external elements of flow control to stop the fluid, deaerate the measuring cell and ensure that the fluid sample does not present bubbles. In addition, this system requires a pressure difference between the input and output of the sensor, which limits its use to bypass configurations and installations.

En otro ejemplo, la solicitud de patente internacional WO2012032197A1 describe un sistema para conocer la degradacion de un aceite a partir de un analisis de sus caracterlsticas de absorcion espectral. Este sistema tambien requiere ser instalado en bypass en un sistema de lubrication, inmerso en el fluido bajo inspeccion.In another example, the international patent application WO2012032197A1 describes a system for detecting the degradation of an oil from an analysis of its spectral absorption characteristics. This system also needs to be installed in bypass in a lubrication system, immersed in the fluid under inspection.

Sin embargo, existen escenarios en los que no es posible realizar una monitorizacion en modo bypass. Tal es el caso, por ejemplo, de entornos con poco espacio de medida, tales como sistemas de retro-fitting, no disenados para ser instrumentados con sensores. O entornos en los que, como mucho, existe un unico punto de toma de muestra. Ejemplos de este tipo son algunos sistemas mecatronicos lubricados, tales como robots y gruas. Muchos de estos sistemas requieren la monitorizacion de miles de puntos de interes en una planta. Por ejemplo, en una planta de produccion de automoviles, cada uno de los muchos robots tiene dos o tres sistemas hidraulicos a monitorizar. O, en una planta de montaje de automocion, cada articulation de cada robot (de los que puede haber miles) incorpora un sistema de engranajes que a su vez incorpora su propio microsistema de lubricacion (de un litro de aceite aproximadamente). Para monitorizar un sistema de tal magnitud, es deseable poder utilizar sistemas de bajo coste que proporcionen recogida automatica de datos de interes. En suma, en ocasiones es deseable poder realizar el analisis de un fluido en una toma simple, es decir, que no requieran una diferencia de presion.However, there are scenarios in which it is not possible to perform monitoring in bypass mode. Such is the case, for example, of environments with little measuring space, such as retro-fitting systems, not designed to be instrumented with sensors. Or environments in which, at most, there is a single point of sampling. Examples of this type are some lubricated mechatronic systems, such as robots and cranes. Many of these systems require the monitoring of thousands of points of interest in a plant. For example, in a car production plant, each of the many robots has two or three hydraulic systems to be monitored. Or, in an automotive assembly plant, each articulation of each robot (of which there may be thousands) incorporates a gear system that in turn incorporates its own lubrication microsystem (approximately one liter of oil). To monitor a system of such magnitude, it is desirable to be able to use low cost systems that provide automatic data collection of interest. In sum, sometimes it is desirable to be able to perform the analysis of a fluid in a simple shot, that is, not requiring a pressure difference.

Por otra parte, un sistema convencional de monitorizacion del grado de degradacion de un fluido (por ejemplo, un aceite lubricante) se basa en iluminar el fluido con una fuente de luz y observar la luz que se transmite a traves de el. Segun el estado del fluido (tlpicamente mas oscuro cuanto mas degradado el fluido), la luz transmitida varla. On the other hand, a conventional system for monitoring the degree of degradation of a fluid (for example, a lubricating oil) is based on illuminating the fluid with a light source and observing the light that is transmitted through it. According to the state of the fluid (typically darker the more degraded the fluid), the transmitted light varies.

Utilizando diversas tecnicas e implementaciones (luz visible o no visible, analisis espectral o de intensidad, etc.) se puede conseguir information mas o menos detallada del estado del fluido. Sin embargo, al trabajar en transmision, cuando el fluido es o se vuelve muy oscuro, la luz trasmitida es tan escasa que no es posible realizar la medida adecuadamente. Este es el caso de los fluidos lubricantes, que experimentan debido a su uso como lubricantes un cambio sustancial en su color. Por ello, se ha observado que, si bien los dispositivos on-line de monitorizacion de aceites basados en el principio de transmitancia (es decir, que trabajan en modo transmision), son efectivos cuando el aceite bajo supervision es muy translucido (es decir, normalmente al principio de su uso, cuando el aceite esta relativamente limpio), estos dispositivos de monitorizacion pierden efectividad a medida que el aceite se vuelve opaco por su uso continuado. Un ejemplo de estos sistemas que trabajan en transmitancia es el de la citada patente ES2455465B1. Serla posible realizar las mismas medidas analizando la luz reflejada de manera difusa en lugar de analizar la luz transmitida por el fluido. Sin embargo, en este caso, en lugar de tener el problema con fluidos oscuros, el problema surge con fluidos claros o traslucidos, que no reflejan, de manera difusa, sufciente luz como para tener una medida adecuada.Using various techniques and implementations (visible or non-visible light, spectral or intensity analysis, etc.), more or less detailed information on fluid status can be obtained. However, when working in transmission, when the fluid is or becomes very dark, the transmitted light is so scarce that it is not possible to measure properly. This is the case of lubricating fluids, which experience a substantial change in color due to their use as lubricants. Therefore, it has been observed that, although on-line oil monitoring devices based on the principle of transmittance (that is, they work in transmission mode), they are effective when the oil under supervision is very translucent (ie, normally at the beginning of its use, when the oil is relatively clean), these monitoring devices lose effectiveness as the oil becomes opaque due to its continued use. An example of these systems working in transmittance is that of the aforementioned patent ES2455465B1. It would be possible to perform the same measurements analyzing the reflected light in a diffuse way instead of analyzing the light transmitted by the fluid. However, in this case, instead of having the problem with dark fluids, the problem arises with clear or translucent fluids, which do not reflect, in a diffuse way, enough light to have an adequate measure.

La solicitud de patente internacional WO2016/080824A1 propone un sistema para monitorizar la dinamica del color de un fluido, formado por una sonda sumergible en el fluido bajo analisis. La sonda esta acoplada a una videocamara para capturar imagenes de la muestra de fluido. El sistema utiliza dos fuentes de luz: una fuente de luz en el plano de la videocamara (sistema de iluminacion frontal) para trabajar en modo de reflexion difusa para la supervision de muestras opacas; y una fuente de luz enfrentada a la videocamara (sistema de iluminacion a contraluz) para trabajar en modo de transmision para la supervision de muestras transparentes o traslucidas. Este sistema es complejo, por requerir dos emisores de luz, ademas de fragil, por incorporar una de las fuentes de luz en la parte del dispositivo mas expuesta a la presion del fluido bajo analisis. Ademas, el sistema esta disenado para introducirse en el recipiente que alberga el fluido de forma perpendicular al mismo, y por tanto perpendicular a la evacuacion de aire por desaireacion, por lo que se dificulta dicha evacuation y por tanto se dificulta el movimiento de fluido en la zona de inspection, impidiendose asl la renovation de las muestras bajo analisis. The international patent application WO2016 / 080824A1 proposes a system for monitoring the dynamics of the color of a fluid, formed by a probe submergible in the fluid under analysis. The probe is coupled to a video camera to capture images of the fluid sample. The system uses two light sources: a light source in the plane of the video camera (frontal lighting system) to work in diffuse reflection mode for the supervision of opaque samples; and a light source facing the video camera (backlighting system) to work in transmission mode for the supervision of transparent or translucent samples. This system is complex, requiring two light emitters, in addition to fragile, to incorporate one of the light sources in the part of the device most exposed to the fluid pressure under analysis. In addition, the system is designed to be introduced into the container that houses the fluid perpendicular to it, and therefore perpendicular to the evacuation of air by deaeration, so that said evacuation is difficult and therefore the movement of fluid in inspection area, thus preventing the renewal of samples under analysis.

DESCRIPCION DE LA INVENCIONDESCRIPTION OF THE INVENTION

La presente invention proporciona un sistema para la monitorizacion de un fluido en una toma simple, es decir, sin requerir una diferencia de presion entre dos puntos de acceso al fluido bajo analisis, que resuelve los inconvenientes de propuestas anteriores. El sistema de la invencion facilita el analisis de un fluido en tanque de forma muy compacta y de bajo coste. Con respecto a los sistemas que realizan medidas en transmitancia (propuesta por ejemplo de la patente ES2455465B1), el sistema de la presente divulgation supone una evolution a un sistema de reflexion/transmision, facilitando la medida tanto en fluidos opacos como en fluidos traslucidos o transparentes, pero minimizando la implementation de elementos opticos activos, concretamente de emisores de luz, tanto en numero como en disposition. Esto permite monitorizar con mayor resolution -y a la vez con sencillez de diseno- tanto fluidos que desde su estado limpio inicial son opacos (es decir, cuya absorbancia en dicha longitud de onda es mayor de 1,0, como mayor de 2,0 o mayor de 3,0), como fluidos que en su vida util pasan de ser traslucidos (es decir, cuya absorbancia en una cierta longitud de onda es menor de 1,0, tal como menor de 0,5, o menor de 0,2 o menor de 0,1) a opaco (es decir, cuya absorbancia en dicha longitud de onda es mayor de 1,0, como mayor de 2,0 o mayor de 3,0). Se ofrece asl una solution compacta, simple y autonoma para la monitorizacion de fluidos sin necesidad de extraer muestras del mismo de su entorno de operation.The present invention provides a system for the monitoring of a fluid in a single intake, that is, without requiring a pressure difference between two points of access to the fluid under analysis, which solves the drawbacks of previous proposals. The system of the invention facilitates the analysis of a fluid in tank in a very compact and low cost way. With respect to the systems that make measurements in transmittance (proposed for example in the patent ES2455465B1), the system of the present disclosure represents an evolution to a system of reflection / transmission, facilitating the measurement both in opaque fluids as in translucent or transparent fluids , but minimizing the implementation of active optical elements, specifically light emitters, both in number and disposition. This allows to monitor with greater resolution -and at the same time with simplicity of design- both fluids that from their initial clean state are opaque (ie, whose absorbance in said wavelength is greater than 1.0, as more than 2.0 or greater than 3.0), as fluids that in their useful life pass from being translucent (ie, whose absorbance at a certain wavelength is less than 1.0, such as less than 0.5, or less than 0, 2 or less than 0.1) to opaque (ie, whose absorbance at said wavelength is greater than 1.0, as greater than 2.0 or greater than 3.0). It offers a compact, simple and autonomous solution for fluid monitoring without the need to extract samples of it from its operating environment.

El sistema propuesto presenta ademas una configurabilidad que permite adaptarse a distintas tipologlas y/o estado de degradation del fluido bajo supervision, seleccionando una u otra implementacion para su tapa trasera (plano trasero).The proposed system also has a configurability that allows adapting to different typologies and / or state of degradation of the fluid under supervision, selecting one or another implementation for its back cover (rear plane).

En el contexto de la presente divulgacion, se entiende por fluidos opacos aquellos que presentan una absorbancia en una determinada banda espectral mayor de 1,0. A partir de una absorbancia en la banda espectral de trabajo mayor de 3,0 un fluido se considera muy opaco. Asimismo, se entiende por fluidos traslucidos aquellos que presentan una absorbancia en una determinada banda espectral menor de 1,0, y muy traslucidos si su absorbancia es menor de 0,1. En general, la luz no penetra en los fluidos opacos, sino que se absorbe en una profundidad cercana a la superficie y la parte que no es absorbida puede salir otra vez de la muestra en forma de reflexion difusa debido al scattering (dispersion) producido por las reflexiones internas en el fluido en las moleculas que lo forman o partlculas que pueda haber. La figura 8 ilustra estos fenomenos. Este efecto tiene mas posibilidades de existir en fluidos opacos que en traslucidos, pero depende fuertemente de la absorbancia y de la composition molecular y de las partlculas presentes en el mismo. Independientemente del scattering, en terminos generales, a mayor absorbancia, menor es la cantidad de luz que atraviesa el fluido propagandose a traves del mismo. En el caso de los fluidos traslucidos, en general, la luz atraviesa (se transmite) a traves del mismo.In the context of the present disclosure, opaque fluids are understood to be those that have an absorbance in a given spectral band greater than 1.0. From an absorbance in the working spectral band greater than 3.0, a fluid is considered very opaque. Also, translucent fluids are those that have an absorbance in a spectral band less than 1.0, and very translucent if their absorbance is less than 0.1. In general, light does not penetrate opaque fluids, but is absorbed at a depth close to the surface and the part that is not absorbed can leave the sample again in the form of diffuse reflection due to scattering produced by the internal reflections in the fluid in the molecules that form it or particles that may be. Figure 8 illustrates these phenomena. This effect is more likely to exist in opaque fluids than in translucent fluids, but it depends strongly on the absorbance and molecular composition and on the particles present in it. Regardless of the scattering, in general terms, the greater the absorbance, the lower the amount of light that the fluid passes through, propagating to through it. In the case of translucent fluids, in general, light passes through (is transmitted) through it.

En un primer aspecto de la invention, se proporciona un sistema de monitorizacion para la inspection de un fluido contenido en un deposito mediante la insertion de dicho sistema de monitorizacion en una toma de dicho deposito, que comprende: una zona de medida configurada para que circule por ella una muestra de dicho fluido. El sistema de monitorizacion comprende ademas: unos medios de emision/recepcion de luz que consisten en un sistema de iluminacion y un sistema detector de luz situados en un mismo lado del sistema de monitorizacion con respecto a dicha zona de medida; una ventana optica dispuesta entre dichos medios de emision/recepcion de luz y dicha zona de medida; y un elemento optico trasero situado al otro lado del sistema de monitorizacion con respecto a dicha zona de medida. El sistema de iluminacion esta configurado para emitir radiation optica hacia dicha zona de medida. El sistema detector de luz esta configurado para detectar una radiacion optica que comprende la luz reflejada por dicho fluido que circula por dicha zona de medida y/o la luz transmitida a traves de dicho fluido y reflejada en dicho elemento optico trasero. El sistema de monitorizacion comprende ademas un subsistema electronico que comprende medios de procesado configurados para controlar la activacion/desactivacion del sistema de iluminacion y para procesar las senales obtenidas procedentes del sistema detector de luz.In a first aspect of the invention, a monitoring system for inspecting a fluid contained in a tank is provided by inserting said monitoring system into a socket of said tank, comprising: a measurement zone configured to circulate for it a sample of said fluid. The monitoring system further comprises: light emitting / receiving means consisting of a lighting system and a light detection system located on the same side of the monitoring system with respect to said measuring area; an optical window disposed between said light emitting / receiving means and said measuring zone; and a rear optical element located on the other side of the monitoring system with respect to said measurement zone. The lighting system is configured to emit optical radiation towards said measurement zone. The light detector system is configured to detect an optical radiation comprising the light reflected by said fluid circulating in said measurement zone and / or the light transmitted through said fluid and reflected in said rear optical element. The monitoring system further comprises an electronic subsystem comprising processing means configured to control the activation / deactivation of the lighting system and to process the signals obtained from the light detection system.

