WO2011157942A1 - Antenne haute frequence - Google Patents

Antenne haute frequence Download PDF

Info

Publication number
WO2011157942A1
WO2011157942A1 PCT/FR2011/051346 FR2011051346W WO2011157942A1 WO 2011157942 A1 WO2011157942 A1 WO 2011157942A1 FR 2011051346 W FR2011051346 W FR 2011051346W WO 2011157942 A1 WO2011157942 A1 WO 2011157942A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
antenna
sections
pairs
conductive elements
Prior art date
Application number
PCT/FR2011/051346
Other languages
English (en)
Inventor
Thierry Thomas
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112012032262A priority Critical patent/BR112012032262A2/pt
Priority to CN201180039130.0A priority patent/CN103069649B/zh
Priority to NZ605462A priority patent/NZ605462A/en
Priority to RU2013101586/28A priority patent/RU2566608C2/ru
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to ES11735491.0T priority patent/ES2483146T3/es
Priority to MX2012014753A priority patent/MX2012014753A/es
Priority to JP2013514765A priority patent/JP5697827B2/ja
Priority to AU2011266870A priority patent/AU2011266870B2/en
Priority to PL11735491T priority patent/PL2583353T3/pl
Priority to EP11735491.0A priority patent/EP2583353B1/fr
Priority to MA35552A priority patent/MA34374B1/fr
Priority to CA2805083A priority patent/CA2805083C/fr
Priority to US13/704,566 priority patent/US9362622B2/en
Publication of WO2011157942A1 publication Critical patent/WO2011157942A1/fr
Priority to TNP2012000604A priority patent/TN2012000604A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/10Collinear arrangements of substantially straight elongated conductive units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/04Screened antennas

