WO2011155456A1 - Deep groove ball bearing - Google Patents

Deep groove ball bearing Download PDF

Info

Publication number
WO2011155456A1
WO2011155456A1 PCT/JP2011/062959 JP2011062959W WO2011155456A1 WO 2011155456 A1 WO2011155456 A1 WO 2011155456A1 JP 2011062959 W JP2011062959 W JP 2011062959W WO 2011155456 A1 WO2011155456 A1 WO 2011155456A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
shoulder
outer ring
inner ring
raceway groove
Prior art date
Application number
PCT/JP2011/062959
Other languages
French (fr)
Japanese (ja)
Inventor
上野 崇
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2011155456A1 publication Critical patent/WO2011155456A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3862Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages comprising two annular parts joined together
    • F16C33/3875Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages comprising two annular parts joined together made from plastic, e.g. two injection moulded parts joined by a snap fit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3887Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/52Polyphenylene sulphide [PPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/70Positive connections with complementary interlocking parts
    • F16C2226/74Positive connections with complementary interlocking parts with snap-fit, e.g. by clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/06Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/90Surface areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Definitions

  • This invention relates to a deep groove ball bearing in which a ball is incorporated between an outer ring and an inner ring and the ball is held by a cage.
  • the rotation of the final drive gear 1 of the transmission is transmitted from the final driven gear 2 to the differential case 3 that supports the gear 2, and the rotation of the differential case 3 is transmitted from a pair of pinions 5 fixed to the pinion shaft 4.
  • the cylindrical portions 8a formed at both ends of the differential case 3, 8b is rotatably supported by a pair of bearings B supported by the housing 9.
  • both radial load and thrust load can be supported as a bearing that supports a shaft provided with the helical gear. It is necessary to use a bearing.
  • the tapered roller bearing since the tapered roller bearing has a large load capacity and can receive both a thrust load and a radial load, it is suitable for a bearing for supporting the differential case 3 and a bearing for supporting a transmission shaft.
  • the roller bearing In the roller bearing, there is a problem that torque loss is large and fuel consumption is increased.
  • the deep groove ball bearing has a smaller load capacity than a tapered roller bearing. Therefore, when the rolling fatigue life is requested to be the same as or comparable to that of a tapered roller bearing, a decrease in the rolling fatigue life is a problem. Become.
  • An object of the present invention is to provide a deep groove ball bearing that can completely prevent a ball from climbing over a shoulder even under a large thrust load and has a long life against rolling fatigue life.
  • the height of the shoulder on one side and the shoulder on the other side of the inner ring raceway groove is higher than the height of the shoulder on the other side of the outer ring raceway groove and one side of the inner ring raceway groove.
  • the shoulder height H 1 of the outer ring with respect to the ball diameter d is The ratio H 1 / d is in the range of 0.28 to 0.50, and the shoulder of the inner ring with respect to the ball diameter d.
  • the ratio H 2 / d of the height H 2 is in the range of 0.37 to 0.50, and at least the outer ring and the inner ring among the outer ring, the inner ring and the ball are in a weight ratio of 0.8 to 1.2% carbon.
  • the ratio H 1 / d of the shoulder height H 1 to the ball diameter d is 0.28 or more. This is based on the results of the test.
  • the ratio H 2 / d of the shoulder height H 2 to the ball diameter d is set to 0.37 or more. This is also a rule based on the test results.
  • At least the outer ring and the inner ring are carbonitrided with high carbon bearing steel with a large amount of carbon, quenched from a high temperature, and then tempered at a relatively low temperature. Since the amount of retained austenite in the surface layer portion is 15 to 20%, the rolling fatigue life can be remarkably improved.
  • the height of the shoulder on one side and the shoulder on the other side of the inner ring raceway groove is higher than the height of the shoulder on the other side of the outer ring raceway groove and one side of the inner ring raceway groove.
  • the shoulder height H 1 of the outer ring with respect to the ball diameter d is The ratio H 1 / d is in the range of 0.28 to 0.50, and the shoulder of the inner ring with respect to the ball diameter d.
  • the ratio H 2 / d of the height H 2 is in the range of 0.37 to 0.50, and at least the outer ring and the inner ring of the outer ring, the inner ring and the ball are in a weight ratio of 0.6 to 1.2% carbon.
  • the ratio H 1 / d of the shoulder height H 1 of the outer ring to the ball diameter d is set to 0, as in the deep groove ball bearing according to the first invention.
  • the ratio H 2 / d of the shoulder height H 2 of the inner ring to the ball diameter d of the ball is 0.37 or more, so that it is possible to completely prevent the ball from riding on the shoulder.
  • the outer ring and the inner ring contain 0.6 to 1.2% carbon, 0.15 to 1.1% silicon, 2.0% or less chromium, and 0.3 to 1.5% manganese in terms of weight ratio.
  • formed by bearing steel again the bearing steel was carbonitrided at a carbonitriding processing temperature in excess of a 1 transformation point, cooled to a temperature below the a 1 transformation point, then the quenching temperature range of 790 ⁇ 830 ° C.
  • an austenite crystal grain having an average grain size of 8 ⁇ m or less can be obtained, has a long life against rolling fatigue, improves crack strength, and decreases the aging rate. be able to.
  • the radius of curvature of the raceway groove of the outer ring is r 1
  • the radius of curvature of the raceway groove of the inner ring is r 2
  • the ball diameter of the ball is d
  • the shoulder height of the outer ring with respect to the ball diameter d It is in the range of the ratio H 3 / d of 0.08 to 0.25 of H 3, and the ratio H 4 / d of 0.08 to 0.25 of the inner ring shoulder height H 4 for the spherical diameter d of the ball. If the above-mentioned range is set, the shoulders facing each other in the radial direction of the outer ring and the inner ring should have a larger distance than the case where each of the above shoulders has the same height as that of the standard deep groove ball bearing. Therefore, a cage having a large radial width and a high strength can be adopted as the cage.
  • the cage includes a cylindrical first divided cage made of a synthetic resin molded product and a synthetic resin cylindrical second divided cage inserted inside the first divided cage. And a notch for forming a circular pocket for holding a ball in a state where both the split cages are combined inside and outside on one axial side surface of the first split cage and the other axial side surface of the second split cage.
  • a connecting means is provided that is spaced apart in the circumferential direction, and in which the first divided holder and the second divided holder form a circular pocket, and the two divided holders are not separated in the axial direction. What consists of composition can be adopted.
  • Assembling the cage having the above-described configuration is as follows. After the ball is assembled between the outer ring and the inner ring, the first divided cage is formed in the bearing from one side of the outer ring and the inner ring. The second split cage is inserted into the bearing from the other side between the outer ring and the inner ring, and the ball is inserted into the notch formed in the second split cage. Is inserted so that the other side portion in the axial direction of the second split cage is fitted in the one side portion in the axial direction of the first split cage, and both split cages are connected by the connecting means. Link.
  • the connecting means are engaged with each other so that the first divided cage and the second divided cage are not separated in the axial direction. Therefore, the deep groove ball bearing can be easily assembled.
  • first split cage and the second split cage having different diameters are asymmetrical combinations in which both end portions are shifted in the axial direction (left-right direction), and the rear end portion in the insertion direction when assembled is the shoulder of the outer ring and the inner ring Therefore, the first split holder and the second split holder can be securely assembled without interfering with the shoulders of the inner and outer rings.
  • an inward engagement claw is provided at a tip portion of a pillar portion formed between adjacent notch portions of the first split cage, and between the adjacent notch portions of the second split cage.
  • An outward engaging claw is provided at the tip of the formed column part, and the engaging claw of the first divided holder is engaged with an engaging recess formed on the outer diameter surface of the second divided holder. It is possible to employ a configuration in which the engaging claw of the two-divided cage is engaged with an engaging recess formed on the inner diameter surface of the first divided cage.
  • the cutout portion has a circular shape exceeding a half circle in a planar shape, and has a pair of opposed pocket claws at the opening end, and a spherical shape whose cross-sectional shape follows the outer periphery of the ball It may be formed into a shape, or may be formed into a plane U shape that forms a cylindrical pocket in the fitted state of the first divided holder and the second divided holder.
  • the split cage is effectively prevented from falling off by engaging the engaging claw and the engaging recess and engaging the pocket claw and the ball. can do.
  • the ball does not interfere with the assembly of the cage, and the cage can be easily incorporated into the bearing.
  • the circumferential clearance formed between the engaging claw and the engaging recess is larger than the circumferential pocket clearance formed between the ball and the pocket.
  • first split cage and the second split cage can be obtained by setting the axial clearance formed between the engaging claw and the engaging recess larger than the axial pocket clearance formed between the ball and the pocket.
  • the inner surfaces of the pair of opposing pocket claws abut against the outer peripheral surface of the ball, and the engaging claws abut against the axial end surface of the engaging recess. The effect of preventing damage to the engaging claws can be obtained.
  • a circumferential clearance formed between the engaging claw and the engaging recess is accommodated in a pocket formed by two notches that are opposed in the radial direction and in the pocket.
  • the first split cage and the second split cage are formed of a synthetic resin excellent in oil resistance.
  • a resin include polyamide 46 (PA46), polyamide 66 (PA66), and polyphenylene sulfide (PPS).
  • PA46 polyamide 46
  • PA66 polyamide 66
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • PA66 polyamide 66
  • the cage is not limited to the one having the above-described configuration, for example, a cage that is divided into two in the axial direction.
  • Each of the cages has a plurality of hemispherical pocket portions and a width of the pocket portion.
  • a plurality of coupling plate portions having the same width as the dimensions are continuously waved in the circumferential direction, the outer diameters of the coupling plate portions of the two waveform split cages are the same, and one waveform
  • the position of the pocket part of the split cage is shifted to the inner diameter side with respect to the coupling plate part, and the position of the pocket part of the other waveform split cage is shifted to the outer diameter side with respect to the coupling plate part.
  • both the first invention and the second invention can completely prevent the balls from climbing over the shoulder even when subjected to a large thrust load, and have a long life against rolling fatigue life.
  • a deep groove ball bearing can be obtained.
  • it can be incorporated into a bearing device where a tapered roller bearing is required, and the incorporation into the bearing device can reduce torque loss and achieve low fuel consumption.
  • the outer ring and the inner ring are formed of high carbon bearing steel with a large amount of carbon, and after carbonitriding the high carbon bearing steel and quenching from high temperature, By tempering at a low temperature, the amount of retained austenite in the surface layer portion is 15 to 20%, so that the rolling fatigue life can be remarkably improved.
  • the deep groove ball bearing according to the second invention to form a outer ring and the inner ring carbon intensive bearing steel, after the bearing steel was carbonitrided at a carbonitriding processing temperature above the A 1 transformation point, cooled to a temperature below the a 1 transformation point, then, by a heat treatment of performing quenching and re-heating in the quenching temperature range of 790 ⁇ 830 ° C., to form the austenite crystal grains of 8 ⁇ m following microstructure with an average grain size Therefore, it is possible to obtain a deep groove ball bearing that has a long life against rolling fatigue, an improved crack strength, and a low durability with a low rate of aging.
  • FIG. 5 is a plan view of the first split cage shown in FIG. Top view showing the pocket clearance in the axial direction with the ball in the pocket Partial plan view showing another example of a synthetic resin cage
  • retainer The top view of the part which shows the further another example of a holder
  • a ball 31 is incorporated between a raceway groove 12 formed on the inner diameter surface of the outer ring 11 and a raceway groove 22 provided on the outer diameter surface of the inner ring 21. Is held by the cage 40.
  • the height of the shoulder 13a located on one side of the raceway groove 12 is higher than the shoulder 13b located on the other side.
  • the height of the shoulder 23b located on the other side of the raceway groove 22 is higher than the height of the shoulder 23a located on one side. It is high.
  • the high shoulders 13a and 23b are referred to as thrust load side shoulders 13a and 23b, and the low shoulders 13b and 23a are referred to as thrust non-load side shoulders 13b and 23a.
  • the height of the shoulder 13a on the thrust load side of the outer ring 11 is H 1
  • the height of the shoulder 23b on the thrust load side of the inner ring 21 is H 2
  • the ball diameter of the ball 31 is d
  • the ball diameter d of the ball 31 The ratio H 1 / d of the shoulder height H 1 of the outer ring 11 is in the range of 0.28 to 0.50
  • the ratio of the shoulder height H 2 of the inner ring 21 to the ball diameter d of the ball 31 is H 2 / d is in the range of 0.37 to 0.50.
  • the height H 3 of the shoulder 13b on the thrust non-load side of the outer ring 11 and the height H 4 of the shoulder 23a on the thrust non-load side of the inner ring 21 are the same as the shoulder height of the standard deep groove ball bearing.
  • the standard deep groove ball bearing is a bearing in which the height of the pair of shoulders of the outer ring and the height of the pair of shoulders of the inner ring are the same.
  • the outer ring 11 and the inner ring 21 are, by weight ratio, carbon (C) 0.8 to 1.2%, silicon (Si) 0.4 to 1.0%, chromium (Cr) 0.2 to 1.2%. And a heat-treated product made of a high carbon bearing steel containing 0.8 to 1.5% of manganese (Mn).
  • quenching is performed from 830 to 870 ° C. to obtain a quenching termination temperature of 90 to 120 ° C., and then tempering in the range of 160 to 190 ° C. Is 25 to 50%, and the austenite content of the core is 15 to 20%.
  • the reason why the composition of the above-mentioned high carbon bearing steel is set to a high carbon of C 0.8 to 1.2% is that the surface layer portion is basically hardened by quenching and tempering. If Cr is less than 0.2%, carbide is not formed if the Cr is less than 0.2%, and the hardness of the surface layer is insufficient. If it exceeds 1.2%, the carbide becomes coarse and becomes a starting point of peeling. This is because the life is likely to be short.
  • Si stably increases the retained austenite of the surface layer to 25% or more, imparts temper softening resistance, and secures heat resistance, but 0.4% or more is necessary, but if Si exceeds 1% This is because, during the carbonitriding process, the enrichment of nitrogen and carbon from the skin to the surface layer is inhibited.
  • Mn is for securing the hardenability and quenching to the core, but increases the retained austenite in the surface layer with an element that stabilizes the retained austenite in the quenching and tempering processes. Addition of a large amount of Mn causes a decrease in cold workability and causes cracking and embrittlement, and therefore increases to a range not exceeding 1.5% Mn.
  • SUJ3 steel can be used as such a high carbon bearing steel. Mo is appropriately added to 0.3% for improving hardenability. SUJ5 steel is used as a material to which Mo is added.
  • the nitrogen content of the surface layer portion becomes high, and the Ms point of the surface layer portion decreases as compared with the core portion. Then, untransformed austenite is increased in the surface layer portion than in the core portion. Since nitrogen is high in the surface layer portion and the quenching start temperature (austenitizing temperature) is increased to 830 to 870 ° C., the retained austenite in the surface layer portion can be easily increased to 25% or more. In order to stably increase the retained austenite, the quenching end temperature is increased to about 100 ° C., preferably 90 to 120 ° C. In this quenching process, the martensitic transformation of the surface portion enriched with nitrogen starts later than the inside, and the amount of transformation is less than the inside, so that residual compressive stress is formed in the surface portion.
  • the quenching start temperature (austenitizing temperature) is 830 to 870 ° C., which is higher than that of ordinary quenching and tempering steel, the crack sensitivity value associated with quenching increases. Therefore, it is preferable to control the cooling rate in the martensitic transformation process by setting the cooling capacity H in the range of 300 to 150 ° C. in the quenching process to 0.2 cm ⁇ 1 or less.
  • carbonitriding is usually performed in a high-temperature gas in which ammonia is added to a carburizing or reducing gas.
  • the above conditions are immediately applied after carbonitriding in a temperature range of 830 to 870 ° C. Quench in oil.
  • the tempering temperature after quenching is set to a relatively low temperature of 160 to 190 ° C.
  • the retained austenite in the surface layer portion is set to a range of 25 to 50% by suppressing decomposition of the retained austenite in the tempering process.
  • the higher the retained austenite in this range the rolling fatigue life is improved under the lubrication conditions under the presence of foreign matter.
  • the surface hardness is lowered and the wear resistance is lowered. A range of 25 to 30% is preferable.
  • the core portion is tempered at a low temperature of 190 ° C. or lower, usually about 15 to 20% of retained austenite remains.
  • the ball 31 may be a heat-treated product similar to the outer ring 11 and the inner ring 21.
  • the holder 40 includes a first divided holder 41 and a second divided holder 42 inserted inside the first divided holder 41.
  • the first split holder 41 has a pair of opposed pocket claws 44 formed on the one side surface in the axial direction of the annular body 43 at equal intervals in the circumferential direction.
  • the planar shape of the annular body 43 is made of a synthetic resin molded product provided with a notch 45 having a size exceeding a half circle.
  • the inner diameter of the annular body 43 is substantially equal to the pitch circle diameter (PCD) of the balls 31, and the outer diameter is equal to the inner diameter of the shoulder 13a where the height of the outer ring 11 is high and the shoulder whose height is low.
  • the inner diameter of the outer ring 11 can be inserted into the bearing from the lower shoulder 13b side.
  • the inner surface of the notch 45 is a spherical shape along the outer periphery of the ball 31.
  • the first split holder 41 has a pair of opposed pocket claws 49 formed on the other side surface in the axial direction of the annular body 48 at equal intervals in the circumferential direction, and the annular body 48 is wound between each pair of opposed pocket claws 49. It consists of a molded product of synthetic resin provided with a cutout portion 50 having a size that exceeds a half of a half of the planar shape to be extracted.
  • the outer diameter of the annular body 48 is substantially equal to the pitch circle diameter (PCD) of the balls 31, and the inner diameter is the outer diameter of the high shoulder 23b of the inner ring 21 and the low shoulder 23a.
  • the outer diameter is within the range.
  • the second split cage 42 can be inserted into the bearing from the low shoulder 23a side, and can be fitted inside the first split cage 41.
  • the inner surface of the notch 50 is formed in a spherical shape along the outer periphery of the ball 31.
  • the shaft of the second split holder 42 is located between the first split holder 41 and the second split holder 42 within one side in the axial direction of the first split holder 41.
  • the first split holder 41 and the second split holder 42 are non-separated in the axial direction.
  • Means X are provided.
  • the connecting means X is provided with an inward engagement claw 46 at the tip of a pillar portion 43a formed between adjacent cutout portions 45 of the first split holder 41, and the engagement member X is provided on the inner diameter surface of the annular body 43.
  • a groove-like engagement recess 47 is formed on the same axis as the joint claw 46, and an outward engagement claw 51 is formed at the tip of a column part 48 a formed between the adjacent notches 50 of the second split holder 42.
  • an engagement recess 52 is formed on the outer diameter surface of the annular body 48 on the same axis as the engagement claw 51, and the engagement claw 46 of the first divided holder 41 and the second divided holder 42 are By the engagement of the engagement recess 52 and the engagement of the engagement claw 51 of the second split retainer 42 and the engagement recess 47 of the first split retainer 41, the first split retainer 41 and the second split retainer. 42 is not separated in the axial direction.
  • a synthetic resin excellent in oil resistance is used.
  • a synthetic resin include polyamide 46 (PA46), polyamide 66 (PA66), and polyphenylene sulfide (PPS). These resins may be selected and used according to the type of lubricating oil.
  • the deep groove ball bearing shown in the embodiment has the above-described structure.
  • the inner ring 21 is inserted inside the outer ring 11, the race groove 22 of the inner ring 21 and the race groove of the outer ring 11.
  • a required number of balls 31 are assembled between 12.
  • the inner ring 21 is offset in the radial direction with respect to the outer ring 11, a part of the outer diameter surface of the inner ring 21 is brought into contact with a part of the inner diameter surface of the outer ring 11, and 180 degrees in the circumferential direction from the contact part.
  • a crescent-shaped space is formed at a shifted position, and the ball 31 is assembled from one side of the space.
  • the ratio H 1 / d of the outer ring shoulder height H 1 to the ball diameter d of the ball 31 and the ratio H 2 / d of the inner ring shoulder height H 2 do not exceed 0.50. Because of the height, the ball 31 can be reliably assembled between the outer ring 11 and the inner ring 21.
  • the center of the inner ring 21 is made to coincide with the center of the outer ring 11, the balls 31 are arranged at equal intervals in the circumferential direction, and the outer ring 11 and the inner ring 21 from one side of the shoulder 13b where the height of the outer ring 11 is low.
  • the first split holder 41 is inserted between the notches 45 formed in the first split holder 41 so that the balls 31 are fitted therebetween.
  • the second split retainer 42 is inserted between the outer ring 11 and the inner ring 21 from one side of the shoulder 23a where the height of the inner ring 21 is low, and the ball 31 is inserted into the notch 50 formed in the second split retainer 42. It inserts so that it may fit, and the axial direction other side part of the 2nd division
  • the engagement claws formed in the respective divided holders 41 and 42 by fitting the second divided holder 42 into the first divided holder 41 as shown in FIGS. 46 and 51 are engaged with engaging recesses 47 and 52 provided in the other split cage, and the assembly of the deep groove ball bearing is completed.
  • the first divided holder 41 and the second divided hold are internally provided from both sides between the outer ring 11 and the inner ring 21.
  • the deep groove ball bearing A can be assembled by a simple operation of inserting the container 42 and fitting the second divided holder 42 into the first divided holder 41.
  • the deep groove ball bearing A When the above-described deep groove ball bearing A is used to support the cylindrical portions 8a and 8b formed at both ends of the differential case 3 shown in FIG. 12, the deep groove ball bearing A has a load driven shoulder 23b of the inner ring 21 with a final driven gear. Assembled on the 2nd side.
  • the ratio H 1 / d of the shoulder load H 1 on the thrust load side of the outer ring 11 to the ball diameter d of the ball 31 is in the range of 0.28 to 0.50, and the ball diameter of the ball Since the ratio H 2 / d of the shoulder height H 2 on the thrust load side of the inner ring 21 to d is in the range of 0.37 to 0.50, it is possible to reliably prevent the ball 31 from climbing.
  • a standard deep groove ball bearing 6208C having an inner ring outer diameter of ⁇ 53.1 mm and an outer ring inner diameter of ⁇ 68.1 mm is used as a comparative product, and the thrust load side of the inner ring is based on the standard deep groove ball bearing.
  • the deep groove ball bearing of the present invention showed a value higher by 305% than the comparative deep groove ball bearing.
  • the outer diameter of the shoulder of the inner ring where the thrust load (axial load) is not applied is changed from the standard ⁇ 53.1 mm to ⁇ 51.9 mm, and the inner diameter of the shoulder of the outer ring where the axial load is not applied is changed to the standard Even when the diameter was changed from ⁇ 68.1 mm to ⁇ 70.4 mm, even when the basic statically constant load Co was applied to the bearing, no shoulder climbing occurred.
  • the thrust force applied to the differential case 3 is the shoulder on the thrust load side of the inner ring 21 of the deep groove ball bearing A that receives the right end of the differential case 3 in FIG. 23b and a thrust load side shoulder 13a of the outer ring 11. Also in this case, it is possible to reliably prevent the ball 31 from climbing.
  • the outer ring 11 and the inner ring 21 are made of high carbon bearing steel with a large amount of carbon, the high carbon bearing steel is carbonitrided, quenched from a high temperature, and then tempered at a relatively low temperature. Since the amount of retained austenite in the surface layer is 15 to 20%, the fatigue strength of the raceway surface on which the balls 31 of the outer / inner rings 11 and 21 roll and move is extremely high, and the raceway surface is damaged. There is no.
  • the flow of lubricating oil that is rotated by contact with the first split cage 41 is the first. It becomes faster than the flow of the lubricating oil driven by the contact with the two-divided cage 42, the lubricating oil on the slow flow side is attracted to the fast flow side, and a pump action is generated inside the bearing. Due to the pump action, the lubricating oil flows in the direction indicated by the arrow in FIG. 1 and the inside of the bearing is forcibly lubricated, so that the lubricity of the deep groove ball bearing A can be improved.
  • a pair of opposed pocket claws 44 and 49 that embed the ball 31 in the open ends of the cutout portion 45 of the first divided holder 41 and the cutout portion 50 of the second divided holder 42.
  • a pair of opposed pocket claws 44 formed in the first divided holder 41 and a pair of opposed pocket claws 49 provided in the second divided holder 42 are oriented in opposite directions, and in the combined state Since the engagement claws 46 and 51 are engaged with the engagement recesses 47 and 52 and the first divided holder 41 and the second divided holder 42 are not separated in the axial direction, a large moment load is applied. Even if the ball 31 is delayed or advanced, the retainer 40 does not fall off.
  • the clearance ⁇ 1 of the circumferential clearance 60 formed between the engaging claws 46, 51 and the engaging recesses 47, 52 is set between the ball 31 and the notches 45, 50.
  • a large moment load is applied and the ball 31 is delayed and advanced, and the first split retainer 41 and the second split retainer 42, the engaging claws 46 and 51 do not come into contact with the opposite side surfaces of the engaging recesses 47 and 52 in the circumferential direction, which is effective in preventing damage to the engaging claws 46 and 51.
  • the clearance ⁇ 3 of the axial clearance 62 formed between the engaging claws 46, 51 and the engaging recesses 47, 52 is set between the ball 31 and the notches 45, 50.
  • the axial force in the direction away from the first divided cage 41 and the second divided cage 42 is applied to the first divided cage 41 and the second divided cage 42 by making the gap amount ⁇ 4 of the formed axial pocket gap 63 larger than the gap amount ⁇ 4.
  • the inner surfaces of the pair of pocket claws 44 and 49 abut against the outer peripheral surface of the ball 31, and the engagement claws 46 and 51 do not abut against the axial end surfaces of the engagement recesses 47 and 52. The effect of preventing the damage of 46 and 51 can be obtained.
  • the planar shape of the annular bodies 43 and 48 is larger than a half circle, and the cross-sectional shape is an arc shape.
  • the notches 45 and 50 are not limited to this.
  • a flat U-shape that forms a cylindrical pocket in the fitted state of the first divided holder 41 and the second divided holder 42 may be used.
  • the clearance ⁇ 5 of the circumferential clearance 64 formed between the engaging claws 46 and 51 and the engaging recesses 47 and 52 as shown in FIGS. Is larger than the clearance amount ⁇ 6 of the circumferential pocket clearance 66 formed between the ball 31 and the notches 45 and 50, a large moment load is applied and the ball 31 is delayed and advanced. Even if the split holder 41 and the second split holder 42 are relatively rotated, the engaging claws 46 and 51 do not come into contact with the side surfaces of the engaging recesses 47 and 52 that are opposed to each other in the circumferential direction. An effect can be obtained in preventing damage to the claws 46 and 51.
  • the weight ratio of the outer ring 11 and the inner ring 21 is 0.8 to 1.2% for carbon, 0.4 to 1.0% for silicon, 0.2 to 1.2% for chromium, and 0.
  • the outer austenite 11 and the inner ring are made to remain in the surface layer by setting the austenite amount in the surface layer to 25 to 50% and the austenite amount in the core portion to 15 to 20%.
  • the forming material and heat treatment of 21 are not limited to this.
  • the weight ratio of the outer ring 11 and the inner ring 21 is 0.6 to 1.2% carbon, 0.15 to 1.1% silicon, 2.0% or less chromium, and 0.3 to 1.5% manganese.
  • the carbon content exceeds 1.2% by weight, the material hardness is high even if spheroidizing annealing is performed, so that the cold workability is hindered, and the amount of cold work sufficient when performing cold work, The accuracy cannot be obtained. In addition, the carbonitriding process tends to become an excessively carburized structure, and there is a risk that the cracking strength is reduced.
  • the carbon content is less than 0.6% by weight, it takes a long time to secure the required surface hardness and the amount of retained austenite, or the necessary internal hardness is obtained by quenching after reheating. It becomes difficult to be.
  • Si content is 0.15 to 1.1% by weight. It is. If the silicon content is less than 0.15% by weight, the rolling fatigue life characteristics under lubrication with foreign matter will not be improved. On the other hand, if it exceeds 1.1% by weight, the hardness after normalization will be too high and cold working will occur. Inhibits sex.
  • Mn is effective in securing the quench hardening ability of the carbonitrided layer and the core. If the Mn content is less than 0.3% by weight, sufficient quenching and hardening ability cannot be obtained, and sufficient strength cannot be secured in the core. On the other hand, if the Mn content exceeds 1.5% by weight, the curing ability becomes excessively high, the hardness after normalization becomes high, and cold workability is hindered. In addition, the austenite is excessively stabilized and the amount of retained austenite in the core is excessively increased to promote a change in size over time.
  • the bearing steel may contain 2.0% by weight or less of chromium. By including 2.0% by weight or less of chromium, chromium carbide and nitride are precipitated in the surface layer portion, and the hardness of the surface layer portion is easily improved.
  • the Cr content is set to 2.0% by weight or less. If it exceeds 2.0% by weight, the cold workability is remarkably lowered, or even if the content exceeds 2.0% by weight, the hardness of the surface layer portion described above This is because the improvement effect is small.
  • the height H 3 of the shoulder 13 b on the thrust non-load side of the outer ring 11 and the height H 4 of the shoulder 23 a on the thrust non-load side of the inner ring 21 are the same as the shoulder of the standard deep groove ball bearing. However, it may be lower than the shoulder height of the standard deep groove ball bearing.
  • the ratio H 3 / d of the shoulder height H 3 to the sphere diameter d is set in the range of 0.08 to 0.25.
  • the ratio H 4 / d of the shoulder height H 4 to the ball diameter d of the ball 31 is in the range of 0.08 to 0.25.
  • the ratio r 1 / d / 2 of the radius of curvature r 1 of the outer ring raceway groove 12 to the radius d / 2 of the ball 31 is set in the range of 1.03 to 1.08, and the inner ring with respect to the radius d / 2 of the ball 31 is set.
  • the ratio r 2 / d / 2 of the radius of curvature r 2 of the raceway groove 22 should be in the range of 1.015 to 1.04 to prevent brittle peeling and suppress the decrease in the calculated load value.
  • FIG. 10 and 11 show another example of the cage 40.
  • FIG. The holder 40 shown in FIG. 10 includes split holders 71 and 72 that are divided into two in the axial direction.
  • Each of the split holders 71 and 72 includes a plurality of hemispherical pocket portions 73 and pocket portions 73.
  • a plurality of coupling plate parts 74 having the same width dimension as the width dimension are alternately and continuously corrugated in the circumferential direction, and the outer diameters of the coupling plate parts 74 of the two waveform division holders 71 and 72 are the same.
  • the position of the pocket portion 73 of one waveform division holder 71 is shifted to the inner diameter side with respect to the coupling plate portion 74, and the pocket portion 73 of the other waveform division holder 72 is outer diameter with respect to the coupling plate portion 74.
  • the one waveform segmented retainer 71 is inserted into the bearing from the side of the shoulder 13a having the higher height of the outer ring 11, and the other waveform segmented retainer 72 is lowered in the height of the outer ring 11.
  • Insert into the bearing from the shoulder 13b side, The pocket 75 is provided between the parts 73, and the two coupling plates 74 which abut each other so as to bind with rivets 76.
  • the cage 40 may be made of a metal plate press-molded product, or may be made of a synthetic resin molded product.
  • the waveform division holder 71 is inserted so that the ball 31 fits into the pocket portion 73 formed in the waveform division holder 71.
  • the other waveform division holder 72 is provided between the outer ring 11 and the inner ring 21 from one side of the shoulder 13 b on the thrust non-load side of the outer ring 11, and the ball 31 is inserted into a pocket portion 73 formed in the waveform division holder 72. Is inserted so that the coupling plate portion 74 of one waveform division holder 71 and the coupling plate portion 74 of the other waveform division holder 72 are brought into contact with each other, and the two coupling plate portions 74 are rivets. It joins by crimping 76.
  • the pocket portion 73 of one of the wave split cages 71 faces the shoulder 13a on the thrust load side of the outer ring 11 in the radial direction, and the pocket portion 73 is the coupling plate portion 74. Therefore, a gap is formed between the outer ring 11 and the shoulder 13a on the thrust load side.
  • the pocket portion 73 of the other waveform division holder 72 is opposed to the thrust load side shoulder 23b of the inner ring 21 in the radial direction, and the pocket portion 73 is displaced radially outward with respect to the coupling plate portion 74.
  • a gap is formed between the inner ring 21 and the shoulder 23b on the thrust load side.
  • the pocket portion 73 of the cage 40 does not interfere with the thrust load side shoulders 13a and 23b, and the outer ring 11 and the inner ring 21 can be smoothly rotated relative to each other. .
  • a ball non-contact portion 77 made of a concave portion is provided on the inner peripheral surface of the pocket 75 of each of the pocket portions 73 of the waveform division holders 71 and 72 shown in FIG.
  • the contact area with the ball 31 is 15% to 30% lower than the contact area with the ball 31 when the ball non-contact portion 77 is not provided.
  • the ball non-contact portion 77 formed of a recess on the inner peripheral surface of the pocket 75 of the pocket portion 73, the resistance when the lubricant passes through the pocket 75 and the amount of oil film to be sheared are reduced. Can be achieved, and a great effect can be obtained in reducing torque loss.