En realizaciones de la invencion, el elemento optico trasero se implementa mediante un elemento absorbente desde el punto de vista optico, estando dicho elemento optico trasero configurado para impedir la reflexion de la luz transmitida a traves de dicho fluido. In embodiments of the invention, the rear optical element is implemented by an absorbent element from the optical point of view, said rear optical element being configured to prevent reflection of the light transmitted through said fluid.

En realizaciones de la invencion, el elemento optico trasero se implementa mediante un elemento reflexivo desde el punto de vista optico, estando dicho elemento optico trasero configurado para favorecer la reflexion de la luz transmitida a traves de dicho fluido. Este elemento reflexivo desde el punto de vista optico puede ser un elemento reflexivo plano. Alternativamente, el elemento reflexivo desde el punto de vista optico puede ser un elemento reflexivo concavo, con el objeto de concentrar los rayos reflejados.In embodiments of the invention, the rear optical element is implemented by a reflective element from the optical point of view, said rear optical element being configured to favor the reflection of the light transmitted through said fluid. This reflexive element from the optical point of view can be a flat reflexive element. Alternatively, the reflective element from the optical point of view can be a concave reflexive element, in order to concentrate the reflected rays.

En realizaciones de la invencion, el elemento optico trasero es intercambiable, de forma que en funcion de la absorbancia del fluido bajo inspeccion, se elige un elemento optico trasero absorbente o reflexivo.In embodiments of the invention, the rear optical element is interchangeable, so that depending on the absorbance of the fluid under inspection, a rear absorbing or reflective optical element is chosen.

En realizaciones de la invencion, el sistema de monitorizacion comprende ademas al menos un fotodiodo de control configurado para medir la intensidad emitida por el sistema de iluminacion. In embodiments of the invention, the monitoring system further comprises at least one control photodiode configured to measure the intensity emitted by the lighting system.

En realizaciones de la invention, el sistema de monitorizacion esta comprendido en una carcasa, en la que dichos medios de emision/recepcion de luz estan situados en una portion de dicha carcasa y dicho elemento optico trasero esta situado en otra portion de dicha carcasa, donde dichas porciones de carcasa definen dicha zona de medida, delimitando dicho elemento optico trasero y dicha ventana optica la zona de medida. In embodiments of the invention, the monitoring system is comprised in a housing, wherein said light emitting / receiving means are located in a portion of said housing and said rear optical element is located in another portion of said housing, where said carcass portions define said measurement zone, said back optical element and said optical window delimiting the measurement zone.

En realizaciones de la invencion, la altura de dicha zona de medida es regulable para garantizar la renovation de la muestra de fluido dentro de dicha zona de medida.In embodiments of the invention, the height of said measurement zone is adjustable to guarantee the renewal of the fluid sample within said measurement zone.

En realizaciones de la invencion, la ventana optica tiene una inclinacion con respecto al plano definido por elemento optico trasero para evitar la acumulacion de aire en la zona de medida.In embodiments of the invention, the optical window has an inclination with respect to the plane defined by the rear optical element to prevent the accumulation of air in the measurement zone.

En realizaciones de la invencion, el sistema de monitorizacion comprende un difusor dispuesto entre dicho sistema de iluminacion de dichos medios de emision/recepcion de luz y dicho al menos un fotodiodo de control.In embodiments of the invention, the monitoring system comprises a diffuser disposed between said lighting system of said light emitting / receiving means and said at least one control photodiode.

En otro aspecto de la invencion, se proporciona un metodo de monitorizacion de un fluido contenido en un deposito, que comprende: insertar un sistema de monitorizacion en una toma simple de dicho deposito, donde dicho sistema de monitorizacion comprende: una zona de medida configurada para que circule por ella una muestra de dicho fluido; unos medios de emision/recepcion de luz que consisten en un sistema de iluminacion y un sistema detector de luz situados en un mismo lado del sistema de monitorizacion con respecto a dicha zona de medida; una ventana optica dispuesta entre dichos medios de emision/recepcion de luz y dicha zona de medida; y un elemento optico trasero situado al otro lado del sistema de monitorizacion con respecto a dicha zona de medida; hacer incidir una radiacion optica desde dicho sistema de iluminacion hacia dicha zona de medida; detectar por dicho sistema detector de luz una radiation optica que comprende la luz reflejada por dicho fluido que circula por dicha zona de medida y/o la luz transmitida a traves de dicho fluido y reflejada en dicho elemento optico trasero; en un subsistema electronico comprendido en dicho sistema de monitorizacion, controlar la activacion/desactivacion del sistema de iluminacion y procesar las senales obtenidas procedentes del sistema detector de luz.In another aspect of the invention, there is provided a method of monitoring a fluid contained in a reservoir, comprising: inserting a monitoring system into a single intake of said reservoir, wherein said monitoring system comprises: a measurement zone configured for that a sample of said fluid circulates through it; light emitting / receiving means consisting of a lighting system and a light sensing system located on the same side of the monitoring system with respect to said measuring area; an optical window disposed between said light emitting / receiving means and said measuring zone; and a rear optical element located on the other side of the monitoring system with respect to said measurement zone; to influence an optical radiation from said lighting system towards said measurement zone; detecting by said light detector system an optical radiation comprising the light reflected by said fluid circulating in said measurement zone and / or the light transmitted through said fluid and reflected in said rear optical element; in an electronic subsystem comprised in said monitoring system, controlling the activation / deactivation of the lighting system and processing the signals obtained from the light detection system.

En realizaciones de la invencion, cuando dicho fluido tiene una absorbancia mayor de 1,0 en su estado inicial, dicho elemento optico trasero es un elemento optico trasero absorbente. In embodiments of the invention, when said fluid has an absorbance greater than 1.0 in its initial state, said rear optical element is an absorbing rear optical element.

En realizaciones de la invention, cuando dicho fluido tiene una absorbancia menor de 1,0 en su estado inicial, dicho elemento optico trasero es un elemento optico trasero reflexivo.In embodiments of the invention, when said fluid has an absorbance of less than 1.0 in its initial state, said rear optical element is a reflective rear optical element.

En realizaciones de la invencion, el metodo comprende ademas regular la altura de dicha zona de medida para garantizar la renovation de la muestra de fluido dentro de dicha zona de medida.In embodiments of the invention, the method further comprises adjusting the height of said measuring zone to ensure the renewal of the fluid sample within said measurement zone.

En realizaciones de la invencion, el metodo comprende ademas inclinar dicha ventana optica con respecto al plano definido por elemento optico trasero para evitar la acumulacion de aire en la zona de medida.In embodiments of the invention, the method further comprises tilting said optical window with respect to the plane defined by the rear optical element to prevent the accumulation of air in the measurement zone.

Ventajas y caracterlsticas adicionales de la invencion seran evidentes a partir de la description en detalle que sigue y se senalaran en particular en las reivindicaciones adjuntas.Advantages and additional features of the invention will be apparent from the description in detail that follows and will be pointed out in particular in the appended claims.

BREVE DESCRIPCION DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES

Para complementar la descripcion y con objeto de ayudar a una mejor comprension de las caracterlsticas de la invencion, de acuerdo con un ejemplo de realization practica de la misma, se acompana como parte integrante de la descripcion, un juego de figuras en el que con caracter ilustrativo y no limitativo, se ha representado lo siguiente:To complement the description and in order to help a better understanding of the characteristics of the invention, according to an example of practical realization of the same, is accompanied as an integral part of the description, a set of figures in which character illustrative and not limiting, the following has been represented:

La figura 1A ilustra esquematicamente un sistema de monitorizacion de un fluido mediante su insercion en una toma simple de un deposito que contiene dicho fluido, de acuerdo con una posible realizacion de la invencion. Las figuras 1B y 1C muestran sendas vistas (frontal y de perfil, respectivamente) del sistema de monitorizacion de acuerdo con una posible realizacion de la invencion, en la que puede observarse el canal por el que fluye la muestra bajo inspection. Una parte del fluido contenido en el tanque en el que se acople el sistema de monitorizacion circula por este canal, en cuyo momento se toman las muestras. La figura 1D muestra una vista en perfil de un sistema de monitorizacion de acuerdo con otra realizacion de la invencion, en la que puede observarse el canal que se forma en el exterior del mismo, como un estrechamiento de la carcasa que recubre al sistema.Figure 1A schematically illustrates a system for monitoring a fluid by inserting it into a simple intake of a reservoir containing said fluid, according to a possible embodiment of the invention. Figures 1B and 1C show respective views (front and profile, respectively) of the monitoring system according to a possible embodiment of the invention, in which the channel through which the sample flows under inspection can be observed. A part of the fluid contained in the tank in which the monitoring system is coupled circulates through this channel, at which time the samples are taken. Figure 1D shows a profile view of a monitoring system according to another embodiment of the invention, in which the channel that is formed on the outside of it can be observed, as a narrowing of the housing that covers the system.

La figura 2A muestra un esquema del sistema de monitorizacion del estado de un fluido por espectrometrla, de acuerdo con una posible realizacion de la invencion. La figura 2B muestra una posible carcasa en la que se inserta la estructura o soporte en la que se colocan los elementos opticos y electronicos del sistema. La figura 2C muestra la electronica albergada en el interior de la carcasa mostrada en la figura 2B, en cuyo interior pueden observarse los elementos opticos y electronicos esquematizados en la figura 2A. La figura 2D muestra en detalle la disposition del sistema detector de luz y de la al menos una fuente de iluminacion, ambos del mismo lado o portion del sistema con respecto del canal.Figure 2A shows a diagram of the system for monitoring the state of a fluid by spectrometry, according to a possible embodiment of the invention. Figure 2B shows a possible housing in which the structure or support in which the optical and electronic elements of the system are placed is inserted. Figure 2C shows the electronics housed inside the housing shown in Figure 2B, inside which can be seen the optical and electronic elements schematized in Figure 2A. Figure 2D shows in detail the arrangement of the light detector system and of the at least one lighting source, both of the same side or portion of the system with respect to the channel.

Las figuras 3A-3C esquematizan el recorrido de la radiation optica emitida por una fuente de iluminacion al viajar hacia un fluido (transmitiendose a traves del mismo y/o reflejandose en el volumen cercano a la superficie del mismo y/o en el elemento trasero, en funcion de ciertos parametros del fluido y de las caracterlsticas del elemento trasero) y la luz detectada por un sistema detector de luz dispuesto en el mismo plano que la fuente de iluminacion.Figures 3A-3C schematize the path of the optical radiation emitted by a source of illumination when traveling towards a fluid (transmitting through it and / or reflected in the volume near the surface thereof and / or in the rear element, depending on certain parameters of the fluid and the characteristics of the rear element) and the light detected by a light detector system arranged in the same plane as the source of illumination.

Las figuras 4A y 4B representan el funcionamiento del sistema de monitorizacion en modo de operation transmision/reflexion.Figures 4A and 4B depict the operation of the monitoring system in operation transmission / reflection mode.

La figura 5 ilustra el problema de la introduction del sistema de monitorizacion en un deposito de forma totalmente vertical, dificultandose la evacuacion de aire en el canal de medida.Figure 5 illustrates the problem of the introduction of the monitoring system in a tank in a totally vertical manner, making it difficult to evacuate air in the measuring channel.

La figura 6 muestra un sistema de monitorizacion con altura del canal de medida variable, de acuerdo con una posible realizacion de la invencion.Figure 6 shows a monitoring system with height of the variable measuring channel, according to a possible embodiment of the invention.

La figura 7 muestra un sistema de monitorizacion cuya ventana optica esta inclinada con respecto al plano definido por la placa trasera, de acuerdo con una posible realization de la invencion.Figure 7 shows a monitoring system whose optical window is inclined with respect to the plane defined by the rear plate, according to a possible embodiment of the invention.

La figura 8 ilustra los fenomenos de transmision, absorcion, scattering y reflexion difusa que pueden tener lugar en un medio en funcion de las caracterlsticas del mismo en terminos de absorbancia, transmitancia y reflectancia. Notese que se ha obviado el efecto de la reflexion especular.Figure 8 illustrates the phenomena of transmission, absorption, scattering and diffuse reflection that can take place in a medium depending on the characteristics thereof in terms of absorbance, transmittance and reflectance. Note that the effect of specular reflection has been ignored.

DESCRIPCION DE UN MODO DE REALIZACION DE LA INVENCIONDESCRIPTION OF A MODE FOR CARRYING OUT THE INVENTION

La figura 1A ilustra un esquema de un posible escenario de aplicacion de un sistema de monitorizacion (o sistema de medida) 3 de un fluido mediante la insertion o acople del sistema de monitorizacion 3 en una toma estandar (toma simple) 5 de un tanque, tuberla, o en general, deposito 1 en el que se encuentra dicho fluido 2, de acuerdo con una posible realization de la invention. Al sistema de monitorizacion o medida se le denomina en ocasiones "sensor” a lo largo de la presente divulgation. La monitorizacion o medida se realiza por espectrometrla. El sistema de monitorizacion 3 de la invencion esta disenado para integrarse en un deposito 1, acoplandose al mismo a traves de una toma simple, tal como una toma hidraulica estandar, sin necesidad de realizar un bypass mediante conductos o tuberlas, que desvlen el fluido para su monitorizacion. El sistema de monitorizacion 3 esta disenado para dejarse introducido en el deposito 1, de forma que el sistema 3 pueda tomar medidas del fluido sin necesidad de extraer una muestra de fluido del deposito 1. Aplicando una serie de algoritmos para la interpretacion de las medidas tomadas relativas a diversos parametros, tales como al color del fluido 2, se obtiene information sobre el fluido, por ejemplo sobre su grado de degradation, y por tanto se puede actuar sobre el fluido en cuestion o tomar decisiones basadas por ejemplo en su grado de deterioro. El sistema de monitorizacion 3 puede tomar medidas periodicas o no periodicas (por ejemplo, a petition). El fluido 2 recogido en el deposito 1 es preferentemente un aceite lubricante industrial.Figure 1A illustrates a schematic of a possible scenario for the application of a monitoring system (or measurement system) 3 of a fluid by inserting or coupling the monitoring system 3 into a standard socket (single socket) 5 of a tank, tuberla, or in general, tank 1 in which said fluid 2 is located, according to a possible realization of the invention. The monitoring or measurement system is sometimes referred to as a "sensor" throughout the present disclosure.The monitoring or measurement is performed by spectrometry.The monitoring system 3 of the invention is designed to be integrated into a reservoir 1, coupling to the same through a simple intake, such as a standard hydraulic intake, without the need to perform a bypass through ducts or pipes, which divert the fluid for monitoring.The monitoring system 3 is designed to be introduced in tank 1, so that the system 3 can take measurements of the fluid without the need to extract a sample of fluid from reservoir 1. Applying a series of algorithms for the interpretation of the measurements taken relative to various parameters, such as the color of fluid 2, information is obtained on the fluid, for example on its degree of degradation, and therefore it is possible to act on the fluid in question or make decisions based on an example in its degree of deterioration. The monitoring system 3 can take periodic or non-periodic measures (for example, at the request). The fluid 2 collected in reservoir 1 is preferably an industrial lubricating oil.

