WO2011158973A1 - Novel antifibrin antibody - Google Patents

Novel antifibrin antibody Download PDF

Info

Publication number
WO2011158973A1
WO2011158973A1 PCT/JP2011/064493 JP2011064493W WO2011158973A1 WO 2011158973 A1 WO2011158973 A1 WO 2011158973A1 JP 2011064493 W JP2011064493 W JP 2011064493W WO 2011158973 A1 WO2011158973 A1 WO 2011158973A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
amino acid
antigen
binding fragment
acid sequence
Prior art date
Application number
PCT/JP2011/064493
Other languages
French (fr)
Japanese (ja)
Inventor
松村保広
安永正浩
眞鍋史乃
Original Assignee
独立行政法人国立がん研究センター
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立がん研究センター, 独立行政法人理化学研究所 filed Critical 独立行政法人国立がん研究センター
Publication of WO2011158973A1 publication Critical patent/WO2011158973A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/745Assays involving non-enzymic blood coagulation factors
    • G01N2333/75Fibrin; Fibrinogen

Definitions

  • the present invention relates to a novel anti-fibrin antibody, and a reagent and method for detecting fibrin.
  • the present invention also relates to a reagent and method for determining a thrombosis-related disease using an anti-fibrin antibody.
  • the present invention further relates to a complex of an anti-fibrin antibody and an antitumor moiety, and a preventive or therapeutic agent for a tumor containing the complex.
  • Non-patent Document 1 The relationship between cancer and blood clotting is described by French surgeon Torso in the 1800s, “Edema due to thrombosis of the extremities in gastric cancer patients”. Recent clinical epidemiological data also reveal that the frequency of thrombosis due to hypercoagulation is significantly higher than that of healthy individuals in most carcinomas including pancreatic cancer, gastric cancer, and brain tumor (Non-patent Document 1). It is considered that fibrin accumulation, coagulative necrosis, and angiogenesis, which accompany abnormal coagulation, also occur repeatedly within the tumor tissue as the tumor progresses. Fibrin is not present in tissues under normal physiological conditions, unlike the precursor fibrinogen that is widely found in the body.
  • the thrombin that has leaked out of the blood vessel and activated cleaves the N-terminal peptide of fibrinogen to form a fibrin monomer, which is caused by polymerization of the fibrin monomer to form fibrin fibers. It is specific to tissues with pathological conditions such as inflammation, and is formed when pathological conditions accompanied by coagulation such as cancer, myocardial infarction, and cerebral infarction occur. However, fibrin formation in myocardial infarction, cerebral infarction, trauma and inflammation is only in the acute phase, and fibrin is replaced with collagen within 1 to 2 weeks. Therefore, fibrin formed asymptomatically can be said to be a cancer-specific molecule. On the other hand, antibodies have been developed as means for detecting fibrin.
  • Patent Documents 1 to 6 describe anti-fibrin antibodies that recognize human fibrin but not fibrinogen.
  • missile therapy in which toxins and anticancer agents are added to monoclonal antibodies to selectively attack the cancerous part has been active since the late 1970s when the method for producing monoclonal antibodies was established.
  • the clinical usefulness of missile therapy in normal solid cancers such as lung cancer, colon cancer, breast cancer, and gastric cancer has not been proven and has been achieved to date.
  • the research group of the present inventor has increased tumor blood vessel permeability as a vascular characteristic of cancer, and high molecular substances that are difficult to leak from normal blood vessels can easily leak from cancer blood vessels.
  • the macromolecular substance once leaked in the cancer tissue cannot drain into the lymphatic vessel and remains in the cancer tissue for a long time. Yes.
  • fibrin has also been shown to be associated with thrombus formation and important diseases, there is a development of antibodies that specifically react with fibrin, and means and methods that can specifically detect fibrin. Still desired.
  • JP 2001-354700 A JP 2009-149686 A JP 2008-29353 A JP-A-9-127108 JP-A-9-104700 JP-A-8-301900
  • an object of the present invention is to provide a novel antibody that binds to fibrin and does not bind to fibrinogen, and uses thereof.
  • the present inventor has produced a mouse antibody using a pulverized product of a fibrin clot as an immunogen, and binds to human and mouse fibrin. It was found that an antibody that does not bind was obtained, and that this anti-fibrin antibody can be used to detect fibrin and to determine fibrin-related diseases.
  • the present inventor also prepared a human chimeric antibody based on the mouse anti-fibrin antibody, and confirmed that this chimeric antibody retains the same reactivity as the mouse anti-fibrin antibody.
  • the present invention includes the following [1] to [29].
  • an H chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence comprising one or several conservative amino acid substitutions in the amino acid sequence
  • an H chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence
  • an H chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence
  • D an L chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 4 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence
  • E the L chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence
  • (f) 1 or 2 in the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence L chain CDR3 consist
  • [2] The antibody or antigen-binding fragment according to [1], which binds to human fibrin and mouse fibrin.
  • [3] The antibody or antigen-binding fragment according to [1] or [2], which does not bind to human fibrinogen and mouse fibrinogen.
  • [4] The antibody or antigen-binding fragment according to any one of [1] to [3], which is a monoclonal antibody.
  • [5] The antibody or antigen-binding fragment according to any one of [1] to [4], which is an antibody produced by a hybridoma cell having the accession number NITE BP-923.
  • a nucleic acid comprising a base sequence encoding the antibody or antigen-binding fragment according to any one of [1] to [8].
  • An expression vector comprising the nucleic acid according to [10].
  • a transformant comprising the nucleic acid according to [10] or the expression vector according to [11] and producing the antibody or antigen-binding fragment according to any one of [1] to [8].
  • the antibody or antigen according to any one of [1] to [8] comprising culturing the transformant according to [12] in a medium and collecting the antibody or antigen-binding fragment from the culture.
  • a method for producing a binding fragment comprising culturing the transformant according to [12] in a medium and collecting the antibody or antigen-binding fragment from the culture.
  • [14] A cell that produces the antibody or antigen-binding fragment according to any one of [1] to [8].
  • the cell according to [14] which is a hybridoma cell having a deposit number of NITE BP-923.
  • a reagent for immunoassay of fibrin comprising the antibody or antigen-binding fragment according to any one of [1] to [9].
  • a reagent for determining a thrombus-related disease comprising the antibody or antigen-binding fragment according to any one of [1] to [9].
  • the reagent according to [17] wherein the thrombosis-related disease is infarction or cancer.
  • a thrombus visualization agent comprising the labeled antibody or antigen-binding fragment according to [9].
  • a method for detecting fibrin in a sample (A) contacting the sample with the antibody or antigen-binding fragment according to any one of [1] to [9], (B) a method comprising detecting whether the antibody or antigen-binding fragment has bound to fibrin in a sample.
  • a method for determining a thrombus-related disease in a subject comprising: (A) contacting the antibody or antigen-binding fragment according to any one of [1] to [9] with a sample derived from a subject; (B) a method comprising detecting whether the antibody or antigen-binding fragment has bound to fibrin in a sample. [23] The method according to [22], wherein the thrombus-related disease is infarction or cancer. [24] The method according to any one of [21] to [23], wherein the sample is selected from the group consisting of a cell and tissue sample, and a biological fluid sample.
  • [25] A method for producing a modified anti-fibrin antibody or antigen-binding fragment, (A) preparing an antibody or antigen-binding fragment having an amino acid sequence modified from the amino acid sequence of the antibody or antigen-binding fragment according to any one of [1] to [8]; (B) A method comprising determining whether the obtained antibody or antigen-binding fragment binds to fibrin. [26] A complex of the antibody or antigen-binding fragment according to any one of [1] to [9] and an antitumor moiety. [27] The complex according to [26], wherein the antibody or antigen-binding fragment and the antitumor moiety are bound via a linker.
  • a preventive or therapeutic agent for tumors comprising the complex according to any one of [26] to [28].
  • the present invention provides antibodies against fibrin and antigen-binding fragments thereof.
  • the anti-fibrin antibody of the present invention it is possible to detect the presence of fibrin and a thrombus with high sensitivity, reliability, and simpleness, and as a result, a thrombus-related disease can be determined.
  • the anti-fibrin antibody of the present invention it becomes possible to deliver an appropriate compound or molecule to a site where a thrombus exists, for example, a tumor.
  • the anti-fibrin antibody of the present invention binds to human and mouse fibrin and does not bind to human and mouse fibrinogen, it is considered useful in the medical diagnostic field and the pharmaceutical field.
  • FIG. 1 shows the results of an ELISA that tested the reactivity of mouse anti-fibrin IgM antibodies with mouse fibrin (3) and human fibrin (1), and mouse fibrinogen (4) and human fibrinogen (2).
  • a and B are results of using a commercially available anti-fibrin antibody as a control, and C is a result of using the mouse anti-fibrin IgM antibody of the present invention.
  • FIG. 2 shows the amino acid sequence and base sequence of mouse anti-fibrin IgM antibody H chain (A) and L chain (B).
  • FIG. 3 shows the results of an ELISA tested for reactivity of the chimeric antibody with mouse and human fibrin, and mouse and human fibrinogen.
  • FIG. 1 shows the results of an ELISA that tested the reactivity of mouse anti-fibrin IgM antibodies with mouse fibrin (3) and human fibrin (1), and mouse fibrinogen (4) and human fibrinogen (2).
  • a and B are results of using a commercially available anti-fi
  • FIG. 4 is a photograph showing the results of immunostaining of human pancreatic cancer tissue using the antibody of the present invention.
  • FIG. 5 is a photograph showing the results of immunostaining of human brain tumor tissue using the antibody of the present invention.
  • A shows a human brain tumor (glioma) surgical tissue section, and B shows the result of immunostaining the section.
  • FIG. 6 is a photograph showing the result of immunostaining of cancer tissue using the antibody of the present invention.
  • A shows the tissue stained with hematoxylin and eosin
  • B shows the immunostained tissue with anti-fibrin antibody IgM
  • C shows the immunostained tissue of fluorescently labeled human chimeric anti-fibrin IgG.
  • FIG. 7 is a photograph showing in vivo imaging of a cancer tissue using the antibody of the present invention.
  • A shows tumor formation in chemically carcinogenic mice, and B shows accumulation of labeled human chimeric antibody at the site of tumor formation.
  • FIG. 8 shows a synthesis scheme (A to H) of a branched linker, a coupling scheme (IK) of an antitumor compound SN-38 and PEG, a branched linker and a PEG-SN-38 complex. The bond (L) is shown.
  • FIG. 9 shows a method for binding the anti-fibrin antibody of the present invention to the antitumor compound SN-38.
  • FIG. 10 shows SUIT2 in the presence of a complex of SN-38 and antibody via a linear linker (A), or a complex of SN-38 and antibody via a branched linker (B). It is a graph which shows the cell growth rate (%) of a cell.
  • FIG. 11 is a graph showing the antitumor effect of an anti-fibrin antibody-SN-38 complex against tumors in a carcinogenesis model mouse.
  • FIG. 12 is a photograph showing the antitumor effect of an anti-fibrin antibody-SN-38 complex against tumors in a carcinogenesis model mouse.
  • the present invention provides novel antibodies against fibrin.
  • Fibrin is a protein involved in blood coagulation, and fibrin monomer is produced by the action of thrombin from fibrinogen present in plasma. This fibrin monomer forms a polymer and gels, thereby forming an insoluble fibrin clot, that is, a thrombus.
  • the present invention relates to antibodies and antigen-binding fragments that specifically bind to fibrin and their uses. 1.
  • the antibody according to the present invention is characterized in that it binds to fibrin and does not bind to fibrinogen.
  • the antibodies and antigen-binding fragments according to the present invention comprise the following heavy chain (heavy chain) complementarity determining regions (CDRs) and light chain (light chain) CDRs: (A) an H chain CDR1 comprising the amino acid sequence of FTNYGMN (SEQ ID NO: 1) or an amino acid sequence comprising one or several conservative amino acid substitutions in the amino acid sequence; (B) H chain CDR2 consisting of the amino acid sequence of WINTYTGEATYA (SEQ ID NO: 2) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence, (C) the heavy chain CDR3 consisting of the amino acid sequence of LMDY (SEQ ID NO: 3) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence; (D) an L chain CDR1 comprising the amino acid sequence of K
  • antibody and “antigen-binding fragment” refer to an entire antibody molecule that specifically binds to fibrin or a fragment thereof (for example, Fab, Fab ′, F (ab ′)). 2 , ScFv and other fragments), which may be polyclonal antibodies or monoclonal antibodies.
  • antibody and “antigen-binding fragment” also include chimeric antibodies, humanized antibodies and human antibodies, and fragments thereof.
  • an antibody “specifically binds” to fibrin means that it binds to fibrin with a higher affinity than its affinity for other peptides or proteins.
  • high affinity means an affinity that is high enough to allow fibrin to be detected separately from other peptides or proteins by methods known in the art.
  • Coupling constant (K a ) Is at least 10 7 M -1 , Preferably at least 10 8 M -1 , More preferably 10 9 M -1 Or means a binding affinity such that it is higher.
  • the binding (reactivity) to fibrin and the binding (reactivity) to fibrinogen can be determined by a method known in the art, for example, it can be determined using a known ELISA method. (Wu, Sau-Ching et al. Applied and Environmental Microbiology 68: 3261-3269, 2002).
  • the antibody and antigen-binding fragment according to the present invention can bind to mouse and human fibrin but not to mouse and human fibrinogen. Therefore, test data obtained using this antibody in mice can be extrapolated to humans.
  • “conservative amino acid substitution” is known in the art and refers to substitution of an amino acid with an amino acid having similar properties to that amino acid. It is known in the art that a protein containing an amino acid sequence containing one or several conservative amino acid substitutions in a specific amino acid sequence retains the same activity as a protein containing that specific amino acid sequence.
  • an antibody and an antigen-binding fragment containing an amino acid sequence having such a conservative amino acid substitution can be used in the antibody of the present invention as long as the desired activity, that is, binding to fibrin is retained.
  • neutral (polar) amino acids Asn, Ser, Gln, Thr, Tyr, Cys
  • neutral (nonpolar, ie hydrophobic) amino acids Gly, Trp, Met, Pro, Phe, Ala, Val, Leu, Ile
  • acidic (polar) amino acids Asp, Glu
  • basic (polar) amino acids Arg, His, Lys
  • the antibody of the present invention can be prepared by using an immunogen obtained by dissolving a pulverized fibrin clot in a buffer and, if necessary, adding an adjuvant for effective immunization.
  • the adjuvant include commercially available Freund's complete adjuvant (FCA) and Freund's incomplete adjuvant (FIA). These adjuvants can be used alone or in combination.
  • FCA commercially available Freund's complete adjuvant
  • FIA Freund's incomplete adjuvant
  • the immunogen is administered to mammals such as mice, rabbits, rats and the like. Immunization is performed mainly by injecting intravenously, subcutaneously, intraperitoneally, or into the footpad.
  • the interval between immunizations is not particularly limited, and immunization is performed 1 to 5 times at intervals of several days to several weeks. Then, antibody-producing cells are collected 3 to 20 days after the final immunization day. Examples of antibody-producing cells include lymph node cells, spleen cells, peripheral blood cells and the like. In order to obtain a hybridoma, cell fusion between antibody-producing cells and myeloma cells is performed. Generally available cell lines can be used as myeloma cells to be fused with antibody-producing cells.
  • the cell line to be used has drug selectivity and cannot survive in a HAT selection medium (including hypoxanthine, aminopterin, and thymidine) in an unfused state, but can survive only in a state fused with antibody-producing cells.
  • HAT selection medium including hypoxanthine, aminopterin, and thymidine
  • myeloma cells include P3X63-Ag. 8).
  • Examples include mouse myeloma cell lines such as U1 (P3U1) and NS-I. Next, the myeloma cell and the antibody-producing cell are fused.
  • cell fusion antibody-producing cells and myeloma cells are mixed in a medium for animal cell culture such as serum-free DMEM or RPMI-1640 medium, and fused in the presence of a cell fusion promoter (eg, polyethylene glycol). Perform the reaction.
  • cell fusion can be performed using a commercially available cell fusion device utilizing electroporation.
  • the target hybridoma is selected from the cells after cell fusion treatment.
  • the cell suspension is appropriately diluted with a fetal bovine serum-containing RPMI-1640 medium or the like and then spread on a microtiter plate.
  • a selective medium for example, HAT medium
  • cell culture is performed by appropriately replacing the selective medium.
  • hybridomas cells that grow about 10 to 30 days after the start of culture in the selective medium can be obtained as hybridomas.
  • the culture supernatant of the hybridoma that has grown is screened for the presence of antibodies that react with fibrin.
  • the screening of hybridomas may be carried out in accordance with an ordinary method, and for example, enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), or radioimmunoassay (RIA) can be employed. Cloning of the fused cells is performed by a limiting dilution method or the like to establish a hybridoma that produces the target monoclonal antibody.
  • a normal cell culture method or ascites formation method can be employed as a method for collecting the monoclonal antibody from the established hybridoma.
  • known methods such as ammonium sulfate salting-out method, ion exchange chromatography, gel filtration, affinity chromatography are appropriately selected, or a combination thereof is used.
  • the globulin type of the monoclonal antibody that can be used in the present invention is not particularly limited as long as it has a specific binding activity to fibrin, and may be any of IgG, IgM, IgA, IgE, and IgD. And IgM are preferred.
  • the present inventors established a hybridoma cell producing a mouse anti-fibrin IgM antibody.
  • an antibody produced from the hybridoma cell 102-10 having the accession number NITE BP-923.
  • the antibody produced from this hybridoma cell 102-10 includes an H chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 8 and an L chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 10.
  • the H chain CDRs 1 to 3 of this antibody have the amino acid sequences shown in SEQ ID NOs: 1 to 3, respectively, and the L chain CDRs 1 to 3 have the amino acid sequences shown in SEQ ID NOs: 4 to 6, respectively.
  • the antibody of the present invention may be an antibody that binds to an epitope to which the antibody produced by the hybridoma cell 102-10 binds.
  • the antibody of the present invention can also be produced by splicing a gene from an antibody molecule having antigen specificity to fibrin prepared as described above together with a gene from a human antibody molecule having an appropriate biological activity. Chimeric antibodies (Morrison et al., 1984, Proc. Natl. Acad.
  • the above-described antibodies and antigen-binding fragments of the present invention can also be prepared using genetic engineering techniques.
  • the monoclonal antibody is prepared from the nucleic acid of the hybridoma cell line prepared as described above, the nucleic acid including the base sequence encoding the antibody containing the H chain or L chain of the monoclonal antibody produced by the hybridoma. can do.
  • These nucleic acids can be obtained from hybridomas by ordinary genetic engineering techniques, and their base sequences can also be determined by known base sequencing methods. For example, mRNA is extracted from a hybridoma cell line and cDNA is synthesized.
  • the synthesized cDNA is inserted into a vector such as a phage or a plasmid to prepare a cDNA library.
  • a recombinant phage or recombinant plasmid having cDNA encoding a heavy chain variable region (VH) using an antibody of a non-human animal, for example, a mouse antibody constant region portion or variable region portion as a probe and Recombinant phages or recombinant plasmids having cDNA encoding the light chain variable region (VL) are each isolated.
  • the base sequences of nucleic acids encoding the heavy chain variable region and the light chain variable region of the monoclonal antibody produced by the hybridoma cell line 102-10 are shown in SEQ ID NO: 7 and SEQ ID NO: 9, respectively.
  • the nucleic acid encoding the H chain variable region and the L chain variable region may be a mutant of the above base sequence (natural mutant or artificial mutant).
  • a mutant encoding a protein having a deletion, substitution, addition or insertion of one or several bases and binding to fibrin in the base sequence of a nucleic acid encoding the H chain or L chain variable region can be used.
  • “one or several” refers to 1 to 20, preferably 1 to 15, more preferably 1 to 10.
  • a variant that encodes a protein that hybridizes under stringent conditions to a complementary sequence of a base sequence of a nucleic acid encoding an H chain or L chain variable region and binds to fibrin can be used.
  • the “stringent condition” is not limited to this, but, for example, at 30 ° C.
  • washing conditions include conditions such as continuous washing at room temperature with a solution containing 2 ⁇ SSC and 0.1% SDS, and a 1 ⁇ SSC solution and a 0.2 ⁇ SSC solution.
  • a chimeric antibody can be prepared by splicing the gene of a mouse monoclonal antibody of the above hybridoma cell line together with the gene of an antibody molecule derived from another mammal.
  • the chimeric antibody include a human chimeric antibody having the H chain and / or L chain variable region of the mouse monoclonal antibody and a human immunoglobulin constant region.
  • nucleic acid base sequences SEQ ID NO: 7 and SEQ ID NO: 9, respectively
  • encoding an H chain variable region and / or an L chain variable region and variants of the base sequence are used. Can be used.
  • the humanized antibody has, for example, a part of a variable region including a variable region or a hypervariable region derived from a mouse monoclonal antibody, and a constant region of a human immunoglobulin, or a part of a variable region of a human immunoglobulin and a constant region. In the case of a humanized antibody, it is desirable that the antibody-derived antibody region is less than about 10%.
  • the humanized antibody has, for example, an amino acid sequence containing at least one complementarity determining region (CDR1, 2 and 3) in the amino acid sequence of the heavy chain variable region and / or the light chain variable region of the mouse monoclonal antibody. Can be included.
  • variable region derived from a mouse monoclonal antibody has the following CDR: (A) an H chain CDR1 comprising the amino acid sequence of FTNYGMN (SEQ ID NO: 1) or an amino acid sequence comprising one or several conservative amino acid substitutions in the amino acid sequence; (B) H chain CDR2 consisting of the amino acid sequence of WINTYTGEATYA (SEQ ID NO: 2) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence, (C) the heavy chain CDR3 consisting of the amino acid sequence of LMDY (SEQ ID NO: 3) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence; (D) an L chain CDR1 comprising the amino acid sequence of KASQDINKYIA (SEQ ID NO: 4) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence, (E) an L chain CDR2 consisting of the amino acid sequence of YTSTLQP (SEQ ID NO:
  • SEQ ID NOs: 1 to 3 correspond to amino acids 48 to 54, 69 to 80, and 118 to 121 of the heavy chain variable region amino acid sequence shown in SEQ ID NO: 8, respectively. These correspond to amino acids 44 to 54, 70 to 76 and 109 to 116 of the L chain variable region amino acid sequence shown in SEQ ID NO: 10, respectively.
  • a human acceptor antibody sequence suitable for the mouse donor sequence can be identified by computer comparison between the amino acid sequence of the mouse variable region and the sequence of a known human antibody H chain or L chain.
  • a variable domain from a human antibody whose framework sequence exhibits high sequence identity with the framework regions of the murine light chain variable region and the heavy chain variable region is a Kabat that utilizes NCBI BLAST (USA) using the murine framework sequence.
  • an acceptor sequence that shares 80% or more, preferably 90% or more of the sequence identity with the mouse donor sequence can be selected. Based on the nucleotide sequences encoding the human acceptor antibody H chain and L chain sequences thus identified, recombination is performed so that a part of the variable region is replaced with that of the mouse antibody.
  • antigen-binding fragments such as Fab, F (ab ′) 2 Those skilled in the art can appropriately design expression vectors for scFv fragments, single chain antibodies, and the like.
  • the nucleic acid encoding the heavy chain and / or light chain of the antibody or antigen-binding fragment or a variant thereof is cloned and incorporated into an appropriate expression vector.
  • the expression vector include pAGE107 (Cytotechnology, 3, 133 (1990)), pAGE103 (J. Biochem., 101, 1307 (1987)), pQCxID (Clontech), pQCxIH (Clontech) and the like.
  • a promoter and enhancer, a selectable marker gene, and the like may be inserted into the expression vector.
  • the expression vector may be one in which both nucleic acids encoding the H chain and L chain are incorporated into a single expression vector, or an expression vector and / or L chain in which a nucleic acid encoding the H chain is incorporated. It may be an expression vector incorporating a nucleic acid to be encoded.
  • an expression vector for a human chimeric antibody for example, a restriction enzyme is previously added upstream of the gene encoding the H chain constant region (CH) and L chain constant region (CL) of the human antibody of the chimeric antibody expression vector.
  • a recognition sequence is provided, and cDNA encoding the variable region of the mouse antibody is inserted into the cloning site comprising this recognition sequence.
  • the DNA sequence encoding the amino acid sequence of the framework region (FR) of the variable region of the human antibody and the DNA sequence encoding the amino acid sequence of the CDR of the variable region of the mouse antibody By ligating, a DNA sequence encoding the amino acid sequence of VH and the amino acid sequence of VL is designed.
  • cDNAs encoding the humanized antibody VH and VL can be inserted upstream of the human antibody CH and CL encoding genes to construct an expression vector for a humanized antibody.
  • the expression vector constructed as described above is introduced into an appropriate host cell to obtain a transformant.
  • the host to be used is not particularly limited as long as it can express a nucleic acid on an introduced expression vector and produce an antibody or an antigen-binding fragment. Examples include bacteria (such as E. coli), yeast (such as Saccharomyces cerevisiae), animal cells (such as COS cells and CHO cells), and insects (such as silkworms, Sf9 cells, and Sf21 cells).
  • the method for introducing a nucleic acid or expression vector into bacteria or yeast is not particularly limited as long as it is a method for introducing DNA into bacteria or yeast, and examples thereof include an electroporation method, a spheroplast method, and a lithium acetate method.
  • Examples of the method for introducing a nucleic acid or expression vector into animal cells or insect cells include an electroporation method, a calcium phosphate method, and a lipofection method.
  • a transformant is selected by utilizing the property of a marker gene constituted in the nucleic acid to be introduced. For example, when a neomycin resistance gene is used, cells showing resistance to the G418 drug are selected.
  • the antibody or antigen-binding fragment of the present invention can be obtained by culturing the transformant introduced with the nucleic acid encoding it in a medium and collecting it from the culture.
  • “Culture” means any of culture supernatant, cultured cells, or cell lysate.
  • the method of culturing the transformant in a medium is performed according to a usual method used for culturing a host.
  • a medium for cultivating a transformant obtained using bacteria or yeast as a host as long as it contains a carbon source, a nitrogen source, inorganic salts, and the like and can culture the transformant efficiently, Either a natural medium or a synthetic medium may be used.
  • the culture is usually performed at about 20 to 40 ° C.
  • a medium for culturing a transformant obtained using an animal cell as a host a generally used RPMI 1640 medium, DMEM medium, a medium obtained by adding fetal calf serum or the like to these mediums, or the like is used.
  • Culture is usually 5% CO 2 In the presence, it is carried out at about 37 ° C. for about 1 to 7 days.
  • antibiotics such as kanamycin and penicillin may be added to the medium as necessary.
  • the protein is extracted by disrupting the cells or cells.
  • the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like.
  • the collected antibody or antigen-binding fragment is obtained by methods well known in the art, for example, chromatography using a protein A or protein G column, ion exchange chromatography, hydrophobic chromatography, ammonium sulfate salting out method, gel filtration, affinity chromatography. It can refine
  • the molecular weight of the purified antibody or antigen-binding fragment can be measured by polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting or the like. Further, the reactivity of the obtained antibody or antigen-binding fragment, that is, the binding activity to fibrin and optionally the binding activity to fibrinogen can be measured by the above-described method or the like. 2. Reagent for immunoassay of fibrin It is possible to detect fibrin in a sample using the antibody prepared as described above. This detection can be performed based on any method as long as it is a measurement method using an antibody, that is, an immunological measurement method.
  • fibrin can be detected by immunohistochemical staining and immunoelectron microscopy, as well as immunoassay (enzyme immunoassay (ELISA, EIA), fluorescent immunoassay, radioimmunoassay (RIA), immunochromatography, Western blotting, etc.) Etc. can be implemented.
  • immunoassay enzyme immunoassay (ELISA, EIA), fluorescent immunoassay, radioimmunoassay (RIA), immunochromatography, Western blotting, etc.
  • ELISA enzyme immunoassay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • immunochromatography Western blotting, etc.
  • tissue or cell sample cancer tissue or cell such as stomach, duodenum, large intestine, pancreas, gallbladder, bile duct, bronchi, lung, etc.
  • biological fluid sample Gastric mucus, duodenal juice, pancreatic juice, bile, ascites, sputum, bronchoalveolar lavage fluid, blood, serum, plasma, etc.
  • tissue sample biological specimen, excised specimen
  • cytodiagnosis sample it is preferable to use as a sample.
  • fibrin is detected by binding fibrin in a sample to the antibody or antigen-binding fragment of the present invention and detecting the binding.
  • detection includes not only detecting the presence or absence of fibrin but also quantitatively detecting fibrin and immunostaining fibrin.
  • An immunoassay for fibrin typically involves contacting a sample to be tested with an antibody or antigen-binding fragment according to the present invention and binding the bound antibody or antigen-binding fragment using techniques known in the art. Including detecting.
  • Contact means that the fibrin present in the sample and the antibody or antigen-binding fragment according to the present invention can be brought into close proximity so as to be able to bind.
  • the immunoassay may be performed in either a liquid phase system or a solid phase system. Further, the format of the immunoassay is not limited, and a direct solid phase method, a sandwich method, a competitive method, or the like may be used.
  • the antibodies or antigen-binding fragments according to the invention can also be used histologically for in situ detection of fibrin, such as immunohistochemical staining (eg immunostaining) or immunoelectron microscopy. is there.
  • In situ detection can be performed by excising a histological sample from a subject (such as a biopsy tissue sample, a paraffin-embedded section of tissue) and contacting it with a labeled antibody or antigen-binding fragment.
  • the operation method of the immunoassay can be performed by a known method (Ausubel, FM, et al., Short Protocols in Molecular Biology, Chapter 11 "immunology” John Wiley & Sons, Inc. 1995).
  • the complex of fibrin and antibody may be separated by a known separation means (chromatography, salting-out method, alcohol precipitation method, enzyme method, solid phase method, etc.) and the label signal may be detected. .
  • an antibody or an antigen-binding fragment may be immobilized on a solid support or carrier (resin plate, membrane, bead, etc.), or a sample is immobilized. May be.
  • a solid support or carrier for example, an antibody or antigen-binding fragment is immobilized on a solid support, and the support is washed with an appropriate buffer, and then treated with a sample. Next, the solid support is washed a second time with a buffer to remove unbound antibody or antigen-binding fragment.
  • the binding of the fibrin in the sample to the antibody or antigen-binding fragment can be detected by detecting the bound antibody or antigen-binding fragment on the solid support by a conventional means.
  • the solid sample is treated with a solution containing the antibody or antigen-binding fragment, followed by washing with a buffer to remove unbound antibody or antigen-binding fragment, and then binding on the solid sample.
  • Antibodies or antigen-binding fragments can be detected by conventional means.
  • the binding activity of the antibody can be measured according to a well-known method.
  • a person skilled in the art can determine an effective and optimal measurement method for each assay according to the type and format of the immunoassay employed, the type of label used, the target of the label, and the like.
  • the reaction is performed by labeling the antibody or antigen-binding fragment of the present invention.
  • labels that can be used in the present invention and detection methods thereof are described below.
  • enzyme immunoassay for example, peroxidase, ⁇ -galactosidase, alkaline phosphatase, glucose oxidase, acetylcholinesterase, lactate dehydrogenase, amylase and the like can be used.
  • an enzyme inhibitor, a coenzyme, etc. can also be used.
  • These enzymes and antibodies can be bound by a known method using a cross-linking agent such as glutaraldehyde or maleimide compound.
  • fluorescent immunoassay for example, fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC) or the like can be used.
  • fluorescent labels can be bound to antibodies by conventional techniques.
  • radioimmunoassay for example, tritium, iodine 125 And iodine 131 Etc. can be used.
  • the radioactive label can be bound to the antibody by a known method such as the chloramine T method or the Bolton Hunter method.
  • the sample is contacted with the labeled antibody or antigen-binding fragment of the present invention, and the fibrin-antibody complex is prepared. Let it form.
  • the amount of fibrin in the sample can be measured from the amount of bound labeled antibody or the amount of unbound labeled antibody after separating unbound labeled antibody.
  • the antibody or antigen-binding fragment of the present invention is reacted with a sample (primary reaction), and the labeled complex is further reacted with the resulting complex (2 Next reaction).
  • the primary reaction and the secondary reaction may be performed in the reverse order, may be performed simultaneously, or may be performed at different times.
  • a fibrin-antibody-labeled secondary antibody complex of the present invention or an antibody-fibrin-labeled secondary antibody complex of the present invention is formed.
  • unbound labeled secondary antibody is separated, and the amount of fibrin in the sample can be measured from the amount of bound labeled secondary antibody or the amount of unbound labeled secondary antibody.