Definitions

  • the present invention relates generally to antennas and, more particularly, to the production of a high frequency inductive antenna.
  • the invention applies more particularly to antennas intended for smaller chips ⁇ eral MHz radio frequency transmissions, for example for type transmission systems contactless card, RFID tag, an electromagnetic transponder.
  • FIG. 1 very schematically represents an example of an inductive type transmission system of the type to which the present invention applies by way of example.
  • Such a system comprises a reader or base station 1 generating an electromagnetic field capable of being picked up by one or more transponders 2 situated in its field.
  • These transponders 2 are, for example, an electronic tag 2 'attached to an object in order to identify it, a contactless smart card 2 "or more generally any electromagnetic transponder (symbolized by a block 2 in FIG. 1) .
  • a series resonant circuit is cons titué ⁇ r a resistor, a capacitor Cl and an element inductive Ll or antenna.
  • This circuit is excited by a controlled high frequency generator 12 (HF) (link 14) by other non-represented circuits of the base station 1.
  • HF controlled high frequency generator 12
  • a high frequency carrier is generally modulated (in amplitude and / or in phase) to transmit information to the transponder.
  • Transponder side 2 a resonant circuit, generally parallel, comprises an inductive element or antenna L2 in parallel with a capacitor C2 and with a load R representing the electronic circuits 22 of the transponder 2.
  • This resonant circuit captures, when in the reader field, the high frequency signal transmitted by the base station.
  • these circuits symbolized by a block 22 including one or more chips are connected to an antenna L2 generally carried by the support of the card.
  • the inductive element L2 is formed of a conductive winding connected to an electronic chip 22.
  • the transponders are generally devoid of self ALIMEN ⁇ tion and capture the energy necessary for their function ⁇ ment of the magnetic field generated by the base station 1.
  • the base station is used to recharge a battery or other energy storage element of the transponder.
  • the high frequency field radiated by the base station is then not necessarily modulated to transmit information.
  • the conducting circuit is most often a closed circuit along which the current for producing the radiofrequency magnetic field.
  • the closed conductive circuit is powered by the radio frequency generator 12.
  • the size of the antenna with respect to the wavelength becomes large, the flow of current for producing the magnetic field along the conductor is no longer ensured simply.
  • the amplitude and phase of the current have large variations along the circuit that no longer allow operation of the inductive loop antenna.
  • the transponders are generally in motion (worn by a user) when presented to a base station and it is desirable that they can capture the field even in this movement.
  • it is desired that the size of the area where the communication with a transponder is possible is important.
  • it is advantageous to use a large inductive loop to ensure an important range of communication.
  • the length of the inductive loops is therefore classically limited.
  • An object of an embodiment of the present invention is to provide an inductive antenna that overcomes all or part of the disadvantages of conventional antennas.
  • Another object of an embodiment of the present invention is to provide an antenna particularly suitable for transmissions in a frequency range from MHz to the hundred MHz.
  • an inductive antenna formed of at least two pairs of geometrically end-to-end sections and each having a first and a second parallel and isolated conductor elements one of the other, each pair having at each end a single electrical connection terminal of its first conductive element to that of the neighboring pair, wherein said pairs are:
  • first type in which the conductive elements are interrupted approximately in their middle to define the two sections, the first, respectively second, conductive element of one section being connected to the second, respectively first, conductive element of the other section of the pair ; or a second type in which the first conductive element is interrupted approximately in the middle to define the two sections, the second conductive element not being interrupted.
  • the conductive sections are elongated, the antenna forming a loop of any geometry in space.
  • the respective lengths of the conductive elements are chosen according to the resonance frequency of the antenna.
  • the respective lengths of the conductive elements are chosen according to the linear capacitance between the first and second conductive elements.
  • At least one capacitive element interconnects the second conductive elements of neighboring pairs or the first and second conductive elements of the same pair.
  • at least one resistive element interconnects the second conductive elements of neighboring pairs or the first and second conductive elements of the same pair.
  • each section is a section of coaxial cable.
  • the sections are formed of twisted conductive elements.
  • said excitation circuit comprises a high frequency transformer, a secondary winding is interposed between the first conductive elements of two pairs adjacent to the antenna.
  • FIG. 1 which has been described above represents, schematically and in the form of blocks, an example of a radio frequency transmission system of the type to which the present invention applies;
  • Figure 2 is a schematic representation of an embodiment of an inductive antenna according to the invention.
  • FIG. 3 represents an embodiment of a pair of sections of a first type of the antenna of FIG. 2;
  • FIG. 4 is a schematic representation of another embodiment of an inductive antenna according to the invention.
  • FIG. 5 represents the electrical layout of an embodiment of a first type of pair of sections of an antenna;
  • Fig. 5A shows the equivalent electrical diagram of the pair of Fig. 5;
  • FIG. 6 represents the electrical layout of an embodiment of a second type of pair of sections of an antenna
  • Fig. 6A shows the equivalent electrical diagram of the pair of Fig. 6;
  • Fig. 7 shows an embodiment of an inductive antenna and excitation and control circuits
  • FIGS. 8A and 8B show two other embodiments of a pair of sections of the first type.
  • Figure 9 shows another embodiment of a pair of sections of the second type.
  • Fig. 2 is a schematic representation of an antenna according to an embodiment of the present invention.
  • connection 4 between two neighboring pairs is performed only by one of the conductive elements.
  • this connection 4 between two neighboring pairs is effected by the respective braids of the sections of the two pairs facing each other.
  • the other conductive element is not connected, that is to say that in the example of Figure 2, the cores of two neighboring pairs are not connected.
  • Figure 3 is a schematic representation of a pair 3 of two sections 32 and 34 of the antenna of Figure 2, corresponding to a first type of pair of sections.
  • the conductive core 324 of the section 32 is connected to the braid (or shield) 342 of the section 34, and the Braid 322 of the section 32 is connected to the web 344 of the section 34.
  • Figure 4 is a schematic representation of another embodiment of an antenna.
  • Two pairs 3 of sections 32 and 34 of the first type are connected in alternation with two pairs of sections 52 and 54 of coaxial cable in which the central connection 56 of the sections is different.
  • the sections 52 and 54 are connected by their respective cores 524 and 544 while their braids 522 and 542 are not connected.
  • the electrical connections of the end-to-end pairs always take place via a connection 4 of the braids with each other while the cores are not connected.
  • pairs of both types may vary. However, pairs of the first type are more advantageous.
  • a pair of the first type allows at the crossing an exposed area, which decreases the sensitivity of the circuit parasitic disturbances.
  • the pairs of sections may have a length two times smaller than for a pair of the second type. The reduction in length facilitates the realization of the antenna.
  • the value of the inductance L0 associated with a pair of the first type can then be half of that associated with a pair of the second type.
  • the electric voltage present between the first conductors in the connection zone 36 of the two sections of a pair of the first type is then two times lower than the electrical voltage in the connection zone 56 of a pair of the second type.
  • the connection zone in a pair is an exposed area which condition the circuit sensitivity to noise mea ⁇ bations especially as the voltage is important in this area. Reducing tension This zone brought by the pair of the first type allows a reduction of the sensitivity to the disturbances.
  • FIG. 5 represents the electrical layout of the first type of pair of sections.
  • Figure 5A shows the electric diagram ⁇ equi valent of the pair in Figure 5.
  • a pair 3 of sections 32 and 34 has two terminals 42 and 44 for connection to neighboring pairs.
  • the terminal 42 is connected to a first conductive element 322 of the section 32 which, by its other end, is connected, by the crossed interconnection 36, to a second conductive element 344 of the section 34, a free end 3441 (terminal side 44) is not connected.
  • the second conductive element 324 of the section 32 has a free end 3241 (terminal side 42) and its other end connected via the connection 36 to the first conducting section 342 of the section 34, the other end of which is connected to the terminal 44.
  • FIG. 5A The equivalent electrical diagram of such a pair is represented in FIG. 5A and amounts to disposing electrically, in series, an inductance of value L0 and a capacitor of value C0, where L0 represents the inductance corresponding to the association of the sections of conductors. 322 and 342 considered as one and the same driver for the calculation of this value, and where C0 represents the set of internal capacities, between core and braid in the case of a coaxial cable - between the two conductors (between the conductors 322 and 342). and 324 and between the conductors 342 and 344) in the case of the other embodiments.