El sistema de monitorizacion 3 esquematizado en la figura 1A tiene una serie de elementos optoelectronicos (no ilustrados en el esquema de la figura 1A) integrados en una carcasa, vaina o encapsulado, que constituye la parte externa del sistema o sensor. Las figuras 1B y 1C representan vistas de frente y perfil, respectivamente, de una posible implementation del sistema de monitorizacion 3. En ella, la carcasa, vaina o encapsulado tiene una forma que permite el paso del fluido 2 entre cuatro superficies externas 31 32 33 34 de la carcasa. Es decir, el fluido 2 pasa por una zona exterior 20 a la carcasa. Esta zona exterior es una especie de tunel, canal, conducto o zona de medida entre la superficie exterior de una primera portion 35 de la carcasa y la superficie exterior de una segunda porcion 36 de la carcasa enfrentada a la primera porcion 35 de la carcasa, definiendo ambas porciones el conducto o zona de medida 20 para el fluido. La segunda porcion 36 tiene forma de U, definiendo esta forma el canal o zona de medida 20 por el que fluye el fluido cuando el sistema de monitorizacion 3 se ha acoplado al deposito 1 de fluido 2 bajo supervision.The monitoring system 3 schematized in Figure 1A has a series of optoelectronic elements (not illustrated in the scheme of Figure 1A) integrated in a housing, sheath or encapsulation, which constitutes the external part of the system or sensor. Figures 1B and 1C represent front and profile views, respectively, of a possible implementation of the monitoring system 3. In it, the housing, sheath or encapsulation has a shape that allows the passage of fluid 2 between four external surfaces 31 32 33 34 of the housing. That is, fluid 2 passes through an outer zone 20 to the housing. This outer zone is a kind of tunnel, channel, conduit or measuring zone between the outer surface of a first portion 35 of the housing and the outer surface of a second portion 36 of the housing facing the first portion 35 of the housing, both portions defining the measurement conduit or zone 20 for the fluid. The second portion 36 is U-shaped, this shape defining the measurement channel or zone 20 through which the fluid flows when the monitoring system 3 has been coupled to the fluid reservoir 1 under supervision.

La figura 1D representa una vista de perfil de otra posible implementacion del sistema de monitorizacion 3. Como en el caso anterior, la carcasa, vaina o encapsulado del sistema o sensor tiene una forma que permite el paso del fluido 2 entre tres superficies externas 31’ 32’ 33’ de la carcasa. Estas tres superficies 31’ 32’ 33’ definen el canal o zona de medida entre la superficie exterior de una primera porcion 35 de la carcasa y la superficie exterior de una segunda porcion 36 de la carcasa enfrentada a la primera porcion 35 de la carcasa, definiendo ambas porciones el conducto o zona de medida 20 para el fluido. Es decir, como se aprecia en la figura 1B, la carcasa tiene un determinado grosor, espesor o fondo "z1” en la primera y en la segunda porciones, y experimenta un estrechamiento en su espesor "z2” en una porcion intermedia 37 entra las primera y segunda porciones 35 36, de forma que la carcasa queda dividida en dos porciones unidas por una parte estrecha 37 de la carcasa, quedando un hueco o canal 20 por el que fluye el fluido cuando el sistema de monitorizacion 3 se ha acoplado al deposito 1 de fluido 2 bajo supervision. Aunque en las figuras 1B-1D la superficie que delimita la zona de medida 20 se ha ilustrado como paredes o superficies planas (31-34, 31’-33’), otras implementaciones de la carcasa podran realizarse con superficies curvadas, por ejemplo una superficie curvada sustancialmente, en la que por tanto no pueda establecerse una clara diferenciacion entre dichas superficies 31-34 o 31’-33’.Figure 1D represents a profile view of another possible implementation of the monitoring system 3. As in the previous case, the housing, sheath or encapsulation of the system or sensor has a shape that allows the passage of fluid 2 between three external surfaces 31 ' 32 '33' of the housing. These three surfaces 31 '32' 33 'define the measurement channel or zone between the outer surface of a first portion 35 of the housing and the surface exterior of a second portion 36 of the casing facing the first portion 35 of the casing, both portions defining the measurement conduit or zone 20 for the fluid. That is to say, as seen in Figure 1B, the casing has a certain thickness, thickness or background "z1" in the first and in the second portions, and experiences a narrowing in its thickness "z2" in an intermediate portion 37 enters the first and second portions 35, so that the housing is divided into two portions joined by a narrow part 37 of the housing, leaving a gap or channel 20 through which the fluid flows when the monitoring system 3 has been coupled to the tank 1 of fluid 2 under supervision. Although in FIGS. 1B-1D the surface delimiting the measurement zone 20 is illustrated as flat walls or surfaces (31-34, 31'-33 '), other implementations of the housing could be made with curved surfaces, for example a substantially curved surface, in which therefore a clear differentiation between said surfaces 31-34 or 31'-33 'can not be established.

En funcion de la configuration del deposito 1 que recoge el fluido 2 bajo analisis, la toma o acople 5 en el deposito 1, a traves de la cual se inserta o acopla el sensor o sistema de monitorizacion 3 en el deposito 1, puede estar en un lateral del deposito 1, como es el caso de la configuracion mostrada en la figura 1A, o puede estar en la parte superior (por ejemplo, tapa) del deposito 1. En el primer caso, el sistema de monitorizacion 3 se inserta en el deposito 1 de forma oblicua al mismo. En el segundo caso, el sistema de monitorizacion 3 se inserta en el deposito 1 de forma perpendicular al mismo.Depending on the configuration of the reservoir 1 that collects the fluid 2 under analysis, the intake or coupling 5 in reservoir 1, through which the sensor or monitoring system 3 is inserted or coupled in reservoir 1, may be in a side of the tank 1, as is the case of the configuration shown in figure 1A, or it may be in the upper part (for example, cover) of the tank 1. In the first case, the monitoring system 3 is inserted in the deposit 1 obliquely to it. In the second case, the monitoring system 3 is inserted into the tank 1 perpendicular to it.

En la figura 2A se ilustra en mayor detalle el sistema de monitorizacion 13 de acuerdo con una posible implementation de la invention. En relation con esta figura se describen elementos optoelectronicos del sistema, que se integran o soportan en una estructura que a su vez se inserta en la carcasa, vaina o encapsulado descritos anteriormente. La figura 2B muestra una posible carcasa en la que se inserta la estructura o soporte (mostrada en la figura 2C) en la que se colocan los elementos opticos y electronicos del sistema. El sistema de monitorizacion tiene una parte optica (subsistema optico) 140 y una parte electronica (subsistema electronico) 150. El subsistema optico 140 ocupa la segunda porcion 136 de la carcasa del sistema y una parte de la primera porcion 135 de la carcasa, entendiendose por primera y segunda porciones las referenciadas como 35, 36 en las figuras 1B-1D anteriores. En concreto, de la primera porcion 135 de la carcasa, el subsistema optico 140 ocupa la parte mas proxima al canal externo 120 al sistema de monitorizacion 13, por el que fluye el fluido bajo supervision. La figura 2A muestra dicho canal 120. La flecha a lo largo del canal 120 representa el flujo de fluido en el canal 120. El subsistema electronico 150 ocupa la parte de la primera porcion 135 de la carcasa mas alejada al canal 120 definido por la superficie externa de la carcasa (31-34 en la figura 1B, 31’-33’ en la figura 1D).In Figure 2A, the monitoring system 13 is illustrated in greater detail according to a possible implementation of the invention. In relation to this figure, optoelectronic elements of the system are described, which are integrated or supported in a structure that in turn is inserted in the housing, sheath or encapsulation described above. Figure 2B shows a possible housing in which the structure or support (shown in Figure 2C) is inserted in which the optical and electronic elements of the system are placed. The monitoring system has an optical part (optical subsystem) 140 and an electronic part (electronic subsystem) 150. The optical subsystem 140 occupies the second portion 136 of the system housing and a portion of the first portion 135 of the housing, being understood for first and second portions referenced as 35, 36 in the previous Figures 1B-1D. In particular, of the first portion 135 of the housing, the optical subsystem 140 occupies the part closest to the external channel 120 to the monitoring system 13, through which the fluid flows under supervision. Figure 2A shows said channel 120. The arrow along the channel 120 represents the fluid flow in the channel 120. The electronic subsystem 150 occupies the part of the first portion 135 of the housing more remote to channel 120 defined by the outer surface of the housing (31-34 in Figure 1B, 31'-33 'in Figure 1D).

El subsistema optico 140 esta formado, entre otros elementos, por unos medios de emision/recepcion de luz 41. Los medios de emision/recepcion de luz 41 se componen de un sistema de iluminacion 411 y un sistema detector de luz 412. El sistema de iluminacion 411 esta formado por al menos una fuente de iluminacion. El sistema detector de luz 412 esta formado por uno o mas detectores de luz. Los medios de emision/recepcion de luz 41 se encuentran en la primera porcion 135 de la carcasa, que es la porcion de la carcasa mas robusta habida cuenta, por ejemplo, de sus dimensiones, frente a la segunda porcion 136 de la carcasa, mas expuesta al volumen total del fluido que ocupa el deposito 1 (vease las figuras 1A-1D). A modo de ejemplo, la primera porcion 135 de la carcasa puede tener un diametro que varla entre 25 y 30 mm (millmetros, 10-3 metros) y una altura que varla entre 40 y 45 mm, mientras que la segunda porcion 136 de la carcasa puede tener un diametro que varla entre 20 y 25 mm y una altura que varla entre 7 y 12 mm. Es decir, el sistema de iluminacion 411 y el sistema detector de luz 412 estan situados en un mismo lado con respecto a la zona de medida 20, 120. Ejemplos no limitativos de fuentes de iluminacion 411 son uno o mas diodos emisores de luz (LED), una o mas lamparas de tungsteno (lampara que comprende tungsteno en sus filamentos), una o mas lamparas de luz halogena, una o mas lamparas de vapor de mercurio, entre otras. La fuente o fuentes de iluminacion 411 puede(n) ser de banda ancha (como es el caso, por ejemplo, de la lampara halogena), que ofrece espectro estable desde el ultravioleta hasta el infrarrojo lejano o profundo. En una posible implementation, la al menos una fuente de iluminacion 411 es uno o mas LEDs que emiten luz blanca para iluminar el fluido que fluye por el canal 120. Ejemplos no limitativos de sistemas detectores de luz 412 son detectores de luz ultravioleta (UV), detectores de luz visible (VIS), detectores de luz en el infrarrojo cercano (NIR) y combinaciones de los mismos. En una posible implementacion, se utiliza al menos un sensor de color, por ejemplo un sensor de color RGB (configurado para captar la luz visible en la banda del rojo (R, red), verde (G, green) y azul (B, blue)). Con objeto de evitar o minimizar diafonla (mas comunmente conocida como crosstalk, por su termino en ingles), es decir, que parte de la intensidad emitida por la al menos una fuente de iluminacion llegue de vuelta al receptor sin efecto de la muestra, los medios de emision/recepcion de luz 41 pueden incorporar unos medios de apantallamiento 413, implementados por ejemplo como una pared separadora realizada por ejemplo de un material absorbente o de un material reflectante a las longitudes de onda de trabajo, entre la al menos una fuente de iluminacion 411 y el al menos un sistema detector de luz 412.The optical subsystem 140 is formed, among other elements, by a light-emitting / receiving means 41. The light-emitting / receiving means 41 are composed of a lighting system 411 and a light-sensing system 412. The lighting system Illumination 411 is formed by at least one source of illumination. The light detector system 412 is formed by one or more light detectors. The light-emitting / receiving means 41 are located in the first portion 135 of the housing, which is the most robust portion of the housing taking into account, for example, its dimensions, opposite the second portion 136 of the housing, more exposed to the total volume of fluid occupied by tank 1 (see Figures 1A-1D). By way of example, the first portion 135 of the housing can have a diameter ranging between 25 and 30 mm (millimeters, 10-3 meters) and a height ranging between 40 and 45 mm, while the second portion 136 of the The housing can have a diameter that varies between 20 and 25 mm and a height that varies between 7 and 12 mm. That is, the lighting system 411 and the light sensing system 412 are located on the same side with respect to the measurement area 20, 120. Non-limiting examples of lighting sources 411 are one or more light emitting diodes (LEDs) ), one or more tungsten lamps (lamp comprising tungsten in its filaments), one or more halogen lamps, one or more mercury vapor lamps, among others. The source or sources of illumination 411 can be broadband (as is the case, for example, of the halogen lamp), which offers stable spectrum from the ultraviolet to the far or deep infrared. In a possible implementation, the at least one illumination source 411 is one or more LEDs emitting white light to illuminate the fluid flowing through the channel 120. Non-limiting examples of light detection systems 412 are ultraviolet (UV) light detectors. , visible light detectors (VIS), light detectors in the near infrared (NIR) and combinations thereof. In a possible implementation, at least one color sensor is used, for example an RGB color sensor (configured to capture visible light in the red band (R, network), green (G, green) and blue (B, blue)). In order to avoid or minimize diafonla (more commonly known as crosstalk, for its term in English), that is, part of the intensity emitted by the at least one source of illumination arrives back to the receiver without effect of the sample, the Light emitting / receiving means 41 may incorporate screening means 413, implemented for example as a separating wall made for example of an absorbent material or of a reflective material at the working wavelengths, between the at least one source of light. lighting 411 and the at least one light detector system 412.