Abstract

Provided is a deep groove ball bearing such that balls can be completely prevented from riding inner and outer race shoulders, and that the rolling fatigue life is long. Balls (31) are installed between a raceway groove (12) of an outer race (11) and a raceway groove (22) of an inner race (21). The balls (31) are retained in a cage (40). A total of four shoulders are formed on both sides of the outer raceway groove (12) and the inner raceway groove (22). As regards these four shoulders, the heights of a pair of shoulders (13a, 23b), which are located diagonally, are set to be higher than those of the remaining pair of shoulders (13b, 23a). The height of the higher shoulder (13a) of the outer race (11) is denoted by H1, the height of the higher shoulder (23b) of the inner race (21) is denoted by H2, and the diameter of the balls (31) is denoted by d. On the basis of these notations, a ratio H1/d, which is the ratio of the shoulder height (H1) of the outer race (11) to the diameter (d) of the balls (31), is set to be within a range of 0.28 - 0.50. Furthermore, a ratio H2/d, which is the ratio of the shoulder height (H2) of the inner race (21) to the diameter (d) of the balls (31), is set to be within a range of 0.37 - 0.50. As a result, the balls (31) are prevented from riding inner and outer race shoulders. Bearing steel which is the raw material for the outer race (11) and the inner race (21), is heat treated, resulting in the rolling fatigue life being improved.

