WO2011158283A1 - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
WO2011158283A1
WO2011158283A1 PCT/JP2010/003945 JP2010003945W WO2011158283A1 WO 2011158283 A1 WO2011158283 A1 WO 2011158283A1 JP 2010003945 W JP2010003945 W JP 2010003945W WO 2011158283 A1 WO2011158283 A1 WO 2011158283A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
power supply
light
optical transmission
station device
Prior art date
Application number
PCT/JP2010/003945
Other languages
French (fr)
Japanese (ja)
Inventor
清水良浩
Original Assignee
富士通テレコムネットワークス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通テレコムネットワークス株式会社 filed Critical 富士通テレコムネットワークス株式会社
Priority to JP2012520154A priority Critical patent/JP5536209B2/en
Priority to PCT/JP2010/003945 priority patent/WO2011158283A1/en
Publication of WO2011158283A1 publication Critical patent/WO2011158283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal

Definitions

  • the present invention relates to an optical transmission system that transmits and receives optical signals via an optical transmission line.
  • the optical power level transmitted to the slave station device decreases, and sufficient power is supplied to the slave station device. May not be supplied. Insufficient power in the slave station device may affect the reliability of the system.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an optical transmission system capable of supplying sufficient power from a master station device to a slave station device via an optical transmission path. .
  • an optical transmission system includes an optical transmitter that outputs main signal light, a power supply light source that outputs power supply light different from the main signal light, An optical amplifier that amplifies signal light and power supply light, an optical transmission line that transmits main signal light and power supply light from the master station device, and photoelectric conversion of the power supply light. And a slave station device that performs reception processing of the main signal light using the generated power.
  • power is supplied to the slave station device by transmitting the power supply light different from the main signal light from the master station device to the slave station device via the optical transmission line and performing photoelectric conversion.
  • the device can be installed by introducing only the optical transmission line fiber.
  • an optical amplifier is provided in the master station apparatus to amplify the power supply light.
  • the main signal light and the power supply light may have different wavelengths.
  • the master station device may further include an optical multiplexer that combines the main signal light and the power supply light, and the optical amplifier may collectively amplify the wavelength multiplexed light from the optical multiplexer.
  • the optical amplifier is provided at the subsequent stage of the optical transmitter and the power supply light source, and the master station device further includes an optical multiplexer that combines the amplified main signal light and the power supply light. Also good.
  • the relay station apparatus further includes a relay station apparatus disposed between the master station apparatus and the slave station apparatus, and the power supply light includes a first power supply light having a first wavelength and a second wavelength having a second wavelength different from the first wavelength.
  • the optical multiplexer outputs wavelength multiplexed light obtained by combining the main signal light, the first power supply light, and the second power supply light, and the relay station device outputs the first signal from the wavelength multiplexed light.
  • a relay station power supply device, and the slave station device is a second optical switch that separates the second power supply light from the wavelength multiplexed light from the relay station device, and an optical receiver that performs a reception process of the main signal light
  • an intra-slave power supply device that photoelectrically converts the second power supply light and supplies power to the optical receiver; It may be provided.
  • the optical transmission line is redundantly composed of a working optical transmission line and a standby optical transmission line, and the master station device and the slave station device are optical devices operated between the working optical transmission line and the standby optical transmission line.
  • the optical switch further includes an optical switch for switching the transmission line, and the optical switch transmits the main signal light to the active optical transmission line and the power supply light to the standby optical transmission line during normal operation.
  • the optical transmission line may be switched so that the main signal light is transmitted through the standby optical transmission line when a failure occurs in the active optical transmission line.
  • the slave station device further includes a charging device that charges electric power obtained by photoelectrically converting the power supply light during normal operation, and uses a power charged in the charging device when a failure occurs in the active optical transmission line.
  • the main signal light may be received.
  • the master station device and the slave station device may be arranged as terminal devices in a point-to-point network. Further, the master station device and the slave station device may be arranged as terminal devices in the optical ring network.
  • an optical transmission system capable of supplying sufficient power from a master station device to a slave station device via an optical transmission path.
  • FIG. 5 is a diagram for explaining a transmission path when a failure occurs in an active optical transmission path in the optical transmission system of FIG. 4. It is a figure for demonstrating the optical transmission system which concerns on another embodiment of this invention.
  • FIG. 7 is a diagram for explaining a transmission path when a failure occurs in an active optical transmission path in the optical transmission system of FIG. 6. It is a figure for demonstrating the wavelength used as main signal light and electric power supply light.
  • FIG. 1 is a diagram for explaining an optical transmission system according to an embodiment of the present invention.
  • An optical transmission system 100 illustrated in FIG. 1 connects a master station device 10 that transmits a modulated main signal light, a slave station device 20 that receives the main signal light, and the master station device 10 and the slave station device 20.
  • An optical transmission line 40 and a relay station device 30 arranged between the master station device 10 and the slave station device 20 are provided.
  • the optical transmission system 100 multiplexes a plurality of main signal lights having different wavelengths and transmits them between a master station device 10 and a slave station device 20 via an optical transmission line 40, and performs point-to-point WDM optical transmission. System.
  • the master station device 10 includes n (n is an arbitrary integer greater than or equal to 1) optical transmitters OS1 to OSn, and mn (m is an arbitrary integer greater than n) power supply light sources LDn + 1 to LDm. , Optical transmitters OS1 to OSn and power supply light sources LDn + 1 to LDm, an optical multiplexer 12 provided at the subsequent stage, and a master optical amplifier 14 provided at the subsequent stage of the optical multiplexer 12.
  • Each of the optical transmitters OS1 to OSn converts the input client signal into a frame, performs a predetermined transmission process such as adding an error correction code, and then outputs the main signal light (wavelengths ⁇ 1 to ⁇ n).
  • the wavelengths ⁇ 1 to ⁇ n of the main signal light are different from each other.
  • the power supply light sources LDn + 1 to LDm output power supply light (wavelengths ⁇ n + 1 to ⁇ m) different from the main signal light of wavelengths ⁇ 1 to ⁇ n, respectively.
  • the power supply light sources LDn + 1 to LDm for example, laser diodes can be used.
  • the wavelengths ⁇ n + 1 to ⁇ m of the power supply light are different from the wavelengths ⁇ 1 to ⁇ n of the main signal.
  • the optical multiplexer 12 combines the main signal light having the wavelengths ⁇ 1 to ⁇ n and the power supply light having the wavelengths ⁇ n + 1 to ⁇ m to generate wavelength multiplexed light, which is output to the master optical amplifier 14.
  • the master optical amplifier 14 collectively amplifies the wavelength multiplexed light from the optical multiplexer 12 and outputs it to the optical transmission line 40.
  • an erbium-doped optical fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), or the like can be used as the master optical amplifier 14.
  • a power line from the outside of the apparatus is connected to the master station apparatus 10, and various devices in the master station apparatus 10 operate with power supplied from the power line.
  • the optical transmission line 40 transmits the wavelength division multiplexed light of the main signal light and the power supply light amplified by the master optical amplifier 14 of the master station device 10 to the slave station device 20.
  • a single mode optical fiber can be used as the optical transmission line 40.
  • the repeater station device 30 includes a repeater optical amplifier 32 that amplifies the wavelength multiplexed light attenuated during propagation in the optical transmission line 40 and outputs the amplified light to the slave station device 20.
  • the relay station device 30 is connected to a power line from the outside of the device, and the repeater optical amplifier 32 in the relay station device 30 operates with power supplied from the power line.
  • the slave station device 20 includes an optical demultiplexer 22 connected to the optical transmission line 40, n optical receivers OR 1 to ORn provided at the subsequent stage of the optical demultiplexer 22, and the optical demultiplexer 22. There are provided mn photoelectric converters OEn + 1 to OEm provided in the subsequent stage and a power supply device 24 in the slave station. In the present embodiment, the slave station device 20 is not connected to a power line from the outside of the device.
  • the optical demultiplexer 22 demultiplexes the wavelength multiplexed light transmitted through the optical transmission path 40 into main signal light with wavelengths ⁇ 1 to ⁇ n and power supply light with wavelengths ⁇ n + 1 to ⁇ m.
  • an array type waveguide diffraction grating (AWG), fiber grading, a dielectric multilayer film, or the like can be used as the optical multiplexer 12 and the optical demultiplexer 22.
  • the main signal lights of wavelengths ⁇ 1 to ⁇ n are received by the optical receivers OR1 to ORn, respectively, are subjected to predetermined reception processing such as photoelectric conversion, timing extraction, identification reproduction and error correction, and then output as client signals. .
  • power supply lights having wavelengths ⁇ n + 1 to ⁇ m are photoelectrically converted by photoelectric converters OEn + 1 to OEm, respectively.
  • photodiodes can be used as the photoelectric converters OEn + 1 to OEm.
  • the electric power output from each of the photoelectric converters OEn + 1 to OEm is sent to the power supply device 24 in the slave station.
  • the slave station power supply device 24 supplies the power sent from the photoelectric converters OEn + 1 to OEm to various devices in the slave station device 20.
  • the optical receivers OR1 to ORn perform the above-described reception process using the power from the intra-stationary power supply device 24.
  • the power supply light different from the main signal light is transmitted from the master station device 10 to the slave station device 20 via the optical transmission path 40, It becomes possible to supply electric power to the slave station device 20 by performing the photoelectric conversion. Thereby, for example, even when the slave station device 20 is installed in a place where the power line is not installed, the device can be installed by introducing only the optical transmission line fiber.
  • the master station optical amplifier 14 is provided in the master station apparatus 10, and the repeater optical amplifier 32 is provided in the repeater station apparatus 30. Accordingly, even when the optical transmission line 40 is long and has a large loss, it is possible to transmit a large optical power and supply stable power to the slave station device 20.
  • FIG. 2 is a diagram for explaining an optical transmission system according to another embodiment of the present invention.
  • the optical transmission system 100 shown in FIG. 2 connects the master station device 10 that transmits the modulated main signal light, the slave station device 20 that receives the main signal light, and the master station device 10 and the slave station device 20.
  • An optical transmission line 40 and a relay station device 30 arranged between the master station device 10 and the slave station device 20 are provided.
  • This optical transmission system 100 is also a point-to-point WDM optical transmission system.
  • the master station apparatus 10 is provided in the subsequent stage of n optical transmitters OS1 to OSn (n is an arbitrary integer equal to or greater than 1), two power supply light sources LDn + 1 and LDn + 2, and optical transmitters OS1 to OSn.
  • a master optical amplifier 15 provided.
  • the optical transmitters OS1 to OSn output main signal lights having wavelengths ⁇ 1 to ⁇ n, respectively.
  • the power supply light source LDn + 1 outputs first power supply light having a predetermined first wavelength ⁇ n + 1, and the power supply light source LDn + 2 outputs second power supply light having a predetermined second wavelength ⁇ n + 2.
  • the first wavelength ⁇ n + 1 and the second wavelength ⁇ n + 2 are different wavelengths.
  • the main signal light from the optical transmitters OS 1 to OSn is multiplexed by the optical multiplexer 12 and then amplified by the master optical amplifier 14.
  • the first power supply light and the second power supply light are combined by the optical multiplexer 13 and then amplified by the master optical amplifier 15.
  • the main signal light, the first power supply light, and the second power supply light output from the master optical amplifiers 14 and 15 are combined by the coupler 17 and then sent to the optical transmission line 40.
  • the relay station device 30 includes an optical switch 34 that receives wavelength-multiplexed light from the optical transmission line 40, a relay optical amplifier 32 that is provided at the subsequent stage of the optical switch, and a photoelectric converter OEn + 1 that receives light separated by the optical switch 34. And a relay station power supply device 36.
  • a wavelength selective switch (WSS: Wave Selectable Switch) can be used as the optical switch.
  • the relay station device 30 is not connected to a power line from the outside of the device.
  • the optical switch 34 separates the first power supply light having the wavelength ⁇ n + 1 from the received wavelength multiplexed light.
  • the separated first power supply light is sent to the photoelectric converter OEn + 1.
  • the main signal light of wavelengths 1 to ⁇ n and the second power supply light of wavelength ⁇ n + 2 are sent to the repeater optical amplifier 32.
  • the first power supply light having the wavelength ⁇ n + 1 is photoelectrically converted by the photoelectric converter OEn + 1.
  • the power output from the photoelectric converter OEn + 1 is sent to the relay station power supply device 36.
  • the relay station power supply device 36 supplies the power from the photoelectric converter OEn + 1 to various devices in the relay station device 30.
  • the repeater optical amplifier 32 amplifies the wavelength multiplexed light of wavelengths ⁇ 1 to ⁇ n and ⁇ n + 2 using the power from the relay station power supply device 36.
  • the amplified wavelength multiplexed light is sent to the slave station device 20.
  • the slave station device 20 includes an optical switch 26 connected to the optical transmission line 40, a slave station optical amplifier 28 provided at the subsequent stage of the optical switch 26, and an optical demultiplexer provided at the subsequent stage of the slave station optical amplifier 28. 22, n optical receivers OR 1 to ORn provided in the subsequent stage of the optical demultiplexer 22, a photoelectric converter OEn + 2 that receives the light separated by the optical switch 26, and a sub-station power supply device 24. .
  • the slave station device 20 is not connected to a power line from the outside of the device.
  • the optical switch 26 separates the second power supply light having the second wavelength ⁇ n + 2 from the received wavelength multiplexed light.
  • the separated second power supply light is sent to the photoelectric converter OEn + 2.
  • the main signal light of wavelengths 1 to ⁇ n is sent to the slave optical amplifier 28.
  • the main signal light of wavelengths 1 to ⁇ n is demultiplexed by the optical demultiplexer 22 and then received by the optical receivers OR1 to ORn, and predetermined reception processing such as photoelectric conversion, timing extraction, identification reproduction, error correction, and the like is performed. After being performed, it is output as a client signal.