  • the biotin-avidin complex system is used, a biotinylated antibody or antigen-binding fragment is reacted with the sample, and the resulting complex is reacted with avidin.
  • the binding between the antibody and fibrin can be measured by detecting the signal of the label added to avidin.
  • the label added to avidin is not particularly limited, for example, an enzyme label (peroxidase, alkaline phosphatase, etc.) is preferable. Detection of the labeled signal can also be performed according to methods known in the art. For example, in the case of using an enzyme label, a substrate that develops color by degradation by enzymatic action is added, and the enzyme activity is obtained by optically measuring the amount of degradation of the substrate. The amount of antibody is calculated from the comparison. The substrate varies depending on the type of enzyme used.
  • the enzyme when peroxidase is used as the enzyme, 3,3 ′, 5,5′-tetramethylbenzidine (TMB), diaminobenzidine (DAB), etc.
  • TMB 5,5′-tetramethylbenzidine
  • DAB diaminobenzidine
  • the fluorescent label can be detected and quantified using, for example, a fluorescence microscope or a plate reader.
  • a radioactive label When a radioactive label is used, the radiation dose emitted by the radioactive label is measured with a scintillation counter or the like.
  • the present invention also relates to a reagent for immunoassay of fibrin comprising the antibody or antigen-binding fragment of the present invention.
  • the antibody or antigen-binding fragment may be labeled.
  • the antibody or antigen-binding fragment may be in a free form, or may be immobilized on a solid support (for example, a membrane, a bead, etc.).
  • the immunoassay reagent may contain components useful for carrying out the immunoassay method. Such components include, for example, buffers for use in immunoassays, sample processing reagents, labels, competitors, secondary antibodies, and the like.
  • thrombosis-related diseases Since the antibody or antigen-binding fragment of the present invention specifically reacts with human fibrin as described above, it can be used in a reagent for determining a fibrin-related disease or disorder such as a thrombosis-related disease.
  • thrombosis-related disease means a disease or disorder in which there is a correlation between the state of the disease or disorder and the presence of a thrombus.
  • Such thrombosis-related diseases include, but are not limited to, infarcts such as myocardial infarction, cerebral infarction, cerebral hemorrhage, cerebral embolism, cerebral thrombosis, subarachnoid hemorrhage, pulmonary infarction and the like, as well as cancers such as pancreatic cancer, gastric cancer, esophagus Cancer, colorectal cancer, colon cancer, ovarian cancer, breast cancer and lung cancer are included.
  • infarcts such as myocardial infarction, cerebral infarction, cerebral hemorrhage, cerebral embolism, cerebral thrombosis, subarachnoid hemorrhage, pulmonary infarction and the like
  • cancers such as pancreatic cancer, gastric cancer, esophagus Cancer, colorectal cancer, colon cancer, ovarian cancer, breast cancer and lung cancer are included.
  • fibrin By detecting the presence of fibrin, it is possible to determine the presence or absence of a thro
  • cancer cells can be stained by using for immunostaining, and cancer diagnosis can be performed reliably and reliably.
  • the determination reagent of the present invention contains the above-described antibody or antigen-binding fragment of the present invention. Therefore, by using the determination reagent of the present invention, fibrin contained in a sample collected from a subject collected from a subject suspected of suffering from or suspected of having a thrombus-related disease (for example, infarction or cancer) is obtained. The presence of a thrombus-related disease and the position of the thrombus-related disease in the subject can be determined quickly and easily. Reagents for determining diseases or disorders using such immunological measurement methods are well known, and those skilled in the art can easily select appropriate components other than antibodies.
  • the determination reagent of the present invention can be used in any technique as long as it is a technique for performing an immunological measurement method. 4).
  • Visualization of thrombus / in vivo imaging, delivery to thrombus site The antibodies and antigen-binding fragments of the invention bind to fibrin in a subject when administered to the subject. Therefore, it is possible to visualize fibrin, ie, a thrombus in a subject, using the antibody and antigenic fragment of the present invention. It is also possible to deliver a compound or molecule to a fibrin in a subject, ie, a thrombus site, by binding the compound or molecule to an antibody or antigenic fragment of the invention.
  • the thrombus visualization agent of the present invention contains a labeled antibody or antigen-binding fragment of the present invention.
  • any label known in the field of in vivo imaging can be used.
  • labels include fluorescent materials such as IRDye800 series, fluorescein, FITC, fluorescent emitting metals ( 152 Eu, lanthanum series, etc.); chemical or bioluminescent substances such as luminol, imidazole, luciferin, luciferase, green fluorescent protein (GFP), etc .; radioisotopes, such as 99m Tc, 123 I, 131 I, 97 Ru, 67 Cu, 11 C, 13 N, etc .; paramagnetic isotopes, such as 153 Gd, 157 Gd, 55 Mn, 162 Dy, 52 Cr, 56 Fe and the like; contrast agents such as gadolinium, gadolinium complexes, and iodine contrast agents.
  • the antibody or the antigen-binding fragment can be bound to the label by a method known in the art, for example, it can be directly chemically bound or indirectly bound through an appropriate linker. May be.
  • a compound or molecule such as a drug or prodrug is bound to the antibody or antigen-binding fragment of the present invention in place of the label, so that the compound or molecule is present in the fibrin-existing site of the subject, that is, the thrombus site Can be delivered to.
  • drugs or prodrugs include known thrombolytic agents (for example, urokinase, streptokinase, tissue type plasminogen activator) and the like.
  • the present invention further provides a complex of the antibody or antigen-binding fragment of the present invention and an antitumor moiety. Since the antibody or antigen-binding fragment of the present invention binds to a thrombus site (fibrin) in a tumor as described above, the anti-tumor moiety can be delivered to the tumor by binding to the anti-tumor moiety.
  • the antitumor moiety that can be bound to the antibody or antigen-binding fragment of the present invention is not particularly limited as long as it is an antitumor moiety known in the art.
  • Antitumor moieties include alkylation of anticancer agents such as irinotecan (CPT-11), irinotecan metabolite SN-38 (10-hydroxy-7-ethylcamptothecin), adriamycin, taxol, 5-fluorouracil, nimustine, laministin and the like.
  • anticancer agents such as irinotecan (CPT-11), irinotecan metabolite SN-38 (10-hydroxy-7-ethylcamptothecin), adriamycin, taxol, 5-fluorouracil, nimustine, laministin and the like.
  • Drugs antimetabolites such as gemcitabine and hydroxycarbamide, plant alkaloids such as etoposide and vincristine, anticancer antibiotics such as mitomycin and bleomycin, platinum preparations such as cisplatin, tubulin targeting agents such as paclitaxel and auristatin derivatives , Sorafenib, erlotinib and other molecular targeting agents, methotrexate, cytosine arabinoside, 6-thioguanine, 6-mercaptopurine, cyclophosphamide, ifosfamide, busulf Emissions, and the like; radioisotopes, such as boron 10 ( 10 B), indium 111 ( 111 In) and Yttrium 90 ( 90 Y).
  • boron 10 10 B
  • indium 111 111 In
  • Yttrium 90 90 Y
  • the antitumor moiety is preferably of a molecular weight such that after the complex of the present invention is delivered to the thrombus site in the tumor tissue, it is released from the complex at that site and can reach the entire tumor tissue.
  • the antibody or antigen-binding fragment can be bound to the anti-tumor moiety by a method known in the art, and either direct binding or indirect binding may be used.
  • a covalent bond can be used as a direct bond.
  • a bond via a linker can be used.
  • the antibody or antigen-binding fragment and the antitumor moiety are preferably bound via a linker.
  • linker means a divalent or higher-valent group that connects two compounds.
  • the linker that can be used in the present invention is not particularly limited, and examples thereof include polyalkylene glycol linkers, alkylene groups, peptides, sugar chains, and other polymer carriers.
  • the alkylene part of the alkylene glycol which is a constituent unit of the polyalkylene glycol linker has 1 to 3000 carbon atoms, preferably 2 to 1000 carbon atoms, and more preferably 2 to 100 carbon atoms.
  • the molecular weight of the polyalkylene glycol linker is usually 30 to 50000 Da, preferably 500 to 30000 Da.
  • the polyalkylene glycol linker is preferably a polyethylene glycol (PEG) linker.
  • the alkylene group may be linear or branched.
  • the linker includes a linear linker (bivalent linker) and a branched linker. It binds to the moiety and has an anti-fibrin antibody or antigen-binding fragment at the other end.
  • Branched linkers usually have an anti-tumor moiety in each branch (each chain) and an anti-fibrin antibody or antigen-binding fragment at the other end.
  • Specific examples of linear linkers include those of formula I: [Wherein, PEG is a polyethylene glycol chain, n and m are the number of ethylene glycol units, and independently represent an integer of 5 to 100. ] Is mentioned.
  • the linker of formula I is usually linked to the antibody or antigen-binding fragment at the end having a succinimidyl group and to the antitumor moiety at the other end.
  • Further specific examples of linear linkers include linkers of formula II: [Wherein, PEG is a polyethylene glycol chain, x is the number of ethylene glycol units, and represents an integer of 5 to 100. ] Is mentioned.
  • the linker of formula II is usually linked to the antibody or antigen-binding fragment at the end having a succinimidyl group and to the antitumor moiety at the other end.
  • branched linkers include those of formula III: [Wherein, PEG is a polyethylene glycol chain, and n, m and q are the number of ethylene glycol units and independently represent an integer of 5 to 100. ] Is mentioned.
  • the linker of formula III is usually linked to the antibody or antigen-binding fragment at the end having a succinimidyl group and to the antitumor moiety at the other multiple ends.
  • This branched linker can be prepared, for example, as described in Reference Example 1. Techniques for linking an antibody or antigen-binding fragment to an anti-tumor moiety via a linker are known in the art.
  • the bond between the antibody or antigen-binding fragment and the linker is a covalent bond or a non-covalent bond (ionic bond, hydrophobic bond, etc.), preferably a covalent bond.
  • This bond is preferably a bond that hardly releases an antitumor moiety in blood when the complex of the present invention is administered to a subject.
  • bonds include bonds between maleimide groups and thiol groups, bonds obtained by reacting haloesters with thiols, amide bonds between carboxyl groups and amino groups, disulfide bonds between thiol groups and thiol groups, amino acids.
  • Such a bond include a bond between a maleimide group present at one end of the linker and a thiol group contained in a cysteine residue on the antibody or antigen-binding fragment, a succinimide group present at one end of the linker, Dehydration substitution bond with amino group contained in lysine residue on antibody or antigen-binding fragment (for example, WO2008 / 096760), amino group present at one end of linker and aspartic acid on antibody or antigen-binding fragment or Examples thereof include dehydration condensation bonds with carboxylic acids contained in glutamic acid (for example, using WSCDI).
  • the bond between the linker and the anti-tumor moiety is a covalent bond or a non-covalent bond (ionic bond, hydrophobic bond, etc.), preferably a covalent bond.
  • the binding should be such that the antitumor moiety is not easily released in blood when the complex of the present invention is administered to a subject. Is preferred.
  • the bond between the linker and the antitumor moiety is not limited, but is preferably an ester bond, a carbamate bond, a carbonate bond, or a thiocarbamate bond, and more preferably an ester bond.
  • an ester bond it is expected that the antitumor moiety is released from the complex of the present invention in a sustained release by the hydrolysis of the bond by carboxylesterase in the tumor tissue or non-enzymatically.
  • carbamate binding it is expected that the antibody complex in the cell is endocytosed, then cleaved by intracellular carboxylesterase, and the antitumor moiety is released from the complex of the present invention in a sustained release manner.
  • the bond is hydrolyzed non-enzymatically and the antitumor moiety is released from the complex of the present invention in a sustained manner.
  • a thiocarbamate bond the bond is hydrolyzed non-enzymatically, and the antitumor moiety is expected to be released from the complex of the present invention in a sustained manner.
  • the number of linkers bonded to one molecule of the antibody or antigen-binding fragment is not particularly limited in theory, but the stability of the complex or From the viewpoint of ease of production and the like, the number is usually 1 to 10, preferably 1 to 8.
  • SN-38 (10-hydroxy-7-ethylcamptothecin) is used as an antitumor moiety and a polyethylene glycol linker is used as a linker will be described, but even when other combinations are used.
  • Those skilled in the art can produce the desired complex of the present invention by appropriately changing the reaction conditions.
  • SN-38 is dehydrated with polyethylene glycol having an amino group having a carboxyl group at one end and an amino group protected by Boc, Fmoc, etc. at the other end, and the hydroxyl group of SN-38 Introducing a polyethylene glycol linker.
  • a polyethylene glycol having a succinimide group at one end and a maleimide group at the other end is mixed with the product of (I), and the succinimide group and the amino group of the product of (I) are mixed.
  • the product of (II) and an antibody or antigen-binding fragment are mixed, the maleimide group in the product of (II) is reacted with the thiol group in the antibody or fragment, and the product of (II)
  • the conjugate of the present invention is obtained by binding an antibody or fragment.
  • the conjugates of the present invention can bind to fibrin in tumor tissue and deliver an anti-tumor moiety to the tumor and remain in the tumor tissue for a long period of time and continue to exert an anti-tumor effect for a long period of time. It has the effect. Therefore, the complex of the present invention can be used as a preventive or therapeutic agent for tumors. That is, a tumor in the mammal can be prevented or treated by administering an effective amount of the complex of the present invention to the subject. Furthermore, the complex of the present invention can exert an antitumor effect over a long period of time by inhibiting the formation of blood vessels that remain in the tumor tissue for a long period of time and nourish the tumor.
  • the tumor to be treated or prevented in the present invention is not limited and includes solid cancers such as pancreatic cancer, gastric cancer, esophageal cancer, colorectal cancer, colon cancer, ovarian cancer, breast cancer and lung cancer.
  • the complex of the present invention is not targeted to the cancer cell itself, but to fibrin present where it leaks from the tumor blood vessels.
  • the antibody of the present invention does not react with fibrinogen and has an extremely high affinity for fibrin.
  • the antibody-antitumor partial complex with high biocompatibility selectively leaks from the tumor blood vessel due to EPR effect (enhanced permeability and retention effect) (it does not leak from the normal blood vessel because it is a polymer), and after leakage It binds to fibrin present in the tumor stroma and forms a scaffold there. That is, the complex of the present invention continues to exist in the interstitial fibrin over a long period of time.
  • EPR effect enhanced permeability and retention effect
  • the agent of the present invention containing the above-mentioned thrombus visualization agent and tumor preventive or therapeutic agent may contain both a pharmaceutically acceptable carrier or additive in addition to the antibody or the antigen-binding fragment.
  • Such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium alginate, water soluble dextran, sodium carboxymethyl starch, pectin, xanthan gum, Examples include gum arabic, casein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, mannitol, sorbitol, and lactose.
  • the additive to be used is appropriately or in combination selected from the above depending on the dosage form.
  • the administration method of the drug of the present invention is not particularly limited, and oral administration or parenteral administration, for example, subcutaneous administration, intradermal administration, intramuscular administration, intravenous administration, transdermal administration, rectal administration, nasal administration Etc.
  • oral administration or parenteral administration for example, subcutaneous administration, intradermal administration, intramuscular administration, intravenous administration, transdermal administration, rectal administration, nasal administration Etc.
  • intravenous injection including infusion
  • intramuscular injection intraperitoneal injection and injection for subcutaneous injection
  • ointment Preparations such as topical agents (especially eye ointments), creams, suppositories, cataplasms, eye drops, nasal drops, inhalants, liniments, aerosols, etc.
  • topical agents especially eye ointments
  • they are provided in unit dose ampoules or in multi-dose containers.
  • the antibody or antigen-binding fragment or complex to be blended with the drug of the present invention varies depending on the type of antibody, the type of complex and the antitumor part contained in the complex, its use, dosage form, administration route, etc. For example, it may be 1 to 99% by weight, preferably 5 to 90% based on the total weight.
  • the dosage and administration interval of the drug of the present invention include the type of antibody or antigen-binding fragment contained in the drug, the type of anti-tumor part contained in the complex, the subject to be administered, the age and weight of the subject, administration It depends on the route and the number of administrations, and can be changed over a wide range.
  • the subject to which the agent of the present invention is administered is not particularly limited, and mammals such as humans, domestic animals (cattle, pigs, etc.), pets (dogs, cats, etc.), laboratory animals (mouse, rats, monkeys). Etc.). In particular, it is preferably used for a subject suspected of having a thrombus-related disease and a subject having a thrombus-related disease.
  • the drug containing the complex of the present invention is particularly preferably used for a subject suspected of having a tumor and a subject having a tumor.
  • a thrombus visualization agent after administration of a drug, the presence or position of an antibody or antigen-binding fragment in a subject is visualized using a label as an indicator.
  • the presence or location of the antibody or antigen binding fragment is visualized by known imaging techniques. Imaging methods vary depending on the label used, the type of subject, the site to be imaged, etc., but computed tomography (CT), positron tomography (PET), single photoemission tomography (SPECT), nuclear magnetic resonance Imaging (MRI) and other in vivo imaging systems can be used.
  • CT computed tomography
  • PET positron tomography
  • SPECT single photoemission tomography
  • MRI nuclear magnetic resonance Imaging
  • modified anti-fibrin antibody or antigen-binding fragment Based on the anti-fibrin antibody or antigen-binding fragment of the present invention, a modified antibody or antigen-binding fragment exhibiting a desired activity can be produced. Specifically, the amino acid sequence of the anti-fibrin antibody or antigen-binding fragment of the present invention is modified to prepare a modified antibody or antigen-binding fragment, and the activity of the obtained modified antibody or antigen-binding fragment is measured. judge.
  • the modification of the amino acid sequence is not particularly limited, and includes deletion, substitution, addition or insertion of 1 to 100 amino acids, for example, 1 to 50 amino acids in the amino acid sequence, fusion of another peptide, and the like.
  • Such modification of the amino acid sequence and preparation of an antibody or antigen-binding fragment having the modified amino acid sequence can be performed by methods known in the art. Whether or not the obtained modified antibody or antigen-binding fragment binds to fibrin can be determined by a known method as described above. In some cases, the fibrin neutralizing activity of the modified antibody or the platen-binding fragment and the binding property to fibrinogen may be examined.
  • the modified antibody or antigen-binding fragment thus obtained also has a binding activity to fibrin, and thus is useful for the above-described uses.
  • Example 1 Production of mouse anti-fibrin antibody As an immunogen, a fibrin clot was prepared by allowing 200 IU thrombin to act on a 20 mg / ml fibrinogen (Sigma) solution in the presence of 0.1 M calcium chloride. The prepared fibrin clot was transferred to a mortar, added with liquid nitrogen, frozen and pulverized with a pestle, and finally made a 1 mg / ml fibrin suspension in a phosphate buffer and used for mouse sensitization.
  • the Balb / c mouse strain was injected 3 times in total with 25 ⁇ g of fibrin crushed solution on the sole of the foot 2 days later. At that time, TiterMAX emulsion (TiterMAX USA Inc.) was used as an adjuvant.
  • TiterMAX USA Inc. was used as an adjuvant.
  • lymph node cells were collected from the mice. The obtained lymph node cells and myeloma cells (P3U1) were fused, and further selected by ELISA using fibrin protein. Specifically, a fibrinogen (Sigma) plate and a fibrin plate were prepared, and hybridomas showing ELISA positive on the fibrin plate and negative on the fibrinogen plate were selected.
  • the fibrinogen plate was prepared by adding a TBS (pH 8.5) solution in which 50 ⁇ g / ml fibrinogen was dissolved to a 96-well plate (Nunc486667) at 100 ⁇ l / well, and standing at 4 ° C. for 18 hours. Washed 3 times with 0.01% Tween 80, dried overnight at 37 ° C., and stored at 4 ° C. until use. The fibrin plate was subjected to a drying operation in the same manner as the fibrinogen plate, and then a TBS solution (10 mM CaCl in which 10 NIH U / ml human thrombin was dissolved).
  • a hybridoma cell that produces a monoclonal antibody that binds to human fibrin and does not bind to human fibrinogen was selected, and a cell line (clone 102-10) was established. The antibody produced by this cell line was mouse IgM.
  • This hybridoma cell line was designated as “102-10” by the applicant of the present application, and the National Institute for Product Evaluation and Technology (NITE) Biotechnology Headquarters Patent Microorganism Deposit Center (NPMD) (Kisarazu City, Chiba Prefecture 292-0818, Japan) Deposited at Kazusa Kamashika 2-5-8) on April 2, 2010 (original deposit) and given the deposit number NITE BP-923.
  • NITE National Institute for Product Evaluation and Technology
  • NPMD Biotechnology Headquarters Patent Microorganism Deposit Center
  • FIGS. 1A and B show the results using a commercially available anti-fibrin antibody as a control
  • FIG. 1C shows the results using the mouse anti-fibrin IgM antibody of the present invention.
  • Example 1 (1) is a reaction with human fibrin, (2) is a reaction with human fibrinogen, (3) is a reaction with mouse fibrin, (4) is a reaction with mouse fibrinogen, and (5) is a control. Represents the reaction with albumin.
  • FIG. 1 it was confirmed that the mouse IgM antibody derived from the hybridoma cell line 102-10 specifically reacts with mouse and human fibrin but does not react with mouse and human fibrinogen.
  • Production of chimeric antibody Total RNA was extracted from the hybridoma cell line 102-10 prepared in Example 1, and the cDNAs of the variable region of the antibody H chain and the variable region of the L chain were amplified using the adapter ligation RT-PCR method.
  • the primer sequences used are as follows: For H chain For L chain Each amplified cDNA was cloned into pT7Blue (Promega). The cDNAs of the H chain variable region (396 bp) and the L chain variable region (381 bp) are shown in FIGS. 2A and 2B, respectively.
  • FIG. 2A shows the base sequence and amino acid sequence of the antibody H chain, and corresponds to the variable region (1 to 396 bp) and a part of the constant region.
  • the base sequence and amino acid sequence of the variable region of the heavy chain are shown in SEQ ID NOs: 7 and 8, respectively.
  • variable region 2 shows the base sequence and amino acid sequence of the antibody L chain, and corresponds to the entire length of the protein coding region (variable region is 1 to 381 bp).
  • the base sequence and amino acid sequence of the variable region of the L chain are shown in SEQ ID NOs: 9 and 10, respectively.
  • the complementarity determining regions (CDRs) 1 to 3 of the H chain and the L chain are indicated by squares.
  • the expression vector was transfected into CHO cells (RIKEN BioResource Center) using Lipofectamine 2000 (Invitrogen).
  • the human type anti-fibrin chimeric antibody constant expression cell line (human type IgG clone 102-10Hu) is selected with 10 ⁇ g / mL puromycin (Sigma) and 500 ⁇ g / mL hygromycin B (Invitrogen) to obtain both resistant strains. It was established by that. The established cell lines were maintained with F12 (Sigma) 10% FBS, 1 mM HEPES (Sigma), 1% penicillin streptomycin (Invitrogen), puromycin 10 ⁇ g / mL, and hygromycin B 500 ⁇ g / mL.
  • the culture supernatant was removed by suction, the flask was washed with 10 mL of PBS, and this washing was performed twice. After removing PBS, 5 mL of TRYPSIN / 0.5% EDTA [Invitrogen: 25300054CAMP] is added, and CO is added. 2 It was allowed to stand for 5 minutes in an incubator. After confirming that the cells were detached from the bottom surface, 10 mL of 10% FBS medium for master cells was added to stop the enzyme reaction. Thereafter, the cells were peeled off by pipetting, and all the liquid in the flask was collected. p. Centrifuged for 5 minutes at m.
  • the culture supernatant was applied to a column packed with Protein G Sepharose (registered trademark) 4B equilibrated with a binding buffer (phosphate buffer pH 7).
  • the column was washed 4 times with a rinse buffer (phosphate buffer pH 7) 5 times the column volume, and an elution buffer (glycine buffer) pH 4 was passed 1.8 times the column volume.
  • elution buffer (glycine buffer) pH 3 was flowed 6 times the column volume and collected for each fraction, and the eluate was quickly neutralized with 1M Tris HCl buffer (pH 7). The absorbance of the fraction was measured, and the fraction containing the antibody was collected and proceeded to the next purification of hydroxyapatite.
  • the sample was first dialyzed against 10 mM Na-PB (pH 6.5) and 300 mM NaCl. After equilibrating a hydroxyapatite type II packed column with 10 mM Na-PB (pH 6.5) and 300 mM NaCl, all samples were added, washed with 10 mM Na-PB (pH 6.5), 300 mM NaCl, and 10 mM Na-PB. (PH 6.5) eluted with 2M NaCl. Fractions were collected, each fraction was confirmed by SDS-PAGE, and a sample was collected.
  • mice After dialysis against PBS, it was concentrated by ultrafiltration to obtain a purified human anti-fibrin chimeric antibody. The reactivity of the obtained chimeric antibody was confirmed using the ELISA method in the same manner as in Example 1. The result is shown in FIG. As shown in FIG. 3, it was shown that the human chimeric antibody specifically reacts with mouse and human fibrin but does not react with mouse and human fibrinogen. Therefore, the human antibody derived from mouse IgM retains the reactivity of mouse IgM and can be applied to human diagnostic treatment. In addition, since it has binding properties with mouse and human fibrin, it is possible to extrapolate experimental results in mice to humans.
  • Example 3 Immunostaining of human tissue using mouse IgM antibody and human chimeric antibody
  • immunostaining of a human pancreatic cancer surgical specimen and a human brain tumor (glioma) surgical specimen was performed using the mouse IgM antibody and human chimeric antibody prepared in Examples 1 and 2.
  • Human pancreatic cancer surgical specimens were obtained from Fukushima Medical University Pathology, and paraffin sections were prepared.
  • human brain tumor (glioma) surgery specimens were donated by Kumamoto University Hospital Neurosurgery, and paraffin sections were prepared. Paraffin sections were treated with xylene and ethanol to deparaffinize and immersed in demineralized water.
  • Section is 0.3% H 2 O 2 / Blocked in MeOH for 20 minutes and washed with TBST (Tris buffer, Tween 20) for 5 minutes. Thereafter, the section was immersed in an antigen activation solution (10 mM citrate buffer, pH 6.0), treated with microwave (MW) at 93 ° C. for 20 minutes, allowed to stand for 30 minutes, and then 3 times with TBST for 5 minutes. Washed. Sections were processed at 4 ° C. using 10 ⁇ g / ml mouse IgG antibody (Example 1) or 2 ⁇ g / ml human chimeric antibody (Example 2) as the primary antibody. Next, after washing 3 times with TBST for 5 minutes, several drops of anti-mouse secondary antibody (Code No.
  • FIG. 4 shows the result of immunostaining of a human pancreatic cancer surgical specimen section using the chimeric antibody. Further, FIG.
  • 5 shows the result of immunostaining of a human brain tumor surgical specimen section using mouse IgM antibody.
  • 5A shows human brain tumor (glioma) surgical tissue section hematoxylin staining
  • B shows the result of immunostaining the section.
  • this antibody can be used to stain human pancreatic cancer tissue and brain tumor.
  • Example 4 Immunostaining of human tissue using mouse IgM antibody and human chimeric antibody In the same manner as in Example 3, immunostaining of invasive squamous cell carcinoma by mouse chemical carcinogenesis was performed. The result is shown in FIG. In FIG.
  • A shows a tissue stained with hematoxylin and eosin, and invasive squamous cell carcinoma surrounded by cancer stroma is observed.
  • B shows an immunostained tissue with anti-fibrin antibody IgM, and it is confirmed that fibrin is significantly present in the cancer stroma.
  • C shows a tumor accumulation image when fluorescently labeled human chimeric anti-fibrin IgG is administered from the tail vein of a tumor-bearing mouse, and the antibody is specifically accumulated in the stroma in the tumor, and B fibrin It can be confirmed that it matches the site.
  • Example 5 In vivo imaging using antibodies In this example, the tumor accumulation property of the anti-fibrin antibody was examined.
  • FIG. 7A shows a mouse in which a mouse chemical carcinogenic skin invasive tumor was formed.
  • the labeled human chimeric antibody was administered via the mouse tail vein.
  • the distribution of antibodies 1 day, 3 days and 7 days after the administration was analyzed using a biological imaging apparatus OV110 (Olympus) and NightOWL II LB 983 (Berthold).
  • OV110 Optompus
  • NightOWL II LB 983 Blackhold
  • a branched linker and an antitumor compound SN-38 (10-hydroxy-7-ethylcamptothecin) were coupled.
  • DMAP represents N, N-dimethyl-4-aminopyridine
  • DMF represents N, N-dimethylformamide
  • THF represents tetrahydrofuran.
  • Triol compound B (2,2 ′-(2-((2-hydroxyethoxy) methyl) -2-((5- (4-methoxybenzyloxy) pentyloxy) methyl) propane-1,3-diyl) Bis (oxy) diethanol) (2.91 g, 6.14 mmol) and PPh 3 (6.43 g, 24.51 mmol) in THF (50 mL) was added to CBr. 4 (8.14 g, 24.51 mmol) was added in several portions at 0 ° C. The mixture was stirred overnight at room temperature. Diethyl ether was added to the mixture and the precipitate was filtered.
  • Tribromide C (1-((5- (3- (2-bromoethoxy) -2,2-bis ((2-bromoethoxy) methyl) propoxy) pentyloxy) methyl) -4-methoxybenzene) ( 3.48 g, 5.27 mmol) in DMF (10 mL) 3 (5.27 g, 81.08 mmol) was added and the mixture was stirred at 50 ° C. for 4 hours. The mixture was washed with EtOAc and saturated NaHCO3. 3 Diluted with The aqueous layer was extracted with EtOAc. The mixed layer was washed with saturated brine. Na 2 SO 4 After the mixture was dried, the solvent was concentrated under reduced pressure.
  • trimethylphosphine (0.5 mL, 1 M solution) was added to a solution of triazide compound G (63 mg, 0.10 mmol) in dioxane (1 mL) and water (0.5 mL), and the mixture was stirred overnight at room temperature under a nitrogen atmosphere.
  • Compound H was obtained.
  • the reaction mixture is concentrated, and the above carboxylic acid K is converted to CH. 2 Cl 2 (10 mL) dissolved in HOBt (213 mg, 1.58 mmol), WSCDI (308 mg, 1.58 mmol), iPr 2 NEt (0.5 mL) was added.
  • the reaction was stirred overnight at room temperature and the reaction was LH20 (CHCl. 3 : MeOH 1: 1) to obtain 0.71 g.
  • Binding of SN-38-linker conjugate to antibody As shown in FIG. 9, a PEG-SN-38 conjugate bound to a branched linker (Reference Example 1) or a PEG-SN-38 conjugate bound to a linear linker (Reference Example 2) Conjugated with anti-fibrin antibody. Specifically, the antibody was prepared at a concentration of 1.0 mg / ml in PBS.
  • Dithiothreitol (DTT) was added to the antibody to a final concentration of 10 mM and reacted at 37 ° C. for 30 minutes. The reaction reagent was removed with Amicon Ultra. As a result of absorption measurement, the antibody recovery was about 60 to 100%.
  • 6 to 8 SH groups were obtained per antibody from the quantification results of SH groups by (5,5′-dithiobis (2-nitrobenzoic acid)) (DNTB). Next, it is dissolved in 100 mM phosphate buffer + 150 mM NaCl + 5 mM EDTA (pH 6.0) so that the protein concentration becomes 0.5 mg / ml, and L (maleimide compound) 3-4 in FIG.
  • the mixture was allowed to react at room temperature for 1 hour and then at 4 ° C. overnight. After removing the reaction reagent with Amicon Ultra, it was replaced with PBS. When the protein was recovered with Amicon Ultra, the recovery rate was 60 to 100%, and 18 to 24 SN-38s per antibody were added to the antibody to which a branched linker was bound. Further, the amount of SN-38 bound to the antibody when using a linear linker and a branched linker was examined using HPLC. The results are shown in Table 1. In the table, the “AVERAGE” column indicates the relative SN-38 binding amount per antibody molecule.
  • the SN-38-antibody complex via a branched linker has a SN-38 binding amount per antibody as compared to the case where a conventional linear linker is used. It was found that the average was about 3 times more.
  • Example 7 In vitro cell killing effect
  • the in vitro cell killing effect of the antibody-SN-38 complex prepared in Example 6 on pancreatic cancer cell line SUIT2 was confirmed.
  • 3000 SUIT2 cancer cells are seeded in a 96-well plate, and 24 hours later, a complex of SN-38 and an antibody via a linear linker or SN-38 and an antibody via a branched linker And the number of cells after 48 hours was measured by the WST-8 method using Cell Counting Kit-8 (Dojindo).
  • free SN-38 and the known anticancer drug irinotecan (CPT11) were used.
  • FIGS. 10A and 10B As shown in FIG. 10, SUIT2 in the presence of a complex of SN-38 and an antibody via a linear linker (A) or a complex of SN-38 and an antibody via a branched linker (B).
  • the cell growth rate (%) of the cells is shown.
  • the IC50 in terms of SN-38 concentration is 0.028 ⁇ M (B in FIG. 10) when a branched linker is used, and 0.034 ⁇ M (when a linear linker is used). It was almost equivalent to A) in FIG. Therefore, the antitumor effect was confirmed even when any complex was used.
  • the dose of the antibody conjugate could be reduced to about 1/3.
  • SN-38 has already been clinically applied as a prodrug called irinotecan CPT-11, but because it is a small molecule, its distribution is not distinguished between normal tissue and cancer tissue, and it does not stay long in cancer.
  • Example 8 In vivo anti-tumor effect In this example, the effect of the antibody-SN-38 complex prepared in Example 6 on a mouse chemical carcinogenesis model was examined.
  • anti-fibrin antibody-SN-38 showed a stronger antitumor effect than CPT-11. Further, as shown in FIG. 12, in case 1, the tumor is remarkably reduced. In case 2, the color of the tumor changes from red (positive blood flow) to white (negative blood flow) due to the effect of the drug, indicating the strength of the antitumor effect. Therefore, it was confirmed that the anti-fibrin antibody of the present invention can deliver an antitumor compound to a tumor site and exert an antitumor effect.
  • the present invention provides antibodies against fibrin and antigen-binding fragments thereof.
  • the anti-fibrin antibody of the present invention it is possible to detect the presence of fibrin and a thrombus with high sensitivity, reliability, and simpleness, and as a result, a thrombus-related disease can be determined.
  • the anti-fibrin antibody of the present invention it becomes possible to deliver an appropriate compound or molecule to a site where a thrombus exists, for example, a tumor.
  • the anti-fibrin antibody of the present invention binds to human and mouse fibrin and does not bind to human and mouse fibrinogen, it is considered useful in the medical diagnostic field and the pharmaceutical field. All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.
  • SEQ ID Nos: 1 to 6 Artificial sequence (antibody CDR sequence)
  • SEQ ID Nos: 7 to 10 Artificial sequence (antibody variable region sequence)
  • SEQ ID Nos: 11 to 14 Artificial sequence (primer)

