WO2011157907A1 - Method for preparing trifluoroethylene - Google Patents

Method for preparing trifluoroethylene Download PDF

Info

Publication number
WO2011157907A1
WO2011157907A1 PCT/FR2011/000314 FR2011000314W WO2011157907A1 WO 2011157907 A1 WO2011157907 A1 WO 2011157907A1 FR 2011000314 W FR2011000314 W FR 2011000314W WO 2011157907 A1 WO2011157907 A1 WO 2011157907A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
hydroxide
weight
process according
carried out
Prior art date
Application number
PCT/FR2011/000314
Other languages
French (fr)
Inventor
Dominique Guillet
Michel Devic
Gérard Guilpain
Thierry Lannuzel
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2011157907A1 publication Critical patent/WO2011157907A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • Hydrofluorocarbons and in particular hydrofluoroolefins (HFOs) are compounds known for their properties as coolants and heat transfer fluids, fire extinguishers, propellants, foaming agents, blowing agents, gaseous dielectrics, polymerization medium or monomer, carrier fluids, agents for abrasives, drying agents and fluids for power generation unit.
  • HFCs chlorofluorocarbons
  • HCFCs hydrofluorofluorocarbons
  • HFOs hydrofluoroolefins
  • Trifluoroethylene is particularly known as a monomer or comonomer for the manufacture of fluoropolymers having remarkable characteristics, excellent chemical resistance, good thermal resistance and electrical properties, electroactive polymers (piezoelectric, pyroelectric, optoelectric, electrostrictive)
  • CFC 113 CCI 2 F-CCIF 2
  • a catalyst a catalyst for the synthesis of trifluoroethylene using as raw materials CFCs.
  • CFC 113 CCI 2 F-CCIF 2
  • the synthesis is based on a gas phase process at a temperature between 250 and 500 ⁇ .
  • Nickel-bearing catalysts, nickel-chromium mixed oxides, and supported rhodium may be mentioned as catalysts. This path has been widely explored and developed, in particular by the companies DuPont and Solvay.
  • CFC 113 chlorotrifluoroethylene
  • CFTE chlorotrifluoroethylene
  • catalysts based on Group VIII metals of the periodic table such as platinum or palladium.
  • French patent BF 2710 054 (1993) in the name of the applicant describes a process for the manufacture of TrFE in which R-134a is passed, diluted in nitrogen, at a high temperature of between 400 and 600 ° C., on a catalyst. based on aluminum fluoride.
  • PCT Patent Application WO 97/29065 describes the synthesis of TrFE by pyrolysis of R-134a at high temperature, 900 to 1200 ⁇ , in the presence of steam and in the absence of any catalyst.
  • PCT Patent Application WO 2009/010472 A1 describes the synthesis of TrFE from R-134a by passing the latter, diluted in nitrogen, onto a type AIF 3 catalyst deposited with a support having a high specific surface area. (100 to 300 m 2 / g) at a temperature between 300 and 500 * 0.
  • TrFE It is essential for the industrial developments to be able to have low-cost TrFE.
  • the cost of access to the raw material is an important item. The choice of the latter is therefore essential.
  • R-134a has the advantage over other compounds of either CFC or HCFC, the advantage of being widely available and therefore offered at a reasonable price.
  • the object of the present invention is to overcome the above disadvantages by proposing a method for synthesizing TrFE from R-134a that avoids the use of catalysts.
  • This metal hydroxide will preferably be based on alkali or alkaline earth metals.
  • the alkali or alkaline earth hydroxides may generally react on R-134a according to the reaction scheme below.
  • the alkali hydroxides that can be used in the process mention may in particular be made of LiOH, NaOH and KOH. NaOH and KOH, and more preferably KOH, are preferably selected.
  • the alkaline earth hydroxides that can be used in the process mention may especially be made of Mg (OH) 2 and Ca (OH) 2 . We will preferably choose Ca (OH) 2 .
  • M represents the metal of the hydroxide used and n is the number representing its valence, ie 1 for the alkalis and 2 for the alkaline earths.
  • the process of the invention may be conducted in "liquid phase” or "gaseous” phase.
  • reaction in liquid phase it should be understood that the reaction is conducted in the presence of a metal hydroxide, preferably alkali or alkaline earth, contained in a liquid medium even if the fluorinated reagent is in the reaction medium in the gas phase.
  • This hydroxide will be either i) as an aqueous solution, or ii) in the molten state.
  • reaction in the gas phase it should be understood that the reaction is conducted in the presence of a metal hydroxide, preferably alkali or alkaline earth metal, in solid form.
  • liquid phase or gaseous phase depends on the nature of the hydroxide used and thermodynamic conditions, including temperature, used for the implementation of the process.
  • thermodynamic conditions including temperature
  • type of hydroxide and operating conditions will be dictated by the economic conditions and by a conduct as easy as possible in terms of process.
  • the liquid phase reaction comprises contacting the R-134a gas with the liquid containing the hydroxide.
  • the hydroxide content of the liquid medium which will be either a solution or molten hydroxide in the case where the reaction temperature is substantially higher than its melting point, is generally between 20 and 99% by weight. and preferably between 50 and 96%.
  • the temperature of the mixture is maintained between 120 and 400 ° C and preferably between 250 and 350 ° C.
  • the reaction is conducted at a pressure between 1 and 10 bars absolute.
  • the use of the alkali metal hydroxides is preferred because of their high solubility in water.
  • the choice is made for cost reasons on soda or potash, potash being particularly preferred because it gives rise to the formation of hydrates which have a relatively low melting point.
  • the mixture of water and hydroxide in the liquid phase, can be obtained from the hydrates of the hydroxides.
  • potash it corresponds to the formula KOH, xH 2 0, x being between 1 and 2 inclusive.
  • the contact time between the reagents is an important parameter. Indeed, the contact time must be sufficient to allow a good conversion (converted R-134a content) to be obtained without being too long to avoid a degradation of the olefin that, like any olefin, is sensitive to high temperatures. which can cause its decomposition and the formation of tars (heavy) and light ones.
  • the contact time parameter between the gas molecules and the reagent within the liquid will be related to the dispersion of the gas bubbles in the liquid reagent, their average size and their reaction time. stay in the liquid. This residence time and the size of the bubbles can be adjusted by the gas injection speed, hourly flow per unit volume, and the stirring force applied to the liquid medium.
  • the reaction with an alkaline hydroxide produces, in addition to the TrFE, an alkaline fluoride (such as KF, NaF, LiF, etc.).
  • an alkaline fluoride such as KF, NaF, LiF, etc.
  • the alkaline fluoride produced may, in a subsequent step, be contacted with calcium hydroxide to regenerate the alkaline hydroxide, then reusable, and precipitate calcium fluoride, the latter product having the advantage of being easily recoverable as a raw material for the synthesis of HF for example.
  • the dehydrofluorination reaction in the liquid phase can be carried out in any type of reactor known to those skilled in the art.