El sistema detector de luz 412 esta preferentemente dispuesto en el mismo plano que la al menos una fuente de iluminacion 411 (ambos del mismo lado o porcion del sistema con respecto del canal 20, 120), como ilustra la figura 2D. Como se explica mas adelante, el sistema detector de luz 412 esta configurado para detectar la luz reflejada en una profundidad cercana a la superficie del fluido (reflexion difusa) y para detectar la luz transmitida a traves del fluido y reflejada en un elemento optico trasero que se describe mas adelante.The light sensing system 412 is preferably arranged in the same plane as the at least one illumination source 411 (both on the same side or portion of the system with respect to the channel 20, 120), as illustrated in Figure 2D. As explained below, the light sensing system 412 is configured to detect light reflected at a depth close to the surface of the fluid (diffuse reflection) and to detect light transmitted through the fluid and reflected in a rear optical element that it is described later.

El subsistema optico 140 puede incluir tambien uno o mas fotodiodos de control 43, configurados para emparejarse a la al menos una fuente de iluminacion 411 de los medios de emision/recepcion de luz 41. La funcion del uno o mas fotodiodos de control 43 es medir la intensidad emitida por la al menos una fuente de iluminacion 411, para poder controlar dicha intensidad emitida. Al aumentar la temperatura del sistema, la intensidad luminosa emitida por la fuente de iluminacion disminuye y, por lo tanto, disminuye la cantidad de luz que incide en la muestra. Esta disminucion en la cantidad de luz que incide en la muestra puede llegar a causar que la medida no sea correcta. Para evitar este efecto, preferentemente se implementa un control en lazo cerrado de la potencia de emision de la fuente de iluminacion. Este control en lazo cerrado puede implementarse como sigue: en base a la cantidad de luz recibida en el fotodiodo de control 43, se calcula el valor de intensidad al que hay que encender la fuente de iluminacion para conseguir que la intensidad de luz emitida sea la adecuada para realizar la medida. El valor de intensidad adecuado se obtiene mediante un proceso de calibration que se realiza preferentemente en fabrication. En la figura 2A, el angulo $ representa el angulo de emision de la fuente de iluminacion 411, el angulo a representa el angulo de reception del fotodiodo de control 43 y el angulo p representa el angulo de reception del sistema detector de luz 412. Ademas, Pd-c(V) se refiere al valor de la medida realizada por el fotodiodo de control 43, RGB(mA) representa el valor de la medida del sistema detector de luz 412 y LED(mA) representa el valor de la corriente a la que se tiene que encender el al menos un emisor de la fuente de iluminacion 411. La al menos una fuente de iluminacion 411, el al menos un sistema detector de luz 412 y el al menos un fotodiodo de control 43 se controlan desde el subsistema electronico 150. Por ejemplo, desde el subsistema electronico 150 se proporciona la corriente necesaria para la alimentation de la al menos una fuente de iluminacion 411, en el subsistema electronico 150 se recibe y procesa la senal detectada por el al menos un sistema detector de luz 412 y se recibe y procesa la senal proporcionada por el fotodiodo de control 43.The optical subsystem 140 may also include one or more control photodiodes 43, configured to be paired to the at least one illumination source 411 of the light emitting / receiving means 41. The function of the one or more control photodiodes 43 is to measure the intensity emitted by the at least one source of illumination 411, in order to control said emitted intensity. As the system temperature increases, the light intensity emitted by the light source decreases and, therefore, the amount of light incident on the sample decreases. This decrease in the amount of light that affects the sample can cause the measurement to be incorrect. To avoid this effect, a closed-loop control of the emission power of the lighting source is preferably implemented. This closed-loop control can be implemented as follows: based on the amount of light received in the control photodiode 43, the intensity value to which the lighting source has to be turned on is calculated in order to achieve that the light intensity emitted is the adequate to perform the measurement. The appropriate intensity value is obtained by a calibration process that is preferably carried out in manufacturing. In Figure 2A, the angle $ represents the emission angle of the lighting source 411, the angle a represents the reception angle of the control photodiode 43 and the angle p represents the reception angle of the light detection system 412. In addition , Pd-c (V) refers to the value of the measurement made by the control photodiode 43, RGB (mA) represents the measurement value of the light detector system 412 and LED (mA) represents the value of the current to the at least one emitter of the illumination source 411 has to be turned on. The at least one illumination source 411, the at least one light sensing system 412 and the at least one control photodiode 43 are controlled from the subsystem electronic 150. For example, from the electronic subsystem 150 the necessary current for the supply of the at least one illumination source 411 is provided, in the electronic subsystem 150 the signal detected by the at least one light detection system is received and processed. 412 and it receives and processes the signal provided by the photodiode control 43.

Preferentemente, entre la al menos una fuente de iluminacion 411 y el al menos un fotodiodo de control 43 se dispone un difusor 48 cuya mision principal es la difusion de la cantidad de luz emitida por la al menos una fuente de iluminacion 411 para conseguir una iluminacion homogenea en toda la zona bajo inspection (zona 120 ocupada por el fluido, tal como aceite, bajo analisis). El difusor 48 es de un material sustancialmente transparente a las longitudes de onda de trabajo pero que tiene la funcion de dispersar la luz. Asl, la al menos una fuente de iluminacion 411 puede iluminar adecuadamente el fluido que circula por la zona de medida 120. En una posible realization, el difusor 48 es un cristal, por ejemplo un cristal esmerilado.Preferably, between the at least one illumination source 411 and the at least one control photodiode 43 there is arranged a diffuser 48 whose main mission is the diffusion of the amount of light emitted by the at least one illumination source 411 to achieve an illumination. homogeneous throughout the area under inspection (zone 120 occupied by the fluid, such as oil, under analysis). The diffuser 48 is of a material substantially transparent to the working wavelengths but having the function of scattering light. Thus, the at least one illumination source 411 can adequately illuminate the fluid circulating in the measurement zone 120. In a possible embodiment, the diffuser 48 is a crystal, for example a frosted crystal.

El subsistema optico 140 incluye tambien una ventana optica 44. En la figura 2B, la referencia 44 se refiere al hueco ocupado por esta ventana optica 44, que en la figura 2B no se ha ilustrado. Es decir, la superficie de la segunda portion 35, 135 de la carcasa del sensor o sistema de monitorizacion, que es una de las superficies del sistema que definen el canal 20, 120, y por tanto una de las superficies en contacto con la muestra de fluido que pasa por el canal 20, 120, esta sellada hermeticamente por una ventana de protection transparente 44 (transparente a la longitud de onda de trabajo). La superficie sellada corresponde con la pared 33 en la figura 1B y con la pared 33’ en la figura 1D de la segunda porcion 35 de la carcasa del sensor o sistema de monitorizacion. La fuente de iluminacion 411 esta orientada hacia el canal 20, 120 por el que fluye el fluido. La ventana de proteccion transparente 44 se situa entre los medios de emision/recepcion de luz 41 y la zona 20, 120 por la que fluye el fluido. En una posible realizacion, no limitativa, esta ventana de proteccion transparente 44 se realiza, por ejemplo, de vidrio borosilicato (Vidrio optico BK7) o de un material plastico, tal como PMMA. A traves de esta ventana optica 44 la luz emitida por la fuente de iluminacion 411 viaja hasta el fluido que se encuentra en el hueco, ranura o canal 120. La ventana optica 44 permite que sustancialmente toda la luz que llega a la misma se transmita por su interior hacia el canal 20, 120.Optical subsystem 140 also includes an optical window 44. In Figure 2B, reference 44 refers to the gap occupied by this optical window 44, which in Figure 2B is not illustrated. That is, the surface of the second portion 35, 135 of the sensor housing or monitoring system, which is one of the surfaces of the system defining the channel 20, 120, and therefore one of the surfaces in contact with the sample. of fluid passing through the channel 20, 120, is hermetically sealed by a transparent protection window 44 (transparent to the working wavelength). The sealed surface corresponds to the wall 33 in FIG. 1B and to the wall 33 'in FIG. 1D of the second portion 35 of the sensor housing or monitoring system. The source of illumination 411 is oriented towards the channel 20, 120 through which the fluid flows. The transparent protection window 44 is located between the light emitting / receiving means 41 and the area 20, 120 through which the fluid flows. In a possible non-limiting embodiment, this transparent protection window 44 is made, for example, of borosilicate glass (optical glass BK7) or of a plastic material, such as PMMA. Through this optical window 44 the light emitted by the illumination source 411 travels to the fluid found in the gap, groove or channel 120. The optical window 44 allows substantially all the light reaching it to be transmitted by its interior towards channel 20, 120.

Al otro lado del canal 120, es decir, en la segunda porcion 136 de la carcasa del sistema, se encuentra otro elemento del subsistema optico 140. Se trata de un elemento optico trasero o placa trasera 45. Este elemento optico trasero 45 forma al menos parte de la superficie de la primera porcion 36, 136 de la carcasa que define el canal de medida 20, 120. Por ejemplo, en el esquema de la figura 1B, el elemento optico trasero esta integrado en la pared 31, o en el esquema de la figura 1D, el elemento optico trasero esta integrado en la pared 31’. En funcion de diversos factores, tales como el tipo de fluido (tal como aceite) empleado o del grado de degradation previsible del fluido bajo analisis, el elemento optico trasero 45 se disena de forma que proporcione un cierto (mayor o menor) grado de reflexion. En posibles implementaciones de la invention, el elemento optico trasero 45 se implementa como una superficie negra, o como un espejo plano o como un espejo concavo o parabolico configurado para concentrar los rayos reflejados en el sistema detector de luz 412. Es decir, la region de fluido en la que se realiza la medida esta definida por el canal 20, 120, la ventana optica 44 y el elemento optico trasero 45. On the other side of the channel 120, that is to say, on the second portion 136 of the system housing, there is another element of the optical subsystem 140. It is a rear optical element or rear plate 45. This rear optical element 45 forms at least part of the surface of the first portion 36, 136 of the housing defining the measuring channel 20, 120. For example, in the scheme of Figure 1B, the rear optical element is integrated into the wall 31, or in the scheme of Figure 1D, the rear optical element is integrated in the wall 31 '. Depending on various factors, such as the type of fluid (such as oil) used or the degree of predictable degradation of the fluid under analysis, the rear optical element 45 is designed to provide a certain (greater or lesser) degree of reflection . In possible implementations of the invention, the rear optical element 45 is implemented as a black surface, or as a flat mirror or as a concave or parabolic mirror configured to concentrate the reflected rays in the light detecting system 412. That is, the region of fluid in which the measurement is made is defined by the channel 20, 120, the optical window 44 and the rear optical element 45.

A su vez, el subsistema electronico 150 tiene unos medios de procesado 51 para las tareas de activacion/desactivacion de la iluminacion (control de la(s) fuentes de iluminacion) y para el procesado y calculo de las senales obtenidas, procedentes del sistema detector de luz, para obtencion de indicadores de degradacion de aceite en funcion de las medidas tomadas. En una posible realization, no limitativa, los medios de procesado 51 se implementan mediante un microcontrolador embebido, programado para realizar dichas tareas de activacion/desactivacion de iluminacion y de calculo y procesado de senales. Los medios de procesado 51 albergan los siguientes algoritmos (cuyo contenido concreto queda fuera del alcance de la presente invencion):In turn, the electronic subsystem 150 has a processing means 51 for the tasks of activating / deactivating the lighting (control of the lighting sources) and for processing and calculating the signals obtained, coming from the detector system. of light, to obtain indicators of oil degradation in function of the measures taken. In a possible realization, not limitation, the processing means 51 are implemented by means of an embedded microcontroller, programmed to perform said functions of activation / deactivation of illumination and of calculation and processing of signals. The processing means 51 house the following algorithms (whose specific content is outside the scope of the present invention):

-uno o mas algoritmos de control de la iluminacion 511, que se encargan de que la intensidad de la luz emitida por la al menos una fuente de iluminacion 411 se ajuste a una consigna de iluminacion; los parametros de entrada de este algoritmo son la medida del fotodiodo de control 43 (Pd_c(V)) y una consigna de iluminacion, mientras que el parametro de salida es la corriente que debe aplicarse al sistema de iluminacion (Led(mA));- one or more lighting control algorithms 511, which ensure that the intensity of the light emitted by the at least one lighting source 411 is adjusted to a lighting setpoint; the input parameters of this algorithm are the measurement of the control photodiode 43 (Pd_c (V)) and a lighting setpoint, while the output parameter is the current to be applied to the lighting system (Led (mA));

-uno o mas algoritmos de calculo de degradacion de aceite 512, disenados para calcular un indicador de degradacion a partir de la lectura RGB realizada en el sistema detector de luz 412; y- one or more oil degradation calculation algorithms 512, designed to calculate a degradation indicator from the RGB reading made in the light detecting system 412; Y

-uno o mas algoritmos de calibration 513, disenados para un ajuste de intensidades de trabajo y toma de referencia.-one or more 513 calibration algorithms, designed for an adjustment of work intensities and reference point.

El subsistema electronico 150 tiene ademas otros elementos, como drivers de comunicacion 52 que permiten al sistema 13 comunicarse con equipos externos para recibir comandos (instrucciones para realizar medidas, realizar calibracion, etc.) y para transmitir medidas o resultados del procesado realizado en los medios de procesado 51; fuente de alimentation 53, disenada para alimentar todos los dispositivos electronicos del sistema 13; medios de memoria 54, configurados para almacenar resultados de medidas y parametros de los algoritmos; y sensor de temperatura 55, para conocer y monitorizar la temperatura del sistema 13.The electronic subsystem 150 also has other elements, such as communication drivers 52 that allow the system 13 to communicate with external equipment to receive commands (instructions for making measurements, performing calibration, etc.) and for transmitting measurements or results of the processing performed in the media. of processing 51; power source 53, designed to power all the electronic devices of the system 13; memory means 54, configured to store measurement results and parameters of the algorithms; and temperature sensor 55, to know and monitor the temperature of the system 13.

