WO2011155244A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2011155244A1
WO2011155244A1 PCT/JP2011/056794 JP2011056794W WO2011155244A1 WO 2011155244 A1 WO2011155244 A1 WO 2011155244A1 JP 2011056794 W JP2011056794 W JP 2011056794W WO 2011155244 A1 WO2011155244 A1 WO 2011155244A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
color
transmittance
luminance value
value
Prior art date
Application number
PCT/JP2011/056794
Other languages
French (fr)
Japanese (ja)
Inventor
上原和弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011155244A1 publication Critical patent/WO2011155244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a display device, particularly a non-light-emitting display device such as a liquid crystal display device.
  • liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes.
  • Such a liquid crystal display device includes a backlight device that emits light, and a liquid crystal panel that displays a desired image by acting as a shutter for light from a light source provided in the backlight device. Yes.
  • the liquid crystal display device as described above has three colors of light emitting diodes (LEDs) of red (R), green (G), and blue (B) for a liquid crystal panel not provided with a color filter.
  • LEDs light emitting diodes
  • a first subfield period in which at least a green light emitting diode among red, green, and blue light emitting diodes emits light is provided.
  • a second subfield period in which at least the red light emitting diode emits light and a third subfield period in which the blue light emitting diode emits light are set as one frame period.
  • the light emission time of each light emitting diode is determined according to the image signal, and to the liquid crystal panel according to the determined light emission time.
  • Image output signal instruction signal
  • the color processing order is fixedly determined as green, red, and blue, depending on the image signal input from the outside, that is, the display image, the color brake In some cases, the bending phenomenon could not be suppressed.
  • an object of the present invention is to provide a display device that can reliably suppress the color breaking phenomenon regardless of the display image.
  • a display device includes a backlight unit having a plurality of color light sources that can be mixed with white light, a plurality of pixels, and illumination light from the backlight unit. And a display device that displays information and displays information by dividing one frame period into N (N is an integer of 3 or more) subfield periods, A storage unit for storing the input image signal; A control unit that performs drive control of the backlight unit and the display unit using an image signal stored in the storage unit, The control unit, based on an image signal stored in the storage unit, of a light source serving as a reference for calculating a transmittance for each pixel among the light sources of the plurality of colors in each of the N subfield periods. The color is selected, the transmittance for each pixel is calculated based on the selected color, and the light source to be turned on and its luminance value are determined among the light sources of the plurality of colors in each of the N subfield periods. It is characterized by doing.
  • the control unit calculates the transmittance for each pixel of the light sources of a plurality of colors in each of the N subfield periods based on the image signal stored in the storage unit. Select the color of the light source that is the reference for calculation. In addition, the control unit calculates the transmittance for each pixel based on the selected color, and determines the light source to be turned on and the luminance value among the light sources of a plurality of colors in each of the N subfield periods.
  • the color braking phenomenon can be reliably suppressed regardless of the display image.
  • the control unit includes each histogram of the maximum values of all the mixed colors constituted by a combination of a plurality of colors of light sources from the image signal stored in the storage unit, and a minimum value for each of the plurality of colors. It is preferable that each of the histograms is acquired for each pixel, and based on the acquired histogram, a reference color for calculating the transmittance for each pixel in each of the N subfield periods is selected.
  • control unit can select the reference color in consideration of color mixture and luminance concentration in the displayed image in each subfield period, and more reliably suppress the color breaking phenomenon. be able to.
  • the control unit acquires, for each pixel, each histogram of the maximum values of all the mixed colors configured by a combination of a plurality of light source colors from the image signal stored in the storage unit, When it is determined that the values of the histograms of these maximum values are all 0, the control unit turns on only the light source of one color in one subfield period in the N subfield periods. As described above, it is preferable to turn on the light sources of a plurality of colors in a predetermined order.
  • the power consumption of the display device can be reduced.
  • the first, second, and third subfield periods are used as the N subfield periods.
  • the multi-color light sources red, green, and blue light emitting diodes that emit red, green, and blue light, respectively, are used.
  • the control unit calculates a transmittance for each pixel of any one of red, green, and blue based on the image signal stored in the storage unit.
  • the control unit based on the image signal stored in the storage unit, removes any one of the two colors of red, green, and blue. Is selected as a reference color for calculating the transmittance of each pixel, the luminance value of the light emitting diode of the selected color is determined, and the transmittance of each pixel in the second subfield period is calculated.
  • the control unit converts the other color of the two colors among red, green, and blue to the transmittance for each pixel. May be selected as a reference color for calculating and the luminance value in the light emitting diode of the selected color may be determined, and the transmittance for each pixel in the third subfield period may be calculated.