  • a stirred reactor, a static mixer, a reactive column, a nozzle or simply bubbling R-134a into the liquid, for example the mixture of water and hydroxide, can be used.
  • the dehydrofluorination reaction in the gaseous phase in the presence of a solid reagent is generally carried out at a temperature such that the water formed during the reaction is removed, partly or wholly, from the reaction medium by entrainment with the flow. gas from the reactor comprising TrFE. This temperature is between 150 and 450 ° C, and preferably between 300 and 420.
  • the dehydrofluorination reaction in the gas phase can be carried out at atmospheric pressure, but it is also possible to work at a pressure greater than atmospheric pressure, generally between 1 and 10 bar absolute and preferably between 1 and 4 bar.
  • the solid hydroxide will be used in powder form or preferably in the form of granules whose granulometry will be chosen to give the solid reagent a high porosity.
  • the gas-solid reactions are favored by a high porosity of the solid reagent which makes it possible to increase the contact surface between the gaseous reagent and the solid hydroxide reagent and thus increase the conversion for the same contact time.
  • the search for porosity that is too high can lead to problems with the process, for example due to the attrition of the granules leading to an increase in pressure drops.
  • the preferred solid reactant in this embodiment of the process is formed from calcium hydroxide. Its content of Ca (OH) 2 is at least 67% by weight. In addition, this solid reagent may also contain water in substantial proportion by weight. T FR2011 / 000314
  • the solid reagent contains, for the most part, calcium hydroxide and will advantageously also comprise other alkali metal and / or alkaline earth metal hydroxides, such as NaOH, KOH and g (OH). 2 and Ba (OH) 2 .
  • Soda lime which is calcium hydroxide at a content generally of between 80 and 95% by weight and containing a few percent by weight of NaOH and KOH, can advantageously be used as solid reagent.
  • the KOH content in the solid reactant is preferably between 0.1 and 5% by weight and advantageously between 2 and 4% by weight.
  • the NaOH content in the solid reactant is preferably between 0.1 and 5% by weight and advantageously between 1 and 3% by weight.
  • the amount of water (moisture content) present in the solid reagent is preferably between 1 and 20% by weight and advantageously between 7 and 20% by weight and more particularly between 10 and 15% by weight.
  • the solid reagent comprising calcium hydroxide, may be used in powder form or preferably in the form of granules giving the reagent a high porosity. A granulometry of granules of between 1 and 10 mm is preferred.
  • soda lime in particular that marketed by the company GRACE under the trademark SODASORB HP.
  • This preferred variant of the process of the invention is preferably carried out at a temperature of between 150 and 450 ° C., before advantageously between 300 and 420 ° C.
  • the dehydrofluorination reaction can be carried out at atmospheric pressure, but it is also possible to work at a pressure greater than atmospheric pressure, for example between 1 and 10 bar absolute.
  • the reaction in the gaseous phase can be carried out according to the usual means used in the industry to carry out a reaction between a gas and a solid, for example in a fluidized bed reactor with the solid reagent in fine powder or in a fixed bed reactor or in a rotary reactor of the cement kiln type with the solid reagent in the form of a porous granule.
  • the process is preferably carried out semi-continuously in one or more fixed bed tubular reactors operating alternately, for example according to the technology used for the treatment of gases by molecular sieves.
  • the solid reagent partially or completely converted into calcium fluoride is discharged from the reactor. Calcium fluoride, after possible separation of the unreacted calcium hydroxide, can be used as raw material in the manufacture of hydrofluoric acid.
  • the process according to the present invention may comprise the recycling of the gaseous reactants from the unreacted reactor to the dehydrofluorination stage, the separation being able to be carried out during a distillation stage, or by simple preferential condensation, facilitated by the large difference in boiling point between R-134a and TrFE.
  • This recycling makes it possible at the same time to increase the overall yield of the conversion of R-134a into TrFE while allowing the reaction medium to be maintained at the temperature level defined for the reaction by "absorbing" the heat produced during the exothermic synthesis reactions. .
  • the process according to the present invention can be carried out in the presence of a reaction-inert gas, for example nitrogen or helium.
  • a reaction-inert gas for example nitrogen or helium.
  • reaction zone It may be advantageous to carry out the reaction by introducing into the reaction zone a stream of water vapor independently of the water produced by the reaction or which may come from the solid reagent.
  • One of the advantages of the method of the invention is that it can be conducted in a continuous or semi-continuous mode.
  • soda lime of the following composition are charged by weight 1% NaOH; 2% KOH; H 2 O 13.5%; Ca (OH) 2 83.5% in the form of granules with a particle size of between 2.4 and 4.8 mm
  • the reactant flow rate at the inlet of the reactor is 0.7 mole / h of HFC-134a and 0.24 mole / h of an inert gas (nitrogen).
  • the tube is heated to 330 ° C.
  • the reactor reagent temperature reaches 383 ° C and the reaction gases are analyzed at the dryer outlet. Their content is 9.4 mol% in TrFE and 61.1% in R-134a.
  • EXAMPLE 3 In the same apparatus as in Example 1, but limiting the reaction zone by loading the ends of the tube with an inert and refractory solid body such as corundum, 385 g of sodium hydroxide of the following composition by weight are charged NaOH 1% ; 2% KOH; H 2 O 13.5%; Ca (OH) 2 83.5%, in the form of granules with a particle size of between 2.4 and 4.8 mm.
  • the tube is heated to 365 ° C. and a flow rate of 0.66 mol / h of HFC-134a and a flow rate of 2.4 mol / h of water are introduced.
  • the temperature under reactants in the reactor reaches 410 ° C.
  • the gases leaving the tube are analyzed. Their content is 19.2 mol% in TrFE and 74.6% in R-134a, which gives an overall conversion rate of R-134a of 25.3%.
  • a stainless steel cylindrical reactor 41 equipped with a turbine-type stirring, surrounded by a heating cloth and placed on a hot plate, is prepared 2.4 I of 75% potassium hydroxide solution.
  • the reactor is heated to 150 ° C. and the stirring is adjusted to 800 ° C. rev / min.
  • the introduction of R-134a is then started at the nominal flow rate of 1 mol / h.
  • the gases from the reactor are passed through a dryer and then sampled for analysis as in Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention relates to a method for manufacturing trifluoroethylene F1123 (CF2=CHF), including at least one step consisting of reacting R-134a (CF3-CFH2) with a metal hydroxide, preferably an alkaline or alkaline-earth hydroxide. The reaction is carried out either in the liquid phase, preferably with an alkaline hydroxide, or in the gaseous phase with a solid reactant, preferably an alkaline-earth hydroxide, at a temperature of between 120 and 450°C and at a pressure of between 1 and 10 bar absolute.