El sistema de monitorizacion 13 comprende tambien medios de conexion, que pueden ser cableados, como por ejemplo el conector 60 mostrado en la figura 2A o el cableado 4 mostrado en la figura 1A, o inalambricos, para la comunicacion con equipos externos o para recibir alimentacion externa en caso de que sea necesaria.The monitoring system 13 also comprises connection means, which can be wired, such as, for example, the connector 60 shown in FIG. 2A or the wiring 4 shown in FIG. 1A, or wireless, for communication with external equipment or for receiving power. external in case it is necessary.

En funcion de las circunstancias, tales como el tipo de sistema industrial bajo monitorizacion, o del tipo (y por tanto, de la absorbancia y reflectancia) de fluido -preferentemente aceite lubricante- que se este monitorizando, o de la previsible velocidad de degradation que de dicho fluido se pueda esperar, se podra elegir entre distintas implementaciones del elemento optico trasero 45. Como se ilustra en la figura 2A, el fluido que fluye en el canal 20, 120 puede ser un fluido considerado opaco (es decir, un fluido de absorbancia mayor de 1,0) o un fluido considerado traslucido (es decir, un fluido de absorbancia menor de 1,0). En el caso de aceites lubricantes para maquinaria industrial, como por ejemplo motores de gas, existen aceites opacos (absorbancia mayor de 1,0, tales como mayor de 2,0 o mayor de 3,0 a la longitud de onda de trabajo) incluso cuando estan limpios, es decir, antes de empezar a usarse y por tanto degradarse; y tambien existen aceites que inicialmente (por ejemplo cuando estan limpios) son traslucidos (absorbancia menor de 1,0, tales como menor de 0,5 o menor de 0,2 o menor de 0,1 a la longitud de onda de trabajo) y que, a lo largo de su vida util, su absorbancia va aumentando con el paso del tiempo y del uso como lubricante de la maquinaria de que se trate, hasta llegar a tener una alta opacidad al final de su vida util (por ejemplo, presentando una absorbancia en torno a 1,0 o superior, como 2,0 o 3,0 en la longitud de onda de medida). En cualquier caso, a medida que se usan como lubricantes, su absorbancia va aumentando debido a procesos de oxidacion, entre otros.Depending on the circumstances, such as the type of industrial system under monitoring, or the type (and therefore, the absorbance and reflectance) of fluid-preferably lubricating oil-that is being monitored, or the predictable rate of degradation that of said fluid can be expected, one can choose between different implementations of the rear optical element 45. As illustrated in Figure 2A, the fluid flowing in the channel 20, 120 can be a fluid considered opaque (i.e., a fluid of absorbance greater than 1.0) or a fluid considered translucent (ie, an absorbance fluid less than 1.0). In the case of lubricating oils for industrial machinery, such as gas engines, there are opaque oils (absorbance greater than 1.0, such as greater than 2.0 or greater than 3.0 at the working wavelength). when they are clean, that is, before they start to be used and therefore degrade; and there are also oils that initially (for example when they are clean) are translucent (absorbance less than 1.0, such as less than 0.5 or less than 0.2 or less than 0.1 at the working wavelength) and that, throughout its useful life, its absorbance increases with the passage of time and the use as lubricant of the machinery in question, until it reaches a high opacity at the end of its useful life (for example, presenting an absorbance around 1.0 or higher, such as 2.0 or 3.0 in the measured wavelength). In any case, as they are used as lubricants, their absorbance increases due to oxidation processes, among others.

El sistema de monitorizacion de la presente divulgation se implementa preferentemente de forma que el elemento optico trasero 45 sea intercambiable, para adaptarse al tipo de fluido que se desee monitorizar. Asl, con el diseno de los medios de emision/recepcion de luz 41 y del elemento optico trasero 45, es posible cubrir distintos casos de uso, seleccionando el elemento optico trasero 45 entre distintas posibles opciones. Las figuras 3A-3C esquematizan el recorrido de la radiation optica emitida por la al menos una fuente de iluminacion 411 al viajar hacia un fluido que ocupa el canal 20, 120 y la luz detectada por el al menos un sistema detector de luz 412 dispuesto en el mismo lado que la al menos una fuente de iluminacion 411 (ambos del mismo lado del canal 20, 120) y, preferentemente, en un mismo plano para facilitar el diseno optico. En estas figuras, se explica el papel desempenado por el elemento optico trasero 45 con respecto a la radiacion optica procedente de la al menos una fuente de iluminacion 411 que consigue llegar a dicho elemento optico trasero 45 (flecha continua). Las flechas punteadas representan la reflexion difusa en el fluido, presente en mayor o menor medida en funcion del tipo de fluido.The monitoring system of the present disclosure is preferably implemented so that the rear optical element 45 is interchangeable, to adapt to the type of fluid that it is desired to monitor. Thus, with the design of the light emitting / receiving means 41 and the rear optical element 45, it is possible to cover different use cases, selecting the rear optical element 45 among different possible options. Figures 3A-3C schematize the path of the optical radiation emitted by the at least one illumination source 411 when traveling towards a fluid occupying the channel 20, 120 and the light detected by the at least one light detector system 412 arranged in the same side as the at least one illumination source 411 (both on the same side of the channel 20, 120) and, preferably, in the same plane to facilitate the optical design. In these figures, the role played by the rear optical element 45 with respect to the optical radiation coming from the at least one light source 411 that reaches said rear optical element 45 (continuous arrow) is explained. The dotted arrows represent the diffuse reflection in the fluid, present to a greater or lesser extent depending on the type of fluid.

El modo de operation predominante esta determinado por el tipo de elemento optico trasero 45 elegido y las caracterlsticas del fluido monitorizado. Asl, en la figura 3A, en la que se ha usado un material absorbente desde el punto de vista optico (es decir, un material que a la longitud de onda (o longitudes de onda) de trabajo sustancialmente no refleja nada de luz) para implementar el elemento optico trasero 451, se observa como este material absorbente no refleja nada, de forma que sustancialmente toda la contribution de senal recibida en el sistema detector de luz 412 corresponde (llnea punteada) a la senal de reflexion difusa en la muestra. Ejemplos no limitativos de materiales absorbentes son nylon negro y aluminio anodizado, entre otros. Se recomienda la configuration de la figura 3A cuando se desea asegurar que solo se mide reflexion difusa generada en la muestra. En este caso, el modo de operacion predominante es modo reflexion, pues la medida principal de radiacion optica realizada por el al menos un sistema detector de luz 412 es la relativa a la reflexion difusa (flecha discontinua).The predominant mode of operation is determined by the type of back optics chosen and the characteristics of the monitored fluid. Thus, in FIG. 3A, in which an absorbent material has been used from the optical point of view (ie, a material that substantially does not reflect any light at wavelength (or wavelengths) of light) implementing the rear optical element 451, it is observed how this absorbent material does not reflect anything, so that substantially all the signal contribution received in the light detector system 412 corresponds (dotted line) to the diffuse reflection signal in the sample. Non-limiting examples of absorbent materials are black nylon and anodized aluminum, among others. The configuration of Figure 3A is recommended when you want to ensure that only diffuse reflection generated in the sample is measured. In this case, the predominant mode of operation is reflection mode, since the main optical radiation measurement made by the at least one light detector system 412 is that relative to diffuse reflection (dashed arrow).

Por su parte, en la figura 3B, en la que el elemento optico trasero 452 se ha implementado mediante un material reflexivo no curvado desde el punto de vista optico (es decir, un material que a la longitud de onda (o longitudes de onda) de trabajo refleja sustancialmente toda la luz que incide sobre dicho material reflexivo), se observa como el elemento optico trasero 452 refleja todo (flecha continua que parte del elemento optico trasero 452), por lo que el sistema detector de luz 412 recibe intensidad de reflexion difusa (llnea punteada) y senal de transmision que se corresponde con la portion de luz transmitida a traves del fluido y reflejada en la placa trasera 452 que se transmite de vuelta a traves del fluido (llnea continua que llega al sistema detector de luz 412). Ejemplos no limitativos de materiales reflexivos son aluminio pulido, nylon blanco, y en general, cualquier material que actue como un espejo. En este caso, el elemento optico trasero 452 actua como emisor virtual, ya que el comportamiento es como si hubiese un emisor virtual al otro lado del fluido que ocupa el canal 20, 120. La flecha continua procedente del elemento trasero 452 se refiere a la radiacion reflejada por dicho elemento trasero 452. En este caso, el modo de operacion predominante es modo transmision, pues la medida principal de radiacion optica realizada por el al menos un sistema detector de luz 412 es la relativa a la radiacion optica procedente del elemento optico trasero 452 que actua como un emisor virtual (flecha continua).For its part, in Figure 3B, in which the rear optical element 452 has been implemented by a reflective material not curved from the optical point of view (ie, a material that at the wavelength (or wavelengths) of work reflects substantially all the light incident on said reflective material), it is observed as the rear optical element 452 reflects everything (continuous arrow that part of the rear optical element 452), so that the light detector system 412 receives reflection intensity diffuse (dotted line) and transmission signal that corresponds to the portion of light transmitted through the fluid and reflected on the back plate 452 that is transmitted back through the fluid (continuous line arriving at the light detector system 412) . Non-limiting examples of reflective materials are polished aluminum, white nylon, and in general, any material that acts as a mirror. In this case, the rear optical element 452 acts as a virtual emitter, since the behavior is as if there were a virtual emitter on the other side of the fluid occupied by the channel 20, 120. The continuous arrow coming from the rear element 452 refers to the radiation reflected by said rear element 452. In this case, the predominant mode of operation is transmission mode, since the main optical radiation measurement made by the at least one light detector system 412 is that relative to the optical radiation from the rear optical element 452 that acts as a virtual emitter (continuous arrow).

Por ultimo, en la figura 3C, en la que el elemento optico trasero 45 se ha implementado mediante un material reflexivo curvado, reflexivo focalizado o reflector curvado 453, este concentra los rayos procedentes de la al menos una fuente de iluminacion 411 que llegan hasta la placa trasera 453, en el area activa del sistema detector de luz 412, para maximizar la senal recibida. Es decir, el elemento optico trasero 45 se ha implementado mediante un material que a la longitud de onda (o longitudes de onda) de trabajo refleja sustancialmente toda la luz que incide sobre dicho material reflexivo y ademas se disena para que concentre la luz en el sistema detector de luz 412. Ejemplos no limitativos de implementaciones como esta son las implementaciones mediante espejos curvos (parabolicos o concavos). Como en el caso de la figura 3B, en la figura 3C el sistema detector de luz 412 recibe intensidad de reflexion difusa (llnea punteada) y senal de transmision que se corresponde con la porcion de luz transmitida a traves del fluido y reflejada en la placa trasera 453 que se transmite de vuelta a traves del fluido (llnea continua que llega al sistema detector de luz 412), esta ultima optimizada (llega focalizada del emisor virtual). Es decir, como en el caso de la figura 3B, el modo de operacion predominante es modo transmision, pues la medida principal de radiacion optica realizada por el al menos un sistema detector de luz 412 es la relativa a la radiacion optica procedente del elemento optico trasero 453 que actua como un emisor virtual (flecha continua).Finally, in Figure 3C, in which the rear optical element 45 has been implemented by means of a curved reflective material, focused reflective or curved reflector 453, it concentrates the rays coming from the at least one source of illumination 411 that reach the back plate 453, in the active area of the light detector system 412, to maximize the received signal. That is to say, the rear optical element 45 has been implemented by means of a material that at the wavelength (or wavelengths) of work reflects substantially all the light that falls on said reflective material and is also designed to concentrate the light in the light detector system 412. Non-limiting examples of implementations such as this are implementations using curved mirrors (parabolic or concave). As in the case of FIG. 3B, in FIG. 3C, the light detector system 412 receives diffuse reflection intensity (dotted line) and transmission signal that corresponds to the portion of light transmitted through the fluid and reflected on the plate. rear 453 that is transmitted back through the fluid (continuous line that arrives at the light detector system 412), the latter optimized (it arrives focused from the virtual transmitter). That is, as in the case of Figure 3B, the predominant mode of operation is transmission mode, since the main optical radiation measurement made by the at least one light detector system 412 is that relative to the optical radiation from the optical element. rear 453 that acts as a virtual emitter (continuous arrow).

Estas configuraciones (figuras 3B y 3C) se recomiendan para medir el nivel de transmitancia de la muestra. Sin embargo, si el fluido a monitorizar tiene una absorbancia elevada (fluidos opacos o muy opacos), no llegara apenas senal a la placa trasera y el comportamiento del sistema sera similar al descrito en el caso de la figura 3A, es decir, se trabaja en modo reflexion a pesar de tener una placa trasera reflectante 452, 453. These configurations (Figures 3B and 3C) are recommended to measure the transmittance level of the sample. However, if the fluid to be monitored has a high absorbance (opaque or very opaque fluids), it will hardly reach the back plate and the behavior of the system will be similar to that described in the case of Figure 3A, that is, it works in reflective mode despite having a reflective rear plate 452, 453.

Es decir, gracias a la ubicacion de los medios opticos de emision/recepcion 41 del mismo lado del fluido, y del elemento optico trasero 45 situado al otro lado del fluido con respecto a los medios opticos de emision/recepcion 41, se consigue un modo de operacion en reflexion o en transmision que va a permitir monitorizar un amplio rango de fluidos en terminos de absorbancia (transmitancia) y reflectancia.That is, thanks to the location of the optical emission / reception means 41 on the same side of the fluid, and of the rear optical element 45 located on the other side of the fluid with respect to the optical emission / reception means 41, a of operation in reflection or in transmission that will allow to monitor a wide range of fluids in terms of absorbance (transmittance) and reflectance.