Abstract

Provided is a novel antibody that will bind with fibrin but will not bind with fibrinogen, and also provided is a use for the novel antibody. Specifically, provided is an antibody or antigen-binding fragment thereof that binds with human fibrin and comprises: (a) H strand CDR1 formed from the amino acid sequence of sequence No. 1, or an amino acid sequence in which the same amino acid sequence contains one or several conservative amino acid substitutions; (b) H strand CDR2 formed from the amino acid sequence of sequence No. 2, or an amino acid sequence in which the same amino acid sequence contains one or several conservative amino acid substitutions; (c) H strand CDR3 formed from the amino acid sequence of sequence No. 3, or an amino acid sequence in which the same amino acid sequence contains one or several conservative amino acid substitutions; (d) L strand CDR1 formed from the amino acid sequence of sequence No. 4, or an amino acid sequence in which the same amino acid sequence contains one or several conservative amino acid substitutions; (e) L strand CDR2 formed from the amino acid sequence of sequence No. 5, or an amino acid sequence in which the same amino acid sequence contains one or several conservative amino acid substitutions; and (f) L strand CDR3 formed from the amino acid sequence of sequence No. 6, or an amino acid sequence in which the same amino acid sequence contains one or several conservative amino acid substitutions.

Description

新規な抗フィブリン抗体Novel anti-fibrin antibody
 本発明は、新規な抗フィブリン抗体、並びにフィブリンを検出するための試薬及び方法に関する。また本発明は、抗フィブリン抗体を用いた血栓関連疾患を判定するための試薬及び方法に関する。さらに本発明は、抗フィブリン抗体と抗腫瘍性部分との複合体、及び該複合体を含む腫瘍の予防又は治療剤に関する。 The present invention relates to a novel anti-fibrin antibody, and a reagent and method for detecting fibrin. The present invention also relates to a reagent and method for determining a thrombosis-related disease using an anti-fibrin antibody. The present invention further relates to a complex of an anti-fibrin antibody and an antitumor moiety, and a preventive or therapeutic agent for a tumor containing the complex.
 癌と血液凝固との関係は1800年代のフランスの外科医トルソーの「胃癌患者における四肢の血栓による浮腫」に記されている。最近の臨床疫学データでも、膵臓癌、胃癌、脳腫瘍をはじめとして、ほとんどの癌腫において凝固亢進による血栓症の頻度が健常人より有意に高いことが明らかとなっている(非特許文献1)。癌組織の内部においても凝固異常に伴う、フィブリンの蓄積、凝固壊死、血管新生が腫瘍の進展とともに繰り返し起こっているものと思われる。
 フィブリンは、前駆体のフィブリノーゲンが生体に広く認められるのとは異なり、正常な生理的条件下の組織には存在しない。血管外に漏れ出て活性化されたトロンビンがフィブリノーゲンのN末端のペプチドを切り出すことにより、フィブリンモノマーが形成されて、そのフィブリンモノマーが重合してフィブリン繊維が形成されることによって生じるので、出血や炎症など病理的状態の組織に特異的な存在であり、癌や心筋梗塞、脳梗塞などの凝固を伴う病態が起きたときに形成される。しかしながら心筋梗塞や脳梗塞や外傷や炎症におけるフィブリン形成は急性期のみで1~2週以内にフィブリンはコラーゲンにおきかわる。したがって無症候性に形成されるフィブリンは、まさに癌特異的分子といえる。
 一方、フィブリンを検出するための手段として抗体が開発されており、例えばヒトフィブリンを認識するがフィブリノーゲンを認識しない抗フィブリン抗体が特許文献1~6に記載されている。
 また、モノクローナル抗体の作製法が確立された1970年代後半からモノクローナル抗体に毒素や抗癌剤などを付加して癌部を選択的に攻撃するという「ミサイル療法」の研究が盛んになっている。しかしながら、一部のリンパ腫や白血病での認可を除き、肺癌、大腸癌、乳癌、胃癌など通常の固形癌でのミサイル療法の臨床的な有用性は証明されず今日まで至っている。癌特異抗原に対するモノクローナル抗体を使用したいわゆるミサイル療法の問題点としては、(1)モノクローナル抗体の適応は特異的抗原が癌細胞の膜表面に発現している癌に限られる;(2)モノクローナル抗体が血中に遊離している抗原で中和されて肝心の癌局所まで送達されない可能性がある;(3)モノクローナル抗体が癌局所へ送達されたとしても、腫瘍血管から漏出後、腫瘍血管から癌細胞に到達するまでに間質が障壁となって肝心の癌細胞の部位までにモノクローナル抗体が到達できない可能性があることであり、特に、膵癌、スキルス胃癌、大腸癌、肺癌などの難治癌は間質が豊富であることが知られている。
 一方、本発明者の研究グループは癌の脈管学的特性として、腫瘍血管透過性の亢進がおきており、正常血管からは漏出しにくい高分子物質も癌の血管からは容易に漏出すること、また、血管新生に対してリンパ管新生に乏しいため、一旦癌組織で漏出した高分子物質はリンパ管にドレナージできずに長く癌組織に留まるというEPR効果(enhanced permeability and retention effect)を見出している。
 上述のとおり、フィブリンは血栓形成や重要な疾患との関連性も示されていることから、フィブリンと特異的に反応する抗体の開発や、フィブリンを特異的に検出することができる手段及び方法が依然として望まれている。
The relationship between cancer and blood clotting is described by French surgeon Torso in the 1800s, “Edema due to thrombosis of the extremities in gastric cancer patients”. Recent clinical epidemiological data also reveal that the frequency of thrombosis due to hypercoagulation is significantly higher than that of healthy individuals in most carcinomas including pancreatic cancer, gastric cancer, and brain tumor (Non-patent Document 1). It is considered that fibrin accumulation, coagulative necrosis, and angiogenesis, which accompany abnormal coagulation, also occur repeatedly within the tumor tissue as the tumor progresses.
Fibrin is not present in tissues under normal physiological conditions, unlike the precursor fibrinogen that is widely found in the body. The thrombin that has leaked out of the blood vessel and activated cleaves the N-terminal peptide of fibrinogen to form a fibrin monomer, which is caused by polymerization of the fibrin monomer to form fibrin fibers. It is specific to tissues with pathological conditions such as inflammation, and is formed when pathological conditions accompanied by coagulation such as cancer, myocardial infarction, and cerebral infarction occur. However, fibrin formation in myocardial infarction, cerebral infarction, trauma and inflammation is only in the acute phase, and fibrin is replaced with collagen within 1 to 2 weeks. Therefore, fibrin formed asymptomatically can be said to be a cancer-specific molecule.
On the other hand, antibodies have been developed as means for detecting fibrin. For example, Patent Documents 1 to 6 describe anti-fibrin antibodies that recognize human fibrin but not fibrinogen.
In addition, research on “missile therapy” in which toxins and anticancer agents are added to monoclonal antibodies to selectively attack the cancerous part has been active since the late 1970s when the method for producing monoclonal antibodies was established. However, with the exception of approval for some lymphomas and leukemias, the clinical usefulness of missile therapy in normal solid cancers such as lung cancer, colon cancer, breast cancer, and gastric cancer has not been proven and has been achieved to date. Problems of so-called missile therapy using monoclonal antibodies against cancer-specific antigens are as follows: (1) Application of monoclonal antibodies is limited to cancers in which specific antigens are expressed on the membrane surface of cancer cells; (2) Monoclonal antibodies May be neutralized with an antigen released in the blood and not delivered to the local cancer area; (3) Even if the monoclonal antibody is delivered to the local cancer area, It is possible that the stroma becomes a barrier before reaching the cancer cell, and the monoclonal antibody may not reach the site of the important cancer cell. Is known to be rich in interstitium.
On the other hand, the research group of the present inventor has increased tumor blood vessel permeability as a vascular characteristic of cancer, and high molecular substances that are difficult to leak from normal blood vessels can easily leak from cancer blood vessels. In addition, because of the lack of lymphangiogenesis compared to angiogenesis, the macromolecular substance once leaked in the cancer tissue cannot drain into the lymphatic vessel and remains in the cancer tissue for a long time. Yes.
As described above, since fibrin has also been shown to be associated with thrombus formation and important diseases, there is a development of antibodies that specifically react with fibrin, and means and methods that can specifically detect fibrin. Still desired.
特開2001−354700号公報JP 2001-354700 A 特開2009−149686号公報JP 2009-149686 A 特開2008−29353号公報JP 2008-29353 A 特開平9−127108号公報JP-A-9-127108 特開平9−104700号公報JP-A-9-104700 特開平8−301900号公報JP-A-8-301900
 そこで本発明は、フィブリンと結合しかつフィブリノーゲンと結合しない新規な抗体、及びその用途を提供することを目的とする。
 本発明者は、上記課題を解決するため鋭意検討を行った結果、フィブリン塊の粉砕産物を免疫原として用いてマウス抗体を作製したところ、ヒト及びマウスフィブリンと結合するが、ヒト及びマウスフィブリノーゲンとは結合しない抗体が得られ、この抗フィブリン抗体を用いてフィブリンの検出やフィブリンに関連する疾患の判定を行うことができることを見出した。また本発明者は、上記マウス抗フィブリン抗体に基づいてヒト型キメラ抗体を作製し、このキメラ抗体がマウス抗フィブリン抗体と同様の反応性を保持することを確認した。さらに、抗フィブリン抗体を用いて、腫瘍に存在するフィブリンを可視化でき、また腫瘍に抗腫瘍性化合物を送達できることを確認した。本発明は、上記知見に基づいてなされたものである。
 すなわち、本発明は、以下の[1]~[29]である。
[1]以下:
(a)配列番号1のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR1、
(b)配列番号2のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR2、
(c)配列番号3のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR3、
(d)配列番号4のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR1、
(e)配列番号5のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR2、及び
(f)配列番号6のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR3
を含み、ヒトフィブリンと結合することを特徴とする抗体又はその抗原結合性フラグメント。
[2]ヒトフィブリン及びマウスフィブリンと結合する、[1]に記載の抗体又は抗原結合性フラグメント。
[3]ヒトフィブリノーゲン及びマウスフィブリノーゲンとは結合しない、[1]又は[2]に記載の抗体又は抗原結合性フラグメント。
[4]モノクローナル抗体である、[1]~[3]のいずれかに記載の抗体又は抗原結合性フラグメント。
[5]受託番号NITE BP−923を有するハイブリドーマ細胞により産生される抗体である、[1]~[4]のいずれかに記載の抗体又は抗原結合性フラグメント。
[6]受託番号NITE BP−923を有するハイブリドーマ細胞により産生される抗体である、[1]~[4]のいずれかに記載の抗体又は抗原結合性フラグメント。
[7]キメラ抗体又はヒト化抗体である、[1]~[4]のいずれかに記載の抗体又は抗原結合性フラグメント。
[8]配列番号8のアミノ酸配列からなるH鎖可変領域、及び配列番号10のアミノ酸配列からなるL鎖可変領域を含むキメラ抗体である、[7]に記載の抗体又はその抗原結合性フラグメント。
[9]標識されている、[1]~[8]のいずれかに記載の抗体又は抗原結合性フラグメント。
[10][1]~[8]のいずれかに記載の抗体又は抗原結合性フラグメントをコードする塩基配列を含む核酸。
[11][10]に記載の核酸を含む発現ベクター。
[12][10]に記載の核酸又は[11]に記載の発現ベクターを含み、[1]~[8]のいずれかに記載の抗体又は抗原結合性フラグメントを産生する形質転換体。
[13][12]に記載の形質転換体を培地において培養し、培養物から抗体又は抗原結合性フラグメントを採取するステップを含む、[1]~[8]のいずれかに記載の抗体又は抗原結合性フラグメントの製造方法。
[14][1]~[8]のいずれかに記載の抗体又は抗原結合性フラグメントを産生する細胞。
[15]受託番号NITE BP−923を有するハイブリドーマ細胞である、[14]に記載の細胞。
[16][1]~[9]のいずれかに記載の抗体又は抗原結合性フラグメントを含むことを特徴とするフィブリンの免疫学的測定用試薬。
[17][1]~[9]のいずれかに記載の抗体又は抗原結合性フラグメントを含むことを特徴とする血栓関連疾患の判定用試薬。
[18]血栓関連疾患が梗塞又は癌である、[17]に記載の試薬。
[19][9]に記載の標識された抗体又は抗原結合性フラグメントを含むことを特徴とする血栓可視化剤。
[20]梗塞又は癌を可視化するための、[19]に記載の血栓可視化剤。
[21]サンプル中のフィブリンを検出するための方法であって、
(a)[1]~[9]のいずれかに記載の抗体又は抗原結合性フラグメントと、サンプルとを接触させるステップ、
(b)該抗体又は抗原結合性フラグメントがサンプル中のフィブリンと結合したか否かを検出するステップ
を含む方法。
[22]被験体における血栓関連疾患を判定するための方法であって、
(a)[1]~[9]のいずれかに記載の抗体又は抗原結合性フラグメントと、被験体に由来するサンプルとを接触させるステップ、
(b)該抗体又は抗原結合性フラグメントがサンプル中のフィブリンと結合したか否かを検出するステップ
を含む方法。
[23]血栓関連疾患が梗塞又は癌である、[22]に記載の方法。
[24]サンプルが、細胞及び組織サンプル、並びに生体液サンプルからなる群より選択される、[21]~[23]のいずれかに記載の方法。
[25]改変型抗フィブリン抗体又は抗原結合性フラグメントの作製方法であって、
(a)[1]~[8]のいずれかに記載の抗体又は抗原結合性フラグメントのアミノ酸配列から改変したアミノ酸配列を有する抗体又は抗原結合性フラグメントを調製するステップ、
(b)得られた抗体又は抗原結合性フラグメントがフィブリンと結合するか否かを判定するステップ
を含む方法。
[26][1]~[9]のいずれかに記載の抗体又は抗原結合性フラグメントと、抗腫瘍性部分との複合体。
[27]抗体又は抗原結合性フラグメントと抗腫瘍性部分とが、リンカーを介して結合している、[26]に記載の複合体。
[28]抗腫瘍性部分が抗癌剤である、[26]又は[27]に記載の複合体。
[29][26]~[28]のいずれかに記載の複合体を含む、腫瘍の予防又は治療剤。
 本発明により、フィブリンに対する抗体及びその抗原結合性フラグメントが提供される。本発明の抗フィブリン抗体を用いることにより、高感度に、信頼性をもって、かつ簡便にフィブリン及び血栓の存在を検出することができ、結果として血栓関連疾患を判定することが可能となる。また、本発明の抗フィブリン抗体を用いることにより、適当な化合物又は分子を血栓が存在する部位、例えば腫瘍に送達させることが可能となる。特に本発明の抗フィブリン抗体は、ヒト及びマウスフィブリンと結合し、かつヒト及びマウスフィブリノーゲンとは結合しないものであるため、医療診断分野や医薬分野において有用と考えられる。
Therefore, an object of the present invention is to provide a novel antibody that binds to fibrin and does not bind to fibrinogen, and uses thereof.
As a result of intensive studies to solve the above problems, the present inventor has produced a mouse antibody using a pulverized product of a fibrin clot as an immunogen, and binds to human and mouse fibrin. It was found that an antibody that does not bind was obtained, and that this anti-fibrin antibody can be used to detect fibrin and to determine fibrin-related diseases. The present inventor also prepared a human chimeric antibody based on the mouse anti-fibrin antibody, and confirmed that this chimeric antibody retains the same reactivity as the mouse anti-fibrin antibody. Furthermore, it was confirmed that fibrin present in a tumor can be visualized using an anti-fibrin antibody and that an antitumor compound can be delivered to the tumor. The present invention has been made based on the above findings.
That is, the present invention includes the following [1] to [29].
[1] Below:
(A) an H chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence comprising one or several conservative amino acid substitutions in the amino acid sequence,
(B) an H chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
(C) an H chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
(D) an L chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 4 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
(E) the L chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence, and (f) 1 or 2 in the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence L chain CDR3 consisting of an amino acid sequence containing several conservative amino acid substitutions
An antibody or an antigen-binding fragment thereof, which comprises binding to human fibrin.
[2] The antibody or antigen-binding fragment according to [1], which binds to human fibrin and mouse fibrin.
[3] The antibody or antigen-binding fragment according to [1] or [2], which does not bind to human fibrinogen and mouse fibrinogen.
[4] The antibody or antigen-binding fragment according to any one of [1] to [3], which is a monoclonal antibody.
[5] The antibody or antigen-binding fragment according to any one of [1] to [4], which is an antibody produced by a hybridoma cell having the accession number NITE BP-923.
[6] The antibody or antigen-binding fragment according to any one of [1] to [4], which is an antibody produced by a hybridoma cell having the accession number NITE BP-923.
[7] The antibody or antigen-binding fragment according to any one of [1] to [4], which is a chimeric antibody or a humanized antibody.
[8] The antibody or antigen-binding fragment thereof according to [7], which is a chimeric antibody comprising an H chain variable region consisting of the amino acid sequence of SEQ ID NO: 8 and an L chain variable region consisting of the amino acid sequence of SEQ ID NO: 10.
[9] The antibody or antigen-binding fragment according to any one of [1] to [8], which is labeled.
[10] A nucleic acid comprising a base sequence encoding the antibody or antigen-binding fragment according to any one of [1] to [8].
[11] An expression vector comprising the nucleic acid according to [10].
[12] A transformant comprising the nucleic acid according to [10] or the expression vector according to [11] and producing the antibody or antigen-binding fragment according to any one of [1] to [8].
[13] The antibody or antigen according to any one of [1] to [8], comprising culturing the transformant according to [12] in a medium and collecting the antibody or antigen-binding fragment from the culture. A method for producing a binding fragment.
[14] A cell that produces the antibody or antigen-binding fragment according to any one of [1] to [8].
[15] The cell according to [14], which is a hybridoma cell having a deposit number of NITE BP-923.
[16] A reagent for immunoassay of fibrin, comprising the antibody or antigen-binding fragment according to any one of [1] to [9].
[17] A reagent for determining a thrombus-related disease, comprising the antibody or antigen-binding fragment according to any one of [1] to [9].
[18] The reagent according to [17], wherein the thrombosis-related disease is infarction or cancer.
[19] A thrombus visualization agent comprising the labeled antibody or antigen-binding fragment according to [9].
[20] The thrombus visualization agent according to [19] for visualizing infarction or cancer.
[21] A method for detecting fibrin in a sample,
(A) contacting the sample with the antibody or antigen-binding fragment according to any one of [1] to [9],
(B) a method comprising detecting whether the antibody or antigen-binding fragment has bound to fibrin in a sample.
[22] A method for determining a thrombus-related disease in a subject comprising:
(A) contacting the antibody or antigen-binding fragment according to any one of [1] to [9] with a sample derived from a subject;
(B) a method comprising detecting whether the antibody or antigen-binding fragment has bound to fibrin in a sample.
[23] The method according to [22], wherein the thrombus-related disease is infarction or cancer.
[24] The method according to any one of [21] to [23], wherein the sample is selected from the group consisting of a cell and tissue sample, and a biological fluid sample.
[25] A method for producing a modified anti-fibrin antibody or antigen-binding fragment,
(A) preparing an antibody or antigen-binding fragment having an amino acid sequence modified from the amino acid sequence of the antibody or antigen-binding fragment according to any one of [1] to [8];
(B) A method comprising determining whether the obtained antibody or antigen-binding fragment binds to fibrin.
[26] A complex of the antibody or antigen-binding fragment according to any one of [1] to [9] and an antitumor moiety.
[27] The complex according to [26], wherein the antibody or antigen-binding fragment and the antitumor moiety are bound via a linker.
[28] The complex according to [26] or [27], wherein the antitumor moiety is an anticancer agent.
[29] A preventive or therapeutic agent for tumors comprising the complex according to any one of [26] to [28].
The present invention provides antibodies against fibrin and antigen-binding fragments thereof. By using the anti-fibrin antibody of the present invention, it is possible to detect the presence of fibrin and a thrombus with high sensitivity, reliability, and simpleness, and as a result, a thrombus-related disease can be determined. In addition, by using the anti-fibrin antibody of the present invention, it becomes possible to deliver an appropriate compound or molecule to a site where a thrombus exists, for example, a tumor. In particular, since the anti-fibrin antibody of the present invention binds to human and mouse fibrin and does not bind to human and mouse fibrinogen, it is considered useful in the medical diagnostic field and the pharmaceutical field.
 図1は、マウス抗フィブリンIgM抗体と、マウスフィブリン(3)及びヒトフィブリン(1)、並びにマウスフィブリノーゲン(4)及びヒトフィブリノーゲン(2)との反応性について試験したELISAの結果を示す。A及びBは、対照として市販の抗フィブリン抗体を用いた結果、Cは、本発明のマウス抗フィブリンIgM抗体を用いた結果である。
 図2は、マウス抗フィブリンIgM抗体のH鎖(A)及びL鎖(B)のアミノ酸配列及び塩基配列を示す。
 図3は、キメラ抗体と、マウス及びヒトフィブリン、並びにマウス及びヒトフィブリノーゲンとの反応性について試験したELISAの結果を示す。
 図4は、本発明の抗体を用いたヒト膵癌組織の免疫染色結果を示す写真である。
 図5は、本発明の抗体を用いたヒト脳腫瘍組織の免疫染色結果を示す写真である。Aは、ヒト脳腫瘍(グリオーマ)手術組織切片を示し、Bは、その切片を免疫染色した結果を示す。
 図6は、本発明の抗体を用いた癌組織の免疫染色結果を示す写真である。Aは、ヘマトキシリン・エオジン染色を行った組織を示し、Bは、抗フィブリン抗体IgMによる免疫染色組織を示し、Cは、蛍光標識したヒト型キメラ抗フィブリンIgGの免疫染色組織を示す。
 図7は、本発明の抗体を用いた癌組織のin vivoイメージングを示す写真である。Aは、化学発癌マウスにおける腫瘍形成を示し、Bは、腫瘍形成部位における標識化ヒト型キメラ抗体の集積を示す。
 図8は、分枝状リンカーの合成スキーム(A~H)、抗腫瘍性化合物SN−38とPEGとの結合スキーム(I~K)と、分枝状リンカーとPEG−SN−38複合体との結合(L)を示す。
 図9は、本発明の抗フィブリン抗体と、抗腫瘍性化合物SN−38との結合方法を示す。
 図10は、直鎖状リンカーを介したSN−38と抗体との複合体(A)、又は分枝状リンカーを介したSN−38と抗体との複合体(B)の存在下における、SUIT2細胞の細胞増殖率(%)を示すグラフである。
 図11は、発癌モデルマウスにおける腫瘍に対する抗フィブリン抗体−SN−38複合体の抗腫瘍効果を示すグラフである。
 図12は、発癌モデルマウスにおける腫瘍に対する抗フィブリン抗体−SN−38複合体の抗腫瘍効果を示す写真である。
FIG. 1 shows the results of an ELISA that tested the reactivity of mouse anti-fibrin IgM antibodies with mouse fibrin (3) and human fibrin (1), and mouse fibrinogen (4) and human fibrinogen (2). A and B are results of using a commercially available anti-fibrin antibody as a control, and C is a result of using the mouse anti-fibrin IgM antibody of the present invention.
FIG. 2 shows the amino acid sequence and base sequence of mouse anti-fibrin IgM antibody H chain (A) and L chain (B).
FIG. 3 shows the results of an ELISA tested for reactivity of the chimeric antibody with mouse and human fibrin, and mouse and human fibrinogen.
FIG. 4 is a photograph showing the results of immunostaining of human pancreatic cancer tissue using the antibody of the present invention.
FIG. 5 is a photograph showing the results of immunostaining of human brain tumor tissue using the antibody of the present invention. A shows a human brain tumor (glioma) surgical tissue section, and B shows the result of immunostaining the section.
FIG. 6 is a photograph showing the result of immunostaining of cancer tissue using the antibody of the present invention. A shows the tissue stained with hematoxylin and eosin, B shows the immunostained tissue with anti-fibrin antibody IgM, and C shows the immunostained tissue of fluorescently labeled human chimeric anti-fibrin IgG.
FIG. 7 is a photograph showing in vivo imaging of a cancer tissue using the antibody of the present invention. A shows tumor formation in chemically carcinogenic mice, and B shows accumulation of labeled human chimeric antibody at the site of tumor formation.
FIG. 8 shows a synthesis scheme (A to H) of a branched linker, a coupling scheme (IK) of an antitumor compound SN-38 and PEG, a branched linker and a PEG-SN-38 complex. The bond (L) is shown.
FIG. 9 shows a method for binding the anti-fibrin antibody of the present invention to the antitumor compound SN-38.
FIG. 10 shows SUIT2 in the presence of a complex of SN-38 and antibody via a linear linker (A), or a complex of SN-38 and antibody via a branched linker (B). It is a graph which shows the cell growth rate (%) of a cell.
FIG. 11 is a graph showing the antitumor effect of an anti-fibrin antibody-SN-38 complex against tumors in a carcinogenesis model mouse.
FIG. 12 is a photograph showing the antitumor effect of an anti-fibrin antibody-SN-38 complex against tumors in a carcinogenesis model mouse.
 以下、本発明を詳細に説明する。本願は、2010年6月18日に出願された日本国特許出願第2010−139572号の優先権を主張するものであり、上記特許出願の明細書及び/又は図面に記載される内容を包含する。
 本発明は、フィブリンに対する新規な抗体を提供する。フィブリンとは、血液凝固に関与するタンパク質であり、血漿中に存在するフィブリノーゲンからトロンビンの作用によりフィブリンモノマーが生成される。このフィブリンモノマーがポリマーを形成してゲル化することによって、不溶性のフィブリン塊、すなわち血栓となる。フィブリンの構造及び機能については多数の報告があり、当技術分野で公知である。本発明は、フィブリンと特異的に結合する抗体及び抗原結合性フラグメントと、それらの用途に関する。
1.フィブリンに対する抗体及び抗原結合性フラグメント
 本発明に係る抗体は、フィブリンと結合し、フィブリノーゲンとは結合しないことを特徴とする。本発明に係る抗体及び抗原結合性フラグメントは、以下のH鎖(重鎖)相補性決定領域(CDR)及びL鎖(軽鎖)CDRを含む:
(a)FTNYGMN(配列番号1)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR1、
(b)WINTYTGEATYA(配列番号2)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR2、
(c)LMDY(配列番号3)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR3、
(d)KASQDINKYIA(配列番号4)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR1、
(e)YTSTLQP(配列番号5)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR2、及び
(f)LQYDNLTW(配列番号6)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR3。
 本発明において「抗体」及び「抗原結合性フラグメント」とは、フィブリンに特異的に結合する抗体分子全体又はそのフラグメント(例えば、Fab、Fab’、F(ab’)、scFvなどのフラグメント)を意味し、ポリクローナル抗体であってもモノクローナル抗体であってもよい。また本発明において「抗体」及び「抗原結合性フラグメント」は、キメラ抗体、ヒト化抗体及びヒト抗体、並びにそれらのフラグメントも包含する。
 本発明において、抗体がフィブリンに「特異的に結合する」とは、その抗体の他のペプチド又はタンパク質に対する親和性よりも、フィブリンに対して高い親和性で結合することを意味する。ここで、「高い親和性」とは、当技術分野で公知の方法によって、フィブリンを他のペプチド又はタンパク質から区別して検出することが可能な程度に高い親和性を意味し、典型的には、結合定数(K)が少なくとも10−1、好ましくは少なくとも10−1、より好ましくは10−1又はそれより高いものであるような結合親和性を意味する。
 本発明において、フィブリンとの結合(反応性)及びフィブリノーゲンとの結合(反応性)は、当技術分野で公知の方法により判定することができ、例えば公知のELISA法を利用して判定することができる(Wu,Sau−Ching et al.Applied and Environmental Microbiology 68:3261−3269,2002)。
 また本発明に係る抗体及び抗原結合性フラグメントは、マウス及びヒトのフィブリンと結合することができ、マウス及びヒトのフィブリノーゲンとは結合しない。従って、マウスにおいて本抗体を用いて得られた試験データをヒトに外挿することが可能である。
 なお、本発明において「保存的アミノ酸置換」とは、当技術分野で公知であり、あるアミノ酸が、そのアミノ酸と類似の性質を示すアミノ酸と置換されることを指す。当技術分野では、特定のアミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列を含むタンパク質は、その特定のアミノ酸配列を含むタンパク質と同等の活性を保持することが知られている。従って、本発明においても、そのような保存的アミノ酸置換を有するアミノ酸配列を含む抗体及び抗原結合性フラグメントは、所望の活性、すなわちフィブリンとの結合性を保持している限り、本発明の抗体に含まれる。例えば、中性(極性)アミノ酸(Asn、Ser、Gln、Thr、Tyr、Cys)、中性(非極性、すなわち疎水性)アミノ酸(Gly、Trp、Met、Pro、Phe、Ala、Val、Leu、Ile)、酸性(極性)アミノ酸(Asp、Glu)、塩基性(極性)アミノ酸(Arg、His、Lys)が、同じ性質を有するアミノ酸と置換される。
 以下、本発明に係る抗体又はその抗原結合性フラグメントの作製方法について詳述する。
 本発明の抗体は、免疫原として、フィブリン塊を粉砕したものをバッファーに溶解し、必要であれば、免疫を効果的に行うためにアジュバントを添加したものを使用して作製することができる。アジュバントとしては、市販のフロイント完全アジュバント(FCA)、フロイント不完全アジュバント(FIA)等が挙げられる。これらのアジュバントは、単独で又は混合して用いることができる。
 モノクローナル抗体を作製する場合は、免疫原を、哺乳類、例えばマウス、ウサギ、ラットなどに投与する。免疫は、主として静脈内、皮下、腹腔内、足蹠に注入することにより行われる。また、免疫の間隔は特に限定されず、数日から数週間間隔で、1~5回の免疫を行う。そして、最終の免疫日から3~20日後に抗体産生細胞を採集する。抗体産生細胞としては、リンパ節細胞、脾臓細胞、末梢血細胞等が挙げられる。
 ハイブリドーマを得るため、抗体産生細胞とミエローマ細胞との細胞融合を行う。抗体産生細胞と融合させるミエローマ細胞として、一般に入手可能な株化細胞を使用することができる。使用する細胞株としては、薬剤選択性を有し、未融合の状態ではHAT選択培地(ヒポキサンチン、アミノプテリン、チミジンを含む)で生存できず、抗体産生細胞と融合した状態でのみ生存できる性質を有するものが好ましい。ミエローマ細胞としては、例えばP3X63−Ag.8.U1(P3U1)、NS−Iなどのマウスミエローマ細胞株が挙げられる。
 次に、上記ミエローマ細胞と抗体産生細胞とを細胞融合させる。細胞融合は、血清を含まないDMEM、RPMI−1640培地などの動物細胞培養用培地中で、抗体産生細胞とミエローマ細胞とを混合し、細胞融合促進剤(例えばポリエチレングリコール等)の存在下で融合反応を行う。また、エレクトロポレーションを利用した市販の細胞融合装置を用いて細胞融合させることもできる。
 細胞融合処理後の細胞から目的とするハイブリドーマを選別する。例えば、細胞懸濁液をウシ胎児血清含有RPMI−1640培地などで適当に希釈後、マイクロタイタープレート上にまく。各ウエルに選択培地(例えばHAT培地)を加え、以後適当に選択培地を交換して細胞培養を行う。その結果、選択培地で培養開始後、10~30日程度で生育してくる細胞をハイブリドーマとして得ることができる。
 次に、増殖してきたハイブリドーマの培養上清を、フィブリンに反応する抗体が存在するか否かについてスクリーニングする。ハイブリドーマのスクリーニングは、通常の方法に従えばよく、例えば酵素結合免疫吸着アッセイ(ELISA)、酵素免疫アッセイ(EIA)、又は放射性免疫アッセイ(RIA)等を採用することができる。融合細胞のクローニングは、限界希釈法等により行い、目的のモノクローナル抗体を産生するハイブリドーマを樹立する。
 樹立したハイブリドーマからモノクローナル抗体を採取する方法として、通常の細胞培養法又は腹水形成法等を採用することができる。上記抗体の採取方法において抗体の精製が必要とされる場合は、硫安塩析法、イオン交換クロマトグラフィー、ゲル濾過、アフィニティークロマトグラフィーなどの公知の方法を適宜選択して、又はこれらを組み合わせることにより精製することができる。
 本発明において使用可能なモノクローナル抗体のグロブリンタイプは、フィブリンとの特異的結合活性を有するものである限り特に限定されるものではなく、IgG、IgM、IgA、IgE、IgDのいずれでもよいが、IgG及びIgMが好ましい。
 上述のモノクローナル抗体の作製方法に従って、本発明者はマウス抗フィブリンIgM抗体を産生するハイブリドーマ細胞を樹立した。本発明においては、受託番号NITE BP−923を有するハイブリドーマ細胞102−10から産生される抗体を使用することが好ましい。このハイブリドーマ細胞102−10から産生される抗体は、配列番号8に示されるアミノ酸配列からなるH鎖可変領域と、配列番号10に示されるアミノ酸配列からなるL鎖可変領域とを含む。また、この抗体のH鎖CDR1~3は、それぞれ配列番号1~3に示すアミノ酸配列を有し、L鎖CDR1~3は、それぞれ配列番号4~6に示すアミノ酸配列を有する。
 また本発明の抗体は、上記ハイブリドーマ細胞102−10により産生される抗体が結合するエピトープに結合する抗体であってもよい。
 また本発明の抗体は、上述のようにして作製されたフィブリンに対する抗原特異性を有する抗体分子からの遺伝子を適当な生物学的活性を有するヒト抗体分子からの遺伝子と共にスプライシングすることによって、ヒト型キメラ抗体(Morrison et al.,1984,Proc.Natl.Acad.Sci.,81:6851−6855;Neuberger et al.,1984,Nature,312:604−608;Takeda et al.,1985,Nature,314:452−454)を作製することができる。また、一本鎖抗体(米国特許第4,946,778号;Bird,1988,Science 242:423−426;Huston et al.,1988,Proc.Natl.Acad.Sci.USA 85:5879−5883;Ward et al.,1989,Nature 334:544−546)、F(ab’)フラグメント、Fabフラグメント、一本鎖抗体なども、当技術分野で公知の技術(例えばパパイン又はトリプシンによる消化)を利用して作製することができる。
 上述した本発明の抗体及び抗原結合性フラグメントは、遺伝子工学的手法を利用して作製することも可能である。
 例えば、上記のようにして作製したハイブリドーマ細胞株が有する核酸であって、該ハイブリドーマが産生するモノクローナル抗体のH鎖又はL鎖を含む抗体をコードする塩基配列を含む核酸から、該モノクローナル抗体を作製することができる。これらの核酸はハイブリドーマから通常の遺伝子工学的手法により得ることができ、またその塩基配列も公知の塩基配列決定法により決定することができる。例えば、ハイブリドーマ細胞株よりmRNAを抽出し、cDNAを合成する。合成したcDNAを、ファージ又はプラスミドなどのベクターに挿入し、cDNAライブラリーを作製する。該ライブラリーより、ヒト以外の動物の抗体、例えばマウス抗体の定常領域部分又は可変領域部分をプローブとして用い、H鎖可変領域(VH)をコードするcDNAを有する組換えファージ又は組換えプラスミド、及びL鎖可変領域(VL)をコードするcDNAを有する組換えファージ又は組換えプラスミドをそれぞれ単離する。組換えファージ又は組換えプラスミド上の目的とする抗体のH鎖可変領域(VH)及びL鎖可変領域(VL)の全塩基配列を決定し、塩基配列よりVH及びVLの全アミノ酸配列を推定する。例として、ハイブリドーマ細胞株102−10が産生するモノクローナル抗体のH鎖可変領域及びL鎖可変領域をコードする核酸の塩基配列をそれぞれ配列番号7及び配列番号9に示す。
 また、該H鎖可変領域及びL鎖可変領域をコードする核酸は、上記塩基配列の変異体(天然の変異体及び人為的な変異体)であってもよい。例えば、該H鎖又はL鎖可変領域をコードする核酸の塩基配列において、1若しくは数個の塩基の欠失、置換、付加又は挿入を有し、かつフィブリンに結合するタンパク質をコードする変異体を用いることができる。ここで、「1若しくは数個」とは、1~20個、好ましくは1~15個、より好ましくは1~10個を指す。また例えば、H鎖又はL鎖可変領域をコードする核酸の塩基配列の相補配列に対してストリンジェントな条件でハイブリダイズし、かつフィブリンと結合するタンパク質をコードする変異体を用いることができる。ここで、「ストリンジェントな条件」とは、これに限定されるものではないが、例えば30℃~50℃で、3~4×SSC(150mM塩化ナトリウム、15mMクエン酸ナトリウム、pH7.2)、0.1~0.5%SDS中で1~24時間のハイブリダイゼーション、より好ましくは40℃~45℃で、3.4×SSC、0.3%SDS中で1~24時間のハイブリダイゼーション、そしてその後の洗浄を含む。洗浄条件としては、例えば、2×SSCと0.1%SDSを含む溶液、及び1×SSC溶液、0.2×SSC溶液による室温での連続した洗浄などの条件を挙げることができる。ただし、上記条件の組み合わせは例示であり、当業者であればハイブリダイゼーションのストリンジェンシーを決定する上記の又は他の要素(例えば、ハイブリダーゼーションプローブの濃度、長さ及びGC含量、ハイブリダイゼーションの反応時間など)を適宜組み合わせることにより、上記と同様のストリンジェンシーを実現することが可能である。
 キメラ抗体は、例えばMorrison et al.,1984,Proc.Natl.Acad.Sci.,81:6851−6855;Neuberger et al.,1984,Nature,312:604−608;Takeda et al.,1985,Nature,314:452−454に記載される技術を用いて製造することができる。例えば、上述のハイブリドーマ細胞株のマウスモノクローナル抗体の遺伝子を、他の哺乳動物由来の抗体分子の遺伝子と共にスプライシングすることによってキメラ抗体を作製することができる。キメラ抗体として、例えば、上記マウスモノクローナル抗体のH鎖及び/又はL鎖可変領域とヒト免疫グロブリン定常領域とを有するヒト型キメラ抗体を挙げることができる。本発明においては、キメラ抗体の作製のために、H鎖可変領域及び/又はL鎖可変領域をコードする核酸の塩基配列(それぞれ配列番号7及び配列番号9)、並びに該塩基配列の変異体を用いることができる。
 またヒト化抗体は、例えばマウスモノクローナル抗体由来の可変領域又は超可変領域を含む可変領域の一部と、ヒト免疫グロブリンの定常領域、又はヒト免疫グロブリンの可変領域の一部及び定常領域とを有する抗体であり、ヒト化抗体の場合、マウス由来の抗体領域部分は約10%未満であることが望ましい。本発明において、ヒト化抗体は、例えば上記マウスモノクローナル抗体のH鎖可変領域及び/又はL鎖可変領域のアミノ酸配列中の少なくとも1つの相補性決定領域(CDR1、2及び3)を含むアミノ酸配列を含むことができる。具体的には、マウスモノクローナル抗体由来の可変領域は、以下のCDR:
(a)FTNYGMN(配列番号1)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR1、
(b)WINTYTGEATYA(配列番号2)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR2、
(c)LMDY(配列番号3)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR3、
(d)KASQDINKYIA(配列番号4)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR1、
(e)YTSTLQP(配列番号5)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR2、又は
(f)LQYDNLTW(配列番号6)のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR3
のうち少なくとも1つを含むものとすることができる。
 なお、配列番号1~3は、それぞれ配列番号8に示されるH鎖可変領域アミノ酸配列の48~54番、69~80番及び118~121番のアミノ酸に相当し、配列番号4~6は、それぞれ配列番号10に示されるL鎖可変領域アミノ酸配列の44~54番、70~76番及び109~116番のアミノ酸に相当する。
 上記マウスドナー配列(CDR配列)に適するヒトアクセプター抗体配列は、マウス可変領域のアミノ酸配列と既知のヒト抗体のH鎖又はL鎖の配列とのコンピュータ比較によって同定することができる。そのフレームワーク配列がマウスL鎖可変領域及びH鎖可変領域のフレームワーク領域と高い配列同一性を表すヒト抗体からの可変ドメインは、マウスフレームワーク配列を用いてNCBI BLAST(米国)を利用するKabatデータベースに照会することによって同定することができる。このとき、マウスドナー配列と80%以上、好ましくは90%以上の配列の同一性を共有するアクセプター配列を選択することができる。このようにして同定されたヒトアクセプター抗体H鎖及びL鎖配列をコードする塩基配列をベースにして、その可変領域の一部をマウス抗体のものと置換するように組換えを行う。
 また、抗原結合性フラグメント、例えばFab、F(ab’)、scFvフラグメント、一本鎖抗体などのための発現ベクターは、当業者であれば適宜設計することができる。
 続いて、抗体又は抗原結合性フラグメントのH鎖及び/又はL鎖をコードする核酸又はその変異体をクローニングし、適当な発現ベクターに組み込む。発現ベクターとしては、例えば、pAGE107(Cytotechnology,3,133(1990))、pAGE103(J.Biochem.,101,1307(1987))、pQCxID(クロンテック)及びpQCxIH(クロンテック)等が挙げられる。発現ベクターには、抗体又は抗原結合性フラグメントをコードする核酸の他、プロモーター及びエンハンサー、選択マーカー遺伝子などを挿入してもよい。そのようなプロモーター及びエンハンサーとしては、SV40の初期プロモーターとエンハンサー、モロニーマウス白血病ウイルスのLTRプロモーターとエンハンサー、及び免疫グロブリンH鎖のプロモーターとエンハンサー等が挙げられる。また選択マーカー遺伝子としては、ネオマイシン耐性遺伝子、アンピシリン耐性遺伝子及びクロラムフェニコール耐性遺伝子が挙げられる。
 発現ベクターは、H鎖及びL鎖をコードする核酸の両方を単一の発現ベクターに組み込んだものであってもよいし、あるいはH鎖をコードする核酸を組み込んだ発現ベクター及び/又はL鎖をコードする核酸を組み込んだ発現ベクターであってもよい。
 ヒト型キメラ抗体用発現ベクターを構築する場合には、例えばキメラ抗体発現用ベクターのヒト抗体のH鎖定常領域(CH)及びL鎖定常領域(CL)をコードする遺伝子の上流にあらかじめ制限酵素の認識配列を設けておき、この認識配列からなるクローニングサイトにマウス抗体の可変領域をコードするcDNAを挿入する。
 ヒト化抗体用発現ベクターを構築する場合には、ヒト抗体の可変領域のフレームワーク領域(FR)のアミノ酸配列をコードするDNA配列とマウス抗体の可変領域のCDRのアミノ酸配列をコードするDNA配列を連結させて、VHのアミノ酸配列及びVLのアミノ酸配列をコードするDNA配列を設計する。次いで、ヒト抗体のCH及びCLをコードする遺伝子の上流に、ヒト化抗体のVH及びVLをコードするcDNAを挿入し、ヒト化抗体用発現ベクターを構築することができる。
 上述のとおり構築した発現ベクターを、適当な宿主細胞に導入して、形質転換体を得る。使用する宿主としては、導入される発現ベクター上の核酸を発現し、抗体又は抗原結合性フラグメントを産生できるものであれば特に限定されるものではない。例えば、細菌(大腸菌等)、酵母(サッカロミセス・セレビシエ等)、動物細胞(COS細胞、CHO細胞等)、昆虫(カイコ、Sf9細胞、Sf21細胞等)などが挙げられる。
 細菌又は酵母への核酸又は発現ベクターの導入方法は、細菌又は酵母にDNAを導入する方法であれば特に限定されず、例えばエレクトロポレーション法、スフェロプラスト法、酢酸リチウム法等が挙げられる。また、動物細胞又は昆虫細胞への核酸又は発現ベクターの導入方法としては、例えばエレクトロポレーション法、リン酸カルシウム法、リポフェクション法等が挙げられる。
 形質転換体は、導入する核酸内に構成されるマーカー遺伝子の性質を利用して選択される。例えば、ネオマイシン耐性遺伝子を用いた場合には、G418薬剤に抵抗性を示す細胞を選択する。
 本発明の抗体又は抗原結合性フラグメントは、それをコードする核酸が導入された前記形質転換体を培地において培養し、その培養物から採取することにより得ることができる。「培養物」とは、培養上清、培養細胞又は細胞破砕物のいずれをも意味するものである。形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。
 細菌又は酵母を宿主として得られた形質転換体を培養する培地としては、炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。培養は、通常、振盪培養又は通気攪拌培養などの好気的条件下、約20~40℃で約1~24時間行う。培養期間中、pHは中性付近に保持する。培養中は必要に応じてアンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地、DMEM培地又はこれらの培地にウシ胎児血清等を添加した培地等が用いられる。培養は、通常、5%CO存在下、約37℃で約1~7日間行う。培養中は必要に応じてカナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。
 培養後、抗体又は抗原結合性フラグメントが細胞内又は菌体に生産される場合には、細胞又は菌体を破砕することによりタンパク質を抽出する。また、抗体又は抗原結合性フラグメントが細胞外又は菌体外に生産される場合には、培養液をそのまま使用するか、遠心分離等により細胞又は菌体を除去する。
 採取された抗体又は抗原結合性フラグメントは、当該技術分野において周知の方法、例えばプロテインA又はプロテインGカラムによるクロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、硫安塩析法、ゲル濾過、アフィニティクロマトグラフィー等を適宜組み合わせることにより精製することができる。
 精製した抗体又は抗原結合性フラグメントの分子量は、ポリアクリルアミドゲル電気泳動(SDS−PAGE)、ウエスタンブロッティング法等で測定することができる。また、得られた抗体又は抗原結合性フラグメントの反応性、すなわちフィブリンに対する結合活性及び場合によりフィブリノーゲンに対する結合活性の測定は上述の方法などにより測定することができる。
2.フィブリンの免疫学的測定用試薬
 上述の通り作製した抗体を用いて、サンプル中のフィブリンを検出することが可能である。この検出は、抗体を用いる測定方法、すなわち免疫学的測定方法であれば、任意の方法に基づいて実施することができる。例えば、フィブリンの検出は、免疫組織化学染色法及び免疫電顕法、並びに免疫アッセイ(酵素免疫アッセイ(ELISA、EIA)、蛍光免疫アッセイ、放射性免疫アッセイ(RIA)、免疫クロマト法及びウエスタンブロット法等)などを利用して実施することができる。
 対象となるサンプルとしては、特に限定されるものではなく、例えば、組織又は細胞サンプル(胃、十二指腸、大腸、膵、胆嚢、胆管、気管支、肺等の癌の組織又は細胞)、生体液サンプル(胃粘液、十二指腸液、膵液、胆汁、腹水、喀痰、気管支肺胞洗浄液、血液、血清、血漿等)などが挙げられる。例えば、免疫染色の場合には、組織サンプル(生検標本、切除標本)、細胞診サンプルをサンプルとして用いることが好ましい。
 本発明の免疫学的測定方法においては、サンプル中のフィブリンを、本発明に係る抗体又は抗原結合性フラグメントと結合させて、その結合を検出することによって、フィブリンを検出する。本発明において「検出」とは、フィブリンの存在の有無を検出することだけではなく、フィブリンを定量的に検出すること、フィブリンを免疫染色することも含む。
 フィブリンについての免疫アッセイは、典型的には、試験対象のサンプルを本発明に係る抗体又は抗原結合性フラグメントと接触させ、当技術分野で公知の手法を用いて結合した抗体又は抗原結合性フラグメントを検出することを含む。「接触」は、サンプル中に存在するフィブリンと本発明に係る抗体又は抗原結合性フラグメントとが結合できるように近接することができる状態にすることを意味し、例えば、固形サンプルに対して抗体含有溶液を塗布すること、抗体含有溶液に固形サンプルを浸漬すること、液状サンプルと抗体含有溶液とを混合することなどの操作が含まれる。
 免疫アッセイは、液相系及び固相系のいずれで行ってもよい。また免疫アッセイの形式も限定されるものではなく、直接固相法の他、サンドイッチ法、競合法などであってもよい。
 本発明に係る抗体又は抗原結合性フラグメントはまた、免疫組織化学染色法(例えば免疫染色法)又は免疫電顕法のように、フィブリンのin situ検出のために、組織学的に用いることも可能である。in situ検出は、被験体から組織学的サンプルを切除し(生検組織サンプル、組織のパラフィン包埋切片など)、それに標識した抗体又は抗原結合性フラグメントを接触させることにより実施しうる。
 免疫アッセイの操作法は、公知の方法(Ausubel,F.M.ら編,Short Protocols in Molecular Biology,Chapter 11″immunology″John Wiley & Sons,Inc.1995)により行うことができる。あるいは、フィブリンと抗体との複合体を、公知の分離手段(クロマト法、塩析法、アルコール沈殿法、酵素法、固相法等)によって分離し、標識のシグナルを検出するようにしてもよい。
 免疫アッセイの一例として、例えば固相系を利用する場合、抗体又は抗原結合性フラグメントを固相支持体又は担体(樹脂プレート、メンブレン、ビーズなど)に固定してもよいし、あるいはサンプルを固定してもよい。例えば、抗体又は抗原結合性フラグメントを固相支持体に固定し、支持体を適当なバッファーで洗浄した後、サンプルを用いて処理する。次に固相支持体にバッファーを用いた2回目の洗浄を行って、未結合の抗体又は抗原結合性フラグメントを除去する。そして固体支持体上の結合した抗体又は抗原結合性フラグメントを、慣用的な手段により検出することによって、サンプル中のフィブリンと抗体又は抗原結合性フラグメントとの結合を検出することができる。あるいはまた、固形サンプルを抗体又は抗原結合性フラグメントを含む溶液で処理して、続いてバッファーを用いた洗浄を行って未結合の抗体又は抗原結合性フラグメントを除去した後、固形サンプル上の結合した抗体又は抗原結合性フラグメントを慣用的な手段により検出することができる。
 抗体の結合活性は、周知の方法に従って測定しうる。当業者であれば、採用する免疫アッセイの種類及び形式、使用する標識の種類及び標識の対象などに応じて、各アッセイについての有効かつ最適な測定方法を決定することができる。
 本発明においては、本発明の抗体又は抗原結合性フラグメントと、サンプル中に存在するフィブリンとの反応を容易に検出するために、本発明の抗体若しくは抗原結合性フラグメントを標識することにより該反応を直接検出するが、又は標識二次抗体若しくはビオチン−アビジン複合体等を用いることにより間接的に検出する。本発明で使用可能な標識の例とその検出方法について以下に記載する。
 酵素免疫アッセイの場合には、例えば、ペルオキシダーゼ、β−ガラクトシダーゼ、アルカリフォスファターゼ、グルコースオキシダーゼ、アセチルコリンエステラーゼ、乳酸デヒドロゲナーゼ、アミラーゼ等を用いることができる。また、酵素阻害物質や補酵素等を用いることもできる。これら酵素と抗体との結合は、グルタルアルデヒド、マレイミド化合物等の架橋剤を用いる公知の方法によって行うことができる。
 蛍光免疫アッセイの場合には、例えば、フルオレセインイソチオシアネート(FITC)、テトラメチルローダミンイソチオシアネート(TRITC)等を用いることができる。これらの蛍光標識は、慣用の手法により抗体と結合させることができる。
 放射性免疫アッセイの場合には、例えば、トリチウム、ヨウ素125及びヨウ素131等を用いることができる。放射性標識は、クロラミンT法、ボルトンハンター法等の公知の方法により、抗体に結合させることができる。
 例えば、本発明の抗体又は抗原結合性フラグメントを上記のように標識で直接標識する場合には、サンプルを標識した本発明の抗体又は抗原結合性フラグメントと接触させて、フィブリン−抗体の複合体を形成させる。定量の場合には、未結合の標識抗体を分離した後、結合標識抗体量又は未結合標識抗体量よりサンプル中のフィブリン量を測定することができる。
 また例えば、標識二次抗体を用いる場合には、本発明の抗体又は抗原結合性フラグメントとサンプルとを反応させ(1次反応)、得られた複合体にさらに標識二次抗体を反応させる(2次反応)。1次反応と2次反応は逆の順序で行ってもよいし、同時に行ってもよいし、又は時間をずらして行ってもよい。1次反応及び2次反応により、フィブリン−本発明の抗体−標識二次抗体の複合体、又は本発明の抗体−フィブリン−標識二次抗体の複合体が形成される。そして定量を行う場合には、未結合の標識二次抗体を分離して、結合標識二次抗体量又は未結合標識二次抗体量よりサンプル中のフィブリン量を測定することができる。
 ビオチン−アビジン複合体系を利用する場合には、ビオチン化した抗体又は抗原結合性フラグメントとサンプルとを反応させ、得られた複合体に標識を付加したアビジンを反応させる。アビジンは、ビオチンと特異的に結合することができるため、アビジンに付加した標識のシグナルを検出することによって、抗体とフィブリンとの結合を測定することができる。アビジンに付加する標識は特に限定されるものではないが、例えば酵素標識(ペルオキシダーゼ、アルカリホスファターゼなど)が好ましい。