Description

Procédé de préparation de trifluoroéthylène  Process for the preparation of trifluoroethylene
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
L'invention a pour objet un procédé de préparation du trifluoroéthylène F1 123 (CF2=CHF), généralement dénommé TrFE ou VF3 à partir du HFC-134a, tétrafluoroéthane de formule CF3-CFH2, dénommé également R-134a dans la suite du texte. The invention relates to a process for the preparation of trifluoroethylene F1 123 (CF 2 = CHF), generally called TrFE or VF3 from HFC-134a, tetrafluoroethane of formula CF 3 -CFH 2 , also called R-134a in the following of text.
ARRIERE-PLAN TECHNOLOGIQUE BACKGROUND
Les hydrofluorocarbones (HFC) et en particulier les hydrofluorooléfines (HFOs) sont des composés connus pour leurs propriétés de réfrigérants et fluides caloporteurs, extinctrices, propulseurs, agents moussants, agents gonflants, diélectriques gazeux, milieu de polymérisation ou monomère, fluides supports, agents pour abrasifs, agents de séchage et fluides pour unité de production d'énergie. A la différence des CFC (chlorofluorocarbones) et des HCFC (hydrochlorofluorocarbones), qui sont potentiellement dangereux pour la couche d'ozone, les HFOs ne contiennent pas de chlore et donc ne posent pas de problème pour la couche d'ozone.  Hydrofluorocarbons (HFCs) and in particular hydrofluoroolefins (HFOs) are compounds known for their properties as coolants and heat transfer fluids, fire extinguishers, propellants, foaming agents, blowing agents, gaseous dielectrics, polymerization medium or monomer, carrier fluids, agents for abrasives, drying agents and fluids for power generation unit. Unlike CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), which are potentially harmful to the ozone layer, HFOs do not contain chlorine and therefore do not pose a problem for the ozone layer.
Le trifluoroéthylène est notamment connu comme monomère ou co-monomère pour la fabrication de polymères fluorés présentant des caractéristiques remarquables, une excellente tenue chimique, une bonne résistance thermique ainsi que des propriétés électriques, polymères électroactifs (piézoélectriques, pyroélectriques, optoélectriques, électrostrictifs) Trifluoroethylene is particularly known as a monomer or comonomer for the manufacture of fluoropolymers having remarkable characteristics, excellent chemical resistance, good thermal resistance and electrical properties, electroactive polymers (piezoelectric, pyroelectric, optoelectric, electrostrictive)
Il existe toute une gamme de procédés de synthèse du trifluoroéthylène utilisant comme matières premières des CFC. On peut citer par exemple la réaction du CFC 113 (CCI2F-CCIF2) avec l'hydrogène en présence d'un catalyseur. La synthèse est fondée sur un procédé en phase gazeuse à une température comprise entre 250 et 500Ό. On peut citer comme catalyseurs le nickel s ur support, les oxydes mixtes nickel-chrome, le rhodium sur support. Cette voie a largement été explorée et développée notamment par les sociétés DuPont et Solvay. On peut en rapprocher la synthèse du trifluoroéthylène par hydrogénolyse du CFC 1 113 (chlorotrifluoroéthylène) généralement dénommé CFTE, en présence de catalyseurs à base de métaux du groupe VIII de la classification périodique tels que le platine ou le palladium. There is a whole range of processes for the synthesis of trifluoroethylene using as raw materials CFCs. For example, the reaction of CFC 113 (CCI 2 F-CCIF 2 ) with hydrogen in the presence of a catalyst can be mentioned. The synthesis is based on a gas phase process at a temperature between 250 and 500Ό. Nickel-bearing catalysts, nickel-chromium mixed oxides, and supported rhodium may be mentioned as catalysts. This path has been widely explored and developed, in particular by the companies DuPont and Solvay. The synthesis of trifluoroethylene can be compared by hydrogenolysis of CFC 113 (chlorotrifluoroethylene) generally referred to as CFTE, in the presence of catalysts based on Group VIII metals of the periodic table such as platinum or palladium.
Pour une large part les procédés de fabrication de l'hydrotrifluoroéthylène font appel à une réaction de déshydrohalogénation des HCFC et HFC. On peut citer à ce propos le brevet de DuPont US 5,750,808 qui vise la déshydrohalogénation du HCFC-133 (CFH2-CF2CI) sur des catalyseurs zéolithes sodium-césium. Cependant, les travaux les plus importants dans cette voie ont porté sur la déshydrohalogénation du R-134a (CF3- CFH2). To a large extent, the processes for producing hydrotrifluoroethylene use a dehydrohalogenation reaction of HCFCs and HFCs. In this regard, mention may be made of DuPont US Pat. No. 5,750,808, which aims to dehydrohalogenate HCFC-133 (CFH 2 -CF 2 CI) on sodium-cesium zeolite catalysts. However, the most important work in this area has been the dehydrohalogenation of R-134a (CF 3 - CFH 2 ).
Le brevet français BF 2710 054 (1993) au nom de la demanderesse décrit un procédé de fabrication du TrFE dans lequel le R-134a est passé, dilué dans l'azote, à haute température comprise entre 400 et 600^, sur un cat alyseur à base de fluorure d'aluminium.  French patent BF 2710 054 (1993) in the name of the applicant describes a process for the manufacture of TrFE in which R-134a is passed, diluted in nitrogen, at a high temperature of between 400 and 600 ° C., on a catalyst. based on aluminum fluoride.
La demande de brevet PCT WO 97/29065 (ICI) décrit la synthèse du TrFE par pyrolyse du R-134a à haute température, 900 à 1200Ό, en pré sence de vapeur d'eau et en l'absence de tout catalyseur.  PCT Patent Application WO 97/29065 (ICI) describes the synthesis of TrFE by pyrolysis of R-134a at high temperature, 900 to 1200Ό, in the presence of steam and in the absence of any catalyst.
La demande de brevet PCT WO 2009/010472 A1 (Solvay) décrit la synthèse du TrFE à partir du R-134a par passage de ce dernier, dilué dans l'azote, sur un catalyseur de type AIF3 déposé support présentant une haute surface spécifique (100 à 300 m2/g) à une température comprise entre 300 et 500*0. PCT Patent Application WO 2009/010472 A1 (Solvay) describes the synthesis of TrFE from R-134a by passing the latter, diluted in nitrogen, onto a type AIF 3 catalyst deposited with a support having a high specific surface area. (100 to 300 m 2 / g) at a temperature between 300 and 500 * 0.
On peut également relever d'autres brevets, tel que par exemple US 6,031 ,141 ou EP 0406748 qui mettent en œuvre des catalyseurs comportant des acides de Lewis. Other patents, such as, for example, US Pat. No. 6,031,141 or EP 0406748, which implement catalysts comprising Lewis acids, may also be mentioned.
Il est essentiel pour les développements industriels de pouvoir disposer de TrFE à prix de revient peu élevé. Le coût d'accès à la matière première est un poste important. Le choix de cette dernière est donc essentiel. Pour la fabrication du TrFE le R-134a présente sur les autres composés soit CFC, soit HCFC, l'avantage d'être largement disponible et donc proposé à un prix raisonnable. It is essential for the industrial developments to be able to have low-cost TrFE. The cost of access to the raw material is an important item. The choice of the latter is therefore essential. For the manufacture of TrFE, R-134a has the advantage over other compounds of either CFC or HCFC, the advantage of being widely available and therefore offered at a reasonable price.
Les procédés de synthèse du TrFE à partir du R-134a décrits dans l'art antérieur présentent des inconvénients. En effet, les procédés utilisant la pyrolyse à très haute température, 1000 et plus, outre le fait qu'ils s ont coûteux en énergie, ne peuvent être menés que dans des conditions difficiles et conduisent à des rendements de conversion peu élevés tout en entraînant la formation de nombreuses impuretés ( faible sélectivité). Les procédés de déshydrohalogénation par voie catalytique présentent l'inconvénient d'utiliser des métaux nobles chers dont la régénération est également très coûteuse pour des taux de conversion relativement faibles. The processes for synthesizing TrFE from R-134a described in the prior art have drawbacks. In fact, the processes using very high temperature pyrolysis, 1000 and more, besides the fact that they are expensive in energy, can be conducted only under difficult conditions and lead to low conversion yields while driving. the formation of many impurities (low selectivity). Catalytic dehydrohalogenation processes have the disadvantage of using expensive noble metals whose regeneration is also very expensive for relatively low conversion rates.
