WO2011158926A1 - Electricity generation plant and method for operating same - Google Patents

Electricity generation plant and method for operating same Download PDF

Info

Publication number
WO2011158926A1
WO2011158926A1 PCT/JP2011/063888 JP2011063888W WO2011158926A1 WO 2011158926 A1 WO2011158926 A1 WO 2011158926A1 JP 2011063888 W JP2011063888 W JP 2011063888W WO 2011158926 A1 WO2011158926 A1 WO 2011158926A1
Authority
WO
WIPO (PCT)
Prior art keywords
diesel engine
steam
steam turbine
generator
governor
Prior art date
Application number
PCT/JP2011/063888
Other languages
French (fr)
Japanese (ja)
Inventor
芳弘 市来
白石 啓一
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020127031786A priority Critical patent/KR20130016354A/en
Publication of WO2011158926A1 publication Critical patent/WO2011158926A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a power generation plant facility including a steam turbine driven by steam obtained by exhaust heat recovery from the diesel engine in addition to a diesel engine for power generation, and an operation method thereof.
  • a power plant facility using a diesel engine includes a steam turbine that is driven using steam generated by exhaust heat from the diesel engine (see, for example, FIG. 2 of Patent Document 1 below).
  • the steam turbine generator is driven by the steam turbine to generate power using the energy recovered from the exhaust heat.
  • the steam turbine generator for exhaust heat recovery is provided separately from the main diesel engine generator connected to the diesel engine. Therefore, it is a power plant facility provided with two generators.
  • the present invention has been made in view of such circumstances, and even when a steam turbine driven by exhaust heat from a diesel engine is provided, the power plant has high power generation efficiency without causing an increase in cost.
  • the purpose is to provide equipment.
  • a power plant facility is driven by a diesel engine, a steam generator that recovers exhaust heat from exhaust gas discharged from the diesel engine to generate steam, and steam generated by the steam generator
  • a steam turbine , a speed reducer that transmits a rotational output from the steam turbine to a rotating shaft of the diesel engine, and a driving force that is connected to the rotating shaft of the diesel engine and obtained from the diesel engine and the steam turbine And a shared generator.
  • the exhaust heat of the diesel engine is recovered by the steam generator, and the steam turbine is driven by the steam generated by the recovered exhaust heat.
  • the rotational output from the steam turbine is transmitted to the rotating shaft of the diesel engine via the speed reducer.
  • a generator is connected to the rotating shaft of the diesel engine.
  • the diesel engine and the steam turbine share the generator, and as in the conventional case, separate generators such as the generator for the diesel engine and the generator for the steam turbine are used. I do not have. Therefore, an increase in installation cost due to the additional installation of the steam turbine generator can be avoided, and an increase in power generation loss due to the addition of the additionally installed generator is not caused.
  • this invention energizes a diesel engine with a steam turbine, the fuel consumption of a diesel engine improves.
  • the power plant equipment includes a governor control unit that controls a governing governor that adjusts the rotational speed of the diesel engine, and the governor control unit includes the rotating shaft of the diesel engine.
  • the governor governor is controlled in accordance with the rotational output of the steam turbine input to.
  • the governor control unit controls the governor governor of the diesel engine according to the rotational output of the steam turbine. Thereby, it is not necessary to provide a governing governor dedicated to the steam turbine, and further cost reduction is realized. For example, when the rotational output of the steam turbine increases, the governor governor is controlled so that the output of the diesel engine decreases in order to maintain the rated rotational speed.
  • the speed reducer includes a small gear attached to the rotating shaft side of the steam turbine and a large gear attached to the rotating shaft side of the diesel engine.
  • One or more idling gears are provided between them.
  • the distance between the rotating shaft of the diesel engine and the rotating shaft of the steam turbine can be adjusted by providing one or more idling gears. Thereby, the freedom degree of installation of the steam turbine with respect to a diesel engine improves.
  • the operation method of the power plant equipment of the present invention includes a diesel engine, a steam generator that recovers exhaust heat from exhaust gas discharged from the diesel engine, and generates steam, and steam generated by the steam generator
  • Power plant equipment comprising: a steam turbine driven by: a speed reducer that transmits rotational output from the steam turbine to a rotating shaft of the diesel engine; and a common generator connected to the rotating shaft of the diesel engine The driving power obtained from the diesel engine and the steam turbine is transmitted to the common generator.
  • the exhaust heat of the diesel engine is recovered by the steam generator, and the steam turbine is driven by the steam generated by the recovered exhaust heat.
  • the rotational output from the steam turbine is transmitted to the rotating shaft of the diesel engine via the speed reducer.
  • a generator is connected to the rotating shaft of the diesel engine.
  • the diesel engine and the steam turbine share the generator, and as in the conventional case, separate generators such as the generator for the diesel engine and the generator for the steam turbine are used. I do not have. Therefore, an increase in installation cost due to the additional installation of the steam turbine generator can be avoided, and an increase in power generation loss due to the addition of the additionally installed generator is not caused.
  • this invention energizes a diesel engine with a steam turbine, the fuel consumption of a diesel engine improves.
  • the generator since the generator is shared by transmitting the rotation output of the steam turbine to the rotating shaft of the diesel engine connected to the generator, the installation cost by additionally installing the generator for the steam turbine is reduced. The rise can be avoided and the power generation loss due to the additional installed generator is not increased. Further, since the diesel engine can be energized by the steam turbine, the fuel efficiency of the diesel engine is improved.
  • a power plant facility 1 installed on land includes a diesel engine 5, a steam generator 6 that generates steam from high-temperature exhaust gas discharged from the diesel engine 5, and a steam generator. 6, a steam turbine 7 driven by the steam generated in 6, a speed reducer 10 that transmits the rotational speed of the steam turbine 7 to the diesel engine output shaft 3, and a generator (shared generator) connected to the diesel engine output shaft 3. ) 11.
  • the diesel engine 5 includes a supercharger 14 and an exhaust gas pipe 30A.
  • One end of a diesel engine output shaft (rotating shaft) 3 that is an output shaft of the diesel engine 5 is directly connected, and the diesel engine output shaft 3 is rotationally driven.
  • a generator input shaft 4 serving as an input shaft of the generator 11 is fixed to the other end of the diesel engine output shaft 3 via a coupling 21.
  • the supercharger 14 provided in the diesel engine 5 includes a turbine 14A and a compressor 14B provided on the same axis.
  • the turbine 14 ⁇ / b> A is driven and rotated by the exhaust gas discharged from the diesel engine 5.
  • a compressor 14B provided on the same axis rotates to compress the air. The compressed air is supplied to the diesel engine 5.
  • the downstream side of the turbine 14A is connected to an exhaust gas economizer 15 described later by an exhaust gas pipe 30A.
  • the diesel engine 5 includes a governor governor (not shown) that adjusts the output rotational speed. The input fuel amount is adjusted by the governor governor, and the output rotational speed is adjusted.
  • the governor governor is controlled by a governor control unit (not shown).
  • the steam generator 6 includes an exhaust gas economizer 15 and a brackish water separator 16.
  • the exhaust gas economizer 15 has a superheater 15A and an evaporator 15B in its flue.
  • the superheater 15A and the evaporator 15B are installed in parallel in order from the bottom to the top (from the upstream side to the downstream side of the exhaust gas flow) in the exhaust gas economizer 15.
  • High-temperature exhaust gas flows in the flue of the exhaust gas economizer 15 and is released to the atmosphere through a chimney (not shown) connected to the downstream side thereof. Steam is led from the upper part of the brackish water separator 16 to the superheater 15A.
  • Water is led from the lower part of the brackish water separator 16 to the evaporator 15B.
  • water and steam are stored separately in the vertical direction.