Las figuras 4A y 4B representan el funcionamiento del sistema de monitorizacion. Concretamente, la figura 4A representa el comportamiento optico de los rayos transmitidos por la al menos una fuente de iluminacion 411 al entrar en contacto con el fluido que llena el canal 20, 120 cuando el fluido que llena el canal 20, 120 es un fluido de alta opacidad 72, es decir, cuando el fluido presenta una absorbancia mayor de 1,0, tal como mayor de 2,0 o mayor de 3,0 (parte inferior de la figura 4A); y cuando el fluido que llena el canal 20, 120 es un fluido de baja opacidad 71, es decir, cuando el fluido presenta una absorbancia menor de 1,0, tal como menor de 0,5 o menor de 0,2 o menor de 0,1 (parte superior de la figura 4A).Figures 4A and 4B depict the operation of the monitoring system. Specifically, figure 4A represents the optical behavior of the rays transmitted by the at least one source of illumination 411 on contacting the fluid that fills the channel 20, 120 when the fluid filling the channel 20, 120 is a high opacity fluid 72, that is, when the fluid presents a absorbance greater than 1.0, such as greater than 2.0 or greater than 3.0 (lower part of Figure 4A); and when the fluid filling the channel 20, 120 is a low opacity fluid 71, that is, when the fluid has an absorbance of less than 1.0, such as less than 0.5 or less than 0.2 or less of 0.1 (upper part of figure 4A).

Cuando se emite una radiacion optica que incide en un fluido de alta opacidad 72, practicamente nada de la luz consigue atravesar el fluido 72 debido a la opacidad de este, ya que la luz se absorbe en una profundidad cercana a la superficie y la parte que no es absorbida puede salir otra vez de la muestra en forma de reflexion difusa debido al scattering (dispersion) producido por las reflexiones internas en el fluido (vease figura 8). En este caso, el modo de operation predominante es el modo en reflexion. En estas circunstancias, el comportamiento de los rayos de luz en el fluido es sustancialmente el mismo independientemente del tipo de placa trasera utilizada 45, ya que practicamente ningun rayo llega hasta la placa trasera.When an optical radiation is emitted that impinges on a high opacity fluid 72, practically none of the light gets through the fluid 72 due to the opacity of this, since the light is absorbed in a depth close to the surface and the part that it is not absorbed it can leave the sample again in the form of diffuse reflection due to the scattering produced by the internal reflections in the fluid (see figure 8). In this case, the predominant mode of operation is the mode in reflection. Under these circumstances, the behavior of the light rays in the fluid is substantially the same irrespective of the type of back plate used, since practically no ray reaches the back plate.

Por el contrario, cuando se emite una radiacion optica que incide en un fluido de baja opacidad 71, una alta proportion de la luz emitida por la fuente atraviesa el fluido. En este caso, el modo de operacion predominante es el modo en transmision, porque la radiacion luminosa es capaz de atravesar el fluido y la componente debida al scattering es en proporcion mucho menor (debe tenerse en cuenta ademas que el efecto del scattering depende de las caracterlsticas propias del fluido). En caso de que la placa trasera del sistema sea reflectante 452, 453, toda la luz que llegue a esta superficie se reflejara y volvera de vuelta a traves del fluido. Si, por el contrario, la placa trasera es absorbente 451, toda la luz que incide en esta superficie sera absorbida y nada volvera de vuelta a traves del fluido.On the contrary, when an optical radiation is emitted that impinges on a low opacity fluid 71, a high proportion of the light emitted by the source passes through the fluid. In this case, the predominant mode of operation is the transmission mode, because the light radiation is able to cross the fluid and the component due to scattering is in a much smaller proportion (it must also be taken into account that the scattering effect depends on the characteristics of the fluid). In case the rear plate of the system is reflective 452, 453, all the light that reaches this surface will be reflected and will return back through the fluid. If, on the other hand, the back plate is absorbent 451, all the light that hits this surface will be absorbed and nothing will return back through the fluid.

La election de la placa trasera 451, 452, 453 depende de las caracterlsticas del fluido a monitorizar y de su evolution durante su uso. La utilization de una placa trasera absorbente 451 permite obtener information sobre el nivel de reflexion difusa debida al scattering en la muestra, lo que puede dar informacion sobre la aparicion de partlculas en la misma, puede indicar por ejemplo la aparicion de barnices. Mientras que una placa trasera reflectante 452, 453 permite realizar por ejemplo una monitorizacion del nivel de absorbancia de la muestra, cambios en el color, etc. Todos estos efectos son indicativos del estado de degradacion del aceite. The choice of back plate 451, 452, 453 depends on the characteristics of the fluid to be monitored and its evolution during use. The use of an absorbent back plate 451 allows obtaining information on the level of diffuse reflection due to scattering in the sample, which can give information on the appearance of particles in it, can indicate for example the appearance of varnishes. Whereas a reflective rear plate 452, 453 allows for example to monitor the absorbance level of the sample, changes in color, etc. All these effects are indicative of the state of oil degradation.

Como se ha indicado, el fluido lubricante en su estado inicial y su evoluciondurante su uso condicionan la eleccion del placa trasera 45, de forma que un fluido lubricante considerado opaco en estado inicial (limpio) podra determinar la eleccion de una placa trasera absorbente 451, mientras que un fluido lubricante considerado traslucido en estado inicial, podra determinar la eleccion de una placa trasera reflexiva 452, 453. La figura 4B muestra en detalle los principales componentes del subsistema optico 140 y los modos predominates (modo reflexion y modo transmision) en funcion de la opacidad del fluido que ocupa el canal 20, 120 y de la placa trasera o elemento optico de reflexion 45 elegido. La referencia (i) se refiere a rayos de luz reflejados en las inmediaciones de la superficie del fluido (reflexion difusa) que son detectados en el sistema detector de luz 412, mientras que la referencia (ii) se refiere a rayos de luz que atraviesan el fluido y que son reflejados por el elemento optico trasero 45 (cuando este actua como emisor virtual), de forma que viajan de vuelta por el fluido. Asl, cuando se elige una placa trasera absorbente 451, el sistema detector de luz 412 sustancialmente solo recibe los rayos (i), es decir, los rayos de luz reflejados por reflexion difusa, independientemente de que el fluido tenga mayor o menor opacidad, ya que los rayos emitidos por la fuente de iluminacion 411 que hayan logrado atravesar el fluido, si los hubiera, son absorbidos por elemento optico trasero absorbente 451. El sistema trabaja en este caso de forma predominante en modo reflexion, porque la mayor parte de la radiacion detectada por el detector 412 es la componente (i) reflejada en el fluido. Por el contrario, cuando se elige una placa trasera reflexiva 452, 453, el sistema detector de luz 412 recibe los rayos (i) (reflexion difusa) mas los rayos reflejados (ii) por el elemento optico trasero reflexivo 452, 453 que hayan logrado atravesar de vuelta el fluido. En este caso, si el fluido es opaco, es decir, de absorbancia mayor de 1,0, tal como mayor de 2,0 o mayor de 3,0, la componente (i) podra ser mayor que la (ii), porque el fluido opaco 72 permite el paso de poca radiacion reflejada. El sistema trabaja en este caso de forma predominante en modo reflexion (difusa). Por el contrario, si el fluido es traslucido (absorbancia menor de 1,0, tal como menor de 0,5 o menor de 0,2 o menor de 0,1), la componente (i) podra ser menor que la (ii), porque el fluido de baja opacidad 71 permite el paso de mayor cantidad de radiacion reflejada por la placa trasera 453, 453. El sistema trabaja en este caso de forma predominante en modo transmision. En general, de las dos componentes de luz (i), (ii) que son detectadas por el sistema detector de luz 412, la menor de ellas puede llegar a ser nula.As indicated, the lubricating fluid in its initial state and its evolution during its use condition the choice of the rear plate 45, so that a lubricating fluid considered opaque in the initial (clean) state could determine the choice of an absorbent back plate 451, while a lubricating fluid considered translucent in initial state, could determine the choice of a reflective rear plate 452, 453. Figure 4B shows in detail the main components of the optical subsystem 140 and the predominant modes (mode reflexion and transmission mode) in function of the opacity of the fluid occupied by the channel 20, 120 and of the rear plate or optical reflection element chosen. Reference (i) refers to light rays reflected in the vicinity of the fluid surface (diffuse reflection) which are detected in the light-sensing system 412, while reference (ii) refers to light rays passing through the fluid and that are reflected by the rear optical element 45 (when it acts as a virtual emitter), so that they travel back through the fluid. Thus, when an absorbing back plate 451 is chosen, the light detecting system 412 substantially only receives the rays (i), that is, the rays of light reflected by diffuse reflection, independently of whether the fluid has more or less opacity, since that the rays emitted by the illumination source 411 that have been able to pass through the fluid, if any, are absorbed by the absorbing rear optical element 451. The system works in this case predominantly in reflection mode, because most of the radiation detected by detector 412 is component (i) reflected in the fluid. On the other hand, when a reflective rear plate 452, 453 is chosen, the light detector system 412 receives the rays (i) (diffuse reflection) plus the reflected rays (ii) by the rear reflective optical element 452, 453 that have achieved traverse the fluid back. In this case, if the fluid is opaque, that is, absorbance greater than 1.0, such as greater than 2.0 or greater than 3.0, component (i) may be greater than (ii), because the opaque fluid 72 allows the passage of little reflected radiation. In this case, the system works in a predominant way in reflection mode (diffuse). Conversely, if the fluid is translucent (absorbance less than 1.0, such as less than 0.5 or less than 0.2 or less than 0.1), component (i) may be less than (ii) ), because the fluid of low opacity 71 allows the passage of greater amount of radiation reflected by the back plate 453, 453. The system works predominantly in transmission mode in this case. In general, of the two light components (i), (ii) which are detected by the light detecting system 412, the smallest of them can become null.

Por otra parte, el hecho de trabajar con un sistema de monitorizacion disenado para acoplarse de forma compacta y sencilla en una toma simple de un deposito y trabajar por tanto en modo sumergido, obliga a superar ciertos inconvenientes: Por una parte, debe garantizarse que haya una renovacion efectiva del fluido dentro del canal 20, 120. Notese que el flujo del fluido a lo largo del canal de medida 20, 120 depende de las pequenas diferencias de presion que existen en el deposito 1 debido a turbulencias internas, de la viscosidad del fluido y de la temperatura del fluido. Por ejemplo, se ha obtenido mediante simulation que con un incremento de presion de 17,07 Pascales entre la entrada y salida del sistema de monitorizacion, para un canal 20, 120 de 2 mm de espesor (distancia entre la ventana 44 y placa trasera 45) se consigue un caudal volumetrico de 0,053 ml/s.On the other hand, the fact of working with a monitoring system designed to fit in a compact and simple way in a simple take of a deposit and work for both in submerged mode, it is necessary to overcome certain drawbacks: On the one hand, it must be ensured that there is an effective renewal of the fluid within the channel 20, 120. Note that the flow of the fluid along the measuring channel 20, 120 depends on the small pressure differences that exist in tank 1 due to internal turbulence, fluid viscosity and fluid temperature. For example, it has been obtained by simulation that with a pressure increase of 17.07 Pascals between the input and output of the monitoring system, for a channel 20, 120 of 2 mm thickness (distance between window 44 and back plate 45). ) a volumetric flow rate of 0.053 ml / s is achieved.

Por tanto, la renovacion de fluido en el canal de medida 20, 120 esta garantizada en las condiciones de presion descritas. Por otra parte, debe garantizarse que a la hora de introducir el sistema de monitorizacion 3, 13 en el deposito 1, el sistema de monitorizacion 3, 13, evacue el aire que pueda contener en su cavidad de medida (canal de medida) 20, 120. La probabilidad de no evacuar el aire contenido en el canal de medida 20, 120 es mayor cuanto mas verticalmente se introduce el sistema de monitorizacion 3, 13 en el deposito 1, y cuanto mas viscoso sea el fluido bajo monitorizacion. El caso mayor riesgo de acumulacion de aire en el canal de medida 20, 120 es aquel en el que se introduce el sistema de monitorizacion de forma totalmente vertical en un deposito que contiene un fluido muy viscoso (por ejemplo, 320 cSt), donde cSt son centiStokes, es decir, unidades de viscosidad, siendo 1cSt = 10"6 m2/s3.Therefore, the renewal of fluid in the measuring channel 20, 120 is guaranteed under the described pressure conditions. On the other hand, it must be guaranteed that when introducing the monitoring system 3, 13 in the tank 1, the monitoring system 3, 13, evacuate the air that it may contain in its measuring cavity (measurement channel) 20, 120. The probability of not evacuating the air contained in the measuring channel 20, 120 is greater the more vertically the monitoring system 3, 13 is introduced in the tank 1, and the more viscous the fluid under monitoring. The greatest risk of accumulation of air in the measuring channel 20, 120 is that in which the monitoring system is introduced completely vertically in a tank containing a highly viscous fluid (for example, 320 cSt), where cSt they are centiStokes, that is, units of viscosity, being 1cSt = 10 "6 m2 / s3.

La figura 5 ilustra el problema de la introduction del sistema de monitorizacion 3 en un deposito 1 de forma totalmente vertical, en cuyo caso las burbujas de aire acumuladas en el canal de medida tienen dificultades para evacuar el canal y, por tanto, este no se llena con el fluido que se desea monitorizar 2.Figure 5 illustrates the problem of the introduction of the monitoring system 3 in a tank 1 in a completely vertical manner, in which case the air bubbles accumulated in the measuring channel have difficulties to evacuate the channel and, therefore, it is not filled with the fluid that you want to monitor 2.

Para garantizar la renovacion de la muestra de fluido dentro del canal de medida 20, 120, garantizandose asl que el sistema de monitorizacion tome medidas sobre muestras diferentes de fluido a lo largo del tiempo, en realizaciones de la invention se disena un canal de medida 20, 120 de altura regulable para cada tipo de fluido. La figura 6 muestra un sistema de monitorizacion con altura H del canal de medida 20, 120 variable. En realizaciones de la invencion, la altura H del canal 20, 120 puede variar entre 0,5 mm y 5 mm, por ejemplo entre 0,75 mm y 4 mm, o entre 1 mm y 3,5 mm, o entre 1,5 mm y 3 mm, o entre 1,75 mm y 2,75 mm.To guarantee the renewal of the fluid sample within the measuring channel 20, 120, thus ensuring that the monitoring system takes measurements on different samples of fluid over time, in embodiments of the invention a measuring channel is designed. , 120 adjustable height for each type of fluid. Figure 6 shows a monitoring system with height H of the measuring channel 20, 120 variable. In embodiments of the invention, the height H of the channel 20, 120 can vary between 0.5 mm and 5 mm, for example between 0.75 mm and 4 mm, or between 1 mm and 3.5 mm, or between 1, 5 mm and 3 mm, or between 1.75 mm and 2.75 mm.