  • the light source of at least one color among the light sources of the plurality of colors is turned on in the N subfield periods, or one subfield in the N subfield periods. It is preferable to provide a mode switching means for switching whether or not the light sources of a plurality of colors are turned on in a predetermined order so that only one color light source is turned on during the period.
  • the present invention it is possible to provide a display device that can reliably suppress the color breaking phenomenon regardless of the display image.
  • FIG. 1 is a diagram for explaining a main configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a plan view showing a main configuration of the backlight device shown in FIG.
  • FIG. 4 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG.
  • FIG. 5 is a flowchart showing a specific operation in the first subfield period shown in FIG.
  • FIG. 6 is a flowchart showing a specific operation in the second subfield period shown in FIG.
  • FIG. 7 is a flowchart showing a specific operation in the third subfield period shown in FIG. FIG. 8A to FIG.
  • FIG. 8B are diagrams for explaining an example of the processing operation in the controller shown in FIG.
  • FIG. 9A to FIG. 9D are diagrams for explaining an example of the processing operation in the controller shown in FIG.
  • FIGS. 10A to 10D are diagrams for explaining an example of another processing operation in the controller shown in FIG.
  • FIG. 11 is a diagram for explaining a main configuration of a liquid crystal display device according to the second embodiment of the present invention.
  • FIG. 12 is a flowchart showing a specific operation in the first subfield period in the liquid crystal display device shown in FIG.
  • FIGS. 13A to 13D are diagrams for explaining an example of the processing operation of the conventional FSD process in the controller shown in FIG.
  • FIG. 14 is a diagram for explaining a main configuration of a liquid crystal display device according to the third embodiment of the present invention.
  • FIG. 15 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG.
  • FIG. 1 is a diagram for explaining a main configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • a liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 as a display unit for displaying information, and a backlight device 3 as a backlight unit for irradiating the liquid crystal panel 2 with illumination light.
  • the liquid crystal panel 2 and the backlight device 3 are integrated as a transmissive liquid crystal display device 1.
  • the liquid crystal display device 1 of the present embodiment includes a storage device 4 that stores an image signal input from the outside, an arithmetic device 5 that is sequentially connected to the storage device 4, and a controller 6 that serves as a control unit. .
  • the controller 6 is connected to a gate driver 7 and a source driver 8 that drive the liquid crystal panel 2, and a backlight control device 9 that controls driving of the backlight device 3.
  • the gate driver 7 and the source driver 8 drive a source wiring and a gate wiring, which will be described later, provided on the liquid crystal panel 2 based on an instruction signal (control signal) from the controller 6.
  • one frame period (one TV field period) is divided into first, second, and third subfield periods to display information. It is configured as follows.
  • liquid crystal panel 2 and the backlight device 3 will be described in detail with reference to FIGS. 2 and 3 respectively.
  • FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a plan view showing a main configuration of the backlight device shown in FIG.
  • the gate driver 7 and the source driver 8 are connected to the liquid crystal panel 2.
  • the gate driver 7 and the source driver 8 are drive circuits that drive a plurality of pixels P provided in the liquid crystal panel 2 in units of pixels.
  • the gate driver 7 and the source driver 8 include a plurality of gate lines G1 to GN. (N is an integer of 2 or more) and a plurality of source lines S1 to SM (M is an integer of 2 or more) are connected to each other.
  • the gate lines G1 to GN and the source lines S1 to SM are arranged in a matrix, and the regions of the plurality of pixels P are formed in the regions partitioned in the matrix.
  • the liquid crystal panel 2 is not provided with a color filter, and red, green and blue (RGB) light emitting diodes provided in the backlight device 3 are driven to turn on sequentially, so that each pixel P has a light emitting diode.
  • the light is modulated so as to modulate the light from, and functions as red, green, and blue pixels.
  • the gate lines G1 to GN are provided for each pixel P, and connected to the gate of the switching element 10 using, for example, a thin film transistor (ThinThFilm Transistor).
  • the source of the switching element 10 is connected to each of the source lines S1 to SM.
  • a pixel electrode 11 provided for each pixel P is connected to the drain of each switching element 10.
  • the common electrode 12 is configured to face the pixel electrode 11 with a liquid crystal layer (not shown) provided on the liquid crystal panel 2 interposed therebetween.
  • a control signal is input from the controller 6 to the source driver 8. Then, the source driver 8 appropriately outputs a voltage signal corresponding to the input control signal to the source lines S1 to SM.
  • the gate driver 7 sequentially outputs gate signals for turning on the gates of the corresponding switching elements 10 to the gate lines G1 to GN based on the control signal from the controller 6. Thereby, in the liquid crystal panel 2, in order to display the input image corresponding to the input image signal, the transmittance is changed for each pixel P, and the input image is displayed.
  • the backlight device 3 will be specifically described with reference to FIG.