  • the second power supply light is photoelectrically converted by the photoelectric converter OEn + 2.
  • the power output from the photoelectric converter OEn + 2 is sent to the slave station power supply device 24.
  • the slave station power supply device 24 supplies the power from the photoelectric converter OEn + 2 to various devices in the slave station device 20.
  • the slave station power supply device 24 supplies power for operation to the slave station optical amplifier 28, the optical receivers OR1 to ORn, and the like.
  • the first power supply light having the first wavelength ⁇ n + 1 is transmitted from the master station device 10 to the relay station device 30 and is relayed by performing photoelectric conversion. Power can be supplied to the station device 30.
  • the second station power supply light having the second wavelength ⁇ n + 2 is transmitted from the master station apparatus 10 to the slave station apparatus 20, and power can be supplied to the slave station apparatus 20 by performing photoelectric conversion.
  • the master station optical amplifier 15 is provided in the master station apparatus 10. As a result, even when the optical transmission line 40 is long and has a large loss, it is possible to transmit a large optical power and supply stable power to the slave station device 20 and the relay station device 30.
  • FIG. 3 is a diagram for explaining a modification of the master station device.
  • optical amplifiers AP1 to APn are respectively provided after the optical transmitters OS1 to OSn. Further, optical amplifiers APn + 1 to APm are provided at the subsequent stage of the power supply light sources LDn + 1 to LDm.
  • An optical multiplexer 12 is provided at the subsequent stage of the optical amplifiers AP1 to APn and the optical amplifiers APn + 1 to APm, and the main signal light and the power supply light are combined by the optical multiplexer 12.
  • FIG. 4 is a diagram for explaining an optical transmission system according to still another embodiment of the present invention.
  • the optical transmission system 100 shown in FIG. 4 connects the master station device 10 that transmits the modulated main signal light, the slave station device 20 that receives the main signal light, and the master station device 10 and the slave station device 20. And an optical transmission line 40.
  • This optical transmission system 100 is also a point-to-point WDM optical transmission system.
  • the master station device 10 includes n optical transmitters OS1 to OSn, n power supply light sources LD1 to LDn, an optical multiplexer 12 provided at the subsequent stage of the optical transmitters OS1 to OSn, and a power supply unit.
  • An optical multiplexer 13 provided downstream of the light sources LD1 to LDn, an optical switch 16 provided downstream of the optical multiplexers 12, 13, and a master optical amplifier 14 provided in parallel downstream of the optical switch 16, 15.
  • the wavelength bands ⁇ 1 to ⁇ n of light output from the optical transmitters OS1 to OSn and the power supply light sources LD1 to LDn are set to be the same, but may be different.
  • the optical transmission line 40 is redundantly configured by an active optical transmission line 41 and a standby optical transmission line 42.
  • Each of the working optical transmission line 41 and the standby optical transmission line 42 has one end connected to the optical switch 16 of the master station device 10 and the other end connected to the optical switch 26 of the slave station device 20.
  • the master optical amplifier 14 is provided on the working optical transmission line 41, and the master optical amplifier 15 is provided on the standby optical transmission line 42.
  • the slave station device 20 includes an optical switch 26 connected to the working optical transmission line 41 and the standby optical transmission line 42, optical demultiplexers 22 and 23 provided at the subsequent stage of the optical switch 26, and an optical demultiplexer. 22, n optical receivers OR1 to ORn provided in the subsequent stage, n photoelectric converters OE1 to OEn provided in the subsequent stage of the optical demultiplexer 23, the sub-station power supply device 24, and the charging device 25.
  • the optical switch 16 of the master station device 10 and the optical switch 26 of the slave station device 20 perform switching of the optical transmission line to be operated between the active optical transmission line 41 and the standby optical transmission line 42.
  • the slave station device 20 is not connected to a power line from the outside of the device.
  • FIG. 4 the transmission paths of the main signal light and the power supply light during normal operation are indicated by bold lines.
  • the main signal lights of wavelengths ⁇ 1 to ⁇ n output from the optical transmitters OS 1 to OSn are combined by the optical multiplexer 12 and then input to the optical switch 16.
  • the wavelengths ⁇ 1 to ⁇ n output from the power supply light sources LD1 to LDn are combined by the optical multiplexer 13 and then output to the optical switch 16.
  • the optical switch 16 outputs the wavelength multiplexed light of the main signal light having the wavelengths ⁇ 1 to ⁇ n to the working optical transmission line 41 and the wavelength multiplexed light of the power supply light having the wavelengths ⁇ 1 to ⁇ n to the standby optical transmission.
  • the output is set to the path 42.
  • the wavelength multiplexed light of the main signal light having the wavelengths ⁇ 1 to ⁇ n is amplified by the master optical amplifier 14, and the wavelength multiplexed light of the power supply light having the wavelengths ⁇ 1 to ⁇ n is amplified by the master optical amplifier 15.
  • the wavelength multiplexed light of the main signal light transmitted through the active optical transmission line 41 and the wavelength multiplexed light of the power supply light transmitted through the standby optical transmission line 42 are input to the optical switch 26.
  • the optical switch 26 is set to output the wavelength multiplexed light of the main signal light to the optical demultiplexer 22 and to output the wavelength multiplexed light of the power supply light to the optical demultiplexer 23.
  • the main signal lights having wavelengths ⁇ 1 to ⁇ n demultiplexed by the optical demultiplexer 22 are received by the optical receivers OR1 to ORn, and predetermined reception processing such as photoelectric conversion, timing extraction, identification reproduction, and error correction is performed. After that, it is output as a client signal.
  • the power supply light having the wavelengths ⁇ 1 to ⁇ n demultiplexed by the optical demultiplexer 23 is photoelectrically converted by the photoelectric converters OE1 to OEn.
  • the photoelectrically converted power is sent to the power supply device 24 in the slave station.
  • the slave station power supply device 24 supplies the power from the photoelectric converters OE1 to OEn to various devices in the slave station device 20.
  • the slave station power supply device 24 supplies power for operation to the optical receivers OR1 to ORn.
  • the slave station power supply device 24 outputs a part of the power from the photoelectric converters OE1 to OEn to the charging device 25.
  • the charging device 25 charges the power supplied from the slave station power supply device 24 during normal operation.
  • FIG. 5 is a diagram for explaining a transmission path when a failure occurs in the working optical transmission path.
  • the optical switch 16 switches the transmission path so that the wavelength multiplexed light of the main signal light having the wavelengths ⁇ 1 to ⁇ n is output to the standby optical transmission line 42.
  • the optical switch 26 switches the path so that the wavelength division multiplexed light of the main signal light transmitted through the backup optical transmission path 42 is input to the optical demultiplexer 22.
  • the charging device 25 supplies the power charged during normal operation to the power supply device 24 in the slave station.
  • the slave station power supply device 24 supplies the power supplied from the charging device 25 to the optical receivers OR1 to ORn. By using this power, the main signal light can be received even when a failure occurs.
  • the power supply light different from the main signal light is transmitted from the master station device 10 via the optical transmission line 40 during the normal operation. It is possible to supply electric power to the slave station device 20 by transmitting to 20 and performing photoelectric conversion.
  • the master station optical amplifier 15 for amplifying the power supply light is provided in the master station apparatus 10, even when the standby optical transmission line 42 is long and has a large loss, a large optical power is transmitted to the slave station. Stable power can be supplied to the station apparatus 20.
  • the optical transmission system 100 even when a failure occurs in the working optical transmission line 41, the transmission path of the main signal light is switched and the electric power charged in the charging device 25 is supplied. By using it, the main signal light can be reliably transmitted.
  • the reliability of the apparatus can be improved, and the standby optical transmission line 42 can be effectively utilized during normal operation.
  • FIG. 6 is a diagram for explaining an optical transmission system according to still another embodiment of the present invention.
  • the optical transmission system 100 shown in FIG. 6 constitutes an optical ring network.
  • a plurality of terminal devices are connected to each other via an optical transmission line to form a ring-shaped optical communication network.
  • FIG. 6 shows an optical ring network in which master station devices 10a and 10b and a slave station device 20 are arranged as terminal devices. Note that the configurations of the master station devices 10a and 10b and the slave station device 20 are substantially the same as those shown in FIG. 5, and thus detailed description is omitted and some components are not shown.
  • the transmission paths of the main signal light and the power supply light during normal operation are indicated by arrows.
  • the optical switch 16 outputs the wavelength-multiplexed light of the main signal light having the wavelengths ⁇ 1 to ⁇ n to the working optical transmission line 41 and the first power supply light having the first wavelength ⁇ 1 as the standby optical transmission line. 42 is set to output.
  • the wavelength multiplexed light of the main signal light is amplified by the master optical amplifier 14 and then transmitted counterclockwise through the working optical transmission line 41 to reach the slave station device 20.
  • the first power supply light is amplified by the master optical amplifier 15 and then transmitted clockwise through the backup optical transmission line 42 to reach the slave station device 20.
  • the wavelength multiplexed light of the main signal light transmitted through the working optical transmission line 41 and the first power supply light transmitted through the standby optical transmission line 42 are input to the optical switch 26.
  • the optical switch 26 is set so that the wavelength-multiplexed light of the main signal light is input to an optical receiver (not shown) and the first power supply light is input to the photoelectric converter OE.
  • the slave station power supply device 24 supplies the power from the photoelectric converter OE to various devices in the slave station device 20 and stores a part of the power in the charging device 25.
  • the second power supply light having the second wavelength ⁇ 2 is output from the master station device 10b arranged in the middle of the standby optical transmission line 42. .
  • the second power supply light is combined with the first power supply light, and then transmitted to the slave station device 20 via the standby optical transmission line 42.
  • the electric power obtained by photoelectrically converting the second electric power supply light is also supplied to various devices in the slave station device 20, and a part of the electric power is stored in the charging device 25.
  • FIG. 7 is a diagram for explaining a transmission path when a failure occurs in the active optical transmission path.
  • the optical switch 16 switches the transmission path so that the wavelength multiplexed light of the main signal light having the wavelengths ⁇ 1 to ⁇ n is output to the standby optical transmission line 42.
  • the optical switch 26 switches the path so that the wavelength-multiplexed light of the main signal light transmitted through the backup optical transmission path 42 is input to the optical receiver.
  • the master station device 10b stops the multiplexing of the second power supply light.
  • the charging device 25 supplies the power charged during normal operation to the power supply device 24 in the slave station.
  • the slave station power supply device 24 supplies the power supplied from the charging device 25 to an optical receiver or the like. By using this power, the main signal light can be received even when a failure occurs.
  • the first power supply light from the master station device 10a is transmitted to the slave station device 20 via the optical transmission line 40 during normal operation.
  • the power can be supplied to the slave station device 20 by performing photoelectric conversion.
  • the master station optical amplifier 15 that amplifies the first power supply light is provided in the master station apparatus 10a, even when the standby optical transmission line 42 is long and has a large loss, it transmits a large optical power. Stable power can be supplied to the slave station device 20.
  • the main signal light is switched by switching the transmission path of the main signal light and using the power charged in the charging device 25. It is possible to reliably transmit light.
  • the reliability of the apparatus can be improved, and the standby optical transmission line 42 can be effectively used during normal operation.
  • the optical ring network since the optical ring network is configured, the second power supply light from the master station device 10b located in the middle of the standby optical transmission line 42 is multiplexed to the slave station device 20. Can be transmitted. Thereby, the electric power supplied to the slave station apparatus 20 can be increased.
  • the optical ring network is configured, even if a failure such as a disconnection occurs in the backup optical transmission line 42 between the master station devices 10a and 10b, the second The power supply light can be transmitted to the slave station device 20. Thereby, since the situation where power is not supplied to the slave station device 20 can be avoided, the reliability of the device can be further improved.
  • FIG. 8 is a diagram for explaining wavelengths used as main signal light and power supply light.
  • FIG. 8 is a diagram illustrating loss characteristics of the transmission line fiber.
  • the wavelengths ⁇ n + 1 to ⁇ m of the power supply light are ITU-Grid wavelengths within L-band (1570 nm to 1610 nm) can be used.
  • the ITU-Grid wavelength in the L-band may be used as the wavelengths ⁇ 1 to ⁇ n of the main signal light
  • the ITU-Grid wavelength in the C-band may be used as the wavelengths ⁇ n + 1 to ⁇ m of the power supply light.
  • the ITU-Grid wavelength in the C-band may be used as the wavelengths ⁇ 1 to ⁇ n of the main signal light and the power supply light, or the L-band.
  • the ITU-Grid wavelength may be used.
  • the transmission distance per span is 15 km
  • the transmission line fiber loss is 0.2 dB / km
  • the power from the master station device is
  • the output optical power of the power supply light is 10 dBm
  • the input optical power of the slave station apparatus can obtain power of about 7 dBm (5 mW).
  • the present invention can be used in an optical transmission system that transmits and receives an optical signal through an optical transmission line.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Provided is an optical transmission system which makes it possible to supply sufficient electrical power from a parent device to a child device via an optical transmission line. An optical transmission system (100) is provided with a parent device (10), a child device (20), and an optical transmission line (40). The parent device (10) is provided with optical transmitters (OS1 to OSn) for outputting main signal light, electrical power supplying light sources (LDn + 1 to LDm) for outputting electrical power supplying light separately from the main signal light, and a parent device optical amplifier (14) for amplifying the main signal light and the electrical power supplying light. A relay station device (30) transmits the main signal light and the electrical power supplying light from the parent device (10). The child device (20) handles the receiving of the main signal light by using the electrical power obtained by means of the photoelectric conversion of the electrical power supplying light.