La présente invention a pour but de remédier aux inconvénients précédents en proposant un procédé de synthèse du TrFE à partir du R-134a s'affranchissant de l'utilisation de catalyseurs. The object of the present invention is to overcome the above disadvantages by proposing a method for synthesizing TrFE from R-134a that avoids the use of catalysts.
La présente invention a donc pour objet un procédé de fabrication de trifluoroéthylène F1123 (CF2=CHF) comprenant au moins une étape consistant en une réaction de déshydrofluoration de R-134a (CF3-CFH2) avec un hydroxyde métallique. The subject of the present invention is therefore a method for producing trifluoroethylene F1123 (CF 2 = CHF) comprising at least one step consisting of a dehydrofluorination reaction of R-134a (CF 3 -CFH 2 ) with a metal hydroxide.
Cet hydroxyde métallique sera de préférence à base de métaux alcalins ou alcalino- terreux. This metal hydroxide will preferably be based on alkali or alkaline earth metals.
Les hydroxydes alcalins ou alcalino-terreux pourront généralement réagir sur le R-134a conformément au schéma réactionnel ci-dessous. Parmi les hydroxydes alcalins utilisables dans le procédé on peut notamment citer LiOH, NaOH et KOH. On choisira de préférence NaOH et KOH et de façon plus préférée KOH. Parmi les hydroxydes alcalino-terreux utilisables dans le procédé on peut notamment citer Mg(OH)2 et Ca(OH)2. On choisira de préférence Ca(OH)2. The alkali or alkaline earth hydroxides may generally react on R-134a according to the reaction scheme below. Among the alkali hydroxides that can be used in the process, mention may in particular be made of LiOH, NaOH and KOH. NaOH and KOH, and more preferably KOH, are preferably selected. Among the alkaline earth hydroxides that can be used in the process, mention may especially be made of Mg (OH) 2 and Ca (OH) 2 . We will preferably choose Ca (OH) 2 .
La réaction globale répond au schéma suivant. The overall reaction is as follows.
CF3-CFH +1/n M(OH)n -*CF2=CFH + 1/n MFn CF 3 -CFH + 1 / n M (OH) n - * CF 2 = CFH + 1 / n MF n
où M représente le métal de l'hydroxyde utilisé et n est le nombre représentant sa valence, soit 1 pour les alcalins et 2 pour les alcalino-terreux. where M represents the metal of the hydroxide used and n is the number representing its valence, ie 1 for the alkalis and 2 for the alkaline earths.
Le procédé de l'invention peut être conduit en "phase liquide" ou en phase "gazeuse". Par réaction en phase liquide il faut comprendre que la réaction est conduite en présence d'un hydroxyde métallique, de préférence alcalin ou alcalino-terreux, contenu dans un milieu liquide même si le réactif fluoré est dans le milieu réactionnel en phase gazeuse. Cet hydroxyde sera soit i) sous forme d'une solution aqueuse, soit ii) à l'état fondu. Par réaction en phase gazeuse il faut comprendre que la réaction est conduite en présence d'un hydroxyde métallique, de préférence alcalin ou alcalino-terreux, sous forme solide.  The process of the invention may be conducted in "liquid phase" or "gaseous" phase. By reaction in liquid phase it should be understood that the reaction is conducted in the presence of a metal hydroxide, preferably alkali or alkaline earth, contained in a liquid medium even if the fluorinated reagent is in the reaction medium in the gas phase. This hydroxide will be either i) as an aqueous solution, or ii) in the molten state. By reaction in the gas phase it should be understood that the reaction is conducted in the presence of a metal hydroxide, preferably alkali or alkaline earth metal, in solid form.
Le choix de la voie de mise en œuvre, phase liquide ou phase gazeuse, dépend de la nature de l'hydroxyde utilisé et des conditions thermodynamiques, la température notamment, retenues pour la mise en œuvre du procédé. Le choix du type d'hydroxyde et des conditions opératoires sera dicté par les conditions économiques et par une conduite la plus aisée possible en terme de procédé. The choice of the implementation route, liquid phase or gaseous phase, depends on the nature of the hydroxide used and thermodynamic conditions, including temperature, used for the implementation of the process. The choice of type of hydroxide and operating conditions will be dictated by the economic conditions and by a conduct as easy as possible in terms of process.
La réaction en phase liquide consiste à mettre en contact le R-134a gazeux avec le liquide contenant l'hydroxyde. La teneur en hydroxyde du milieu liquide, qui sera à l'origine soit une solution, soit de l'hydroxyde fondu dans le cas où la température de réaction est sensiblement supérieure à son point de fusion, est généralement comprise entre 20 et 99% poids et de préférence entre 50 et 96%. La température du mélange est maintenue comprise entre 120 et 400"C e t de préférence entre 250 et 350 "C. La réaction est conduite à une pression corn prise entre 1 et 10 bars absolus. The liquid phase reaction comprises contacting the R-134a gas with the liquid containing the hydroxide. The hydroxide content of the liquid medium, which will be either a solution or molten hydroxide in the case where the reaction temperature is substantially higher than its melting point, is generally between 20 and 99% by weight. and preferably between 50 and 96%. The temperature of the mixture is maintained between 120 and 400 ° C and preferably between 250 and 350 ° C. The reaction is conducted at a pressure between 1 and 10 bars absolute.
Pour la réaction en phase liquide, on choisira de préférence l'utilisation des hydroxydes alcalins en raison de leur grande solubilité dans l'eau. Parmi les hydroxydes alcalins le choix se porte pour des raisons de coût sur la soude ou la potasse, la potasse étant particulièrement préférée parce qu'elle donne lieu à la formation d'hydrates qui ont un point de fusion relativement bas. For the liquid phase reaction, the use of the alkali metal hydroxides is preferred because of their high solubility in water. Among the alkali hydroxides the choice is made for cost reasons on soda or potash, potash being particularly preferred because it gives rise to the formation of hydrates which have a relatively low melting point.
Selon un mode de réalisation du procédé de l'invention en phase liquide, le mélange d'eau et d'hydroxyde peut être obtenu à partir des hydrates des hydroxydes. Dans le cas de la potasse, il répond à la formule KOH, xH20 , x étant compris entre 1 et 2 inclus. According to one embodiment of the method of the invention in the liquid phase, the mixture of water and hydroxide can be obtained from the hydrates of the hydroxides. In the case of potash, it corresponds to the formula KOH, xH 2 0, x being between 1 and 2 inclusive.
Comme pour toute réaction chimique où interviennent des facteurs cinétiques et des facteurs thermodynamiques, le temps de contact entre les réactifs est un paramètre important. En effet, le temps de contact doit être suffisant pour permettre l'obtention d'une bonne conversion (taux de R-134a transformé) sans être trop long pour éviter une dégradation de l'oléfine formée qui comme toute oléfine est sensible aux hautes températures qui peuvent engendrer sa décomposition et la formation de goudrons (lourds) et de légers. As with any chemical reaction involving kinetic factors and thermodynamic factors, the contact time between the reagents is an important parameter. Indeed, the contact time must be sufficient to allow a good conversion (converted R-134a content) to be obtained without being too long to avoid a degradation of the olefin that, like any olefin, is sensitive to high temperatures. which can cause its decomposition and the formation of tars (heavy) and light ones.
Pour les procédés en phase liquide avec la potasse notamment, le paramètre temps de contact entre les molécules de gaz et le réactif au sein du liquide sera lié à la dispersion des bulles de gaz au sein du réactif liquide, leur taille moyenne et leur temps de séjour dans le liquide. Ce temps de séjour ainsi que la taille des bulles pourront être ajustés par la vitesse d'injection du gaz, débit horaire par unité de volume, et la force d'agitation appliquée au milieu liquide. 00314 For processes in the liquid phase with potassium hydroxide in particular, the contact time parameter between the gas molecules and the reagent within the liquid will be related to the dispersion of the gas bubbles in the liquid reagent, their average size and their reaction time. stay in the liquid. This residence time and the size of the bubbles can be adjusted by the gas injection speed, hourly flow per unit volume, and the stirring force applied to the liquid medium. 00314
5 5