  • the backlight device 3 includes a plurality of light emitting diodes 13 as light sources and a bottomed casing 14 that houses the plurality of light emitting diodes 13.
  • a diffusion plate (not shown) is provided so as to block the opening of the housing 14, and planar illumination light is irradiated to the liquid crystal panel 2 side through the diffusion plate.
  • a total of 100 light emitting diodes 13 in 10 rows and 10 columns provided in parallel in the horizontal and vertical directions on the display surface of the liquid crystal panel 2 are used. Has been.
  • red, green, and blue light-emitting diodes 13r, 13g, and 13b that emit red (R), green (G), and blue (B) light, respectively, are integrated with each of the plurality of light-emitting diodes 13.
  • the so-called three-in-one (3 in 1) type configured as described above is used. That is, the backlight device 3 uses light sources of a plurality of colors that can be mixed with white light.
  • the storage device 4 constitutes a storage unit, and is configured to temporarily hold an image signal for one frame input from the outside.
  • the arithmetic device 5 performs predetermined image processing on the image signal stored in the storage device 4. That is, the arithmetic device 5 reads the image signal held in the storage device 4 and performs the predetermined image processing for improving the output image quality such as ⁇ correction on the read image signal. Thereafter, the arithmetic device 5 outputs the image signal after the image processing to the controller 6.
  • the controller 6 outputs a control signal to the gate driver 7 and the source driver 8 based on the image signal stored in the storage device 4, and also controls the light emitting diode 13 to the backlight control device 9. Output a signal. Further, as will be described in detail later, the controller 6 selects a pixel among the RGB light emitting diodes 13r, 13g, and 13b in each of the three subfield periods based on the image signal stored in the storage device 4. The color of the light emitting diode 13 serving as a reference for calculating the transmittance for each pixel is selected, the transmittance for each pixel is calculated based on the selected color, and the RGB light emitting diode 13r is used in each of the three subfield periods. , 13g, and 13b, the light source to be turned on and the luminance value thereof are determined.
  • the backlight control device 9 causes the light emitting diode 13 to emit light based on a control signal from the controller 6. That is, in the backlight device 3, the lighting operation is performed so that each of the light emitting diodes 13r, 13g, and 13b has the luminance value (LED luminance value) obtained by the controller 6.
  • FIG. 4 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG.
  • FIG. 5 is a flowchart showing a specific operation in the first subfield period shown in FIG.
  • FIG. 6 is a flowchart showing a specific operation in the second subfield period shown in FIG.
  • FIG. 7 is a flowchart showing a specific operation in the third subfield period shown in FIG.
  • the controller 6 of the present embodiment first selects a reference color for calculating the transmittance for each pixel in the first subfield period.
  • the controller 6 sets each of the maximum values of all the mixed colors composed of combinations of a plurality of colors of the light emitting diodes 13 from the image signal stored in the storage device 4.
  • the histogram and each histogram of the minimum value for each of the plurality of colors are acquired for each pixel, and the process is performed based on the acquired histogram (the same applies to step S3 described later).
  • the controller 6 of this embodiment calculates the transmittance for each pixel and the LED luminance value of each color in the first subfield period.
  • step S3 of FIG. 4 the controller 6 of the present embodiment selects a reference color for calculating the transmittance for each pixel in the second subfield period.
  • step S4 of FIG. 4 the controller 6 of the present embodiment calculates the transmittance for each pixel and the LED luminance value of each color in the second subfield period.
  • step S5 of FIG. 4 the controller 6 of the present embodiment calculates the transmittance and color LED luminance value for each pixel in the third subfield period.
  • processing operations shown in FIG. 5 are sequentially performed in steps S1 and S2.
  • the controller 6 of the present embodiment uses white, yellow, and cyan colors from the image signal stored in the storage device 4. , And the histogram of the maximum value of magenta color is acquired for each pixel.
  • step S ⁇ b> 101 of FIG. 5 the controller 6 of the present embodiment obtains each histogram of red, green, and blue minimum values for each pixel from the image signal stored in the storage device 4. .
  • the controller 6 of the present embodiment is a mixed color (that is, white, yellow, cyan) having a large value (large number of pixels) in each histogram of the acquired maximum value in each histogram. Color and magenta color).
  • the controller 6 of the present embodiment gives priority to white when the area of white and other mixed colors is close and the area of other mixed colors> area of white in the maximum histogram. Whether to give priority to other color mixing is determined by a threshold value and a setting flag set in the controller 6. In addition to this description, for example, it may be set so that white is always prioritized.
  • step S102 the controller 6 of the present embodiment is selected in step S102 from among red, green, and blue in each histogram of the minimum value acquired in step S101.
  • One primary color having a small area and a large area (number of pixels) is selected from the primary colors constituting the mixed color.