Description

光伝送システムOptical transmission system
 本発明は、光伝送路を介して光信号の送受信を行う光伝送システムに関する。 The present invention relates to an optical transmission system that transmits and receives optical signals via an optical transmission line.
 従来より、光伝送システムの親局装置から遠隔地の子局装置へ光ファイバを介して電力を供給することで、子局側において電源確保を不要とする光給電技術が提案されている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, an optical power feeding technique has been proposed in which power is not required on the slave station side by supplying power via an optical fiber from a master station device of an optical transmission system to a remote slave station device (for example, , See Patent Document 1).
特開2005-198396号公報JP 2005-198396 A
 光給電技術においては、光ファイバを長距離化した場合や、多段中継によるファイバ接続損失が増大した場合に、子局装置に伝達される光パワーレベルが低下し、子局装置に十分な電力が供給されない可能性がある。子局装置における電力の不足は、システムの信頼性に影響を及ぼすおそれがある。 In the optical power feeding technology, when the optical fiber is extended or when the fiber connection loss due to multi-stage relay increases, the optical power level transmitted to the slave station device decreases, and sufficient power is supplied to the slave station device. May not be supplied. Insufficient power in the slave station device may affect the reliability of the system.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、親局装置から子局装置へ光伝送路を介して十分な電力を供給することのできる光伝送システムを提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide an optical transmission system capable of supplying sufficient power from a master station device to a slave station device via an optical transmission path. .
 上記課題を解決するために、本発明のある態様の光伝送システムは、主信号光を出力する光送信器と、主信号光とは別の電力供給光を出力する電力供給用光源と、主信号光および電力供給光を増幅する光増幅器と、を備える親局装置と、親局装置からの主信号光および電力供給光を伝送する光伝送路と、電力供給光を光電変換することにより得られる電力を用いて、主信号光の受信処理を行う子局装置と、を備える。 In order to solve the above problems, an optical transmission system according to an aspect of the present invention includes an optical transmitter that outputs main signal light, a power supply light source that outputs power supply light different from the main signal light, An optical amplifier that amplifies signal light and power supply light, an optical transmission line that transmits main signal light and power supply light from the master station device, and photoelectric conversion of the power supply light. And a slave station device that performs reception processing of the main signal light using the generated power.
 この態様によると、親局装置から主信号光とは別の電力供給光を光伝送路を介して子局装置に伝送し、光電気変換を行うことで、子局装置に電力を供給することが可能となる。これにより、例えば子局装置を電源線の敷設されていない場所に設置する場合であっても、光伝送路ファイバのみを導入することで装置設置が可能となる。 According to this aspect, power is supplied to the slave station device by transmitting the power supply light different from the main signal light from the master station device to the slave station device via the optical transmission line and performing photoelectric conversion. Is possible. Thereby, for example, even when the slave station device is installed in a place where the power supply line is not installed, the device can be installed by introducing only the optical transmission line fiber.
 ここで、本態様においては、親局装置に光増幅器を設け電力供給光を増幅する構成としている。これにより、例えば光伝送路が長距離で損失が大きい場合であっても、大きな光パワーを伝送して子局装置へ安定した電力を供給することができる。 Here, in this aspect, an optical amplifier is provided in the master station apparatus to amplify the power supply light. Thereby, for example, even when the optical transmission path is long and the loss is large, it is possible to transmit a large optical power and supply stable power to the slave station apparatus.
 主信号光と電力供給光は、互いに波長が異なってもよい。また、親局装置は、主信号光と電力供給光とを合波する光合波器をさらに備え、光増幅器は、光合波器からの波長多重光を一括して増幅してもよい。また、光増幅器は、光送信器と電力供給用光源の後段にそれぞれ設けられており、親局装置は、増幅された主信号光と電力供給光とを合波する光合波器をさらに備えてもよい。 The main signal light and the power supply light may have different wavelengths. The master station device may further include an optical multiplexer that combines the main signal light and the power supply light, and the optical amplifier may collectively amplify the wavelength multiplexed light from the optical multiplexer. In addition, the optical amplifier is provided at the subsequent stage of the optical transmitter and the power supply light source, and the master station device further includes an optical multiplexer that combines the amplified main signal light and the power supply light. Also good.
 親局装置と子局装置との間に配置された中継局装置をさらに備え、電力供給光は、第1波長を有する第1電力供給光と、第1波長と異なる第2波長を有する第2電力供給光とを含み、光合波器は、主信号光、第1電力供給光、および第2電力供給光を合波した波長多重光を出力し、中継局装置は、波長多重光から第1電力供給光を分離する第1光スイッチと、主信号光と第2電力供給光の波長多重光を増幅する中継光増幅器と、第1電力供給光を光電変換し、中継光増幅器に電力を供給する中継局内電力供給装置と、を備え、子局装置は、中継局装置からの波長多重光から第2電力供給光を分離する第2光スイッチと、主信号光の受信処理を行う光受信器と、第2電力供給光を光電変換し、光受信器に電力を供給する子局内電力供給装置とを備えてもよい。 The relay station apparatus further includes a relay station apparatus disposed between the master station apparatus and the slave station apparatus, and the power supply light includes a first power supply light having a first wavelength and a second wavelength having a second wavelength different from the first wavelength. The optical multiplexer outputs wavelength multiplexed light obtained by combining the main signal light, the first power supply light, and the second power supply light, and the relay station device outputs the first signal from the wavelength multiplexed light. A first optical switch that separates the power supply light, a repeater optical amplifier that amplifies the wavelength multiplexed light of the main signal light and the second power supply light, photoelectrically converts the first power supply light, and supplies power to the repeater optical amplifier A relay station power supply device, and the slave station device is a second optical switch that separates the second power supply light from the wavelength multiplexed light from the relay station device, and an optical receiver that performs a reception process of the main signal light And an intra-slave power supply device that photoelectrically converts the second power supply light and supplies power to the optical receiver; It may be provided.
 光伝送路は、現用系光伝送路と予備系光伝送路とにより冗長構成されており、親局装置および子局装置は、現用系光伝送路と予備系光伝送路の間で運用する光伝送路の切替を行う光スイッチをさらに備え、光スイッチは、通常運用時は現用系光伝送路に主信号光が送信され、且つ予備系光伝送路に電力供給光が送信されるよう光伝送路を選択するとともに、現用系光伝送路で障害が発生した場合は予備系光伝送路により主信号光が送信されるよう光伝送路を切り替えてもよい。 The optical transmission line is redundantly composed of a working optical transmission line and a standby optical transmission line, and the master station device and the slave station device are optical devices operated between the working optical transmission line and the standby optical transmission line. The optical switch further includes an optical switch for switching the transmission line, and the optical switch transmits the main signal light to the active optical transmission line and the power supply light to the standby optical transmission line during normal operation. The optical transmission line may be switched so that the main signal light is transmitted through the standby optical transmission line when a failure occurs in the active optical transmission line.
 子局装置は、通常運用時に電力供給光を光電変換することにより得られる電力を充電する充電装置をさらに備え、現用系光伝送路で障害が発生した場合、充電装置に充電された電力を用いて主信号光の受信処理を行ってもよい。 The slave station device further includes a charging device that charges electric power obtained by photoelectrically converting the power supply light during normal operation, and uses a power charged in the charging device when a failure occurs in the active optical transmission line. The main signal light may be received.
 親局装置と子局装置は、ポイント・トゥ・ポイントネットワークにおける端局装置として配置されてもよい。また、親局装置と子局装置は、光リングネットワークにおける端局装置として配置されてもよい。 The master station device and the slave station device may be arranged as terminal devices in a point-to-point network. Further, the master station device and the slave station device may be arranged as terminal devices in the optical ring network.
 なお、以上の構成要素の任意の組合せ、本発明の表現を装置、方法、システム、プログラム、プログラムを格納した記録媒体などの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the expression of the present invention converted between the apparatus, method, system, program, recording medium storing the program, etc. are also effective as an aspect of the present invention.
 本発明によれば、親局装置から子局装置へ光伝送路を介して十分な電力を供給できる光伝送システムを提供できる。 According to the present invention, it is possible to provide an optical transmission system capable of supplying sufficient power from a master station device to a slave station device via an optical transmission path.
本発明の実施形態に係る光伝送システムを説明するための図である。It is a figure for demonstrating the optical transmission system which concerns on embodiment of this invention. 本発明の別の実施形態に係る光伝送システムを説明するための図である。It is a figure for demonstrating the optical transmission system which concerns on another embodiment of this invention. 親局装置の変形例を説明するための図である。It is a figure for demonstrating the modification of a main | base station apparatus. 本発明のさらに別の実施形態に係る光伝送システムを説明するための図である。It is a figure for demonstrating the optical transmission system which concerns on another embodiment of this invention. 図4の光伝送システムにおいて、現用系光伝送路で障害が発生した場合における伝送経路を説明するための図である。FIG. 5 is a diagram for explaining a transmission path when a failure occurs in an active optical transmission path in the optical transmission system of FIG. 4. 本発明のさらに別の実施形態に係る光伝送システムを説明するための図である。It is a figure for demonstrating the optical transmission system which concerns on another embodiment of this invention. 図6の光伝送システムにおいて、現用系光伝送路で障害が発生した場合における伝送経路を説明するための図である。FIG. 7 is a diagram for explaining a transmission path when a failure occurs in an active optical transmission path in the optical transmission system of FIG. 6. 主信号光および電力供給光として用いる波長を説明するための図である。It is a figure for demonstrating the wavelength used as main signal light and electric power supply light.
 図1は、本発明の実施形態に係る光伝送システムを説明するための図である。図1に示す光伝送システム100は、変調された主信号光を送信する親局装置10と、主信号光を受信する子局装置20と、親局装置10と子局装置20とを接続する光伝送路40と、親局装置10と子局装置20との間に配置された中継局装置30とを備える。光伝送システム100は、複数の異なる波長の主信号光を多重して、親局装置10と子局装置20との間で光伝送路40を介して伝送するポイント・トゥ・ポイントのWDM光伝送システムである。 FIG. 1 is a diagram for explaining an optical transmission system according to an embodiment of the present invention. An optical transmission system 100 illustrated in FIG. 1 connects a master station device 10 that transmits a modulated main signal light, a slave station device 20 that receives the main signal light, and the master station device 10 and the slave station device 20. An optical transmission line 40 and a relay station device 30 arranged between the master station device 10 and the slave station device 20 are provided. The optical transmission system 100 multiplexes a plurality of main signal lights having different wavelengths and transmits them between a master station device 10 and a slave station device 20 via an optical transmission line 40, and performs point-to-point WDM optical transmission. System.
 親局装置10は、n個(nは1以上の任意の整数)の光送信器OS1~OSnと、m-n個(mはnより大きい任意の整数)の電力供給用光源LDn+1~LDmと、光送信器OS1~OSnおよび電力供給用光源LDn+1~LDmの後段に設けられた光合波器12と、光合波器12の後段に設けられた親局光増幅器14とを備える。 The master station device 10 includes n (n is an arbitrary integer greater than or equal to 1) optical transmitters OS1 to OSn, and mn (m is an arbitrary integer greater than n) power supply light sources LDn + 1 to LDm. , Optical transmitters OS1 to OSn and power supply light sources LDn + 1 to LDm, an optical multiplexer 12 provided at the subsequent stage, and a master optical amplifier 14 provided at the subsequent stage of the optical multiplexer 12.
 光送信器OS1~OSnは、それぞれ、入力されたクライアント信号をフレーム化し、誤り訂正符号の付与など所定の送信処理を施した後、主信号光(波長λ1~λn)を出力する。主信号光の波長λ1~λnは、それぞれ異なる波長である。 Each of the optical transmitters OS1 to OSn converts the input client signal into a frame, performs a predetermined transmission process such as adding an error correction code, and then outputs the main signal light (wavelengths λ1 to λn). The wavelengths λ1 to λn of the main signal light are different from each other.
 電力供給用光源LDn+1~LDmは、それぞれ、波長λ1~λnの主信号光とは別の電力供給光(波長λn+1~λm)を出力する。電力供給用光源LDn+1~LDmとしては、例えばレーザダイオードを用いることができる。電力供給光の波長λn+1~λmは、主信号の波長λ1~λnとは異なる波長である。 The power supply light sources LDn + 1 to LDm output power supply light (wavelengths λn + 1 to λm) different from the main signal light of wavelengths λ1 to λn, respectively. As the power supply light sources LDn + 1 to LDm, for example, laser diodes can be used. The wavelengths λn + 1 to λm of the power supply light are different from the wavelengths λ1 to λn of the main signal.
 光合波器12は、波長λ1~λnの主信号光と、波長λn+1~λmの電力供給光とを合波して波長多重光を生成し、親局光増幅器14に出力する。 The optical multiplexer 12 combines the main signal light having the wavelengths λ1 to λn and the power supply light having the wavelengths λn + 1 to λm to generate wavelength multiplexed light, which is output to the master optical amplifier 14.