 標識シグナルの検出もまた、当技術分野で公知の方法に従って行うことができる。例えば、酵素標識を用いる場合には、酵素作用によって分解して発色する基質を加え、基質の分解量を光学的に測定することによって酵素活性を求め、これを結合抗体量に換算し、標準値との比較から抗体量が算出される。基質は、使用する酵素の種類に応じて異なり、例えば酵素としてペルオキシダーゼを使用する場合には、3,3’,5,5’−テトラメチルベンジジン(TMB)、ジアミノベンジジン(DAB)等を、また酵素としてアルカリフォスファターゼを用いる場合には、パラニトロフェノール等を用いることができる。蛍光標識は、例えば蛍光顕微鏡、プレートリーダー等を用いて検出及び定量することができる。放射性標識を用いる場合には、放射性標識の発する放射線量をシンチレーションカウンター等により測定する。
 また本発明は、本発明の抗体又は抗原結合性フラグメントを含む、フィブリンの免疫学的測定用試薬に関する。本発明の免疫学的測定用試薬において、抗体又は抗原結合性フラグメントは標識されていてもよい。また、抗体又は抗原結合性フラグメントは、遊離形態であってもよいし、固相支持体(例えば、メンブレン、ビーズ等)に固定化されていてもよい。
 免疫学的測定用試薬には、本発明の抗体又は抗原結合性フラグメントの他、免疫学的測定方法を実施するために有用な成分が含まれてもよい。そのような成分としては、例えば、免疫アッセイにおいて使用するためのバッファー、サンプル処理用試薬、標識、競合物、二次抗体などが挙げられる。
 本発明の免疫学的測定用試薬を用いることによって、サンプル中のフィブリンの検出を容易かつ簡便に行うことができる。
3.血栓関連疾患の判定
 本発明の抗体又は抗原結合性フラグメントは、上述したように、ヒトフィブリンと特異的に反応するため、フィブリンに関連する疾患又は障害、例えば血栓関連疾患の判定用試薬において用いることができる。本発明において「血栓関連疾患」とは、その疾患又は障害の状態と血栓の存在との間に相関性がある疾患又は障害を意味する。そのような血栓関連疾患としては、限定されるものではないが、梗塞、例えば心筋梗塞、脳梗塞、脳出血、脳塞栓、脳血栓、くも膜下出血、肺梗塞など、並びに癌、例えば膵癌、胃癌、食道癌、結腸直腸癌、大腸癌、卵巣癌、乳癌及び肺癌が含まれる。フィブリンの存在を検出することによって、血栓関連疾患の有無の判定及び血栓関連疾患の位置の特定を行うことができる。
 本発明の抗体又は抗原結合性フラグメントは、特に癌細胞の検出に有用である。例えば、免疫染色に用いることによって癌細胞を染色することができ、癌の診断を確実かつ信頼性をもって行うことができる。
 本発明の判定用試薬は、上述した本発明の抗体又は抗原結合性フラグメントを含むものである。従って、本発明の判定用試薬を用いて、血栓関連疾患(例えば梗塞又は癌)への罹患又はその存在が疑われる被験体から採取したサンプル中に含まれるフィブリンを検出することによって、該被験体の血栓関連疾患の存在及び該被験体における血栓関連疾患の位置を迅速かつ簡便に判定することができる。このような免疫学的測定方法を利用した疾患又は障害の判定用試薬は周知であり、当業者であれば、抗体以外の適当な成分を容易に選択することができる。また本発明の判定用試薬は、免疫学的測定方法を行うための手法であればいずれの手法においても利用することができる。
4.血栓の可視化/in vivoイメージング、血栓部位への送達
 本発明の抗体及び抗原結合性フラグメントは、被験体に投与した場合に、被験体内のフィブリンと結合する。従って、本発明の抗体及び抗原性フラグメントを利用して、被験体におけるフィブリン、すなわち血栓を可視化することが可能である。また、本発明の抗体又は抗原性フラグメントに化合物又は分子を結合させることにより、被験体におけるフィブリン、すなわち血栓部位に該化合物又は分子を送達することが可能である。
 本発明の血栓可視化剤は、標識された本発明の抗体又は抗原結合性フラグメントを含む。標識は、in vivoイメージングの分野において公知の任意の標識を用いることができる。そのような標識としては、蛍光物質、例えばIRDye800シリーズ、フルオレセイン、FITC、蛍光放出金属(152Eu、ランタン系列等)など;化学又は生物発光物質、例えばルミノール、イミダゾール、ルシフェリン、ルシフェラーゼ、緑色蛍光タンパク質(GFP)など;放射性同位体、例えば99mTc、123I、131I、97Ru、67Cu、11C、13Nなど;常磁性同位体、例えば153Gd、157Gd、55Mn、162Dy、52Cr、56Feなど;造影剤、例えばガドリニウム、ガドリニウム錯体、ヨード造影剤などが挙げられる。抗体又は抗原結合性フラグメントと標識との結合は、当技術分野で公知の方法により行うことができ、例えば直接的に化学結合してもよいし、あるいは適当なリンカーを介して間接的に結合してもよい。
 また本発明においては、標識の代わりに薬物若しくはプロドラッグなどの化合物又は分子を本発明の抗体又は抗原結合性フラグメントに結合させることにより、該化合物又は分子を被験体のフィブリン存在部位、すなわち血栓部位に送達することが可能である。そのような薬物又はプロドラッグとしては、公知の血栓溶解剤(例えばウロキナーゼ、ストレプトキナーゼ、組織型プラスミノーゲン活性化因子)などが含まれる。そのような薬物又はプロドラッグの血栓への標的化剤も本発明に包含される。
 さらに本発明は、本発明の抗体又は抗原結合性フラグメントと、抗腫瘍性部分との複合体を提供する。本発明の抗体又は抗原結合性フラグメントは、上述の通り、腫瘍における血栓部位(フィブリン)に結合するため、抗腫瘍性部分と結合させることによって、抗腫瘍性部分を腫瘍に送達することができる。本発明の抗体又は抗原結合性フラグメントと結合させることができる抗腫瘍性部分は、当技術分野で公知の抗腫瘍性部分であれば特に限定されるものではない。抗腫瘍性部分としては、抗癌剤、例えばイリノテカン(CPT−11)、イリノテカンの代謝産物SN−38(10−ヒドロキシ−7−エチルカンプトテシン)、アドリアマイシン、タキソール、5−フルオロウラシル、ニムスチン、ラミニスチン等のアルキル化剤、ゲムシタビン、ヒドロキシカルバミド等の代謝拮抗剤、エトポシド、ビンクリスチン等の植物アルカロイド、マイトマイシン、ブレオマイシン等の抗癌性抗生物質、シスプラチン等の白金製剤、パクリタキセル、アウリスタチン(auristatin)誘導体等のチュブリン標的剤、ソラフェニブ、エルロチニブ等の分子標的剤、メトトレキセート、シトシンアラビノシド、6−チオグアニン、6−メルカプトプリン、シクロフォスファミド、イフォスファミド、ブスルファン等;放射性同位体、例えばホウ素10(10B)、インジウム111(111In)やイットリウム90(90Y)などが挙げられる。抗腫瘍性部分は、本発明の複合体が腫瘍組織中の血栓部位に送達された後、該部位において複合体から遊離し、腫瘍組織全体に到達できる程度の分子量であることが好ましい。
 また、抗体又は抗原結合性フラグメントと抗腫瘍性部分との結合も、当技術分野で公知の方法により行うことができ、直接的結合及び間接的結合のいずれでもよい。例えば、直接的な結合として、共有結合を利用することができる。間接的な結合としては、リンカーを介した結合を利用することができる。
 本発明においては、抗体又は抗原結合性フラグメントと抗腫瘍性部分とがリンカーを介して結合していることが好ましい。リンカーを介して2つの分子が結合することにより、抗腫瘍性部分の抗原性を減弱することができ、被験体への投与に好ましい。リンカーについての一般的な技術は、例えばHermanson,G.T.Bioconjugate Techniques,Academic Press,1996;Harris,J.M.and Zalipsky,S.編,Poly(ethylene glycol),Chemistry and Biological Applications,ACS Symposium Series,1997;Veronese,F.and Harris,J.M.編,Peptide and protein PEGylation.Advanced Drug Delivery Review 54(4),2002に記載されている。
 リンカーとは、2つの化合物を連結する2価以上の基を意味する。本発明において使用することができるリンカーとしては、特に限定されるものではないが、ポリアルキレングリコールリンカー、アルキレン基、ペプチド、糖鎖、及びその他の高分子担体が挙げられる。ポリアルキレングリコールリンカーの構成単位であるアルキレングリコールのアルキレン部分は、炭素数1~3000、好ましくは炭素数2~1000、より好ましくは炭素数2~100である。ポリアルキレングリコールリンカーの分子量は通常30~50000Da、好ましくは500~30000Daである。ポリアルキレングリコールリンカーは、好ましくはポリエチレングリコール(PEG)リンカーである。アルキレン基は、直鎖状又は分枝状のいずれであってもよい。
 またリンカーには、直鎖状のリンカー(2価のリンカー)と分枝状のリンカー
Figure JPOXMLDOC01-appb-I000001
部分と結合し、別の一端に抗フィブリン抗体又は抗原結合性フラグメントを有する。分枝状リンカーは、通常、その各分枝(各鎖)に抗腫瘍性部分を有し、別の一端に抗フィブリン抗体又は抗原結合性フラグメントを有する。
 直鎖状のリンカーの具体的な例としては、式Iのリンカー:
Figure JPOXMLDOC01-appb-I000002
〔式中、PEGはポリエチレングリコール鎖であり、n及びmはエチレングリコール単位の数であり、独立して5~100の整数を表す。〕
が挙げられる。式Iのリンカーは、通常、スクシンイミジル基を有する末端において抗体又は抗原結合性フラグメントと連結し、他の末端において抗腫瘍性部分と連結する。
 さらに、直鎖状のリンカーの具体的な例としては、式IIのリンカー:
Figure JPOXMLDOC01-appb-I000003
〔式中、PEGはポリエチレングリコール鎖であり、xはエチレングリコール単位の数であり、5~100の整数を表す。〕
が挙げられる。式IIのリンカーは、通常、スクシンイミジル基を有する末端において抗体又は抗原結合性フラグメントと連結し、他の末端において抗腫瘍性部分と連結する。
 分枝状のリンカーの具体的な例としては、式IIIのリンカー:
Figure JPOXMLDOC01-appb-I000004
〔式中、PEGはポリエチレングリコール鎖であり、n、m及びqはエチレングリコール単位の数であり、独立して5~100の整数を表す。〕
が挙げられる。式IIIのリンカーは、通常、スクシンイミジル基を有する末端において抗体又は抗原結合性フラグメントと連結し、他の複数の末端において抗腫瘍性部分と連結する。この分枝状のリンカーは、例えば参考例1に記載のように調製することができる。
 リンカーを介して抗体又は抗原結合性フラグメントと抗腫瘍性部分とを結合する技術は、当技術分野において公知である。例えば、抗体又は抗原結合性フラグメントとリンカーとの結合は、共有結合又は非共有結合(イオン結合、疎水性結合など)であり、好ましくは共有結合である。この結合は、本発明の複合体を被験体へ投与した場合に、血液中では抗腫瘍性部分が遊離しにくい結合であることが好ましい。そのような結合としては、マレイミド基とチオール基との結合、ハロエステルとチオールとを反応させて得られる結合、カルボキシル基とアミノ基とのアミド結合、チオール基とチオール基とのジスルフィド結合、アミノ基とアルデヒド基によるシッフ塩基、チオール基とカルボン酸とのチオエステル結合、水酸基とカルボキシル基とのエステル結合、アミノ基とスクアリン酸誘導体(例えばジメチルスクアリン酸)による結合、ジエニルアルデヒド基とアミノ基との結合などが挙げられる。このような結合の具体例としては、リンカーの一端に存在するマレイミド基と、抗体又は抗原結合性フラグメント上のシステイン残基に含まれるチオール基との結合、リンカーの一端に存在するスクシンイミド基と、抗体又は抗原結合性フラグメント上のリジン残基に含まれるアミノ基との脱水置換結合(例えばWO2008/096760号)、リンカーの一端に存在するアミノ基と、抗体又は抗原結合性フラグメント上のアスパラギン酸又はグルタミン酸に含まれるカルボン酸との脱水縮合結合(例えばWSCDIを使用する)などが挙げられる。抗体又は抗原結合性フラグメントとリンカーとの結合の具体的な方法については、例えばWO2010/055950号を参照されたい。
 一方、リンカーと抗腫瘍性部分との結合は、共有結合又は非共有結合(イオン結合、疎水結合など)であり、好ましくは共有結合である。特に、抗腫瘍性部分として抗腫瘍性化合物を用いる場合には、該結合は、本発明の複合体を被験体へ投与した場合に、血液中では抗腫瘍性部分が遊離しにくい結合であることが好ましい。このような観点から、リンカーと抗腫瘍性部分との結合は、限定されるものではないが、好ましくはエステル結合、カルバメート結合、カーボネート結合、チオカルバメート結合であり、より好ましくはエステル結合である。エステル結合の場合は、腫瘍組織内のカルボキシルエステラーゼにより、又は非酵素的に結合が加水分解されて、本発明の複合体から徐放的に抗腫瘍性部分が遊離することが期待される。カルバメート結合の場合は、細胞内に抗体複合体のままエンドサイトーシスされた後、細胞内のカルボキシルエステラーゼで切断され、本発明の複合体から徐放的に抗腫瘍性部分が遊離することが期待される。カーボネート結合の場合は、非酵素的に結合が加水分解されて、本発明の複合体から徐放的に抗腫瘍性部分が遊離することが期待される。チオカルバメート結合の場合は、非酵素的に結合が加水分解されて、本発明の複合体から徐放的に抗腫瘍性部分が遊離することが期待される。
 本発明の複合体において抗腫瘍性部分として抗腫瘍性化合物を用いる場合、抗体又は抗原結合性フラグメント1分子へ結合するリンカーの数は、理論的には特に限定されないが、複合体の安定性や製造容易性等の観点から、通常1~10個、好ましくは1~8個である。
 例示的に抗腫瘍性部分としてSN−38(10−ヒドロキシー7−エチルカンプトテシン)を、リンカーとしてポリエチレングリコールリンカーを使用する場合について具体的に説明するが、他の組み合わせを用いた場合であっても、当業者であれば適宜反応条件を変更することにより、目的とする本発明の複合体を製造することができる。
 (I)先ず、一方の端にカルボキシル基を有し、他の一方の端にBoc、Fmoc等で保護されたアミノ基を有するポリエチレングリコールとSN−38とを脱水縮合させ、SN−38の水酸基にポリエチレングリコールリンカーを導入する。
 (II)一方の端にスクシンイミド基を有し、他の一方の端にマレイミド基を有するポリエチレングリコールと(I)の生成物とを混合し、スクシンイミド基と(I)の生成物のアミノ基とを反応させることにより、ポリエチレングリコールリンカーへマレイミド基を導入する。
 (III)(II)の生成物と抗体又は抗原結合性フラグメントを混合し、(II)の生成物中のマレイミド基と抗体又はフラグメント中のチオール基とを反応させ、(II)の生成物と抗体又はフラグメントとを結合させることにより、本発明の複合体を得る。
 本発明の複合体は、腫瘍組織内のフィブリンに結合して、抗腫瘍性部分を腫瘍に送達することができ、また長い期間にわたり腫瘍組織内に留まり、長い期間にわたって抗腫瘍効果を発揮し続けるという効果を有する。そのため、本発明の複合体は、腫瘍の予防又は治療剤として使用することが可能である。すなわち、本発明の複合体の有効量を被験体に投与することにより、該哺乳動物における腫瘍を予防又は治療することができる。さらに、本発明の複合体は、長い期間にわたり腫瘍組織内に留まり、腫瘍に栄養を与える血管の形成を阻害することによっても、長い期間にわたって抗腫瘍効果を発揮し得る。
 本発明において治療又は予防の対象となる腫瘍は、限定されるものではなく、固形癌、例えば膵癌、胃癌、食道癌、結腸直腸癌、大腸癌、卵巣癌、乳癌及び肺癌などである。
 本発明の複合体は、癌細胞そのものに標的化するのではなく、腫瘍血管から漏出したところに存在するフィブリンに対して標的化する。本発明の抗体は、上述したようにフィブリノーゲンには反応せず、フィブリンへの親和性が極めて高い。そのため、生体親和性の高い抗体−抗腫瘍性部分複合体はEPR効果(enhanced permeability and retention effect)で腫瘍血管から選択的に漏出し(正常血管からは高分子であるゆえに漏出しない)、漏出後腫瘍間質に存在するフィブリンと結合し、そこで足場を形成する。つまり長期間にわたって、本発明の複合体は間質フィブリンに存在し続ける。後述する実施例6に記載するように、抗腫瘍性部分SN−38を本発明の抗体とエステル結合で結合させた場合、腫瘍組織内ではあるが腫瘍細胞外で非特異的に、複合体からSN−38が徐放的に遊離する。SN−38は低分子であるために癌組織内を比較的自由に動きまわり、癌全体にいきわたり、癌細胞を効率よく攻撃することができる。SN−38はその抗腫瘍効果が時間依存性であるために、このような長時間にわたる癌細胞のSN−38への暴露は、効率的に癌細胞を死滅させることができる。
 上述した血栓可視化剤、及び腫瘍の予防又は治療剤を含む本発明の薬剤は、抗体又は抗原結合性フラグメントの他、薬学的に許容される担体又は添加物を共に含むものであってもよい。このような担体及び添加物の例として、水、薬学的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、マンニトール、ソルビトール、ラクトースなどが挙げられる。使用される添加物は、剤形に応じて上記の中から適宜又は組み合わせて選択される。
 本発明の薬剤の投与方法は特に限定されるものではなく、経口投与、又は非経口投与、例えば皮下投与、皮内投与、筋肉内投与、静脈内投与、経皮投与、直腸投与、経鼻投与などにより行うことができる。
 本発明の薬剤を経口投与する場合は、錠剤、カプセル剤(硬カプセル剤、軟カプセル剤、マイクロカプセルなど)、顆粒剤、散剤、丸剤、トローチ剤、内用水剤、液剤、懸濁剤、乳剤、シロップ剤などのいずれのものであってもよく、使用する際に再溶解させる乾燥生成物にしてもよい。また、本発明の薬剤を非経口投与する場合は、例えば静脈内注射(点滴を含む)、筋肉内注射、腹腔内注射及び皮下注射用の注射剤(例えば溶液、乳剤、懸濁剤)、軟膏剤(特に眼軟膏剤)、クリーム剤、座剤、パップ剤、点眼剤、点鼻剤、吸入剤、リニメント剤、エアゾル剤などの外用剤などの製剤形態を選択することができ、注射剤の場合は単位投与量アンプル又は多投与量容器の状態で提供される。
 これらの各種製剤は、医薬において通常用いられる賦形剤、増量剤、結合剤、湿潤剤、崩壊剤、滑沢剤、界面活性剤、分散剤、緩衝剤、pH調整剤、保存剤、溶解補助剤、防腐剤、矯味矯臭剤、吸収促進剤、無痛化剤、安定化剤、等張化剤などを適宜選択し、常法により製造することができる。
 本発明の薬剤に配合する抗体若しくは抗原結合性フラグメント又は複合体は、抗体の種類、複合体及び複合体に含まれる抗腫瘍性部分の種類、その用途、剤形、投与経路などにより異なるが、例えば総重量を基準として1~99重量%、好ましくは5~90%としうる。
 また、本発明の薬剤の投与量及び投与間隔は、薬剤に含まれる抗体又は抗原結合性フラグメントの種類、複合体に含まれる抗腫瘍性部分の種類、投与対象、被験体の年齢及び体重、投与経路、投与回数により異なり、広範囲に変更することができる。
 本発明の薬剤を投与する被験体は、特に限定されるものではなく、哺乳動物、例えばヒト、家畜(ウシ、ブタなど)、愛玩動物(イヌ、ネコなど)、実験動物(マウス、ラット、サルなど)などが含まれる。特に、血栓関連疾患の存在が疑われる被験体及び血栓関連疾患を有する被験体に使用することが好ましい。また本発明の複合体を含む薬剤については、特に腫瘍の存在が疑われる被験体及び腫瘍を有する被験体に使用することが好ましい。
 血栓可視化剤の場合には、薬剤の投与後、被験体における抗体又は抗原結合性フラグメントの存在又は位置を、標識を指標として可視化する。好ましくは、抗体又は抗原結合フラグメントの存在又は位置は、公知の画像化手法により可視化する。画像化手法は、使用する標識、被験体の種類、画像化する部位などにより異なるが、コンピュータ断層撮影法(CT)、ポジトロン断層法(PET)、シングルフォトエミッション断層法(SPECT)、核磁気共鳴画像法(MRI)、その他のin vivoイメージングシステムを用いることができる。これにより、抗体又は抗原結合性フラグメントの標識に基づいて、被験体内の血栓の存在又は位置を可視化することができる。
5.改変型抗フィブリン抗体又は抗原結合性フラグメントの作製
 本発明の抗フィブリン抗体又は抗原結合性フラグメントに基づいて、所望の活性を示す改変型の抗体又は抗原結合性フラグメントを作製することができる。具体的には、本発明の抗フィブリン抗体又は抗原結合性フラグメントのアミノ酸配列を改変して改変型の抗体又は抗原結合性フラグメントを調製し、得られた改変型抗体又は抗原結合性フラグメントの活性を判定する。アミノ酸配列の改変は、特に限定されるものではなく、アミノ酸配列における1~100個、例えば1~50個のアミノ酸の欠失、置換、付加若しくは挿入、別のペプチドの融合などが含まれる。このようなアミノ酸配列の改変、及び改変されたアミノ酸配列を有する抗体又は抗原結合性フラグメントの調製は、当技術分野で公知の方法により行うことができる。
 得られた改変型抗体又は抗原結合性フラグメントがフィブリンと結合するか否かは、上述のような公知の方法により判定することができる。場合により、改変型抗体又は高原結合性フラグメントのフィブリン中和活性や、フィブリノーゲンとの結合性についても調べてもよい。このようにして得られる改変型抗体又は抗原結合性フラグメントも、フィブリンとの結合活性を有するため、上述したような用途に有用である。
Hereinafter, the present invention will be described in detail. This application claims the priority of the Japan patent application 2010-139572 for which it applied on June 18, 2010, and includes the content described in the specification and / or drawing of the said patent application. .
The present invention provides novel antibodies against fibrin. Fibrin is a protein involved in blood coagulation, and fibrin monomer is produced by the action of thrombin from fibrinogen present in plasma. This fibrin monomer forms a polymer and gels, thereby forming an insoluble fibrin clot, that is, a thrombus. There are numerous reports on the structure and function of fibrin, which are known in the art. The present invention relates to antibodies and antigen-binding fragments that specifically bind to fibrin and their uses.
1. Antibodies and antigen-binding fragments against fibrin
The antibody according to the present invention is characterized in that it binds to fibrin and does not bind to fibrinogen. The antibodies and antigen-binding fragments according to the present invention comprise the following heavy chain (heavy chain) complementarity determining regions (CDRs) and light chain (light chain) CDRs:
(A) an H chain CDR1 comprising the amino acid sequence of FTNYGMN (SEQ ID NO: 1) or an amino acid sequence comprising one or several conservative amino acid substitutions in the amino acid sequence;
(B) H chain CDR2 consisting of the amino acid sequence of WINTYTGEATYA (SEQ ID NO: 2) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
(C) the heavy chain CDR3 consisting of the amino acid sequence of LMDY (SEQ ID NO: 3) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence;
(D) an L chain CDR1 comprising the amino acid sequence of KASQDINKYIA (SEQ ID NO: 4) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
(E) an L chain CDR2 consisting of the amino acid sequence of YTSTLQP (SEQ ID NO: 5) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence, and
(F) L chain CDR3 consisting of the amino acid sequence of LQYDNLTW (SEQ ID NO: 6) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence.
In the present invention, “antibody” and “antigen-binding fragment” refer to an entire antibody molecule that specifically binds to fibrin or a fragment thereof (for example, Fab, Fab ′, F (ab ′)). 2 , ScFv and other fragments), which may be polyclonal antibodies or monoclonal antibodies. In the present invention, “antibody” and “antigen-binding fragment” also include chimeric antibodies, humanized antibodies and human antibodies, and fragments thereof.
In the present invention, an antibody “specifically binds” to fibrin means that it binds to fibrin with a higher affinity than its affinity for other peptides or proteins. As used herein, “high affinity” means an affinity that is high enough to allow fibrin to be detected separately from other peptides or proteins by methods known in the art. Coupling constant (K a ) Is at least 10 7 M -1 , Preferably at least 10 8 M -1 , More preferably 10 9 M -1 Or means a binding affinity such that it is higher.
In the present invention, the binding (reactivity) to fibrin and the binding (reactivity) to fibrinogen can be determined by a method known in the art, for example, it can be determined using a known ELISA method. (Wu, Sau-Ching et al. Applied and Environmental Microbiology 68: 3261-3269, 2002).
In addition, the antibody and antigen-binding fragment according to the present invention can bind to mouse and human fibrin but not to mouse and human fibrinogen. Therefore, test data obtained using this antibody in mice can be extrapolated to humans.
In the present invention, “conservative amino acid substitution” is known in the art and refers to substitution of an amino acid with an amino acid having similar properties to that amino acid. It is known in the art that a protein containing an amino acid sequence containing one or several conservative amino acid substitutions in a specific amino acid sequence retains the same activity as a protein containing that specific amino acid sequence. Therefore, in the present invention, an antibody and an antigen-binding fragment containing an amino acid sequence having such a conservative amino acid substitution can be used in the antibody of the present invention as long as the desired activity, that is, binding to fibrin is retained. included. For example, neutral (polar) amino acids (Asn, Ser, Gln, Thr, Tyr, Cys), neutral (nonpolar, ie hydrophobic) amino acids (Gly, Trp, Met, Pro, Phe, Ala, Val, Leu, Ile), acidic (polar) amino acids (Asp, Glu), basic (polar) amino acids (Arg, His, Lys) are replaced with amino acids having the same properties.
Hereinafter, a method for producing the antibody or antigen-binding fragment thereof according to the present invention will be described in detail.
The antibody of the present invention can be prepared by using an immunogen obtained by dissolving a pulverized fibrin clot in a buffer and, if necessary, adding an adjuvant for effective immunization. Examples of the adjuvant include commercially available Freund's complete adjuvant (FCA) and Freund's incomplete adjuvant (FIA). These adjuvants can be used alone or in combination.
When producing monoclonal antibodies, the immunogen is administered to mammals such as mice, rabbits, rats and the like. Immunization is performed mainly by injecting intravenously, subcutaneously, intraperitoneally, or into the footpad. The interval between immunizations is not particularly limited, and immunization is performed 1 to 5 times at intervals of several days to several weeks. Then, antibody-producing cells are collected 3 to 20 days after the final immunization day. Examples of antibody-producing cells include lymph node cells, spleen cells, peripheral blood cells and the like.
In order to obtain a hybridoma, cell fusion between antibody-producing cells and myeloma cells is performed. Generally available cell lines can be used as myeloma cells to be fused with antibody-producing cells. The cell line to be used has drug selectivity and cannot survive in a HAT selection medium (including hypoxanthine, aminopterin, and thymidine) in an unfused state, but can survive only in a state fused with antibody-producing cells. Those having the following are preferred. Examples of myeloma cells include P3X63-Ag. 8). Examples include mouse myeloma cell lines such as U1 (P3U1) and NS-I.
Next, the myeloma cell and the antibody-producing cell are fused. In cell fusion, antibody-producing cells and myeloma cells are mixed in a medium for animal cell culture such as serum-free DMEM or RPMI-1640 medium, and fused in the presence of a cell fusion promoter (eg, polyethylene glycol). Perform the reaction. Alternatively, cell fusion can be performed using a commercially available cell fusion device utilizing electroporation.
The target hybridoma is selected from the cells after cell fusion treatment. For example, the cell suspension is appropriately diluted with a fetal bovine serum-containing RPMI-1640 medium or the like and then spread on a microtiter plate. A selective medium (for example, HAT medium) is added to each well, and thereafter cell culture is performed by appropriately replacing the selective medium. As a result, cells that grow about 10 to 30 days after the start of culture in the selective medium can be obtained as hybridomas.
Next, the culture supernatant of the hybridoma that has grown is screened for the presence of antibodies that react with fibrin. The screening of hybridomas may be carried out in accordance with an ordinary method, and for example, enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), or radioimmunoassay (RIA) can be employed. Cloning of the fused cells is performed by a limiting dilution method or the like to establish a hybridoma that produces the target monoclonal antibody.
As a method for collecting the monoclonal antibody from the established hybridoma, a normal cell culture method or ascites formation method can be employed. When antibody purification is required in the antibody collection method, known methods such as ammonium sulfate salting-out method, ion exchange chromatography, gel filtration, affinity chromatography are appropriately selected, or a combination thereof is used. Can be purified.
The globulin type of the monoclonal antibody that can be used in the present invention is not particularly limited as long as it has a specific binding activity to fibrin, and may be any of IgG, IgM, IgA, IgE, and IgD. And IgM are preferred.
According to the above-described method for producing a monoclonal antibody, the present inventors established a hybridoma cell producing a mouse anti-fibrin IgM antibody. In the present invention, it is preferable to use an antibody produced from the hybridoma cell 102-10 having the accession number NITE BP-923. The antibody produced from this hybridoma cell 102-10 includes an H chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 8 and an L chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 10. The H chain CDRs 1 to 3 of this antibody have the amino acid sequences shown in SEQ ID NOs: 1 to 3, respectively, and the L chain CDRs 1 to 3 have the amino acid sequences shown in SEQ ID NOs: 4 to 6, respectively.
The antibody of the present invention may be an antibody that binds to an epitope to which the antibody produced by the hybridoma cell 102-10 binds.
The antibody of the present invention can also be produced by splicing a gene from an antibody molecule having antigen specificity to fibrin prepared as described above together with a gene from a human antibody molecule having an appropriate biological activity. Chimeric antibodies (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81: 6851-6855; Neuberger et al., 1984, Nature, 312: 604-608; Takeda et al., 1985, Nature, 314) : 452-454). Also, single chain antibodies (US Pat. No. 4,946,778; Bird, 1988, Science 242: 423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85: 5879-5883; Ward et al., 1989, Nature 334: 544-546), F (ab ′). 2 Fragments, Fab fragments, single chain antibodies and the like can also be produced using techniques known in the art (eg, digestion with papain or trypsin).
The above-described antibodies and antigen-binding fragments of the present invention can also be prepared using genetic engineering techniques.
For example, the monoclonal antibody is prepared from the nucleic acid of the hybridoma cell line prepared as described above, the nucleic acid including the base sequence encoding the antibody containing the H chain or L chain of the monoclonal antibody produced by the hybridoma. can do. These nucleic acids can be obtained from hybridomas by ordinary genetic engineering techniques, and their base sequences can also be determined by known base sequencing methods. For example, mRNA is extracted from a hybridoma cell line and cDNA is synthesized. The synthesized cDNA is inserted into a vector such as a phage or a plasmid to prepare a cDNA library. From the library, a recombinant phage or recombinant plasmid having cDNA encoding a heavy chain variable region (VH) using an antibody of a non-human animal, for example, a mouse antibody constant region portion or variable region portion as a probe, and Recombinant phages or recombinant plasmids having cDNA encoding the light chain variable region (VL) are each isolated. Determine the entire base sequence of the H chain variable region (VH) and L chain variable region (VL) of the target antibody on the recombinant phage or recombinant plasmid, and estimate the entire amino acid sequences of VH and VL from the base sequence . As an example, the base sequences of nucleic acids encoding the heavy chain variable region and the light chain variable region of the monoclonal antibody produced by the hybridoma cell line 102-10 are shown in SEQ ID NO: 7 and SEQ ID NO: 9, respectively.
Further, the nucleic acid encoding the H chain variable region and the L chain variable region may be a mutant of the above base sequence (natural mutant or artificial mutant). For example, a mutant encoding a protein having a deletion, substitution, addition or insertion of one or several bases and binding to fibrin in the base sequence of a nucleic acid encoding the H chain or L chain variable region Can be used. Here, “one or several” refers to 1 to 20, preferably 1 to 15, more preferably 1 to 10. In addition, for example, a variant that encodes a protein that hybridizes under stringent conditions to a complementary sequence of a base sequence of a nucleic acid encoding an H chain or L chain variable region and binds to fibrin can be used. Here, the “stringent condition” is not limited to this, but, for example, at 30 ° C. to 50 ° C., 3-4 × SSC (150 mM sodium chloride, 15 mM sodium citrate, pH 7.2), Hybridization in 0.1 to 0.5% SDS for 1 to 24 hours, more preferably at 40 ° C. to 45 ° C., 3.4 × SSC, hybridization in 0.3% SDS for 1 to 24 hours, And subsequent cleaning. Examples of washing conditions include conditions such as continuous washing at room temperature with a solution containing 2 × SSC and 0.1% SDS, and a 1 × SSC solution and a 0.2 × SSC solution. However, the combinations of the above conditions are exemplary, and those skilled in the art will understand the above or other factors that determine the stringency of hybridization (for example, hybridization probe concentration, length and GC content, hybridization reaction). It is possible to achieve the same stringency as above by appropriately combining the time and the like.
Chimeric antibodies are described, for example, in Morrison et al. , 1984, Proc. Natl. Acad. Sci. 81: 6851-6855; Neuberger et al. , 1984, Nature, 312: 604-608; Takeda et al. , 1985, Nature, 314: 452-454. For example, a chimeric antibody can be prepared by splicing the gene of a mouse monoclonal antibody of the above hybridoma cell line together with the gene of an antibody molecule derived from another mammal. Examples of the chimeric antibody include a human chimeric antibody having the H chain and / or L chain variable region of the mouse monoclonal antibody and a human immunoglobulin constant region. In the present invention, for the production of a chimeric antibody, nucleic acid base sequences (SEQ ID NO: 7 and SEQ ID NO: 9, respectively) encoding an H chain variable region and / or an L chain variable region, and variants of the base sequence are used. Can be used.
The humanized antibody has, for example, a part of a variable region including a variable region or a hypervariable region derived from a mouse monoclonal antibody, and a constant region of a human immunoglobulin, or a part of a variable region of a human immunoglobulin and a constant region. In the case of a humanized antibody, it is desirable that the antibody-derived antibody region is less than about 10%. In the present invention, the humanized antibody has, for example, an amino acid sequence containing at least one complementarity determining region (CDR1, 2 and 3) in the amino acid sequence of the heavy chain variable region and / or the light chain variable region of the mouse monoclonal antibody. Can be included. Specifically, the variable region derived from a mouse monoclonal antibody has the following CDR:
(A) an H chain CDR1 comprising the amino acid sequence of FTNYGMN (SEQ ID NO: 1) or an amino acid sequence comprising one or several conservative amino acid substitutions in the amino acid sequence;
(B) H chain CDR2 consisting of the amino acid sequence of WINTYTGEATYA (SEQ ID NO: 2) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
(C) the heavy chain CDR3 consisting of the amino acid sequence of LMDY (SEQ ID NO: 3) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence;
(D) an L chain CDR1 comprising the amino acid sequence of KASQDINKYIA (SEQ ID NO: 4) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
(E) an L chain CDR2 consisting of the amino acid sequence of YTSTLQP (SEQ ID NO: 5) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence, or
(F) L chain CDR3 consisting of the amino acid sequence of LQYDNLTW (SEQ ID NO: 6) or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence
At least one of them.
SEQ ID NOs: 1 to 3 correspond to amino acids 48 to 54, 69 to 80, and 118 to 121 of the heavy chain variable region amino acid sequence shown in SEQ ID NO: 8, respectively. These correspond to amino acids 44 to 54, 70 to 76 and 109 to 116 of the L chain variable region amino acid sequence shown in SEQ ID NO: 10, respectively.
A human acceptor antibody sequence suitable for the mouse donor sequence (CDR sequence) can be identified by computer comparison between the amino acid sequence of the mouse variable region and the sequence of a known human antibody H chain or L chain. A variable domain from a human antibody whose framework sequence exhibits high sequence identity with the framework regions of the murine light chain variable region and the heavy chain variable region is a Kabat that utilizes NCBI BLAST (USA) using the murine framework sequence. Can be identified by querying the database. At this time, an acceptor sequence that shares 80% or more, preferably 90% or more of the sequence identity with the mouse donor sequence can be selected. Based on the nucleotide sequences encoding the human acceptor antibody H chain and L chain sequences thus identified, recombination is performed so that a part of the variable region is replaced with that of the mouse antibody.
In addition, antigen-binding fragments such as Fab, F (ab ′) 2 Those skilled in the art can appropriately design expression vectors for scFv fragments, single chain antibodies, and the like.
Subsequently, the nucleic acid encoding the heavy chain and / or light chain of the antibody or antigen-binding fragment or a variant thereof is cloned and incorporated into an appropriate expression vector. Examples of the expression vector include pAGE107 (Cytotechnology, 3, 133 (1990)), pAGE103 (J. Biochem., 101, 1307 (1987)), pQCxID (Clontech), pQCxIH (Clontech) and the like. In addition to the nucleic acid encoding the antibody or antigen-binding fragment, a promoter and enhancer, a selectable marker gene, and the like may be inserted into the expression vector. Examples of such promoters and enhancers include SV40 early promoter and enhancer, Moloney murine leukemia virus LTR promoter and enhancer, and immunoglobulin heavy chain promoter and enhancer. Examples of the selection marker gene include a neomycin resistance gene, an ampicillin resistance gene, and a chloramphenicol resistance gene.
The expression vector may be one in which both nucleic acids encoding the H chain and L chain are incorporated into a single expression vector, or an expression vector and / or L chain in which a nucleic acid encoding the H chain is incorporated. It may be an expression vector incorporating a nucleic acid to be encoded.
When constructing an expression vector for a human chimeric antibody, for example, a restriction enzyme is previously added upstream of the gene encoding the H chain constant region (CH) and L chain constant region (CL) of the human antibody of the chimeric antibody expression vector. A recognition sequence is provided, and cDNA encoding the variable region of the mouse antibody is inserted into the cloning site comprising this recognition sequence.
When constructing an expression vector for a humanized antibody, the DNA sequence encoding the amino acid sequence of the framework region (FR) of the variable region of the human antibody and the DNA sequence encoding the amino acid sequence of the CDR of the variable region of the mouse antibody By ligating, a DNA sequence encoding the amino acid sequence of VH and the amino acid sequence of VL is designed. Subsequently, cDNAs encoding the humanized antibody VH and VL can be inserted upstream of the human antibody CH and CL encoding genes to construct an expression vector for a humanized antibody.
The expression vector constructed as described above is introduced into an appropriate host cell to obtain a transformant. The host to be used is not particularly limited as long as it can express a nucleic acid on an introduced expression vector and produce an antibody or an antigen-binding fragment. Examples include bacteria (such as E. coli), yeast (such as Saccharomyces cerevisiae), animal cells (such as COS cells and CHO cells), and insects (such as silkworms, Sf9 cells, and Sf21 cells).
The method for introducing a nucleic acid or expression vector into bacteria or yeast is not particularly limited as long as it is a method for introducing DNA into bacteria or yeast, and examples thereof include an electroporation method, a spheroplast method, and a lithium acetate method. Examples of the method for introducing a nucleic acid or expression vector into animal cells or insect cells include an electroporation method, a calcium phosphate method, and a lipofection method.
A transformant is selected by utilizing the property of a marker gene constituted in the nucleic acid to be introduced. For example, when a neomycin resistance gene is used, cells showing resistance to the G418 drug are selected.
The antibody or antigen-binding fragment of the present invention can be obtained by culturing the transformant introduced with the nucleic acid encoding it in a medium and collecting it from the culture. “Culture” means any of culture supernatant, cultured cells, or cell lysate. The method of culturing the transformant in a medium is performed according to a usual method used for culturing a host.
As a medium for cultivating a transformant obtained using bacteria or yeast as a host, as long as it contains a carbon source, a nitrogen source, inorganic salts, and the like and can culture the transformant efficiently, Either a natural medium or a synthetic medium may be used. The culture is usually performed at about 20 to 40 ° C. for about 1 to 24 hours under aerobic conditions such as shaking culture or aeration and agitation culture. During the culture period, the pH is kept near neutral. During culture, an antibiotic such as ampicillin or tetracycline may be added to the medium as necessary. As a medium for culturing a transformant obtained using an animal cell as a host, a generally used RPMI 1640 medium, DMEM medium, a medium obtained by adding fetal calf serum or the like to these mediums, or the like is used. Culture is usually 5% CO 2 In the presence, it is carried out at about 37 ° C. for about 1 to 7 days. During culture, antibiotics such as kanamycin and penicillin may be added to the medium as necessary.
After the culture, when the antibody or antigen-binding fragment is produced intracellularly or in cells, the protein is extracted by disrupting the cells or cells. When the antibody or antigen-binding fragment is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like.
The collected antibody or antigen-binding fragment is obtained by methods well known in the art, for example, chromatography using a protein A or protein G column, ion exchange chromatography, hydrophobic chromatography, ammonium sulfate salting out method, gel filtration, affinity chromatography. It can refine | purify by combining etc. suitably.
The molecular weight of the purified antibody or antigen-binding fragment can be measured by polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting or the like. Further, the reactivity of the obtained antibody or antigen-binding fragment, that is, the binding activity to fibrin and optionally the binding activity to fibrinogen can be measured by the above-described method or the like.
2. Reagent for immunoassay of fibrin
It is possible to detect fibrin in a sample using the antibody prepared as described above. This detection can be performed based on any method as long as it is a measurement method using an antibody, that is, an immunological measurement method. For example, fibrin can be detected by immunohistochemical staining and immunoelectron microscopy, as well as immunoassay (enzyme immunoassay (ELISA, EIA), fluorescent immunoassay, radioimmunoassay (RIA), immunochromatography, Western blotting, etc.) Etc. can be implemented.