  • step S104 of FIG. 5 the controller 6 of the present embodiment uses the primary color selected in step S103 as a reference color for calculating the transmittance for each pixel in the first subfield period. .
  • the controller 6 of the present embodiment detects the maximum value of the primary color selected in step S103. That is, the controller 6 detects the maximum component value among the component values (signal values) of the selected primary color in the image signal stored in the storage device 4.
  • the controller 6 of the present embodiment calculates the LED luminance value of the primary color selected in step S103. That is, the controller 6 sets the transmittance in the first subfield period to the maximum value (that is, 100%), and uses the maximum component value detected in step S105 as the LED luminance value of the primary color selected in step S103. And
  • step S ⁇ b> 107 of FIG. 5 the controller 6 of this embodiment calculates the transmittance for each pixel. That is, in the image signal stored in the storage device 4, the controller 6 divides the component value for each pixel in the selected primary color by the LED luminance value calculated in step S ⁇ b> 106, thereby Calculate the transmittance.
  • the controller 6 of the present embodiment uses the transmittance for each pixel calculated in step S107 to provide each of the two primary colors other than the primary color selected in step S103.
  • LED brightness value for each pixel is calculated. That is, in the image signal stored in the storage device 4, the controller 6 calculates the component value for each pixel in each of the two primary colors other than the primary color as the transmittance of the corresponding pixel calculated in step S ⁇ b> 107. By dividing, the LED luminance value for each pixel in each primary color is calculated.
  • step S108 when this step S108 is performed, if the transmittance of the pixel is “0”, the LED luminance value is set to an infinite value. As a result, the pixel having the transmittance of “0” is excluded from the determination process of the LED luminance value in the subsequent step S109.
  • the color mixture selected in step S102 is a color other than white (that is, any one of yellow, cyan, and magenta)
  • the color mixture other than white is selected.
  • the primary color light emitting diodes 13 that are not configured are not lit in the first subfield period. That is, the controller 6 sets the LED luminance value for each pixel in the primary colors that do not constitute a mixed color other than white to “0”.
  • the controller 6 of the present embodiment uses the minimum value of the LED luminance value calculated in step S108 for each of the two types of primary colors as the LED luminance in the corresponding primary color. Value.
  • steps S3 and S4 the processing operations shown in FIG. 6 are sequentially performed.
  • the controller 6 of the present embodiment performs image processing for each of the two primary colors other than the primary color selected in step S103.
  • the output luminance value displayed in the first subfield period is subtracted from the component value of the signal to obtain the component value in the second subfield period. That is, in the image signal stored in the storage device 4, the controller 6 determines in step S109 the transmittance of the corresponding pixel calculated in step S107 from the component values for each pixel in the two primary colors.
  • the component value of each primary color in the second subfield period is obtained. calculate.
  • step S201 of FIG. 6 the controller 6 of the present embodiment acquires each histogram of the minimum values of the two primary colors calculated in step S200 for each pixel.
  • the controller 6 selects a primary color having a small value and a wide area (number of pixels) in each histogram of the minimum values acquired in step S201. Select one.
  • step S ⁇ b> 203 of FIG. 6 the controller 6 of the present embodiment uses the primary color selected in step S ⁇ b> 202 as a reference color for calculating the transmittance for each pixel in the second subfield period. .
  • step S204 of FIG. 6 the controller 6 of the present embodiment detects the maximum value of the primary colors selected in step S202. That is, the controller 6 detects the maximum component value among the corresponding primary color component values in the second subfield period calculated in step S200.
  • the controller 6 of the present embodiment calculates the LED luminance value of the primary color selected in step S202. That is, the controller 6 sets the transmittance in the second subfield period to the maximum value (that is, 100%), and uses the maximum component value detected in step S204 as the LED luminance value of the primary color selected in step S202. And
  • step S ⁇ b> 206 of FIG. 6 the controller 6 of the present embodiment calculates the transmittance for each pixel. That is, the controller 6 divides the component value for each pixel of the corresponding primary color in the second subfield period calculated in step S200 by the LED luminance value calculated in step S205, thereby transmitting each pixel. Calculate the rate.
  • the controller 6 of the present embodiment uses the transmissivity for each pixel calculated in step S206 for each primary color other than the primary color selected in step S202.
  • the LED brightness value is calculated. That is, in the image signal stored in the storage device 4, the controller 6 divides the component value for each pixel in a primary color other than the primary color by the transmittance of the corresponding pixel calculated in step S206. The LED luminance value for each pixel in the primary color is calculated.
  • step S207 when this step S207 is performed, the LED luminance value is set to an infinite value when the transmittance of the pixel is “0”, as in step S108. As a result, a pixel having a transmittance of “0” is excluded from the LED luminance value determination process in the subsequent step S208.