La réaction avec un hydroxyde alcalin produit, outre le TrFE, un fluorure alcalin (comme KF, NaF, LiF...)■ Dans une variante de mise en œuvre du procédé le fluorure alcalin produit pourra dans une étape ultérieure être mis en contact avec de l'hydroxyde de calcium pour régénérer l'hydroxyde alcalin, alors réutilisable, et précipiter du fluorure de calcium, ce dernier produit présentant l'avantage d'être facilement valorisable comme matière première pour la synthèse de l'HF par exemple. La réaction de déshydrofluoration en phase liquide peut être mise en œuvre dans tout type de réacteur connu de l'homme de l'art. On peut utiliser un réacteur agité, un mélangeur statique, une colonne réactive, une tuyère ou tout simplement faire buller le R-134a dans le liquide, par exemple le mélange d'eau et d'hydroxyde. The reaction with an alkaline hydroxide produces, in addition to the TrFE, an alkaline fluoride (such as KF, NaF, LiF, etc.). In an alternative embodiment of the process, the alkaline fluoride produced may, in a subsequent step, be contacted with calcium hydroxide to regenerate the alkaline hydroxide, then reusable, and precipitate calcium fluoride, the latter product having the advantage of being easily recoverable as a raw material for the synthesis of HF for example. The dehydrofluorination reaction in the liquid phase can be carried out in any type of reactor known to those skilled in the art. A stirred reactor, a static mixer, a reactive column, a nozzle or simply bubbling R-134a into the liquid, for example the mixture of water and hydroxide, can be used.
La réaction de déshydrofluoration en phase gazeuse en présence d'un réactif solide est en général mise en œuvre à une température telle que l'eau formée en cours de réaction est éliminée, en partie ou en totalité, du milieu réactionnel par entraînement avec le flux gazeux issu du réacteur comprenant le TrFE. Cette température est comprise entre 150 et 450° C, et de préférence comp rise entre 300 et 420 . The dehydrofluorination reaction in the gaseous phase in the presence of a solid reagent is generally carried out at a temperature such that the water formed during the reaction is removed, partly or wholly, from the reaction medium by entrainment with the flow. gas from the reactor comprising TrFE. This temperature is between 150 and 450 ° C, and preferably between 300 and 420.
La réaction de déshydrofluoration en phase gazeuse peut être mise en œuvre à pression atmosphérique mais on peut également travailler à une pression supérieure à la pression atmosphérique, généralement comprise entre 1 et 10 bars absolus et de préférence entre 1 et 4 bars. The dehydrofluorination reaction in the gas phase can be carried out at atmospheric pressure, but it is also possible to work at a pressure greater than atmospheric pressure, generally between 1 and 10 bar absolute and preferably between 1 and 4 bar.
L'hydroxyde solide sera mis en œuvre sous forme de poudre ou de préférence sous forme de granulés dont la granulométrie sera choisie pour conférer au réactif solide une porosité élevée. The solid hydroxide will be used in powder form or preferably in the form of granules whose granulometry will be chosen to give the solid reagent a high porosity.
Les réactions gaz-solide sont favorisées par une porosité élevée du réactif solide qui permet d'augmenter la surface de contact entre le réactif gazeux et le réactif hydroxyde solide et donc augmenter la conversion pour un même temps de contact. Cependant, la recherche d'une porosité trop élevée peut conduire à des problèmes de conduite de procédé, dus par exemple à l'attrition des granulés conduisant à une augmentation des pertes de charge.  The gas-solid reactions are favored by a high porosity of the solid reagent which makes it possible to increase the contact surface between the gaseous reagent and the solid hydroxide reagent and thus increase the conversion for the same contact time. However, the search for porosity that is too high can lead to problems with the process, for example due to the attrition of the granules leading to an increase in pressure drops.
Le réactif solide préféré dans cette forme de réalisation du procédé est formé à partir d'hydroxyde de calcium. Sa teneur en Ca(OH)2 est au moins égale à 67% poids En outre ce réactif solide peut également contenir de l'eau en proportion substantielle par T FR2011/000314 The preferred solid reactant in this embodiment of the process is formed from calcium hydroxide. Its content of Ca (OH) 2 is at least 67% by weight. In addition, this solid reagent may also contain water in substantial proportion by weight. T FR2011 / 000314
6 exemple de 1 à 20% poids, cette teneur en eau étant notamment liée au fort caractère hygroscopique de l'hydroxyde. 6 example of 1 to 20% by weight, this water content being particularly related to the strong hygroscopic nature of the hydroxide.
Dans cette variante préférée du procédé selon l'invention en phase gazeuse le réactif solide contient en majorité de l'hydroxyde de calcium et comprendra avantageusement également d'autres hydroxydes métalliques alcalins et/ou alcalino-terreux comme NaOH, KOH, g (OH)2 et Ba(OH)2. In this preferred variant of the process according to the invention in the gaseous phase, the solid reagent contains, for the most part, calcium hydroxide and will advantageously also comprise other alkali metal and / or alkaline earth metal hydroxides, such as NaOH, KOH and g (OH). 2 and Ba (OH) 2 .
On peut avantageusement utiliser comme réactif solide la chaux sodée (Soda lime ) qui est de l'hydroxyde de calcium à une teneur généralement comprise entre 80 et 95 % poids et contenant quelques pour cent en poids de NaOH et de KOH.  Soda lime (Soda lime), which is calcium hydroxide at a content generally of between 80 and 95% by weight and containing a few percent by weight of NaOH and KOH, can advantageously be used as solid reagent.
La teneur en KOH dans le réactif solide est de préférence comprise entre 0,1 et 5 % en poids et avantageusement comprise entre 2 et 4 % en poids.  The KOH content in the solid reactant is preferably between 0.1 and 5% by weight and advantageously between 2 and 4% by weight.
La teneur en NaOH dans le réactif solide est de préférence comprise entre 0,1 et 5 % en poids et avantageusement comprise entre 1 et 3 % en poids.  The NaOH content in the solid reactant is preferably between 0.1 and 5% by weight and advantageously between 1 and 3% by weight.
La quantité d'eau (taux d'humidité) présente dans le réactif solide est de préférence comprise entre 1 et 20 % en poids et avantageusement comprise entre 7 à 20 % en poids et plus particulièrement comprise entre 10 et 15 % en poids. The amount of water (moisture content) present in the solid reagent is preferably between 1 and 20% by weight and advantageously between 7 and 20% by weight and more particularly between 10 and 15% by weight.
Le réactif solide, comprenant de l'hydroxyde de calcium, peut être mis en œuvre sous forme de poudre ou de préférence sous forme de granulés conférant au réactif une porosité élevée. Une granulométrie de granulés comprise entre 1 et 10 mm est préférée. The solid reagent, comprising calcium hydroxide, may be used in powder form or preferably in the form of granules giving the reagent a high porosity. A granulometry of granules of between 1 and 10 mm is preferred.
A titre d'exemple de réactif solide, on peut citer la chaux sodée, notamment celle commercialisée par la société GRACE sous la marque SODASORB HP. Cette variante préférée du procédé de l'invention est de préférence mis en œuvre à une température comprise entre 150 et 450° C, avant ageusement comprise entre 300 et 420 Ό. La réaction de déshydrofluoration, selon cette variante, peut être mise en œuvre à pression atmosphérique mais on peut également travailler à une pression supérieure à la pression atmosphérique, par exemple entre 1 et 10 bars absolu.  As an example of solid reagent, mention may be made of soda lime, in particular that marketed by the company GRACE under the trademark SODASORB HP. This preferred variant of the process of the invention is preferably carried out at a temperature of between 150 and 450 ° C., before advantageously between 300 and 420 ° C. The dehydrofluorination reaction, according to this variant, can be carried out at atmospheric pressure, but it is also possible to work at a pressure greater than atmospheric pressure, for example between 1 and 10 bar absolute.