 親局光増幅器14は、光合波器12からの波長多重光を一括して増幅し、光伝送路40に出力する。親局光増幅器14としては、エルビウム添加光ファイバ増幅器(EDFA)、半導体光増幅器(SOA)等を用いることができる。 The master optical amplifier 14 collectively amplifies the wavelength multiplexed light from the optical multiplexer 12 and outputs it to the optical transmission line 40. As the master optical amplifier 14, an erbium-doped optical fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), or the like can be used.
 なお、本実施形態において、親局装置10には装置外部からの電源線が接続されており、親局装置10内の各種デバイスは、該電源線から供給される電力により動作する。 In the present embodiment, a power line from the outside of the apparatus is connected to the master station apparatus 10, and various devices in the master station apparatus 10 operate with power supplied from the power line.
 光伝送路40は、親局装置10の親局光増幅器14により増幅された主信号光および電力供給光の波長多重光を子局装置20に伝送する。光伝送路40としては、シングルモード光ファイバを用いることができる。 The optical transmission line 40 transmits the wavelength division multiplexed light of the main signal light and the power supply light amplified by the master optical amplifier 14 of the master station device 10 to the slave station device 20. As the optical transmission line 40, a single mode optical fiber can be used.
 光伝送路40の中途には、中継局装置30が設けられている。この中継局装置30は、光伝送路40内を伝搬中に減衰した波長多重光を増幅し、子局装置20に向けて出力する中継光増幅器32を備える。なお、本実施形態において、中継局装置30には装置外部からの電源線が接続されており、中継局装置30内の中継光増幅器32は、該電源線から供給される電力により動作する。 In the middle of the optical transmission line 40, the relay station device 30 is provided. The repeater station device 30 includes a repeater optical amplifier 32 that amplifies the wavelength multiplexed light attenuated during propagation in the optical transmission line 40 and outputs the amplified light to the slave station device 20. In the present embodiment, the relay station device 30 is connected to a power line from the outside of the device, and the repeater optical amplifier 32 in the relay station device 30 operates with power supplied from the power line.
 子局装置20は、光伝送路40に接続された光分波器22と、光分波器22の後段に設けられたn個の光受信器OR1~ORnと、同じく光分波器22の後段に設けられたm-n個の光電変換器OEn+1~OEmと、子局内電力供給装置24とを備える。なお、本実施形態において、子局装置20には装置外部からの電源線が接続されていない。 The slave station device 20 includes an optical demultiplexer 22 connected to the optical transmission line 40, n optical receivers OR 1 to ORn provided at the subsequent stage of the optical demultiplexer 22, and the optical demultiplexer 22. There are provided mn photoelectric converters OEn + 1 to OEm provided in the subsequent stage and a power supply device 24 in the slave station. In the present embodiment, the slave station device 20 is not connected to a power line from the outside of the device.
 光分波器22は、光伝送路40を伝送された波長多重光を、波長λ1~λnの主信号光および波長λn+1~λmの電力供給光に分波する。光合波器12や光分波器22としては、アレイ型導波路回折格子(AWG)、ファイバグレーディング、誘電体多層膜などを用いることができる。波長λ1~λnの主信号光は、それぞれ光受信器OR1~ORnにより受信され、光電変換、タイミング抽出、識別再生、誤り訂正などの所定の受信処理が行われた後、クライアント信号として出力される。 The optical demultiplexer 22 demultiplexes the wavelength multiplexed light transmitted through the optical transmission path 40 into main signal light with wavelengths λ1 to λn and power supply light with wavelengths λn + 1 to λm. As the optical multiplexer 12 and the optical demultiplexer 22, an array type waveguide diffraction grating (AWG), fiber grading, a dielectric multilayer film, or the like can be used. The main signal lights of wavelengths λ1 to λn are received by the optical receivers OR1 to ORn, respectively, are subjected to predetermined reception processing such as photoelectric conversion, timing extraction, identification reproduction and error correction, and then output as client signals. .
 一方、波長λn+1~λmの電力供給光は、それぞれ光電変換器OEn+1~OEmにより光電変換される。光電変換器OEn+1~OEmとしては、例えばフォトダイオードを用いることができる。各光電変換器OEn+1~OEmから出力された電力は、子局内電力供給装置24に送られる。 On the other hand, power supply lights having wavelengths λn + 1 to λm are photoelectrically converted by photoelectric converters OEn + 1 to OEm, respectively. For example, photodiodes can be used as the photoelectric converters OEn + 1 to OEm. The electric power output from each of the photoelectric converters OEn + 1 to OEm is sent to the power supply device 24 in the slave station.
 子局内電力供給装置24は、光電変換器OEn+1~OEmから送られた電力を、子局装置20内の各種デバイスに供給する。例えば、光受信器OR1~ORnは、子局内電力供給装置24からの電力を用いて、上述の受信処理を行う。 The slave station power supply device 24 supplies the power sent from the photoelectric converters OEn + 1 to OEm to various devices in the slave station device 20. For example, the optical receivers OR1 to ORn perform the above-described reception process using the power from the intra-stationary power supply device 24.
 以上説明したように、本実施形態に係る光伝送システム100によれば、親局装置10から主信号光とは別の電力供給光を光伝送路40を介して子局装置20に伝送し、光電気変換を行うことで子局装置20に電力を供給することが可能となる。これにより、例えば子局装置20を電源線の敷設されていない場所に設置する場合であっても、光伝送路ファイバのみを導入することで装置設置が可能となる。 As described above, according to the optical transmission system 100 according to the present embodiment, the power supply light different from the main signal light is transmitted from the master station device 10 to the slave station device 20 via the optical transmission path 40, It becomes possible to supply electric power to the slave station device 20 by performing the photoelectric conversion. Thereby, for example, even when the slave station device 20 is installed in a place where the power line is not installed, the device can be installed by introducing only the optical transmission line fiber.
 ここで、本実施形態においては、親局装置10に親局光増幅器14を設け、さらに中継局装置30に中継光増幅器32を設けている。これにより、光伝送路40が長距離で損失が大きい場合においても、大きな光パワーを伝送して子局装置20へ安定した電力を供給することが可能となる。 Here, in this embodiment, the master station optical amplifier 14 is provided in the master station apparatus 10, and the repeater optical amplifier 32 is provided in the repeater station apparatus 30. Accordingly, even when the optical transmission line 40 is long and has a large loss, it is possible to transmit a large optical power and supply stable power to the slave station device 20.
 図2は、本発明の別の実施形態に係る光伝送システムを説明するための図である。図2に示す光伝送システム100は、変調された主信号光を送信する親局装置10と、主信号光を受信する子局装置20と、親局装置10と子局装置20とを接続する光伝送路40と、親局装置10と子局装置20との間に配置された中継局装置30とを備える。この光伝送システム100もまた、ポイント・トゥ・ポイントのWDM光伝送システムである。 FIG. 2 is a diagram for explaining an optical transmission system according to another embodiment of the present invention. The optical transmission system 100 shown in FIG. 2 connects the master station device 10 that transmits the modulated main signal light, the slave station device 20 that receives the main signal light, and the master station device 10 and the slave station device 20. An optical transmission line 40 and a relay station device 30 arranged between the master station device 10 and the slave station device 20 are provided. This optical transmission system 100 is also a point-to-point WDM optical transmission system.
 親局装置10は、n個(nは1以上の任意の整数)の光送信器OS1~OSnと、2個の電力供給用光源LDn+1およびLDn+2と、光送信器OS1~OSnの後段に設けられた光合波器12と、電力供給用光源LDn+1およびLDn+2の後段に設けられた光合波器13と、光合波器12の後段に設けられた親局光増幅器14と、光合波器13の後段に設けられた親局光増幅器15とを備える。 The master station apparatus 10 is provided in the subsequent stage of n optical transmitters OS1 to OSn (n is an arbitrary integer equal to or greater than 1), two power supply light sources LDn + 1 and LDn + 2, and optical transmitters OS1 to OSn. The optical multiplexer 12, the optical multiplexer 13 provided at the subsequent stage of the power supply light sources LDn + 1 and LDn + 2, the master optical amplifier 14 provided at the subsequent stage of the optical multiplexer 12, and the optical multiplexer 13 at the subsequent stage. And a master optical amplifier 15 provided.
 光送信器OS1~OSnは、それぞれ波長λ1~λnの主信号光を出力する。また、電力供給用光源LDn+1は、所定の第1波長λn+1を有する第1電力供給光を出力し、電力供給用光源LDn+2は、所定の第2波長λn+2を有する第2電力供給光を出力する。第1波長λn+1と第2波長λn+2は、異なる波長である。 The optical transmitters OS1 to OSn output main signal lights having wavelengths λ1 to λn, respectively. The power supply light source LDn + 1 outputs first power supply light having a predetermined first wavelength λn + 1, and the power supply light source LDn + 2 outputs second power supply light having a predetermined second wavelength λn + 2. The first wavelength λn + 1 and the second wavelength λn + 2 are different wavelengths.
 光送信器OS1~OSnからの主信号光は、光合波器12により合波された後、親局光増幅器14により増幅される。一方、第1電力供給光および第2電力供給光は、光合波器13により合波された後、親局光増幅器15により増幅される。親局光増幅器14および15から出力された主信号光、第1電力供給光および第2電力供給光は、カプラ17で合波された後、光伝送路40に送られる。 The main signal light from the optical transmitters OS 1 to OSn is multiplexed by the optical multiplexer 12 and then amplified by the master optical amplifier 14. On the other hand, the first power supply light and the second power supply light are combined by the optical multiplexer 13 and then amplified by the master optical amplifier 15. The main signal light, the first power supply light, and the second power supply light output from the master optical amplifiers 14 and 15 are combined by the coupler 17 and then sent to the optical transmission line 40.
 中継局装置30は、光伝送路40からの波長多重光を受ける光スイッチ34と、光スイッチの後段に設けられた中継光増幅器32と、光スイッチ34により分離された光を受ける光電変換器OEn+1と、中継局内電力供給装置36とを備える。光スイッチとしては、波長選択スイッチ(WSS:Wave Selectable Switch)を用いることができる。なお、本実施形態において、中継局装置30には装置外部からの電源線が接続されていない。 The relay station device 30 includes an optical switch 34 that receives wavelength-multiplexed light from the optical transmission line 40, a relay optical amplifier 32 that is provided at the subsequent stage of the optical switch, and a photoelectric converter OEn + 1 that receives light separated by the optical switch 34. And a relay station power supply device 36. A wavelength selective switch (WSS: Wave Selectable Switch) can be used as the optical switch. In the present embodiment, the relay station device 30 is not connected to a power line from the outside of the device.
 光スイッチ34は、受信した波長多重光から、波長λn+1の第1電力供給光を分離する。この分離された第1電力供給光は、光電変換器OEn+1に送られる。一方、波長1~λnの主信号光および波長λn+2の第2電力供給光は、中継光増幅器32に送られる。 The optical switch 34 separates the first power supply light having the wavelength λn + 1 from the received wavelength multiplexed light. The separated first power supply light is sent to the photoelectric converter OEn + 1. On the other hand, the main signal light of wavelengths 1 to λn and the second power supply light of wavelength λn + 2 are sent to the repeater optical amplifier 32.
 波長λn+1の第1電力供給光は、光電変換器OEn+1で光電変換される。光電変換器OEn+1から出力された電力は、中継局内電力供給装置36に送られる。中継局内電力供給装置36は、光電変換器OEn+1からの電力を中継局装置30内の各種デバイスに供給する。例えば、中継光増幅器32は、中継局内電力供給装置36からの電力を用いて、波長λ1~λnおよびλn+2の波長多重光を増幅する。この増幅された波長多重光は、子局装置20に送られる。 The first power supply light having the wavelength λn + 1 is photoelectrically converted by the photoelectric converter OEn + 1. The power output from the photoelectric converter OEn + 1 is sent to the relay station power supply device 36. The relay station power supply device 36 supplies the power from the photoelectric converter OEn + 1 to various devices in the relay station device 30. For example, the repeater optical amplifier 32 amplifies the wavelength multiplexed light of wavelengths λ1 to λn and λn + 2 using the power from the relay station power supply device 36. The amplified wavelength multiplexed light is sent to the slave station device 20.
 子局装置20は、光伝送路40に接続された光スイッチ26と、光スイッチ26の後段に設けられた子局光増幅器28と、子局光増幅器28の後段に設けられた光分波器22と、光分波器22に後段に設けられたn個の光受信器OR1~ORnと、光スイッチ26により分離された光を受ける光電変換器OEn+2と、子局内電力供給装置24とを備える。なお、本実施形態において、子局装置20には装置外部からの電源線が接続されていない。 The slave station device 20 includes an optical switch 26 connected to the optical transmission line 40, a slave station optical amplifier 28 provided at the subsequent stage of the optical switch 26, and an optical demultiplexer provided at the subsequent stage of the slave station optical amplifier 28. 22, n optical receivers OR 1 to ORn provided in the subsequent stage of the optical demultiplexer 22, a photoelectric converter OEn + 2 that receives the light separated by the optical switch 26, and a sub-station power supply device 24. . In the present embodiment, the slave station device 20 is not connected to a power line from the outside of the device.
 光スイッチ26は、受信した波長多重光から、第2波長λn+2の第2電力供給光を分離する。この分離された第2電力供給光は、光電変換器OEn+2に送られる。一方、波長1~λnの主信号光は、子局光増幅器28に送られる。 The optical switch 26 separates the second power supply light having the second wavelength λn + 2 from the received wavelength multiplexed light. The separated second power supply light is sent to the photoelectric converter OEn + 2. On the other hand, the main signal light of wavelengths 1 to λn is sent to the slave optical amplifier 28.
 波長1~λnの主信号光は、光分波器22により分波された後、光受信器OR1~ORnにより受信され、光電変換、タイミング抽出、識別再生、誤り訂正などの所定の受信処理が行われた後、クライアント信号として出力される。 The main signal light of wavelengths 1 to λn is demultiplexed by the optical demultiplexer 22 and then received by the optical receivers OR1 to ORn, and predetermined reception processing such as photoelectric conversion, timing extraction, identification reproduction, error correction, and the like is performed. After being performed, it is output as a client signal.