Description

深みぞ玉軸受Deep groove ball bearing
 この発明は、外輪と内輪間にボールを組込み、そのボールを保持器により保持した深みぞ玉軸受に関する。 This invention relates to a deep groove ball bearing in which a ball is incorporated between an outer ring and an inner ring and the ball is held by a cage.
 図12に示すように、トランスミッションのファイナルドライブギヤ1の回転をファイナルドリブンギヤ2から、そのギヤ2を支持するデフケース3に伝え、このデフケース3の回転をピニオンシャフト4に固定された一対のピニオン5からこれに噛合するサイドギヤ6a、6bに伝達して、各サイドギヤ6a、6bを支持する左右のアクスル7a、7bに伝達するようにしたディファレンシャルにおいては、前記デフケース3の両端に形成された筒部8a、8bをハウジング9に支持された一対の軸受Bによって回転自在に支持している。 As shown in FIG. 12, the rotation of the final drive gear 1 of the transmission is transmitted from the final driven gear 2 to the differential case 3 that supports the gear 2, and the rotation of the differential case 3 is transmitted from a pair of pinions 5 fixed to the pinion shaft 4. In the differential that is transmitted to the side gears 6a, 6b meshing therewith and transmitted to the left and right axles 7a, 7b that support the side gears 6a, 6b, the cylindrical portions 8a formed at both ends of the differential case 3, 8b is rotatably supported by a pair of bearings B supported by the housing 9.
 上記ディファレンシャルにおいては、デフケース3に支持されたファイナルドリブンギヤ2にヘリカルギヤが採用されているため、ファイナルドリブンギヤ2が回転すると、デフケース3にスラスト荷重が負荷されることになる。 In the above differential, since a helical gear is employed for the final driven gear 2 supported by the differential case 3, when the final driven gear 2 rotates, a thrust load is applied to the differential case 3.
 このため、デフケース3を支持する軸受Bには、ラジアル荷重とスラスト荷重の両方の荷重を支持することができる軸受を用いる必要がある。 For this reason, it is necessary to use a bearing capable of supporting both a radial load and a thrust load as the bearing B that supports the differential case 3.
 また、自動車のトランスミッションにおいても、回転トルクの伝達にヘリカルギヤが採用されているため、そのヘリカルギヤが設けられたシャフトを支持する軸受としても、ラジアル荷重とスラスト荷重の両方の荷重を支持することができる軸受を用いる必要がある。 In addition, since a helical gear is used to transmit rotational torque in the transmission of an automobile, both radial load and thrust load can be supported as a bearing that supports a shaft provided with the helical gear. It is necessary to use a bearing.
 ここで、円すいころ軸受においては、負荷容量が大きく、スラスト荷重およびラジアル荷重の両方を受けることができるため、デフケース3の支持用軸受やトランスミッションのシャフトの支持用軸受に好適であるが、この円すいころ軸受においては、トルク損失が多く、燃料の消費量が多くなるという問題が生じる。その低燃費化を図る上においては、トルク損失の少ない深みぞ玉軸受あるいはアンギュラ玉軸受を用いるのが好ましい。 Here, since the tapered roller bearing has a large load capacity and can receive both a thrust load and a radial load, it is suitable for a bearing for supporting the differential case 3 and a bearing for supporting a transmission shaft. In the roller bearing, there is a problem that torque loss is large and fuel consumption is increased. In order to reduce fuel consumption, it is preferable to use a deep groove ball bearing or an angular ball bearing with a small torque loss.
 ところで、標準の深みぞ玉軸受においては、過大なスラスト荷重が負荷された際に、そのスラスト荷重を受ける負荷側の肩にボールが乗り上げて、肩のエッジが損傷する懸念がある。また、アンギュラ玉軸受においても、過大なラジアル荷重が負荷された際に、ボールがカウンタボアに乗り上げ、短寿命となる懸念がある。 By the way, in the case of a standard deep groove ball bearing, when an excessive thrust load is applied, there is a concern that the ball rides on the shoulder on the load side receiving the thrust load and the shoulder edge is damaged. Also, in the angular ball bearing, when an excessive radial load is applied, there is a concern that the ball rides on the counterbore and has a short life.
 そのような不都合を解消するため、特許文献1に記載された深みぞ玉軸受においては、外輪の軌道溝および内輪の軌道溝のそれぞれ両側に形成された肩のうち、スラスト荷重を受ける側の肩を高くして、ボールの乗り上げを阻止し、軸受の耐久性の低下を抑制するようにしている。 In order to eliminate such inconvenience, in the deep groove ball bearing described in Patent Document 1, of the shoulders formed on both sides of the outer ring raceway groove and the inner ring raceway groove, the shoulder on the side receiving the thrust load. Is increased to prevent the ball from climbing and to suppress a decrease in the durability of the bearing.
特開2000-145795号公報JP 2000-145795 A
 ところで、上記特許文献1に記載された深みぞ玉軸受においては、ボールの肩乗り上げを阻止する側の肩の高さ寸法については何も言及されていないため、肩高さが必要以上に小さい場合には肩乗り上げが生じて軸受の使用上に問題が発生する。 By the way, in the deep groove ball bearing described in the above-mentioned Patent Document 1, nothing is mentioned about the height of the shoulder on the side that prevents the ball from climbing over the shoulder, so the shoulder height is smaller than necessary. There is a problem in the use of the bearing due to the shoulder climbing.
 また、上記深みぞ玉軸受は、円すいころ軸受と比較して、負荷容量が小さいため、円すいころ軸受と同等もしくは同程度の転がり疲労寿命の要求を受けた場合、転がり疲労寿命の低下が問題となる。 In addition, the deep groove ball bearing has a smaller load capacity than a tapered roller bearing. Therefore, when the rolling fatigue life is requested to be the same as or comparable to that of a tapered roller bearing, a decrease in the rolling fatigue life is a problem. Become.
 さらに、トランスミッションなどでの使用においては、ミッションケース内に貯留された潤滑油に切り粉等の異物が混入しているため、その異物の噛み込みによって外輪や内輪の軌道溝あるいはボールの表面に圧痕が形成され易く、その圧痕を起点にして損傷が拡がり、早期損傷による懸念がある。 Furthermore, when used in a transmission, etc., foreign matter such as chips is mixed in the lubricating oil stored in the transmission case. As a result, the outer ring or inner ring raceway groove or the surface of the ball is indented by the foreign matter being caught. Is easily formed, and the damage spreads starting from the indentation, and there is a concern due to early damage.
 この発明の課題は、大きなスラスト荷重を受けた場合でもボールの肩乗り上げを完全に防止することができ、転がり疲労寿命に対しても長寿命な深みぞ玉軸受を提供することである。 An object of the present invention is to provide a deep groove ball bearing that can completely prevent a ball from climbing over a shoulder even under a large thrust load and has a long life against rolling fatigue life.
 上記の課題を解決するために、第1の発明においては、内径面に軌道溝が形成された外輪と、外径面に軌道溝が形成された内輪と、外輪の軌道溝と内輪の軌道溝間に組込まれたボールと、そのボールを保持するポケットが形成された保持器とからなり、前記外輪の軌道溝および内輪の軌道溝のそれぞれ両側に位置する合計4つの肩のうち、外輪軌道溝の一側の肩および内輪軌道溝の他側の肩の高さを、外輪軌道溝の他側の肩および内輪軌道溝の一側の肩の高さより高くした深みぞ玉軸受において、前記外輪の高さの高い肩の高さをH、内輪の高さの高い肩の高さをH、ボールの球径をdとしたとき、ボールの球径dに対する外輪の肩高さHの比率H/dを0.28~0.50の範囲とし、かつ、ボールの球径dに対する内輪の肩高さHの比率H/dを0.37~0.50の範囲とし、前記外輪、内輪およびボールのうち、少なくとも外輪および内輪を重量比にして、炭素0.8~1.2%、ケイ素0.4~1.0%、クロム0.2~1.2%およびマンガン0.8~1.5%を含有する合金鋼により形成し、浸炭窒化処理した後、830~870°Cから焼入れして焼入れ終端温度を90~120℃とし、次いで、160~190℃の範囲で焼戻しして、表層部の残留オーステナイト量を25~50%とし、かつ、芯部のオーステナイト量を15~20%として、表層部に圧縮応力を残留させた構成を採用したのである。 In order to solve the above problems, in the first invention, an outer ring having a raceway groove formed on the inner diameter surface, an inner ring having a raceway groove formed on the outer diameter surface, a raceway groove of the outer ring, and a raceway groove of the inner ring An outer ring raceway groove, out of a total of four shoulders located on both sides of the outer ring raceway groove and the inner ring raceway groove, comprising a ball incorporated in between and a cage formed with a pocket for holding the ball. In the deep groove ball bearing, the height of the shoulder on one side and the shoulder on the other side of the inner ring raceway groove is higher than the height of the shoulder on the other side of the outer ring raceway groove and one side of the inner ring raceway groove. When the height of the shoulder with a high height is H 1 , the height of the shoulder with a high inner ring height is H 2 , and the ball diameter of the ball is d, the shoulder height H 1 of the outer ring with respect to the ball diameter d is The ratio H 1 / d is in the range of 0.28 to 0.50, and the shoulder of the inner ring with respect to the ball diameter d The ratio H 2 / d of the height H 2 is in the range of 0.37 to 0.50, and at least the outer ring and the inner ring among the outer ring, the inner ring and the ball are in a weight ratio of 0.8 to 1.2% carbon. , Formed from an alloy steel containing 0.4 to 1.0% silicon, 0.2 to 1.2% chromium and 0.8 to 1.5% manganese, and after carbonitriding, 830 to 870 ° C. And tempering in the range of 160 to 190 ° C. to make the amount of retained austenite in the surface layer portion 25 to 50%, and the amount of austenite in the core portion to 15 to 120 ° C. 20% was adopted as a structure in which the compressive stress remained in the surface layer portion.
 上記の構成からなる深みぞ玉軸受において、ヘリカルギヤを用いたギヤ支持装置への組付けに際しては、内輪の高さの高い肩がヘリカルギヤ側に位置する組込みとして、上記ヘリカルギヤへのトルク伝達により生じるスラスト荷重を外輪および内輪の高さの高い肩で受けるようにする。 In the deep groove ball bearing having the above configuration, when assembling to a gear support device using a helical gear, a thrust generated by torque transmission to the helical gear is incorporated as an assembly in which the high shoulder of the inner ring is located on the helical gear side. The load should be received by the high shoulders of the outer and inner rings.
 このとき、スラスト荷重を受ける外輪の肩においては、ボールの球径dに対する肩高さHの比率H/dが0.28以上とされている。これは、試験の結果に基づくものである。その試験に際し、軸受6208Cを用いた。この軸受6208Cは内部諸元よりボール径とボールPCDは固定であるため、外輪H/d=0.28以上を満たす外輪肩寸法はφ65.5mmになる。この肩寸法から0.1mm単位で肩寸法を変更すると肩乗り上げが発生し、軸受使用上問題があるため、H/dを0.28以上としている。 At this time, in the shoulder of the outer ring that receives the thrust load, the ratio H 1 / d of the shoulder height H 1 to the ball diameter d is 0.28 or more. This is based on the results of the test. In the test, the bearing 6208C was used. Since the ball diameter and the ball PCD of the bearing 6208C are fixed based on the internal specifications, the outer ring shoulder dimension satisfying the outer ring H / d = 0.28 or more is φ65.5 mm. If the shoulder dimension is changed from this shoulder dimension in units of 0.1 mm, shoulder climbing occurs and there is a problem in using the bearing. Therefore, H 1 / d is set to 0.28 or more.
 また、スラスト荷重を受ける内輪の肩においては、ボールの球径dに対する肩高さHの比率H/dが0.37以上とされている。この場合も、試験の結果に基づく規定である。その試験に際して、上記と同様に、軸受6208Cを用いた。この軸受6208Cは、上記のように、内部諸元よりボール径とボールPCDは固定であるため、内輪H/d=0.37を満たす内輪肩寸法はφ56.6mmになる。この肩寸法から0.1mm単位で肩寸法を変更すると肩乗り上げが発生し、軸受使用上問題があるため、H/dを0.37以上としている。 Further, in the shoulder of the inner ring that receives the thrust load, the ratio H 2 / d of the shoulder height H 2 to the ball diameter d is set to 0.37 or more. This is also a rule based on the test results. In the test, the bearing 6208C was used as described above. As described above, since the ball diameter and the ball PCD of the bearing 6208C are fixed based on the internal specifications, the inner ring shoulder dimension satisfying the inner ring H / d = 0.37 is φ56.6 mm. If the shoulder dimension is changed in 0.1 mm increments from this shoulder dimension, shoulder climbing occurs and there is a problem in using the bearing. Therefore, H 2 / d is set to 0.37 or more.
 外輪のスラスト荷重を受ける肩の高さおよび内輪のスラスト荷重を受ける肩の高さを上記のように規定することによって、肩に対するボールの乗り上げを完全に防止することができる。 By specifying the height of the shoulder that receives the thrust load of the outer ring and the height of the shoulder that receives the thrust load of the inner ring as described above, it is possible to completely prevent the ball from riding on the shoulder.
 第1の発明に係る深みぞ玉軸受においては、上記のように、少なくとも外輪と内輪を炭素量の多い高炭素軸受鋼を浸炭窒化処理し、高温から焼入れした後、比較的低温で焼戻しして、表層部の残留オーステナイト量を15~20%としているため、転がり疲労寿命を著しく改善することができる。 In the deep groove ball bearing according to the first invention, as described above, at least the outer ring and the inner ring are carbonitrided with high carbon bearing steel with a large amount of carbon, quenched from a high temperature, and then tempered at a relatively low temperature. Since the amount of retained austenite in the surface layer portion is 15 to 20%, the rolling fatigue life can be remarkably improved.
 上記の課題を解決するために、第2の発明においては、内径面に軌道溝が形成された外輪と、外径面に軌道溝が形成された内輪と、外輪の軌道溝と内輪の軌道溝間に組込まれたボールと、そのボールを保持するポケットが形成された保持器とからなり、前記外輪の軌道溝および内輪の軌道溝のそれぞれ両側に位置する合計4つの肩のうち、外輪軌道溝の一側の肩および内輪軌道溝の他側の肩の高さを、外輪軌道溝の他側の肩および内輪軌道溝の一側の肩の高さより高くした深みぞ玉軸受において、前記外輪の高さの高い肩の高さをH、内輪の高さの高い肩の高さをH、ボールの球径をdとしたとき、ボールの球径dに対する外輪の肩高さHの比率H/dを0.28~0.50の範囲とし、かつ、ボールの球径dに対する内輪の肩高さHの比率H/dを0.37~0.50の範囲とし、前記外輪、内輪およびボールのうち、少なくとも外輪および内輪を重量比にして、炭素0.6~1.2%、ケイ素0.15~1.1%、クロム2.0%以下およびマンガン0.3~1.5%を含有する軸受鋼により形成し、その軸受鋼をA変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A変態点未満の温度に冷却し、その後、790~830℃の焼入れ温度領域に再加熱して焼入れを行い、オーステナイト結晶粒径を平均粒径で8μm以下とした構成を採用している。 In order to solve the above problems, in the second invention, an outer ring having a raceway groove formed on the inner diameter surface, an inner ring having a raceway groove formed on the outer diameter surface, a raceway groove of the outer ring, and a raceway groove of the inner ring An outer ring raceway groove, out of a total of four shoulders located on both sides of the outer ring raceway groove and the inner ring raceway groove, comprising a ball incorporated in between and a cage formed with a pocket for holding the ball. In the deep groove ball bearing, the height of the shoulder on one side and the shoulder on the other side of the inner ring raceway groove is higher than the height of the shoulder on the other side of the outer ring raceway groove and one side of the inner ring raceway groove. When the height of the shoulder with a high height is H 1 , the height of the shoulder with a high inner ring height is H 2 , and the ball diameter of the ball is d, the shoulder height H 1 of the outer ring with respect to the ball diameter d is The ratio H 1 / d is in the range of 0.28 to 0.50, and the shoulder of the inner ring with respect to the ball diameter d The ratio H 2 / d of the height H 2 is in the range of 0.37 to 0.50, and at least the outer ring and the inner ring of the outer ring, the inner ring and the ball are in a weight ratio of 0.6 to 1.2% carbon. silicon 0.15 to 1.1%, formed by chromium 2.0% and bearing steel containing manganese 0.3 to 1.5%, carbonitriding temperature the bearing steel in excess of the a 1 transformation point in after carbonitrided, cooled to a temperature below the a 1 transformation point, then, subjected to quenching and re-heating to a hardening temperature range of 790 ~ 830 ° C., was 8μm below the austenite grain size in average particle size The configuration is adopted.
 上記の第2の発明に係る深みぞ玉軸受においても、第1の発明に係る深みぞ玉軸受と同様に、ボールの球径dに対する外輪の肩高さHの比率H/dを0.28以上とし、かつ、ボールの球径dに対する内輪の肩高さHの比率H/dを0.37以上としているため、肩に対するボールの乗り上げを完全に防止することができる。 In the deep groove ball bearing according to the second invention as well, the ratio H 1 / d of the shoulder height H 1 of the outer ring to the ball diameter d is set to 0, as in the deep groove ball bearing according to the first invention. And the ratio H 2 / d of the shoulder height H 2 of the inner ring to the ball diameter d of the ball is 0.37 or more, so that it is possible to completely prevent the ball from riding on the shoulder.
 また、外輪および内輪を重量比にして、炭素0.6~1.2%、ケイ素0.15~1.1%、クロム2.0%以下およびマンガン0.3~1.5%を含有する軸受鋼により形成し、その軸受鋼をA変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A変態点未満の温度に冷却し、その後、790~830℃の焼入れ温度領域に再加熱して焼入れを行うことにより、平均粒径で8μm以下のミクロ組織のオーステナイト結晶粒を得ることができ、転がり疲労に対して長寿命であり、割れ強度を向上させ、経年変化率も減少させることができる。 Further, the outer ring and the inner ring contain 0.6 to 1.2% carbon, 0.15 to 1.1% silicon, 2.0% or less chromium, and 0.3 to 1.5% manganese in terms of weight ratio. formed by bearing steel, again the bearing steel was carbonitrided at a carbonitriding processing temperature in excess of a 1 transformation point, cooled to a temperature below the a 1 transformation point, then the quenching temperature range of 790 ~ 830 ° C. By heating and quenching, an austenite crystal grain having an average grain size of 8 μm or less can be obtained, has a long life against rolling fatigue, improves crack strength, and decreases the aging rate. be able to.
 第1の発明および第2の発明において、外輪の軌道溝の曲率半径をr、内輪の軌道溝の曲率半径をr、ボールの球径をdとしたとき、ボールの半径d/2に対する外輪軌道溝の曲率半径rの比率r/d/2を1.03~1.08の範囲とし、かつ、ボールの半径d/2に対する内輪軌道溝の曲率半径rの比率r/d/2を1.015~1.04の範囲とすると、ボールと軌道溝間の接触部での滑り防止することができ、上記接触部での脆性剥離を防止することができる。 In the first and second inventions, when the radius of curvature of the raceway groove of the outer ring is r 1 , the radius of curvature of the raceway groove of the inner ring is r 2 , and the ball diameter of the ball is d, the radius d / 2 of the ball The ratio r 1 / d / 2 of the curvature radius r 1 of the outer ring raceway groove is in the range of 1.03 to 1.08, and the ratio r 2 / r of the curvature radius r 2 of the inner ring raceway groove to the radius d / 2 of the ball When d / 2 is in the range of 1.015 to 1.04, slippage can be prevented at the contact portion between the ball and the raceway groove, and brittle peeling at the contact portion can be prevented.
 また、外輪の高さの低い肩の高さをH、内輪の高さの低い肩の高さをH、ボールの球径をdとしたとき、ボールの球径dに対する外輪の肩高さHの比率H/dを0.08~0.25の範囲とし、かつ、ボールの球径dに対する内輪の肩高さHの比率H/dを0.08~0.25の範囲とすると、上記肩のそれぞれを標準型深みぞ玉軸受の肩の高さと同一の高さとする場合に比較して、外輪と内輪の径方向で対向する肩間に大きな間隔を確保することができるため、保持器として径方向幅の大きい強度の高い保持器を採用することができる。 Further, when the height of the shoulder with the lower height of the outer ring is H 3 , the height of the shoulder with the lower height of the inner ring is H 4 , and the ball diameter of the ball is d, the shoulder height of the outer ring with respect to the ball diameter d It is in the range of the ratio H 3 / d of 0.08 to 0.25 of H 3, and the ratio H 4 / d of 0.08 to 0.25 of the inner ring shoulder height H 4 for the spherical diameter d of the ball If the above-mentioned range is set, the shoulders facing each other in the radial direction of the outer ring and the inner ring should have a larger distance than the case where each of the above shoulders has the same height as that of the standard deep groove ball bearing. Therefore, a cage having a large radial width and a high strength can be adopted as the cage.
 ここで、保持器として、合成樹脂の成形品からなる円筒形の第1分割保持器と、その第1分割保持器の内側に挿入される合成樹脂製の円筒形の第2分割保持器からなり、前記第1分割保持器の軸方向一側面と第2分割保持器の軸方向他側面に、その両分割保持器を内外に組み合わせた状態でボール保持用の円形のポケットを形成する切欠部を周方向に間隔をおいて設け、前記第1分割保持器と第2分割保持器が円形のポケットを形成する組み合わせ状態で、その両分割保持器を軸方向に非分離とする連結手段を設けた構成からなるものを採用することができる。 Here, the cage includes a cylindrical first divided cage made of a synthetic resin molded product and a synthetic resin cylindrical second divided cage inserted inside the first divided cage. And a notch for forming a circular pocket for holding a ball in a state where both the split cages are combined inside and outside on one axial side surface of the first split cage and the other axial side surface of the second split cage. A connecting means is provided that is spaced apart in the circumferential direction, and in which the first divided holder and the second divided holder form a circular pocket, and the two divided holders are not separated in the axial direction. What consists of composition can be adopted.
 上記の構成からなる保持器の組付けは、外輪と内輪間にボールを組込んだ後、外輪と内輪の一側方から軸受内部に第1分割保持器を、その第1分割保持器に形成された切欠部内にボールが収容されるように挿入し、かつ、外輪と内輪間の他側方から軸受内部に第2分割保持器を、その第2分割保持器に形成された切欠部内にボールが収容されるように挿入して、第1分割保持器の軸方向の一側部内に第2分割保持器の軸方向の他側部を嵌合し、連結手段により、その両分割保持器を連結する。 Assembling the cage having the above-described configuration is as follows. After the ball is assembled between the outer ring and the inner ring, the first divided cage is formed in the bearing from one side of the outer ring and the inner ring. The second split cage is inserted into the bearing from the other side between the outer ring and the inner ring, and the ball is inserted into the notch formed in the second split cage. Is inserted so that the other side portion in the axial direction of the second split cage is fitted in the one side portion in the axial direction of the first split cage, and both split cages are connected by the connecting means. Link.