  • the controller 6 of the present embodiment uses the minimum value of the LED luminance value calculated in step S207 for the primary colors other than the primary colors as the LED luminance value of the primary color. To do.
  • step S5 the processing operations shown in FIG. 7 are sequentially performed.
  • the controller 6 of the present embodiment uses the remaining primary colors other than the primary color selected in step S202.
  • the output luminance value displayed in the first and second subfield periods is subtracted from the component value to obtain the component value in the third subfield period. That is, in the image signal stored in the storage device 4, the controller 6 determines the corresponding pixel transmittance calculated in step S107 from the component values for each pixel in the remaining primary colors in step S109.
  • the output luminance value in the first subfield period which is obtained by multiplying the LED luminance value in the primary color, the transmittance of the corresponding pixel calculated in step S206, and the relevant value determined in step S208
  • the component value of the primary color in the third subfield period is calculated by subtracting the output brightness value in the second subfield period, which is obtained by multiplying the LED brightness value in the primary color.
  • step S301 in FIG. 7 the controller 6 of the present embodiment detects the maximum value of the remaining primary colors. That is, the controller 6 detects the maximum component value among the component values of the primary color in the third subfield period calculated in step S300.
  • the controller 6 of the present embodiment calculates the LED brightness values of the remaining primary colors. That is, the controller 6 sets the transmittance in the third subfield period to the maximum value (that is, 100%), and sets the maximum component value detected in step S301 as the LED luminance value of the primary color.
  • step S ⁇ b> 303 of FIG. 7 the controller 6 of the present embodiment calculates the transmittance for each pixel. That is, the controller 6 divides the component value for each pixel of the remaining primary color in the third subfield period calculated in step S300 by the LED luminance value calculated in step S302, so that Calculate the transmittance.
  • FIG. 8A to FIG. 8B are diagrams for explaining an example of the processing operation in the controller shown in FIG.
  • FIG. 9A to FIG. 9D are diagrams for explaining an example of the processing operation in the controller shown in FIG.
  • FIGS. 10A to 10D are diagrams for explaining an example of another processing operation in the controller shown in FIG.
  • the red component value, the green component value, and the blue component value of each pixel are values illustrated in FIG. 8A in the image signal stored in the storage device 4 .
  • all values of the red component value, the green component value, and the blue component value are “80”, and in this pixel 1, white light emission with a luminance of 80% of the maximum luminance ( Display).
  • the red component value, the green component value, and the blue component value are “0”, “80”, and “” 0 ”, respectively, and in this pixel 7, the luminance is 80% of the maximum luminance. It is required to emit green light (display).
  • the controller 6 of the present embodiment performs the processing operations of steps S100 and S101 of FIG. 5, whereby the histogram shown in FIG. 8B is acquired from the image signal shown in FIG. That is, after the histograms of the maximum values of white, yellow, cyan, and magenta are acquired for each pixel, the histograms of the minimum values of red, green, and blue are acquired for each pixel.
  • the controller 6 of the present embodiment performs the processing operation of step S102 in FIG.
  • the controller 6 selects white according to a preset setting flag.
  • the controller 6 selects red, green, and blue as the primary colors constituting white, and calculates the area (number of pixels) from the red minimum value, green minimum value, and blue minimum value shown in FIG. ) Is a reference color for calculating the transmittance of each pixel in the first subfield period.
  • the controller 6 performs the processing operation of steps S105 to S107 in FIG.
  • the transmittance is determined. Specifically, as shown in FIG. 9A, a value of “80” is determined as the blue LED luminance value in the first subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • a blue light emission operation is performed. Specifically, for example, in the pixel 1, blue light emission (display) is performed with a blue output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 5, since the transmittance value is “0”, the blue output luminance value is also “0”, and blue light is not emitted.
  • the controller 6 performs the processing operations of steps S108 to S109 in FIG. 5, whereby the luminance values of the green and red light emitting diodes 13g and 13r in the first subfield period, that is, the green LED.
  • a luminance value and a red LED luminance value are determined.
  • a value of “80” is determined as the green LED luminance value and the red LED luminance value in the first subfield period.
  • the green light emission operation (display operation) is performed at a value indicated by (rate / 100)
  • green light emission is performed with a green output luminance value of “80”, that is, a luminance of 80% of the maximum luminance.
  • the pixel 1 emits red light (display) with a red output luminance value of “80”, that is, 80% of the maximum luminance.
  • the transmittance value is “0”
  • the red output luminance value is also “0” and red light is not emitted.
  • the controller 6 of the present embodiment performs the processing operation of step S200 in FIG. 6, the component values in the second subfield period are obtained as shown in FIG. 9B. That is, the controller 6 subtracts the red output luminance value and the green output luminance value shown in FIG. 9A from the red component value and the green component value shown in FIG.