 一方、第2電力供給光は、光電変換器OEn+2で光電変換される。光電変換器OEn+2から出力された電力は、子局内電力供給装置24に送られる。子局内電力供給装置24は、光電変換器OEn+2からの電力を子局装置20内の各種デバイスに供給する。例えば、子局内電力供給装置24は、子局光増幅器28、光受信器OR1~ORnなどに動作のための電力を供給する。 On the other hand, the second power supply light is photoelectrically converted by the photoelectric converter OEn + 2. The power output from the photoelectric converter OEn + 2 is sent to the slave station power supply device 24. The slave station power supply device 24 supplies the power from the photoelectric converter OEn + 2 to various devices in the slave station device 20. For example, the slave station power supply device 24 supplies power for operation to the slave station optical amplifier 28, the optical receivers OR1 to ORn, and the like.
 以上説明したように、図2に示す光伝送システム100によれば、親局装置10から第1波長λn+1の第1電力供給光を中継局装置30に伝送し、光電気変換を行うことで中継局装置30に電力を供給することができる。また、親局装置10から第2波長λn+2の第2電力供給光を子局装置20に伝送し、光電気変換を行うことで子局装置20に電力を供給することができる。これにより、例えば子局装置20や中継局装置30を電源線の敷設されていない場所に設置する場合であっても、光伝送路ファイバのみを導入することで装置設置が可能となる。 As described above, according to the optical transmission system 100 shown in FIG. 2, the first power supply light having the first wavelength λn + 1 is transmitted from the master station device 10 to the relay station device 30 and is relayed by performing photoelectric conversion. Power can be supplied to the station device 30. In addition, the second station power supply light having the second wavelength λn + 2 is transmitted from the master station apparatus 10 to the slave station apparatus 20, and power can be supplied to the slave station apparatus 20 by performing photoelectric conversion. Thereby, for example, even when the slave station device 20 or the relay station device 30 is installed in a place where the power line is not laid, the device can be installed by introducing only the optical transmission line fiber.
 ここで、本実施形態においては、親局装置10に親局光増幅器15を設けている。これにより、光伝送路40が長距離で損失が大きい場合においても、大きな光パワーを伝送して子局装置20や中継局装置30へ安定した電力を供給することが可能となる。 Here, in this embodiment, the master station optical amplifier 15 is provided in the master station apparatus 10. As a result, even when the optical transmission line 40 is long and has a large loss, it is possible to transmit a large optical power and supply stable power to the slave station device 20 and the relay station device 30.
 図3は、親局装置の変形例を説明するための図である。図3に示す親局装置10においては、光送信器OS1~OSnの後段に光増幅器AP1~APnがそれぞれ設けられている。また、電力供給用光源LDn+1~LDmの後段に光増幅器APn+1~APmが設けられている。そして、光増幅器AP1~APnと光増幅器APn+1~APmの後段に光合波器12が設けられ、該光合波器12により主信号光と電力供給光とが合波される構成となっている。 FIG. 3 is a diagram for explaining a modification of the master station device. In the master station device 10 shown in FIG. 3, optical amplifiers AP1 to APn are respectively provided after the optical transmitters OS1 to OSn. Further, optical amplifiers APn + 1 to APm are provided at the subsequent stage of the power supply light sources LDn + 1 to LDm. An optical multiplexer 12 is provided at the subsequent stage of the optical amplifiers AP1 to APn and the optical amplifiers APn + 1 to APm, and the main signal light and the power supply light are combined by the optical multiplexer 12.
 このように、合波した波長多重光を一括して増幅するのではなく、波長ごとに増幅器を設けることで、光源の出力パワー、光伝送路40の特性、および中継局装置や子局装置で必要とされる電力などに応じて、波長ごとに適切な増幅率を設定することができる。 In this way, instead of amplifying the multiplexed wavelength multiplexed light in a lump, by providing an amplifier for each wavelength, the output power of the light source, the characteristics of the optical transmission line 40, and the repeater station apparatus or slave station apparatus An appropriate amplification factor can be set for each wavelength according to the required power.
 図4は、本発明のさらに別の実施形態に係る光伝送システムを説明するための図である。図4に示す光伝送システム100は、変調された主信号光を送信する親局装置10と、主信号光を受信する子局装置20と、親局装置10と子局装置20とを接続する光伝送路40とを備える。この光伝送システム100もまた、ポイント・トゥ・ポイントのWDM光伝送システムである。 FIG. 4 is a diagram for explaining an optical transmission system according to still another embodiment of the present invention. The optical transmission system 100 shown in FIG. 4 connects the master station device 10 that transmits the modulated main signal light, the slave station device 20 that receives the main signal light, and the master station device 10 and the slave station device 20. And an optical transmission line 40. This optical transmission system 100 is also a point-to-point WDM optical transmission system.
 親局装置10は、n個の光送信器OS1~OSnと、n個の電力供給用光源LD1~LDnと、光送信器OS1~OSnの後段に設けられた光合波器12と、電力供給用光源LD1~LDnの後段に設けられた光合波器13と、光合波器12、13の後段に設けられた光スイッチ16と、光スイッチ16の後段に並列に設けられた親局光増幅器14、15とを備える。本実施形態において、光送信器OS1~OSnおよび電力供給用光源LD1~LDnが出力する光の波長帯λ1~λnは、同一に設定しているが、異なっていてもよい。 The master station device 10 includes n optical transmitters OS1 to OSn, n power supply light sources LD1 to LDn, an optical multiplexer 12 provided at the subsequent stage of the optical transmitters OS1 to OSn, and a power supply unit. An optical multiplexer 13 provided downstream of the light sources LD1 to LDn, an optical switch 16 provided downstream of the optical multiplexers 12, 13, and a master optical amplifier 14 provided in parallel downstream of the optical switch 16, 15. In the present embodiment, the wavelength bands λ1 to λn of light output from the optical transmitters OS1 to OSn and the power supply light sources LD1 to LDn are set to be the same, but may be different.
 本実施形態において、光伝送路40は、現用系光伝送路41と予備系光伝送路42とにより冗長構成されている。現用系光伝送路41および予備系光伝送路42は、それぞれ一端が親局装置10の光スイッチ16に接続され、他端が子局装置20の光スイッチ26に接続されている。そして、親局光増幅器14は現用系光伝送路41上に、親局光増幅器15は予備系光伝送路42上に設けられている。 In this embodiment, the optical transmission line 40 is redundantly configured by an active optical transmission line 41 and a standby optical transmission line 42. Each of the working optical transmission line 41 and the standby optical transmission line 42 has one end connected to the optical switch 16 of the master station device 10 and the other end connected to the optical switch 26 of the slave station device 20. The master optical amplifier 14 is provided on the working optical transmission line 41, and the master optical amplifier 15 is provided on the standby optical transmission line 42.
 子局装置20は、現用系光伝送路41および予備系光伝送路42に接続された光スイッチ26と、光スイッチ26の後段に設けられた光分波器22および23と、光分波器22の後段に設けられたn個の光受信器OR1~ORnと、光分波器23の後段に設けられたn個の光電変換器OE1~OEnと、子局内電力供給装置24と、充電装置25とを備える。 The slave station device 20 includes an optical switch 26 connected to the working optical transmission line 41 and the standby optical transmission line 42, optical demultiplexers 22 and 23 provided at the subsequent stage of the optical switch 26, and an optical demultiplexer. 22, n optical receivers OR1 to ORn provided in the subsequent stage, n photoelectric converters OE1 to OEn provided in the subsequent stage of the optical demultiplexer 23, the sub-station power supply device 24, and the charging device 25.
 本実施形態において、親局装置10の光スイッチ16および子局装置20の光スイッチ26は、現用系光伝送路41と予備系光伝送路42の間で運用する光伝送路の切替を行う。なお、本実施形態において、子局装置20には装置外部からの電源線が接続されていない。 In this embodiment, the optical switch 16 of the master station device 10 and the optical switch 26 of the slave station device 20 perform switching of the optical transmission line to be operated between the active optical transmission line 41 and the standby optical transmission line 42. In the present embodiment, the slave station device 20 is not connected to a power line from the outside of the device.
 次に、図4に示す光伝送システム100の動作について説明する。図4には、通常運用時における主信号光および電力供給光の伝送経路が太線で図示されている。 Next, the operation of the optical transmission system 100 shown in FIG. 4 will be described. In FIG. 4, the transmission paths of the main signal light and the power supply light during normal operation are indicated by bold lines.
 光送信器OS1~OSnから出力された波長λ1~λnの主信号光は、光合波器12で合波された後、光スイッチ16に入力される。また、電力供給用光源LD1~LDnから出力された波長λ1~λnは、光合波器13で合波された後、光スイッチ16に出力される。 The main signal lights of wavelengths λ 1 to λn output from the optical transmitters OS 1 to OSn are combined by the optical multiplexer 12 and then input to the optical switch 16. The wavelengths λ1 to λn output from the power supply light sources LD1 to LDn are combined by the optical multiplexer 13 and then output to the optical switch 16.
 通常運用時において、光スイッチ16は、波長λ1~λnの主信号光の波長多重光を現用系光伝送路41に出力し、波長λ1~λnの電力供給光の波長多重光を予備系光伝送路42に出力するよう設定される。波長λ1~λnの主信号光の波長多重光は、親局光増幅器14により増幅され、波長λ1~λnの電力供給光の波長多重光は、親局光増幅器15により増幅される。 During normal operation, the optical switch 16 outputs the wavelength multiplexed light of the main signal light having the wavelengths λ1 to λn to the working optical transmission line 41 and the wavelength multiplexed light of the power supply light having the wavelengths λ1 to λn to the standby optical transmission. The output is set to the path 42. The wavelength multiplexed light of the main signal light having the wavelengths λ1 to λn is amplified by the master optical amplifier 14, and the wavelength multiplexed light of the power supply light having the wavelengths λ1 to λn is amplified by the master optical amplifier 15.
 現用系光伝送路41を伝送された主信号光の波長多重光および予備系光伝送路42を伝送されたの電力供給光の波長多重光は、光スイッチ26に入力される。通常運用時において、光スイッチ26は、主信号光の波長多重光を光分波器22に出力し、電力供給光の波長多重光を光分波器23に出力するよう設定される。 The wavelength multiplexed light of the main signal light transmitted through the active optical transmission line 41 and the wavelength multiplexed light of the power supply light transmitted through the standby optical transmission line 42 are input to the optical switch 26. During normal operation, the optical switch 26 is set to output the wavelength multiplexed light of the main signal light to the optical demultiplexer 22 and to output the wavelength multiplexed light of the power supply light to the optical demultiplexer 23.
 光分波器22により分波された波長λ1~λnの主信号光は、光受信器OR1~ORnにより受信され、光電変換、タイミング抽出、識別再生、誤り訂正などの所定の受信処理が行われた後、クライアント信号として出力される。 The main signal lights having wavelengths λ1 to λn demultiplexed by the optical demultiplexer 22 are received by the optical receivers OR1 to ORn, and predetermined reception processing such as photoelectric conversion, timing extraction, identification reproduction, and error correction is performed. After that, it is output as a client signal.
 一方、光分波器23により分波された波長λ1~λnの電力供給光は、光電変換器OE1~OEnで光電変換される。光電変換された電力は、子局内電力供給装置24に送られる。子局内電力供給装置24は、光電変換器OE1~OEnからの電力を子局装置20内の各種デバイスに供給する。例えば、子局内電力供給装置24は、光受信器OR1~ORnなどに動作のための電力を供給する。 On the other hand, the power supply light having the wavelengths λ1 to λn demultiplexed by the optical demultiplexer 23 is photoelectrically converted by the photoelectric converters OE1 to OEn. The photoelectrically converted power is sent to the power supply device 24 in the slave station. The slave station power supply device 24 supplies the power from the photoelectric converters OE1 to OEn to various devices in the slave station device 20. For example, the slave station power supply device 24 supplies power for operation to the optical receivers OR1 to ORn.
 また、子局内電力供給装置24は、光電変換器OE1~OEnからの電力の一部を、充電装置25に出力する。充電装置25は、通常運用時の間、子局内電力供給装置24から供給された電力を充電する。 Also, the slave station power supply device 24 outputs a part of the power from the photoelectric converters OE1 to OEn to the charging device 25. The charging device 25 charges the power supplied from the slave station power supply device 24 during normal operation.
 図5は、現用系光伝送路において障害が発生した場合における伝送経路を説明するための図である。現用系光伝送路41において断線などの障害50が発生した場合、光スイッチ16は、波長λ1~λnの主信号光の波長多重光が予備系光伝送路42に出力されるよう伝送経路を切り替える。また、光スイッチ26は、予備系光伝送路42を伝送された主信号光の波長多重光が光分波器22に入力されるよう経路を切り替える。 FIG. 5 is a diagram for explaining a transmission path when a failure occurs in the working optical transmission path. When a fault 50 such as a disconnection occurs in the active optical transmission line 41, the optical switch 16 switches the transmission path so that the wavelength multiplexed light of the main signal light having the wavelengths λ1 to λn is output to the standby optical transmission line 42. . The optical switch 26 switches the path so that the wavelength division multiplexed light of the main signal light transmitted through the backup optical transmission path 42 is input to the optical demultiplexer 22.
 また、障害発生時において、充電装置25は、通常運用時に充電された電力を子局内電力供給装置24に供給する。子局内電力供給装置24は、充電装置25から供給された電力を光受信器OR1~ORnなどに供給する。この電力を用いることにより、障害発生時であっても主信号光の受信処理を行うことができる。 Further, when a failure occurs, the charging device 25 supplies the power charged during normal operation to the power supply device 24 in the slave station. The slave station power supply device 24 supplies the power supplied from the charging device 25 to the optical receivers OR1 to ORn. By using this power, the main signal light can be received even when a failure occurs.