La réaction en phase gazeuse peut être mise en œuvre selon les moyens habituels utilisés dans l'industrie pour effectuer une réaction entre un gaz et un solide, comme par exemple dans un réacteur en lit fluidisé avec le réactif solide en poudre fine ou bien dans un réacteur en lit fixe ou encore dans un réacteur tournant du type four à ciment avec le réactif solide en forme de granulé poreux. Le procédé est de préférence mis en œuvre en semi-continu dans un ou plusieurs réacteurs tubulaires en lit fixe fonctionnant alternativement, par exemple selon la technologie utilisée pour le traitement des gaz par des tamis moléculaires. Après réaction le réactif solide partiellement ou totalement transformé en fluorure de calcium est déchargé du réacteur. Le fluorure de calcium, après éventuelle séparation de l'hydroxyde de calcium n'ayant pas réagi, peut être utilisé comme matière première dans la fabrication d'acide fluorhydrique. The reaction in the gaseous phase can be carried out according to the usual means used in the industry to carry out a reaction between a gas and a solid, for example in a fluidized bed reactor with the solid reagent in fine powder or in a fixed bed reactor or in a rotary reactor of the cement kiln type with the solid reagent in the form of a porous granule. The process is preferably carried out semi-continuously in one or more fixed bed tubular reactors operating alternately, for example according to the technology used for the treatment of gases by molecular sieves. After reaction, the solid reagent partially or completely converted into calcium fluoride is discharged from the reactor. Calcium fluoride, after possible separation of the unreacted calcium hydroxide, can be used as raw material in the manufacture of hydrofluoric acid.
Le procédé selon la présente invention peut comprendre le recyclage des réactifs gazeux issus du réacteur n'ayant pas réagi à l'étape de déshydrofluoration, la séparation pouvant être réalisée lors d'une étape de distillation, ou par simple condensation préférentielle, facilitée par la grande différence de point d'ébullition entre le R-134a et le TrFE. Ce recyclage permet à la fois d'augmenter le rendement global de la transformation de R-134a en TrFE tout en permettant de maintenir le milieu réactionnel au niveau de température défini pour la réaction en « absorbant » la chaleur produite lors des réactions exothermiques de synthèse. The process according to the present invention may comprise the recycling of the gaseous reactants from the unreacted reactor to the dehydrofluorination stage, the separation being able to be carried out during a distillation stage, or by simple preferential condensation, facilitated by the large difference in boiling point between R-134a and TrFE. This recycling makes it possible at the same time to increase the overall yield of the conversion of R-134a into TrFE while allowing the reaction medium to be maintained at the temperature level defined for the reaction by "absorbing" the heat produced during the exothermic synthesis reactions. .
Le procédé selon la présente invention peut être réalisé en présence d'un gaz inerte vis-à-vis de la réaction par exemple de l'azote ou de l'hélium. The process according to the present invention can be carried out in the presence of a reaction-inert gas, for example nitrogen or helium.
Il pourra être avantageux de mettre en œuvre la réaction en introduisant dans la zone réactionnelle un courant de vapeur d'eau indépendamment de l'eau produite par la réaction ou pouvant provenir du réactif solide.  It may be advantageous to carry out the reaction by introducing into the reaction zone a stream of water vapor independently of the water produced by the reaction or which may come from the solid reagent.
L'un des avantages du procédé de l'invention est de pouvoir être conduit selon un mode continu ou semi-continu.  One of the advantages of the method of the invention is that it can be conducted in a continuous or semi-continuous mode.
PARTIE EXPERIMENTALE Exemple 1 Dans un réacteur tubulaire de 800 mm de long et de 43 mm de diamètre chauffé à 280 C par une résistance électrique, on charge 645 g d'une chaux sodée de composition suivante en poids NaOH 3,5% ; KOH 0,09% ; H20 1 ,2% ; Ca(OH)2 95,2 % sous forme de granulés de granulométrie comprise entre 2,4 et 4,8 mm. On fait traverser le réacteur par un courant gazeux de 0,7 mole/h de HFC-134a. La température sous réactifs dans le réacteur atteint 300 "C. En sortie de réacteur, la vapeur d'eau est condensée dans un condenseur refroidi à l'eau et les gaz de réaction sont séchés sur tamis moléculaire. A la sortie de la colonne de séchage, une prise d'échantillon permet d'analyser la composition des gaz issus de la réaction. EXPERIMENTAL PART Example 1 In a tubular reactor 800 mm long and 43 mm in diameter heated to 280 ° C. by an electrical resistance, 645 g of a soda lime of the following composition by weight of 3.5% NaOH are charged; KOH 0.09%; H 2 O 1, 2%; Ca (OH) 2 95.2% in the form of granules with a particle size of between 2.4 and 4.8 mm. The reactor is passed through a gaseous stream of 0.7 mol / h of HFC-134a. The temperature under reactants in the reactor reaches 300 ° C. At the outlet of the reactor, the Water vapor is condensed in a water-cooled condenser and the reaction gases are dried on molecular sieve. At the outlet of the drying column, a sampling makes it possible to analyze the composition of the gases resulting from the reaction.
Leur teneur analysée par GPC sur une colonne SP1000 en isotherme à 70 °C est de 3% molaire en TrFE et de 96,9% en R-134a. Their content analyzed by GPC on an SP1000 column in isotherm at 70 ° C. is 3 mol% in TrFE and 96.9% in R-134a.
Exemple 2 Example 2
Dans le même appareillage que l'exemple 1 , on charge 672 g de chaux sodée de composition suivante en poids NaOH 1 % ; KOH 2% ; H20 13,5% ; Ca(OH)2 83,5% sous forme de granulés de granulométrie comprise entre 2,4 et 4,8 mm In the same apparatus as Example 1, 672 g of soda lime of the following composition are charged by weight 1% NaOH; 2% KOH; H 2 O 13.5%; Ca (OH) 2 83.5% in the form of granules with a particle size of between 2.4 and 4.8 mm
Le débit de réactif à l'entrée du réacteur est de 0,7 mole/h de HFC-134a et 0,24 mole/h d'un gaz inerte (azote). The reactant flow rate at the inlet of the reactor is 0.7 mole / h of HFC-134a and 0.24 mole / h of an inert gas (nitrogen).
Le tube est chauffé à 330° C. La température sous r éactifs dans le réacteur atteint 383 °C et les gaz issus de la réaction sont analysés à la sortie du sécheur. Leur teneur est de 9,4% molaire en TrFE et de 61 ,1 % en R-134a.  The tube is heated to 330 ° C. The reactor reagent temperature reaches 383 ° C and the reaction gases are analyzed at the dryer outlet. Their content is 9.4 mol% in TrFE and 61.1% in R-134a.
Exemple 3 Dans le même appareillage que l'exemple 1 , mais en limitant la zone réactionnelle en chargeant les extrémités du tube avec un corps solide inerte et réfractaire comme le corindon, on charge 385 g de chaux sodée de composition suivante en poids NaOH 1 % ; KOH 2% ; H20 13,5% ; Ca(OH)2 83,5%, sous forme de granulés de granulométrie comprise entre 2,4 et 4,8 mm. EXAMPLE 3 In the same apparatus as in Example 1, but limiting the reaction zone by loading the ends of the tube with an inert and refractory solid body such as corundum, 385 g of sodium hydroxide of the following composition by weight are charged NaOH 1% ; 2% KOH; H 2 O 13.5%; Ca (OH) 2 83.5%, in the form of granules with a particle size of between 2.4 and 4.8 mm.
On chauffe le tube à 365° C et on introduit un débi t de 0,66 mole/h de HFC-134a et un débit de 2,4 mole/h d'eau. La température sous réactifs dans le réacteur atteint 410 °C. Les gaz sortant du tube sont analysés. Leur teneur est de 19,2% molaire en TrFE et de 74,6 % en R-134a, ce qui donne un taux de conversion globale du R-134a de 25,3 %. The tube is heated to 365 ° C. and a flow rate of 0.66 mol / h of HFC-134a and a flow rate of 2.4 mol / h of water are introduced. The temperature under reactants in the reactor reaches 410 ° C. The gases leaving the tube are analyzed. Their content is 19.2 mol% in TrFE and 74.6% in R-134a, which gives an overall conversion rate of R-134a of 25.3%.
Exemple 4 Example 4
Dans un réacteur cylindrique en inox de 41 équipé d'une agitation de type turbine, entouré d'un tissu chauffant et posé sur une plaque chauffante, on prépare 2,4 I de solution de potasse à 75%. On chauffe le réacteur à 150 °C et on règle l'agitation à 800 tr/min. On démarre alors l'introduction du R-134a au débit nominal 1 mol/h. Les gaz issus du réacteur sont passés sur un sécheur puis prélevés pour analyse comme dans les exemples 1 à 3. In a stainless steel cylindrical reactor 41 equipped with a turbine-type stirring, surrounded by a heating cloth and placed on a hot plate, is prepared 2.4 I of 75% potassium hydroxide solution. The reactor is heated to 150 ° C. and the stirring is adjusted to 800 ° C. rev / min. The introduction of R-134a is then started at the nominal flow rate of 1 mol / h. The gases from the reactor are passed through a dryer and then sampled for analysis as in Examples 1 to 3.
Au bout de 180 min de réaction, leur teneur est de 0,9 % en TrFE et de 99,1 % en R- 134a.  After 180 min of reaction, their content is 0.9% in TrFE and 99.1% in R-134a.