  • L0 represents the inductance corresponding to the association of the sections of conductors. 322 and 342 considered as one and the same driver for the calculation of this value
  • C0 represents the set of internal capacities, between core and braid in the case of a coaxial cable - between the two conductors (between the conductors 322 and 342). and 324 and between the conductors 342 and 344) in the case
  • Figure 6 shows the electrical pattern of the second type of pair of sections.
  • 6A shows the electric diagram ⁇ equi valent of the pair of Figure 6.
  • a first conductor 522 of a first section 52 is connected to a first access terminal 42 and its other end 5222 is left in the air (unconnected).
  • a first conductive element 542 of a second section 54 is, on the side 52, left in the air (end 5422) and, at its other end, connected to the access terminal 44 to the pair 5.
  • the second conductor 524 of the first section 52 is connected, by the interconnection 56, to the second conductor 544 of the second section 54.
  • the ends 5241 and 5441 of the sections 524 and 544 are left in the air.
  • the pair 5 returns to a series connection of an inductive element of value L0 with a capacitive element of value CO / 4, where L0 represents the inductance corresponding to the association of the conductor sections 522 and 542 and C0 the set of internal capacitors (between the conductors 522 and
  • LCC1 1.
  • Forming an antenna with several pairs of sections of the type of FIGS. 5 and 6 makes it possible to split the electrical circuit and avoids the inductive elements of too great length in which the current flowing along the inductive loop circuit would not be able to have an amplitude and a homogeneous phase along the circuit. Indeed, the connection of the pairs between them is to connect in series several resonant circuits of the same resonance frequency.
  • the length of inductive antennas is no longer limited.
  • Fig. 7 shows an embodiment of an inductive antenna and excitation and control circuits.
  • the antenna here comprises three pairs 3 of the first type.
  • the excitation circuit 18 is a high-frequency transformer whose primary 182 receives an excitation signal from the high-frequency generator 12 (FIG. 1) and whose two terminals of the secondary 184 are connected to terminals 42 and 44 of two neighboring pairs place and place of their interconnection 4. The secondary winding thus forms this connection between these two pairs.
  • the transformer will preferably be chosen to reduce the secondary side a negligible inductance at the operating frequency before the L0 value, which is for example the case when the coupling is close to 1.
  • an adjusting circuit 16 connects the free ends 3241 and 3441 of the conductors 324 and 344 of these two pairs which are thus connected.
  • This circuit 16 is, in the example of Figure 7, a resistive circuit (resistor R4) and capacitive (capacitor C4).
  • the role of the capacitor C4 is to adjust the resonance frequency of the antenna.
  • the role of resistor R4 is to set the quality factor Q of the antenna to a value chosen, for example, to adjust the bandwidth.
  • Capacitors may be interposed between different pairs, connected between the conductive elements of the same section, between conducting elements left free (here the cores of the coaxial sections) and the connection point 42 or 44 (here the braids of the coaxial sections), or between the leads left free of the interconnected sections of each pair, to decrease the resonance frequency.
  • resistive elements may be connected between the free ends of the conductive elements between two pairs to adjust and lower the quality factor of the antenna thus formed. Resistive elements can also be inserted in place of an interconnection 4 between two pairs to lower and adjust the quality factor.
  • the shape to be given to the different sections is not necessarily rectilinear. As shown in Figure 7, the sections can follow different paths.
  • the closed antenna of the invention can follow the outline of a frame, make loops, follow a rounded shape, follow shapes in three dimensions of space, etc.
  • control circuits have been illustrated with a connection between the pairs. Note that alternatively and in the case of pairs of the second type (5), such circuits could be inserted within the pairs of sections. In this case, for the introduction duction of a capacitor, it connects the two non-interconnected free ends of the elements 522 and 542.
  • Resistive elements may also be inserted in place of the connections between conductors of the two sections of the same pair (of the first type 3 and the second type 5) at the junction 36 and 56 to lower the quality factor.
  • Figs. 8A, 8B and 9 show pairs of conductive sections according to another embodiment of the present invention. This embodiment illustrates that pairs of conductive sections can be made by means of twisted conductors rather than means of coaxial sections.
  • FIGS. 8A and 8B show two embodiments of a pair of sections of the first type.
  • FIG. 8A two sections of twisted wires are interconnected in a manner similar to that described with respect to the coaxial cable sections.
  • FIG. 8B shows another embodiment of a pair of cross-interconnected sections in which the crossing is in fact obtained by inverting the conductor on which the output terminal (for example 44) is connected with respect to that on which is connected to the input terminal (for example 42), the conductor sections not being interrupted inside the pair.
  • Figure 9 shows an embodiment of a pair of sections 52 and 54 of the second type, made by twisted conductors.
  • the lengths of pairs are made with untwisted conductor, shielded or unshielded.
  • the pairs of sections are made by tracks deposited on an insulating substrate.
  • An antenna as described above can also be defined as having at least two subsets of elongate (3, 5, 3 ') geometrically end-to-end shape and each having, along their length, a first and second conductive element parallel and insulated from each other, and at each end, in connection with the first conductive element, a single electrical connection terminal to the neighboring subassembly, the second conductor not being electrically connected, in which all or part of the subassemblies are:
  • each of the first and second conductors is interrupted approximately in the middle and reconnected to the other conductor of the subassembly; or a second type in which the first conductor is interrupted approximately in the middle, the second conductor not being interrupted.
  • a conductive element is, in the case of a cross connection (FIGS. 3, 5 and 8A) formed of two electrically series portions of conducting wires (core or braid) different from the cable used, so that each terminal connection is connected to the conductor of the same nature (braid or core) of the subassembly while not being electrically connected to the other terminal.
  • the sections can be formed by cutting off usual coaxial lines. They are commonly available with characteristic 50, 75 and 93 ohm impedances with linear capacitance values of 100 pF / m, 60 pF / m and 45 pF / m, respectively.
  • characteristic 50, 75 and 93 ohm impedances with linear capacitance values of 100 pF / m, 60 pF / m and 45 pF / m, respectively.
  • L0 inductances of the order of ⁇ .
  • FIG. 10 is a schematic representation of an antenna according to another embodiment.
  • the antenna comprises at least two pairs (of the first type 3, FIG. 5 or second type 5, FIG. 6) of sections, each formed of parallel conducting elements and isolated from each other. 'other. In the example of FIG. 10, pairs of sections of coaxial cable are assumed.
  • This structure is completed by an additional half-pair consisting of two conductive elements of the first type 32, 34 or the second type 52, 54. Where appropriate, the half-pair is not terminating the antenna but is interposed between two pairs. The presence of the extra half pair can be used to adjust the length of the antenna.
  • FIG. 11 is a schematic representation of a variant according to which two coaxial cable segments 61 and 63 are mechanically arranged side by side in parallel and their braids are electrically connected to each other, at least at both ends to form a single first conductive element (connection 67). The cores are electrically connected to form a single second conductive member (connection 65 at one end).
  • Each element of the type illustrated in FIG. 11 constitutes a section 32, 34, 52 or 54 of the antenna structure.
  • An advantage of the section formed by the assembly of the segments of FIG. 11 is to increase the linear capacitance of the section between the first conductive element and the second conductive element. This makes it possible to reduce the necessary length of a pair for the same resonance frequency and thus to benefit from greater flexibility on the geometry of the antenna.
  • the capacitance between the shielding and the conductive core is more advantageously used to make inductive and capacitive sections, having a higher capacitance (which can therefore be shorter for the same frequency). only in a wire element embodiment.
  • An advantage of the embodiments that have been described is that they allow the realization of large antennas for applications at resonant frequencies above the MHz (typically between 10 and 100 MHz). We can create antennas on portals, counters, etc. while having a homogeneous flow of current along the loop to produce the desired field.
  • an antenna adapted to operate at a frequency of 13.56 MHz can be produced in the form of a rectangular loop of approximately 87 cm by 75 cm made up of three pairs of conductors (three two sections) of the first type of 50 ohm coaxial cable, 100 pF / m (3.5 mm braid diameter), divided into two pairs in an approximately 1.07 m long L-shaped track (with inductance L0 of about 1.22 ⁇ or 1.21 ⁇ taking into account the mutual inductance) and a pair in a U-shaped path of about 1.08 m in deployed length (having an inductance L0 of about 1, 20 ⁇ or 1.19 ⁇ taking into account mutual inductances).
  • the resonance frequency can be adjusted by a variable capacitor.