The target sample is not particularly limited. For example, a tissue or cell sample (cancer tissue or cell such as stomach, duodenum, large intestine, pancreas, gallbladder, bile duct, bronchi, lung, etc.), biological fluid sample ( Gastric mucus, duodenal juice, pancreatic juice, bile, ascites, sputum, bronchoalveolar lavage fluid, blood, serum, plasma, etc.). For example, in the case of immunostaining, it is preferable to use a tissue sample (biopsy specimen, excised specimen) or cytodiagnosis sample as a sample.
In the immunological measurement method of the present invention, fibrin is detected by binding fibrin in a sample to the antibody or antigen-binding fragment of the present invention and detecting the binding. In the present invention, “detection” includes not only detecting the presence or absence of fibrin but also quantitatively detecting fibrin and immunostaining fibrin.
An immunoassay for fibrin typically involves contacting a sample to be tested with an antibody or antigen-binding fragment according to the present invention and binding the bound antibody or antigen-binding fragment using techniques known in the art. Including detecting. “Contact” means that the fibrin present in the sample and the antibody or antigen-binding fragment according to the present invention can be brought into close proximity so as to be able to bind. Operations such as applying a solution, immersing a solid sample in an antibody-containing solution, and mixing a liquid sample and an antibody-containing solution are included.
The immunoassay may be performed in either a liquid phase system or a solid phase system. Further, the format of the immunoassay is not limited, and a direct solid phase method, a sandwich method, a competitive method, or the like may be used.
The antibodies or antigen-binding fragments according to the invention can also be used histologically for in situ detection of fibrin, such as immunohistochemical staining (eg immunostaining) or immunoelectron microscopy. is there. In situ detection can be performed by excising a histological sample from a subject (such as a biopsy tissue sample, a paraffin-embedded section of tissue) and contacting it with a labeled antibody or antigen-binding fragment.
The operation method of the immunoassay can be performed by a known method (Ausubel, FM, et al., Short Protocols in Molecular Biology, Chapter 11 "immunology" John Wiley & Sons, Inc. 1995). Alternatively, the complex of fibrin and antibody may be separated by a known separation means (chromatography, salting-out method, alcohol precipitation method, enzyme method, solid phase method, etc.) and the label signal may be detected. .
As an example of an immunoassay, for example, when a solid phase system is used, an antibody or an antigen-binding fragment may be immobilized on a solid support or carrier (resin plate, membrane, bead, etc.), or a sample is immobilized. May be. For example, an antibody or antigen-binding fragment is immobilized on a solid support, and the support is washed with an appropriate buffer, and then treated with a sample. Next, the solid support is washed a second time with a buffer to remove unbound antibody or antigen-binding fragment. The binding of the fibrin in the sample to the antibody or antigen-binding fragment can be detected by detecting the bound antibody or antigen-binding fragment on the solid support by a conventional means. Alternatively, the solid sample is treated with a solution containing the antibody or antigen-binding fragment, followed by washing with a buffer to remove unbound antibody or antigen-binding fragment, and then binding on the solid sample. Antibodies or antigen-binding fragments can be detected by conventional means.
The binding activity of the antibody can be measured according to a well-known method. A person skilled in the art can determine an effective and optimal measurement method for each assay according to the type and format of the immunoassay employed, the type of label used, the target of the label, and the like.
In the present invention, in order to easily detect the reaction between the antibody or antigen-binding fragment of the present invention and fibrin present in a sample, the reaction is performed by labeling the antibody or antigen-binding fragment of the present invention. Although it detects directly, it detects indirectly by using a labeled secondary antibody or a biotin-avidin complex. Examples of labels that can be used in the present invention and detection methods thereof are described below.
In the case of enzyme immunoassay, for example, peroxidase, β-galactosidase, alkaline phosphatase, glucose oxidase, acetylcholinesterase, lactate dehydrogenase, amylase and the like can be used. Moreover, an enzyme inhibitor, a coenzyme, etc. can also be used. These enzymes and antibodies can be bound by a known method using a cross-linking agent such as glutaraldehyde or maleimide compound.
In the case of a fluorescent immunoassay, for example, fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC) or the like can be used. These fluorescent labels can be bound to antibodies by conventional techniques.
For radioimmunoassay, for example, tritium, iodine 125 And iodine 131 Etc. can be used. The radioactive label can be bound to the antibody by a known method such as the chloramine T method or the Bolton Hunter method.
For example, when the antibody or antigen-binding fragment of the present invention is directly labeled with a label as described above, the sample is contacted with the labeled antibody or antigen-binding fragment of the present invention, and the fibrin-antibody complex is prepared. Let it form. In the case of quantification, the amount of fibrin in the sample can be measured from the amount of bound labeled antibody or the amount of unbound labeled antibody after separating unbound labeled antibody.
For example, when using a labeled secondary antibody, the antibody or antigen-binding fragment of the present invention is reacted with a sample (primary reaction), and the labeled complex is further reacted with the resulting complex (2 Next reaction). The primary reaction and the secondary reaction may be performed in the reverse order, may be performed simultaneously, or may be performed at different times. By the primary reaction and the secondary reaction, a fibrin-antibody-labeled secondary antibody complex of the present invention or an antibody-fibrin-labeled secondary antibody complex of the present invention is formed. When quantification is performed, unbound labeled secondary antibody is separated, and the amount of fibrin in the sample can be measured from the amount of bound labeled secondary antibody or the amount of unbound labeled secondary antibody.
When the biotin-avidin complex system is used, a biotinylated antibody or antigen-binding fragment is reacted with the sample, and the resulting complex is reacted with avidin. Since avidin can specifically bind to biotin, the binding between the antibody and fibrin can be measured by detecting the signal of the label added to avidin. Although the label added to avidin is not particularly limited, for example, an enzyme label (peroxidase, alkaline phosphatase, etc.) is preferable.
Detection of the labeled signal can also be performed according to methods known in the art. For example, in the case of using an enzyme label, a substrate that develops color by degradation by enzymatic action is added, and the enzyme activity is obtained by optically measuring the amount of degradation of the substrate. The amount of antibody is calculated from the comparison. The substrate varies depending on the type of enzyme used. For example, when peroxidase is used as the enzyme, 3,3 ′, 5,5′-tetramethylbenzidine (TMB), diaminobenzidine (DAB), etc. When alkaline phosphatase is used as the enzyme, paranitrophenol or the like can be used. The fluorescent label can be detected and quantified using, for example, a fluorescence microscope or a plate reader. When a radioactive label is used, the radiation dose emitted by the radioactive label is measured with a scintillation counter or the like.
The present invention also relates to a reagent for immunoassay of fibrin comprising the antibody or antigen-binding fragment of the present invention. In the immunoassay reagent of the present invention, the antibody or antigen-binding fragment may be labeled. The antibody or antigen-binding fragment may be in a free form, or may be immobilized on a solid support (for example, a membrane, a bead, etc.).
In addition to the antibody or antigen-binding fragment of the present invention, the immunoassay reagent may contain components useful for carrying out the immunoassay method. Such components include, for example, buffers for use in immunoassays, sample processing reagents, labels, competitors, secondary antibodies, and the like.
By using the immunological measurement reagent of the present invention, fibrin in a sample can be detected easily and simply.
3. Determination of thrombosis-related diseases
Since the antibody or antigen-binding fragment of the present invention specifically reacts with human fibrin as described above, it can be used in a reagent for determining a fibrin-related disease or disorder such as a thrombosis-related disease. In the present invention, “thrombosis-related disease” means a disease or disorder in which there is a correlation between the state of the disease or disorder and the presence of a thrombus. Such thrombosis-related diseases include, but are not limited to, infarcts such as myocardial infarction, cerebral infarction, cerebral hemorrhage, cerebral embolism, cerebral thrombosis, subarachnoid hemorrhage, pulmonary infarction and the like, as well as cancers such as pancreatic cancer, gastric cancer, esophagus Cancer, colorectal cancer, colon cancer, ovarian cancer, breast cancer and lung cancer are included. By detecting the presence of fibrin, it is possible to determine the presence or absence of a thrombus-related disease and specify the position of the thrombus-related disease.
The antibody or antigen-binding fragment of the present invention is particularly useful for detecting cancer cells. For example, cancer cells can be stained by using for immunostaining, and cancer diagnosis can be performed reliably and reliably.
The determination reagent of the present invention contains the above-described antibody or antigen-binding fragment of the present invention. Therefore, by using the determination reagent of the present invention, fibrin contained in a sample collected from a subject collected from a subject suspected of suffering from or suspected of having a thrombus-related disease (for example, infarction or cancer) is obtained. The presence of a thrombus-related disease and the position of the thrombus-related disease in the subject can be determined quickly and easily. Reagents for determining diseases or disorders using such immunological measurement methods are well known, and those skilled in the art can easily select appropriate components other than antibodies. Further, the determination reagent of the present invention can be used in any technique as long as it is a technique for performing an immunological measurement method.
4). Visualization of thrombus / in vivo imaging, delivery to thrombus site
The antibodies and antigen-binding fragments of the invention bind to fibrin in a subject when administered to the subject. Therefore, it is possible to visualize fibrin, ie, a thrombus in a subject, using the antibody and antigenic fragment of the present invention. It is also possible to deliver a compound or molecule to a fibrin in a subject, ie, a thrombus site, by binding the compound or molecule to an antibody or antigenic fragment of the invention.
The thrombus visualization agent of the present invention contains a labeled antibody or antigen-binding fragment of the present invention. As the label, any label known in the field of in vivo imaging can be used. Such labels include fluorescent materials such as IRDye800 series, fluorescein, FITC, fluorescent emitting metals ( 152 Eu, lanthanum series, etc.); chemical or bioluminescent substances such as luminol, imidazole, luciferin, luciferase, green fluorescent protein (GFP), etc .; radioisotopes, such as 99m Tc, 123 I, 131 I, 97 Ru, 67 Cu, 11 C, 13 N, etc .; paramagnetic isotopes, such as 153 Gd, 157 Gd, 55 Mn, 162 Dy, 52 Cr, 56 Fe and the like; contrast agents such as gadolinium, gadolinium complexes, and iodine contrast agents. The antibody or the antigen-binding fragment can be bound to the label by a method known in the art, for example, it can be directly chemically bound or indirectly bound through an appropriate linker. May be.
In the present invention, a compound or molecule such as a drug or prodrug is bound to the antibody or antigen-binding fragment of the present invention in place of the label, so that the compound or molecule is present in the fibrin-existing site of the subject, that is, the thrombus site Can be delivered to. Such drugs or prodrugs include known thrombolytic agents (for example, urokinase, streptokinase, tissue type plasminogen activator) and the like. Such drug or prodrug targeting agents to the thrombus are also encompassed by the present invention.
The present invention further provides a complex of the antibody or antigen-binding fragment of the present invention and an antitumor moiety. Since the antibody or antigen-binding fragment of the present invention binds to a thrombus site (fibrin) in a tumor as described above, the anti-tumor moiety can be delivered to the tumor by binding to the anti-tumor moiety. The antitumor moiety that can be bound to the antibody or antigen-binding fragment of the present invention is not particularly limited as long as it is an antitumor moiety known in the art. Antitumor moieties include alkylation of anticancer agents such as irinotecan (CPT-11), irinotecan metabolite SN-38 (10-hydroxy-7-ethylcamptothecin), adriamycin, taxol, 5-fluorouracil, nimustine, laministin and the like. Drugs, antimetabolites such as gemcitabine and hydroxycarbamide, plant alkaloids such as etoposide and vincristine, anticancer antibiotics such as mitomycin and bleomycin, platinum preparations such as cisplatin, tubulin targeting agents such as paclitaxel and auristatin derivatives , Sorafenib, erlotinib and other molecular targeting agents, methotrexate, cytosine arabinoside, 6-thioguanine, 6-mercaptopurine, cyclophosphamide, ifosfamide, busulf Emissions, and the like; radioisotopes, such as boron 10 ( 10 B), indium 111 ( 111 In) and Yttrium 90 ( 90 Y). The antitumor moiety is preferably of a molecular weight such that after the complex of the present invention is delivered to the thrombus site in the tumor tissue, it is released from the complex at that site and can reach the entire tumor tissue.
Further, the antibody or antigen-binding fragment can be bound to the anti-tumor moiety by a method known in the art, and either direct binding or indirect binding may be used. For example, a covalent bond can be used as a direct bond. As an indirect bond, a bond via a linker can be used.
In the present invention, the antibody or antigen-binding fragment and the antitumor moiety are preferably bound via a linker. The binding of two molecules via a linker can reduce the antigenicity of the anti-tumor moiety and is preferred for administration to a subject. General techniques for linkers are described, for example, in Hermanson, G .; T.A. Bioconjugate Technologies, Academic Press, 1996; Harris, J. Biol. M.M. and Zalipsky, S .; Ed., Poly (ethylene glycol), Chemistry and Biological Applications, ACS Symposium Series, 1997; Veronese, F .; and Harris, J .; M.M. Hen, Peptide and protein PEGylation. Advanced Drug Delivery Review 54 (4), 2002.
A linker means a divalent or higher-valent group that connects two compounds. The linker that can be used in the present invention is not particularly limited, and examples thereof include polyalkylene glycol linkers, alkylene groups, peptides, sugar chains, and other polymer carriers. The alkylene part of the alkylene glycol which is a constituent unit of the polyalkylene glycol linker has 1 to 3000 carbon atoms, preferably 2 to 1000 carbon atoms, and more preferably 2 to 100 carbon atoms. The molecular weight of the polyalkylene glycol linker is usually 30 to 50000 Da, preferably 500 to 30000 Da. The polyalkylene glycol linker is preferably a polyethylene glycol (PEG) linker. The alkylene group may be linear or branched.
The linker includes a linear linker (bivalent linker) and a branched linker.
Figure JPOXMLDOC01-appb-I000001
It binds to the moiety and has an anti-fibrin antibody or antigen-binding fragment at the other end. Branched linkers usually have an anti-tumor moiety in each branch (each chain) and an anti-fibrin antibody or antigen-binding fragment at the other end.
Specific examples of linear linkers include those of formula I:
Figure JPOXMLDOC01-appb-I000002
[Wherein, PEG is a polyethylene glycol chain, n and m are the number of ethylene glycol units, and independently represent an integer of 5 to 100. ]
Is mentioned. The linker of formula I is usually linked to the antibody or antigen-binding fragment at the end having a succinimidyl group and to the antitumor moiety at the other end.
Further specific examples of linear linkers include linkers of formula II:
Figure JPOXMLDOC01-appb-I000003
[Wherein, PEG is a polyethylene glycol chain, x is the number of ethylene glycol units, and represents an integer of 5 to 100. ]
Is mentioned. The linker of formula II is usually linked to the antibody or antigen-binding fragment at the end having a succinimidyl group and to the antitumor moiety at the other end.
Specific examples of branched linkers include those of formula III:
Figure JPOXMLDOC01-appb-I000004
[Wherein, PEG is a polyethylene glycol chain, and n, m and q are the number of ethylene glycol units and independently represent an integer of 5 to 100. ]
Is mentioned. The linker of formula III is usually linked to the antibody or antigen-binding fragment at the end having a succinimidyl group and to the antitumor moiety at the other multiple ends. This branched linker can be prepared, for example, as described in Reference Example 1.
Techniques for linking an antibody or antigen-binding fragment to an anti-tumor moiety via a linker are known in the art. For example, the bond between the antibody or antigen-binding fragment and the linker is a covalent bond or a non-covalent bond (ionic bond, hydrophobic bond, etc.), preferably a covalent bond. This bond is preferably a bond that hardly releases an antitumor moiety in blood when the complex of the present invention is administered to a subject. Examples of such bonds include bonds between maleimide groups and thiol groups, bonds obtained by reacting haloesters with thiols, amide bonds between carboxyl groups and amino groups, disulfide bonds between thiol groups and thiol groups, amino acids. Schiff base by aldehyde group and thioester bond between thiol group and carboxylic acid, ester bond between hydroxyl group and carboxyl group, bond by amino group and squaric acid derivative (for example, dimethyl squaric acid), dienylaldehyde group and amino group And the like. Specific examples of such a bond include a bond between a maleimide group present at one end of the linker and a thiol group contained in a cysteine residue on the antibody or antigen-binding fragment, a succinimide group present at one end of the linker, Dehydration substitution bond with amino group contained in lysine residue on antibody or antigen-binding fragment (for example, WO2008 / 096760), amino group present at one end of linker and aspartic acid on antibody or antigen-binding fragment or Examples thereof include dehydration condensation bonds with carboxylic acids contained in glutamic acid (for example, using WSCDI). See, for example, WO2010 / 055950 for a specific method for binding an antibody or antigen-binding fragment to a linker.
On the other hand, the bond between the linker and the anti-tumor moiety is a covalent bond or a non-covalent bond (ionic bond, hydrophobic bond, etc.), preferably a covalent bond. In particular, when an antitumor compound is used as the antitumor moiety, the binding should be such that the antitumor moiety is not easily released in blood when the complex of the present invention is administered to a subject. Is preferred. From such a viewpoint, the bond between the linker and the antitumor moiety is not limited, but is preferably an ester bond, a carbamate bond, a carbonate bond, or a thiocarbamate bond, and more preferably an ester bond. In the case of an ester bond, it is expected that the antitumor moiety is released from the complex of the present invention in a sustained release by the hydrolysis of the bond by carboxylesterase in the tumor tissue or non-enzymatically. In the case of carbamate binding, it is expected that the antibody complex in the cell is endocytosed, then cleaved by intracellular carboxylesterase, and the antitumor moiety is released from the complex of the present invention in a sustained release manner. Is done. In the case of a carbonate bond, it is expected that the bond is hydrolyzed non-enzymatically and the antitumor moiety is released from the complex of the present invention in a sustained manner. In the case of a thiocarbamate bond, the bond is hydrolyzed non-enzymatically, and the antitumor moiety is expected to be released from the complex of the present invention in a sustained manner.
When an antitumor compound is used as the antitumor moiety in the complex of the present invention, the number of linkers bonded to one molecule of the antibody or antigen-binding fragment is not particularly limited in theory, but the stability of the complex or From the viewpoint of ease of production and the like, the number is usually 1 to 10, preferably 1 to 8.
Illustratively, a case where SN-38 (10-hydroxy-7-ethylcamptothecin) is used as an antitumor moiety and a polyethylene glycol linker is used as a linker will be described, but even when other combinations are used. Those skilled in the art can produce the desired complex of the present invention by appropriately changing the reaction conditions.
(I) First, SN-38 is dehydrated with polyethylene glycol having an amino group having a carboxyl group at one end and an amino group protected by Boc, Fmoc, etc. at the other end, and the hydroxyl group of SN-38 Introducing a polyethylene glycol linker.
(II) A polyethylene glycol having a succinimide group at one end and a maleimide group at the other end is mixed with the product of (I), and the succinimide group and the amino group of the product of (I) are mixed. To introduce a maleimide group into the polyethylene glycol linker.
(III) The product of (II) and an antibody or antigen-binding fragment are mixed, the maleimide group in the product of (II) is reacted with the thiol group in the antibody or fragment, and the product of (II) The conjugate of the present invention is obtained by binding an antibody or fragment.
The conjugates of the present invention can bind to fibrin in tumor tissue and deliver an anti-tumor moiety to the tumor and remain in the tumor tissue for a long period of time and continue to exert an anti-tumor effect for a long period of time. It has the effect. Therefore, the complex of the present invention can be used as a preventive or therapeutic agent for tumors. That is, a tumor in the mammal can be prevented or treated by administering an effective amount of the complex of the present invention to the subject. Furthermore, the complex of the present invention can exert an antitumor effect over a long period of time by inhibiting the formation of blood vessels that remain in the tumor tissue for a long period of time and nourish the tumor.
The tumor to be treated or prevented in the present invention is not limited and includes solid cancers such as pancreatic cancer, gastric cancer, esophageal cancer, colorectal cancer, colon cancer, ovarian cancer, breast cancer and lung cancer.
The complex of the present invention is not targeted to the cancer cell itself, but to fibrin present where it leaks from the tumor blood vessels. As described above, the antibody of the present invention does not react with fibrinogen and has an extremely high affinity for fibrin. Therefore, the antibody-antitumor partial complex with high biocompatibility selectively leaks from the tumor blood vessel due to EPR effect (enhanced permeability and retention effect) (it does not leak from the normal blood vessel because it is a polymer), and after leakage It binds to fibrin present in the tumor stroma and forms a scaffold there. That is, the complex of the present invention continues to exist in the interstitial fibrin over a long period of time. As described in Example 6 below, when the antitumor moiety SN-38 is bound to the antibody of the present invention by an ester bond, it is non-specifically outside the tumor cell, but within the tumor tissue. SN-38 is released slowly. Since SN-38 is a small molecule, it can move relatively freely in cancer tissue, and can spread throughout cancer or attack cancer cells efficiently. Since SN-38 is time-dependent in its anti-tumor effect, such prolonged exposure of cancer cells to SN-38 can effectively kill cancer cells.
The agent of the present invention containing the above-mentioned thrombus visualization agent and tumor preventive or therapeutic agent may contain both a pharmaceutically acceptable carrier or additive in addition to the antibody or the antigen-binding fragment. Examples of such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium alginate, water soluble dextran, sodium carboxymethyl starch, pectin, xanthan gum, Examples include gum arabic, casein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, mannitol, sorbitol, and lactose. The additive to be used is appropriately or in combination selected from the above depending on the dosage form.
The administration method of the drug of the present invention is not particularly limited, and oral administration or parenteral administration, for example, subcutaneous administration, intradermal administration, intramuscular administration, intravenous administration, transdermal administration, rectal administration, nasal administration Etc.
When orally administering the drug of the present invention, tablets, capsules (hard capsules, soft capsules, microcapsules, etc.), granules, powders, pills, troches, liquids for internal use, solutions, suspensions, It may be any emulsion, syrup, etc., and may be a dried product that is redissolved when used. In addition, when the drug of the present invention is administered parenterally, for example, intravenous injection (including infusion), intramuscular injection, intraperitoneal injection and injection for subcutaneous injection (eg, solution, emulsion, suspension), ointment Preparations such as topical agents (especially eye ointments), creams, suppositories, cataplasms, eye drops, nasal drops, inhalants, liniments, aerosols, etc. In some cases, they are provided in unit dose ampoules or in multi-dose containers.
These various preparations are excipients, extenders, binders, wetting agents, disintegrating agents, lubricants, surfactants, dispersants, buffering agents, pH adjusting agents, preservatives, solubilizers commonly used in medicine. Agents, preservatives, flavoring agents, absorption promoters, soothing agents, stabilizers, tonicity agents and the like can be appropriately selected and produced by conventional methods.
The antibody or antigen-binding fragment or complex to be blended with the drug of the present invention varies depending on the type of antibody, the type of complex and the antitumor part contained in the complex, its use, dosage form, administration route, etc. For example, it may be 1 to 99% by weight, preferably 5 to 90% based on the total weight.
In addition, the dosage and administration interval of the drug of the present invention include the type of antibody or antigen-binding fragment contained in the drug, the type of anti-tumor part contained in the complex, the subject to be administered, the age and weight of the subject, administration It depends on the route and the number of administrations, and can be changed over a wide range.
The subject to which the agent of the present invention is administered is not particularly limited, and mammals such as humans, domestic animals (cattle, pigs, etc.), pets (dogs, cats, etc.), laboratory animals (mouse, rats, monkeys). Etc.). In particular, it is preferably used for a subject suspected of having a thrombus-related disease and a subject having a thrombus-related disease. The drug containing the complex of the present invention is particularly preferably used for a subject suspected of having a tumor and a subject having a tumor.
In the case of a thrombus visualization agent, after administration of a drug, the presence or position of an antibody or antigen-binding fragment in a subject is visualized using a label as an indicator. Preferably, the presence or location of the antibody or antigen binding fragment is visualized by known imaging techniques. Imaging methods vary depending on the label used, the type of subject, the site to be imaged, etc., but computed tomography (CT), positron tomography (PET), single photoemission tomography (SPECT), nuclear magnetic resonance Imaging (MRI) and other in vivo imaging systems can be used. This makes it possible to visualize the presence or location of a thrombus in a subject based on the label of the antibody or antigen-binding fragment.
5. Production of modified anti-fibrin antibody or antigen-binding fragment
Based on the anti-fibrin antibody or antigen-binding fragment of the present invention, a modified antibody or antigen-binding fragment exhibiting a desired activity can be produced. Specifically, the amino acid sequence of the anti-fibrin antibody or antigen-binding fragment of the present invention is modified to prepare a modified antibody or antigen-binding fragment, and the activity of the obtained modified antibody or antigen-binding fragment is measured. judge. The modification of the amino acid sequence is not particularly limited, and includes deletion, substitution, addition or insertion of 1 to 100 amino acids, for example, 1 to 50 amino acids in the amino acid sequence, fusion of another peptide, and the like. Such modification of the amino acid sequence and preparation of an antibody or antigen-binding fragment having the modified amino acid sequence can be performed by methods known in the art.
Whether or not the obtained modified antibody or antigen-binding fragment binds to fibrin can be determined by a known method as described above. In some cases, the fibrin neutralizing activity of the modified antibody or the platen-binding fragment and the binding property to fibrinogen may be examined. The modified antibody or antigen-binding fragment thus obtained also has a binding activity to fibrin, and thus is useful for the above-described uses.
[規則91に基づく訂正 06.10.2011] 
 以下、本説明を実施例によりさらに詳細に説明する。なお、本発明はこれらに限定されるものではない。
[実施例1]
マウス抗フィブリン抗体の作製
 免疫原として、20mg/mlのフィブリノーゲン(Sigma社)溶液に0.1M塩化カルシウム存在下に200IUのトロンビンを作用させてフィブリン塊を作製した。作製したフィブリン塊は乳鉢に移し、液体窒素を加え、凍結させたあと乳棒で粉砕し、最終的にリン酸バッファーに1mg/ml量のフィブリン浮遊液とし、マウス感作に用いた。
 Balb/cマウス系統に、2日あけて足の裏にフィブリン粉砕液25μgを計3回注射した。その際、アジュバントとしてTiterMAXエマルジョン(TiterMAX USA Inc.)を用いた。最終免役の3日後に、マウスからリンパ節細胞を採取した。
 得られたリンパ節細胞とミエローマ細胞(P3U1)の細胞融合を行い、さらにフィブリンタンパク質を用いたELISAによる選別を行った。具体的には、フィブリノーゲン(Sigma)プレートとフィブリンプレートを準備し、フィブリンプレートにおいてELISA陽性を示し、フィブリノーゲンプレートで陰性を示すハイブリドーマを選択した。フィブリノーゲンプレートは、50μg/mlフィブリノーゲンを溶解したTBS(pH8.5)溶液を、96ウエルプレート(Nunc468667)に100μl/ウエルで添加し、4℃で18時間おいた後、上清を除去し、PBS(0.01%Tween80を含む)で3回洗浄し、37℃で一晩おいて乾燥した後、使用まで4℃で保存した。フィブリンプレートは、フィブリノーゲンプレートと同様に乾燥操作まで行った後、10NIH U/mlヒトトロンビンを溶解したTBS溶液(10mM CaCl及び7mM L−システインを含む)を96ウエルプレートに100μl/ウエルで添加し、37℃で1時間おいた後、上清を除去し、PBS(0.01%Tween80を含む)で3回洗浄し、37℃で一晩おいて乾燥した後、使用まで4℃で保存した。
 ELISAは、サンプリングしたハイブリドーマの培養上清(原液)をフィブリノーゲンプレート又はフィブリンプレートに50μL/ウエルで加え、室温で60分間反応させて行った。PBSで3回洗浄後、ヤギ抗マウスIgG−POD標識(MBL製品、Code.330)を希釈バッファー(MBL製)で10,000倍希釈したものを50μL/ウエルで加え、室温で60分間反応させた。3回洗浄後、発色液(MBL製)を50μL/ウエルで加えて15分間発色させ、1.5mol/Lリン酸を50μL/ウエルで加え、反応を停止した。反応停止後、測定波長450nm、参照波長620nmで吸光度を測定した。
 ヒトフィブリンと結合し、ヒトフィブリノーゲンと結合しないモノクローナル抗体を産生するハイブリドーマ細胞を選択し、細胞株(クローン102−10)を樹立した。この細胞株により産生される抗体はマウスIgMであった。なお、このハイブリドーマ細胞株は、本願出願人により「102−10」として独立行政法人 製品評価技術基盤機構(NITE) バイオテクノロジー本部 特許微生物寄託センター(NPMD)(〒292−0818 日本国千葉県木更津市かずさ鎌足2−5−8)に2010年4月2日付(原寄託)で寄託され、受託番号NITE BP−923が付与されている。
 また、ハイブリドーマ細胞株102−10の培養上清、市販の抗フィブリン抗体NYB−T2G1(抗フィブリンII抗体、ACCURATE CHEMICAL & SCIENTIFIC CORPORATION)及びMH−1(American Biogenetic Sciences,Inc.、特開平11−80200号公報に記載)を用いて、マウス及びヒトフィブリン、並びにマウス及びヒトフィブリノーゲンとの反応性について、上述したフィブリンプレート及びフィブリノーゲンプレートを用いるELISAにより調べた。
 その結果を図1A~Cに示す。図1A及びBは、対照として市販の抗フィブリン抗体を用いた結果、図1Cは、本発明のマウス抗フィブリンIgM抗体を用いた結果である。また図1において、(1)はヒトフィブリンとの反応、(2)はヒトフィブリノーゲンとの反応、(3)はマウスフィブリンとの反応、(4)はマウスフィブリノーゲンとの反応、(5)はコントロールとしてのアルブミンとの反応を表す。図1に示されるように、ハイブリドーマ細胞株102−10由来のマウスIgM抗体は、マウス及びヒトのフィブリンに特異的に反応するが、マウス及びヒトフィブリノーゲンには反応しないことが確認された。
[実施例2]
キメラ抗体の作製
 実施例1で調製したハイブリドーマ細胞株102−10から全RNAを抽出し、抗体H鎖の可変領域とL鎖の可変領域のcDNAをアダプター・ライゲーションRT−PCR法を用いて増幅した。使用したプライマーの配列は以下のとおりである:
H鎖用
Figure JPOXMLDOC01-appb-I000005