  • Water is supplied to the brackish water separator 16 from the boiler water circulation pipe 33C.
  • Water in the brackish water separator 16 is guided to an evaporator 15B in the exhaust gas economizer 15 by a boiler water circulation pump 17.
  • wet steam containing water from the evaporator 15B of the exhaust gas economizer 15 is guided and separated into water and steam. The separated steam is led to the superheater 15A in the exhaust gas economizer 15 to be superheated steam.
  • the steam turbine 7 includes a turbine 7A, a turbine output shaft (rotary shaft) 7B, and a steam flow rate adjusting valve 20A.
  • the turbine 7A is rotationally driven by steam and rotates a turbine output shaft 7B connected to the turbine 7A.
  • the steam flow rate adjusting valve 20A provided between the exhaust gas economizer 15 and the steam turbine 7 is for adjusting the flow rate of steam supplied from the superheater 15A in the exhaust gas economizer 15 to the steam turbine 7, and is fully closed and fully opened. It is also possible to adjust the opening at a midway position between fully closed and fully open.
  • the steam flow rate adjusting valve 20A has a role as a steam stop valve and a role as an acceleration valve for increasing the rotational speed of the steam turbine 7 in accordance with the amount of steam generated. However, it does not have a role as a governor for maintaining the rotation speed of the steam turbine 7 at a predetermined value.
  • the governor function for maintaining the generator input shaft 4 of the generator 11 at the rated rotational speed is performed only by a governing governor (not shown) provided in the diesel engine 5. Therefore, the opening degree adjustment of the steam flow rate adjusting valve 20A is mainly performed when the speed is increased to a rotational speed at which an automatic engagement / disengagement clutch 12 described later is engaged.
  • the speed reducer 10 connects between an automatic engagement / disengagement clutch 12 described later and a diesel engine output shaft 3.
  • the reduction gear 10 includes a small gear 10A, an idling gear 10B, and a large gear 10C in order from the automatic engagement / disengagement clutch 12 side, and the number of teeth increases in this order.
  • the small gear 10A is connected to the input shaft 12A of the automatic engagement / disengagement clutch 12 connected to the turbine output shaft 7B.
  • the large gear 10 ⁇ / b> C is connected to the diesel engine output shaft 3.
  • An idling gear 10B which is an intermediate gear, connects between the small gear 10A and the large gear 10C. In the present embodiment, one idling gear 10B is shown, but two or more idling gears may be connected in series.
  • the automatic engagement / disengagement clutch 12 is also referred to as a synchro self-shifting clutch or an SSS (three-es) clutch.
  • SSS three-es
  • the claws are engaged and fitted to couple the turbine output shaft 7B and the speed reducer input shaft 12A.
  • the automatic engagement / disengagement clutch 12 is engaged and rotating, if the rotational speed of the turbine output shaft 7B becomes lower than the rotational speed of the speed reducer input shaft 12A, the engagement is automatically disengaged. It functions to separate the output shaft 7B from the reduction gear input shaft 12A.
  • the generator 11 generates electric power by the rotational output transmitted from the diesel engine output shaft 3 to the generator input shaft 4. Further, the rotation output of the steam turbine 7 obtained through the speed reducer 10 is also transmitted to the generator 11. The electrical output of the generator 11 is guided to the system 30 via the output electric wire 23 and the circuit breaker 25.
  • the generator 11 is a common generator that is driven not only by the diesel engine 5 but also by the output of the steam turbine 7. In other words, a dedicated generator for the steam turbine that generates power based on the output of the steam turbine 7 is not separately provided.
  • the diesel engine output shaft 3 directly connected to the diesel engine 5, the generator input shaft 4 of the generator 11, and the speed reducer 10 provided on the diesel engine output shaft 3 Rotates.
  • the diesel engine 5 is operated at a rated speed (for example, about 514 rpm) so that the generator 11 operates in conformity with the power specifications required by the system 30.
  • a governor control unit that obtains the rotational speed of the generator 11 and performs feedback control controls the governor governor, thereby controlling the rotational speed of the diesel engine 5.
  • the exhaust gas discharged from the diesel engine 5 is guided to the exhaust gas economizer 15 through the exhaust gas pipe 30A.
  • the exhaust gas passes through the exhaust gas ecomizer 15, it exchanges heat with the superheater 15A and the evaporator 15B.
  • the water in the evaporator 15B becomes wet steam by exchanging heat with the exhaust gas.
  • This wet steam is guided to the superheater 15A of the exhaust gas economizer 15 after the moisture is separated by being guided to the brackish water separator 16.
  • the steam in the superheater 15A becomes superheated steam by exchanging heat with the exhaust gas.
  • the superheated steam is guided to the superheated steam pipe 30B.
  • the superheated steam guided to the superheated steam pipe 30B is supplied to the inlet side of the steam turbine 7 through the steam flow rate adjusting valve 20A.
  • the steam turbine 7 is rotationally driven by the introduced steam. As the steam turbine 7 rotates, the turbine output shaft 7B rotates.
  • the automatic engagement / disengagement clutch 12 is automatically engaged when the turbine output shaft 7B driven by the steam turbine 7 has the same rotational speed as the speed reducer input shaft 12A of the speed reducer 10 driven by the diesel engine 5. Is done. Thereby, the rotational energy of the steam turbine 7 is transmitted to the diesel engine output shaft 3 via the speed reducer 10.
  • the automatic engagement / disengagement clutch 12 is automatically disengaged and the speed reducer 10 and the steam turbine 7 are The interval is not connected, and the rotational energy of the steam turbine 7 is not transmitted to the diesel engine output shaft 3.
  • the operation is as follows. First, before starting, the steam flow rate adjusting valve 20A is fully closed, and the automatic fitting / removing clutch 12 is disconnected. When steam is generated by the steam generator 6 and the amount of superheated steam supplied from the superheated steam pipe 30B exceeds a predetermined amount, the steam flow rate adjusting valve 20A is changed from the fully closed state to the slightly opened state. Then, the opening degree of the steam flow rate adjusting valve 20A is gradually increased, and the rotation speed of the steam turbine 7 is increased.
  • the automatic engagement / disengagement clutch 12 When the rotational speed of the turbine output shaft 7B reaches a predetermined value, the automatic engagement / disengagement clutch 12 is engaged, and the rotational output of the steam turbine 7 is transmitted via the automatic engagement / disengagement clutch 12 and the speed reducer 11 to the diesel engine output shaft 3. Is transmitted to.
  • the steam flow rate adjustment valve 20A After the automatic engagement / disengagement clutch 12 is in the connected state, the steam flow rate adjustment valve 20A is fully opened or fixed at a predetermined opening. That is, governor control is not performed by the steam flow rate adjusting valve 20A.
  • the rotational speed of the diesel engine output shaft 3 is performed only by the governor governor of the diesel engine 5.
  • the governor governor is controlled in accordance with the rotational output of the steam turbine 7. For example, when the rotational output of the steam turbine 7 increases, the output of the diesel engine 5 decreases so as to maintain the rated rotational speed.
  • the governor governor is controlled.
  • the rotation output from the steam turbine 7 is transmitted to the rotating shaft of the diesel engine 5 via the speed reducer 10 and is generated by the common generator 11.
  • the generator is not provided with a separate generator such as a generator for a diesel engine and a generator for a steam turbine. Therefore, an increase in installation cost due to the additional installation of the steam turbine generator can be avoided, and an increase in power generation loss due to the provision of the two generators is not caused.
  • the diesel engine 5 is energized by the steam turbine 7, the fuel efficiency of the diesel engine 5 can be improved.
  • the governor control unit controls the governing governor of the diesel engine 5 in accordance with the rotational output of the steam turbine 7, it is not necessary to provide a governing governor dedicated to the steam turbine, and further cost reduction is realized.
  • one or more idling gears 10B are provided, the distance between the diesel engine output shaft 3 and the turbine rotation shaft 7B can be adjusted. Thereby, the freedom degree of installation of the steam turbine 7 with respect to the diesel engine 5 can be improved.