 上記のように、第1分割保持器内に第2分割保持器を嵌合することにより、連結手段が互いに係合して第1分割保持器と第2分割保持器は軸方向に非分離とされるため、深みぞ玉軸受を簡単に組立てることができる。 As described above, by fitting the second divided cage into the first divided cage, the connecting means are engaged with each other so that the first divided cage and the second divided cage are not separated in the axial direction. Therefore, the deep groove ball bearing can be easily assembled.
 また、径の異なる第1分割保持器と第2分割保持器は、両端部が軸方向(左右方向)にずれる非対称の組み合わせであり、組込み時における挿入方向の後端部が外輪の肩と内輪の肩間に位置する組込みであるため、内・外輪の肩に干渉するようなことはなく、第1分割保持器および第2分割保持器を確実に組込むことができる。 In addition, the first split cage and the second split cage having different diameters are asymmetrical combinations in which both end portions are shifted in the axial direction (left-right direction), and the rear end portion in the insertion direction when assembled is the shoulder of the outer ring and the inner ring Therefore, the first split holder and the second split holder can be securely assembled without interfering with the shoulders of the inner and outer rings.
 ここで、連結手段として、第1分割保持器の隣接する切欠部間に形成された柱部の先端部に内向きの係合爪を設け、前記第2分割保持器の隣接する切欠部間に形成された柱部の先端部に外向きの係合爪を設け、第1分割保持器の係合爪を第2分割保持器の外径面に形成された係合凹部に係合し、第2分割保持器の係合爪を第1分割保持器の内径面に形成された係合凹部に係合させるようにした構成から成るものを採用することができる。 Here, as a connecting means, an inward engagement claw is provided at a tip portion of a pillar portion formed between adjacent notch portions of the first split cage, and between the adjacent notch portions of the second split cage. An outward engaging claw is provided at the tip of the formed column part, and the engaging claw of the first divided holder is engaged with an engaging recess formed on the outer diameter surface of the second divided holder. It is possible to employ a configuration in which the engaging claw of the two-divided cage is engaged with an engaging recess formed on the inner diameter surface of the first divided cage.
 上記のような保持器の採用において、切欠部は、平面形状において2分の1円を超える円形状とされて開口端に対向一対のポケット爪を有し、断面形状がボールの外周に沿う球面状とされたものであってもよく、あるいは、第1分割保持器と第2分割保持器の嵌合状態において円筒状のポケットを形成する平面U字形とされたものであってもよい。 In the use of the cage as described above, the cutout portion has a circular shape exceeding a half circle in a planar shape, and has a pair of opposed pocket claws at the opening end, and a spherical shape whose cross-sectional shape follows the outer periphery of the ball It may be formed into a shape, or may be formed into a plane U shape that forms a cylindrical pocket in the fitted state of the first divided holder and the second divided holder.
 切欠部として、平面形状が2分の1円を超える円形状ものを採用すると、係合爪と係合凹部の係合およびポケット爪とボールの係合によって分割保持器の脱落を効果的に防止することができる。 If a circular shape with a planar shape exceeding one-half circle is used as the notch, the split cage is effectively prevented from falling off by engaging the engaging claw and the engaging recess and engaging the pocket claw and the ball. can do.
 一方、切欠部として、平面形状がU字形とされたものを採用することにより、保持器の組込みにボールが干渉することがなく、軸受内部に保持器を容易に組込むことができる。 On the other hand, by adopting a U-shaped planar shape as the notch, the ball does not interfere with the assembly of the cage, and the cage can be easily incorporated into the bearing.
 平面形状が2分の1円を超える円形状の切欠部の採用において、係合爪と係合凹部間に形成される周方向すきまをボールとポケット間に形成される周方向のポケットすきまより大きくしておくことにより、大きなモーメント荷重が負荷されてボールに遅れ進みが生じ、第1分割保持器と第2分割保持器とが相対的に回転しても、係合爪が係合凹部の周方向で対向する側面に当接することはなく、係合爪の損傷防止に効果を挙げることができる。 In adopting a circular notch with a planar shape exceeding a half circle, the circumferential clearance formed between the engaging claw and the engaging recess is larger than the circumferential pocket clearance formed between the ball and the pocket. By doing so, even if a large moment load is applied and the ball is delayed and advanced, the engaging claw will move around the engaging recess even if the first divided holder and the second divided holder rotate relatively. There is no contact with the side surfaces that face each other in the direction, and the effect of preventing damage to the engaging claws can be obtained.
 また、係合爪と係合凹部間に形成される軸方向すきまをボールとポケット間に形成される軸方向のポケットすきまより大きくしておくことにより、第1分割保持器と第2分割保持器に離反する方向の軸方向力が作用した際に、対向一対のポケット爪の内面がボールの外周面に当接して、係合爪が係合凹部の軸方向端面に当接するというようなことはなく、係合爪の損傷防止に効果を挙げることができる。 Further, the first split cage and the second split cage can be obtained by setting the axial clearance formed between the engaging claw and the engaging recess larger than the axial pocket clearance formed between the ball and the pocket. When the axial force in the direction separating from each other is applied, the inner surfaces of the pair of opposing pocket claws abut against the outer peripheral surface of the ball, and the engaging claws abut against the axial end surface of the engaging recess. The effect of preventing damage to the engaging claws can be obtained.
 一方、平面U字形の切欠部の採用において、係合爪と係合凹部間に形成される周方向すきまを径方向で対向する2つの切欠部によって形成されるポケットとそのポケット内に収容されるボール間の周方向のポケットすきまより大きくしておくことにより、大きなモーメント荷重が負荷されてボールに遅れ進みが生じ、第1分割保持器と第2分割保持器とが相対的に回転しても、係合爪が係合凹部の周方向で対向する側面に当接することはなく、係合爪の損傷防止に効果を挙げることができる。 On the other hand, in the adoption of a planar U-shaped notch, a circumferential clearance formed between the engaging claw and the engaging recess is accommodated in a pocket formed by two notches that are opposed in the radial direction and in the pocket. By making it larger than the circumferential pocket clearance between the balls, even if a large moment load is applied and the balls are delayed and advanced, the first split cage and the second split cage can rotate relatively. The engaging claws do not come into contact with the side surfaces opposed to each other in the circumferential direction of the engaging recess, and an effect can be obtained in preventing damage to the engaging claws.
 ここで、深みぞ玉軸受は、潤滑油により潤滑されるため、第1分割保持器および第2分割保持器は耐油性に優れた合成樹脂で成形するのが好ましい。そのような樹脂として、ポリアミド46(PA46)、ポリアミド66(PA66)、ポリフェニレンスルファイド(PPS)を挙げることができる。それらの樹脂のうち、ポリフェニレンスルファイド(PPS)は、他の樹脂に比較して耐油性が優れているため、耐油性を考慮するならば、ポリフェニレンスルファイド(PPS)を用いるのが最も好ましい。 Here, since the deep groove ball bearing is lubricated by the lubricating oil, it is preferable that the first split cage and the second split cage are formed of a synthetic resin excellent in oil resistance. Examples of such a resin include polyamide 46 (PA46), polyamide 66 (PA66), and polyphenylene sulfide (PPS). Among these resins, polyphenylene sulfide (PPS) has excellent oil resistance compared to other resins, and therefore, considering the oil resistance, it is most preferable to use polyphenylene sulfide (PPS).
 また、樹脂材料の価格を考慮するならば、ポリアミド66(PA66)を用いるのが好ましく、潤滑油の種類に応じて適宜に決定すればよい。 In consideration of the price of the resin material, it is preferable to use polyamide 66 (PA66), which may be determined appropriately according to the type of the lubricating oil.
 なお、保持器は上記の構成のものに限定されない、例えば、軸方向に2分割された分割保持器からなり、その分割保持器のそれぞれが、複数の半球状ポケット部と、そのポケット部の幅寸法と同一の幅寸法とされた複数の結合板部とが周方向に交互に連続する波形とされ、その2枚の波形分割保持器の結合板部の外径を同径とし、一方の波形分割保持器のポケット部を結合板部に対して内径側に位置をずらし、他方の波形分割保持器のポケット部を結合板部に対して外径側に位置をずらし、前記一方の波形分割保持器を外輪の高さの高い肩側から軸受内部に挿入し、かつ、前記他方の波形分割保持器を外輪の高さの低い肩側から軸受内部に挿入して、半球状ポケット部間にポケットを設けた構成からなるものであってもよい。 Note that the cage is not limited to the one having the above-described configuration, for example, a cage that is divided into two in the axial direction. Each of the cages has a plurality of hemispherical pocket portions and a width of the pocket portion. A plurality of coupling plate portions having the same width as the dimensions are continuously waved in the circumferential direction, the outer diameters of the coupling plate portions of the two waveform split cages are the same, and one waveform The position of the pocket part of the split cage is shifted to the inner diameter side with respect to the coupling plate part, and the position of the pocket part of the other waveform split cage is shifted to the outer diameter side with respect to the coupling plate part. And insert the other corrugated cage into the bearing from the lower shoulder side of the outer ring to the inside of the bearing. It may consist of the structure which provided.
 上記のように、第1に発明および第2の発明のいずれの発明も、大きなスラスト荷重を受けた場合でもボールの肩乗り上げを完全に防止することができ、転がり疲労寿命に対しても長寿命な深みぞ玉軸受を得ることができる。このため、円すいころ軸受が必要とされていた軸受装置への組込みを可能とすることができ、その軸受装置への組込みによってトルク損失の低減化を図り、低燃費を達成することができる。 As described above, both the first invention and the second invention can completely prevent the balls from climbing over the shoulder even when subjected to a large thrust load, and have a long life against rolling fatigue life. A deep groove ball bearing can be obtained. For this reason, it can be incorporated into a bearing device where a tapered roller bearing is required, and the incorporation into the bearing device can reduce torque loss and achieve low fuel consumption.
 また、第1の発明に係る深みぞ玉軸受においては、外輪および内輪を炭素量の多い高炭素軸受鋼で形成し、その高炭素軸受鋼を浸炭窒化処理し、高温から焼入れした後、比較的低温で焼戻しして、表層部の残留オーステナイト量を15~20%としたので、転がり疲労寿命を著しく改善することができる。 Further, in the deep groove ball bearing according to the first invention, the outer ring and the inner ring are formed of high carbon bearing steel with a large amount of carbon, and after carbonitriding the high carbon bearing steel and quenching from high temperature, By tempering at a low temperature, the amount of retained austenite in the surface layer portion is 15 to 20%, so that the rolling fatigue life can be remarkably improved.
 さらに、第2の発明に係る深みぞ玉軸受においては、外輪および内輪を炭素量の多い軸受鋼で形成し、その軸受鋼をA変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A変態点未満の温度に冷却し、その後、790~830℃の焼入れ温度領域に再加熱して焼入れを行う熱処理によって、平均粒径で8μm以下のミクロ組織のオーステナイト結晶粒を形成するようにしたので、転がり疲労に対して長寿命であり、割れ強度を向上させ、経年変化率の小さい耐久性に優れた深みぞ玉軸受を得ることができる。 Further, in the deep groove ball bearing according to the second invention, to form a outer ring and the inner ring carbon intensive bearing steel, after the bearing steel was carbonitrided at a carbonitriding processing temperature above the A 1 transformation point, cooled to a temperature below the a 1 transformation point, then, by a heat treatment of performing quenching and re-heating in the quenching temperature range of 790 ~ 830 ° C., to form the austenite crystal grains of 8μm following microstructure with an average grain size Therefore, it is possible to obtain a deep groove ball bearing that has a long life against rolling fatigue, an improved crack strength, and a low durability with a low rate of aging.
この発明に係る深みぞ玉軸受の実施の形態を示す縦断正面図Longitudinal front view showing an embodiment of a deep groove ball bearing according to the present invention 図1に示す保持器の一部分を示す右側面図The right view which shows a part of cage | basket shown in FIG. 図1に示す保持器の一部分を示す左側面図The left view which shows a part of cage shown in FIG. 図1の第1分割保持器と第2分割保持器の結合部を拡大して示す断面図Sectional drawing which expands and shows the coupling | bond part of the 1st division | segmentation holder | retainer of FIG. 1, and a 2nd division | segmentation holder | retainer 第1分割保持器と第2分割保持器の一部分を示す平面図The top view which shows a part of a 1st division | segmentation holder | retainer and a 2nd division | segmentation holder | retainer (I)は、図5に示す第1分割保持器のポケットにボールを組込んだ状態での周方向のポケットすきまを示す平面図、(II)は、図5に示す第1分割保持器のポケットにボールを組込んだ状態での軸方向のポケットすきまを示す平面図(I) is a plan view showing a pocket clearance in the circumferential direction in a state where a ball is incorporated in the pocket of the first split cage shown in FIG. 5, and (II) is a plan view of the first split cage shown in FIG. Top view showing the pocket clearance in the axial direction with the ball in the pocket 合成樹脂製保持器の他の例を示す一部分の平面図Partial plan view showing another example of a synthetic resin cage 図7に示す第1分割保持器のポケットにボールを組込んだ状態での周方向のポケットすきまを示す平面図The top view which shows the pocket clearance of the circumferential direction in the state which built the ball | bowl in the pocket of the 1st division | segmentation holder | retainer shown in FIG. 外輪の軌道溝および内輪の軌道溝の他の例を示す断面図Sectional drawing which shows the other example of the outer ring raceway groove and the inner ring raceway groove 保持器のさらに他の例を示す一部分の平面図The top view of the part which shows the further another example of a holder | retainer 保持器のさらに他の例を示す一部分の平面図The top view of the part which shows the further another example of a holder | retainer ディファレンシャルを示す断面図Cross-sectional view showing differential
 以下、この発明の実施の形態を図面に基づいて説明する。図1に示すように、深みぞ玉軸受Aは、外輪11の内径面に形成された軌道溝12と内輪21の外径面に設けられた軌道溝22間にボール31を組込み、そのボール31を保持器40で保持している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, in the deep groove ball bearing A, a ball 31 is incorporated between a raceway groove 12 formed on the inner diameter surface of the outer ring 11 and a raceway groove 22 provided on the outer diameter surface of the inner ring 21. Is held by the cage 40.
 外輪11の軌道溝12の両側に形成された一対の肩13a、13bのうち、軌道溝12の一側方に位置する肩13aの高さは他側方に位置する肩13bよりも高くなっている。一方、内輪21の軌道溝22の両側に形成された一対の肩23a、23bのうち、軌道溝22の他側方に位置する肩23bの高さは一側方に位置する肩23aの高さより高くなっている。 Of the pair of shoulders 13a, 13b formed on both sides of the raceway groove 12 of the outer ring 11, the height of the shoulder 13a located on one side of the raceway groove 12 is higher than the shoulder 13b located on the other side. Yes. On the other hand, of the pair of shoulders 23a and 23b formed on both sides of the raceway groove 22 of the inner ring 21, the height of the shoulder 23b located on the other side of the raceway groove 22 is higher than the height of the shoulder 23a located on one side. It is high.
 なお、説明の都合上、高さの高い肩13a、23bをスラスト負荷側の肩13a、23bといい、高さの低い肩13b、23aをスラスト非負荷側の肩13b、23aという。 For convenience of explanation, the high shoulders 13a and 23b are referred to as thrust load side shoulders 13a and 23b, and the low shoulders 13b and 23a are referred to as thrust non-load side shoulders 13b and 23a.
 外輪11のスラスト負荷側の肩13aの高さをH、内輪21のスラスト負荷側の肩23bの高さをH、ボール31の球径をdとしたとき、ボール31の球径dに対する外輪11の肩高さHの比率H/dは、0.28~0.50の範囲とされ、一方、ボール31の球径dに対する内輪21の肩高さHの比率H/dは、0.37~0.50の範囲とされている。 When the height of the shoulder 13a on the thrust load side of the outer ring 11 is H 1 , the height of the shoulder 23b on the thrust load side of the inner ring 21 is H 2 , and the ball diameter of the ball 31 is d, the ball diameter d of the ball 31 The ratio H 1 / d of the shoulder height H 1 of the outer ring 11 is in the range of 0.28 to 0.50, while the ratio of the shoulder height H 2 of the inner ring 21 to the ball diameter d of the ball 31 is H 2 / d is in the range of 0.37 to 0.50.
 外輪11のスラスト非負荷側の肩13bの高さH、および、内輪21のスラスト非負荷側の肩23aの高さHは、標準型の深みぞ玉軸受の肩の高さと同一としている。なお、標準型深みぞ玉軸受とは、外輪の一対の肩の高さおよび内輪の一対の肩の高さが同じ高さとされている軸受のことをいう。 The height H 3 of the shoulder 13b on the thrust non-load side of the outer ring 11 and the height H 4 of the shoulder 23a on the thrust non-load side of the inner ring 21 are the same as the shoulder height of the standard deep groove ball bearing. . The standard deep groove ball bearing is a bearing in which the height of the pair of shoulders of the outer ring and the height of the pair of shoulders of the inner ring are the same.
 外輪11および内輪21は、重量比にして、炭素(C)0.8~1.2%、ケイ素(Si)0.4~1.0%、クロム(Cr)0.2~1.2%およびマンガン(Mn)0.8~1.5%を含有する高炭素軸受鋼を素材とする熱処理品からなっている。 The outer ring 11 and the inner ring 21 are, by weight ratio, carbon (C) 0.8 to 1.2%, silicon (Si) 0.4 to 1.0%, chromium (Cr) 0.2 to 1.2%. And a heat-treated product made of a high carbon bearing steel containing 0.8 to 1.5% of manganese (Mn).
 熱処理に際し、ここでは、浸炭窒化処理した後、830~870°Cから焼入れして焼入れ終端温度を90~120℃とし、次いで、160~190℃の範囲で焼戻しして、表層部の残留オーステナイト量を25~50%とし、かつ、芯部のオーステナイト量を15~20%としている。 In the heat treatment, after carbonitriding, quenching is performed from 830 to 870 ° C. to obtain a quenching termination temperature of 90 to 120 ° C., and then tempering in the range of 160 to 190 ° C. Is 25 to 50%, and the austenite content of the core is 15 to 20%.
 ここで、上記の高炭素軸受鋼の組成について、C0.8~1.2%と高炭素にするのは、基本的に焼入れ焼戻しにより表層部を硬化するためである。Cr0.2~1.2%とするのは、Cr0.2%未満では、炭化物を形成せず、表層の硬度が不足し、1.2%を越えると、炭化物が粗大化して剥離起点となり、短寿命となり易いからである。 Here, the reason why the composition of the above-mentioned high carbon bearing steel is set to a high carbon of C 0.8 to 1.2% is that the surface layer portion is basically hardened by quenching and tempering. If Cr is less than 0.2%, carbide is not formed if the Cr is less than 0.2%, and the hardness of the surface layer is insufficient. If it exceeds 1.2%, the carbide becomes coarse and becomes a starting point of peeling. This is because the life is likely to be short.
 Siは、安定して表層の残留オーステナイトを25%以上に高め、焼戻し軟化抵抗性を付与して、耐熱性を確保するために0.4%以上必要であるが、Siが1%を越えると、浸炭窒化処理の過程で、表皮から表層部への窒素・炭素の富化を阻害するからである。 Si stably increases the retained austenite of the surface layer to 25% or more, imparts temper softening resistance, and secures heat resistance, but 0.4% or more is necessary, but if Si exceeds 1% This is because, during the carbonitriding process, the enrichment of nitrogen and carbon from the skin to the surface layer is inhibited.
 Mnは、焼入れ性を確保して、芯部まで焼入れするためであるが、焼入れ過程及び焼戻し過程の残留オーステナイトを安定化させる元素で表層部の残留オーステナイトを高める。多量のMnの添加は、冷間加工性の低下や焼き割れ・脆化の原因となるので、Mn1.5%を越えない範囲に増加する。 Mn is for securing the hardenability and quenching to the core, but increases the retained austenite in the surface layer with an element that stabilizes the retained austenite in the quenching and tempering processes. Addition of a large amount of Mn causes a decrease in cold workability and causes cracking and embrittlement, and therefore increases to a range not exceeding 1.5% Mn.
 このような高炭素軸受鋼としては、SUJ3鋼が使用できる。また、Moは、焼入れ性改善のため0.3%まで適宜添加される。Moを添加した材料としてSUJ5鋼が利用される。 SUJ3 steel can be used as such a high carbon bearing steel. Mo is appropriately added to 0.3% for improving hardenability. SUJ5 steel is used as a material to which Mo is added.
 このような組成の高炭素軸受鋼で外輪11および内輪21を形成し、浸炭窒化すると表層部は窒素含有量が高くなり、表層部のMs点が芯部に比較すると低下するので、これを焼入れすると、未変態のオーステナイトが芯部よりも表層部に多くなる。表層部に窒素が高く、焼入れ開始温度(オーステナイト化温度)を830~870℃と高くするので、表層部の残留オーステナイトを25%以上にたやすく高めることができる。この残留オーステナイトを安定に高くするには、焼入れ終端温度を100℃程度に、好ましくは、90~120℃に高くする。この焼入れ過程では、窒素富化された表層部のマルテンサイト変態が内部より遅れて始まり、かつその変態量が内部より少ないので、表層部には、残留圧縮応力が形成される。 When the outer ring 11 and the inner ring 21 are formed of the high carbon bearing steel having such a composition and carbonitrided, the nitrogen content of the surface layer portion becomes high, and the Ms point of the surface layer portion decreases as compared with the core portion. Then, untransformed austenite is increased in the surface layer portion than in the core portion. Since nitrogen is high in the surface layer portion and the quenching start temperature (austenitizing temperature) is increased to 830 to 870 ° C., the retained austenite in the surface layer portion can be easily increased to 25% or more. In order to stably increase the retained austenite, the quenching end temperature is increased to about 100 ° C., preferably 90 to 120 ° C. In this quenching process, the martensitic transformation of the surface portion enriched with nitrogen starts later than the inside, and the amount of transformation is less than the inside, so that residual compressive stress is formed in the surface portion.