  • the red component value and the green component value in the two subfield periods are calculated.
  • the blue component values of the pixels 1 to 8 are “0” values. That is, blue is used as a reference color in the first subfield period, and in each of the pixels 1 to 8 in the first subfield period, the light emission operation according to the image signal is performed.
  • Each blue component value of the pixels 1 to 8 is a value of “0”.
  • the reference color for calculating the transmittance for each pixel in the second subfield period is determined to be red. That is, the controller 6 finds a red component value having a large number of pixels of the minimum value (that is, a value of “0”) from among the red component value and the green component value shown in FIG. The reference color for calculating the transmittance for each pixel in the sub-field period is used.
  • the controller 6 of the present embodiment performs the processing operations of steps S204 to S206 in FIG. 6, so that the luminance value of the red light emitting diode 13r in the second subfield period, that is, the red LED luminance value and each pixel. Is determined. Specifically, as shown in FIG. 9C, a value of “80” is determined as the red LED luminance value in the second subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • the red light emission operation is performed with. Specifically, for example, the pixel 5 emits red light (display) with a red output luminance value of “80”, that is, 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the red output luminance value is also “0”, and red light is not emitted.
  • the controller 6 performs the processing operations of steps S207 to S208 in FIG. 6 to determine the luminance value of the green light emitting diode 13g in the second subfield period, that is, the green LED luminance value.
  • the controller 6 performs the processing operations of steps S207 to S208 in FIG. 6 to determine the luminance value of the green light emitting diode 13g in the second subfield period, that is, the green LED luminance value.
  • a value of “80” is determined as the green LED luminance value in the second subfield period.
  • the green light emission operation (display operation) is performed at a value indicated by (rate / 100).
  • the blue LED luminance value and the blue output luminance value are As shown in FIG. 9C, all the pixels 1 to 8 have a value of “0”. That is, the blue light emission operation (display operation) is not performed in the second subfield period.
  • the controller 6 performs the processing operations of steps S300 to S303 in FIG. 7, so that the luminance value of the green light emitting diode 13g in the third subfield period, that is, the green LED luminance value and each pixel. Is determined. Specifically, as shown in FIG. 9D, a value of “80” is determined as the green LED luminance value in the third subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • the green light emission operation is performed with. Specifically, for example, the pixel 7 emits green light (display) with a green output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 1, since the transmittance value is “0”, the green output luminance value is also “0”, and green light is not emitted.
  • the blue component value and the red component value of all the pixels 1 to 8 are “0”, so the blue LED luminance value, the blue output luminance value, the red LED luminance value, and the red color.
  • the output luminance value is “0” in all the pixels 1 to 8. That is, the blue and red light emission operations (display operations) are not performed in the third subfield period.
  • the controller 6 of the present embodiment performs the processing operation of step S102 of FIG. 5, the controller 6 performs color mixing (that is, white, yellow, cyan, and magenta) according to a preset setting flag.
  • color mixing that is, white, yellow, cyan, and magenta
  • FIG. 8B a case where yellow having a large area (number of pixels) is selected will be described.
  • the controller 6 selects red and green as the primary colors constituting yellow, and the red having a wide area (number of pixels) from the red minimum value and the green minimum value shown in FIG. A reference color for calculating the transmittance of each pixel in the subfield period is used. Further, the controller 6 does not perform the light emission operation (display operation) for blue that does not constitute yellow in the first subfield period.
  • the controller 6 performs the processing operation of steps S105 to S107 in FIG. 5, whereby the luminance value of the red light emitting diode 13r in the first subfield period, that is, the red LED luminance value and the pixel-by-pixel value.
  • the transmittance is determined. Specifically, as shown in FIG. 10A, a value of “80” is determined as the red LED luminance value in the first subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • the red light emission operation is performed with. Specifically, for example, in the pixel 1, red light emission (display) is performed with a red output luminance value of “80”, that is, luminance of 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the red output luminance value is also “0”, and red light is not emitted.
  • the controller 6 of the present embodiment performs the processing operation of steps S108 to S109 in FIG. 5, the luminance value of the green light emitting diode 13g in the first subfield period, that is, the green LED luminance value is determined.
  • the luminance value of the green light emitting diode 13g in the first subfield period that is, the green LED luminance value is determined.
  • a value of “80” is determined as the green LED luminance value in the first subfield period.
  • the green light emission operation is performed at a value indicated by (rate / 100). Specifically, for example, in the pixel 1, green light emission (display) is performed with a green output luminance value of “80”, that is, a luminance of 80% of the maximum luminance. For example, in the pixel 7, since the transmittance value is “0”, the green output luminance value is also “0”, and green light is not emitted. Further, since the blue light emission operation (display operation) is not performed in the first subfield period, as shown in FIG. 10A, the blue LED luminance value and the blue output luminance value are the same for all the pixels 1 to 8, the value is “0”.