 以上説明したように、本実施形態に係る光伝送システム100によれば、通常運用時において、親局装置10から主信号光とは別の電力供給光を光伝送路40を介して子局装置20に伝送し、光電気変換を行うことで子局装置20に電力を供給することができる。ここで、親局装置10に電力供給光を増幅する親局光増幅器15を設けているので、予備系光伝送路42が長距離で損失が大きい場合においても、大きな光パワーを伝送して子局装置20へ安定した電力を供給することができる。 As described above, according to the optical transmission system 100 according to the present embodiment, the power supply light different from the main signal light is transmitted from the master station device 10 via the optical transmission line 40 during the normal operation. It is possible to supply electric power to the slave station device 20 by transmitting to 20 and performing photoelectric conversion. Here, since the master station optical amplifier 15 for amplifying the power supply light is provided in the master station apparatus 10, even when the standby optical transmission line 42 is long and has a large loss, a large optical power is transmitted to the slave station. Stable power can be supplied to the station apparatus 20.
 また、本実施形態に係る光伝送システム100によれば、現用系光伝送路41に障害が発生した場合であっても、主信号光の伝送経路を切り替えるとともに充電装置25に充電された電力を用いることで、主信号光の伝送を確実に行うことができる。このように、本実施形態によれば、装置の信頼性を高めることができるとともに、通常運用時において予備系光伝送路42を有効に活用することができる。 Further, according to the optical transmission system 100 according to the present embodiment, even when a failure occurs in the working optical transmission line 41, the transmission path of the main signal light is switched and the electric power charged in the charging device 25 is supplied. By using it, the main signal light can be reliably transmitted. Thus, according to the present embodiment, the reliability of the apparatus can be improved, and the standby optical transmission line 42 can be effectively utilized during normal operation.
 図6は、本発明のさらに別の実施形態に係る光伝送システムを説明するための図である。図6に示す光伝送システム100は、光リングネットワークを構成している。この光リングネットワークは、複数の端局装置を光伝送路で相互に接続し、リング状の光通信ネットワークを構成したものである。図6には、端局装置として、親局装置10aおよび10bと、子局装置20とが配置された光リングネットワークが示されている。なお、親局装置10aおよび10bと、子局装置20の構成は、図5に示したものとほぼ同一であるため、詳細な説明は省略するとともに、一部の構成要素の図示を省略する。 FIG. 6 is a diagram for explaining an optical transmission system according to still another embodiment of the present invention. The optical transmission system 100 shown in FIG. 6 constitutes an optical ring network. In this optical ring network, a plurality of terminal devices are connected to each other via an optical transmission line to form a ring-shaped optical communication network. FIG. 6 shows an optical ring network in which master station devices 10a and 10b and a slave station device 20 are arranged as terminal devices. Note that the configurations of the master station devices 10a and 10b and the slave station device 20 are substantially the same as those shown in FIG. 5, and thus detailed description is omitted and some components are not shown.
 図6には、通常運用時における主信号光および電力供給光の伝送経路が矢印で図示されている。通常運用時において、光スイッチ16は、波長λ1~λnの主信号光の波長多重光を現用系光伝送路41に出力し、第1波長λ1を有する第1電力供給光を予備系光伝送路42に出力するよう設定される。主信号光の波長多重光は、親局光増幅器14により増幅された後、現用系光伝送路41を反時計回りで伝送され、子局装置20に到達する。一方、第1電力供給光は、親局光増幅器15により増幅された後、予備系光伝送路42を時計回りで伝送され、子局装置20に到達する。 In FIG. 6, the transmission paths of the main signal light and the power supply light during normal operation are indicated by arrows. During normal operation, the optical switch 16 outputs the wavelength-multiplexed light of the main signal light having the wavelengths λ1 to λn to the working optical transmission line 41 and the first power supply light having the first wavelength λ1 as the standby optical transmission line. 42 is set to output. The wavelength multiplexed light of the main signal light is amplified by the master optical amplifier 14 and then transmitted counterclockwise through the working optical transmission line 41 to reach the slave station device 20. On the other hand, the first power supply light is amplified by the master optical amplifier 15 and then transmitted clockwise through the backup optical transmission line 42 to reach the slave station device 20.
 現用系光伝送路41を伝送された主信号光の波長多重光および予備系光伝送路42を伝送されたの第1電力供給光は、光スイッチ26に入力される。通常運用時において、光スイッチ26は、主信号光の波長多重光が光受信器(図示せず)に入力され、第1電力供給光が光電変換器OEに入力されるように設定される。図4の光伝送システムと同様に、子局内電力供給装置24は、光電変換器OEからの電力を子局装置20内の各種デバイスに供給するとともに、電力の一部を充電装置25に蓄える。 The wavelength multiplexed light of the main signal light transmitted through the working optical transmission line 41 and the first power supply light transmitted through the standby optical transmission line 42 are input to the optical switch 26. During normal operation, the optical switch 26 is set so that the wavelength-multiplexed light of the main signal light is input to an optical receiver (not shown) and the first power supply light is input to the photoelectric converter OE. Similar to the optical transmission system in FIG. 4, the slave station power supply device 24 supplies the power from the photoelectric converter OE to various devices in the slave station device 20 and stores a part of the power in the charging device 25.
 また、本実施の形態においては、図6に示すように、予備系光伝送路42の中途に配置された親局装置10bから、第2波長λ2を有する第2電力供給光が出力されている。この第2電力供給光は、第1電力供給光と合波された後、予備系光伝送路42を介して子局装置20に伝送される。この第2電力供給光を光電変換することにより得られた電力もまた、子局装置20内の各種デバイスに供給されるとともに、電力の一部が充電装置25に蓄えられる。 In the present embodiment, as shown in FIG. 6, the second power supply light having the second wavelength λ2 is output from the master station device 10b arranged in the middle of the standby optical transmission line 42. . The second power supply light is combined with the first power supply light, and then transmitted to the slave station device 20 via the standby optical transmission line 42. The electric power obtained by photoelectrically converting the second electric power supply light is also supplied to various devices in the slave station device 20, and a part of the electric power is stored in the charging device 25.
 図7は、現用系光伝送路において障害が発生した場合における伝送経路を説明するための図である。現用系光伝送路41において断線などの障害50が発生した場合、光スイッチ16は、波長λ1~λnの主信号光の波長多重光が予備系光伝送路42に出力されるよう伝送経路を切り替える。また、光スイッチ26は、予備系光伝送路42を伝送された主信号光の波長多重光が光受信器に入力されるよう経路を切り替える。さらに、親局装置10bは、第2電力供給光の合波を中止する。 FIG. 7 is a diagram for explaining a transmission path when a failure occurs in the active optical transmission path. When a fault 50 such as a disconnection occurs in the active optical transmission line 41, the optical switch 16 switches the transmission path so that the wavelength multiplexed light of the main signal light having the wavelengths λ1 to λn is output to the standby optical transmission line 42. . The optical switch 26 switches the path so that the wavelength-multiplexed light of the main signal light transmitted through the backup optical transmission path 42 is input to the optical receiver. Furthermore, the master station device 10b stops the multiplexing of the second power supply light.
 また、障害発生時において、充電装置25は、通常運用時に充電された電力を子局内電力供給装置24に供給する。子局内電力供給装置24は、充電装置25から供給された電力を光受信器などに供給する。この電力を用いることにより、障害発生時であっても主信号光の受信処理を行うことができる。 Further, when a failure occurs, the charging device 25 supplies the power charged during normal operation to the power supply device 24 in the slave station. The slave station power supply device 24 supplies the power supplied from the charging device 25 to an optical receiver or the like. By using this power, the main signal light can be received even when a failure occurs.
 以上説明したように、本実施形態に係る光伝送システム100によれば、通常運用時において、親局装置10aからの第1電力供給光を光伝送路40を介して子局装置20に伝送し、光電気変換を行うことで子局装置20に電力を供給することができる。ここで、親局装置10aに第1電力供給光を増幅する親局光増幅器15を設けているので、予備系光伝送路42が長距離で損失が大きい場合においても、大きな光パワーを伝送して子局装置20へ安定した電力を供給することができる。 As described above, according to the optical transmission system 100 according to the present embodiment, the first power supply light from the master station device 10a is transmitted to the slave station device 20 via the optical transmission line 40 during normal operation. The power can be supplied to the slave station device 20 by performing photoelectric conversion. Here, since the master station optical amplifier 15 that amplifies the first power supply light is provided in the master station apparatus 10a, even when the standby optical transmission line 42 is long and has a large loss, it transmits a large optical power. Stable power can be supplied to the slave station device 20.
 また、本実施形態によれば、現用系光伝送路41に障害が発生した場合であっても、主信号光の伝送経路を切り替えるとともに充電装置25に充電された電力を用いることで、主信号光の伝送を確実に行うことができる。このように、本実施形態によれば、装置の信頼性を高めることができるとともに、通常運用時においては予備系光伝送路42を有効に活用することができる。 Further, according to the present embodiment, even when a failure occurs in the working optical transmission line 41, the main signal light is switched by switching the transmission path of the main signal light and using the power charged in the charging device 25. It is possible to reliably transmit light. Thus, according to the present embodiment, the reliability of the apparatus can be improved, and the standby optical transmission line 42 can be effectively used during normal operation.
 また、本実施形態によれば、光リングネットワークを構成したことにより、予備系光伝送路42の中途に位置する親局装置10bからの第2電力供給光を合波して子局装置20に伝送することができる。これにより、子局装置20に供給する電力を増大できる。 In addition, according to the present embodiment, since the optical ring network is configured, the second power supply light from the master station device 10b located in the middle of the standby optical transmission line 42 is multiplexed to the slave station device 20. Can be transmitted. Thereby, the electric power supplied to the slave station apparatus 20 can be increased.
 さらに、本実施形態によれば、光リングネットワークを構成したことにより、例えば親局装置10aと10bの間の予備系光伝送路42において断線などの障害が発生した場合であっても、第2電力供給光は子局装置20に伝送することができる。これにより、子局装置20に電力が供給されなくなる事態を回避できるので、装置の信頼性をより高めることができる。 Furthermore, according to the present embodiment, since the optical ring network is configured, even if a failure such as a disconnection occurs in the backup optical transmission line 42 between the master station devices 10a and 10b, the second The power supply light can be transmitted to the slave station device 20. Thereby, since the situation where power is not supplied to the slave station device 20 can be avoided, the reliability of the device can be further improved.
 図8は、主信号光および電力供給光として用いる波長を説明するための図である。図8は、伝送路ファイバの損失特性を示す図である。 FIG. 8 is a diagram for explaining wavelengths used as main signal light and power supply light. FIG. 8 is a diagram illustrating loss characteristics of the transmission line fiber.
 例えば、上述の図1に示す実施形態において、主信号光の波長λ1~λnとしてC-band(1530nm~1570nm)内のITU-Grid波長を用いた場合、電力供給光の波長λn+1~λmは、L-band(1570nm~1610nm)内のITU-Grid波長を用いることができる。あるいは、主信号光の波長λ1~λnとしてL-band内のITU-Grid波長を用い、電力供給光の波長λn+1~λmとして、C-band内のITU-Grid波長を用いてもよい。 For example, in the embodiment shown in FIG. 1 described above, when the ITU-Grid wavelength in the C-band (1530 nm to 1570 nm) is used as the wavelengths λ1 to λn of the main signal light, the wavelengths λn + 1 to λm of the power supply light are ITU-Grid wavelengths within L-band (1570 nm to 1610 nm) can be used. Alternatively, the ITU-Grid wavelength in the L-band may be used as the wavelengths λ1 to λn of the main signal light, and the ITU-Grid wavelength in the C-band may be used as the wavelengths λn + 1 to λm of the power supply light.
 また、例えば、上述の図4~図7に示す実施形態において、主信号光および電力供給光の波長λ1~λnとして、C-band内のITU-Grid波長を用いてもよいし、L-band内のITU-Grid波長を用いてもよい。 Further, for example, in the above-described embodiments shown in FIGS. 4 to 7, the ITU-Grid wavelength in the C-band may be used as the wavelengths λ1 to λn of the main signal light and the power supply light, or the L-band. The ITU-Grid wavelength may be used.
 本実施形態に係る光伝送システムにより子局装置に供給できる電力を簡単に試算すると、例えば、1スパン当りの伝送距離を15km、伝送路ファイバ損失を0.2dB/kmとし、親局装置からの電力供給光の出力光パワーを10dBmとした場合、子局装置の入力光パワーは、7dBm(5mW)程度の電力を得ることができる。 When the power that can be supplied to the slave station device by the optical transmission system according to this embodiment is simply calculated, for example, the transmission distance per span is 15 km, the transmission line fiber loss is 0.2 dB / km, and the power from the master station device is When the output optical power of the power supply light is 10 dBm, the input optical power of the slave station apparatus can obtain power of about 7 dBm (5 mW).
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there.
 10,10a,10b 親局装置、 12,13 光合波器、 14,15 親局光増幅器、 16,26 光スイッチ、 20 子局装置、 24 子局内電力供給装置、 25 充電装置、 30 中継局装置、 32 中継光増幅器、 36 中継局内電力供給装置、 40 光伝送路、 41 現用系光伝送路、 42 予備系光伝送路、 100 光伝送システム。 10, 10a, 10b master station device, 12, 13 optical multiplexer, 14, 15 master station optical amplifier, 16, 26 optical switch, 20 slave station device, 24 slave station power supply device, 25 charging device, 30 relay station device , 32 relay optical amplifier, 36 power supply device in relay station, 40 optical transmission line, 41 working optical transmission line, 42 standby optical transmission line, 100 optical transmission system.
 本発明は、光伝送路を介して光信号の送受信を行う光伝送システムに利用することができる。 The present invention can be used in an optical transmission system that transmits and receives an optical signal through an optical transmission line.