Claims

Revendications claims
1 ) Procédé de fabrication de trifluoroéthylène F1 123 (CF2=CHF) comprenant au moins une étape consistant à faire réagir du R-134a (CF3-CFH2) avec un hydroxyde métallique. 1) Process for producing trifluoroethylene F1 123 (CF 2 = CHF) comprising at least one step of reacting R-134a (CF 3 -CFH 2 ) with a metal hydroxide.
2) Procédé selon la revendication 1 caractérisé en ce que la réaction est réalisée en phase liquide avec un hydroxyde alcalin à une température comprise entre2) Process according to claim 1 characterized in that the reaction is carried out in the liquid phase with an alkaline hydroxide at a temperature between
120 et 400 et de préférence entre 250 et 350Ό e t sous une pression comprise entre 1 et 10 bars absolus. 120 and 400 and preferably between 250 and 350 ° and under a pressure of between 1 and 10 bars absolute.
3) Procédé selon la revendication 2 caractérisé en ce que la réaction est réalisée en présence d'une phase liquide ayant une teneur en hydroxyde alcalin comprise entre 20 et 99 % en poids de préférence comprise entre 50 et 96 %. 3) Process according to claim 2 characterized in that the reaction is carried out in the presence of a liquid phase having an alkali hydroxide content of between 20 and 99% by weight, preferably between 50 and 96%.
4) Procédé selon la revendication 3 caractérisé en ce que la réaction est réalisée avec une solution d'hydroxyde de potassium dans l'eau. 4) Process according to claim 3 characterized in that the reaction is carried out with a solution of potassium hydroxide in water.
5) Procédé la revendication 1 caractérisé en ce que la réaction est réalisée en phase gazeuse avec un réactif solide constitué par un hydroxyde alcalino-terreux à une température comprise entre 150 et 450° C et de préf érence comprise entre 300 et 420*0, sous une pression comprise entre 1 et 10 bar s absolus et de préférence entre 1 et 4 bars. 5) Process according to claim 1, characterized in that the reaction is carried out in the gaseous phase with a solid reagent consisting of an alkaline earth hydroxide at a temperature of between 150 and 450 ° C. and preferably between 300 and 420 * 0, at a pressure of between 1 and 10 bar absolute and preferably between 1 and 4 bar.
6) Procédé selon la revendication 5 caractérisé en ce que l'hydroxyde alcalino- terreux est l'hydroxyde de calcium. 7) Procédé selon la revendication 6 caractérisé en ce que le réactif solide a une teneur en Ca(OH)2 au moins égale à 67% poids. 6) Process according to claim 5 characterized in that the alkaline earth hydroxide is calcium hydroxide. 7) Process according to claim 6 characterized in that the solid reagent has a content of Ca (OH) 2 at least equal to 67% by weight.
8) Procédé selon la revendication 7 caractérisé en ce que le réactif solide a une teneur en KOH comprise entre 0,1 et 5 % en poids et avantageusement comprise entre 2 et 4 % en poids, 9) Procédé selon l'une des revendications 7 et 8 caractérisé en ce que le réactif solide a une teneur en NaOH comprise entre 0,1 et 5 % et avantageusement comprise entre 1 et 3 % en poids. 10) Procédé selon l'une des revendications 7 à 9 caractérisé en ce que le réactif solide a une teneur en eau comprise entre 1 et 20% poids. 8) Process according to claim 7 characterized in that the solid reagent has a KOH content of between 0.1 and 5% by weight and advantageously between 2 and 4% by weight, 9) Method according to one of claims 7 and 8 characterized in that the solid reagent has a NaOH content between 0.1 and 5% and preferably between 1 and 3% by weight. 10) Method according to one of claims 7 to 9 characterized in that the solid reagent has a water content of between 1 and 20% by weight.
11 ) Procédé selon l'une des revendications 7 à 10 caractérisé en ce que le réactif solide est utilisé sous forme de poudre ou de granulés dont la granulométrie est comprise entre 1 et 10 mm. 11) Method according to one of claims 7 to 10 characterized in that the solid reagent is used in the form of powder or granules whose particle size is between 1 and 10 mm.
12) Procédé selon l'une des revendications 5 à 11 caractérisé en ce que la réaction est réalisée sous un courant de vapeur d'eau. 12) Method according to one of claims 5 to 11 characterized in that the reaction is carried out under a stream of water vapor.
PCT/FR2011/000314 2010-06-15 2011-05-27 Method for preparing trifluoroethylene WO2011157907A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054704A FR2961203B1 (en) 2010-06-15 2010-06-15 PROCESS FOR THE PREPARATION OF TRIFLUOROETHYLENE
FR1054704 2010-06-15

Publications (1)

Publication Number Publication Date
WO2011157907A1 true WO2011157907A1 (en) 2011-12-22

Family

ID=43480876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000314 WO2011157907A1 (en) 2010-06-15 2011-05-27 Method for preparing trifluoroethylene