 焼入れ開始温度(オーステナイト化温度)が830~870℃と通常の焼入れ焼戻し鋼に比して高いので、使用する鋼は、焼入れに伴う亀裂敏感値が大きくなる。このため、焼入れ過程の300~150℃の範囲の冷却能Hを0.2cm-1以下とし、マルテンサイト変態過程の冷却速度を制御することが好ましい。 Since the quenching start temperature (austenitizing temperature) is 830 to 870 ° C., which is higher than that of ordinary quenching and tempering steel, the crack sensitivity value associated with quenching increases. Therefore, it is preferable to control the cooling rate in the martensitic transformation process by setting the cooling capacity H in the range of 300 to 150 ° C. in the quenching process to 0.2 cm −1 or less.
 浸炭窒化処理は、通常は、浸炭性ないし還元性ガス中にアンモニアを添加した高温ガス中で浸炭窒化するが、この場合には、830~870℃の温度範囲で浸炭窒化をした後直ちに上記条件で油中焼入れする。 In the carbonitriding process, carbonitriding is usually performed in a high-temperature gas in which ammonia is added to a carburizing or reducing gas. In this case, the above conditions are immediately applied after carbonitriding in a temperature range of 830 to 870 ° C. Quench in oil.
 上記熱処理において、焼入れ後の焼戻し温度を、160~190℃の比較的低温とし、焼戻し過程での残留オーステナイトの分解を抑えて、表層部の残留オーステナイトを25~50%の範囲とする。この範囲で残留オーステナイトが高くなる程、異物混入下での潤滑条件で転がり疲労寿命を改善するが、他方、表面硬さが低下して、耐摩耗性を低下させるので、表層部の残留オーステナイトは25~30%の範囲が良い。これに対して、芯部は、190℃以下の低温焼戻しであるから、通常は、残留オーステナイトが15~20%程度残留している。 In the above heat treatment, the tempering temperature after quenching is set to a relatively low temperature of 160 to 190 ° C., and the retained austenite in the surface layer portion is set to a range of 25 to 50% by suppressing decomposition of the retained austenite in the tempering process. The higher the retained austenite in this range, the rolling fatigue life is improved under the lubrication conditions under the presence of foreign matter. On the other hand, the surface hardness is lowered and the wear resistance is lowered. A range of 25 to 30% is preferable. On the other hand, since the core portion is tempered at a low temperature of 190 ° C. or lower, usually about 15 to 20% of retained austenite remains.
 なお、実施の形態では、外輪11および内輪21のみを熱処理品としているが、ボール31も外輪11および内輪21と同様の熱処理品としてもよい。 In the embodiment, only the outer ring 11 and the inner ring 21 are heat-treated, but the ball 31 may be a heat-treated product similar to the outer ring 11 and the inner ring 21.
 図1乃至図3に示すように、保持器40は、第1分割保持器41と、その第1分割保持器41の内側に挿入された第2分割保持器42とからなる。 As shown in FIG. 1 to FIG. 3, the holder 40 includes a first divided holder 41 and a second divided holder 42 inserted inside the first divided holder 41.
 図5に示すように、第1分割保持器41は、環状体43の軸方向一側面に対向一対のポケット爪44を周方向に等間隔に形成し、各対向一対のポケット爪44間に上記環状体43を刳り抜く平面形状が2分の1円を超える大きさの切欠部45を設けた合成樹脂の成形品からなっている。 As shown in FIG. 5, the first split holder 41 has a pair of opposed pocket claws 44 formed on the one side surface in the axial direction of the annular body 43 at equal intervals in the circumferential direction. The planar shape of the annular body 43 is made of a synthetic resin molded product provided with a notch 45 having a size exceeding a half circle.
 ここで、環状体43の内径は、図1に示すように、ボール31のピッチ円径(PCD)に略等しく、外径は外輪11の高さが高い肩13aの内径と高さの低い肩13bの内径の範囲内とされて、外輪11の高さの低い肩13b側から軸受内に挿入可能とされている。また、切欠部45の内面は、ボール31の外周に沿う球面状とされている。 Here, as shown in FIG. 1, the inner diameter of the annular body 43 is substantially equal to the pitch circle diameter (PCD) of the balls 31, and the outer diameter is equal to the inner diameter of the shoulder 13a where the height of the outer ring 11 is high and the shoulder whose height is low. The inner diameter of the outer ring 11 can be inserted into the bearing from the lower shoulder 13b side. Further, the inner surface of the notch 45 is a spherical shape along the outer periphery of the ball 31.
 一方、第1分割保持器41は、環状体48の軸方向他側面に対向一対のポケット爪49を周方向に等間隔に形成し、各対向一対のポケット爪49間に上記環状体48を刳り抜く平面形状が2分の1円を超える大きさの切欠部50を設けた合成樹脂の成形品からなっている。 On the other hand, the first split holder 41 has a pair of opposed pocket claws 49 formed on the other side surface in the axial direction of the annular body 48 at equal intervals in the circumferential direction, and the annular body 48 is wound between each pair of opposed pocket claws 49. It consists of a molded product of synthetic resin provided with a cutout portion 50 having a size that exceeds a half of a half of the planar shape to be extracted.
 上記環状体48の外径は、図1に示すように、ボール31のピッチ円径(PCD)に略等しく、内径は内輪21の高さの高い肩23bの外径と高さの低い肩23aの外径の範囲内とされている。この第2分割保持器42は、高さの低い肩23a側から軸受内に挿入可能とされ、かつ、第1分割保持器41の内側に嵌合可能とされている。また、切欠部50の内面は、ボール31の外周に沿う球面状とされている。 As shown in FIG. 1, the outer diameter of the annular body 48 is substantially equal to the pitch circle diameter (PCD) of the balls 31, and the inner diameter is the outer diameter of the high shoulder 23b of the inner ring 21 and the low shoulder 23a. The outer diameter is within the range. The second split cage 42 can be inserted into the bearing from the low shoulder 23a side, and can be fitted inside the first split cage 41. Further, the inner surface of the notch 50 is formed in a spherical shape along the outer periphery of the ball 31.
 図4および図5に示すように、第1分割保持器41と第2分割保持器42の相互間には、第1分割保持器41の軸方向一側部内に第2分割保持器42の軸方向他側部を挿入して、対向一対の切欠部45,50により円形のポケットを形成する状態において、その第1分割保持器41と第2分割保持器42を軸方向に非分離とする連結手段Xが設けられている。 As shown in FIG. 4 and FIG. 5, the shaft of the second split holder 42 is located between the first split holder 41 and the second split holder 42 within one side in the axial direction of the first split holder 41. In a state where a circular pocket is formed by a pair of opposed notches 45 and 50 by inserting the other side portion in the direction, the first split holder 41 and the second split holder 42 are non-separated in the axial direction. Means X are provided.
 連結手段Xは、第1分割保持器41の隣接する切欠部45間に形成された柱部43aの先端部に内向きの係合爪46を設け、かつ、環状体43の内径面に上記係合爪46と同一軸線上に溝状の係合凹部47を形成し、第2分割保持器42の隣接する切欠部50間に形成された柱部48aの先端部に外向きの係合爪51を設け、かつ、環状体48の外径面に上記係合爪51と同一軸線上に係合凹部52を形成し、第1分割保持器41の係合爪46と第2分割保持器42の係合凹部52の係合、および、第2分割保持器42の係合爪51と第1分割保持器41の係合凹部47の係合によって、第1分割保持器41と第2分割保持器42とを軸方向に非分離とする構成とされている。 The connecting means X is provided with an inward engagement claw 46 at the tip of a pillar portion 43a formed between adjacent cutout portions 45 of the first split holder 41, and the engagement member X is provided on the inner diameter surface of the annular body 43. A groove-like engagement recess 47 is formed on the same axis as the joint claw 46, and an outward engagement claw 51 is formed at the tip of a column part 48 a formed between the adjacent notches 50 of the second split holder 42. And an engagement recess 52 is formed on the outer diameter surface of the annular body 48 on the same axis as the engagement claw 51, and the engagement claw 46 of the first divided holder 41 and the second divided holder 42 are By the engagement of the engagement recess 52 and the engagement of the engagement claw 51 of the second split retainer 42 and the engagement recess 47 of the first split retainer 41, the first split retainer 41 and the second split retainer. 42 is not separated in the axial direction.
 ここで、第1分割保持器41および第2分割保持器42は、深みぞ玉軸受を潤滑する潤滑油に触れるため、耐油性に優れた合成樹脂を用いるようにする。そのような合成樹脂として、ポリアミド46(PA46)、ポリアミド66(PA66)、ポリフェニレンスルファイド(PPS)を挙げることができる。これらの樹脂は、潤滑油の種類に応じて適切なものを選択して使用すればよい。 Here, since the first split cage 41 and the second split cage 42 come into contact with the lubricating oil that lubricates the deep groove ball bearing, a synthetic resin excellent in oil resistance is used. Examples of such a synthetic resin include polyamide 46 (PA46), polyamide 66 (PA66), and polyphenylene sulfide (PPS). These resins may be selected and used according to the type of lubricating oil.
 実施の形態で示す深みぞ玉軸受は上記の構造からなり、その深みぞ玉軸受の組立てに際しては、外輪11の内側に内輪21を挿入し、その内輪21の軌道溝22と外輪11の軌道溝12間に所要数のボール31を組込む。 The deep groove ball bearing shown in the embodiment has the above-described structure. When the deep groove ball bearing is assembled, the inner ring 21 is inserted inside the outer ring 11, the race groove 22 of the inner ring 21 and the race groove of the outer ring 11. A required number of balls 31 are assembled between 12.
 このとき、内輪21を外輪11に対して径方向にオフセットして、内輪21の外径面の一部を外輪11の内径面の一部に当接し、その当接部位から周方向に180度ずれた位置に三日月形の空間を形成し、その空間の一側方から内部にボール31を組込むようにする。 At this time, the inner ring 21 is offset in the radial direction with respect to the outer ring 11, a part of the outer diameter surface of the inner ring 21 is brought into contact with a part of the inner diameter surface of the outer ring 11, and 180 degrees in the circumferential direction from the contact part. A crescent-shaped space is formed at a shifted position, and the ball 31 is assembled from one side of the space.
 そのボール31の組込みに際して、外輪11のスラスト負荷側の肩13aや内輪21の高さが高い肩23bの肩高さHが必要以上に高い場合には、ボール31の組込みを阻害することになるが、実施の形態では、ボール31の球径dに対する外輪肩高さHの比率H/dおよび内輪肩高さHの比率H/dが、0.50を超えることのない高さとしているため、外輪11と内輪21間にボール31を確実に組込むことができる。 Upon incorporation of the balls 31, when the shoulder height H 1 of the thrust load side shoulder 13a and the height of the inner ring 21 of the outer ring 11 is high shoulder 23b is higher than necessary, to inhibit the incorporation of the balls 31 However, in the embodiment, the ratio H 1 / d of the outer ring shoulder height H 1 to the ball diameter d of the ball 31 and the ratio H 2 / d of the inner ring shoulder height H 2 do not exceed 0.50. Because of the height, the ball 31 can be reliably assembled between the outer ring 11 and the inner ring 21.
 ボール31の組込み後、内輪21の中心を外輪11の中心に一致させてボール31を周方向に等間隔に配置し、外輪11の高さの低い肩13bの一側方から外輪11と内輪21間に第1分割保持器41を、その第1分割保持器41に形成された切欠部45内にボール31が嵌り込むようにして挿入する。 After the ball 31 is assembled, the center of the inner ring 21 is made to coincide with the center of the outer ring 11, the balls 31 are arranged at equal intervals in the circumferential direction, and the outer ring 11 and the inner ring 21 from one side of the shoulder 13b where the height of the outer ring 11 is low. The first split holder 41 is inserted between the notches 45 formed in the first split holder 41 so that the balls 31 are fitted therebetween.
 また、内輪21の高さが低い肩23aの一側方から外輪11と内輪21間に第2分割保持器42を、その第2分割保持器42に形成された切欠部50内にボール31が嵌り込むように挿入して、第1分割保持器41の軸方向一側部内に第2分割保持器42の軸方向他側部を嵌合する。 Further, the second split retainer 42 is inserted between the outer ring 11 and the inner ring 21 from one side of the shoulder 23a where the height of the inner ring 21 is low, and the ball 31 is inserted into the notch 50 formed in the second split retainer 42. It inserts so that it may fit, and the axial direction other side part of the 2nd division | segmentation holder | retainer 42 is fitted in the axial direction one side part of the 1st division | segmentation holder | retainer 41. FIG.
 上記のように、第1分割保持器41内に第2分割保持器42を嵌合することにより、図1および図4に示すように、各分割保持器41、42に形成された係合爪46、51が相手方の分割保持器に設けられた係合凹部47、52に係合することになり、深みぞ玉軸受の組立てが完了する。 As described above, the engagement claws formed in the respective divided holders 41 and 42 by fitting the second divided holder 42 into the first divided holder 41 as shown in FIGS. 46 and 51 are engaged with engaging recesses 47 and 52 provided in the other split cage, and the assembly of the deep groove ball bearing is completed.
 このように、外輪11の軌道溝12と内輪21の軌道溝22間にボール31を組込んだ後、外輪11と内輪21間の両側方から内部に第1分割保持器41と第2分割保持器42を挿入して、第1分割保持器41内に第2分割保持器42を嵌合する簡単な作業によって深みぞ玉軸受Aを組立てることができる。 Thus, after the ball 31 is assembled between the raceway groove 12 of the outer ring 11 and the raceway groove 22 of the inner ring 21, the first divided holder 41 and the second divided hold are internally provided from both sides between the outer ring 11 and the inner ring 21. The deep groove ball bearing A can be assembled by a simple operation of inserting the container 42 and fitting the second divided holder 42 into the first divided holder 41.
 上記の深みぞ玉軸受Aを用いて図12に示すデフケース3の両端に形成された筒部8a、8bを支持する場合、深みぞ玉軸受Aは、内輪21の負荷側の肩23bがファイナルドリブンギヤ2側に位置する組付けとする。 When the above-described deep groove ball bearing A is used to support the cylindrical portions 8a and 8b formed at both ends of the differential case 3 shown in FIG. 12, the deep groove ball bearing A has a load driven shoulder 23b of the inner ring 21 with a final driven gear. Assembled on the 2nd side.
 その組付け状態において、ファイナルドライブギヤ1からのトルク伝達により、デフケース3が車両の前進走行方向に回転すると、ヘリカルギヤからなるファイナルドリブンギヤ2の回転によってデフケース3にスラスト力が負荷され、そのスラスト力は、図12のデフケース3の左側端部を受ける深みぞ玉軸受Aの、内輪21のスラスト負荷側の肩23bと外輪11のスラスト負荷側の肩13aで支持される。 When the differential case 3 rotates in the forward traveling direction of the vehicle by torque transmission from the final drive gear 1 in the assembled state, a thrust force is applied to the differential case 3 by the rotation of the final driven gear 2 formed of a helical gear, and the thrust force is 12 is supported by the thrust load side shoulder 23b of the inner ring 21 and the thrust load side shoulder 13a of the outer ring 11 of the deep groove ball bearing A that receives the left end of the differential case 3 of FIG.
 このとき、ボール31にもスラスト力が負荷され、内輪21のスラスト負荷側の肩23bと外輪11のスラスト負荷側の肩13aが必要以上に低い場合、ボール31が肩13a、23bに乗り上がり、肩13a、23bのエッジを損傷させる可能性がある。 At this time, a thrust force is also applied to the ball 31, and when the thrust load side shoulder 23b of the inner ring 21 and the thrust load side shoulder 13a of the outer ring 11 are lower than necessary, the ball 31 rides on the shoulders 13a, 23b, There is a possibility of damaging the edges of the shoulders 13a and 23b.
 しかし、実施の形態では、ボール31の球径dに対する外輪11のスラスト負荷側の肩高さHの比率H/dを0.28~0.50の範囲とし、かつ、ボールの球径dに対する内輪21のスラスト負荷側の肩高さHの比率H/dを0.37~0.50の範囲としているため、ボール31の乗り上げを確実に阻止することができる。 However, in the embodiment, the ratio H 1 / d of the shoulder load H 1 on the thrust load side of the outer ring 11 to the ball diameter d of the ball 31 is in the range of 0.28 to 0.50, and the ball diameter of the ball Since the ratio H 2 / d of the shoulder height H 2 on the thrust load side of the inner ring 21 to d is in the range of 0.37 to 0.50, it is possible to reliably prevent the ball 31 from climbing.
 因みに、内輪の外径寸法がφ53.1mm、外輪の内径寸法がφ68.1mmの標準の深みぞ玉軸受6208Cを比較品とし、その標準の深みぞ玉軸受を基にして、内輪のスラスト負荷側の肩の外径寸法をφ53.1mmからφ56.6mmに変更し、かつ、外輪のスラスト負荷側の肩の内径寸法をφ68.1mmからφ65.5mmに変更した深みぞ玉軸受を本発明品として、許容できるスラスト荷重を測定したところ、本発明品の深みぞ玉軸受は比較品の深みぞ玉軸受に比較して、スラスト荷重の許容値は305%高い数値を示した。また、スラスト荷重(アキシャル荷重)が負荷されない側の内輪の肩の外径寸法を標準のφ53.1mmからφ51.9mmに変更し、アキシャル荷重が負荷されない側の外輪の肩の内径寸法を標準のφ68.1mmからφ70.4mmに変更した場合でも、基本静定挌荷重Coを軸受に負荷した場合でも、肩乗り上げの発生はなかった。 For comparison, a standard deep groove ball bearing 6208C having an inner ring outer diameter of φ53.1 mm and an outer ring inner diameter of φ68.1 mm is used as a comparative product, and the thrust load side of the inner ring is based on the standard deep groove ball bearing. A deep groove ball bearing in which the outer diameter of the shoulder of the outer ring is changed from φ53.1 mm to φ56.6 mm and the inner diameter of the shoulder on the thrust load side of the outer ring is changed from φ68.1 mm to φ65.5 mm. When the allowable thrust load was measured, the deep groove ball bearing of the present invention showed a value higher by 305% than the comparative deep groove ball bearing. In addition, the outer diameter of the shoulder of the inner ring where the thrust load (axial load) is not applied is changed from the standard φ53.1 mm to φ51.9 mm, and the inner diameter of the shoulder of the outer ring where the axial load is not applied is changed to the standard Even when the diameter was changed from φ68.1 mm to φ70.4 mm, even when the basic statically constant load Co was applied to the bearing, no shoulder climbing occurred.
 なお、デフケース3が車両の後退走行方向に回転すると、デフケース3に負荷されるスラスト力は、図12のデフケース3の右側端部を受ける深みぞ玉軸受Aの、内輪21のスラスト負荷側の肩23bと外輪11のスラスト負荷側の肩13aで支持される。この場合も、ボール31の乗り上げを確実に阻止することができる。 When the differential case 3 rotates in the backward running direction of the vehicle, the thrust force applied to the differential case 3 is the shoulder on the thrust load side of the inner ring 21 of the deep groove ball bearing A that receives the right end of the differential case 3 in FIG. 23b and a thrust load side shoulder 13a of the outer ring 11. Also in this case, it is possible to reliably prevent the ball 31 from climbing.
 実施の形態における深みぞ玉軸受においては、外輪11と内輪21を炭素量の多い高炭素軸受鋼で形成し、その高炭素軸受鋼を浸炭窒化し、高温から焼入れした後、比較的低温で焼戻しして、表層部の残留オーステナイト量を15~20%としているため、外・内輪11、21のボール31が転がり移動する軌道面の疲労強度は極めて高く、その軌道面が損傷するという不都合の発生はない。 In the deep groove ball bearing according to the embodiment, the outer ring 11 and the inner ring 21 are made of high carbon bearing steel with a large amount of carbon, the high carbon bearing steel is carbonitrided, quenched from a high temperature, and then tempered at a relatively low temperature. Since the amount of retained austenite in the surface layer is 15 to 20%, the fatigue strength of the raceway surface on which the balls 31 of the outer / inner rings 11 and 21 roll and move is extremely high, and the raceway surface is damaged. There is no.
 ここで、外輪11と内輪21が相対回転すると、ボール31は自転しつつ公転し、その公転により、保持器40も回転し、外輪11と内輪21間に潤滑油が介在されていると、その潤滑油は保持器40との接触によって連れ回されることになる。 Here, when the outer ring 11 and the inner ring 21 rotate relative to each other, the ball 31 revolves while rotating, and the cage 40 also rotates due to the revolution, and when lubricating oil is interposed between the outer ring 11 and the inner ring 21, Lubricating oil will be rotated by contact with the cage 40.
 このとき、第1分割保持器41と第2分割保持器42は外径が異なるため、周速に差が生じ、第1分割保持器41との接触によって連れ回される潤滑油の流れは第2分割保持器42との接触によって連れ回される潤滑油の流れより速くなり、流れの速い側に流れの遅い側の潤滑油が引寄せられて、軸受内部にポンプ作用が生じる。そのポンプ作用により、図1の矢印で示す方向に潤滑油が流動し、軸受内部が強制的に潤滑されることになり、深みぞ玉軸受Aの潤滑性の向上を図ることができる。 At this time, since the first split cage 41 and the second split cage 42 have different outer diameters, there is a difference in peripheral speed, and the flow of lubricating oil that is rotated by contact with the first split cage 41 is the first. It becomes faster than the flow of the lubricating oil driven by the contact with the two-divided cage 42, the lubricating oil on the slow flow side is attracted to the fast flow side, and a pump action is generated inside the bearing. Due to the pump action, the lubricating oil flows in the direction indicated by the arrow in FIG. 1 and the inside of the bearing is forcibly lubricated, so that the lubricity of the deep groove ball bearing A can be improved.
 実施の形態で示す深みぞ玉軸受においては、第1分割保持器41の切欠部45および第2分割保持器42の切欠部50の開口端にボール31を抱き込む対向一対のポケット爪44、49を設け、上記第1分割保持器41に形成された対向一対のポケット爪44と第2分割保持器42に設けられた対向一対のポケット爪49を相反する方向に向く組み合わせとし、その組み合わせ状態において、係合爪46、51を係合凹部47、52に係合して、第1分割保持器41と第2分割保持器42を軸方向に非分離としているため、大きなモーメント荷重が負荷されてボール31に遅れや進みが生じても、保持器40は脱落するようなことはない。 In the deep groove ball bearing shown in the embodiment, a pair of opposed pocket claws 44 and 49 that embed the ball 31 in the open ends of the cutout portion 45 of the first divided holder 41 and the cutout portion 50 of the second divided holder 42. And a pair of opposed pocket claws 44 formed in the first divided holder 41 and a pair of opposed pocket claws 49 provided in the second divided holder 42 are oriented in opposite directions, and in the combined state Since the engagement claws 46 and 51 are engaged with the engagement recesses 47 and 52 and the first divided holder 41 and the second divided holder 42 are not separated in the axial direction, a large moment load is applied. Even if the ball 31 is delayed or advanced, the retainer 40 does not fall off.