Landscapes

  • Details Of Aerials (AREA)
  • Near-Field Transmission Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

L'invention concerne une antenne inductive formée d'au moins deux paires de tronçons (32, 34) géométriquement bout à bout et comportant chacun un premier (322, 342) et un second (324, 344) éléments conducteurs parallèles et isolés l'un de l'autre, chaque paire comportant à chaque extrémité une unique borne de raccordement électrique de son premier élément conducteur à celui de la paire voisine, dans laquelle lesdites paires sont: d'un premier type (3) dans lequel les éléments conducteurs sont interrompus approximativement en leur milieu pour définir les deux tronçons, le premier, respectivement second, élément conducteur d'un tronçon étant connecté au second, respectivement premier, élément conducteur de l'autre tronçon de la paire; ou d'un second type dans lequel le premier élément conducteur est interrompu approximativement en son milieu pour définir les deux tronçons, le second élément conducteur n'étant pas interrompu.

Description

ANTENNE HAUTE FREQUENCE
Domaine de 1 ' invention
La présente invention concerne de façon générale les antennes et, plus particulièrement, la réalisation d'une antenne inductive haute fréquence.
L'invention s'applique plus particulièrement aux antennes destinées à des transmissions radiofréquence de plu¬ sieurs MHz, par exemple pour des systèmes de transmission de type à carte sans contact, à étiquette RFID, à transpondeur électromagnétique .
Exposé de 1 ' art antérieur
La figure 1 représente, de façon très schématique, un exemple de système de transmission de type inductif du type auquel s'applique à titre d'exemple la présente invention.
Un tel système comporte un lecteur ou station de base 1 générant un champ électromagnétique propre à être capté par un ou plusieurs transpondeurs 2 se situant dans son champ. Ces transpondeurs 2 sont, par exemple, une étiquette électronique 2 ' rapportée sur un objet afin de l'identifier, une carte à puce sans contact 2" ou plus généralement n'importe quel transpondeur électromagnétique (symbolisé par un bloc 2 en figure 1) .
Côté lecteur 1, un circuit résonant série est cons¬ titué d'une résistance r, d'un condensateur Cl et d'un élément inductif Ll ou antenne. Ce circuit est excité par un générateur haute fréquence 12 (HF) commandé (liaison 14) par d'autres circuits non représentés de la station de base 1. Une porteuse haute fréquence est généralement modulée (en amplitude et/ou en phase) pour transmettre des informations au transpondeur.
Côté transpondeur 2, un circuit résonant, généralement parallèle, comporte un élément inductif ou antenne L2 en parallèle avec un condensateur C2 et avec une charge R représentant les circuits électroniques 22 du transpondeur 2. Ce circuit résonant capte, lorsqu'il se trouve dans le champ du lecteur, le signal haute fréquence transmis par la station de base. Dans le cas d'une carte sans contact, ces circuits symbolisés par un bloc 22 incluant une ou plusieurs puces sont reliés à une antenne L2 généralement portée par le support de la carte. Dans le cas d'une étiquette électronique 2', l'élément inductif L2 est formé d'un enroulement conducteur relié à une puce électronique 22.
La représentation symbolique sous forme de circuit résonant série côté station de base et parallèle côté trans- pondeur est habituelle même si, en pratique, on pourra trouver des circuits résonants série côté transpondeur et parallèle côté station de base.
Les circuits résonants du lecteur et du transpondeur sont généralement accordés sur une même fréquence de résonance Cû (Ll.Cl.Cû2 = L2.C2.C02 = 1).
Les transpondeurs sont généralement dépourvus d'alimen¬ tation autonome et captent l'énergie nécessaire à leur fonction¬ nement du champ magnétique produit par la station de base 1.
Selon un autre exemple d'application, la station de base sert à recharger une batterie ou autre élément de stockage d'énergie du transpondeur. Le champ haute fréquence rayonné par la station de base n'est alors pas nécessairement modulé pour transmettre des informations.
Dans une antenne inductive, le circuit conducteur est le plus souvent un circuit fermé le long duquel circule le courant destiné à produire le champ magnétique radiofréquence . Le circuit conducteur fermé est alimenté par le générateur radio- fréquence 12.
Lorsque la taille de l'antenne vis-à-vis de la lon- gueur d'onde devient importante, la circulation du courant destiné à produire le champ magnétique le long du conducteur n'est plus assurée de manière simple. L'amplitude et la phase du courant présentent de fortes variations le long du circuit qui ne permettent plus un fonctionnement de l'antenne en boucle inductive. Par ailleurs, il est souvent souhaitable de disposer, côté station de base, d'une antenne de grande taille par rapport à la taille de l'antenne des transpondeurs. En effet, les transpondeurs sont généralement en mouvement (portés par un utilisateur) lorsqu'ils sont présentés à une station de base et il est souhaitable qu'ils puissent capter le champ même dans ce déplacement. Dans d'autres cas, il est recherché que la taille de la zone où la communication avec un transpondeur est possible, soit importante. D'autre part, il est avantageux de recourir à une boucle inductive de grande taille pour assurer une portée de communication importante.
Or, plus le circuit conducteur de l'antenne est long, plus son inductance L est élevée et plus le condensateur qui doit être associé à l'antenne présente une valeur faible. Il en découle que, pour des antennes de grande dimension, la valeur du condensateur peut être de l'ordre des capacités parasites présentes entre les différentes parties du circuit conducteur et des capacités parasites susceptibles d'être introduites dans le système, (par exemple par la main d'un utilisateur), ce qui perturbe le fonctionnement.
Plus le circuit conducteur de l'antenne inductive est long, plus la circulation du courant le long du circuit est différente de celle souhaitée. On assiste alors à une variation importante de 1 ' amplitude et de la phase du courant le long du circuit qui modifie et perturbe la répartition spatiale du champ magnétique produit. On assiste également à une augmentation des potentiels électriques entre différentes parties du circuit conducteur qui rend le comportement de l'antenne sensible à la présence de matériaux diélectriques dans son environnement proche .
La longueur des boucles inductives est donc classiquement limitée.
On a déjà proposé de subdiviser la boucle conductrice en éléments présentant individuellement la même longueur, et de reconnecter ces éléments par des condensateurs pour permettre l'utilisation d'une boucle de grande taille. Une telle solution est décrite par exemple dans le brevet US 5,258,766.
On a également déjà proposé d'utiliser des boucles inductives blindées avec une interruption du blindage et une inversion des conducteurs. De telles boucles sont généralement dénommées "boucle de Moebius". De telles structures sont décrites, par exemple, dans l'article "Analysis of the Moebius Loop Magnetic Field Sensor" de P. H. Duncan, paru dans IEEE Transaction on Electromagnetic Compatibility, mai 1974. De telles structures restent cependant limitées en longueur.
II existe donc un besoin pour la réalisation d'une antenne inductive de grande dimension.
Résumé
Un objet d'un mode de réalisation de la présente invention est de proposer une antenne inductive qui pallie tout ou partie des inconvénients des antennes classiques.
Un autre objet d'un mode de réalisation de la présente invention est de proposer une antenne particulièrement adaptée aux transmissions dans une plage de fréquences allant du MHz à la centaine de MHz.
Un autre objet d'un mode de réalisation de la présente invention est de proposer une antenne inductive de grande dimension (s ' inscrivant dans une surface au moins dix fois supérieure) par rapport aux antennes des transpondeurs avec lesquels elle est destinée coopérer. Un autre objet d'un mode de réalisation de la présente invention est de proposer une structure d'antenne compatible avec des tracés variés.
Pour atteindre tout ou partie de ces objets ainsi que d'autres, il est prévu une antenne inductive formée d'au moins deux paires de tronçons géométriquement bout à bout et comportant chacun un premier et un second éléments conducteurs parallèles et isolés l'un de l'autre, chaque paire comportant à chaque extrémité une unique borne de raccordement électrique de son premier élément conducteur à celui de la paire voisine, dans laquelle lesdites paires sont :
d'un premier type dans lequel les éléments conducteurs sont interrompus approximativement en leur milieu pour définir les deux tronçons, le premier, respectivement second, élément conducteur d'un tronçon étant connecté au second, respectivement premier, élément conducteur de l'autre tronçon de la paire ; ou d'un second type dans lequel le premier élément conducteur est interrompu approximativement en son milieu pour définir les deux tronçons, le second élément conducteur n'étant pas interrompu.
Selon un mode de réalisation de la présente invention, les tronçons conducteurs sont longilignes, l'antenne formant une boucle de géométrie quelconque dans l'espace.
Selon un mode de réalisation de la présente invention, les longueurs respectives des éléments conducteurs sont choisies en fonction de la fréquence de résonance de l'antenne.
Selon un mode de réalisation de la présente invention, les longueurs respectives des éléments conducteurs sont choisies en fonction de la capacité linéique entre les premier et second éléments conducteurs.
Selon un mode de réalisation de la présente invention, au moins un élément capacitif relie entre eux les seconds éléments conducteurs de paires voisines ou les premier et second éléments conducteurs d'une même paire. Selon un mode de réalisation de la présente invention, au moins un élément résistif relie entre eux les seconds éléments conducteurs de paires voisines ou les premier et second éléments conducteurs d'une même paire.
Selon un mode de réalisation de la présente invention, chaque tronçon est un tronçon de câble coaxial.
Selon un mode de réalisation de la présente invention, les tronçons sont formés d'éléments conducteurs torsadés.
On prévoit également un système de génération d'un champ haute fréquence comportant :
une antenne inductive ; et
un circuit d'excitation de l'antenne par un signal haute fréquence .
Selon un mode de réalisation de la présente invention, ledit circuit d'excitation comporte un transformateur haute fréquence dont un enroulement secondaire est intercalé entre les premiers éléments conducteurs de deux paires voisines de 1 ' antenne .
Brève description des dessins