  • the controller 6 performs the processing operation of step S200 in FIG. 6 to obtain the component values in the second subfield period as shown in FIG. 10B. That is, the controller 6 subtracts the green output luminance value and the blue output luminance value shown in FIG. 10A from the green component value and the blue component value shown in FIG. The green component value and the blue component value in the two subfield periods are calculated.
  • the red component values of the pixels 1 to 8 are “0” values. That is, red is used as a reference color in the first subfield period, and in each of the pixels 1 to 8 in the first subfield period, the light emitting operation corresponding to the image signal is performed. Each red component value of the pixels 1 to 8 is a value of “0”.
  • the reference color for calculating the transmittance for each pixel in the second subfield period is determined to be green. That is, the controller 6 finds a green component value having a large number of pixels of the minimum value (that is, a value of “0”) out of the green component value and the blue component value shown in FIG. The reference color for calculating the transmittance for each pixel in the sub-field period is used.
  • the controller 6 performs the processing operations of steps S204 to S206 in FIG. 6, so that the luminance value of the green light-emitting diode 13g in the second subfield period, that is, the green LED luminance value and each pixel. Is determined. Specifically, as shown in FIG. 10C, a value of “80” is determined as the green LED luminance value in the second subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • the green light emission operation is performed with. Specifically, for example, the pixel 7 emits green light (display) with a green output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 1, since the transmittance value is “0”, the green output luminance value is also “0”, and green light is not emitted.
  • the luminance value of the blue light emitting diode 13b in the second subfield period that is, the blue LED luminance value is determined.
  • a value of “0” is determined as the blue LED luminance value in the second subfield period.
  • the blue component value is a value of “80” as shown in FIG. 10B
  • the blue component value is the value shown in FIG.
  • FIG. 10 although the value is “0”, since the transmittance of the pixel is “0” as shown in FIG. 10C, each blue LED luminance value is set to an infinite value. .
  • each blue LED luminance value is a value of“ 0 ”, and this minimum value“ 0 ”is determined as the blue LED luminance value.
  • the blue light emission operation (display operation) is performed at a value indicated by (rate / 100).
  • the blue output luminance values of all the pixels 1 to 8 are “0”
  • the blue light emission operation is not performed in the second subfield period.
  • the red component values of all the pixels 1 to 8 are “0”, so the red LED luminance value and the red output luminance value are
  • all the pixels 1 to 8 have a value of “0”. That is, the red light emission operation (display operation) is not performed in the second subfield period.
  • the controller 6 performs the processing operation of steps S300 to S303 in FIG. 7, so that the luminance value of the blue light-emitting diode 13b in the third subfield period, that is, the blue LED luminance value and each pixel is changed. Is determined. Specifically, as shown in FIG. 10D, a value of “80” is determined as the blue LED luminance value in the third subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • a blue light emission operation is performed. Specifically, for example, in the pixel 1, blue light emission (display) is performed with a blue output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 5, since the transmittance value is “0”, the blue output luminance value is also “0”, and blue light is not emitted.
  • the red component value and the green component value of all the pixels 1 to 8 are “0”, and therefore the red LED luminance value, the red output luminance value, the green LED luminance value, and the green color.
  • the output luminance value is a value of “0” in all the pixels 1 to 8. That is, the red and green light emission operations (display operations) are not performed in the third subfield period.
  • the controller (control unit) 6 has three subfield periods based on the image signal stored in the storage device (storage unit) 4.
  • the color of the light emitting diode (light source) 13 that is a reference for calculating the transmittance for each pixel is selected from among the RGB light emitting diodes 13r, 13g, and 13b (multiple color light sources). Further, the controller 6 calculates the transmittance for each pixel based on the selected color, and among the three light emitting diodes 13r, 13g, and 13b, the light emitting diode 13 that is lit and the luminance thereof. The value is determined.
  • the controller 6 can analyze the input image signal and suppress the color breaking phenomenon as shown in the flowcharts of FIGS. The order of colors and their luminance values are determined. Thereby, in the liquid crystal display device 1 of this embodiment, unlike the conventional example, the color braking phenomenon can be reliably suppressed regardless of the display image.
  • the controller 6 uses the histograms of the maximum values of white, yellow, cyan, and magenta colors from the image signal stored in the storage device 4 and the minimum values of red, green, and blue. A histogram is acquired for each pixel, and based on the acquired histogram, a reference color for calculating the transmittance for each pixel in each of the three subfield periods is selected. As a result, in this embodiment, the controller 6 can select the reference color in consideration of color mixing and luminance concentration in the displayed image in each subfield period, and the color braking phenomenon can be selected. It can suppress more reliably.