L鎖用
Figure JPOXMLDOC01-appb-I000006

 増幅したcDNAをそれぞれpT7Blue(Promega)にクローニングした。H鎖の可変領域(396bp)とL鎖の可変領域(381bp)のcDNAをそれぞれ図2のA及びBに示す。図2のAは、抗体H鎖の塩基配列及びアミノ酸配列を示し、可変領域(1~396bp)と定常領域の一部に相当する。H鎖の可変領域の塩基配列及びアミノ酸配列はそれぞれ配列番号7及び8に示す。図2のBは、抗体L鎖の塩基配列及びアミノ酸配列を示し、タンパク質コード領域全長(可変領域は1~381bp)に相当する。L鎖の可変領域の塩基配列及びアミノ酸配列をそれぞれ配列番号9及び10に示す。また、図2において、H鎖及びL鎖の相補性決定領域(CDR)1~3を四角で示している。
 H鎖及びL鎖の可変領域をPCRで増幅後、H鎖の可変領域は定常領域を組み込んだpQCxIP(クロンテック)、L鎖の可変領域は定常領域を組み込んだpQCxIH(クロンテック)に挿入し、発現ベクターを完成させた。発現ベクターをリポフェクタミン2000(インビトロジェン)を用いてCHO細胞(理研バイオリソースセンター)にトランスフェクションを行った。ヒト型抗フィブリンキメラ抗体定常発現細胞株(ヒト型IgGクローン102−10Hu)は、ピュロマイシン(シグマ)10μg/mLとハイグロマイシンB(インビトロジェン)500μg/mLで薬剤選択を行い、両耐性株を取得することで樹立された。樹立細胞株はF12(シグマ)10%FBS、1mM HEPES(シグマ)、1%ペニシリン・ストレプトマイシン(インビトロジェン)、ピュロマイシン10μg/mL、ハイグロマイシンB500μg/mLで維持培養を行った。
 樹立細胞株を、175cmフラスコ(付着性細胞用)を用いて、マスター細胞用10%FBS培地(F12[Sigma社:N6658]、10%FBS[Hyclone社:lot.APM22733](FBSはBovine IgG除去処理して使用)、1%Penicillin−Streptomycin[Invitrogen社]、1mM HEPES[Sigma社:H4034−500G]、50mg/mLハイグロマイシンB5.7mL[WAKO社:085−06153]、及び2mg/mLピューロマイシン塩酸塩2.9mL[WAKO社:533−71593])中でコンフルエントまで培養した。培養上清を吸引除去し、PBS10mLでフラスコを洗浄し、この洗浄を2回行った。PBSを除去後、TRYPSIN/0.5%EDTA[Invitrogen:25300054CAMP]5mLを添加し、COインキュベータで5分静置した。細胞が底面から剥がれたのを確認し、マスター細胞用10%FBS培地を10mL添加して酵素反応を止めた。その後、ピペッティングして細胞を剥がし、フラスコ内の液をすべて回収し、1000r.p.mで5分遠心した。遠心後の上清を除去し、ペレットをマスター細胞用10%FBS培地30mLに懸濁した。次に、フラスコにマスター細胞用10%FBS培地を29mL添加し、遠心後の細胞懸濁液を1mL添加した。
 続いて、大量培養のために、以下の操作を行った。175cmフラスコ(浮遊細胞用)30本に大量培養用5%FBS培地F12(Sigma社)29mLを添加した。上記で得られた細胞懸濁液を大量培養用のフラスコに1mLずつ添加し、COインキュベータで静置培養した。継代後約1週間後に大量培養用5%FBS培地5mLを添加した。顕鏡観察して浮遊した細胞がコンフルエントになった状態で、その後3~4日ごとに大量培養用5%FBS培地10mLを添加し、液量50mLになるまで増やした。培地添加時に顕鏡し、細胞凝集塊がほとんどなくなり死細胞の割合が8割を越えているようであれば、その時点で培養を中止し、最後に培地を添加してから3~4日後に上清を回収し、3000r.p.mで5分遠心した。培養上清に0.05%量のアジ化ナトリウムを添加して精製まで冷蔵保存した。
 抗体の精製は次のとおり行った。すなわち、上記で得られた培養上清を0.22umフィルターでろ過し、不溶物を除いた。結合バッファー(リン酸バッファーpH7)で平衡化したプロテインG Sepharose(登録商標)4B充填カラムに培養上清を流した。カラム体積の5倍量のリンスバッファー(リン酸バッファーpH7)で4回洗浄し、溶出バッファー(グリシンバッファー)pH4をカラム体積の1.8倍量流した。次に、溶出バッファー(グリシンバッファー)pH3をカラム体積の6倍量流し、フラクションごとに回収し、溶出液は1MトリスHClバッファー(pH7)で速やかに中和した。フラクションの吸光度を測定し、抗体が含まれるフラクションを回収し、次のハイドロキシアパタイト精製へと進めた。
 ハイドロキシアパタイト精製では、まず10mM Na−PB(pH6.5)、300mM NaClでサンプルを透析した。10mM Na−PB(pH6.5)、300mM NaClでハイドロキシアパタイトtypeII充填カラムを平衡化した後、全サンプルを添加し、10mM Na−PB(pH6.5)、300mM NaClで洗浄し、10mM Na−PB(pH6.5)、2M NaClで溶出した。フラクションを回収し、各フラクションをSDS−PAGEで確認し、サンプルを回収した。PBSに透析後、限外ろ過にて濃縮して、精製されたヒト型抗フィブリンキメラ抗体を得た。得られたキメラ抗体の反応性を、実施例1と同様にELISA法を用いて確認した。その結果を図3に示す。
 図3に示すように、ヒト型キメラ抗体は、マウス及びヒトフィブリンと特異的に反応するが、マウス及びヒトフィブリノーゲンとは反応しないことが示された。従って、マウスIgMから誘導されたヒト型抗体は、該マウスIgMの反応性を保持しており、ヒトの診断治療応用可能である。また、マウス及びヒトフィブリンとの結合性を有するため、マウスにおける実験結果をヒトに外挿することが可能である。
[実施例3]
マウスIgM抗体及びヒト型キメラ抗体を用いたヒト組織の免疫染色
 本実施例では、実施例1及び2で調製したマウスIgM抗体及びヒト型キメラ抗体を用いて、ヒト膵癌手術標本及びヒト脳腫瘍(グリオーマ)手術標本の免疫染色を行った。
 ヒト膵癌手術標本は、福島県立医大病理に依頼して入手し、パラフィン切片を準備した。また、ヒト脳腫瘍(グリオーマ)手術標本は、熊本大学付属病院脳神経外科から供与を受け、パラフィン切片を準備した。パラフィン切片をキシレン及びエタノールで処理して脱パラフィンし、脱塩水に浸漬した。切片を0.3%H/MeOH中で20分間ブロッキングし、TBST(Trisバッファー、Tween20)で5分間洗浄した。その後、切片を抗原賦活液(10mMクエン酸緩衝液、pH6.0)に浸漬し、マイクロウェーブ(MW)処理を93℃にて20分行い、30分間放置した後、TBSTで5分間、3回洗浄した。
 一次抗体として10μg/mlのマウスIgG抗体(実施例1)又は2μg/mlのヒト型キメラ抗体(実施例2)を用いて4℃で切片を処理した。次に、TBSTで5分間、3回洗浄した後、数滴の抗マウス二次抗体(Code No.K4001,DAKO)又は200倍希釈した抗ヒト二次抗体(Code No.206,MBL)を、室温にて1時間反応させた。切片をTSBTで5分間、3回洗浄し、発色基質としてDAB(Code No.K4007,DAKO)を滴下して5分間反応させた。切片を脱塩水で洗い、ヘマトキシリンに20秒浸漬し、10分間水洗した後、エタノール及びキシレンで処理した。
 キメラ抗体を用いたヒト膵癌手術標本切片の免疫染色結果を図4に示す。また、マウスIgM抗体を用いたヒト脳腫瘍手術標本切片の免疫染色結果を図5に示す。なお、図5のAは、ヒト脳腫瘍(グリオーマ)手術組織切片ヘマトキシリン染色を示し、Bは、その切片を免疫染色した結果を示す。図4及び5に示されるように、本抗体を用いてヒト膵癌組織及び脳腫瘍を染色できることがわかった。
[実施例4]
マウスIgM抗体及びヒト型キメラ抗体を用いたヒト組織の免疫染色
 実施例3に示す手順と同様にして、マウス化学発癌による浸潤性扁平上皮癌の免疫染色を行った。その結果を図6に示す。図6において、Aは、ヘマトキシリン・エオジン染色を行った組織を示し、癌間質に囲まれた浸潤性扁平上皮癌がみとめられる。Bは、抗フィブリン抗体IgMによる免疫染色組織を示し、癌間質にフィブリンが顕著に存在していることが確認される。Cは、蛍光標識したヒト型キメラ抗フィブリンIgGを担癌マウスの尾静脈から投与した時の腫瘍内集積像を示し、抗体が腫瘍内の間質に特異的に集積しており、Bのフィブリン存在部位と一致していることが確認できる。
[実施例5]
抗体を用いたin vivoイメージング
 本実施例では、抗フィブリン抗体の腫瘍集積性を検討した。
 図7のAに、マウス化学発癌皮膚浸潤性腫瘍を形成したマウスを示す。標識化したヒト型キメラ抗体をマウス尾静脈により投与した。投与1日後、3日後及び7日後の抗体の分布を生体イメージング装置OV110(Olympus)とNightOWL II LB 983(Berthold)により解析した。
 投与後7日目の結果を図7のBに示す。これらの結果から、抗フィブリン抗体が腫瘍組織に選択的に集積し、長期間腫瘍組織に貯留することが示された。
[参考例1]
分枝状リンカーと抗腫瘍性化合物SN−38との結合
 図8に示すスキームに従って、分枝状リンカーと抗腫瘍性化合物SN−38(10−ヒドロキシ−7−エチルカンプトテシン)とを結合した。なお、以下の反応において、「DMAP」はN,N−ジメチル−4−アミノピリジンを表し、「DMF」はN,N−ジメチルホルムアミドを表し、「THF」はテトラヒドロフランを表す。
(1)SN−38とPEGとの結合
 10−ヒドロキシ−7−エチルカンプトテシン(102.1mg、0.260mmol)、Boc−PEG27−COOH(407.1mg、0.286mmol)、DMAP(15.9mg、0.130mmol)のDMF溶液(1mL)中に、WSCDI(water soluble carbodiimide:54.8mg、0.286mmol)を0℃で添加した。混合物を室温で19時間攪拌し、反応混合物をゲルろ過カラムクロマトグラフィー(LH20 CHCl:MeOH=1:1)、シリカゲルカラムクロマトグラフィー(CHCl:MeOH=15:1~9:1)により精製し、無色油状物としてエステルJを得た(420.1mg、90%)。
H−NMR δ(CDOD)8.20(d,J=9.2Hz,1H),7.99(s,1H),7.66(m,2H),5.60(d,J=16.5Hz,1H),5.40(d,J=16.5Hz,1H),5.32(M,2H),3.93(t,J=6.4Hz,2H),2.96(t,J=6.4Hz,2H),1.97(m,2H),1.43(s,9H),1.40(t,J=7.6Hz,3H),1.02(t,J=7.8Hz,3H);13C−NMR(DMSO−d)δ 164.8,161.9,149.2,148.5,143.1,142.7,141.3,138.2,137.7,137.5,122.4,119.5,118.9,117.2,110.7,106.5,89.7,70.4,64.6,62.3,62.0,62.0,62.0,61.9,61.8,61.8,61.7,61.5,58.1,58.0,57.1,41.2,40.1,31.8,28.1,26.3,19.4,14.4,4.9,−1.1。
(2)分枝状リンカーの合成
 3−(アリルオキシ)−2−(アリルオキシメチル)−2−((プロ−2−エニルオキシ)メチル)プロパン−1−オール(14.85g、31.17mmol)のDMF(30mL)溶液にNaH(21.87g、46.78mmol)を室温で添加した。1時間後、臭化物1−((5−ブロモペンチルオキシ)メチル)−4−メトキシベンゼン(16.7g、58.04mmol)を添加した。フラスコをDMF(3mL)で2回洗浄した。混合物を55℃で1日攪拌した。室温まで冷却した後、N,N−ジメチル 1,3−プロパンジアミン(10mL)を添加した。1時間後、混合物を飽和NHCl及びEtOAcで希釈した。水性層をEtOAcで抽出した。混合した層を飽和食塩水で洗浄した。有機層はNaSOで乾燥させ、濾過した。蒸発後、残渣をシリカゲルカラム(ヘキサン:EtOAc 9:1~4:1)で精製して無色油状物として化合物A[1−((5−(3−(アリルオキシ)−2−(アリルオキシメチル)−2−((プロ−2−エニルオキシ)メチル)プロポキシ)ペンチルオキシ)メチル)−4−メトキシベンゼン](エーテル化合物A)(8.60g、58%)を得た。
H−NMR δ 7.23(dd,J=6.4Hz,2.4Hz,2H),6.85(dd,J=6.4Hz,2.4Hz,2H),5.85(m,3H),5.23(d,J=17.2Hz,3H),5.11(d,J=10.4Hz,3H),4.41(s,2H),3.93(m,6H),3.78(s,3H),3.42(s,8H)3.39−3.36(m,4H),1.60−1.51(m,4H),1.38(m,2H),13C−NMR δ 135.21,129.11,115.97,113.69,72.53,72.26,71.33,7.13,69.60,69.42,55.30,45.44,29.65,29.50,22.94。
 上記のトリアリル化合物1−((5−(3−(アリルオキシ)−2−(アリルオキシメチル)−2−((プロ−2−エニルオキシ)メチル)プロポキシ)ペンチルオキシ)メチル)−4−メトキシベンゼンA(8.60g、18.06mmol)のCHCl(200mL)及びMeOH(200mL)溶液に、反応混合物が薄い青色になるまで−78℃でオゾンを通気した。オゾンを酸素ガスに置換した後、NaBH(8.60g、210mmol)を数回に分けて添加した。反応混合物を徐々に温めた後、一晩室温で攪拌した。反応液を濃縮後、混合物をCHClと飽和NHClとの間で分液した。水性層をCHClで抽出した。混合した層を飽和食塩水で洗浄し、NaSOで乾燥させ、濾過した。溶媒を減圧除去し、残渣をシリカゲルカラムクロマトグラフィー(CHCl:MeOH 9:1)で精製し、化合物B[2,2’−(2−((2−ヒドロキシエトキシ)メチル)−2−((5−(4−メトキシベンジルオキシ)ペンチルオキシ)メチル)プロパン−1,3−ジイル)ビス(オキシ)ジエタノール](トリオール化合物B)(8.56g quant.)を得た。
H−NMR δ 7.23(d,J=8.8Hz,2H),6.85(d,J=8.8Hz,2H),4.41(s,2H),3.84(s,3H),3.79(s like,6H),3.53(m,6H),3.48(s like,8H),3.43−3.37(m,4H),2.86(s,3H),1.58−1.53(m,4H),1.39(m,2H);13C−NMR δ 129.16,113.69,72.56,72.50,71.67,70.46,70.05,70.00,61.4,55.30,45.40,29.56,29.32,22.92。
 上記のトリオール化合物B(2,2’−(2−((2−ヒドロキシエトキシ)メチル)−2−((5−(4−メトキシベンジルオキシ)ペンチルオキシ)メチル)プロパン−1,3−ジイル)ビス(オキシ)ジエタノール)(2.91g、6.14mmol)及びPPh(6.43g、24.51mmol)のTHF(50mL)溶液に、CBr(8.14g、24.51mmol)を0℃で数回に分けて添加した。混合物を一晩室温で攪拌した。ジエチルエーテルを混合物に添加し、沈殿物を濾過した。濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:EtOAc 9:1~4:1)で精製して化合物C[1−((5−(3−(2−ブロモエトキシ)−2,2−ビス((2−ブロモエトキシ)メチル)プロポキシ)ペンチルオキシ)メチル)−4−メトキシベンゼン](三臭化物C)(3.48g、86%)を得た。
H−NMR d 7.25(d,J=8.4Hz,2H),6.87(d,J=8.4Hz,2H),4.42(s,2H),3.80(s,3H),3.74−3.71(m,6H),3.47(s,8H),3.47−3.38(m,6H),1.7−1.50(m,4H),1.40(m,2H);13C−NMR δ 129.12,113.66,72.53,71.33,71.14,70.08,69.38,68.88,55.29,45.72,30.82,29.63,22.97。
 上記の三臭化物C(1−((5−(3−(2−ブロモエトキシ)−2,2−ビス((2−ブロモエトキシ)メチル)プロポキシ)ペンチルオキシ)メチル)−4−メトキシベンゼン)(3.48g、5.27mmol)のDMF(10mL)溶液に、NaN(5.27g、81.08mmol)を添加し、混合物を50℃で4時間攪拌した。混合物をEtOAc及び飽和NaHCOで希釈した。水性層をEtOAcで抽出した。混合した層を飽和食塩水で洗浄した。NaSOで混合物を乾燥後、溶媒を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:EtOAc 7:3)で精製し、化合物D[1−((5−(3−(2−アジドエトキシ)−2,2−ビス((2−アジドエトキシ)メチル)プロポキシ)ペンチルオキシ)メチル)−4−メトキシベンゼン](トリアジド化合物D)(2.84g、98%)を得た。
H−NMR δ 7.23(d,J=8.8Hz,2H),6.85(d,J=8.8Hz,2H),4.41(s,2H),3.78(s,3H),3.59(t,J=4.8Hz,6H),3.47(s,8H),3.44−3.28(m,10H),1.61−1.55(m,4H),1.39(m,2H);13C−NMR δ 129.04,113.63,72.53,71.32,70.46,70.13,69.71,68.85,55.32,50.86,45.12,29.70,23.04。
 上記のPMBエーテル(2.63g、4.7mmol)のCHCl(30mL)及びHO(20mL)溶液に、DDQ(1.30g、5.75mmol)を0℃で添加した。添加後、氷浴を取り除き、室温で撹拌した。5時間後、反応をクエン酸緩衝液で停止させ、水性層をEtOAcで抽出した。混合した層を飽和NaHCO及び飽和食塩水で洗浄した。有機層はNaSOで乾燥させた。濾過後、溶媒を除去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:EtOAc 1:1)で精製し、化合物E[5−(3−(2−アジドエトキシ)−2,2−ビス((2−アジドエトキシ)メチル)プロポキシ)ペンタン−1−オール](アルコール化合物E)(1.55g、75%)を得た。
H−NMR δ 3.64−3.58(m,8H),3.46(s,6H),3.41−3.38(m,4H),3.31−3.28(m,6H),1.57−1.55(m,4H),1.41(m,2H);13C−NMR δ 71.20,70.46,69.67,68.84,62.92,50.86,45.08,32.57,29.36,22.56。
 上記で得たアルコール化合物(1.55g、3.61mmol)のアセトン(20mL)溶液に、ジョーンズ試薬を0℃で添加した。過剰のジョーンズ試薬をイソプロピルアルコールiPrOHで破壊し、沈殿物を濾過した。濃縮後、残渣をシリカゲルカラムクロマトグラフィー(CHCl:EtOAc 7:3~1:1)で精製し、化合物F[5−(3−(2−アジドエトキシ)−2,2−ビス((2−アジドエトキシ)メチル)プロポキシ)ペンタン酸](酸F)(1.37g、86%)を得た。
H−NMR δ 3.72(t,J=6.0Hz,3H),3.60(t,J=4.4Hz,4H),3.47(s,8H),3.44−3.40(m,4H),3.32(t,J=4.8Hz,4H),2.83(t,J=7.6Hz,2H),1,70(m,2H),1.60(m,2H);13C−NMR δ 177.69,77.21,70.77,70.48,69.68,68.96,50.87,45.11,33.55,28.93,21.81。
 上記で得た酸(1.65g、3.85mmol)、N−(tert−ブトキシカルボニル)−1,5−ジアミノペンタン(1.56g、7.69mmol)及びHOBt(1.03g、7.60mmol)のCHCl(30mL)溶液に、水溶性カルボジイミドWSCDI(1.47g、7.69mmol)を0℃で添加した。混合物を一晩室温で攪拌し、CHCl及び飽和NHClで希釈した。水性層をCHClで抽出した。混合した層を飽和NaHCO及び飽和食塩水で洗浄し、NaSOで乾燥させ、溶媒を濃縮した。残渣をシリカゲルカラムクロマトグラフィー(CHCl:EtOAc 1:1~EtOAcのみ)で精製し、化合物G[tert−ブチル5−(5−(3−(2−アジドエトキシ)−2,2−ビス((2−アジドエトキシ)メチル)プロポキシ)ペンタンアミド)ペンチルカルバメート](トリアジド化合物G)(2.18g、90%)を得た。
H−NMR δ 5.60(bs,1H),4.55(bs,1H),3.72(t,J=6.0Hz,2H),3.62(t,J=4.8Hz,4H),3.47−3.41(m,12H),3.30(t,J=4.8Hz,4H),3.22(q,J=6.4H,2H),3.10(m,2H),2.17(t,J=7.2Hz,2H),1.70−1.46(m,7H),1.43(s,9H),1.34(m,3H),13C−NMR δ 172.64,155.87,77.21,71.15,71.13,70.99,70.94,70.50,69.73,69.69,69.36,68.97,50.91,45.35,45.11,40.35,39.36,36.56,31.00,29.88,20.40,29.23,28.55,24.09,22.77。
(3)分枝状リンカーとSN−38との結合
 化合物JのSN38—PEGのBoc化合物(0.71g、0.396mmol)をCHCl(20mL)に溶かし、4.0Mジオキサン(20mL)を加えて室温において2時間撹拌した。反応液を減圧濃縮し、トルエンを加え、さらに濃縮、真空下乾燥した。この残渣をCHCl(20mL)に溶解し、iPrNEt(0.57mmol、3.24mmol)を0℃にて加え、無水スクシイミド(60mg、0.594mmol)を加え、室温にて終夜撹拌した。反応液をLH20(CHCl:MeOH 1:1)、シリカゲルカラムクロマトグラフィー(CHCl:MeOH 9:1~4:1)にて精製し、Kを得た。
 一方で、トリアジド化合物G(63mg、0.10mmol)のジオキサン(1mL)と水(0.5mL)の溶液にトリメチルホスフィン(0.5mL,1M溶液)を加え、窒素雰囲気下室温にて終夜撹拌し、化合物Hを得た。
 この反応液を濃縮し、上のカルボン酸KをCHCl(10mL)に溶かし加え、これにHOBt(213mg、1.58mmol)、WSCDI(308mg、1.58mmol),iPrNEt(0.5mL)を加えた。反応液を終夜室温にて撹拌し、反応液をLH20(CHCl:MeOH 1:1)にて精製し、0.71gを得た。これをジオキサン(20mL)と4.0M塩酸−ジオキサン溶液(20mL)に溶かし、3時間室温にて撹拌した後、反応液を減圧濃縮した。これをCHCl(1mL)に溶かし、iPrNEt(0.1mL)を加え、N−スクシミジルPEG12−Mal(100mg)、iPrNEt(0.2mL)を加えた。室温にて終夜撹拌し、これをLH20(CHCl:MeOH 1:1)にて精製し、目的物Lを得た。
[参考例2]
直鎖状リンカーと抗腫瘍性化合物SN−38との結合
 以下に記載のようにして、直鎖状リンカーと抗腫瘍性化合物SN−38(10−ヒドロキシ−7−エチルカンプトテシン)とを結合した。なお、以下の反応において、「DMAP」はN,N−ジメチル−4−アミノピリジンを表し、「DMF」はN,N−ジメチルホルムアミドを表し、「TFA」はトリフルオロ酢酸を表す。
(1)SN−38とPEGとの結合
Figure JPOXMLDOC01-appb-I000007