Ces objets, caractéristiques et avantages, ainsi que d'autres seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
la figure 1 qui a été décrite précédemment représente, de façon schématique et sous forme de blocs, un exemple de système de transmission radiofréquence du type auquel s'applique la présente invention ;
la figure 2 est une représentation schématique d'un mode de réalisation d'une antenne inductive selon l'invention ;
la figure 3 représente un mode de réalisation d'une paire de tronçons d'un premier type de l'antenne de la figure 2 ;
la figure 4 est une représentation schématique d'un autre mode de réalisation d'une antenne inductive selon l'invention ; la figure 5 représente le tracé électrique d'un mode de réalisation d'un premier type de paire de tronçons d'une antenne ;
la figure 5A représente le schéma-électrique équi- valent de la paire de la figure 5 ;
la figure 6 représente le tracé électrique d'un mode de réalisation d'un second type de paire de tronçons d'une antenne ;
la figure 6A représente le schéma-électrique équi- valent de la paire de la figure 6 ;
la figure 7 représente un mode de réalisation d'une antenne inductive et de circuits d'excitation et de réglage ;
les figures 8A et 8B représente deux autres modes de réalisation d'une paire de tronçons du premier type ; et
la figure 9 représente un autre mode de réalisation d'une paire de tronçons du second type.
Description détaillée
De mêmes éléments ont été désignés par de mêmes références aux différentes figures qui ont été tracées sans respect d'échelle. Par souci de clarté, seuls les éléments utiles à la compréhension de l'invention ont été représentés et seront décrits. En particulier, les circuits d'excitation d'une antenne inductive n'ont pas été détaillés, l'invention étant compatible avec les signaux d'excitation habituellement utilisés pour ce genre d'antenne. De plus, les transpondeurs auxquels sont destinés des antennes de génération de champ qui vont être décrites n'ont pas non plus été détaillées, l'invention étant compatible avec les divers transpondeurs, cartes sans contact, étiquettes RFID, etc. usuels.
La figure 2 est une représentation schématique d'une antenne selon un mode de réalisation de la présente invention.
Dans cet exemple, on prévoit de mettre bout à bout plusieurs tronçons 32 et 34 de câble coaxial. Ces tronçons sont réunis par paires 3 dans chacune desquelles les deux tronçons 32 et 34 sont connectés dans une connexion de type Moebius, c'est- à-dire que l'âme 324 d'un premier des tronçons est connectée à la tresse 342 du second tronçon de la paire, tandis que sa tresse 322 est connectée à l'âme 344 de ce second tronçon.
Dans l'exemple préféré de la figure 2, quatre paires 3 de tronçons sont mises bout à bout. La connexion 4 électrique entre deux paires voisines ne s'effectue que par un seul des éléments conducteurs. Dans l'exemple de la figure 2, cette connexion 4 entre deux paires voisines s'effectue par les tresses respectives des tronçons des deux paires en regard. L'autre élément conducteur est non connecté, c'est-à-dire que dans l'exemple de la figure 2, les âmes de deux paires voisines ne sont pas connectées.
Il parait plus simple d'effectuer un choix uniforme pour tous les tronçons de manière à ce que tous les premiers conducteurs correspondent soit à la tresse soit à l'âme de tous les tronçons. Dans ce contexte l'élément conducteur de même type, tresse ou âme, sera utilisé pour relier les paires de toute l'antenne. Le choix de la tresse est privilégié du fait que cette manière conduit à un meilleur blindage électrique. En variante, on pourra prévoir que les connexions 4 s'effectuent par les âmes respectives des paires en regard. Mais, il est reste possible d'effectuer un choix différent d'affectation de premier élément conducteur et de second élément conducteur entre le premier tronçon et le second tronçon d'une même paire, par exemple la tresse comme premier élément conducteur pour le premier tronçon et 1 ' âme comme premier élément conducteur pour le second tronçon. Ainsi, selon une autre variante, on pourra prévoir que les connexions 4 entre deux paires voisines s'effectuent d'âme à tresse ou inversement.
La figure 3 est une représentation schématique d'une paire 3 de deux tronçons 32 et 34 de l'antenne de la figure 2, correspondant à un premier type de paire de tronçons . Au niveau de la connexion centrale 36, l'âme conductrice 324 du tronçon 32 est connectée à la tresse (ou blindage) 342 du tronçon 34, et la tresse 322 du tronçon 32 est connectée à l'âme 344 du tronçon 34.
La figure 4 est une représentation schématique d'un autre mode de réalisation d'une antenne.
Deux paires 3 de tronçons 32 et 34 du premier type (à connexion centrale croisée - figure 3) sont connectées en alternance avec deux paires 5 de tronçons 52 et 54 de câble coaxial dans lesquelles la connexion centrale 56 des tronçons est différente. Dans ces paires 5 d'un second type, les tronçons 52 et 54 sont connectés par leurs âmes respectives 524 et 544 tandis que leurs tresses 522 et 542 ne sont pas connectées. Les connexions électriques des paires bout à bout s'effectuent toujours par l'intermédiaire d'une connexion 4 des tresses entre elles alors que les âmes ne sont pas connectées.
La répartition et le nombre de paires des deux types peut varier. Toutefois, les paires du premier type sont plus avantageuses .
En effet, une paire du premier type permet au niveau du croisement une zone exposée, ce qui diminue la sensibilité du circuit aux perturbations parasites. De plus, pour une même fréquence de résonance, les paires de tronçons peuvent présenter une longueur deux fois moindre que pour une paire du second type. La réduction de longueur facilite la réalisation de l'antenne. La valeur de l'inductance L0 associée à une paire du premier type peut alors être deux fois moindre de celle associée à une paire du second type. Pour un même courant de circulation, la tension électrique présente entre les premiers conducteurs dans la zone de connexion 36 des deux tronçons d'une paire du premier type est alors deux fois moindre que la tension électrique dans la zone de connexion 56 d'une paire du second type. La zone de connexion au sein d'une paire est une zone exposée qui conditionnent la sensibilité du circuit aux pertur¬ bations parasites d'autant que la tension électrique est importante dans cette zone. La réduction de la tension électrique dans cette zone apportée par la paire du premier type permet une réduction de la sensibilité aux perturbations.
La figure 5 représente le tracé électrique du premier type de paire 3 de tronçons .
La figure 5A représente le schéma-électrique équi¬ valent de la paire de la figure 5.
Une paire 3 de tronçons 32 et 34 comporte deux bornes 42 et 44 de connexion aux paires voisines. La borne 42 est reliée à un premier élément conducteur 322 du tronçon 32 qui, par son autre extrémité, est relié, par l'interconnexion croisée 36, à un second élément conducteur 344 du tronçon 34 dont une extrémité libre 3441 (côté borne 44) est non connectée. Le deuxième élément conducteur 324 du tronçon 32 a une extrémité libre 3241 (côté borne 42) et son autre extrémité connectée, par la connexion 36, au premier tronçon conducteur 342 du tronçon 34 dont l'autre extrémité est reliée à la borne 44.
Le schéma électrique équivalent d'une telle paire est représenté en figure 5A et revient à disposer électriquement, en série, une inductance de valeur L0 et un condensateur de valeur C0, où L0 représente l'inductance correspondant à l'association des tronçons de conducteurs 322 et 342 considérés comme un seul et même conducteur pour le calcul de cette valeur, et où C0 représente l'ensemble des capacités internes, entre âme et tresse dans le cas d'un câble coaxial - entre les deux conducteurs (entre les conducteur 322 et 324 et entre les conducteurs 342 et 344) dans le cas des autres réalisations. Dans ce qui précède, on néglige les mutuelles entre l'association des tronçons 322 et 342 (considérés pour le calcul comme un conducteur) et les associations de tronçons équivalents aux tronçons 322 et 342 des autres paires (également considérés pour le calcul comme un conducteur) . Par la formation en boucle, les différentes paires sont suffisamment éloignées les unes des autres pour pourvoir négliger les mutuelles devant la valeur de L0 telle que considérée ci-dessus. En négligeant les pertes ohmiques dans les conducteurs et les pertes diélectriques entre les conducteurs, l'impédance d'une paire de tronçons peut, dans ce mode de réalisation, s'écrire Z = jLOOH-l/jCOCù
La figure 6 représente le tracé électrique du second type de paire 5 de tronçons .
La figure 6A représente le schéma-électrique équi¬ valent de la paire de la figure 6.
Dans une paire 5 de tronçons 52 et 54, un premier conducteur 522 d'un premier tronçon 52 est relié à une première borne d'accès 42 et son autre extrémité 5222 est laissée en l'air (non connectée). Un premier élément conducteur 542 d'un second tronçon 54 est, côté tronçon 52, laissé en l'air (extrémité 5422) et, à son autre extrémité, relié à la borne d'accès 44 à la paire 5. Le second conducteur 524 du premier tronçon 52 est relié, par l'interconnexion 56, au second conducteur 544 du second tronçon 54. Les extrémités 5241 et 5441 des tronçons 524 et 544 sont laissées en l'air.
D'un point de vue électrique et comme l'illustre la figure 6A, en supposant les conducteurs des paires 3 et 5 de même longueur, la paire 5 revient à une connexion en série d'un élément inductif de valeur L0 avec un élément capacitif de valeur CO/4, où L0 représente l'inductance correspondant à l'association des tronçons de conducteurs 522 et 542 et C0 l'ensemble des capacités internes (entre les conducteur 522 et
524 et entre les conducteurs 542 et 544) .
L'impédance d'une paire de tronçons dans ce mode de réalisation est Z = jLOCO 1/j (CO/4) (û
D'un point de vue électrique, deux paires de tronçons 3 en série sont équivalentes à une paire de tronçons 5 de longueur double.
Les longueurs seront adaptées à la fréquence de travail de l'antenne pour que chaque paire de tronçons respecte l'accord, c'est-à-dire que LCCû^ = 1. On voit que l'on peut donc jouer en fonction de la distribution des types de paire entre les paires 3 et 5 sur les longueurs des éléments conducteurs et les valeurs de capacité linéique entre les deux conducteurs des tronçons. Les valeurs des éléments capacitifs ne sont désormais plus négligeables et l'antenne est moins sensible aux perturbations de son environnement.