Abstract

An electricity generation plant having high efficiency of generating electricity. An electricity generation plant (1) comprises: a diesel engine (5); a vapor generation device (6) for generating vapor by recovering waste heat from exhaust gas discharged from the diesel engine (5); a vapor turbine (7) driven by the vapor generated by the vapor generation device (6); a speed reducer (10) for reducing the speed of the rotational output from the vapor turbine (7) and transmitting the rotational output having the reduced speed to the rotating shaft (3) of the diesel engine (5); and a shared generator (11) connected to the rotating shaft (3) of the diesel engine (5) and generating electricity by drive power obtained from the diesel engine (5) and the vapor turbine (7).

Description

発電プラント設備およびその運転方法Power plant equipment and operation method thereof
 本発明は、発電用のディーゼル機関に加え、このディーゼル機関から排熱回収して得た蒸気によって駆動される蒸気タービンを備えた発電プラント設備およびその運転方法に関するものである。 The present invention relates to a power generation plant facility including a steam turbine driven by steam obtained by exhaust heat recovery from the diesel engine in addition to a diesel engine for power generation, and an operation method thereof.
 ディーゼル機関による発電プラント設備において、ディーゼル機関からの排熱によって生成した蒸気を用いて駆動される蒸気タービンを備えたものが知られている(例えば下記特許文献1の図2参照)。この蒸気タービンによって蒸気タービン用発電機を駆動し、排熱回収したエネルギーによる発電を行う。この排熱回収のための蒸気タービン用発電機は、ディーゼル機関に接続された主たるディーゼル機関用発電機とは別に設けられている。したがって、発電機が2つ設けられた発電プラント設備となっている。 2. Description of the Related Art A power plant facility using a diesel engine is known that includes a steam turbine that is driven using steam generated by exhaust heat from the diesel engine (see, for example, FIG. 2 of Patent Document 1 below). The steam turbine generator is driven by the steam turbine to generate power using the energy recovered from the exhaust heat. The steam turbine generator for exhaust heat recovery is provided separately from the main diesel engine generator connected to the diesel engine. Therefore, it is a power plant facility provided with two generators.
特開2004-190558号公報(図2)JP 2004-190558 A (FIG. 2)
 しかし、主たるディーゼル機関用発電機に加えて排熱回収のための蒸気タービン用発電機を導入することは、排熱回収によって発電できるという省エネルギーの観点からの利点はあるが、追加設置する発電機や配電盤等の設置コストがかかるためコストアップの原因となる。さらに、上記特許文献1には明示されていないが、通常、蒸気タービン用発電機を定格回転数で駆動するために、蒸気タービンには専用の調速ガバナ(蒸気加減弁)およびその制御装置が必要とされ、これもコストアップの原因となる。
 また、発電設備のプラント効率(エネルギ効率)の観点からは、追加設置する蒸気タービン用発電機の発電損失(機械エネルギーから電気エネルギーへの変換時の損失等)が不可避となり好ましくない。
However, the introduction of a steam turbine generator for recovering exhaust heat in addition to the main generator for diesel engines has an advantage from the viewpoint of energy saving that power can be generated by exhaust heat recovery, but the generator to be additionally installed Cost of installation due to the installation cost of power distribution boards. Further, although not explicitly disclosed in the above-mentioned Patent Document 1, in order to drive a steam turbine generator at a rated rotational speed, a steam governor (steam control valve) and its control device are usually provided in the steam turbine. This is necessary and this also causes an increase in cost.
Further, from the viewpoint of plant efficiency (energy efficiency) of the power generation equipment, power generation loss (such as loss at the time of conversion from mechanical energy to electrical energy) of the additionally installed steam turbine generator is unavoidable.
 本発明は、このような事情を鑑みてなされたものであって、ディーゼル機関の排熱によって駆動される蒸気タービンを備えた場合であっても、コスト増大を招くことなく発電効率の高い発電プラント設備を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when a steam turbine driven by exhaust heat from a diesel engine is provided, the power plant has high power generation efficiency without causing an increase in cost. The purpose is to provide equipment.
 上記課題を解決するために、本発明の発電プラント設備およびその運転方法は以下の手段を採用する。
 本発明にかかる発電プラント設備は、ディーゼル機関と、該ディーゼル機関から排出された排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、該蒸気発生装置によって生成された蒸気によって駆動される蒸気タービンと、該蒸気タービンからの回転出力を前記ディーゼル機関の回転軸に伝達する減速機と、前記ディーゼル機関の前記回転軸に接続され、前記ディーゼル機関および前記蒸気タービンから得た駆動力によって発電する共用発電機とを備える。
In order to solve the above-described problems, the power plant equipment and the operation method thereof according to the present invention employ the following means.
A power plant facility according to the present invention is driven by a diesel engine, a steam generator that recovers exhaust heat from exhaust gas discharged from the diesel engine to generate steam, and steam generated by the steam generator A steam turbine, a speed reducer that transmits a rotational output from the steam turbine to a rotating shaft of the diesel engine, and a driving force that is connected to the rotating shaft of the diesel engine and obtained from the diesel engine and the steam turbine And a shared generator.
 ディーゼル機関の排熱が蒸気発生装置によって回収され、回収された排熱によって生成された蒸気によって蒸気タービンが駆動される。蒸気タービンからの回転出力は、減速機を介してディーゼル機関の回転軸に伝達される。このように、蒸気タービンによってディーゼル機関が加勢(アシスト駆動)される。そして、ディーゼル機関の回転軸には発電機が接続されている。
 ここで、本発明の発電プラント設備は、ディーゼル機関および蒸気タービンが発電機を共用しており、従来のように、ディーゼル機関用発電機および蒸気タービン用発電機といったようにそれぞれ別個の発電機を備えていない。
 したがって、蒸気タービン用発電機を追加設置することによる設置コストの上昇を回避することができるとともに、追加設置した発電機を備えることによる発電損失の増大を招くことがない。
 さらに、本発明は蒸気タービンによってディーゼル機関を加勢するので、ディーゼル機関の燃費が向上する。
The exhaust heat of the diesel engine is recovered by the steam generator, and the steam turbine is driven by the steam generated by the recovered exhaust heat. The rotational output from the steam turbine is transmitted to the rotating shaft of the diesel engine via the speed reducer. In this way, the diesel engine is energized (assisted driving) by the steam turbine. A generator is connected to the rotating shaft of the diesel engine.
Here, in the power plant equipment of the present invention, the diesel engine and the steam turbine share the generator, and as in the conventional case, separate generators such as the generator for the diesel engine and the generator for the steam turbine are used. I do not have.
Therefore, an increase in installation cost due to the additional installation of the steam turbine generator can be avoided, and an increase in power generation loss due to the addition of the additionally installed generator is not caused.
Furthermore, since this invention energizes a diesel engine with a steam turbine, the fuel consumption of a diesel engine improves.
 また、本発明の第1の態様に係る発電プラント設備は、前記ディーゼル機関の回転数を調整する調速ガバナを制御するガバナ制御部を備え、該ガバナ制御部は、前記ディーゼル機関の前記回転軸に入力される前記蒸気タービンの回転出力に応じて前記調速ガバナを制御する。 The power plant equipment according to the first aspect of the present invention includes a governor control unit that controls a governing governor that adjusts the rotational speed of the diesel engine, and the governor control unit includes the rotating shaft of the diesel engine. The governor governor is controlled in accordance with the rotational output of the steam turbine input to.
 ガバナ制御部によって、蒸気タービンの回転出力に応じてディーゼル機関の調速ガバナを制御することとした。これにより、蒸気タービン専用の調速ガバナを設ける必要がなくなり、さらなるコスト低減が実現される。例えば、蒸気タービンの回転出力が増大した場合には、定格回転数を維持するためにディーゼル機関の出力が低下するように調速ガバナが制御される。 The governor control unit controls the governor governor of the diesel engine according to the rotational output of the steam turbine. Thereby, it is not necessary to provide a governing governor dedicated to the steam turbine, and further cost reduction is realized. For example, when the rotational output of the steam turbine increases, the governor governor is controlled so that the output of the diesel engine decreases in order to maintain the rated rotational speed.