 ここで、図6(I)に示すように、係合爪46、51と係合凹部47、52間に形成される周方向すきま60のすきま量δをボール31と切欠部45、50間に形成される周方向のポケットすきま61のすきま量δより大きくしておくことにより、大きなモーメント荷重が負荷されてボール31に遅れ進みが生じ、第1分割保持器41と第2分割保持器42とが相対的に回転しても、係合爪46、51が係合凹部47、52の周方向で対向する側面に当接することはなく、係合爪46、51の損傷防止に効果を挙げることができる。 Here, as shown in FIG. 6 (I), the clearance δ 1 of the circumferential clearance 60 formed between the engaging claws 46, 51 and the engaging recesses 47, 52 is set between the ball 31 and the notches 45, 50. By making the clearance larger than the clearance amount δ 2 of the circumferential pocket clearance 61 formed on the ball 31, a large moment load is applied and the ball 31 is delayed and advanced, and the first split retainer 41 and the second split retainer 42, the engaging claws 46 and 51 do not come into contact with the opposite side surfaces of the engaging recesses 47 and 52 in the circumferential direction, which is effective in preventing damage to the engaging claws 46 and 51. Can be mentioned.
 また、図6(II)に示すように、係合爪46、51と係合凹部47、52間に形成される軸方向すきま62のすきま量δをボール31と切欠部45、50間に形成される軸方向のポケットすきま63のすきま量δより大きくしておくことにより、第1分割保持器41と第2分割保持器42に離反する方向の軸方向力が作用した際に、対向一対のポケット爪44、49の内面がボール31の外周面に当接して、係合爪46、51が係合凹部47、52の軸方向端面に当接するというようなことがなくなり、係合爪46、51の損傷防止に効果を挙げることができる。 Further, as shown in FIG. 6 (II), the clearance δ 3 of the axial clearance 62 formed between the engaging claws 46, 51 and the engaging recesses 47, 52 is set between the ball 31 and the notches 45, 50. When the axial force in the direction away from the first divided cage 41 and the second divided cage 42 is applied to the first divided cage 41 and the second divided cage 42 by making the gap amount δ 4 of the formed axial pocket gap 63 larger than the gap amount δ 4. The inner surfaces of the pair of pocket claws 44 and 49 abut against the outer peripheral surface of the ball 31, and the engagement claws 46 and 51 do not abut against the axial end surfaces of the engagement recesses 47 and 52. The effect of preventing the damage of 46 and 51 can be obtained.
 図1および図5では、切欠部45、50として、環状体43、48を刳り抜く平面形状が2分の1円を超える大きさであって、断面形状が円弧状とされたものを示したが、切欠部45、50はこれに限定されるものではない。例えば、図7に示すように、第1分割保持器41と第2分割保持器42の嵌合状態において円筒状のポケットを形成する平面U字形とされたものであってもよい。 In FIGS. 1 and 5, as the notches 45 and 50, the planar shape of the annular bodies 43 and 48 is larger than a half circle, and the cross-sectional shape is an arc shape. However, the notches 45 and 50 are not limited to this. For example, as shown in FIG. 7, a flat U-shape that forms a cylindrical pocket in the fitted state of the first divided holder 41 and the second divided holder 42 may be used.
 図7に示す切欠部45、50の採用において、図7および図8に示すように、係合爪46、51と係合凹部47、52間に形成される周方向すきま64のすきま量δをボール31と切欠部45、50間に形成される周方向のポケットすきま66のすきま量δより大きくしておくことにより、大きなモーメント荷重が負荷されてボール31に遅れ進みが生じ、第1分割保持器41と第2分割保持器42とが相対的に回転しても、係合爪46、51が係合凹部47、52の周方向で対向する側面に当接することはなく、係合爪46、51の損傷防止に効果を挙げることができる。 When the notches 45 and 50 shown in FIG. 7 are employed, the clearance δ 5 of the circumferential clearance 64 formed between the engaging claws 46 and 51 and the engaging recesses 47 and 52 as shown in FIGS. Is larger than the clearance amount δ 6 of the circumferential pocket clearance 66 formed between the ball 31 and the notches 45 and 50, a large moment load is applied and the ball 31 is delayed and advanced. Even if the split holder 41 and the second split holder 42 are relatively rotated, the engaging claws 46 and 51 do not come into contact with the side surfaces of the engaging recesses 47 and 52 that are opposed to each other in the circumferential direction. An effect can be obtained in preventing damage to the claws 46 and 51.
 実施の形態においては、外輪11および内輪21を重量比にして、炭素0.8~1.2%、ケイ素0.4~1.0%、クロム0.2~1.2%およびマンガン0.8~1.5%を含有する高炭素軸受鋼により形成し、浸炭窒化処理した後、830~870°Cから焼入れして焼入れ終端温度を90~120℃とし、次いで、160~190℃の範囲で焼戻しして、表層部の残留オーステナイト量を25~50%とし、かつ、芯部のオーステナイト量を15~20%として、表層部に圧縮応力を残留させるようにしているが、外輪11および内輪21の形成素材および熱処理はこれに限定されるものではない。 In the embodiment, the weight ratio of the outer ring 11 and the inner ring 21 is 0.8 to 1.2% for carbon, 0.4 to 1.0% for silicon, 0.2 to 1.2% for chromium, and 0. Formed with high carbon bearing steel containing 8 to 1.5%, carbonitrided, and then quenched from 830 to 870 ° C to a quenching end temperature of 90 to 120 ° C, then in the range of 160 to 190 ° C The outer austenite 11 and the inner ring are made to remain in the surface layer by setting the austenite amount in the surface layer to 25 to 50% and the austenite amount in the core portion to 15 to 20%. The forming material and heat treatment of 21 are not limited to this.
 例えば、外輪11および内輪21を重量比にして、炭素0.6~1.2%、ケイ素0.15~1.1%、クロム2.0%以下およびマンガン0.3~1.5%を含有する軸受鋼により形成し、その軸受鋼をA変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A変態点未満の温度に冷却し、その後、790~830℃の焼入れ温度領域に再加熱して焼入れを行うようにしてもよい。 For example, the weight ratio of the outer ring 11 and the inner ring 21 is 0.6 to 1.2% carbon, 0.15 to 1.1% silicon, 2.0% or less chromium, and 0.3 to 1.5% manganese. formed by a bearing steel containing, after the bearing steel was carbonitrided at a carbonitriding processing temperature above the a 1 transformation point, cooled to a temperature below the a 1 transformation point, then quenching temperature region of 790 ~ 830 ° C. You may make it quench by reheating to.
 ここで、炭素が1.2重量%を超えると、球状化焼鈍を行なっても素材硬度が高いので冷間加工性を阻害し、冷間加工を行なう場合に十分な冷間加工量と、加工精度を得ることができない。また、浸炭窒化処理時に過浸炭組織になりやすく、割れ強度が低下する危険性がある。他方、炭素含有量が0.6重量%未満の場合には、所要の表面硬さと残留オーステナイト量を確保するのに長時間を必要としたり、再加熱後の焼入れで必要な内部硬さが得られにくくなる。 Here, if the carbon content exceeds 1.2% by weight, the material hardness is high even if spheroidizing annealing is performed, so that the cold workability is hindered, and the amount of cold work sufficient when performing cold work, The accuracy cannot be obtained. In addition, the carbonitriding process tends to become an excessively carburized structure, and there is a risk that the cracking strength is reduced. On the other hand, when the carbon content is less than 0.6% by weight, it takes a long time to secure the required surface hardness and the amount of retained austenite, or the necessary internal hardness is obtained by quenching after reheating. It becomes difficult to be.
 Si含有率を0.15~1.1重量%とするのは、Siが耐焼戻し軟化抵抗を高めて耐熱性を確保し、異物混入潤滑下での転がり疲労寿命特性を改善することができるからである。シリコン含有率が0.15重量%未満では異物混入潤滑下での転がり疲労寿命特性が改善されず、一方、1.1重量%を超えると焼きならし後の硬度を高くしすぎて冷間加工性を阻害する。 The reason why the Si content is 0.15 to 1.1% by weight is that Si increases resistance to tempering softening to ensure heat resistance and improves rolling fatigue life characteristics under lubrication with foreign matter. It is. If the silicon content is less than 0.15% by weight, the rolling fatigue life characteristics under lubrication with foreign matter will not be improved. On the other hand, if it exceeds 1.1% by weight, the hardness after normalization will be too high and cold working will occur. Inhibits sex.
 Mnは浸炭窒化層と芯部の焼入れ硬化能を確保するのに有効である。Mn含有率が0.3重量%未満では、十分な焼入れ硬化能を得ることができず、芯部において十分な強度を確保することができない。一方、Mn含有率が1.5重量%を超えると、硬化能が過大になりすぎ、焼きならし後の硬度が高くなり冷間加工性が阻害される。また、オーステナイトを安定化しすぎて芯部の残留オーステナイト量を過大にして経年寸法変化を助長する。 Mn is effective in securing the quench hardening ability of the carbonitrided layer and the core. If the Mn content is less than 0.3% by weight, sufficient quenching and hardening ability cannot be obtained, and sufficient strength cannot be secured in the core. On the other hand, if the Mn content exceeds 1.5% by weight, the curing ability becomes excessively high, the hardness after normalization becomes high, and cold workability is hindered. In addition, the austenite is excessively stabilized and the amount of retained austenite in the core is excessively increased to promote a change in size over time.
 上記軸受鋼においては、2.0重量%以下のクロムを含んでいてもよい。2.0重量%以下のクロムを含むことにより、表層部においてクロムの炭化物や窒化物を析出して表層部の硬度を向上しやすくなる。Cr含有率を2.0重量%以下とするのは、2.0重量%を超えると冷間加工性が著しく低下したり、2.0重量%を超えて含有しても上記表層部の硬度向上の効果が小さいからである。 The bearing steel may contain 2.0% by weight or less of chromium. By including 2.0% by weight or less of chromium, chromium carbide and nitride are precipitated in the surface layer portion, and the hardness of the surface layer portion is easily improved. The Cr content is set to 2.0% by weight or less. If it exceeds 2.0% by weight, the cold workability is remarkably lowered, or even if the content exceeds 2.0% by weight, the hardness of the surface layer portion described above This is because the improvement effect is small.
 上記のように、炭素0.6~1.2%、ケイ素0.15~1.1%、クロム2.0%以下およびマンガン0.3~1.5%を含有する軸受鋼をA変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A変態点未満の温度に冷却し、その後、790~830℃の焼入れ温度領域に再加熱して焼入れを行うことにより、平均粒径で8μm以下のミクロ組織のオーステナイト結晶粒を得ることができ、転がり疲労に対して長寿命であり、割れ強度を向上させ、経年変化率も減少させることができる。 As described above, carbon 0.6 to 1.2%, silicon from 0.15 to 1.1%, chromium 2.0% and a bearing steel containing manganese 0.3 ~ 1.5% A 1 transformation after carbonitriding at carbonitriding temperature exceeding the point, cooled to a temperature below the a 1 transformation point, then, by performing quenching and re-heating in the quenching temperature range of 790 ~ 830 ° C., an average particle diameter An austenite crystal grain having a microstructure of 8 μm or less can be obtained, has a long life against rolling fatigue, can improve the cracking strength, and can reduce the aging rate.
 図1では、外輪11のスラスト非負荷側の肩13bの高さH、および、内輪21のスラスト非負荷側の肩23aの高さHを標準型深みぞ玉軸受の肩と同じ高さとしたが、標準型深みぞ玉軸受の肩の高さより低くしてもよい。 In FIG. 1, the height H 3 of the shoulder 13 b on the thrust non-load side of the outer ring 11 and the height H 4 of the shoulder 23 a on the thrust non-load side of the inner ring 21 are the same as the shoulder of the standard deep groove ball bearing. However, it may be lower than the shoulder height of the standard deep groove ball bearing.
 スラスト非負荷側の肩13bおよび23aの高さを標準型深みぞ玉軸受の肩の高さより低くすると、低くした分、第1波形分割保持器41および第2波形分割保持器42の径方向幅Wを大きくすることができるため、保持器40の強度を高めることができる。 When the height of the shoulders 13b and 23a on the thrust non-load side is made lower than the height of the shoulder of the standard deep groove ball bearing, the radial widths of the first waveform segmented cage 41 and the second waveform segmented cage 42 are reduced accordingly. Since W can be increased, the strength of the cage 40 can be increased.
 ここで、スラスト非負荷側の肩13bおよび23aの高さが必要以上に低くなると、ボール31の乗り上げが発生するおそれがあるため、外輪11の肩13bの高さHについては、ボール31の球径dに対する肩高さHの比率H/dを0.08~0.25の範囲とする。 Here, the lower than necessary height of thrust non-load side of the shoulder 13b and 23a, because the run-up of the ball 31 may occur, for the height H 3 of the shoulder 13b of the outer ring 11, the ball 31 The ratio H 3 / d of the shoulder height H 3 to the sphere diameter d is set in the range of 0.08 to 0.25.
 また、内輪21の肩23aについては、ボール31の球径dに対する肩高さHの比率H/dを0.08~0.25の範囲とする。 For the shoulder 23 a of the inner ring 21, the ratio H 4 / d of the shoulder height H 4 to the ball diameter d of the ball 31 is in the range of 0.08 to 0.25.
 深みぞ玉軸受Aにおいては、外輪11と内輪21が相対的に回転すると、ボール31は外輪軌道溝12および内輪軌道溝22に沿って転動する。このとき、図9に示す外輪軌道溝12の曲率半径rおよび内輪軌道溝22の曲率半径rが必要以上に小さくなると、ボール31との間で滑りが生じて、接触部で脆性剥離が生じ、また、必要以上に大きくなると、定格荷重の計算値が低下することになる。 In the deep groove ball bearing A, when the outer ring 11 and the inner ring 21 rotate relatively, the ball 31 rolls along the outer ring raceway groove 12 and the inner ring raceway groove 22. In this case, when the radius of curvature r 2 of the curvature radius r 1 and the inner ring raceway groove 22 of the outer ring raceway groove 12 shown in FIG. 9 becomes smaller than necessary, slip occurs between the balls 31, is brittle flaking in contact portion If it occurs and becomes larger than necessary, the calculated value of the rated load will decrease.
 そこで、ボール31の半径d/2に対する外輪軌道溝12の曲率半径rの比率r/d/2を1.03~1.08の範囲とし、かつ、ボール31の半径d/2に対する内輪軌道溝22の曲率半径rの比率r/d/2を1.015~1.04の範囲として、脆性剥離を防止し、定格荷重の計算値の低下を抑制するのがよい。 Therefore, the ratio r 1 / d / 2 of the radius of curvature r 1 of the outer ring raceway groove 12 to the radius d / 2 of the ball 31 is set in the range of 1.03 to 1.08, and the inner ring with respect to the radius d / 2 of the ball 31 is set. The ratio r 2 / d / 2 of the radius of curvature r 2 of the raceway groove 22 should be in the range of 1.015 to 1.04 to prevent brittle peeling and suppress the decrease in the calculated load value.
 図10および図11は、保持器40の他の例を示す。図10に示す保持器40は、軸方向に2分割された分割保持器71、72からなり、その分割保持器71、72のそれぞれが、複数の半球状ポケット部73と、そのポケット部73の幅寸法と同一の幅寸法とされた複数の結合板部74とが周方向に交互に連続する波形とされ、その2枚の波形分割保持器71、72の結合板部74の外径を同径とし、一方の波形分割保持器71のポケット部73を結合板部74に対して内径側に位置をずらし、他方の波形分割保持器72のポケット部73を結合板部74に対して外径側に位置をずらし、前記一方の波形分割保持器71を外輪11の高さの高い肩13a側から軸受内部に挿入し、かつ、前記他方の波形分割保持器72を外輪11の高さの低い肩13b側から軸受内部に挿入して、半球状ポケット部73間にポケット75を設け、互いに衝合する2枚の結合板部74をリベット76で結合するようにしている。 10 and 11 show another example of the cage 40. FIG. The holder 40 shown in FIG. 10 includes split holders 71 and 72 that are divided into two in the axial direction. Each of the split holders 71 and 72 includes a plurality of hemispherical pocket portions 73 and pocket portions 73. A plurality of coupling plate parts 74 having the same width dimension as the width dimension are alternately and continuously corrugated in the circumferential direction, and the outer diameters of the coupling plate parts 74 of the two waveform division holders 71 and 72 are the same. The position of the pocket portion 73 of one waveform division holder 71 is shifted to the inner diameter side with respect to the coupling plate portion 74, and the pocket portion 73 of the other waveform division holder 72 is outer diameter with respect to the coupling plate portion 74. The one waveform segmented retainer 71 is inserted into the bearing from the side of the shoulder 13a having the higher height of the outer ring 11, and the other waveform segmented retainer 72 is lowered in the height of the outer ring 11. Insert into the bearing from the shoulder 13b side, The pocket 75 is provided between the parts 73, and the two coupling plates 74 which abut each other so as to bind with rivets 76.
 ここで、保持器40は、金属板のプレス成形品からなるものであってもよく、合成樹脂の成形品からなるものであってもよい。 Here, the cage 40 may be made of a metal plate press-molded product, or may be made of a synthetic resin molded product.
 上記の構成からなる保持器40においては、外輪11と内輪21間にボール31を組込んだ後、内輪21のスラスト非負荷側の肩23aの一側方から外輪11と内輪21間に一方の波形分割保持器71を、その波形分割保持器71に形成されたポケット部73内にボール31が嵌り込むようにして挿入する。 In the cage 40 having the above-described configuration, after the ball 31 is assembled between the outer ring 11 and the inner ring 21, one side between the outer ring 11 and the inner ring 21 is formed from one side of the shoulder 23 a on the thrust non-load side of the inner ring 21. The waveform division holder 71 is inserted so that the ball 31 fits into the pocket portion 73 formed in the waveform division holder 71.
 また、外輪11のスラスト非負荷側の肩13bの一側方から外輪11と内輪21間に他方の波形分割保持器72を、その波形分割保持器72に形成されたポケット部73内にボール31が嵌り込むように挿入して、一方の波形分割保持器71の結合板部74と他方の波形分割保持器72の結合板部74を互いに衝合し、その2枚の結合板部74をリベット76の加締めにより結合する。 Further, the other waveform division holder 72 is provided between the outer ring 11 and the inner ring 21 from one side of the shoulder 13 b on the thrust non-load side of the outer ring 11, and the ball 31 is inserted into a pocket portion 73 formed in the waveform division holder 72. Is inserted so that the coupling plate portion 74 of one waveform division holder 71 and the coupling plate portion 74 of the other waveform division holder 72 are brought into contact with each other, and the two coupling plate portions 74 are rivets. It joins by crimping 76.
 上記のような深みぞ玉軸受の組立て状態では、一方の波形分割保持器71のポケット部73が外輪11のスラスト負荷側の肩13aと径方向で対向し、そのポケット部73は結合板部74に対して径方向内方に位置ずれしているため、外輪11のスラスト負荷側の肩13aとの間に間隙が形成される。 In the assembled state of the deep groove ball bearing as described above, the pocket portion 73 of one of the wave split cages 71 faces the shoulder 13a on the thrust load side of the outer ring 11 in the radial direction, and the pocket portion 73 is the coupling plate portion 74. Therefore, a gap is formed between the outer ring 11 and the shoulder 13a on the thrust load side.
 また、他方の波形分割保持器72のポケット部73が内輪21のスラスト負荷側の肩23bと径方向で対向し、そのポケット部73は結合板部74に対して径方向外方に位置ずれしているため、内輪21のスラスト負荷側の肩23bとの間に間隙が形成される。 Further, the pocket portion 73 of the other waveform division holder 72 is opposed to the thrust load side shoulder 23b of the inner ring 21 in the radial direction, and the pocket portion 73 is displaced radially outward with respect to the coupling plate portion 74. Thus, a gap is formed between the inner ring 21 and the shoulder 23b on the thrust load side.
 このため、深みぞ玉軸受の回転時に、保持器40のポケット部73がスラスト負荷側の肩13a、23bに干渉するようなことはなく、外輪11と内輪21を円滑に相対回転させることができる。 For this reason, when the deep groove ball bearing rotates, the pocket portion 73 of the cage 40 does not interfere with the thrust load side shoulders 13a and 23b, and the outer ring 11 and the inner ring 21 can be smoothly rotated relative to each other. .
 図11に示す保持器40においては、図10に示す波形分割保持器71、72の各ポケット部73のポケット75の内周面に凹部からなるボール非接触部77を設け、そのポケット75におけるボール31との接触面積を、ボール非接触部77を設けていないときのボール31との接触面積よりも15%~30%低減させた構成としている。 In the cage 40 shown in FIG. 11, a ball non-contact portion 77 made of a concave portion is provided on the inner peripheral surface of the pocket 75 of each of the pocket portions 73 of the waveform division holders 71 and 72 shown in FIG. The contact area with the ball 31 is 15% to 30% lower than the contact area with the ball 31 when the ball non-contact portion 77 is not provided.
 上記のように、ポケット部73のポケット75の内周面に凹部からなるボール非接触部77を設けることにより、ポケット75内部を潤滑剤が通過する際の抵抗と、剪断する油膜量の減少を図ることができ、トルク損失の低減に大きな効果を挙げることができる。 As described above, by providing the ball non-contact portion 77 formed of a recess on the inner peripheral surface of the pocket 75 of the pocket portion 73, the resistance when the lubricant passes through the pocket 75 and the amount of oil film to be sheared are reduced. Can be achieved, and a great effect can be obtained in reducing torque loss.
11  外輪
12  軌道溝
13a 肩
13b 肩
21  内輪
22  軌道溝
23a 肩
23b 肩
31  ボール
40  保持器
41  第1分割保持器
42  第2分割保持器
43a 柱部
44  ポケット爪
45  切欠部
46  係合爪
47  係合凹部
48a 柱部
49  ポケット爪
50  切欠部
51  係合爪
52  係合凹部
60  周方向すきま
61  周方向のポケットすきま
62  軸方向すきま
63  軸方向のポケットすきま
64  周方向すきま
65  周方向のポケットすきま
X   連結手段
71  波形分割保持器
72  波形分割保持器
73  ポケット部
74  結合板部
75  ポケット
11 outer ring 12 raceway groove 13a shoulder 13b shoulder 21 inner ring 22 raceway groove 23a shoulder 23b shoulder 31 ball 40 retainer 41 first divided retainer 42 second divided retainer 43a pillar 44 pocket claw 45 notch 46 engagement claw 47 Joint recess 48a Column 49 Pocket claw 50 Notch 51 Engagement claw 52 Engagement recess 60 Circumferential clearance 61 Circumferential pocket clearance 62 Axial clearance 63 Axial pocket clearance 64 Circumferential clearance 65 Circumferential pocket clearance X Connecting means 71 Waveform division holder 72 Waveform division holder 73 Pocket portion 74 Connecting plate portion 75 Pocket