Para evitar la acumulacion de aire en el canal de medida 20,120, es decir, para favorecer la evacuation de aire de dicho canal 20, 120, en realizaciones de la invencion se disena la union entre la ventana optica 44 y el cuerpo o carcasa del sistema de monitorizacion sin aristas. En otras realizaciones de la invention, se disena dicha ventana optica 44, que es preferentemente plana, con una cierta inclination con respecto al plano definido por el elemento optico trasero 45. Esta inclinacion favorece la evacuation de aire del canal 20, 120. La figura 7 muestra un sistema de monitorizacion cuya ventana optica 44 esta inclinada con respecto al plano definido por el elemento optico trasero 45. En realizaciones de la invencion, la inclinacion p puede variar entre 5 y 15°, por ejemplo entre 6 y 14°, o entre 7 y 13°, o entre 8 y 12°, o entre 9 y 11°. En realizaciones de la invencion, se disena la union entre la ventana optica 44 y el cuerpo o carcasa del sistema de monitorizacion sin aristas, y ademas se disena la ventana optica 44 inclinada un angulo p con respecto al plano definido por el elemento optico trasero 45.In order to prevent the accumulation of air in the measuring channel 20,120, that is to encourage the evacuation of air from said channel 20, 120, in embodiments of the invention, the connection between the optical window 44 and the body or housing of the system is designed. of monitoring without edges. In other embodiments of the invention, said optical window 44 is designed, which is preferably flat, with a certain inclination with respect to the plane defined by the rear optical element 45. This inclination favors the evacuation of air from the channel 20, 120. The figure 7 shows a monitoring system whose optical window 44 is inclined with respect to the plane defined by the rear optical element 45. In embodiments of the invention, the inclination p can vary between 5 and 15 °, for example between 6 and 14 °, or between 7 and 13 °, or between 8 and 12 °, or between 9 and 11 °. In embodiments of the invention, the connection between the optical window 44 and the body or housing of the monitoring system without edges is designed, and furthermore the optical window 44 is inclined at an angle p with respect to the plane defined by the rear optical element. .

Se ha construido un prototipo del sistema de monitorizacion descrito. El prototipo esta compuesto por un emisor LED de luz blanca, un detector de color RGB y una anchura de canal (distancia entre ventana optica y placa trasera) de 2 mm. La siguiente tabla muestra los valores obtenidos al realizar medidas con diferentes fluidos (fluido 1 a fluido 6) y diferentes configuraciones del sistema (placa trasera absorbente o reflectante) frente a datos obtenidos en el laboratorio. En todas las medidas realizadas con el prototipo y con la misma configuration de placa trasera el emisor envla la misma cantidad de luz. Este valor se determina durante el proceso de calibracion del sensor (sistema de monitorizacion) en condiciones de vaclo, es decir, sin fluido en el canal. En estas condiciones, el valor medido en el detector es del 80% respecto a su fondo de escala. Este valor se ha escogido por cuestiones de resolucion del sensor, tales como para evitar situaciones de saturation del detector. Las dos ultimas columnas se refieren a la medida tomada por el detector de color RGB en presencia de fluido en el canal. El fluido 1 es Beslux degradado. El fluido 2 es Beslux degradado intermedio. El fluido 3 es Beslux Referencia. El fluido 4 es Cepsa degradado. El fluido 5 es Cepsa degradado intermedio. El fluido 6 es Cepsa referencia.A prototype of the described monitoring system has been constructed. The prototype consists of a white light LED emitter, a RGB color detector and a channel width (distance between optical window and back plate) of 2 mm. The following table shows the values obtained when measuring with different fluids (fluid 1 to fluid 6) and different configurations of the system (absorbing or reflective back plate) versus data obtained in the laboratory. In all measurements made with the prototype and with the same rear plate configuration, the emitter sends the same amount of light. This value is determined during the sensor calibration process (monitoring system) under vacuum conditions, that is, without fluid in the channel. Under these conditions, the value measured in the detector is 80% with respect to its full scale. This value has been chosen for reasons of sensor resolution, such as to avoid situations of saturation of the detector. The last two columns refer to the measurement taken by the RGB color detector in the presence of fluid in the channel. Fluid 1 is Beslux degraded. Fluid 2 is Beslux intermediate degraded. The fluid 3 is Beslux Reference. The fluid 4 is Cepsa degraded. The fluid 5 is Cepsa intermediate degraded. The fluid 6 is Cepsa reference.

A bsorbanc ia m ed ida R eflectanc ia m edida M edida D etec to r M edida D etecto r en labora torio en labora torio (P laca trasera (P laca trase ra R eflectante) Absorben te ) F lu ido 1 3 4 32% 66% Fluido 2 2 3,25 39% 62% Fluido 3 1 4,5 44% 66% Fluido 4 0,5 5,25 55% 67% Fluido 5 0,2 6 63% 68% Fluido 6 0 ,04 6,75 79% 69%A bsorbanc ia m ed R eed up m edida m ed D etector r M ectio n Laboratory D etector in Labra tory (P laca rear (Rear view mirror) Absorben) F luido 1 3 4 32 % 66% Fluid 2 2 3,25 39% 62% Fluid 3 1 4,5 44% 66% Fluid 4 0,5 5,25 55% 67% Fluid 5 0,2 6 63% 68% Fluid 6 0, 04 6.75 79% 69%

Como puede observarse, cuando se usa una placa trasera absorbente 451 (primera columna por la derecha), y por tanto sustancialmente toda la radiacion que pueda haber atravesado el fluido es absorbida por la placa trasera 451, para cualquiera de las muestras (fluido 1 a fluido 6) el detector mide un valor en torno al 60-70% de su fondo de escala. En este caso el sistema trabaja en modo reflexion. Por el contrario, cuando se usa una placa trasera reflexiva 452, 453 (segunda columna por la derecha), la medida obtenida por el detector de color RGB, varla mucho en funcion de la absorbancia del fluido, desde valores de fondo de escala proximos al 80% en fluidos muy translucidos (fluido 6) hasta valores proximos al 30% en fluidos muy opacos (fluido 1). En este caso el sistema trabaja en modo predominante transmision.As can be seen, when using an absorbent back plate 451 (first column on the right), and therefore substantially all the radiation that may have passed through the fluid is absorbed by the back plate 451, for any of the samples (fluid 1 to fluid 6) the detector measures a value around 60-70 % of your fund of scale. In this case the system works in reflection mode. On the contrary, when using a reflective back plate 452, 453 (second column on the right), the measurement obtained by the RGB color detector varies a lot depending on the absorbance of the fluid, from scale values close to 80% in very translucent fluids (fluid 6) up to values close to 30% in very opaque fluids (fluid 1). In this case, the system works in predominant transmission mode.

Como puede observarse, con respecto a sistemas de monitorizacion en toma simple del estado de la tecnica, como por ejemplo el descrito en la solicitud de patente internacional WO2016/080824A1, la presente divulgacion simplifica y abarata el diseno, fabrication y mantenimiento del sistema de monitorizacion, debido a que se necesita una unica fuente de iluminacion, que ademas se ubica en la zona mas robusta del sistema de monitorizacion. En suma, el sistema de monitorizacion de la presente divulgacion se implementa como un sensor ‘enchufable’ (acoplable a una toma simple de un deposito) que puede entregar una salida de degradacion de aceite (o de su capacidad de lubrication), asl como otros parametros indicativos del aceite, como su nivel de aditivos antioxidantes, su grado de acidez, su nivel de oxidation y/o su nivel de presencia de barnices tanto si el fluido es opaco o traslucido. El sistema puede ser roscable, o de cualquier otra forma de acoplamiento sencilla, que no precise de canal de bypass en el deposito para la selection de la muestra de fluido. El sistema permite la medida en reflexion y/o transmision de fluidos tanto opacos como transparentes, pasando por los diversos grados de traslucidez. Se pueden emplear diversos elementos opticos traseros, ya sean de material absorbente o reflectante, y en este caso tanto planos como curvados para focalizar los rayos. El sistema se ha optimizado para que, al introducirse en el deposito, se elimine el aire que pueda haber en el canal de medida, evitandose la presencia de aire en la zona de medida. Ademas, se ha optimizado para que se regeneren las muestras sobre las que se toman las medidas.As can be seen, with respect to monitoring systems in a simpler manner of the state of the art, such as, for example, the one described in the international patent application WO2016 / 080824A1, the present disclosure simplifies and cheapens the design, manufacture and maintenance of the monitoring system. , because a single source of lighting is needed, which is also located in the most robust area of the monitoring system. In short, the monitoring system of the present disclosure is implemented as a 'plug-in' sensor (which can be coupled to a simple intake of a tank) that can deliver an oil degradation output (or its lubrication capacity), as well as other Parameters indicative of the oil, such as its level of antioxidant additives, its degree of acidity, its level of oxidation and / or its level of presence of varnishes, whether the fluid is opaque or translucent. The system can be threaded, or in any other form of simple coupling, which does not require a bypass channel in the tank for the selection of the fluid sample. The system allows the measurement in reflection and / or transmission of opaque and transparent fluids, passing through the different degrees of translucency. Various rear optical elements can be used, either absorbent or reflective material, and in this case both planes and curved to focus the rays. The system has been optimized so that, when entering the tank, the air that may be in the measuring channel is eliminated, avoiding the presence of air in the measurement area. In addition, it has been optimized so that the samples on which the measurements are taken are regenerated.

En este texto, la palabra “comprende” y sus variantes (como “comprendiendo”, etc.) no deben interpretarse de forma excluyente, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos etc.In this text, the word "comprises" and its variants (such as "understanding", etc.) should not be interpreted in an exclusive manner, that is, they do not exclude the possibility that the description includes other elements, steps, etc.

Por otra parte, la invencion no esta limitada a las realizaciones concretas que se han descrito sino abarca tambien, por ejemplo, las variantes que pueden ser realizadas por el experto medio en la materia (por ejemplo, en cuanto a la eleccion de materiales, dimensiones, componentes, configuration, etc.), dentro de lo que se desprende de las reivindicaciones. On the other hand, the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average expert in the field (for example, regarding the choice of materials, dimensions, components, configuration, etc.), within what is clear from the claims.

Claims (16)