 さらに、本発明の第2の態様に係る発電プラント設備では、前記減速機は、前記蒸気タービンの回転軸側に取り付けられた小歯車と前記ディーゼル機関の回転軸側に取り付けられた大歯車との間に、1又は複数のアイドリング歯車が設けられている。 Furthermore, in the power plant equipment according to the second aspect of the present invention, the speed reducer includes a small gear attached to the rotating shaft side of the steam turbine and a large gear attached to the rotating shaft side of the diesel engine. One or more idling gears are provided between them.
 アイドリング歯車を1又は複数設けることによって、ディーゼル機関の回転軸と蒸気タービンの回転軸との距離を調整することができる。これにより、ディーゼル機関に対する蒸気タービンの設置の自由度が向上する。 The distance between the rotating shaft of the diesel engine and the rotating shaft of the steam turbine can be adjusted by providing one or more idling gears. Thereby, the freedom degree of installation of the steam turbine with respect to a diesel engine improves.
 また、本発明の発電プラント設備の運転方法は、ディーゼル機関と、該ディーゼル機関から排出された排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、該蒸気発生装置によって生成された蒸気によって駆動される蒸気タービンと、該蒸気タービンからの回転出力を前記ディーゼル機関の回転軸に伝達する減速機と、前記ディーゼル機関の前記回転軸に接続された共用発電機とを備えた発電プラント設備の運転方法であって、前記共用発電機に対して、前記ディーゼル機関および前記蒸気タービンから得た駆動力を伝達する。 Further, the operation method of the power plant equipment of the present invention includes a diesel engine, a steam generator that recovers exhaust heat from exhaust gas discharged from the diesel engine, and generates steam, and steam generated by the steam generator Power plant equipment comprising: a steam turbine driven by: a speed reducer that transmits rotational output from the steam turbine to a rotating shaft of the diesel engine; and a common generator connected to the rotating shaft of the diesel engine The driving power obtained from the diesel engine and the steam turbine is transmitted to the common generator.
 ディーゼル機関の排熱が蒸気発生装置によって回収され、回収された排熱によって生成された蒸気によって蒸気タービンが駆動される。蒸気タービンからの回転出力は、減速機を介してディーゼル機関の回転軸に伝達される。このように、蒸気タービンによってディーゼル機関が加勢(アシスト駆動)される。そして、ディーゼル機関の回転軸には発電機が接続されている。
 ここで、本発明の発電プラント設備は、ディーゼル機関および蒸気タービンが発電機を共用しており、従来のように、ディーゼル機関用発電機および蒸気タービン用発電機といったようにそれぞれ別個の発電機を備えていない。
 したがって、蒸気タービン用発電機を追加設置することによる設置コストの上昇を回避することができるとともに、追加設置した発電機を備えることによる発電損失の増大を招くことがない。
 さらに、本発明は蒸気タービンによってディーゼル機関を加勢するので、ディーゼル機関の燃費が向上する。
The exhaust heat of the diesel engine is recovered by the steam generator, and the steam turbine is driven by the steam generated by the recovered exhaust heat. The rotational output from the steam turbine is transmitted to the rotating shaft of the diesel engine via the speed reducer. In this way, the diesel engine is energized (assisted driving) by the steam turbine. A generator is connected to the rotating shaft of the diesel engine.
Here, in the power plant equipment of the present invention, the diesel engine and the steam turbine share the generator, and as in the conventional case, separate generators such as the generator for the diesel engine and the generator for the steam turbine are used. I do not have.
Therefore, an increase in installation cost due to the additional installation of the steam turbine generator can be avoided, and an increase in power generation loss due to the addition of the additionally installed generator is not caused.
Furthermore, since this invention energizes a diesel engine with a steam turbine, the fuel consumption of a diesel engine improves.
 本発明は、発電機に接続されたディーゼル機関の回転軸へ蒸気タービンの回転出力を伝達することによって発電機を共用することとしたので、蒸気タービン用発電機を追加設置することによる設置コストの上昇を回避することができるとともに、追加設置分の発電機による発電損失の増大を招くことがない。
 また、蒸気タービンによってディーゼル機関を加勢することができるので、ディーゼル機関の燃費が向上する。
In the present invention, since the generator is shared by transmitting the rotation output of the steam turbine to the rotating shaft of the diesel engine connected to the generator, the installation cost by additionally installing the generator for the steam turbine is reduced. The rise can be avoided and the power generation loss due to the additional installed generator is not increased.
Further, since the diesel engine can be energized by the steam turbine, the fuel efficiency of the diesel engine is improved.
本発明の一態様にかかる発電プラント設備を示した概略構成図である。It is a schematic structure figure showing power plant equipment concerning one mode of the present invention.
 以下に、本発明の一態様にかかる発電プラント設備およびその運転方法にかかる実施形態について、図面を参照して説明する。
 図1に示されているように、例えば陸上に設置された発電プラント設備1は、ディーゼル機関5と、ディーゼル機関5が排出する高温の排ガスによって蒸気を生成する蒸気発生装置6と、蒸気発生装置6にて発生した蒸気によって駆動される蒸気タービン7と、蒸気タービン7の回転数をディーゼル機関出力軸3に伝達する減速機10と、ディーゼル機関出力軸3に接続された発電機(共用発電機)11とを有している。
EMBODIMENT OF THE INVENTION Below, the power plant plant concerning 1 aspect of this invention and embodiment concerning the operating method are described with reference to drawings.
As shown in FIG. 1, for example, a power plant facility 1 installed on land includes a diesel engine 5, a steam generator 6 that generates steam from high-temperature exhaust gas discharged from the diesel engine 5, and a steam generator. 6, a steam turbine 7 driven by the steam generated in 6, a speed reducer 10 that transmits the rotational speed of the steam turbine 7 to the diesel engine output shaft 3, and a generator (shared generator) connected to the diesel engine output shaft 3. ) 11.
 ディーゼル機関5は、過給器14と排ガス管30Aとを有している。ディーゼル機関5にはその出力軸であるディーゼル機関出力軸(回転軸)3の一端が直結され、このディーゼル機関出力軸3を回転駆動する。ディーゼル機関出力軸3の他端には、カップリング21を介して発電機11の入力軸となる発電機入力軸4が固定されている。
 ディーゼル機関5に設けられた過給器14は、同軸上に設けられたタービン14Aと圧縮機14Bとを有している。タービン14Aは、ディーゼル機関5から排出された排ガスが導かれ回転駆動される。タービン14Aが駆動されると、同軸上に設けられた圧縮機14Bが回転し空気を圧縮する。圧縮された空気は、ディーゼル機関5に供給される。
 タービン14Aの下流側は、排ガス管30Aによって後述する排ガスエコノマイザ15に接続されている。
 ディーゼル機関5は、出力回転数を調整する調速ガバナ(図示せず)を備えている。調速ガバナによって投入燃料量が調整され出力回転数が調整される。調速ガバナは、図示しないガバナ制御部によって制御される。
The diesel engine 5 includes a supercharger 14 and an exhaust gas pipe 30A. One end of a diesel engine output shaft (rotating shaft) 3 that is an output shaft of the diesel engine 5 is directly connected, and the diesel engine output shaft 3 is rotationally driven. A generator input shaft 4 serving as an input shaft of the generator 11 is fixed to the other end of the diesel engine output shaft 3 via a coupling 21.
The supercharger 14 provided in the diesel engine 5 includes a turbine 14A and a compressor 14B provided on the same axis. The turbine 14 </ b> A is driven and rotated by the exhaust gas discharged from the diesel engine 5. When the turbine 14A is driven, a compressor 14B provided on the same axis rotates to compress the air. The compressed air is supplied to the diesel engine 5.
The downstream side of the turbine 14A is connected to an exhaust gas economizer 15 described later by an exhaust gas pipe 30A.
The diesel engine 5 includes a governor governor (not shown) that adjusts the output rotational speed. The input fuel amount is adjusted by the governor governor, and the output rotational speed is adjusted. The governor governor is controlled by a governor control unit (not shown).
 蒸気発生装置6は、排ガスエコノマイザ15と汽水分離器16とを備えている。
 排ガスエコノマイザ15は、その煙道内に過熱器15Aと蒸発器15Bとを有している。過熱器15Aと蒸発器15Bとは、排ガスエコノマイザ15内を下から上(排ガス流れの上流側から下流側)に向かって順番に平行に据え付けられている。排ガスエコノマイザ15の煙道内には、高温の排ガスが流れ、その下流側に接続された煙突(図示せず)を経て大気に放出される。過熱器15Aには、汽水分離器16の上部から蒸気が導かれる。蒸発器15Bには、汽水分離器16の下部から水が導かれる。