Former une antenne avec plusieurs paires de tronçons du type des figures 5 et 6 permet de fractionner le circuit électrique et évite les éléments inductifs de trop grande longueur dans lequel le courant circulant le long du circuit de boucle inductive ne parviendrait pas à avoir une amplitude et une phase homogènes le long du circuit. En effet, la connexion des paires entre-elles revient à connecter en série plusieurs circuits résonants de même fréquence de résonnance. La longueur des antennes inductives n'est désormais plus limitée.
Les différentes paires de tronçons n'ont pas néces¬ sairement les mêmes longueurs, pourvu que chaque paire respecte, le cas échéant avec l'interposition d'un condensateur connecté entre deux conducteurs au niveau d'une jonction entre deux paires, la relation de résonance.
La figure 7 représente un mode de réalisation d'une antenne inductive et de circuits d'excitation et de réglage. L'antenne comporte ici trois paires 3 du premier type.
Le circuit d'excitation 18 est un transformateur haute fréquence dont le primaire 182 reçoit un signal d'excitation du générateur haute fréquence 12 (figure 1) et dont les deux bornes du secondaire 184 sont reliées aux bornes 42 et 44 de deux paires voisines en lieu et place de leur interconnexion 4. L'enroulement secondaire forme donc cette connexion entre ces deux paires. Le transformateur sera de préférence choisi pour ramener côté secondaire une inductance négligeable à la fréquence de travail devant la valeur L0, ce qui est par exemple le cas lorsque le couplage est proche de 1.
Par ailleurs, un circuit de réglage 16 connecte les extrémités libres 3241 et 3441 des conducteurs 324 et 344 de ces deux paires qui se trouvent donc reliées. Ce circuit 16 est, dans l'exemple de la figure 7, un circuit résistif (résistance R4) et capacitif (condensateur C4) . Le rôle du condensateur C4 est d'ajuster la fréquence de résonance de l'antenne. Le rôle de la résistance R4 est de régler le facteur de qualité Q de l'antenne à une valeur choisie, par exemple, pour ajuster la bande passante.
Des condensateurs peuvent être intercalés entre différentes paires, connectés entre les éléments conducteurs d'un même tronçon, entre éléments conducteurs laissés libres (ici les âmes des tronçons coaxiaux) et le point de connexion 42 ou 44 (ici les tresses des tronçons coaxiaux) , ou entre les conducteurs laissés libres des tronçons interconnectés de chaque paire, pour diminuer la fréquence de résonnance.
On pourra également réduire la longueur de l'élément conducteur 324 ou 344 laissé libre (ici les âmes) de façon à réduire la capacité totale du tronçon correspondant pour augmenter la fréquence de résonance.
De façon similaire, des éléments résistifs pourront être connectés entre les extrémités libres des éléments conducteurs entre deux paires pour ajuster et abaisser le facteur de qualité de l'antenne ainsi constituée. Des éléments résistifs peuvent être également insérés en lieu et place d'une interconnexion 4 entre deux paires pour abaisser et ajuster le facteur de qualité.
La forme à donner aux différents tronçons n'est pas nécessairement rectiligne. Comme l'illustre la figure 7, les tronçons peuvent suivre des tracés divers. Ainsi, l'antenne fermée de l'invention peut suivre le tracé d'un cadre, effectuer des boucles, suivre une forme arrondie, suivre des formes dans les trois dimensions de l'espace, etc.
Dans les modes de réalisation ci-dessus, les circuits de réglage ont été illustrés avec une connexion entre les paires. On notera qu'en variante et dans le cas de paires du second type (5) , de tels circuits pourraient être insérés au sein même des paires de tronçons. Dans ce cas, pour l'intro- duction d'un condensateur, celui-ci relie les deux extrémités libres non interconnectées des éléments 522 et 542.
Des éléments résistifs peuvent également être insérés en lieu et place des connexions entre conducteurs des deux tronçons d'une même paire (du premier type 3 et du second type 5) au niveau de la jonction 36 et 56 pour abaisser le facteur de qualité .
Les figures 8A, 8B et 9 représentent des paires de tronçons conducteurs selon un autre mode de réalisation de la présente invention. Ce mode de réalisation illustre que des paires de tronçons conducteurs peuvent être réalisées aux moyens de conducteurs torsadés plutôt qu'aux moyens de tronçons coaxiaux.
Les figures 8A et 8B représente deux modes de réalisation d'une paire 3 de tronçons du premier type.
En figure 8A, deux tronçons de fils torsadés sont interconnectés de façon similaire à celle décrite en relation avec les tronçons de câble coaxial .
La figure 8B représente un autre mode de réalisation d'une paire de tronçons à interconnexion croisée dans lequel le croisement est en fait obtenu en inversant le conducteur sur lequel est connectée la borne de sortie (par exemple 44) par rapport à celui sur lequel est connectée la borne d'entrée (par exemple 42), les tronçons conducteurs n'étant pas interrompus à l'intérieur de la paire.
La figure 9 représente un mode de réalisation d'une paire 5 de tronçons 52 et 54 du second type, réalisé par des conducteurs torsadés .
Selon encore un autre mode de réalisation non repré¬ senté, les paires de tronçons sont réalisées avec des conducteur non torsadés, blindés ou non.
Selon encore un autre mode de réalisation non représenté, les paires de tronçons sont réalisées par des pistes déposées sur un substrat isolant.
Une antenne telle que décrite ci-dessus peut également être définie comme comportant au moins deux sous-ensembles de forme longiligne (3, 5, 3') géométriquement bout à bout et comportant chacun, suivant leur longueur, un premier et un second élément conducteurs parallèles et isolés l'un de l'autre, et à chaque extrémité, en connexion avec le premier élément conducteur, une unique borne de raccordement électrique au sous- ensemble voisin, le second conducteur n'étant pas raccordé électriquement, dans laquelle tout ou partie des sous-ensembles sont :
d'un premier type dans lequel chacun des premier et second conducteurs est interrompu approximativement en son milieu et reconnecté à l'autre conducteur du sous-ensemble ; ou d'un second type dans lequel le premier conducteur est interrompu approximativement en son milieu, le second conducteur n'étant pas interrompu.
Avec une telle définition, un élément conducteur est, dans le cas d'une connexion croisée (figures 3, 5 et 8A) formé de deux portions électriquement en série de fils conducteurs (âme ou tresse) différents du câble utilisé de sorte que chaque borne de raccordement est connectée au conducteur de même nature (tresse ou âme) du sous-ensemble tout en étant non connectée électriquement à l'autre borne.
A titre d'exemple particulier de réalisation, on pourra former les tronçons en découpant des lignes coaxiales usuelles. Il en existe couramment avec des impédances caractéristiques de 50, 75 et 93 ohms dont les valeurs de capacité linéiques sont respectivement 100 pF/m, 60 pF/m et 45 pF/m. Par exemple, avec un câble coaxial 50 ohms, on peut obtenir dans l'exemple d'une connexion croisée, des inductances L0 de l'ordre du μΗ.
Selon un autre exemple particulier utilisant des conducteurs gainés (torsadés ou non) , on trouve des câbles dont la capacité linéique entre conducteurs est de l'ordre de 30 à 40 pF/m. Avec de tels câbles on peut, par exemple, obtenir des inductances L0 d'une valeur comprise entre environ 2 et 3 μΗ. La figure 10 est une représentation schématique d'une antenne selon un autre mode de réalisation. Comme dans les autres modes de réalisation, l'antenne comporte au moins deux paires (du premier type 3, figure 5 ou du second type 5, figure 6) de tronçons, formés chacun d'éléments conducteurs parallèles et isolés l'un de l'autre. Dans l'exemple de la figure 10, on suppose des paires de tronçons de câble coaxial . Cette structure est complétée par une demi-paire additionnelle constituée de deux éléments conducteurs du premier type 32, 34 ou du second type 52, 54. Le cas échéant, la demi-paire n'est pas en terminaison de l'antenne mais est intercalée entre deux paires. La présence de la demi-paire supplémentaire peut servir à ajuster la longueur de l'antenne.
La figure 11 est une représentation schématique d'une variante selon laquelle deux segments 61 et 63 de câble coaxial sont disposés mécaniquement côte à côte en parallèle et leurs tresses sont connectées électriquement l'une à l'autre, au moins aux deux extrémités pour former un seul premier élément conducteur (connexion 67) . Les âmes sont connectées électriquement pour former un seul second élément conducteur (connexion 65 à une des extrémités) . Chaque élément du type illustré en figure 11 constitue un tronçon 32, 34, 52 ou 54 de la structure d'antenne. Un avantage du tronçon formé par l'assemblage des segments de la figure 11 est d'augmenter la capacité linéique du tronçon, entre le premier élément conducteur et le second élément conducteur. Ceci permet de réduire la longueur nécessaire d'une paire pour une même fréquence de résonance et donc de bénéficier d'une plus grande souplesse sur la géométrie de l'antenne.
Dans la réalisation d'antenne par des tronçons coaxiaux, on tire plus profit de la capacité entre le blindage et l'âme conductrice pour réaliser des tronçons inductifs et capacitifs, ayant une capacité plus élevée (donc pouvant être plus court pour une même fréquence) que dans une réalisation à élément filaires. Un avantage des modes de réalisation gui ont été décrits est qu'ils permettent la réalisation d'antennes de grandes dimensions pour des applications à des fréquences de résonance supérieures au MHz (typiquement entre 10 et 100 MHz) . On peut ainsi créer des antennes sur des portiques, des comptoirs, etc. tout en ayant une circulation de courant homogène le long de la boucle pour produire le champ voulu.
A titre d'exemple particulier de réalisation, une antenne adaptée à un fonctionnement à une fréquence de 13,56 Mhz peut être réalisée sous la forme d'une boucle rectangulaire d'environ 87 cm par 75 cm constituée de trois paires de conducteurs (trois fois deux tronçons) du premier type en câble coaxial 50 ohms, 100 pF/m (diamètre de tresse de 3,5 mm), répartis en deux paires suivant un tracé en L d'environ 1,07 m en longueur déployée (présentant une inductance L0 d'environ 1,22 μΗ ou 1,21 μΗ en tenant compte de la mutuelle inductance) et une paire suivant un tracé en U d'environ 1,08 m en longueur déployée (présentant une inductance L0 d'environ 1,20 μΗ ou 1,19 μΗ en tenant compte des mutuelles inductances). La fréquence de résonnance peut être ajustée par un condensateur variable .
Divers modes de réalisation ont été décrits, diverses variantes et modifications apparaîtront à l'homme de l'art. En particulier, les dimensions à donner aux tronçons conducteurs et aux éléments capacitifs dépendent de l'application et leur calcul est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus et de la fréquence de résonance et de la taille d'antenne souhaitées.