REIVINDICACIONES 1.- Un sistema de monitorizacion (3, 13) para la inspection de un fluido (2, 71, 72) contenido en un deposito (1) mediante la insertion de dicho sistema de monitorizacion (3, 13) en una toma (5) de dicho deposito (1), que comprende:1. A monitoring system (3, 13) for the inspection of a fluid (2, 71, 72) contained in a tank (1) by inserting said monitoring system (3, 13) into a socket (5). ) of said deposit (1), comprising: una zona de medida (20, 120) configurada para que circule por ella una muestra de dicho fluido (2, 71, 72);a measurement zone (20, 120) configured so that a sample of said fluid (2, 71, 72) circulates therethrough; estando el sistema de monitorizacion (3, 13) caracterizado por que comprende:the monitoring system (3, 13) being characterized in that it comprises: unos medios de emision/recepcion de luz (41) que consisten en un sistema de iluminacion (411) y un sistema detector de luz (412) situados en un mismo lado del sistema de monitorizacion (3, 13) con respecto a dicha zona de medida (20, 120);light-emitting / receiving means (41) consisting of a lighting system (411) and a light-sensing system (412) located on the same side of the monitoring system (3, 13) with respect to said area of measurement (20, 120); una ventana optica (44) dispuesta entre dichos medios de emision/recepcion de luz (41) y dicha zona de medida (20, 120);an optical window (44) disposed between said light emitting / receiving means (41) and said measuring area (20, 120); y un elemento optico trasero (45, 451, 452, 453) situado al otro lado del sistema de monitorizacion (3, 13) con respecto a dicha zona de medida (20, 120),and a rear optical element (45, 451, 452, 453) located on the other side of the monitoring system (3, 13) with respect to said measurement area (20, 120), estando dicho sistema de iluminacion (411) configurado para emitir radiation optica hacia dicha zona de medida (20, 120),said lighting system (411) being configured to emit optical radiation towards said measurement zone (20, 120), estando dicho sistema detector de luz (412) configurado para detectar una radiation optica que comprende la luz (i) reflejada por dicho fluido (2, 71, 72) que circula por dicha zona de medida (20, 120) y/o la luz (ii) transmitida a traves de dicho fluido (2, 71, 72) y reflejada en dicho elemento optico trasero (45, 451, 452, 453),said light detection system (412) being configured to detect an optical radiation comprising the light (i) reflected by said fluid (2, 71, 72) circulating in said measurement zone (20, 120) and / or light (ii) transmitted through said fluid (2, 71, 72) and reflected in said rear optical element (45, 451, 452, 453), comprendiendo ademas dicho sistema de monitorizacion (3, 13) un subsistema electronico (150) que comprende medios de procesado (51) configurados para controlar la activacion/desactivacion del sistema de iluminacion (411) y para procesar las senales obtenidas procedentes del sistema detector de luz (412).further comprising said monitoring system (3, 13) an electronic subsystem (150) comprising processing means (51) configured to control the activation / deactivation of the lighting system (411) and to process the signals obtained from the detector system of light (412). 2.- El sistema de monitorizacion (3, 13) de la revindication 1, en el que dicho elemento optico trasero (45, 451) se implementa mediante un elemento absorbente desde el punto de vista optico, estando dicho elemento optico trasero (45, 451) configurado para impedir la reflexion de la luz transmitida a traves de dicho fluido (20, 120).2. The monitoring system (3, 13) of the revindication 1, wherein said rear optical element (45, 451) is implemented by an absorbent element from the optical point of view, said rear optical element (45, 451) configured to prevent reflection of the light transmitted through said fluid (20, 120). 3.- El sistema de monitorizacion (3, 13) de la revindication 1, en el que dicho elemento optico trasero (45, 452, 453) se implementa mediante un elemento reflexivo desde el punto de vista optico, estando dicho elemento optico trasero (45, 452, 453) configurado para favorecer la reflexion de la luz transmitida a traves de dicho fluido (20, 120). 3. The monitoring system (3, 13) of the revindication 1, wherein said rear optical element (45, 452, 453) is implemented by a reflective element from the optical point of view, said rear optical element ( 45, 452, 453) configured to favor the reflection of the light transmitted through said fluid (20, 120). 4. - El sistema de monitorizacion (3, 13) de la reivindicacion 3, en el que dicho elemento reflexivo desde el punto de vista optico (452, 453) es un elemento reflexivo plano (452). 4. - The monitoring system (3, 13) of claim 3, wherein said optically reflective element (452, 453) is a planar reflective element (452). 5. - El sistema de monitorizacion (3, 13) de la reivindicacion 3, en el que dicho elemento reflexivo desde el punto de vista optico (452, 453) es un elemento reflexivo concavo (453).5. - The monitoring system (3, 13) of claim 3, wherein said optically reflective element (452, 453) is a concave reflective element (453). 6. - El sistema de monitorizacion (3, 13) de la reivindicacion 1, en el que dicho elemento optico trasero (45, 451, 452, 453) es intercambiable, de forma que en funcion de la absorbancia del fluido bajo inspection (2, 71, 72), se elige un elemento optico trasero absorbente (451) o reflexivo (452, 453).6. - The monitoring system (3, 13) of claim 1, wherein said rear optical element (45, 451, 452, 453) is interchangeable, so that depending on the absorbance of the fluid under inspection (2). , 71, 72), a rear absorbent (451) or reflective (452, 453) optical element is chosen. 7.- El sistema de monitorizacion (3, 13) de cualquiera de las reivindicaciones anteriores, que comprende ademas al menos un fotodiodo de control (43) configurado para medir la intensidad emitida por el sistema de iluminacion (411).7. The monitoring system (3, 13) of any of the preceding claims, further comprising at least one control photodiode (43) configured to measure the intensity emitted by the lighting system (411). 8.- El sistema de monitorizacion (3, 13) de cualquiera de las reivindicaciones anteriores, estando dicho sistema de monitorizacion (3, 13) comprendido en una carcasa, en la que dichos medios de emision/recepcion de luz (41) estan situados en una portion (136) de dicha carcasa y dicho elemento optico trasero (45, 451, 452, 453) esta situado en otra porcion (135) de dicha carcasa, donde dichas porciones (135, 136) de carcasa definen dicha zona de medida (20, 120), delimitando dicho elemento optico trasero (45, 451, 452, 453) y dicha ventana optica (44) la zona de medida (20, 120).8. The monitoring system (3, 13) of any of the preceding claims, said monitoring system (3, 13) being comprised in a housing, wherein said light emitting / receiving means (41) are located in a portion (136) of said housing and said rear optical element (45, 451, 452, 453) is located in another portion (135) of said housing, wherein said housing portions (135, 136) define said measurement zone (20, 120), said rear optical element (45, 451, 452, 453) and said optical window (44) delimiting the measurement area (20, 120). 9.- El sistema de monitorizacion (3, 13) de cualquiera de las reivindicaciones anteriores, donde la altura (H) de dicha zona de medida (20, 120) es regulable para garantizar la renovation de la muestra de fluido (2, 71, 72) dentro de dicha zona de medida (20, 120).9. The monitoring system (3, 13) of any of the preceding claims, wherein the height (H) of said measurement zone (20, 120) is adjustable to guarantee the renewal of the fluid sample (2, 71). , 72) within said measurement zone (20, 120). 10. - El sistema de monitorizacion (3, 13) de cualquiera de las reivindicaciones anteriores, donde dicha ventana optica (44) tiene una inclination con respecto al plano definido por elemento optico trasero (45, 451, 452, 453) para evitar la acumulacion de aire en la zona de medida (20,120).10. - The monitoring system (3, 13) of any of the preceding claims, wherein said optical window (44) has an inclination with respect to the plane defined by optical rear element (45, 451, 452, 453) to avoid accumulation of air in the measurement area (20,120). 11. - El sistema de monitorizacion (3, 13) de cualquiera de las reivindicaciones anteriores, que comprende un difusor (48) dispuesto entre dicho sistema de iluminacion (411) de dichos medios de emision/recepcion de luz (41) y dicho al menos un fotodiodo de control (43).11. - The monitoring system (3, 13) of any of the preceding claims, comprising a diffuser (48) arranged between said lighting system (411) of said light emitting / receiving means (41) and said at minus a control photodiode (43). 12. - Un metodo de monitorizacion de un fluido (2, 71, 72) contenido en un deposito (1), que comprende:12. - A method of monitoring a fluid (2, 71, 72) contained in a tank (1), comprising: insertar un sistema de monitorizacion (3, 13) en una toma simple (5) de dicho deposito (1), donde dicho sistema de monitorizacion (3, 13) comprende: una zona de medida (20, 120) configurada para que circule por ella una muestra de dicho fluido (2, 71, 72); unos medios de emision/recepcion de luz (41) que consisten en un sistema de iluminacion (411) y un sistema detector de luz (412) situados en un mismo lado del sistema de monitorizacion (3, 13) con respecto a dicha zona de medida (20, 120); una ventana optica (44) dispuesta entre dichos medios de emision/recepcion de luz (41) y dicha zona de medida (20, 120); y un elemento optico trasero (45, 451, 452, 453) situado al otro lado del sistema de monitorizacion (3, 13) con respecto a dicha zona de medida (20, 120);inserting a monitoring system (3, 13) into a single socket (5) of said tank (1), wherein said monitoring system (3, 13) comprises: an area of measurement (20, 120) configured so that a sample of said fluid (2, 71, 72) circulates therethrough; light-emitting / receiving means (41) consisting of a lighting system (411) and a light-sensing system (412) located on the same side of the monitoring system (3, 13) with respect to said area of measurement (20, 120); an optical window (44) disposed between said light emitting / receiving means (41) and said measuring area (20, 120); and a rear optical element (45, 451, 452, 453) located on the other side of the monitoring system (3, 13) with respect to said measurement zone (20, 120); hacer incidir una radiacion optica desde dicho sistema de iluminacion (411) hacia dicha zona de medida (20, 120);to influence an optical radiation from said lighting system (411) towards said measurement zone (20, 120); detectar por dicho sistema detector de luz (412) una radiacion optica que comprende la luz (i) reflejada por dicho fluido (2, 71, 72) que circula por dicha zona de medida (20, 120) y/o la luz (ii) transmitida a traves de dicho fluido (2, 71, 72) y reflejada en dicho elemento optico trasero (45, 451, 452, 453);detecting by said light detector system (412) an optical radiation comprising the light (i) reflected by said fluid (2, 71, 72) circulating in said measurement zone (20, 120) and / or light (ii) ) transmitted through said fluid (2, 71, 72) and reflected in said rear optical element (45, 451, 452, 453); en un subsistema electronico (150) comprendido en dicho sistema de monitorizacion (3, 13), controlar la activacion/desactivacion del sistema de iluminacion (411) y procesar las senales obtenidas procedentes del sistema detector de luz (412). in an electronic subsystem (150) comprised in said monitoring system (3, 13), controlling the activation / deactivation of the lighting system (411) and processing the signals obtained from the light detection system (412). 13. - El metodo de la reivindicacion 12, en el que cuando dicho fluido (2, 71, 72) tiene una absorbancia mayor de 1,0 en su estado inicial, dicho elemento optico trasero (45, 451, 452, 453) es un elemento optico trasero absorbente (451).13. - The method of claim 12, wherein when said fluid (2, 71, 72) has an absorbance greater than 1.0 in its initial state, said rear optical element (45, 451, 452, 453) is an absorbent rear optical element (451). 14. - El metodo de la reivindicacion 12, en el que cuando dicho fluido (2, 71, 72) tiene una absorbancia menor de 1,0 en su estado inicial, dicho elemento optico trasero (45, 451, 452, 453) es un elemento optico trasero reflexivo (452, 453).14. - The method of claim 12, wherein when said fluid (2, 71, 72) has an absorbance of less than 1.0 in its initial state, said rear optical element (45, 451, 452, 453) is a reflective rear optical element (452, 453). 15. - El metodo de cualquiera de las reivindicaciones 12 a 14, que comprende ademas regular la altura (H) de dicha zona de medida (20, 120) para garantizar la renovacion de la muestra de fluido (2, 71, 72) dentro de dicha zona de medida (20, 120).15. - The method of any of claims 12 to 14, further comprising adjusting the height (H) of said measurement zone (20, 120) to ensure the renewal of the fluid sample (2, 71, 72) within of said measurement zone (20, 120). 16. - El metodo de cualquiera de las reivindicaciones 12 a 115 que comprende ademas inclinar dicha ventana optica (44) con respecto al plano definido por elemento optico trasero (45, 451, 452, 453) para evitar la acumulacion de aire en la zona de medida (20,120). 16. - The method of any of claims 12 to 115 further comprising tilting said optical window (44) with respect to the plane defined by rear optical element (45, 451, 452, 453) to prevent the accumulation of air in the area of measurement (20,120).
ES201730848A 2017-06-27 2017-06-27 SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding) Withdrawn ES2695247A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201730848A ES2695247A1 (en) 2017-06-27 2017-06-27 SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding)
PCT/ES2018/070455 WO2019002651A1 (en) 2017-06-27 2018-06-26 System and method for monitoring the state of a fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201730848A ES2695247A1 (en) 2017-06-27 2017-06-27 SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
ES2695247A1 true ES2695247A1 (en) 2019-01-02

Family

ID=63794527

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201730848A Withdrawn ES2695247A1 (en) 2017-06-27 2017-06-27 SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding)

Country Status (2)

Country Link
ES (1) ES2695247A1 (en)
WO (1) WO2019002651A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344657B2 (en) * 2019-03-14 2023-09-14 株式会社小松製作所 Mechanical equipment and work vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708273A (en) * 1996-05-09 1998-01-13 Foss Nirsystems, Inc. Transflectance probe having adjustable window gap adapted to measure viscous substances for spectrometric analysis and method of use
GB2408798A (en) * 2003-12-03 2005-06-08 Horiba Ltd Light-scattering oil mist detecting device with means for preventing oil droplets entering the casing
WO2008034945A1 (en) * 2006-09-20 2008-03-27 Moventas Oy Method and device for monitoring the condition of a medium
EP3062085A1 (en) * 2013-10-25 2016-08-31 Nabtesco Corporation Lubricant deterioration sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077481A (en) * 1990-10-25 1991-12-31 The Perkin-Elmer Corporation Optical probe for measuring light transmission of liquid
WO2000071971A1 (en) * 1999-05-24 2000-11-30 Luxtron Corporation Optical techniques for measuring layer thicknesses
US8957387B2 (en) * 2010-06-23 2015-02-17 Commonwealth Scientific And Industrial Research Organisation Absorption probe for measuring dissolved organic carbon in an aqueous sample
US9063075B2 (en) 2010-09-07 2015-06-23 Fundacion Tekniker Method and device for determining the state of degradation of a lubricant oil
CN103748441B (en) * 2011-06-07 2016-12-28 精量电子(美国)有限公司 Optical sensing devices and optical sensing methods for sensing fluid flow
ES2455465B1 (en) 2012-10-15 2015-03-02 Fundación Tekniker OPTICAL SENSOR DEVICE FOR DETERMINATION OF THE DEGRADATION STATE OF A LUBRICATING OIL IN A LUBRICATION CIRCUIT OF A MACHINE
MX339500B (en) 2014-11-20 2016-04-08 Univ Tecnológica De La Mixteca Device for monitoring color in fluids in the production line.
DE102015121358A1 (en) * 2015-12-08 2017-06-08 Endress+Hauser Conducta Gmbh+Co. Kg Sensor arrangement for determining turbidity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708273A (en) * 1996-05-09 1998-01-13 Foss Nirsystems, Inc. Transflectance probe having adjustable window gap adapted to measure viscous substances for spectrometric analysis and method of use
GB2408798A (en) * 2003-12-03 2005-06-08 Horiba Ltd Light-scattering oil mist detecting device with means for preventing oil droplets entering the casing
WO2008034945A1 (en) * 2006-09-20 2008-03-27 Moventas Oy Method and device for monitoring the condition of a medium
EP3062085A1 (en) * 2013-10-25 2016-08-31 Nabtesco Corporation Lubricant deterioration sensor

Also Published As

Publication number Publication date
WO2019002651A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
ES2948141T3 (en) Sensor for level and turbidity measurement
US7142299B2 (en) Turbidity sensor
ES2808280T3 (en) Portable fluorometer and method of use
ES2359968T3 (en) SPECTROPHOTOMETRIC AND NEFELOMETRIC DETECTION UNIT.
ES2713352T3 (en) Fluorometric sensor
BR112016006681B1 (en) OPTICAL SENSOR AND METHODS OF USE OF THE SAME
JP5606981B2 (en) Light quantity stabilization light source device
ES2918575T3 (en) Optical sensor to detect fluorescence and scattering using a fluid sample
CN108351304A (en) Water Test Kits
ES2934968T3 (en) A fluorometer to measure the fluorescence of a sample
CN104374743B (en) Turbidity sensor and turbidity measurement device
CN105637342A (en) Nephelometric turbidimeter and method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter
CN114047103A (en) System and method for detecting particles in liquid or air
ES2695247A1 (en) SYSTEM AND METHOD OF MONITORING THE STATE OF A FLUID (Machine-translation by Google Translate, not legally binding)
BR102014002490A2 (en) infrared optical sensor incorporating a transmission measurement cell
KR940002496B1 (en) Method and apparatus for measuring floating fine particles
ES2698056T3 (en) Detector arrangement for blood culture bottles with colorimetric sensors
KR100408155B1 (en) Dust measuring instrument
ES2682972T3 (en) Procedure and device for the determination of a concentration of substance or a substance in a liquid medium
BRPI0708806A2 (en) dual function measuring system
CN208847654U (en) A kind of range switching of transmission-type smoke meter and self-checking device
ES2903348T3 (en) Fluid monitoring system
CN2556638Y (en) Photoelectric detector for water quality turbidity measurer
US3506359A (en) Apparatus for measuring light absorption of a sample
ES2452190T3 (en) Bubble Diagram Tool

Legal Events

Date Code Title Description
BA2A Patent application published

Ref document number: 2695247

Country of ref document: ES

Kind code of ref document: A1

Effective date: 20190102

FA2A Application withdrawn

Effective date: 20190424