 汽水分離器16内は、水と蒸気が上下にそれぞれ分離して収容されている。汽水分離器16には、ボイラ水循環管33Cから水が供給される。汽水分離器16内の水は、ボイラ水循環ポンプ17によって排ガスエコノマイザ15内の蒸発器15Bに導かれる。汽水分離器16には、排ガスエコノマイザ15の蒸発器15Bからの水分を含んだ湿り蒸気が導かれ水と蒸気とに分離される。分離された蒸気は、排ガスエコノマイザ15内の過熱器15Aに導かれ過熱蒸気とされる。
The steam generator 6 includes an exhaust gas economizer 15 and a brackish water separator 16.
The exhaust gas economizer 15 has a superheater 15A and an evaporator 15B in its flue. The superheater 15A and the evaporator 15B are installed in parallel in order from the bottom to the top (from the upstream side to the downstream side of the exhaust gas flow) in the exhaust gas economizer 15. High-temperature exhaust gas flows in the flue of the exhaust gas economizer 15 and is released to the atmosphere through a chimney (not shown) connected to the downstream side thereof. Steam is led from the upper part of the brackish water separator 16 to the superheater 15A. Water is led from the lower part of the brackish water separator 16 to the evaporator 15B.
In the brackish water separator 16, water and steam are stored separately in the vertical direction. Water is supplied to the brackish water separator 16 from the boiler water circulation pipe 33C. Water in the brackish water separator 16 is guided to an evaporator 15B in the exhaust gas economizer 15 by a boiler water circulation pump 17. In the brackish water separator 16, wet steam containing water from the evaporator 15B of the exhaust gas economizer 15 is guided and separated into water and steam. The separated steam is led to the superheater 15A in the exhaust gas economizer 15 to be superheated steam.
 蒸気タービン7は、タービン7Aと、タービン出力軸(回転軸)7Bと、蒸気流量調整弁20Aとを有している。タービン7Aは、蒸気によって回転駆動され、タービン7Aに接続されているタービン出力軸7Bを回転させる。排ガスエコノマイザ15と蒸気タービン7との間に設けられた蒸気流量調整弁20Aは、排ガスエコノマイザ15内の過熱器15Aから蒸気タービン7に供給される蒸気流量を調整するものであり、全閉及び全開が可能とされているとともに、全閉と全開との間の中途位置での開度調整も可能となっている。
 蒸気流量調整弁20Aは、蒸気止め弁としての役割と、蒸気発生量に応じて蒸気タービン7の回転数を昇速するための昇速弁としての役割とを有している。しかし、蒸気タービン7の回転数を所定値に維持するためのガバナとしての役割は有していない。発電機11の発電機入力軸4を定格回転数に維持するためのガバナ機能は、ディーゼル機関5に設けられた調速ガバナ(図示せず)のみによって行われる。したがって、蒸気流量調整弁20Aの開度調整は、後述する自動嵌脱クラッチ12が嵌合する回転数まで昇速する際に主として行われる。
The steam turbine 7 includes a turbine 7A, a turbine output shaft (rotary shaft) 7B, and a steam flow rate adjusting valve 20A. The turbine 7A is rotationally driven by steam and rotates a turbine output shaft 7B connected to the turbine 7A. The steam flow rate adjusting valve 20A provided between the exhaust gas economizer 15 and the steam turbine 7 is for adjusting the flow rate of steam supplied from the superheater 15A in the exhaust gas economizer 15 to the steam turbine 7, and is fully closed and fully opened. It is also possible to adjust the opening at a midway position between fully closed and fully open.
The steam flow rate adjusting valve 20A has a role as a steam stop valve and a role as an acceleration valve for increasing the rotational speed of the steam turbine 7 in accordance with the amount of steam generated. However, it does not have a role as a governor for maintaining the rotation speed of the steam turbine 7 at a predetermined value. The governor function for maintaining the generator input shaft 4 of the generator 11 at the rated rotational speed is performed only by a governing governor (not shown) provided in the diesel engine 5. Therefore, the opening degree adjustment of the steam flow rate adjusting valve 20A is mainly performed when the speed is increased to a rotational speed at which an automatic engagement / disengagement clutch 12 described later is engaged.
 減速機10は、後述する自動嵌脱クラッチ12とディーゼル機関出力軸3との間を接続している。減速機10は、自動嵌脱クラッチ12側から順に、小歯車10A、アイドリング歯車10Bおよび大歯車10Cを備えており、この順に歯数が増加する。小歯車10Aは、タービン出力軸7Bに接続された自動嵌脱クラッチ12の入力軸12Aに接続されている。大歯車10Cは、ディーゼル機関出力軸3に接続されている。中間歯車であるアイドリング歯車10Bは、小歯車10Aと大歯車10Cとの間を接続している。
 なお、本実施形態では、1つのアイドリング歯車10Bを示しているが、2以上のアイドリング歯車を直列に接続して用いても良い。
The speed reducer 10 connects between an automatic engagement / disengagement clutch 12 described later and a diesel engine output shaft 3. The reduction gear 10 includes a small gear 10A, an idling gear 10B, and a large gear 10C in order from the automatic engagement / disengagement clutch 12 side, and the number of teeth increases in this order. The small gear 10A is connected to the input shaft 12A of the automatic engagement / disengagement clutch 12 connected to the turbine output shaft 7B. The large gear 10 </ b> C is connected to the diesel engine output shaft 3. An idling gear 10B, which is an intermediate gear, connects between the small gear 10A and the large gear 10C.
In the present embodiment, one idling gear 10B is shown, but two or more idling gears may be connected in series.
 自動嵌脱クラッチ12とは、シンクロ・セルフシフティング・クラッチ又はSSS(スリーエス)クラッチとも呼ばれ、タービン出力軸7Bの回転数が自動嵌脱クラッチ12の入力軸である減速機入力軸12Aの回転数に達した際に爪が噛み合い嵌合してタービン出力軸7Bと減速機入力軸12Aとを結合する。自動嵌脱クラッチ12が嵌合して回転している際に、タービン出力軸7Bの回転数が減速機入力軸12Aの回転数よりも低くなった場合には、嵌合が自動的に外れタービン出力軸7Bと減速機入力軸12Aとを切り離す働きをする。 The automatic engagement / disengagement clutch 12 is also referred to as a synchro self-shifting clutch or an SSS (three-es) clutch. When the number is reached, the claws are engaged and fitted to couple the turbine output shaft 7B and the speed reducer input shaft 12A. When the automatic engagement / disengagement clutch 12 is engaged and rotating, if the rotational speed of the turbine output shaft 7B becomes lower than the rotational speed of the speed reducer input shaft 12A, the engagement is automatically disengaged. It functions to separate the output shaft 7B from the reduction gear input shaft 12A.
 発電機11は、ディーゼル機関出力軸3から発電機入力軸4へと伝達された回転出力によって発電する。また、発電機11には、減速機10を介して得られる蒸気タービン7の回転出力も伝達される。発電機11の電気出力は、出力電線23及び遮断機25を介して系統30へと導かれる。
 発電機11は、ディーゼル機関5だけでなく蒸気タービン7の出力を得て駆動される共用の発電機とされている。すなわち、蒸気タービン7の出力によって発電する蒸気タービン専用の発電機が別個独立に設けられているわけではない。
The generator 11 generates electric power by the rotational output transmitted from the diesel engine output shaft 3 to the generator input shaft 4. Further, the rotation output of the steam turbine 7 obtained through the speed reducer 10 is also transmitted to the generator 11. The electrical output of the generator 11 is guided to the system 30 via the output electric wire 23 and the circuit breaker 25.
The generator 11 is a common generator that is driven not only by the diesel engine 5 but also by the output of the steam turbine 7. In other words, a dedicated generator for the steam turbine that generates power based on the output of the steam turbine 7 is not separately provided.
 次に、上述した発電プラント設備1の運転方法について説明する。
 ディーゼル機関5が運転を開始すると、ディーゼル機関5に直接接続されているディーゼル機関出力軸3と、発電機11の発電機入力軸4と、ディーゼル機関出力軸3上に設けられた減速機10とが回転する。ディーゼル機関5は、系統30が要求する電力仕様に適合して発電機11が動作するように、定格回転数(例えば約514rpm)で運転される。例えば発電機11の回転数を得てフィードバック制御を行うガバナ制御部によって調速ガバナが制御され、これにより、ディーゼル機関5の回転数が制御される。
Next, the operation method of the power plant equipment 1 described above will be described.
When the diesel engine 5 starts operation, the diesel engine output shaft 3 directly connected to the diesel engine 5, the generator input shaft 4 of the generator 11, and the speed reducer 10 provided on the diesel engine output shaft 3 Rotates. The diesel engine 5 is operated at a rated speed (for example, about 514 rpm) so that the generator 11 operates in conformity with the power specifications required by the system 30. For example, a governor control unit that obtains the rotational speed of the generator 11 and performs feedback control controls the governor governor, thereby controlling the rotational speed of the diesel engine 5.