Country Status (2)

Country Link
FR (1) FR2961203B1 (en)
WO (1) WO2011157907A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115548A1 (en) 2014-01-30 2015-08-06 旭硝子株式会社 Method for producing trifluoroethylene
WO2015115549A1 (en) 2014-01-30 2015-08-06 旭硝子株式会社 Method for producing trifluoroethylene

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103044190B (en) * 2012-12-21 2014-12-24 巨化集团技术中心 Preparation method of trifluoroethylene
FR3093721A1 (en) * 2019-03-12 2020-09-18 Arkema France Fluoroolefin production process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406748A2 (en) 1989-07-06 1991-01-09 Atochem North America, Inc. Dehydrofluorination and dehydrogenation of fluorinated alkanes
US5180860A (en) * 1990-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Dehydrohalogenation process
FR2710054A1 (en) 1993-09-16 1995-03-24 Atochem Elf Sa Process for the preparation of trifluoroethylene
FR2729136A1 (en) * 1995-01-05 1996-07-12 Atochem Elf Sa Dehydrofluorination of fluoroalkane into fluoro:alkene
WO1997029065A1 (en) 1996-02-12 1997-08-14 Imperial Chemical Industries Plc Process for the production of a fluorine containing olefin
US5750808A (en) 1995-07-11 1998-05-12 E. I. Du Pont De Nemours And Company Dehydrohalogenation processes
US6031141A (en) 1997-08-25 2000-02-29 E. I. Du Pont De Nemours And Company Fluoroolefin manufacturing process
WO2008027595A1 (en) * 2006-09-01 2008-03-06 E. I. Du Pont De Nemours And Company Alkyl silane stabilizers for fluoroolefins
WO2008030439A2 (en) * 2006-09-05 2008-03-13 E. I. Du Pont De Nemours And Company Dehydrofluorination process to manufacture hydrofluoroolefins
WO2009010472A1 (en) 2007-07-13 2009-01-22 Solvay Fluor Gmbh Preparation of halogen and hydrogen containing alkenes over metal fluoride catalysts

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406748A2 (en) 1989-07-06 1991-01-09 Atochem North America, Inc. Dehydrofluorination and dehydrogenation of fluorinated alkanes
US5180860A (en) * 1990-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Dehydrohalogenation process
FR2710054A1 (en) 1993-09-16 1995-03-24 Atochem Elf Sa Process for the preparation of trifluoroethylene
FR2729136A1 (en) * 1995-01-05 1996-07-12 Atochem Elf Sa Dehydrofluorination of fluoroalkane into fluoro:alkene
US5750808A (en) 1995-07-11 1998-05-12 E. I. Du Pont De Nemours And Company Dehydrohalogenation processes
WO1997029065A1 (en) 1996-02-12 1997-08-14 Imperial Chemical Industries Plc Process for the production of a fluorine containing olefin
US6031141A (en) 1997-08-25 2000-02-29 E. I. Du Pont De Nemours And Company Fluoroolefin manufacturing process
WO2008027595A1 (en) * 2006-09-01 2008-03-06 E. I. Du Pont De Nemours And Company Alkyl silane stabilizers for fluoroolefins
WO2008030439A2 (en) * 2006-09-05 2008-03-13 E. I. Du Pont De Nemours And Company Dehydrofluorination process to manufacture hydrofluoroolefins
WO2009010472A1 (en) 2007-07-13 2009-01-22 Solvay Fluor Gmbh Preparation of halogen and hydrogen containing alkenes over metal fluoride catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KNUNYANTS I L ET AL: "REACTIONS OF FLUORO OLEFINS. ÖCOMMUNICATION 13. CATALYTIC HYDROGENATION OF PERFLUORO OLEFINS", BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR, DIVISION OF CHEMICAL SCIENCES, SPRINGER NEW YORK LLC, US, 1 January 1960 (1960-01-01), pages 1312 - 1317, XP000578879, ISSN: 0568-5230, DOI: DOI:10.1007/BF00907661 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115548A1 (en) 2014-01-30 2015-08-06 旭硝子株式会社 Method for producing trifluoroethylene
WO2015115549A1 (en) 2014-01-30 2015-08-06 旭硝子株式会社 Method for producing trifluoroethylene
CN105939985A (en) * 2014-01-30 2016-09-14 旭硝子株式会社 Method for producing trifluoroethylene
US20160332937A1 (en) * 2014-01-30 2016-11-17 Asahi Glass Company, Limited Method for producing trifluoroethylene
JPWO2015115548A1 (en) * 2014-01-30 2017-03-23 旭硝子株式会社 Method for producing trifluoroethylene
JPWO2015115549A1 (en) * 2014-01-30 2017-03-23 旭硝子株式会社 Method for producing trifluoroethylene
US9802878B2 (en) 2014-01-30 2017-10-31 Asahi Glass Company, Limited Method for producing trifluoroethylene
US10093600B2 (en) 2014-01-30 2018-10-09 AGC Inc. Method for producing trifluoroethylene
CN109438174A (en) * 2014-01-30 2019-03-08 Agc株式会社 The manufacturing method of trifluoro-ethylene
CN105939985B (en) * 2014-01-30 2019-07-05 Agc株式会社 The manufacturing method of trifluoro-ethylene

Also Published As

Publication number Publication date
FR2961203B1 (en) 2012-06-15
FR2961203A1 (en) 2011-12-16

Similar Documents

Publication Publication Date Title
EP2349960B9 (en) Process for the preparation of fluorinated compounds
EP0055652B1 (en) Catalysts for the fluorination in the gaseous phase of chlorinated aliphatic derivatives based on chromium oxide microspheres, and fluorination processes using these catalysts
EP3072870B1 (en) Method for preparing 2,3,3,3-tetrafluoro-1-propene
EP0546883B1 (en) Chromium and nickel oxydes-based solid catalysts and the use thereof for the fluorination of halogenated hydrocarbons
EP2456741B1 (en) Method for preparing fluorine compounds
WO2011157907A1 (en) Method for preparing trifluoroethylene
EP2321240B1 (en) Process for the preparation of fluorinated olefinic compounds
EP2438034B1 (en) Process for preparing fluoroolefin compounds
WO2011010023A1 (en) Method for preparing olefin fluorine compounds
EP0657409A1 (en) Catalytic fluorination of halogenated hydrocarbons in the vapour phase
CN1286786C (en) Production method of pentafluoroethane
CN1331066A (en) Method for preparing perfluoroethyl
RU2323204C1 (en) Method for preparing perfluorocyclohexene 1-carboxylic acid fluoroanhydride or perfluorocyclohexane carboxylic acid fluoroanhydride
RU2189966C1 (en) Method of synthesis of polyfluoroalkanes
WO2012080647A2 (en) Continuous method for the carbonylation of alcohols, in particular of phenyl alcohols
CN112979409A (en) Method for preparing 3,3, 3-trichloro-1, 1, 1-trifluoropropane by gas-phase catalytic chlorination
WO2003064371A1 (en) Synthesis of fluorinating agents
FR2937033A1 (en) PROCESS FOR THE PREPARATION OF VINYLIDENE FLUORIDE
FR2736049A1 (en) Prepn. of di:fluoromethane from chloro:fluoromethane in gaseous phase
FR2805257A1 (en) PROCESS FOR THE SELECTIVE CONVERSION OF PERFLUOROISOBUTENE CONTAINED IN A HALOGENATED HYDROCARBON STREAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11728312

Country of ref document: EP

Kind code of ref document: A1