 10−ヒドロキシ−7−エチルカンプトテシン(102.1mg、0.260mmol)、Boc−PEG27−COOH(407.1mg、0.286mmol)、DMAP(15.9mg、0.130mmol)のDMF溶液(1mL)中に、WSCDI(water soluble carbodiimide:54.8mg、0.286mmol)を0℃で添加した。混合物を室温で19時間攪拌し、反応混合物をゲルろ過カラムクロマトグラフィー(LH20 CHCl:MeOH=1:1)、シリカゲルカラムクロマトグラフィー(CHCl:MeOH=15:1~9:1)により精製し、無色油状物としてエステルを得た(420.1mg、90%)。
H−NMR δ(CDOD)8.20(d,J=9.2Hz,1H),7.99(s,1H),7.66(m,2H),5.60(d,J=16.5Hz,1H),5.40(d,J=16.5Hz,1H),5.32(M,2H),3.93(t,J=6.4Hz,2H),2.96(t,J=6.4Hz,2H),1.97(m,2H),1.43(s,9H),1.40(t,J=7.6Hz,3H),1,02(t,J=7.8Hz,3H);13C−NMR(DMSO−d)δ 164.8,161.9,149.2,148.5,143.1,142.7,141.3,138.2,137.7,137.5,122.4,119.5,118.9,117.2,110.7,106.5,89.7,70.4,64.6,62.3,62.0,62.0,62.0,61.9,61.8,61.8,61.7,61.5,58.1,58.0,57.1,41.2,40.1,31.8,28.1,26.3,19.4,14.4,4.9,−1.1。
(2)直鎖状リンカーへのマレイミド基の導入
Figure JPOXMLDOC01-appb-I000008

 CHCl(10mL)中Boc−PEG27−カンプトテシン(221.5mg、0.123mmol)溶液に、室温でTFA(1mL)を添加した。混合物を1.5時間攪拌した後、真空内で除去し、トルエンを添加した。蒸発後、残渣を高真空下で乾燥させた。残渣をCHCl(5mL)及びMAL−PEG12−NHS(128.2mg、0.148mmol)に溶解し、iPrNEt(48μL、0.246mmol)を0℃で添加した。30分後、混合物をゲルろ過カラムクロマトグラフィー(LH−20、CHCl:CHOH=1:1)、シリカゲルカラムクロマトグラフィーにより精製し、無色油状物として目的物を得た(276.0mg、91%)。
H−NMR(CDOD)δ 8.20(d,J=9.2Hz,1H),8.00(s,1H),7.66−7.64(m,2H),6.83(s,2H),5.60(d,J=16.0Hz,1H),5.41(d,J=16.0Hz,1H),5.34(s,1H),3.93(t,J=6.0Hz,2H),2.97(t,J=6.0Hz,2H),2.49−2.45(m,4H),2.00−1.98(m,2H),1.41(t,J=7.6Hz,3H),1.02(t,J=7.6Hz,3H);13C−NMR(DMSO−d)δ 172.1,170.4,169.8,169.7,169.1,156.5,151.7,149.7,148.9,146.2,145.6,145.0,134.3,131.1,128.4,126.8,125.3,118.8,115.0,96.5,72.3,69.9,69.6,69.5,69.4,69.0,68.9,66.7,65.8,65.1,49.5,36.0,34.8,34.1,33.9,31.6,30.3,25.4,22.3,13.9,7.8。
[実施例6]
SN−38−リンカー結合体と抗体との結合
 図9に示すように、分枝状リンカーと結合させたPEG−SN−38結合体(参考例1)、又は直鎖状リンカーと結合させたPEG−SN−38結合体(参考例2)を、抗フィブリン抗体と結合させた。
 具体的には、抗体をPBSに1.0mg/ml濃度になるよう調製した。抗体にジチオトレイトール(DTT)を最終濃度10mMになるように加えて、37℃で30分反応させた。Amicon Ultraで反応試薬を除去した。吸収測定したところ抗体の回収率は約60~100%であった。また、(5,5’−ジチオビス(2−ニトロ安息香酸))(DNTB)によるSH基の定量結果から、1抗体あたり6~8個のSH基が得られた。
 次に、タンパク質濃度0.5mg/mlとなるように100mMリン酸緩衝液+150mM NaCl+5mM EDTA(pH6.0)に溶解し、モル比で抗体1に対し、図8のL(マレイミド化合物)3~4の割合で混合した後、室温1時間、その後4℃で一晩反応させた。
 Amicon Ultraで反応試薬を除去した後、PBSに置換した。Amicon Ultraでタンパク質を回収したところ60~100%の回収率であり、分枝状リンカーを結合させた抗体では、抗体1個あたり18~24個のSN−38が付加された。
 また、HPLCを用いて、直鎖状リンカーと分枝状リンカーを用いた場合の、抗体へのSN−38の結合量を調べた。その結果を表1に示す。表中、「AVERAGE」の欄に、抗体1分子当たりの相対SN−38結合量を示す。
Figure JPOXMLDOC01-appb-T000009

 表1に示すように、分枝状リンカーを介したSN−38−抗体複合体は、抗体1個当たりのSN−38結合量が、従来の直鎖状リンカーを用いた場合と比較して、平均約3倍多いことがわかった。
[実施例7]
in vitro殺細胞効果
 本実施例では、実施例6で調製した抗体−SN−38複合体の膵臓癌細胞株SUIT2に対するin vitro殺細胞効果を確認した。具体的には、96穴プレートにSUIT2癌細胞を3000個播き、その24時間後に直鎖状リンカーを介したSN−38と抗体との複合体又は分枝状リンカーを介したSN−38と抗体との複合体を添加し、その48時間後の細胞数をCell Counting Kit−8(Dojindo)を用いたWST−8法により測定した。対照として、遊離SN−38、及び公知の抗癌剤イリノテカン(CPT11)を使用した。
 その結果を図10A及びBに示す。図10では、直鎖状リンカーを介したSN−38と抗体との複合体(A)、又は分枝状リンカーを介したSN−38と抗体との複合体(B)の存在下における、SUIT2細胞の細胞増殖率(%)を示す。図10に示すように、SN−38濃度換算のIC50は、分枝状リンカーを用いた場合が0.028μM(図10のB)であり、直鎖状リンカーを用いた場合の0.034μM(図10のA)とほぼ同等であった。従って、いずれの複合体を用いた場合でも、抗腫瘍効果が確認された。また、分枝状リンカーを用いた場合には、抗体複合体の投与量は約1/3に減らすことができた。
 SN−38は、イリノテカンCPT−11というプロドラッグとしてすでに臨床応用されているが、低分子であるゆえに、分布が正常組織と癌組織との間で区別されず、癌に長く留まらない。したがって、活性本体であるSN−38の時間依存性抗腫瘍効果という特徴が活かされず、副作用が強いという問題が臨床上指摘されている。本実施例に示すように、分枝状リンカーを用いることによりSN−38の抗体への付加量を約3倍に増やすことで、癌選択毒性が高められた。
[実施例8]
in vivo抗腫瘍効果
 本実施例では、実施例6で調製した抗体−SN−38複合体のマウス化学発癌モデルに対する影響を調べた。
 マウス化学発癌モデルは、常法に従って、マウスの背中に250μg/ml DMBA(7,12−ジメチルベンズアントラセン)をイニシエーターとして約200ml塗布し、その後PMA(ホルボールミリスチン酸アセテート)を25g/ml週1回塗布して約半年後に、ヒトと近い病態を示す自然化学発癌モデルマウスを確立した。マウス化学発癌モデルの腫瘍径が4mmに達したとき、CPT−11をSN−38換算23.2mg/kgで、又は抗フィブリン抗体−SN−38複合体をSN−38換算13.5mg/kgで静脈内投与した。
 その結果を図11及び12に示す。図11に示されるように、CPT−11に比べて抗フィブリン抗体−SN−38が強い抗腫瘍効果を示した。また、図12に示されるように、ケース1では腫瘍は顕著に縮小している。ケース2では、薬の効果で腫瘍の色調が赤色(血流陽性)から白色(血流陰性)に変化しており、抗腫瘍効果の強さを示している。
 従って、本発明の抗フィブリン抗体が、抗腫瘍性化合物を腫瘍部位へ送達し、抗腫瘍効果を発揮できることが確認された。
[Correction 06.10.2011 based on Rule 91]
Hereinafter, the present embodiment will be described in more detail with reference to examples. The present invention is not limited to these.
[Example 1]
Production of mouse anti-fibrin antibody
As an immunogen, a fibrin clot was prepared by allowing 200 IU thrombin to act on a 20 mg / ml fibrinogen (Sigma) solution in the presence of 0.1 M calcium chloride. The prepared fibrin clot was transferred to a mortar, added with liquid nitrogen, frozen and pulverized with a pestle, and finally made a 1 mg / ml fibrin suspension in a phosphate buffer and used for mouse sensitization.
The Balb / c mouse strain was injected 3 times in total with 25 μg of fibrin crushed solution on the sole of the foot 2 days later. At that time, TiterMAX emulsion (TiterMAX USA Inc.) was used as an adjuvant. Three days after the final immunization, lymph node cells were collected from the mice.
The obtained lymph node cells and myeloma cells (P3U1) were fused, and further selected by ELISA using fibrin protein. Specifically, a fibrinogen (Sigma) plate and a fibrin plate were prepared, and hybridomas showing ELISA positive on the fibrin plate and negative on the fibrinogen plate were selected. The fibrinogen plate was prepared by adding a TBS (pH 8.5) solution in which 50 μg / ml fibrinogen was dissolved to a 96-well plate (Nunc486667) at 100 μl / well, and standing at 4 ° C. for 18 hours. Washed 3 times with 0.01% Tween 80, dried overnight at 37 ° C., and stored at 4 ° C. until use. The fibrin plate was subjected to a drying operation in the same manner as the fibrinogen plate, and then a TBS solution (10 mM CaCl in which 10 NIH U / ml human thrombin was dissolved). 2 And 7 mM L-cysteine) was added to a 96-well plate at 100 μl / well, and after 1 hour at 37 ° C., the supernatant was removed and washed 3 times with PBS (containing 0.01% Tween 80). After drying overnight at 37 ° C, it was stored at 4 ° C until use.
The ELISA was performed by adding the sampled hybridoma culture supernatant (stock solution) to a fibrinogen plate or fibrin plate at 50 μL / well and reacting at room temperature for 60 minutes. After washing 3 times with PBS, goat anti-mouse IgG-POD label (MBL product, Code.330) diluted 10,000 times with dilution buffer (MBL) was added at 50 μL / well and allowed to react at room temperature for 60 minutes. It was. After washing three times, a color developing solution (manufactured by MBL) was added at 50 μL / well for color development for 15 minutes, and 1.5 mol / L phosphoric acid was added at 50 μL / well to stop the reaction. After the reaction was stopped, the absorbance was measured at a measurement wavelength of 450 nm and a reference wavelength of 620 nm.
A hybridoma cell that produces a monoclonal antibody that binds to human fibrin and does not bind to human fibrinogen was selected, and a cell line (clone 102-10) was established. The antibody produced by this cell line was mouse IgM. This hybridoma cell line was designated as “102-10” by the applicant of the present application, and the National Institute for Product Evaluation and Technology (NITE) Biotechnology Headquarters Patent Microorganism Deposit Center (NPMD) (Kisarazu City, Chiba Prefecture 292-0818, Japan) Deposited at Kazusa Kamashika 2-5-8) on April 2, 2010 (original deposit) and given the deposit number NITE BP-923.
In addition, the culture supernatant of the hybridoma cell line 102-10, commercially available anti-fibrin antibody NYB-T2G1 (anti-fibrin II antibody, ACCURATE CHEMICAL & SCIENTIFIC CORPORATION) and MH-1 (American Biogenetic Sciences, Inc., JP-A-11-80). The reactivity with mouse and human fibrin, and mouse and human fibrinogen was examined by ELISA using the fibrin plate and fibrinogen plate described above.
The results are shown in FIGS. 1A and B show the results using a commercially available anti-fibrin antibody as a control, and FIG. 1C shows the results using the mouse anti-fibrin IgM antibody of the present invention. In FIG. 1, (1) is a reaction with human fibrin, (2) is a reaction with human fibrinogen, (3) is a reaction with mouse fibrin, (4) is a reaction with mouse fibrinogen, and (5) is a control. Represents the reaction with albumin. As shown in FIG. 1, it was confirmed that the mouse IgM antibody derived from the hybridoma cell line 102-10 specifically reacts with mouse and human fibrin but does not react with mouse and human fibrinogen.
[Example 2]
Production of chimeric antibody
Total RNA was extracted from the hybridoma cell line 102-10 prepared in Example 1, and the cDNAs of the variable region of the antibody H chain and the variable region of the L chain were amplified using the adapter ligation RT-PCR method. The primer sequences used are as follows:
For H chain
Figure JPOXMLDOC01-appb-I000005

For L chain
Figure JPOXMLDOC01-appb-I000006

Each amplified cDNA was cloned into pT7Blue (Promega). The cDNAs of the H chain variable region (396 bp) and the L chain variable region (381 bp) are shown in FIGS. 2A and 2B, respectively. FIG. 2A shows the base sequence and amino acid sequence of the antibody H chain, and corresponds to the variable region (1 to 396 bp) and a part of the constant region. The base sequence and amino acid sequence of the variable region of the heavy chain are shown in SEQ ID NOs: 7 and 8, respectively. B of FIG. 2 shows the base sequence and amino acid sequence of the antibody L chain, and corresponds to the entire length of the protein coding region (variable region is 1 to 381 bp). The base sequence and amino acid sequence of the variable region of the L chain are shown in SEQ ID NOs: 9 and 10, respectively. In FIG. 2, the complementarity determining regions (CDRs) 1 to 3 of the H chain and the L chain are indicated by squares.
After amplification of the variable region of the H chain and L chain by PCR, the variable region of the H chain is inserted into pQCxIP (Clontech) incorporating the constant region, and the variable region of the L chain is inserted into pQCxIH (Clontech) incorporating the constant region for expression Completed the vector. The expression vector was transfected into CHO cells (RIKEN BioResource Center) using Lipofectamine 2000 (Invitrogen). The human type anti-fibrin chimeric antibody constant expression cell line (human type IgG clone 102-10Hu) is selected with 10 μg / mL puromycin (Sigma) and 500 μg / mL hygromycin B (Invitrogen) to obtain both resistant strains. It was established by that. The established cell lines were maintained with F12 (Sigma) 10% FBS, 1 mM HEPES (Sigma), 1% penicillin streptomycin (Invitrogen), puromycin 10 μg / mL, and hygromycin B 500 μg / mL.
Established cell line 175cm 2 Using a flask (for adherent cells), 10% FBS medium for master cells (F12 [Sigma: N6658], 10% FBS [Hyclone: lot. APM22733] (FBS is used after removing Bovine IgG), 1% Penicillin-Streptomycin (Invitrogen), 1 mM HEPES [Sigma: H4034-500G], 50 mg / mL hygromycin B 5.7 mL [WAKO: 085-06153], and 2 mg / mL puromycin hydrochloride 2.9 mL [ WAKO: 533-71593]). The culture supernatant was removed by suction, the flask was washed with 10 mL of PBS, and this washing was performed twice. After removing PBS, 5 mL of TRYPSIN / 0.5% EDTA [Invitrogen: 25300054CAMP] is added, and CO is added. 2 It was allowed to stand for 5 minutes in an incubator. After confirming that the cells were detached from the bottom surface, 10 mL of 10% FBS medium for master cells was added to stop the enzyme reaction. Thereafter, the cells were peeled off by pipetting, and all the liquid in the flask was collected. p. Centrifuged for 5 minutes at m. The supernatant after centrifugation was removed, and the pellet was suspended in 30 mL of 10% FBS medium for master cells. Next, 29 mL of 10% FBS medium for master cells was added to the flask, and 1 mL of the cell suspension after centrifugation was added.
Subsequently, the following operation was performed for mass culture. 175cm 2 29 mL of 5% FBS medium F12 (Sigma) for mass culture was added to 30 flasks (for floating cells). Add 1 mL of the cell suspension obtained above to a flask for mass culture. 2 Static culture was performed in an incubator. About 1 week after the passage, 5 mL of 5% FBS medium for mass culture was added. In a state where cells floating under a microscope were confluent, 10 mL of 5% FBS medium for mass culture was added every 3 to 4 days thereafter, and the volume was increased to 50 mL. Microscope at the time of medium addition. If almost no cell clumps exist and the ratio of dead cells exceeds 80%, the culture is stopped at that point and 3-4 days after the last addition of the medium. The supernatant was collected and 3000 r. p. Centrifuged for 5 minutes at m. 0.05% amount of sodium azide was added to the culture supernatant and stored refrigerated until purification.
Antibody purification was performed as follows. That is, the culture supernatant obtained above was filtered with a 0.22 um filter to remove insoluble matters. The culture supernatant was applied to a column packed with Protein G Sepharose (registered trademark) 4B equilibrated with a binding buffer (phosphate buffer pH 7). The column was washed 4 times with a rinse buffer (phosphate buffer pH 7) 5 times the column volume, and an elution buffer (glycine buffer) pH 4 was passed 1.8 times the column volume. Next, elution buffer (glycine buffer) pH 3 was flowed 6 times the column volume and collected for each fraction, and the eluate was quickly neutralized with 1M Tris HCl buffer (pH 7). The absorbance of the fraction was measured, and the fraction containing the antibody was collected and proceeded to the next purification of hydroxyapatite.
In the purification of hydroxyapatite, the sample was first dialyzed against 10 mM Na-PB (pH 6.5) and 300 mM NaCl. After equilibrating a hydroxyapatite type II packed column with 10 mM Na-PB (pH 6.5) and 300 mM NaCl, all samples were added, washed with 10 mM Na-PB (pH 6.5), 300 mM NaCl, and 10 mM Na-PB. (PH 6.5) eluted with 2M NaCl. Fractions were collected, each fraction was confirmed by SDS-PAGE, and a sample was collected. After dialysis against PBS, it was concentrated by ultrafiltration to obtain a purified human anti-fibrin chimeric antibody. The reactivity of the obtained chimeric antibody was confirmed using the ELISA method in the same manner as in Example 1. The result is shown in FIG.
As shown in FIG. 3, it was shown that the human chimeric antibody specifically reacts with mouse and human fibrin but does not react with mouse and human fibrinogen. Therefore, the human antibody derived from mouse IgM retains the reactivity of mouse IgM and can be applied to human diagnostic treatment. In addition, since it has binding properties with mouse and human fibrin, it is possible to extrapolate experimental results in mice to humans.
[Example 3]
Immunostaining of human tissue using mouse IgM antibody and human chimeric antibody
In this example, immunostaining of a human pancreatic cancer surgical specimen and a human brain tumor (glioma) surgical specimen was performed using the mouse IgM antibody and human chimeric antibody prepared in Examples 1 and 2.
Human pancreatic cancer surgical specimens were obtained from Fukushima Medical University Pathology, and paraffin sections were prepared. In addition, human brain tumor (glioma) surgery specimens were donated by Kumamoto University Hospital Neurosurgery, and paraffin sections were prepared. Paraffin sections were treated with xylene and ethanol to deparaffinize and immersed in demineralized water. Section is 0.3% H 2 O 2 / Blocked in MeOH for 20 minutes and washed with TBST (Tris buffer, Tween 20) for 5 minutes. Thereafter, the section was immersed in an antigen activation solution (10 mM citrate buffer, pH 6.0), treated with microwave (MW) at 93 ° C. for 20 minutes, allowed to stand for 30 minutes, and then 3 times with TBST for 5 minutes. Washed.
Sections were processed at 4 ° C. using 10 μg / ml mouse IgG antibody (Example 1) or 2 μg / ml human chimeric antibody (Example 2) as the primary antibody. Next, after washing 3 times with TBST for 5 minutes, several drops of anti-mouse secondary antibody (Code No. K4001, DAKO) or 200-fold diluted anti-human secondary antibody (Code No. 206, MBL) The reaction was allowed to proceed for 1 hour at room temperature. The sections were washed 3 times with TSBT for 5 minutes, DAB (Code No. K4007, DAKO) was added dropwise as a chromogenic substrate, and reacted for 5 minutes. The sections were washed with demineralized water, immersed in hematoxylin for 20 seconds, washed with water for 10 minutes, and then treated with ethanol and xylene.
FIG. 4 shows the result of immunostaining of a human pancreatic cancer surgical specimen section using the chimeric antibody. Further, FIG. 5 shows the result of immunostaining of a human brain tumor surgical specimen section using mouse IgM antibody. 5A shows human brain tumor (glioma) surgical tissue section hematoxylin staining, and B shows the result of immunostaining the section. As shown in FIGS. 4 and 5, it was found that this antibody can be used to stain human pancreatic cancer tissue and brain tumor.
[Example 4]
Immunostaining of human tissue using mouse IgM antibody and human chimeric antibody
In the same manner as in Example 3, immunostaining of invasive squamous cell carcinoma by mouse chemical carcinogenesis was performed. The result is shown in FIG. In FIG. 6, A shows a tissue stained with hematoxylin and eosin, and invasive squamous cell carcinoma surrounded by cancer stroma is observed. B shows an immunostained tissue with anti-fibrin antibody IgM, and it is confirmed that fibrin is significantly present in the cancer stroma. C shows a tumor accumulation image when fluorescently labeled human chimeric anti-fibrin IgG is administered from the tail vein of a tumor-bearing mouse, and the antibody is specifically accumulated in the stroma in the tumor, and B fibrin It can be confirmed that it matches the site.
[Example 5]
In vivo imaging using antibodies
In this example, the tumor accumulation property of the anti-fibrin antibody was examined.
FIG. 7A shows a mouse in which a mouse chemical carcinogenic skin invasive tumor was formed. The labeled human chimeric antibody was administered via the mouse tail vein. The distribution of antibodies 1 day, 3 days and 7 days after the administration was analyzed using a biological imaging apparatus OV110 (Olympus) and NightOWL II LB 983 (Berthold).
The results on day 7 after administration are shown in FIG. From these results, it was shown that the anti-fibrin antibody selectively accumulates in the tumor tissue and accumulates in the tumor tissue for a long time.
[Reference Example 1]
Binding of branched linker to antitumor compound SN-38
According to the scheme shown in FIG. 8, a branched linker and an antitumor compound SN-38 (10-hydroxy-7-ethylcamptothecin) were coupled. In the following reaction, “DMAP” represents N, N-dimethyl-4-aminopyridine, “DMF” represents N, N-dimethylformamide, and “THF” represents tetrahydrofuran.
(1) Conjugation of SN-38 and PEG
10-hydroxy-7-ethylcamptothecin (102.1 mg, 0.260 mmol), Boc-PEG 27 -In a DMF solution (1 mL) of -COOH (407.1 mg, 0.286 mmol) and DMAP (15.9 mg, 0.130 mmol), WSCDI (water soluble carbodiimide: 54.8 mg, 0.286 mmol) was added at 0 ° C. did. The mixture is stirred at room temperature for 19 hours and the reaction mixture is subjected to gel filtration column chromatography (LH20 CHCl). 3 : MeOH = 1: 1), silica gel column chromatography (CHCl 3 : MeOH = 15: 1 to 9: 1) to give ester J as a colorless oil (420.1 mg, 90%).
1 H-NMR δ (CD 3 OD) 8.20 (d, J = 9.2 Hz, 1H), 7.99 (s, 1H), 7.66 (m, 2H), 5.60 (d, J = 16.5 Hz, 1H), 5.40 (d, J = 16.5 Hz, 1H), 5.32 (M, 2H), 3.93 (t, J = 6.4 Hz, 2H), 2.96 (t, J = 6.4 Hz) , 2H), 1.97 (m, 2H), 1.43 (s, 9H), 1.40 (t, J = 7.6 Hz, 3H), 1.02 (t, J = 7.8 Hz, 3H) ); 13 C-NMR (DMSO-d 6 ) Δ 164.8, 161.9, 149.2, 148.5, 143.1, 142.7, 141.3, 138.2, 137.7, 137.5, 122.4, 119.5 118.9, 117.2, 110.7, 106.5, 89.7, 70.4, 64.6, 62.3, 62.0, 62.0, 62.0, 61.9, 61. 8, 61.8, 61.7, 61.5, 58.1, 58.0, 57.1, 41.2, 40.1, 31.8, 28.1, 26.3, 19.4 14.4, 4.9, -1.1.
(2) Synthesis of branched linker
To a solution of 3- (allyloxy) -2- (allyloxymethyl) -2-((pro-2-enyloxy) methyl) propan-1-ol (14.85 g, 31.17 mmol) in DMF (30 mL) was added NaH (21 .87 g, 46.78 mmol) was added at room temperature. After 1 hour, bromide 1-((5-bromopentyloxy) methyl) -4-methoxybenzene (16.7 g, 58.04 mmol) was added. The flask was washed twice with DMF (3 mL). The mixture was stirred at 55 ° C. for 1 day. After cooling to room temperature, N, N-dimethyl 1,3-propanediamine (10 mL) was added. After 1 hour, the mixture is saturated with NH. 4 Dilute with Cl and EtOAc. The aqueous layer was extracted with EtOAc. The mixed layer was washed with saturated brine. The organic layer is Na 2 SO 4 Dried and filtered. After evaporation, the residue was purified on a silica gel column (hexane: EtOAc 9: 1 to 4: 1) to give compound A [1-((5- (3- (allyloxy) -2- (allyloxymethyl)] as a colorless oil. -2-((Pro-2-enyloxy) methyl) propoxy) pentyloxy) methyl) -4-methoxybenzene] (ether compound A) (8.60 g, 58%) was obtained.
1 H-NMR δ 7.23 (dd, J = 6.4 Hz, 2.4 Hz, 2H), 6.85 (dd, J = 6.4 Hz, 2.4 Hz, 2H), 5.85 (m, 3H) , 5.23 (d, J = 17.2 Hz, 3H), 5.11 (d, J = 10.4 Hz, 3H), 4.41 (s, 2H), 3.93 (m, 6H), 3 .78 (s, 3H), 3.42 (s, 8H) 3.39-3.36 (m, 4H), 1.60-1.51 (m, 4H), 1.38 (m, 2H) , 13 C-NMR δ 135.21, 129.11, 115.97, 113.69, 72.53, 72.26, 71.33, 7.13, 69.60, 69.42, 55.30, 45. 44, 29.65, 29.50, 22.94.
Triaryl compound 1-((5- (3- (allyloxy) -2- (allyloxymethyl) -2-((pro-2-enyloxy) methyl) propoxy) pentyloxy) methyl) -4-methoxybenzene A (8.60 g, 18.06 mmol) of CH 2 Cl 2 (200 mL) and MeOH (200 mL) solution were bubbled with ozone at −78 ° C. until the reaction mixture turned light blue. After replacing ozone with oxygen gas, NaBH 4 (8.60 g, 210 mmol) was added in several portions. The reaction mixture was gradually warmed and then stirred overnight at room temperature. After concentrating the reaction mixture, the mixture is diluted with CHCl. 3 And saturated NH 4 Liquid separation with Cl was performed. The aqueous layer is CHCl 3 Extracted with. The combined layers were washed with saturated brine and Na 2 SO 4 Dried and filtered. The solvent was removed under reduced pressure, and the residue was subjected to silica gel column chromatography (CHCl 3 : MeOH 9: 1) and purified compound B [2,2 ′-(2-((2-hydroxyethoxy) methyl) -2-((5- (4-methoxybenzyloxy) pentyloxy) methyl) propane] -1,3-diyl) bis (oxy) diethanol] (triol compound B) (8.56 g quant.).
1 H-NMR δ 7.23 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 4.41 (s, 2H), 3.84 (s, 3H) ), 3.79 (s like, 6H), 3.53 (m, 6H), 3.48 (s like, 8H), 3.43-3.37 (m, 4H), 2.86 (s, 3H), 1.58-1.53 (m, 4H), 1.39 (m, 2H); 13 C-NMR δ 129.16, 113.69, 72.56, 72.50, 71.67, 70.46, 70.05, 70.00, 61.4, 55.30, 45.40, 29. 56, 29.32, 22.92.
Triol compound B (2,2 ′-(2-((2-hydroxyethoxy) methyl) -2-((5- (4-methoxybenzyloxy) pentyloxy) methyl) propane-1,3-diyl) Bis (oxy) diethanol) (2.91 g, 6.14 mmol) and PPh 3 (6.43 g, 24.51 mmol) in THF (50 mL) was added to CBr. 4 (8.14 g, 24.51 mmol) was added in several portions at 0 ° C. The mixture was stirred overnight at room temperature. Diethyl ether was added to the mixture and the precipitate was filtered. The filtrate was concentrated and purified by silica gel column chromatography (hexane: EtOAc 9: 1 to 4: 1) to give compound C [1-((5- (3- (2-bromoethoxy) -2,2-bis ( (2-Bromoethoxy) methyl) propoxy) pentyloxy) methyl) -4-methoxybenzene] (tribromide C) (3.48 g, 86%) was obtained.
1 H-NMR d 7.25 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 4.42 (s, 2H), 3.80 (s, 3H) ), 3.74-3.71 (m, 6H), 3.47 (s, 8H), 3.47-3.38 (m, 6H), 1.7-1.50 (m, 4H), 1.40 (m, 2H); 13 C-NMR δ 129.12, 113.66, 72.53, 71.33, 71.14, 70.08, 69.38, 68.88, 55.29, 45.72, 30.82, 29. 63, 22.97.
Tribromide C (1-((5- (3- (2-bromoethoxy) -2,2-bis ((2-bromoethoxy) methyl) propoxy) pentyloxy) methyl) -4-methoxybenzene) ( 3.48 g, 5.27 mmol) in DMF (10 mL) 3 (5.27 g, 81.08 mmol) was added and the mixture was stirred at 50 ° C. for 4 hours. The mixture was washed with EtOAc and saturated NaHCO3. 3 Diluted with The aqueous layer was extracted with EtOAc. The mixed layer was washed with saturated brine. Na 2 SO 4 After the mixture was dried, the solvent was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: EtOAc 7: 3), and compound D [1-((5- (3- (2-azidoethoxy) -2,2-bis ((2-azidoethoxy) methyl ) Propoxy) pentyloxy) methyl) -4-methoxybenzene] (triazide compound D) (2.84 g, 98%).
1 H-NMR δ 7.23 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 4.41 (s, 2H), 3.78 (s, 3H) ), 3.59 (t, J = 4.8 Hz, 6H), 3.47 (s, 8H), 3.44-3.28 (m, 10H), 1.61-1.55 (m, 4H) ), 1.39 (m, 2H); 13 C-NMR δ 129.04, 113.63, 72.53, 71.32, 70.46, 70.13, 69.71, 68.85, 55.32, 50.86, 45.12, 29. 70, 23.04.
PMB ether (2.63 g, 4.7 mmol) in CH above 2 Cl 2 (30 mL) and H 2 To the O (20 mL) solution, DDQ (1.30 g, 5.75 mmol) was added at 0 ° C. After the addition, the ice bath was removed and stirred at room temperature. After 5 hours, the reaction was quenched with citrate buffer and the aqueous layer was extracted with EtOAc. Combine the layers with saturated NaHCO 3. 3 And washed with saturated brine. The organic layer is Na 2 SO 4 And dried. After filtration, the solvent was removed. The residue was purified by silica gel column chromatography (hexane: EtOAc 1: 1) and compound E [5- (3- (2-azidoethoxy) -2,2-bis ((2-azidoethoxy) methyl) propoxy) pentane. -1-ol] (alcohol compound E) (1.55 g, 75%) was obtained.
1 H-NMR δ 3.64-3.58 (m, 8H), 3.46 (s, 6H), 3.41-3.38 (m, 4H), 3.31-3.28 (m, 6H) ), 1.57-1.55 (m, 4H), 1.41 (m, 2H); 13 C-NMR δ 71.20, 70.46, 69.67, 68.84, 62.92, 50.86, 45.08, 32.57, 29.36, 22.56.
Jones reagent was added at 0 ° C. to a solution of the alcohol compound (1.55 g, 3.61 mmol) obtained above in acetone (20 mL). Excess Jones reagent was destroyed with isopropyl alcohol iPrOH and the precipitate was filtered. After concentration, the residue is chromatographed on silica gel column (CHCl 3 : EtOAc 7: 3 to 1: 1) and purified compound F [5- (3- (2-azidoethoxy) -2,2-bis ((2-azidoethoxy) methyl) propoxy) pentanoic acid] (acid F) (1.37 g, 86%) was obtained.
1 H-NMR δ 3.72 (t, J = 6.0 Hz, 3H), 3.60 (t, J = 4.4 Hz, 4H), 3.47 (s, 8H), 3.44-3.40 (M, 4H), 3.32 (t, J = 4.8 Hz, 4H), 2.83 (t, J = 7.6 Hz, 2H), 1,70 (m, 2H), 1.60 (m , 2H); 13 C-NMR δ 177.69, 77.21, 70.77, 70.48, 69.68, 68.96, 50.87, 45.11, 33.55, 28.93, 21.81.
Acid obtained above (1.65 g, 3.85 mmol), N- (tert-butoxycarbonyl) -1,5-diaminopentane (1.56 g, 7.69 mmol) and HOBt (1.03 g, 7.60 mmol) CH 2 Cl 2 To the (30 mL) solution, water-soluble carbodiimide WSCDI (1.47 g, 7.69 mmol) was added at 0 ° C. The mixture was stirred overnight at room temperature and CHCl. 3 And saturated NH 4 Dilute with Cl. The aqueous layer is CHCl 3 Extracted with. Combine the layers with saturated NaHCO 3. 3 And saturated brine, Na 2 SO 4 And dried the solvent. The residue was subjected to silica gel column chromatography (CHCl 3 : EtOAc 1: 1 to EtOAc only) and compound G [tert-butyl 5- (5- (3- (2-azidoethoxy) -2,2-bis ((2-azidoethoxy) methyl) propoxy) (Pentanamido) pentylcarbamate] (triazide compound G) (2.18 g, 90%).
1 H-NMR δ 5.60 (bs, 1H), 4.55 (bs, 1H), 3.72 (t, J = 6.0 Hz, 2H), 3.62 (t, J = 4.8 Hz, 4H) ), 3.47-3.41 (m, 12H), 3.30 (t, J = 4.8 Hz, 4H), 3.22 (q, J = 6.4H, 2H), 3.10 (m , 2H), 2.17 (t, J = 7.2 Hz, 2H), 1.70-1.46 (m, 7H), 1.43 (s, 9H), 1.34 (m, 3H), 13 C-NMR δ 172.64, 155.87, 77.21, 71.15, 71.13, 70.99, 70.94, 70.50, 69.73, 69.69, 69.36, 68. 97, 50.91, 45.35, 45.11, 40.35, 39.36, 36.56, 31.00, 29.88, 20.40, 29.23, 28.55, 24.09, 22.77.
(3) Binding of branched linker to SN-38
Compound B SN38-PEG Boc compound (0.71 g, 0.396 mmol) was converted to CH. 2 Cl 2 (20 mL), 4.0 M dioxane (20 mL) was added, and the mixture was stirred at room temperature for 2 hr. The reaction mixture was concentrated under reduced pressure, toluene was added, and the mixture was further concentrated and dried under vacuum. This residue is CH 2 Cl 2 (20 mL) and iPr 2 NEt (0.57 mmol, 3.24 mmol) was added at 0 ° C., anhydrous succinimide (60 mg, 0.594 mmol) was added, and the mixture was stirred at room temperature overnight. The reaction solution was mixed with LH20 (CHCl 3 : MeOH 1: 1), silica gel column chromatography (CHCl 3 : MeOH 9: 1 to 4: 1) to obtain K.
Meanwhile, trimethylphosphine (0.5 mL, 1 M solution) was added to a solution of triazide compound G (63 mg, 0.10 mmol) in dioxane (1 mL) and water (0.5 mL), and the mixture was stirred overnight at room temperature under a nitrogen atmosphere. Compound H was obtained.
The reaction mixture is concentrated, and the above carboxylic acid K is converted to CH. 2 Cl 2 (10 mL) dissolved in HOBt (213 mg, 1.58 mmol), WSCDI (308 mg, 1.58 mmol), iPr 2 NEt (0.5 mL) was added. The reaction was stirred overnight at room temperature and the reaction was LH20 (CHCl. 3 : MeOH 1: 1) to obtain 0.71 g. This was dissolved in dioxane (20 mL) and 4.0 M hydrochloric acid-dioxane solution (20 mL), stirred for 3 hours at room temperature, and then concentrated under reduced pressure. This is CH 2 Cl 2 (1mL) dissolved in iPr 2 NEt (0.1 mL) is added and N-succimidyl PEG is added. 12 -Mal (100 mg), iPr 2 NEt (0.2 mL) was added. Stir overnight at room temperature and mix with LH20 (CHCl 3 : The product L was obtained by purification with MeOH 1: 1).
[Reference Example 2]
Binding of linear linker to antitumor compound SN-38
The linear linker and anti-tumor compound SN-38 (10-hydroxy-7-ethylcamptothecin) were coupled as described below. In the following reaction, “DMAP” represents N, N-dimethyl-4-aminopyridine, “DMF” represents N, N-dimethylformamide, and “TFA” represents trifluoroacetic acid.
(1) Conjugation of SN-38 and PEG
Figure JPOXMLDOC01-appb-I000007