 ディーゼル機関5から排出された排ガスは、排ガス管30Aを経て排ガスエコノマイザ15に導かれる。排ガスは、排ガスエコマイザ15内を通過する際に過熱器15A及び蒸発器15Bと熱交換をする。蒸発器15B内の水は、排ガスと熱交換することによって湿り蒸気となる。この湿り蒸気は、汽水分離器16に導かれて水分が分離された後、排ガスエコノマイザ15の過熱器15Aに導かれる。過熱器15A内の蒸気は、排ガスと熱交換することによって過熱蒸気となる。
 過熱蒸気は、過熱蒸気管30Bに導かれる。過熱蒸気管30Bに導かれた過熱蒸気は、蒸気流量調整弁20Aを経て蒸気タービン7の入口側に供給される。蒸気タービン7は、導かれた蒸気によって回転駆動される。蒸気タービン7が回転することによってタービン出力軸7Bが回転する。
The exhaust gas discharged from the diesel engine 5 is guided to the exhaust gas economizer 15 through the exhaust gas pipe 30A. When the exhaust gas passes through the exhaust gas ecomizer 15, it exchanges heat with the superheater 15A and the evaporator 15B. The water in the evaporator 15B becomes wet steam by exchanging heat with the exhaust gas. This wet steam is guided to the superheater 15A of the exhaust gas economizer 15 after the moisture is separated by being guided to the brackish water separator 16. The steam in the superheater 15A becomes superheated steam by exchanging heat with the exhaust gas.
The superheated steam is guided to the superheated steam pipe 30B. The superheated steam guided to the superheated steam pipe 30B is supplied to the inlet side of the steam turbine 7 through the steam flow rate adjusting valve 20A. The steam turbine 7 is rotationally driven by the introduced steam. As the steam turbine 7 rotates, the turbine output shaft 7B rotates.
 自動嵌脱クラッチ12は、蒸気タービン7によって駆動されるタービン出力軸7Bがディーゼル機関5によって駆動される減速機10の減速機入力軸12Aと同等の回転数になった際に自動的に嵌合される。これによって、蒸気タービン7の回転エネルギーが減速機10を介してディーゼル機関出力軸3に伝達される。
 自動嵌脱クラッチ12は、タービン出力軸7Bの回転数が減速機入力軸12Aの回転数よりも低くなった際には、嵌合が自動的に外れて、減速機10と蒸気タービン7との間が非連結状態となり、蒸気タービン7の回転エネルギーは、ディーゼル機関出力軸3に伝達されなくなる。
The automatic engagement / disengagement clutch 12 is automatically engaged when the turbine output shaft 7B driven by the steam turbine 7 has the same rotational speed as the speed reducer input shaft 12A of the speed reducer 10 driven by the diesel engine 5. Is done. Thereby, the rotational energy of the steam turbine 7 is transmitted to the diesel engine output shaft 3 via the speed reducer 10.
When the rotational speed of the turbine output shaft 7B becomes lower than the rotational speed of the speed reducer input shaft 12A, the automatic engagement / disengagement clutch 12 is automatically disengaged and the speed reducer 10 and the steam turbine 7 are The interval is not connected, and the rotational energy of the steam turbine 7 is not transmitted to the diesel engine output shaft 3.
 蒸気タービン7の起動時は、以下のように動作する。
 先ず、起動前において、蒸気流量調整弁20Aは全閉とされ、自動嵌脱クラッチ12は非連結とされる。
 蒸気発生装置6にて蒸気が生成され、過熱蒸気管30Bから供給された過熱蒸気が所定量以上となると、蒸気流量調整弁20Aは全閉状態から微開状態とされる。そして、蒸気流量調整弁20Aの開度を徐々に大きくしていき、蒸気タービン7の回転数を昇速させる。タービン出力軸7Bの回転数が所定値に達すると、自動嵌脱クラッチ12が連結状態となり、蒸気タービン7の回転出力が、自動嵌脱クラッチ12、及び減速機11を介してディーゼル機関出力軸3へと伝達される。
 自動嵌脱クラッチ12が連結状態となった後は、蒸気流量調整弁20Aは全開または所定開度で固定とされる。すなわち、蒸気流量調整弁20Aによってガバナ制御を行うことはない。ディーゼル機関出力軸3の回転数は、あくまでもディーゼル機関5の調速ガバナのみによって行われる。この調速ガバナは、蒸気タービン7の回転出力に応じて制御され、例えば、蒸気タービン7の回転出力が増大した場合には、定格回転数を維持するためにディーゼル機関5の出力が低下するように調速ガバナが制御される。
When the steam turbine 7 is started, the operation is as follows.
First, before starting, the steam flow rate adjusting valve 20A is fully closed, and the automatic fitting / removing clutch 12 is disconnected.
When steam is generated by the steam generator 6 and the amount of superheated steam supplied from the superheated steam pipe 30B exceeds a predetermined amount, the steam flow rate adjusting valve 20A is changed from the fully closed state to the slightly opened state. Then, the opening degree of the steam flow rate adjusting valve 20A is gradually increased, and the rotation speed of the steam turbine 7 is increased. When the rotational speed of the turbine output shaft 7B reaches a predetermined value, the automatic engagement / disengagement clutch 12 is engaged, and the rotational output of the steam turbine 7 is transmitted via the automatic engagement / disengagement clutch 12 and the speed reducer 11 to the diesel engine output shaft 3. Is transmitted to.
After the automatic engagement / disengagement clutch 12 is in the connected state, the steam flow rate adjustment valve 20A is fully opened or fixed at a predetermined opening. That is, governor control is not performed by the steam flow rate adjusting valve 20A. The rotational speed of the diesel engine output shaft 3 is performed only by the governor governor of the diesel engine 5. The governor governor is controlled in accordance with the rotational output of the steam turbine 7. For example, when the rotational output of the steam turbine 7 increases, the output of the diesel engine 5 decreases so as to maintain the rated rotational speed. The governor governor is controlled.
 以上の通り、本実施形態の発電プラント設備およびその運転方法によれば、以下の効果を奏する。
 蒸気タービン7からの回転出力は、減速機10を介してディーゼル機関5の回転軸に伝達されるようにして、共用の発電機11にて発電することとした。すなわち、従来のように、ディーゼル機関用発電機および蒸気タービン用発電機といったようにそれぞれ別個の発電機を備えていない構成とした。したがって、蒸気タービン用発電機を追加設置することによる設置コストの上昇を回避することができるとともに、2つの発電機を備えることによる発電損失の増大を招くことがない。
 また、蒸気タービン7によってディーゼル機関5を加勢するので、ディーゼル機関5の燃費を向上させることができる。
 また、ガバナ制御部によって、蒸気タービン7の回転出力に応じてディーゼル機関5の調速ガバナを制御することとしたので、蒸気タービン専用の調速ガバナを設ける必要がなくなり、さらなるコスト低減が実現される。
 アイドリング歯車10Bを1又は複数設けることとしたので、ディーゼル機関出力軸3とタービン回転軸7Bとの距離を調整することができる。これにより、ディーゼル機関5に対する蒸気タービン7の設置の自由度を向上させることができる。
As described above, according to the power plant equipment and the operation method thereof according to the present embodiment, the following effects can be obtained.
The rotation output from the steam turbine 7 is transmitted to the rotating shaft of the diesel engine 5 via the speed reducer 10 and is generated by the common generator 11. In other words, unlike the conventional case, the generator is not provided with a separate generator such as a generator for a diesel engine and a generator for a steam turbine. Therefore, an increase in installation cost due to the additional installation of the steam turbine generator can be avoided, and an increase in power generation loss due to the provision of the two generators is not caused.
Moreover, since the diesel engine 5 is energized by the steam turbine 7, the fuel efficiency of the diesel engine 5 can be improved.
Further, since the governor control unit controls the governing governor of the diesel engine 5 in accordance with the rotational output of the steam turbine 7, it is not necessary to provide a governing governor dedicated to the steam turbine, and further cost reduction is realized. The
Since one or more idling gears 10B are provided, the distance between the diesel engine output shaft 3 and the turbine rotation shaft 7B can be adjusted. Thereby, the freedom degree of installation of the steam turbine 7 with respect to the diesel engine 5 can be improved.
 なお、発電プラント設備1は、陸上に設置されていることを例として説明したが、本発明はこれに限定されるものではない。 In addition, although demonstrated as an example that the power plant equipment 1 is installed on land, this invention is not limited to this.
1 発電プラント設備
5 ディーゼル機関
6 蒸気発生装置
7 蒸気タービン
10 減速機
11 発電機(共用発電機)
12 自動嵌脱クラッチ
DESCRIPTION OF SYMBOLS 1 Power plant equipment 5 Diesel engine 6 Steam generator 7 Steam turbine 10 Reducer 11 Generator (common generator)
12 Automatic engagement / disengagement clutch