Claims (9)

  1.  主信号光を出力する光送信器と、前記主信号光とは別の電力供給光を出力する電力供給用光源と、前記主信号光および前記電力供給光を増幅する光増幅器と、を備える親局装置と、
     前記親局装置からの前記主信号光および前記電力供給光を伝送する光伝送路と、
     前記電力供給光を光電変換することにより得られる電力を用いて、前記主信号光の受信処理を行う子局装置と、
     を備えることを特徴とする光伝送システム。
    An optical transmitter that outputs main signal light; a power supply light source that outputs power supply light different from the main signal light; and an optical amplifier that amplifies the main signal light and the power supply light. A station device;
    An optical transmission line for transmitting the main signal light and the power supply light from the master station device;
    A slave station device that performs reception processing of the main signal light using power obtained by photoelectrically converting the power supply light;
    An optical transmission system comprising:
  2.  前記主信号光と前記電力供給光は、互いに波長が異なることを特徴とする請求項1に記載の光伝送システム。 The optical transmission system according to claim 1, wherein the main signal light and the power supply light have different wavelengths.
  3.  前記親局装置は、前記主信号光と前記電力供給光とを合波する光合波器をさらに備え、
     前記光増幅器は、前記光合波器からの波長多重光を一括して増幅することを特徴とする請求項2に記載の光伝送システム。
    The master station device further includes an optical multiplexer that combines the main signal light and the power supply light,
    The optical transmission system according to claim 2, wherein the optical amplifier collectively amplifies the wavelength multiplexed light from the optical multiplexer.
  4.  前記光増幅器は、前記光送信器と前記電力供給用光源の後段にそれぞれ設けられており、
     前記親局装置は、増幅された前記主信号光と前記電力供給光とを合波する光合波器をさらに備えることを特徴とする請求項2に記載の光伝送システム。
    The optical amplifiers are provided in the subsequent stage of the optical transmitter and the power supply light source, respectively.
    The optical transmission system according to claim 2, wherein the master station device further includes an optical multiplexer that multiplexes the amplified main signal light and the power supply light.
  5.  前記親局装置と前記子局装置との間に配置された中継局装置をさらに備え、
     前記電力供給光は、第1波長を有する第1電力供給光と、前記第1波長と異なる第2波長を有する第2電力供給光とを含み、
     前記光合波器は、前記主信号光、前記第1電力供給光、および前記第2電力供給光を合波した波長多重光を出力し、
     前記中継局装置は、前記波長多重光から前記第1電力供給光を分離する第1光スイッチと、前記主信号光と前記第2電力供給光の波長多重光を増幅する中継光増幅器と、前記第1電力供給光を光電変換し、前記中継光増幅器に電力を供給する中継局内電力供給装置と、を備え、
     前記子局装置は、前記中継局装置からの波長多重光から前記第2電力供給光を分離する第2光スイッチと、前記主信号光の受信処理を行う光受信器と、前記第2電力供給光を光電変換し、前記光受信器に電力を供給する子局内電力供給装置とを備えることを特徴とする請求項3または4に記載の光伝送システム。
    A relay station device arranged between the master station device and the slave station device;
    The power supply light includes a first power supply light having a first wavelength and a second power supply light having a second wavelength different from the first wavelength,
    The optical multiplexer outputs wavelength multiplexed light obtained by combining the main signal light, the first power supply light, and the second power supply light,
    The relay station device includes: a first optical switch that separates the first power supply light from the wavelength multiplexed light; a repeater optical amplifier that amplifies the wavelength multiplexed light of the main signal light and the second power supply light; A relay station power supply device that photoelectrically converts the first power supply light and supplies power to the relay optical amplifier;
    The slave station device includes a second optical switch that separates the second power supply light from the wavelength multiplexed light from the relay station device, an optical receiver that performs reception processing of the main signal light, and the second power supply. 5. The optical transmission system according to claim 3, further comprising: a sub-station power supply device that photoelectrically converts light and supplies power to the optical receiver. 6.
  6.  前記光伝送路は、現用系光伝送路と予備系光伝送路とにより冗長構成されており、
     前記親局装置および前記子局装置は、前記現用系光伝送路と前記予備系光伝送路の間で運用する光伝送路の切替を行う光スイッチをさらに備え、
     前記光スイッチは、通常運用時は前記現用系光伝送路に前記主信号光が送信され、且つ前記予備系光伝送路に前記電力供給光が送信されるよう光伝送路を選択するとともに、現用系光伝送路で障害が発生した場合は前記予備系光伝送路により前記主信号光が送信されるよう光伝送路を切り替えることを特徴とする請求項1に記載の光伝送システム。
    The optical transmission line is redundantly configured by an active optical transmission line and a standby optical transmission line,
    The master station device and the slave station device further include an optical switch that switches an optical transmission line operated between the active optical transmission line and the standby optical transmission line,
    The optical switch selects the optical transmission line so that the main signal light is transmitted to the active optical transmission line and the power supply light is transmitted to the standby optical transmission line during normal operation, and the active switch 2. The optical transmission system according to claim 1, wherein when a failure occurs in the optical transmission line, the optical transmission line is switched so that the main signal light is transmitted through the backup optical transmission line.
  7.  前記子局装置は、通常運用時に前記電力供給光を光電変換することにより得られる電力を充電する充電装置をさらに備え、現用系光伝送路で障害が発生した場合、前記充電装置に充電された電力を用いて前記主信号光の受信処理を行うことを特徴とする請求項6に記載の光伝送システム。 The slave station device further includes a charging device that charges electric power obtained by photoelectrically converting the power supply light during normal operation, and when a failure occurs in the active optical transmission line, the charging device is charged. The optical transmission system according to claim 6, wherein reception processing of the main signal light is performed using electric power.
  8.  前記親局装置と前記子局装置は、ポイント・トゥ・ポイントネットワークにおける端局装置として配置されることを特徴とする請求項1から7のいずれかに記載の光伝送システム。 The optical transmission system according to any one of claims 1 to 7, wherein the master station device and the slave station device are arranged as terminal devices in a point-to-point network.
  9.  前記親局装置と前記子局装置は、光リングネットワークにおける端局装置として配置されることを特徴とする請求項1から7のいずれかに記載の光伝送システム。 The optical transmission system according to any one of claims 1 to 7, wherein the master station device and the slave station device are arranged as terminal devices in an optical ring network.
PCT/JP2010/003945 2010-06-14 2010-06-14 Optical transmission system WO2011158283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012520154A JP5536209B2 (en) 2010-06-14 2010-06-14 Optical transmission system
PCT/JP2010/003945 WO2011158283A1 (en) 2010-06-14 2010-06-14 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003945 WO2011158283A1 (en) 2010-06-14 2010-06-14 Optical transmission system