Claims (13)

  1.  内径面に軌道溝が形成された外輪と、外径面に軌道溝が形成された内輪と、外輪の軌道溝と内輪の軌道溝間に組込まれたボールと、そのボールを保持するポケットが形成された保持器とからなり、前記外輪の軌道溝および内輪の軌道溝のそれぞれ両側に位置する合計4つの肩のうち、外輪軌道溝の一側の肩および内輪軌道溝の他側の肩の高さを、外輪軌道溝の他側の肩および内輪軌道溝の一側の肩の高さより高くした深みぞ玉軸受において、
     前記外輪の高さの高い肩の高さをH、内輪の高さの高い肩の高さをH、ボールの球径をdとしたとき、ボールの球径dに対する外輪の肩高さHの比率H/dを0.28~0.50の範囲とし、かつ、ボールの球径dに対する内輪の肩高さHの比率H/dを0.37~0.50の範囲とし、前記外輪、内輪およびボールのうち、少なくとも外輪および内輪を重量比にして、炭素0.8~1.2%、ケイ素0.4~1.0%、クロム0.2~1.2%およびマンガン0.8~1.5%を含有する合金鋼により形成し、浸炭窒化処理した後、830~870°Cから焼入れして焼入れ終端温度を90~120℃とし、次いで、160~190℃の範囲で焼戻しして、表層部の残留オーステナイト量を25~50%とし、かつ、芯部のオーステナイト量を15~20%として、表層部に圧縮応力を残留させたことを特徴とする深みぞ玉軸受。
    An outer ring having a raceway groove formed on the inner diameter surface, an inner ring having a raceway groove formed on the outer diameter surface, a ball assembled between the raceway groove of the outer ring and the raceway groove of the inner ring, and a pocket for holding the ball are formed. Among the total of four shoulders located on both sides of the outer ring raceway groove and the inner ring raceway groove, the height of the shoulder on one side of the outer ring raceway groove and the shoulder on the other side of the inner ring raceway groove In a deep groove ball bearing in which the height is higher than the shoulder on the other side of the outer ring raceway groove and the shoulder on one side of the inner ring raceway groove,
    The shoulder height of the outer ring with respect to the ball diameter d, where H 1 is the height of the high shoulder of the outer ring, H 2 is the height of the shoulder of the inner ring, and d is the ball diameter of the ball. the ratio H 1 / d of an H 1 in the range of 0.28 to 0.50, and the inner ring relative to spherical diameter d of the ball shoulder height H 2 ratio H 2 / d of 0.37 to 0.50 The outer ring, the inner ring, and the ball, and at least the outer ring and the inner ring are in a weight ratio of carbon 0.8 to 1.2%, silicon 0.4 to 1.0%, chromium 0.2 to 1.2. % And manganese containing 0.8 to 1.5%, and carbonitriding, followed by quenching from 830 to 870 ° C. to a quenching end temperature of 90 to 120 ° C., then 160 to 190 Tempering in the range of ° C. to make the amount of retained austenite in the surface layer part 25 to 50%, and the core As the austenite amount 15-20%, deep groove ball bearing, characterized in that leaving a compressive stress in the surface portion.
  2.  内径面に軌道溝が形成された外輪と、外径面に軌道溝が形成された内輪と、外輪の軌道溝と内輪の軌道溝間に組込まれたボールと、そのボールを保持するポケットが形成された保持器とからなり、前記外輪の軌道溝および内輪の軌道溝のそれぞれ両側に位置する合計4つの肩のうち、外輪軌道溝の一側の肩および内輪軌道溝の他側の肩の高さを、外輪軌道溝の他側の肩および内輪軌道溝の一側の肩の高さより高くした深みぞ玉軸受において、
     前記外輪の高さの高い肩の高さをH、内輪の高さの高い肩の高さをH、ボールの球径をdとしたとき、ボールの球径dに対する外輪の肩高さHの比率H/dを0.28~0.50の範囲とし、かつ、ボールの球径dに対する内輪の肩高さHの比率H/dを0.37~0.50の範囲とし、前記外輪、内輪およびボールのうち、少なくとも外輪および内輪を重量比にして、炭素0.6~1.2%、ケイ素0.15~1.1%、クロム2.0%以下およびマンガン0.3~1.5%を含有する軸受鋼により形成し、その軸受鋼をA変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A変態点未満の温度に冷却し、その後、790~830℃の焼入れ温度領域に再加熱して焼入れを行い、オーステナイト結晶粒径を平均粒径で8μm以下としたことを特徴とする深みぞ玉軸受。
    An outer ring having a raceway groove formed on the inner diameter surface, an inner ring having a raceway groove formed on the outer diameter surface, a ball assembled between the raceway groove of the outer ring and the raceway groove of the inner ring, and a pocket for holding the ball are formed. Among the total of four shoulders located on both sides of the outer ring raceway groove and the inner ring raceway groove, the height of the shoulder on one side of the outer ring raceway groove and the shoulder on the other side of the inner ring raceway groove In a deep groove ball bearing in which the height is higher than the shoulder on the other side of the outer ring raceway groove and the shoulder on one side of the inner ring raceway groove,
    The shoulder height of the outer ring with respect to the ball diameter d, where H 1 is the height of the high shoulder of the outer ring, H 2 is the height of the shoulder of the inner ring, and d is the ball diameter of the ball. the ratio H 1 / d of an H 1 in the range of 0.28 to 0.50, and the inner ring relative to spherical diameter d of the ball shoulder height H 2 ratio H 2 / d of 0.37 to 0.50 The outer ring, the inner ring and the ball, and at least the outer ring and the inner ring are in a weight ratio of carbon 0.6 to 1.2%, silicon 0.15 to 1.1%, chromium 2.0% or less, and manganese. 0.3 is formed by a bearing steel containing ~ 1.5%, the bearing steel was carbonitrided at a carbonitriding processing temperature in excess of a 1 transformation point, cooled to a temperature below the a 1 transformation point, then , Reheat to a quenching temperature range of 790 to 830 ° C. and quench, and change the austenite grain size Deep groove ball bearing, characterized in that the 8μm or less Hitoshitsubu diameter.
  3.  前記軸受鋼が、2.0重量%以下のクロムを含む請求項2に記載の深みぞ玉軸受。 The deep groove ball bearing according to claim 2, wherein the bearing steel contains 2.0% by weight or less of chromium.
  4.  前記外輪の高さの低い肩の高さをH、内輪の高さの低い肩の高さをH、ボールの球径をdとしたとき、ボールの球径dに対する外輪の肩高さHの比率H/dを0.08~0.25の範囲とし、かつ、ボールの球径dに対する内輪の肩高さHの比率H/dを0.08~0.25の範囲とした請求項1乃至3のいずれかの項に記載の深みぞ玉軸受。 When the height of the lower shoulder of the outer ring is H 3 , the height of the lower shoulder of the inner ring is H 4 , and the ball diameter of the ball is d, the shoulder height of the outer ring with respect to the ball diameter d of the ball the ratio H 3 / d of H 3 in the range 0.08 to 0.25 and of the inner ring relative to spherical diameter d of the ball shoulder height H 4 ratio H 4 / d of 0.08 to 0.25 The deep groove ball bearing according to any one of claims 1 to 3, wherein the bearing is a range.
  5.  前記外輪の軌道溝の曲率半径をr、内輪の軌道溝の曲率半径をr、ボールの球径をdとしたとき、ボールの半径d/2に対する外輪軌道溝の曲率半径rの比率r/d/2を1.03~1.08の範囲とし、かつ、ボールの半径d/2に対する内輪軌道溝の曲率半径rの比率r/d/2を1.015~1.04の範囲とした請求項1乃至4のいずれかの項に記載の深みぞ玉軸受。 The ratio of the radius of curvature r 1 of the outer ring raceway groove to the radius d / 2 of the ball, where r 1 is the radius of curvature of the raceway groove of the outer ring, r 2 is the radius of curvature of the raceway groove of the inner ring, and d is the ball diameter of the ball. r 1 / d / 2 is in the range of 1.03 to 1.08, and the ratio r 2 / d / 2 of the curvature radius r 2 of the inner ring raceway groove to the radius d / 2 of the ball is 1.015 to 1.2. The deep groove ball bearing according to any one of claims 1 to 4, wherein the range is 04.
  6.  前記保持器が、合成樹脂の成形品からなる円筒形の第1分割保持器と、その第1分割保持器の内側に挿入される合成樹脂製の円筒形の第2分割保持器からなり、前記第1分割保持器の軸方向一側面と第2分割保持器の軸方向他側面に、その両分割保持器を内外に組み合わせた状態でボール保持用の円形のポケットを形成する切欠部を周方向に間隔をおいて設け、前記第1分割保持器と第2分割保持器が円形のポケットを形成する組み合わせ状態で、その両分割保持器を軸方向に非分離とする連結手段を設けた請求項1乃至5のいずれかの項に記載の深みぞ玉軸受。 The cage is composed of a cylindrical first divided cage made of a synthetic resin molded product, and a synthetic resin cylindrical second divided cage inserted inside the first divided cage. A notch that forms a circular pocket for holding the ball in a state where both the split cages are combined inside and outside on one side surface in the axial direction of the first split cage and the other side surface in the axial direction of the second split cage. And connecting means for non-separating the two divided cages in the axial direction in a combined state in which the first divided cage and the second divided cage form a circular pocket. The deep groove ball bearing according to any one of 1 to 5.
  7.  前記連結手段が、前記第1分割保持器の隣接する切欠部間に形成された柱部の先端部に内向きの係合爪を設け、前記第2分割保持器の隣接する切欠部間に形成された柱部の先端部に外向きの係合爪を設け、第1分割保持器の係合爪を第2分割保持器の外径面に形成された係合凹部に係合し、第2分割保持器の係合爪を第1分割保持器の内径面に形成された係合凹部に係合した構成から成る請求項6に記載の深みぞ玉軸受。 The connecting means is provided between the adjacent notches of the second split cage by providing an inward engagement claw at the tip of the pillar portion formed between the adjacent notches of the first split cage. An outward engaging claw is provided at the tip of the pillar portion, and the engaging claw of the first divided holder is engaged with an engaging recess formed in the outer diameter surface of the second divided holder, The deep groove ball bearing according to claim 6, wherein the engaging claw of the split cage is configured to engage with an engaging recess formed on an inner diameter surface of the first split cage.
  8.  前記切欠部が、平面形状において2分の1円を超える円形状とされて開口端に対向一対のポケット爪を有し、断面形状がボールの外周に沿う球面状とされた請求項6又は7に記載の深みぞ玉軸受。 The said notch part was made into circular shape exceeding a half circle in planar shape, it has a pair of opposing pocket claw in an opening end, and the cross-sectional shape was made into the spherical surface shape along the outer periphery of a ball | bowl. Deep groove ball bearing as described in.
  9.  前記係合爪と係合凹部間に形成される周方向すきまを径方向で対向する2つの切欠部によって形成されるポケットとそのポケット内に収容されるボール間の周方向のポケットすきまより大きくした請求項7又は8に記載の深みぞ玉軸受。 The circumferential clearance formed between the engaging claw and the engaging recess is made larger than the circumferential pocket clearance between the pocket formed by the two notch portions facing each other in the radial direction and the ball accommodated in the pocket. A deep groove ball bearing according to claim 7 or 8.
  10.  前記切欠部が、第1分割保持器と第2分割保持器の組み合わせ状態において円筒状のポケットを形成する平面U字形とされた請求項6又は7に記載の深みぞ玉軸受。 The deep groove ball bearing according to claim 6 or 7, wherein the notch is formed into a planar U-shape that forms a cylindrical pocket in a combined state of the first divided cage and the second divided cage.
  11.  前記係合爪と係合凹部間に形成される周方向すきまを、径方向で対向する2つの切欠部によって形成されるポケットとそのポケット内に収容されるボール間の周方向のポケットすきまより大きくした請求項10に記載の深みぞ玉軸受。 A circumferential clearance formed between the engaging claw and the engaging recess is larger than a circumferential pocket clearance between a pocket formed by two radially opposed notches and a ball accommodated in the pocket. The deep groove ball bearing according to claim 10.
  12.  前記第1分割保持器および第2分割保持器が、ポリアミド46、ポリアミド66およびポリフェニレンスルファイドの一種からなる請求項6乃至11のいずれかの項に記載の深みぞ玉軸受。 The deep groove ball bearing according to any one of claims 6 to 11, wherein the first divided cage and the second divided cage are made of one of polyamide 46, polyamide 66, and polyphenylene sulfide.
  13.  前記保持器が、軸方向に2分割された分割保持器からなり、その分割保持器のそれぞれが、複数の半球状ポケット部と、そのポケット部の幅寸法と同一の幅寸法とされた複数の結合板部とが周方向に交互に連続する波形とされ、その2枚の波形分割保持器の結合板部の外径を同径とし、一方の波形分割保持器のポケット部を結合板部に対して内径側に位置をずらし、他方の波形分割保持器のポケット部を結合板部に対して外径側に位置をずらし、前記一方の波形分割保持器を外輪の高さの高い肩側から軸受内部に挿入し、かつ、前記他方の波形分割保持器を外輪の高さの低い肩側から軸受内部に挿入して、半球状ポケット部間にポケットを設けた請求項1乃至5のいずれかの項に記載の深みぞ玉軸受。 The cage is composed of a split cage that is divided into two in the axial direction, and each of the split cages has a plurality of hemispherical pocket portions and a plurality of width dimensions that are the same as the width dimensions of the pocket portions. The coupling plate portion has a waveform that is alternately continuous in the circumferential direction, the outer diameter of the coupling plate portion of the two waveform split cages is the same diameter, and the pocket portion of one waveform split cage is the coupling plate portion On the other hand, the position is shifted to the inner diameter side, the pocket portion of the other waveform split cage is shifted to the outer diameter side with respect to the coupling plate portion, and the one waveform split cage is moved from the shoulder side where the height of the outer ring is high. 6. The device according to claim 1, wherein a pocket is provided between the hemispherical pocket portions by inserting the other corrugated cage into the bearing from the shoulder side having a low outer ring height. The deep groove ball bearing as described in the section.
PCT/JP2011/062959 2010-06-11 2011-06-06 Deep groove ball bearing WO2011155456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-133915 2010-06-11
JP2010133915A JP5612912B2 (en) 2010-06-11 2010-06-11 Deep groove ball bearing