Claims (4)

  1.  ディーゼル機関と、
     該ディーゼル機関から排出された排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、
     該蒸気発生装置によって生成された蒸気によって駆動される蒸気タービンと、
     該蒸気タービンからの回転出力を前記ディーゼル機関の回転軸に伝達する減速機と、
     前記ディーゼル機関の前記回転軸に接続され、前記ディーゼル機関および前記蒸気タービンから得た駆動力によって発電する共用発電機と、
    を備えている発電プラント設備。
    A diesel engine,
    A steam generator that recovers exhaust heat from the exhaust gas discharged from the diesel engine to generate steam;
    A steam turbine driven by steam generated by the steam generator;
    A speed reducer that transmits rotational output from the steam turbine to a rotating shaft of the diesel engine;
    A common generator that is connected to the rotating shaft of the diesel engine and generates electric power by a driving force obtained from the diesel engine and the steam turbine;
    Power plant equipment equipped with.
  2.  前記ディーゼル機関の回転数を調整する調速ガバナを制御するガバナ制御部を備え、
     該ガバナ制御部は、前記ディーゼル機関の前記回転軸に入力される前記蒸気タービンの回転出力に応じて前記調速ガバナを制御する請求項1に記載の発電プラント設備。
    A governor control unit for controlling a governing governor for adjusting the rotational speed of the diesel engine;
    2. The power plant equipment according to claim 1, wherein the governor control unit controls the governor governor according to a rotation output of the steam turbine input to the rotation shaft of the diesel engine.
  3.  前記減速機は、前記蒸気タービンの回転軸側に取り付けられた小歯車と前記ディーゼル機関の回転軸側に取り付けられた大歯車との間に、1又は複数のアイドリング歯車が設けられている請求項1又は2に記載の発電プラント設備。 The speed reducer is provided with one or a plurality of idling gears between a small gear attached to the rotating shaft side of the steam turbine and a large gear attached to the rotating shaft side of the diesel engine. The power plant equipment according to 1 or 2.
  4.  ディーゼル機関と、
     該ディーゼル機関から排出された排ガスから排熱を回収して蒸気を生成する蒸気発生装置と、
     該蒸気発生装置によって生成された蒸気によって駆動される蒸気タービンと、
     該蒸気タービンからの回転出力を前記ディーゼル機関の回転軸に伝達する減速機と、
     前記ディーゼル機関の前記回転軸に接続された共用発電機と、
    を備えた発電プラント設備の運転方法であって、
     前記共用発電機に対して、前記ディーゼル機関および前記蒸気タービンから得た駆動力を伝達する発電プラント設備の運転方法。
    A diesel engine,
    A steam generator that recovers exhaust heat from the exhaust gas discharged from the diesel engine to generate steam;
    A steam turbine driven by steam generated by the steam generator;
    A speed reducer that transmits rotational output from the steam turbine to a rotating shaft of the diesel engine;
    A common generator connected to the rotating shaft of the diesel engine;
    A method for operating a power plant facility comprising:
    A method for operating a power plant that transmits driving power obtained from the diesel engine and the steam turbine to the common generator.
PCT/JP2011/063888 2010-06-18 2011-06-17 Electricity generation plant and method for operating same WO2011158926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127031786A KR20130016354A (en) 2010-06-18 2011-06-17 Electricity generation plant and method for operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010139597A JP2012002185A (en) 2010-06-18 2010-06-18 Electricity generation plant and method for operating same
JP2010-139597 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011158926A1 true WO2011158926A1 (en) 2011-12-22