10-hydroxy-7-ethylcamptothecin (102.1 mg, 0.260 mmol), Boc-PEG 27 -In a DMF solution (1 mL) of -COOH (407.1 mg, 0.286 mmol) and DMAP (15.9 mg, 0.130 mmol), WSCDI (water soluble carbodiimide: 54.8 mg, 0.286 mmol) was added at 0 ° C. did. The mixture is stirred at room temperature for 19 hours and the reaction mixture is subjected to gel filtration column chromatography (LH20 CHCl). 3 : MeOH = 1: 1), silica gel column chromatography (CHCl 3 : MeOH = 15: 1 to 9: 1) to give the ester as a colorless oil (420.1 mg, 90%).
1 H-NMR δ (CD 3 OD) 8.20 (d, J = 9.2 Hz, 1H), 7.99 (s, 1H), 7.66 (m, 2H), 5.60 (d, J = 16.5 Hz, 1H), 5.40 (d, J = 16.5 Hz, 1H), 5.32 (M, 2H), 3.93 (t, J = 6.4 Hz, 2H), 2.96 (t, J = 6.4 Hz) , 2H), 1.97 (m, 2H), 1.43 (s, 9H), 1.40 (t, J = 7.6 Hz, 3H), 1,02 (t, J = 7.8 Hz, 3H) ); 13 C-NMR (DMSO-d 6 ) Δ 164.8, 161.9, 149.2, 148.5, 143.1, 142.7, 141.3, 138.2, 137.7, 137.5, 122.4, 119.5 118.9, 117.2, 110.7, 106.5, 89.7, 70.4, 64.6, 62.3, 62.0, 62.0, 62.0, 61.9, 61. 8, 61.8, 61.7, 61.5, 58.1, 58.0, 57.1, 41.2, 40.1, 31.8, 28.1, 26.3, 19.4 14.4, 4.9, -1.1.
(2) Introduction of maleimide group into linear linker
Figure JPOXMLDOC01-appb-I000008

CH 2 Cl 2 Boc-PEG in (10 mL) 27 -To a solution of camptothecin (221.5 mg, 0.123 mmol) was added TFA (1 mL) at room temperature. The mixture was stirred for 1.5 hours, then removed in vacuo and toluene was added. After evaporation, the residue was dried under high vacuum. CH residue 2 Cl 2 (5 mL) and MAL-PEG 12 Dissolved in NHS (128.2 mg, 0.148 mmol), iPr 2 NEt (48 μL, 0.246 mmol) was added at 0 ° C. After 30 minutes, the mixture was subjected to gel filtration column chromatography (LH-20, CHCl 3 : CH 3 OH = 1: 1) and purified by silica gel column chromatography to obtain the desired product as a colorless oil (276.0 mg, 91%).
1 H-NMR (CD 3 OD) δ 8.20 (d, J = 9.2 Hz, 1H), 8.00 (s, 1H), 7.66-7.64 (m, 2H), 6.83 (s, 2H), 5 .60 (d, J = 16.0 Hz, 1H), 5.41 (d, J = 16.0 Hz, 1H), 5.34 (s, 1H), 3.93 (t, J = 6.0 Hz, 2H), 2.97 (t, J = 6.0 Hz, 2H), 2.49-2.45 (m, 4H), 2.00-1.98 (m, 2H), 1.41 (t, J = 7.6 Hz, 3H), 1.02 (t, J = 7.6 Hz, 3H); 13 C-NMR (DMSO-d 6 ) Δ 172.1, 170.4, 169.8, 169.7, 169.1, 156.5, 151.7, 149.7, 148.9, 146.2, 145.6, 145.0, 134.3, 131.1, 128.4, 126.8, 125.3, 118.8, 115.0, 96.5, 72.3, 69.9, 69.6, 69.5, 69. 4, 69.0, 68.9, 66.7, 65.8, 65.1, 49.5, 36.0, 34.8, 34.1, 33.9, 31.6, 30.3, 25.4, 22.3, 13.9, 7.8.
[Example 6]
Binding of SN-38-linker conjugate to antibody
As shown in FIG. 9, a PEG-SN-38 conjugate bound to a branched linker (Reference Example 1) or a PEG-SN-38 conjugate bound to a linear linker (Reference Example 2) Conjugated with anti-fibrin antibody.
Specifically, the antibody was prepared at a concentration of 1.0 mg / ml in PBS. Dithiothreitol (DTT) was added to the antibody to a final concentration of 10 mM and reacted at 37 ° C. for 30 minutes. The reaction reagent was removed with Amicon Ultra. As a result of absorption measurement, the antibody recovery was about 60 to 100%. In addition, 6 to 8 SH groups were obtained per antibody from the quantification results of SH groups by (5,5′-dithiobis (2-nitrobenzoic acid)) (DNTB).
Next, it is dissolved in 100 mM phosphate buffer + 150 mM NaCl + 5 mM EDTA (pH 6.0) so that the protein concentration becomes 0.5 mg / ml, and L (maleimide compound) 3-4 in FIG. The mixture was allowed to react at room temperature for 1 hour and then at 4 ° C. overnight.
After removing the reaction reagent with Amicon Ultra, it was replaced with PBS. When the protein was recovered with Amicon Ultra, the recovery rate was 60 to 100%, and 18 to 24 SN-38s per antibody were added to the antibody to which a branched linker was bound.
Further, the amount of SN-38 bound to the antibody when using a linear linker and a branched linker was examined using HPLC. The results are shown in Table 1. In the table, the “AVERAGE” column indicates the relative SN-38 binding amount per antibody molecule.
Figure JPOXMLDOC01-appb-T000009

As shown in Table 1, the SN-38-antibody complex via a branched linker has a SN-38 binding amount per antibody as compared to the case where a conventional linear linker is used. It was found that the average was about 3 times more.
[Example 7]
In vitro cell killing effect
In this example, the in vitro cell killing effect of the antibody-SN-38 complex prepared in Example 6 on pancreatic cancer cell line SUIT2 was confirmed. Specifically, 3000 SUIT2 cancer cells are seeded in a 96-well plate, and 24 hours later, a complex of SN-38 and an antibody via a linear linker or SN-38 and an antibody via a branched linker And the number of cells after 48 hours was measured by the WST-8 method using Cell Counting Kit-8 (Dojindo). As controls, free SN-38 and the known anticancer drug irinotecan (CPT11) were used.
The results are shown in FIGS. 10A and 10B. In FIG. 10, SUIT2 in the presence of a complex of SN-38 and an antibody via a linear linker (A) or a complex of SN-38 and an antibody via a branched linker (B). The cell growth rate (%) of the cells is shown. As shown in FIG. 10, the IC50 in terms of SN-38 concentration is 0.028 μM (B in FIG. 10) when a branched linker is used, and 0.034 μM (when a linear linker is used). It was almost equivalent to A) in FIG. Therefore, the antitumor effect was confirmed even when any complex was used. In addition, when a branched linker was used, the dose of the antibody conjugate could be reduced to about 1/3.
SN-38 has already been clinically applied as a prodrug called irinotecan CPT-11, but because it is a small molecule, its distribution is not distinguished between normal tissue and cancer tissue, and it does not stay long in cancer. Therefore, the problem that the side-effect antitumor effect of SN-38, which is the active body, is not utilized and the side effects are strong has been pointed out clinically. As shown in this Example, the selective cancer toxicity was enhanced by increasing the amount of SN-38 added to the antibody by about 3 times by using a branched linker.
[Example 8]
In vivo anti-tumor effect
In this example, the effect of the antibody-SN-38 complex prepared in Example 6 on a mouse chemical carcinogenesis model was examined.
In the mouse chemical carcinogenesis model, approximately 200 ml of 250 μg / ml DMBA (7,12-dimethylbenzanthracene) as an initiator was applied to the back of the mouse according to a conventional method, and then PMA (phorbol myristate acetate) was applied at 25 g / ml week. About half a year after the first application, a spontaneous chemical carcinogenesis model mouse having a pathological condition close to that of a human was established. When the tumor diameter of the mouse chemical carcinogenesis model reached 4 mm, CPT-11 was converted to SN-38 at 23.2 mg / kg, or anti-fibrin antibody-SN-38 complex was converted to SN-38 at 13.5 mg / kg. It was administered intravenously.
The results are shown in FIGS. As shown in FIG. 11, anti-fibrin antibody-SN-38 showed a stronger antitumor effect than CPT-11. Further, as shown in FIG. 12, in case 1, the tumor is remarkably reduced. In case 2, the color of the tumor changes from red (positive blood flow) to white (negative blood flow) due to the effect of the drug, indicating the strength of the antitumor effect.
Therefore, it was confirmed that the anti-fibrin antibody of the present invention can deliver an antitumor compound to a tumor site and exert an antitumor effect.
 本発明により、フィブリンに対する抗体及びその抗原結合性フラグメントが提供される。本発明の抗フィブリン抗体を用いることにより、高感度に、信頼性をもって、かつ簡便にフィブリン及び血栓の存在を検出することができ、結果として血栓関連疾患を判定することが可能となる。また、本発明の抗フィブリン抗体を用いることにより、適当な化合物又は分子を血栓が存在する部位、例えば腫瘍に送達させることが可能となる。特に本発明の抗フィブリン抗体は、ヒト及びマウスフィブリンと結合し、かつヒト及びマウスフィブリノーゲンとは結合しないものであるため、医療診断分野や医薬分野において有用と考えられる。
 本明細書中で引用した全ての刊行物、特許及び特許出願は、その全文を参考として本明細書中に取り入れるものとする。
The present invention provides antibodies against fibrin and antigen-binding fragments thereof. By using the anti-fibrin antibody of the present invention, it is possible to detect the presence of fibrin and a thrombus with high sensitivity, reliability, and simpleness, and as a result, a thrombus-related disease can be determined. In addition, by using the anti-fibrin antibody of the present invention, it becomes possible to deliver an appropriate compound or molecule to a site where a thrombus exists, for example, a tumor. In particular, since the anti-fibrin antibody of the present invention binds to human and mouse fibrin and does not bind to human and mouse fibrinogen, it is considered useful in the medical diagnostic field and the pharmaceutical field.
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.
 受託番号NITE BP−923(ハイブリドーマ102−10、2010年4月1日付原寄託) Deposit number NITE BP-923 (Hybridoma 102-10, original deposit dated April 1, 2010)
配列表フリーテキストSequence listing free text
 配列番号1~6:人工配列(抗体CDR配列)
 配列番号7~10:人工配列(抗体可変領域配列)
 配列番号11~14:人工配列(プライマー)
SEQ ID NOs: 1 to 6: Artificial sequence (antibody CDR sequence)
SEQ ID NOs: 7 to 10: Artificial sequence (antibody variable region sequence)
SEQ ID NOs: 11 to 14: Artificial sequence (primer)

Claims (29)

  1. (a)配列番号1のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR1、
     (b)配列番号2のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR2、
     (c)配列番号3のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるH鎖CDR3、
     (d)配列番号4のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR1、
     (e)配列番号5のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR2、及び
     (f)配列番号6のアミノ酸配列又は該アミノ酸配列において1若しくは数個の保存的アミノ酸置換を含むアミノ酸配列からなるL鎖CDR3
    を含み、ヒトフィブリンと結合することを特徴とする抗体又はその抗原結合性フラグメント。
    (A) an H chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence comprising one or several conservative amino acid substitutions in the amino acid sequence,
    (B) an H chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
    (C) an H chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
    (D) an L chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 4 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence,
    (E) the L chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence containing one or several conservative amino acid substitutions in the amino acid sequence, and (f) the amino acid sequence of SEQ ID NO: 6 or 1 or L chain CDR3 consisting of amino acid sequence containing several conservative amino acid substitutions
    An antibody or an antigen-binding fragment thereof, which comprises binding to human fibrin.
  2. ヒトフィブリン及びマウスフィブリンと結合する、請求項1に記載の抗体又は抗原結合性フラグメント。 The antibody or antigen-binding fragment according to claim 1, which binds to human fibrin and mouse fibrin.
  3. ヒトフィブリノーゲン及びマウスフィブリノーゲンとは結合しない、請求項1又は2に記載の抗体又は抗原結合性フラグメント。 The antibody or antigen-binding fragment according to claim 1 or 2, which does not bind to human fibrinogen and mouse fibrinogen.
  4. モノクローナル抗体である、請求項1~3のいずれか1項に記載の抗体又は抗原結合性フラグメント。 The antibody or antigen-binding fragment according to any one of claims 1 to 3, which is a monoclonal antibody.
  5. 受託番号NITE BP−923を有するハイブリドーマ細胞により産生される抗体である、請求項1~4のいずれか1項に記載の抗体又は抗原結合性フラグメント。 The antibody or antigen-binding fragment according to any one of claims 1 to 4, which is an antibody produced by a hybridoma cell having the accession number NITE BP-923.
  6. 受託番号NITE BP−923を有するハイブリドーマ細胞により産生される抗体が結合するエピトープに結合する抗体である、請求項1~4のいずれか1項に記載の抗体又は抗原結合性フラグメント。 The antibody or antigen-binding fragment according to any one of claims 1 to 4, which is an antibody that binds to an epitope to which an antibody produced by a hybridoma cell having the deposit number NITE BP-923 binds.
  7. キメラ抗体又はヒト化抗体である、請求項1~4のいずれかに記載の抗体又は抗原結合性フラグメント。 The antibody or antigen-binding fragment according to any one of claims 1 to 4, which is a chimeric antibody or a humanized antibody.
  8. 配列番号8のアミノ酸配列からなるH鎖可変領域、及び配列番号10のアミノ酸配列からなるL鎖可変領域を含むキメラ抗体である、請求項7に記載の抗体又はその抗原結合性フラグメント。 The antibody or antigen-binding fragment thereof according to claim 7, which is a chimeric antibody comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 8 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 10.
  9. 標識されている、請求項1~8のいずれか1項に記載の抗体又は抗原結合性フラグメント。 The antibody or antigen-binding fragment according to any one of claims 1 to 8, which is labeled.
  10. 請求項1~8のいずれか1項に記載の抗体又は抗原結合性フラグメントをコードする塩基配列を含む核酸。 A nucleic acid comprising a base sequence encoding the antibody or antigen-binding fragment according to any one of claims 1 to 8.
  11. 請求項10記載の核酸を含む発現ベクター。 An expression vector comprising the nucleic acid according to claim 10.
  12. 請求項10記載の核酸又は請求項11記載の発現ベクターを含み、請求項1~8のいずれか1項に記載の抗体又は抗原結合性フラグメントを産生する形質転換体。 A transformant comprising the nucleic acid according to claim 10 or the expression vector according to claim 11, and producing the antibody or antigen-binding fragment according to any one of claims 1 to 8.
  13. 請求項12記載の形質転換体を培地において培養し、培養物から抗体又は抗原結合性フラグメントを採取するステップを含む、請求項1~8のいずれか1項に記載の抗体又は抗原結合性フラグメントの製造方法。 The antibody or antigen-binding fragment according to any one of claims 1 to 8, comprising a step of culturing the transformant according to claim 12 in a medium and collecting the antibody or antigen-binding fragment from the culture. Production method.
  14. 請求項1~8のいずれかに記載の抗体又は抗原結合性フラグメントを産生する細胞。 A cell that produces the antibody or antigen-binding fragment according to any one of claims 1 to 8.
  15. 受託番号NITE BP−923を有するハイブリドーマ細胞である、請求項14に記載の細胞。 15. The cell according to claim 14, which is a hybridoma cell having a deposit number of NITE BP-923.
  16. 請求項1~9のいずれか1項に記載の抗体又は抗原結合性フラグメントを含むことを特徴とするフィブリンの免疫学的測定用試薬。 A reagent for immunological measurement of fibrin, comprising the antibody or antigen-binding fragment according to any one of claims 1 to 9.
  17. 請求項1~9のいずれか1項に記載の抗体又は抗原結合性フラグメントを含むことを特徴とする血栓関連疾患の判定用試薬。 A reagent for determining a thrombus-related disease, comprising the antibody or antigen-binding fragment according to any one of claims 1 to 9.
  18. 血栓関連疾患が梗塞又は癌である、請求項17に記載の試薬。 The reagent according to claim 17, wherein the thrombosis-related disease is infarction or cancer.
  19. 請求項9に記載の標識された抗体又は抗原結合性フラグメントを含むことを特徴とする血栓可視化剤。 A thrombus visualization agent comprising the labeled antibody or antigen-binding fragment according to claim 9.
  20. 梗塞又は癌を可視化するための、請求項19に記載の血栓可視化剤。 The thrombus visualization agent according to claim 19 for visualizing infarction or cancer.
  21. (a)請求項1~9のいずれか1項に記載の抗体又は抗原結合性フラグメントと、サンプルとを接触させるステップ、
     (b)該抗体又は抗原結合性フラグメントがサンプル中のフィブリンと結合したか否かを検出するステップ
    を含む、サンプル中のフィブリンを検出するための方法。
    (A) contacting the antibody or antigen-binding fragment according to any one of claims 1 to 9 with a sample;
    (B) A method for detecting fibrin in a sample, comprising detecting whether the antibody or antigen-binding fragment has bound to fibrin in the sample.
  22. (a)請求項1~9のいずれか1項に記載の抗体又は抗原結合性フラグメントと、被験体に由来するサンプルとを接触させるステップ、
     (b)該抗体又は抗原結合性フラグメントがサンプル中のフィブリンと結合したか否かを検出するステップ
    を含む、被験体における血栓関連疾患を判定するための方法。
    (A) contacting the antibody or antigen-binding fragment according to any one of claims 1 to 9 with a sample derived from a subject;
    (B) A method for determining a thrombosis-related disease in a subject comprising detecting whether the antibody or antigen-binding fragment has bound to fibrin in a sample.
  23. 血栓関連疾患が梗塞又は癌である、請求項22に記載の方法。 The method according to claim 22, wherein the thrombosis-related disease is infarction or cancer.
  24. サンプルが、細胞及び組織サンプル、並びに生体液サンプルからなる群より選択される、請求項21~23のいずれか1項に記載の方法。 The method according to any one of claims 21 to 23, wherein the sample is selected from the group consisting of a cell and tissue sample, and a biological fluid sample.
  25. (a)請求項1~8のいずれか1項に記載の抗体又は抗原結合性フラグメントのアミノ酸配列から改変したアミノ酸配列を有する抗体又は抗原結合性フラグメントを調製するステップ、
     (b)得られた抗体又は抗原結合性フラグメントがフィブリンと結合するか否かを判定するステップ
    を含む、改変型抗フィブリン抗体又は抗原結合性フラグメントの作製方法。
    (A) preparing an antibody or antigen-binding fragment having an amino acid sequence modified from the amino acid sequence of the antibody or antigen-binding fragment according to any one of claims 1 to 8,
    (B) A method for producing a modified anti-fibrin antibody or antigen-binding fragment, comprising determining whether the obtained antibody or antigen-binding fragment binds to fibrin.
  26. 請求項1~9のいずれか1項に記載の抗体又は抗原結合性フラグメントと、抗腫瘍性部分との複合体。 A complex of the antibody or antigen-binding fragment according to any one of claims 1 to 9 and an antitumor moiety.
  27. 抗体又は抗原結合性フラグメントと抗腫瘍性部分とが、リンカーを介して結合している、請求項26に記載の複合体。 27. The complex according to claim 26, wherein the antibody or antigen-binding fragment and the antitumor moiety are bound via a linker.
  28. 抗腫瘍性部分が抗癌剤である、請求項26又は27に記載の複合体。 28. The complex according to claim 26 or 27, wherein the antitumor moiety is an anticancer agent.
  29. 請求項26~28のいずれか1項に記載の複合体を含む、腫瘍の予防又は治療剤。 A preventive or therapeutic agent for tumors, comprising the complex according to any one of claims 26 to 28.
PCT/JP2011/064493 2010-06-18 2011-06-17 Novel antifibrin antibody WO2011158973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010139572A JP2012000072A (en) 2010-06-18 2010-06-18 Novel antifibrin antibody
JP2010-139572 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011158973A1 true WO2011158973A1 (en) 2011-12-22

Family

ID=45348354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064493 WO2011158973A1 (en) 2010-06-18 2011-06-17 Novel antifibrin antibody

Country Status (2)

Country Link
JP (1) JP2012000072A (en)
WO (1) WO2011158973A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531895A (en) * 2013-10-04 2016-10-13 プロリンクス エルエルシー SN-38 sustained release conjugate
WO2018203517A1 (en) * 2017-05-02 2018-11-08 国立研究開発法人国立がん研究センター Plasmin-cleavable anti-insoluble fibrin antibody-drug conjugate
WO2021200932A1 (en) * 2020-03-31 2021-10-07 国立研究開発法人国立がん研究センター Fibrin-binding antibody and pharmaceutical composition containing antibody

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898419B1 (en) * 2007-07-23 2009-05-18 목포대학교산학협력단 Method of zoospores mass production for Ecklonia stolonifera
EP2963059B1 (en) * 2013-02-28 2018-04-04 National Cancer Center Antibody against insoluble fibrin
WO2016167227A1 (en) * 2015-04-13 2016-10-20 国立研究開発法人国立がん研究センター Antibody against insoluble fibrin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502603A (en) * 1986-04-14 1990-08-23 ザ・ジエネラル・ホスピタル・コーポレーシヨン Fibrin-specific antibodies and screening methods for said antibodies
JPH03505816A (en) * 1988-06-13 1991-12-19 アメリカン バイオジェンテック サイエンシズ,インコーポレーテッド Method for producing monoclonal antibodies using germ-free animals
JPH0576385A (en) * 1990-12-18 1993-03-30 Takeda Chem Ind Ltd Chimera antibody and its use
JP2005502610A (en) * 2001-06-26 2005-01-27 エイジェン バイオメディカル リミティッド Humanized antibody derived from DD-3B6 / 22 specific for D-dimer fragment of fibrin
JP2010512369A (en) * 2006-12-11 2010-04-22 ブラッコ・イメージング・ソシエタ・ペル・アチオニ Fibrin-binding peptide conjugates for diagnostic and therapeutic applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502603A (en) * 1986-04-14 1990-08-23 ザ・ジエネラル・ホスピタル・コーポレーシヨン Fibrin-specific antibodies and screening methods for said antibodies
JPH03505816A (en) * 1988-06-13 1991-12-19 アメリカン バイオジェンテック サイエンシズ,インコーポレーテッド Method for producing monoclonal antibodies using germ-free animals
JPH0576385A (en) * 1990-12-18 1993-03-30 Takeda Chem Ind Ltd Chimera antibody and its use
JP2005502610A (en) * 2001-06-26 2005-01-27 エイジェン バイオメディカル リミティッド Humanized antibody derived from DD-3B6 / 22 specific for D-dimer fragment of fibrin
JP2010512369A (en) * 2006-12-11 2010-04-22 ブラッコ・イメージング・ソシエタ・ペル・アチオニ Fibrin-binding peptide conjugates for diagnostic and therapeutic applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUNAGA M. ET AL.: "New concept of cytotoxic immunoconjugate therapy targeting cancer- induced fibrin clots", CANCER SCI., vol. 102, no. 7, May 2011 (2011-05-01), pages 1396 - 1402 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531895A (en) * 2013-10-04 2016-10-13 プロリンクス エルエルシー SN-38 sustained release conjugate
WO2018203517A1 (en) * 2017-05-02 2018-11-08 国立研究開発法人国立がん研究センター Plasmin-cleavable anti-insoluble fibrin antibody-drug conjugate
CN110582514A (en) * 2017-05-02 2019-12-17 国立研究开发法人国立癌症研究中心 Conjugates of plasmin-cleavable anti-insoluble fibrin antibody and drug
JPWO2018203517A1 (en) * 2017-05-02 2020-03-12 国立研究開発法人国立がん研究センター Conjugates of anti-insoluble fibrin antibodies cleavable by plasmin and drugs
US11311626B2 (en) 2017-05-02 2022-04-26 National Cancer Center Japan Plasmin-cleavable anti-insoluble fibrin antibody-drug conjugate
JP7204132B2 (en) 2017-05-02 2023-01-16 国立研究開発法人国立がん研究センター Conjugates of plasmin-cleavable anti-insoluble fibrin antibodies and drugs
CN110582514B (en) * 2017-05-02 2024-03-01 国立研究开发法人国立癌症研究中心 Conjugates of plasmin cleavable antibodies against insoluble fibrin with drugs
WO2021200932A1 (en) * 2020-03-31 2021-10-07 国立研究開発法人国立がん研究センター Fibrin-binding antibody and pharmaceutical composition containing antibody
CN115461462A (en) * 2020-03-31 2022-12-09 国立研究开发法人国立癌症研究中心 Antibody binding to fibrin and pharmaceutical composition comprising the same
EP4130269A4 (en) * 2020-03-31 2024-03-06 Nat Cancer Ct Fibrin-binding antibody and pharmaceutical composition containing antibody

Also Published As

Publication number Publication date
JP2012000072A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP7012360B2 (en) Antibodies to insoluble fibrin
AU2012341450B2 (en) Anti-human TROP-2 antibody having antitumor activity in vivo
CA2798778C (en) Anti-human trop-2 antibody having anti-tumor activity in vivo
CN111777681B (en) Antibody combined with tight junction protein-18.2 and application thereof
CN107098970B (en) Antibodies that bind to intracellular PRL-1 or PRL-3 polypeptides
WO2011158973A1 (en) Novel antifibrin antibody
JP5593488B2 (en) A novel cancer targeting treatment with a complex of a substance capable of binding specifically to a constituent of cancer stroma and an antitumor compound
JP2021530436A (en) Antibodies and antibody-drug conjugates targeting AXL and methods and uses thereof
US20210269549A1 (en) Anti-sas1b antibodies, associated methods of use, and compositions and methods for detecting and treating cancer
JP2013522167A (en) uPAR binder and method of using the same
JP7020656B2 (en) Antibodies targeting tissue factor, their preparation methods and their use
KR102649942B1 (en) Antibody-drug conjugates targeting claudin 18.2
CA3012270A1 (en) Endosialin-binding antibody
TWI523867B (en) Anti-c-met antibody and methods of use thereof
JP7204132B2 (en) Conjugates of plasmin-cleavable anti-insoluble fibrin antibodies and drugs
JP2021504427A (en) Use of anti-HER2-antibody-drug conjugates in the treatment of urothelial cancer
WO2016167227A1 (en) Antibody against insoluble fibrin
JP2023511189A (en) SEMG2 Antibodies and Uses Thereof
ES2831651T3 (en) Use of antibodies and antagonists directed against Lrg1 in a treatment
JP7224628B2 (en) Anti-MC16 antibody
WO2017147247A1 (en) Anti-sas1b antibodies and methods of use
WO2021251459A1 (en) Humanized anti-gpc-1 antibody
JP2024516581A (en) Anti-human CD73 antibodies and their applications
CA3027417C (en) Anti-human trop-2 antibody having an antitumor activity in vivo
US20170253668A1 (en) Therapeutic and diagnostic anti-loxl4 antibodies

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795872

Country of ref document: EP

Kind code of ref document: A1