Publications (1)

Publication Number Publication Date
WO2011155456A1 true WO2011155456A1 (en) 2011-12-15

Family

ID=45098063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062959 WO2011155456A1 (en) 2010-06-11 2011-06-06 Deep groove ball bearing

Country Status (2)

Country Link
JP (1) JP5612912B2 (en)
WO (1) WO2011155456A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238073A1 (en) * 2013-09-26 2016-08-18 Ntn Corporation Deep groove ball bearing
US20220025925A1 (en) * 2020-07-27 2022-01-27 Aktiebolaget Skf Deep groove ball bearing and differential
US20230047216A1 (en) * 2021-08-11 2023-02-16 Aktiebolaget Skf Deep groove ball bearing and applications thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751147B2 (en) 2011-11-25 2015-07-22 株式会社デンソー Motor equipment
JP6108779B2 (en) * 2012-11-15 2017-04-05 Ntn株式会社 Deep groove ball bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264321A (en) * 1996-03-29 1997-10-07 Ntn Corp Angular ball bearing
JP2000145795A (en) * 1998-11-06 2000-05-26 Ntn Corp Deep groove ball bearing
JP2007155022A (en) * 2005-12-06 2007-06-21 Nsk Ltd Rolling device
JP2010112461A (en) * 2008-11-06 2010-05-20 Ntn Corp Rolling bearing cage and rolling bearing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296650A (en) * 1995-02-28 1996-11-12 Ntn Corp Ball bearing
JP3905429B2 (en) * 2001-11-29 2007-04-18 Ntn株式会社 Heat treatment method for bearing parts and bearing parts
JP2004011712A (en) * 2002-06-05 2004-01-15 Nsk Ltd Rolling bearing, and belt type continuously variable transmission using it
JP5233305B2 (en) * 2008-02-12 2013-07-10 日本精工株式会社 Roller bearing and manufacturing method thereof
JP2009270173A (en) * 2008-05-09 2009-11-19 Nsk Ltd Heat treatment method for bearing ring for radial bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264321A (en) * 1996-03-29 1997-10-07 Ntn Corp Angular ball bearing
JP2000145795A (en) * 1998-11-06 2000-05-26 Ntn Corp Deep groove ball bearing
JP2007155022A (en) * 2005-12-06 2007-06-21 Nsk Ltd Rolling device
JP2010112461A (en) * 2008-11-06 2010-05-20 Ntn Corp Rolling bearing cage and rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238073A1 (en) * 2013-09-26 2016-08-18 Ntn Corporation Deep groove ball bearing
US20220025925A1 (en) * 2020-07-27 2022-01-27 Aktiebolaget Skf Deep groove ball bearing and differential
US11614121B2 (en) * 2020-07-27 2023-03-28 Aktiebolaget Skf Deep groove ball bearing and differential
US20230047216A1 (en) * 2021-08-11 2023-02-16 Aktiebolaget Skf Deep groove ball bearing and applications thereof
US11859661B2 (en) * 2021-08-11 2024-01-02 Aktiebolaget Skf Deep groove ball bearing and applications thereof

Also Published As

Publication number Publication date
JP2011256977A (en) 2011-12-22
JP5612912B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
US8322931B2 (en) Rotation support apparatus
EP3372852B1 (en) Rotation support device for pinion shaft
US7841773B2 (en) Tapered roller bearing
WO2005068675A1 (en) Rolling bearing
WO2013085033A1 (en) Bearing components, rolling bearing, and methods for producing same
JP5612912B2 (en) Deep groove ball bearing
WO2003081062A1 (en) Rolling bearing for belt type non-stage transmission
JP5982782B2 (en) Rolling bearings for wind power generation facilities
US10890213B2 (en) Tapered roller bearing
US8794843B2 (en) Rotation support device for pinion shaft
JP5168898B2 (en) Rolling shaft
JP2005214390A (en) Needle bearing, planetary gear mechanism and pinion shaft
JP2006112558A (en) Tapered roller bearing
EP4001680B1 (en) Tapered roller bearing
JP2005140275A (en) Planetary gear device
JP2008150687A (en) Ball-and-roller bearing device for supporting wheel
JP2006342904A (en) Pinion shaft and planetary gear device
JP2003343577A (en) Roller bearing and belt type non-stage transmission using the same
JP7394939B2 (en) tapered roller bearing
JP4269583B2 (en) Rolling bearing, belt type continuously variable transmission using the same
JP2001003139A (en) Tapered roller bearing and gear shaft supporting device for vehicle
JP2005344783A (en) Thrust needle-like roller bearing
JP2009174691A (en) Ball bearing for transmission
JP2003184870A (en) Roller bearing
JP2003314567A (en) Rolling bearing and belt-type continuously variable transmission using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792413

Country of ref document: EP

Kind code of ref document: A1