Claims

REVENDICATIONS
1. Antenne inductive comportant au moins deux paires de tronçons (32, 34 ; 52, 54) géométriquement bout à bout et comportant chacun un premier (322, 342 ; 522, 542) et un second (324, 344 ; 524, 544) éléments conducteurs parallèles et isolés l'un de l'autre, chaque paire comportant à chaque extrémité une unique borne de raccordement électrique (42, 44) de son premier élément conducteur à celui de la paire voisine, dans laquelle lesdites paires sont :
d'un premier type (3) dans lequel les éléments conduc- teurs sont interrompus approximativement en leur milieu pour définir les deux tronçons, le premier, respectivement second, élément conducteur d'un tronçon étant connecté au second, respectivement premier, élément conducteur de 1 ' autre tronçon de la paire ; ou
d'un second type (5) dans lequel le premier élément conducteur (522, 542) est interrompu approximativement en son milieu pour définir les deux tronçons, le second élément conducteur (524, 544) n'étant pas interrompu.
2. Antenne selon la revendication 1, dans laquelle les tronçons conducteurs sont longilignes, l'antenne formant une boucle de géométrie quelconque dans l'espace.
3. Antenne selon l'une quelconque des revendications précédentes, dans laquelle les longueurs respectives des éléments conducteurs (322, 324, 342, 344 ; 522, 524, 542, 544 ; 322', 324', 342' 344') sont choisies en fonction de la fréquence de résonance de l'antenne.
4. Antenne selon l'une quelconque des revendications précédentes, dans laquelle les longueurs respectives des éléments conducteurs (322, 324, 342, 344 ; 522, 524, 542, 544 ; 322', 324', 342' 344') sont choisies en fonction de la capacité linéique entre les premier et second éléments conducteurs.
5. Antenne selon l'une quelconque des revendications précédentes, dans laquelle au moins un élément capacitif (C4) relie entre eux les seconds éléments conducteurs de paires voisines ou les premier et second éléments conducteurs d'une même paire.
6. Antenne selon l'une quelconque des revendications précédentes, dans laquelle au moins un élément résistif (R4) relie entre eux les seconds éléments conducteurs de paires voisines ou les premier et second éléments conducteurs d'une même paire.
7. Antenne selon l'une quelconque des revendications précédentes, dans laquelle chaque tronçon (32, 34, 52, 54) est un tronçon de câble coaxial .
8. Antenne selon l'une quelconque des revendications 1 à 6, dans laquelle chaque tronçon est formé de deux segments (61, 63) de câble coaxial.
9. Antenne selon l'une quelconque des revendications 1 à 6, dans laquelle les tronçons (32, 34, 52, 54, 32', 34') sont formés d'éléments conducteurs torsadés.
10. Antenne selon l'une quelconque des revendications 1 à 9, comportant en outre une demi-paire formée d'un tronçon de deux éléments conducteurs couplée à au moins une paire.
11. Système de génération d'un champ haute fréquence comportant :
une antenne inductive conforme à l'une quelconque des revendications précédentes ; et
un circuit d'excitation de l'antenne par un signal haute fréquence .
12. Système selon la revendication 11, dans lequel ledit circuit d'excitation comporte un transformateur haute fréquence (18) dont un enroulement secondaire est intercalé entre les premiers éléments conducteur de deux paires voisines de l'antenne.
PCT/FR2011/051346 2010-06-15 2011-06-14 Antenne haute frequence WO2011157942A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2012014753A MX2012014753A (es) 2010-06-15 2011-06-14 Antena de alta frecuencia.
NZ605462A NZ605462A (en) 2010-06-15 2011-06-14 High-frequency antenna
RU2013101586/28A RU2566608C2 (ru) 2010-06-15 2011-06-14 Высокочастотная антенна
AU2011266870A AU2011266870B2 (en) 2010-06-15 2011-06-14 High-frequency antenna
ES11735491.0T ES2483146T3 (es) 2010-06-15 2011-06-14 Antena de alta frecuencia
CN201180039130.0A CN103069649B (zh) 2010-06-15 2011-06-14 高频天线
JP2013514765A JP5697827B2 (ja) 2010-06-15 2011-06-14 高周波アンテナ
BR112012032262A BR112012032262A2 (pt) 2010-06-15 2011-06-14 antena de alta freqüência
PL11735491T PL2583353T3 (pl) 2010-06-15 2011-06-14 Antena wysokiej częstotliwości
EP11735491.0A EP2583353B1 (fr) 2010-06-15 2011-06-14 Antenne haute frequence
MA35552A MA34374B1 (fr) 2010-06-15 2011-06-14 Antenne haute frequence
CA2805083A CA2805083C (fr) 2010-06-15 2011-06-14 Antenne haute frequence
US13/704,566 US9362622B2 (en) 2010-06-15 2011-06-14 High-frequency antenna
TNP2012000604A TN2012000604A1 (fr) 2010-06-15 2012-12-14 Antenne haute frequence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054724 2010-06-15
FR1054724A FR2961354B1 (fr) 2010-06-15 2010-06-15 Antenne haute frequence

Publications (1)

Publication Number Publication Date
WO2011157942A1 true WO2011157942A1 (fr) 2011-12-22

Family

ID=43478670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051346 WO2011157942A1 (fr) 2010-06-15 2011-06-14 Antenne haute frequence

Country Status (17)

Country Link
US (1) US9362622B2 (fr)
EP (1) EP2583353B1 (fr)
JP (1) JP5697827B2 (fr)
CN (1) CN103069649B (fr)
AU (1) AU2011266870B2 (fr)
BR (1) BR112012032262A2 (fr)
CA (1) CA2805083C (fr)
CL (1) CL2012003549A1 (fr)
ES (1) ES2483146T3 (fr)
FR (1) FR2961354B1 (fr)
MA (1) MA34374B1 (fr)
MX (1) MX2012014753A (fr)
NZ (1) NZ605462A (fr)
PL (1) PL2583353T3 (fr)
RU (1) RU2566608C2 (fr)
TN (1) TN2012000604A1 (fr)
WO (1) WO2011157942A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016246A1 (fr) * 2014-01-06 2015-07-10 Commissariat Energie Atomique Antenne haute frequence
WO2018055141A1 (fr) * 2016-09-23 2018-03-29 Eliot Innovative Solutions S.A.S. Capteur d'identification pour ouvrages enfouis à grande profondeur