Publications (1)

Publication Number Publication Date
WO2011158283A1 true WO2011158283A1 (en) 2011-12-22

Family

ID=45347717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003945 WO2011158283A1 (en) 2010-06-14 2010-06-14 Optical transmission system

Country Status (2)

Country Link
JP (1) JP5536209B2 (en)
WO (1) WO2011158283A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009528A (en) * 2010-06-23 2012-01-12 Nec Corp Optical fiber amplifier and charging device
JP2014023093A (en) * 2012-07-23 2014-02-03 Nec Corp Optical transmission system, receiving side device, and optical transmission method
JP2015154272A (en) * 2014-02-14 2015-08-24 Necプラットフォームズ株式会社 Optical path switching device and communication method
JP2016225817A (en) * 2015-05-29 2016-12-28 三菱電機株式会社 Optical microwave transmitter
US9711998B2 (en) 2013-03-27 2017-07-18 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
JP2018174478A (en) * 2017-03-31 2018-11-08 東日本電信電話株式会社 Optical communication transceiver and optical power supply system
WO2021019997A1 (en) * 2019-07-26 2021-02-04 京セラ株式会社 Optical fiber power feeding system
WO2021024574A1 (en) * 2019-08-02 2021-02-11 京セラ株式会社 Optical fiber power feeding system
WO2021079704A1 (en) * 2019-10-21 2021-04-29 京セラ株式会社 Optical fiber power supply system
JPWO2022130483A1 (en) * 2020-12-15 2022-06-23
WO2023228394A1 (en) * 2022-05-27 2023-11-30 日本電信電話株式会社 Optical communication system, optical node, and optical power supply method
WO2024057378A1 (en) * 2022-09-13 2024-03-21 日本電信電話株式会社 Optical power feeding method and optical power feeding system
EP4123876A4 (en) * 2020-03-16 2024-04-17 Kyocera Corporation Power receiving device for optical power feed system, and optical power feed system
WO2024166191A1 (en) * 2023-02-07 2024-08-15 日本電信電話株式会社 Optical power supply system, restoration method for optical power supply system, and optical node device
WO2024189671A1 (en) * 2023-03-10 2024-09-19 日本電信電話株式会社 Communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530266A (en) * 1978-08-26 1980-03-04 Fujitsu Ltd Photo repeater feeding system
JP2005198396A (en) * 2004-01-06 2005-07-21 Kansai Electric Power Co Inc:The Optical power supply system
US20090129770A1 (en) * 2007-11-21 2009-05-21 Fujitsu Limited Light transmission device and method of setting light input break detection threshold value

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114048A (en) * 1979-02-23 1980-09-03 Fujitsu Ltd Power supply system for repeater for light transmission
JPS58139538A (en) * 1982-02-15 1983-08-18 Furukawa Electric Co Ltd:The Optical transmission system
JPH05268192A (en) * 1992-03-19 1993-10-15 Yamatake Honeywell Co Ltd Optical feeder
JPH05268191A (en) * 1992-03-19 1993-10-15 Yamatake Honeywell Co Ltd Optical feeder
JPH08331061A (en) * 1995-05-31 1996-12-13 Fuji Electric Co Ltd Optical signal transmitter
JPH10336118A (en) * 1997-05-28 1998-12-18 Nec Corp Direct optical amplifier
JP2001025180A (en) * 1999-07-06 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> Optical power feeding device
JP2001024596A (en) * 1999-07-07 2001-01-26 Tokyo Electric Power Co Inc:The Radio equipment and communication system
JP2001037105A (en) * 1999-07-26 2001-02-09 Nippon Telegr & Teleph Corp <Ntt> Light power-feeding device
JP2001111486A (en) * 1999-10-05 2001-04-20 Mitsubishi Electric Corp Device for transmitting power and signal
JP3618670B2 (en) * 2001-01-26 2005-02-09 日本電信電話株式会社 Optical transmission system
JP4633548B2 (en) * 2005-06-08 2011-02-16 三菱電機株式会社 Optical receiver
JP2008245404A (en) * 2007-03-27 2008-10-09 Kddi Corp Power transmitting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530266A (en) * 1978-08-26 1980-03-04 Fujitsu Ltd Photo repeater feeding system
JP2005198396A (en) * 2004-01-06 2005-07-21 Kansai Electric Power Co Inc:The Optical power supply system
US20090129770A1 (en) * 2007-11-21 2009-05-21 Fujitsu Limited Light transmission device and method of setting light input break detection threshold value

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009528A (en) * 2010-06-23 2012-01-12 Nec Corp Optical fiber amplifier and charging device
JP2014023093A (en) * 2012-07-23 2014-02-03 Nec Corp Optical transmission system, receiving side device, and optical transmission method
US10903689B2 (en) 2013-03-27 2021-01-26 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US9711998B2 (en) 2013-03-27 2017-07-18 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10008885B2 (en) 2013-03-27 2018-06-26 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10014727B2 (en) 2013-03-27 2018-07-03 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10020689B2 (en) 2013-03-27 2018-07-10 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10069347B2 (en) 2013-03-27 2018-09-04 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
JP2015154272A (en) * 2014-02-14 2015-08-24 Necプラットフォームズ株式会社 Optical path switching device and communication method
JP2016225817A (en) * 2015-05-29 2016-12-28 三菱電機株式会社 Optical microwave transmitter
JP2018174478A (en) * 2017-03-31 2018-11-08 東日本電信電話株式会社 Optical communication transceiver and optical power supply system
WO2021019997A1 (en) * 2019-07-26 2021-02-04 京セラ株式会社 Optical fiber power feeding system
US11418266B2 (en) 2019-07-26 2022-08-16 Kyocera Corporation Power over fiber system
JP2021023001A (en) * 2019-07-26 2021-02-18 京セラ株式会社 Optical fiber power supply system
WO2021024574A1 (en) * 2019-08-02 2021-02-11 京セラ株式会社 Optical fiber power feeding system
US11362740B2 (en) 2019-08-02 2022-06-14 Kyocera Corporation Power over fiber system
JP2021027439A (en) * 2019-08-02 2021-02-22 京セラ株式会社 Optical fiber power supply system
WO2021079704A1 (en) * 2019-10-21 2021-04-29 京セラ株式会社 Optical fiber power supply system
JP2021068965A (en) * 2019-10-21 2021-04-30 京セラ株式会社 Optical fiber power supply system
EP4123876A4 (en) * 2020-03-16 2024-04-17 Kyocera Corporation Power receiving device for optical power feed system, and optical power feed system
JPWO2022130483A1 (en) * 2020-12-15 2022-06-23
WO2022130483A1 (en) * 2020-12-15 2022-06-23 日本電信電話株式会社 Optical power feeding system, optical power feeding method, and power receiving optical communication device
JP7473848B2 (en) 2020-12-15 2024-04-24 日本電信電話株式会社 Optical power supply system, optical power supply method, and power receiving optical communication device
WO2023228394A1 (en) * 2022-05-27 2023-11-30 日本電信電話株式会社 Optical communication system, optical node, and optical power supply method
WO2024057378A1 (en) * 2022-09-13 2024-03-21 日本電信電話株式会社 Optical power feeding method and optical power feeding system
WO2024166191A1 (en) * 2023-02-07 2024-08-15 日本電信電話株式会社 Optical power supply system, restoration method for optical power supply system, and optical node device
WO2024189671A1 (en) * 2023-03-10 2024-09-19 日本電信電話株式会社 Communication system

Also Published As

Publication number Publication date
JPWO2011158283A1 (en) 2013-08-15
JP5536209B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5536209B2 (en) Optical transmission system
JP5708794B2 (en) Branching apparatus having OADM function, wavelength division multiplexing optical network system and method thereof
US10644823B2 (en) Optical transfer system, control device, optical transfer method, and transfer device
JP5092895B2 (en) Optical communication apparatus and optical communication system
EP2525517B1 (en) An optical wavelength division multiplex (WDM) transmission system, especially a WDM passive optical network
EP3703281B1 (en) Wavelength converter and method of performing wavelength conversion
JP5398907B2 (en) Optical communication system
US9742520B1 (en) Optical switching system with a colorless, directionless, and contentionless ROADM connected to unamplified drop channels
US20060269287A1 (en) Optical transmission system
JP5387311B2 (en) Wavelength multiplexed optical network system and wavelength multiplexed optical transmission / reception method
US11063684B2 (en) Optical transmission system, optical transmission apparatus and transmission method
US10567081B2 (en) Transmission system and transmission method
JP5029409B2 (en) Optical transmission system using Raman amplification and control method thereof
JPH0621897A (en) Wavelength multiplex optical amplification relay transmission system and optical amplifier repeater
JP2003188830A (en) Wavelength multiplex light transmission apparatus, relaying apparatus, distribution apparatus, and wavelength multiplex light transmission system
KR100960110B1 (en) Optical Backhaul Network for Wireless Broadband Service
EP3327963B1 (en) Optical multiplexing device and associated equipment and method
JP6155803B2 (en) Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device
WO2007034545A1 (en) Monitoring control light transmission method and wavelength multiplex transmission device in wavelength multiplex transmission system
JP2014082656A (en) Optical transmitter and optical transmission system
KR100434454B1 (en) Daisy chain wavelength division multiplexing device and daisy chain wavelength division multiplexing system and transmission network utilizing the device
US11533548B2 (en) Transmission device, transmission method, and transmission system
JP2006279354A (en) Wavelength division multiplex transmission apparatus
JP2000165353A (en) Wavelength multiplex optical transmitter and wavelength multiplex optical transmission equipment provided with the same
KR100923503B1 (en) WDM-PON system with video overlay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520154

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853169

Country of ref document: EP

Kind code of ref document: A1