Family

ID=45348318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063888 WO2011158926A1 (en) 2010-06-18 2011-06-17 Electricity generation plant and method for operating same

Country Status (3)

Country Link
JP (1) JP2012002185A (en)
KR (1) KR20130016354A (en)
WO (1) WO2011158926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002279A1 (en) * 2013-02-20 2014-08-22 Renault Sa HEAT RECOVERY SYSTEM FOR EXHAUST GASES IN AN INTERNAL COMBUSTION ENGINE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE535318C2 (en) * 2010-12-01 2012-06-26 Scania Cv Ab Arrangement and method for converting thermal energy into mechanical energy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188004A (en) * 1983-04-09 1984-10-25 Kawasaki Heavy Ind Ltd Power plant with gas turbine combined cycle marine propulsion plant
JPH03164526A (en) * 1989-12-19 1991-07-16 Mitsubishi Heavy Ind Ltd Compound internal combustion engine
JPH0526921B2 (en) * 1985-04-19 1993-04-19 Mitsubishi Heavy Ind Ltd
JPH08170504A (en) * 1994-12-16 1996-07-02 Kawasaki Heavy Ind Ltd Geothermal electric power generation facility
JPH09250308A (en) * 1996-03-18 1997-09-22 Mitsubishi Heavy Ind Ltd Combined generating equipment using diesel engine
JP2000320400A (en) * 1999-05-12 2000-11-21 Mitsubishi Heavy Ind Ltd Combined power generation system
JP2004190558A (en) * 2002-12-11 2004-07-08 Babcock Hitachi Kk Cogeneration plant
JP2010133284A (en) * 2008-12-02 2010-06-17 Mitsubishi Heavy Ind Ltd Power generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188004A (en) * 1983-04-09 1984-10-25 Kawasaki Heavy Ind Ltd Power plant with gas turbine combined cycle marine propulsion plant
JPH0526921B2 (en) * 1985-04-19 1993-04-19 Mitsubishi Heavy Ind Ltd
JPH03164526A (en) * 1989-12-19 1991-07-16 Mitsubishi Heavy Ind Ltd Compound internal combustion engine
JPH08170504A (en) * 1994-12-16 1996-07-02 Kawasaki Heavy Ind Ltd Geothermal electric power generation facility
JPH09250308A (en) * 1996-03-18 1997-09-22 Mitsubishi Heavy Ind Ltd Combined generating equipment using diesel engine
JP2000320400A (en) * 1999-05-12 2000-11-21 Mitsubishi Heavy Ind Ltd Combined power generation system
JP2004190558A (en) * 2002-12-11 2004-07-08 Babcock Hitachi Kk Cogeneration plant
JP2010133284A (en) * 2008-12-02 2010-06-17 Mitsubishi Heavy Ind Ltd Power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002279A1 (en) * 2013-02-20 2014-08-22 Renault Sa HEAT RECOVERY SYSTEM FOR EXHAUST GASES IN AN INTERNAL COMBUSTION ENGINE
WO2014128393A1 (en) * 2013-02-20 2014-08-28 Renault S.A.S. System for recuperating heat from the exhaust gases in an internal combustion engine

Also Published As

Publication number Publication date
JP2012002185A (en) 2012-01-05
KR20130016354A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
CN102822451B (en) Power plant equipment and method of operation thereof
JP5374465B2 (en) Power plant equipment, ship equipped with the same, and operation method of power plant equipment
JP5743728B2 (en) A power plant that separates and compresses CO2
CN207278308U (en) Combination circulation steam turbine cold start pre-warming system
EP3098400B1 (en) Method for enhanced cold steam turbine start in a supplementary fired multi gas turbine combined cycle plant
CN107152317A (en) Combination circulation steam turbine quickly starts warming-up system and method
US8884449B2 (en) Device for energy recovery for a large diesel engine
CN107227979A (en) A kind of combination circulation steam turbine quickly starts warming-up system and method
EP0902168B1 (en) Method and arrangement for a combi power plant
WO2012053112A1 (en) Propulsion device and ship with same
JP5563052B2 (en) Waste heat recovery system and waste heat recovery method
US20120167567A1 (en) Power generation apparatus
WO2011158926A1 (en) Electricity generation plant and method for operating same
JP2010264867A (en) Propulsion device and marine vessel including the same
KR101613227B1 (en) Apparatus and method for power production using waste heat in a ship
JP5151407B2 (en) Steam system
US10100661B2 (en) Method for operating a gas turbine arrangement
CN218787291U (en) Power balancing device based on mechanical and electrical integration planetary speed regulation
RU2182247C2 (en) Method and device for starting gas-turbine power plant and feeding it with gas
RU43918U1 (en) GAS-TURBINE BOX USING GAS GENERATOR ENERGY
JP2010261382A (en) Exhaust gas energy recovering device for internal combustion engine
KR20130133514A (en) Waste heat recovery apparatus for transmitting two way driving force

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127031786

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795828

Country of ref document: EP

Kind code of ref document: A1