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961353B1 (fr) 2010-06-15 2013-07-26 Commissariat Energie Atomique Antenne pour milieu humide
FR2987904B1 (fr) 2012-03-07 2014-03-21 Commissariat Energie Atomique Dispositif d'evaluation de la distance entre une etiquette rfid et une interface
US9651706B2 (en) 2015-05-14 2017-05-16 Halliburton Energy Services, Inc. Fiberoptic tuned-induction sensors for downhole use
GB2554607A (en) * 2015-07-22 2018-04-04 Halliburton Energy Services Inc Electromagnetic monitoring with formation-matched resonant induction sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3140319A1 (de) * 1981-10-10 1983-04-21 Klaus 3300 Braunschweig Münter Elektrisch abgeschirmte breitbandantenne zur phasenrichtigen erfassung der magnetischen komponente eines elektromagnetischen wechselfeldes
US5258766A (en) 1987-12-10 1993-11-02 Uniscan Ltd. Antenna structure for providing a uniform field

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4415243Y1 (fr) 1966-08-13 1969-07-01
SU1705928A1 (ru) * 1989-04-25 1992-01-15 Радиоастрономический институт АН УССР Многочастотна малогабаритна антенна
US6028558A (en) 1992-12-15 2000-02-22 Van Voorhies; Kurt L. Toroidal antenna
KR0148027B1 (ko) * 1993-10-21 1998-08-17 구관영 자기 정합형 복사소자를 사용한 콜리니어 어레이 안테나
RU2142182C1 (ru) * 1995-03-14 1999-11-27 Анненков Владимир Владимирович Магнитная антенна
US6847210B1 (en) 1999-12-17 2005-01-25 Fonar Corporation MRI antenna
DE60113788T2 (de) 2000-12-12 2006-08-10 Matsushita Electric Industrial Co., Ltd., Kadoma Ringresonator und Antenne
US6630910B2 (en) 2001-10-29 2003-10-07 Marconi Communications Inc. Wave antenna wireless communication device and method
US6812707B2 (en) 2001-11-27 2004-11-02 Mitsubishi Materials Corporation Detection element for objects and detection device using the same
US6771227B2 (en) * 2002-09-19 2004-08-03 Antenniques Corporation Collinear antenna structure
JP4071672B2 (ja) 2003-05-01 2008-04-02 株式会社東芝 アンテナ装置
ES2235623B1 (es) 2003-09-25 2006-11-01 Universitat Autonoma De Barcelona Filtros y antenas de microondas y milimetricas basados en resonadores de anillos abiertos y en lineas de transmision planares.
US20080048867A1 (en) 2006-01-18 2008-02-28 Oliver Ronald A Discontinuous-Loop RFID Reader Antenna And Methods
CN1996666A (zh) * 2006-12-28 2007-07-11 四川大学 一种非均匀辐射单元结构的同轴缝隙天线
ATE508493T1 (de) 2007-01-12 2011-05-15 Aida Ct S L Eigenresonante elektrische kleine antenne
JP5048012B2 (ja) 2008-05-12 2012-10-17 日本アンテナ株式会社 コーリニアアンテナ
JP5301349B2 (ja) * 2009-05-15 2013-09-25 日本アンテナ株式会社 コーリニアアンテナ
CN101651258B (zh) * 2009-09-16 2013-09-25 泉州佳信天线有限公司 宽带全向天线的改进结构
FR2961353B1 (fr) 2010-06-15 2013-07-26 Commissariat Energie Atomique Antenne pour milieu humide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3140319A1 (de) * 1981-10-10 1983-04-21 Klaus 3300 Braunschweig Münter Elektrisch abgeschirmte breitbandantenne zur phasenrichtigen erfassung der magnetischen komponente eines elektromagnetischen wechselfeldes
US5258766A (en) 1987-12-10 1993-11-02 Uniscan Ltd. Antenna structure for providing a uniform field

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. H. DUNCAN: "Analysis of the Moebius Loop Magnetic Field Sensor", IEEE TRANSACTION ON ELECTROMAGNETIC COMPATIBILITY, May 1974 (1974-05-01)
PAUL H DUNCAN: "Analysis of the Moebius Loop Magnetic Field Sensor", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. EMC-10, no. 2, 1 May 1974 (1974-05-01), pages 83 - 89, XP011164638, ISSN: 0018-9375 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016246A1 (fr) * 2014-01-06 2015-07-10 Commissariat Energie Atomique Antenne haute frequence
WO2018055141A1 (fr) * 2016-09-23 2018-03-29 Eliot Innovative Solutions S.A.S. Capteur d'identification pour ouvrages enfouis à grande profondeur
FR3056794A1 (fr) * 2016-09-23 2018-03-30 Eliot Innovative Solutions Capteur d'identification pour ouvrages enfouis a grande profondeur
US11037041B2 (en) 2016-09-23 2021-06-15 Elydan Identification sensor for works buried at great depth
RU2754599C2 (ru) * 2016-09-23 2021-09-03 Элидан Датчик для идентификации конструкций, находящихся на большой глубине

Also Published As

Publication number Publication date
MX2012014753A (es) 2013-04-03
MA34374B1 (fr) 2013-07-03
CN103069649A (zh) 2013-04-24
JP2013529043A (ja) 2013-07-11
CA2805083C (fr) 2018-05-01
RU2013101586A (ru) 2014-07-20
CL2012003549A1 (es) 2013-07-12
BR112012032262A2 (pt) 2016-11-29
CN103069649B (zh) 2015-10-14
US9362622B2 (en) 2016-06-07
FR2961354A1 (fr) 2011-12-16
US20130207857A1 (en) 2013-08-15
RU2566608C2 (ru) 2015-10-27
JP5697827B2 (ja) 2015-04-08
TN2012000604A1 (fr) 2014-04-01
EP2583353B1 (fr) 2014-05-14
AU2011266870A1 (en) 2013-01-24
CA2805083A1 (fr) 2011-12-22
NZ605462A (en) 2014-07-25
PL2583353T3 (pl) 2014-10-31
ES2483146T3 (es) 2014-08-05
AU2011266870B2 (en) 2016-05-05
FR2961354B1 (fr) 2012-06-01
EP2583353A1 (fr) 2013-04-24

Similar Documents

Publication Publication Date Title
EP2583353B1 (fr) Antenne haute frequence
EP2377200B1 (fr) Circuit d'antenne rfid
CA2805082C (fr) Antenne pour milieu humide
CA2752609C (fr) Carte nfc pour dispositif portatif
FR2886466A1 (fr) Entite electronique a antenne magnetique
EP2218135B1 (fr) Antenne inductive large bande pour systemes de communication sans contact
EP2515446A1 (fr) Récepteur alimenté par une interface sans fil de type inductif
EP1897170A1 (fr) Entite electronique a antenne magnetique
WO2018193199A1 (fr) Dispositif d'emission reception radiofrequence
FR2828016A1 (fr) Antennes du genre boucle
FR3016246A1 (fr) Antenne haute frequence
FR3036541A1 (fr) Antenne a circuits rlc entremeles
FR3056831B1 (fr) Antenne a tiges ferromagnetiques bobinees et couplees entre elles
EP3942649B1 (fr) Antenne directive compacte, dispositif comportant une telle antenne
Vera Analysis and exploitation of non-linearities in passive RFID UHF systems
WO2009004128A1 (fr) Antenne miniaturisee pour utilisation grand public

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039130.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11735491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012003549

Country of ref document: CL

Ref document number: MX/A/2012/014753

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013514765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2805083

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013101586

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011735491

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011266870

Country of ref document: AU

Date of ref document: 20110614

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13704566

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012032262

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012032262

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121217