  • FIG. 11 is a diagram for explaining a main configuration of a liquid crystal display device according to the second embodiment of the present invention.
  • the controller has each of the maximum values of white, yellow, cyan, and magenta colors in the image signal stored in the storage device.
  • RGB light-emitting diodes are set in a predetermined manner so that only one color light-emitting diode is lit in one sub-field period in three sub-field periods. The point is to turn on the lighting in order.
  • symbol is attached
  • the liquid crystal display device 1 of this embodiment is provided with a controller 15 as a control unit. If the controller 15 determines that the histogram values of the maximum values of white, yellow, cyan, and magenta are all 0 in the image signal stored in the storage device 4, the controller 15 In the subfield period, the RGB light emitting diodes 13r, 13g, and 13b are lit in a predetermined order so that only the light emitting diode 13 of one color is lit in one subfield period.
  • the controller 15 of the present embodiment determines whether or not the CBU (Color Breaking Up) suppression mode that can reliably suppress the color braking phenomenon shown in the first embodiment can be performed, and determines that it cannot be performed. In this case, it is possible to select a power saving priority mode using conventional FSD (Field Sequential Display) driving that can immediately save power.
  • CBU Color Breaking Up
  • FSD Field Sequential Display
  • FIG. 12 is a flowchart showing a specific operation in the first subfield period in the liquid crystal display device shown in FIG.
  • FIGS. 13A to 13D are diagrams for explaining an example of the processing operation of the conventional FSD process in the controller shown in FIG.
  • the controller 15 of the present embodiment performs the processing operation of step S ⁇ b> 100, and determines each of the maximum values of white, yellow, cyan, and magenta from the image signal stored in the storage device 4. After obtaining the histogram for each pixel, it is determined whether or not there is a color mixture. That is, the controller 15 checks whether all of the maximum values of white, yellow, cyan, and magenta are “0” (step S1001). When the controller 15 determines that a value other than “0” exists, the controller 15 determines that there is color mixing in the image to be displayed, and executes the processing operation of step S101 as in the first embodiment. .
  • step S1001 when it is determined in step S1001 that there is no value other than “0”, the controller 15 determines that there is no color mixture in the image to be displayed, and executes the conventional FSD process (power saving priority mode). (Step S1002). That is, in the three subfield periods, the controller 15 lights the RGB light emitting diodes 13r, 13g, and 13b in a predetermined order so that only one color light emitting diode 13 is turned on in one subfield period. Make it work.
  • step S1002 a case where the conventional FSD process in step S1002 is executed on the image signal shown in FIG. 8A will be described as an example. Further, the case where the red, green, and blue light emitting diodes 13r, 13g, and 13b are turned on in the first, second, and third subfield periods will be described as an example.
  • the controller 15 of the present embodiment based on the red component value shown in FIG. 8A, the luminance value of the red light emitting diode 13r in the first subfield period, that is, the red LED luminance value and the transmission for each pixel. Determine the rate. Specifically, as shown in FIG. 13A, a value of “80” is determined as the red LED luminance value in the first subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • the red light emission operation is performed with. Specifically, for example, in the pixel 1, red light emission (display) is performed with a red output luminance value of “80”, that is, luminance of 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the red output luminance value is also “0”, and red light is not emitted.
  • the green and blue light emitting diodes 13g and 13b are not turned on during the first subfield period. That is, as shown in FIG. 13A, the controller 15 of this embodiment sets the green LED luminance value, the green output luminance value, the blue LED luminance value, and the blue output luminance value for all the pixels 1 to 8 as “ The value is 0 ”.
  • the red component value, the green component value, and the blue component value in the second and third subfield periods are values shown in FIG.
  • the controller 15 of the present embodiment based on the green component value shown in FIG. 13B, the luminance value of the green light emitting diode 13g in the second subfield period, that is, the green LED luminance value and each pixel. Determine the transmittance.
  • a value of “80” is determined as the green LED luminance value in the second subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • the green light emission operation is performed with. Specifically, for example, in the pixel 1, green light emission (display) is performed with a green output luminance value of “80”, that is, a luminance of 80% of the maximum luminance.
  • the blue and red light emitting diodes 13b and 13r are not turned on in the second subfield period. That is, as shown in FIG. 13C, the controller 15 of the present embodiment sets the blue LED luminance value, the blue output luminance value, the red LED luminance value, and the red output luminance value for all the pixels 1 to 8 as “ The value is 0 ”.
  • the controller 15 of the present embodiment based on the blue component value shown in FIG. 13B, the luminance value of the blue light emitting diode 13b in the third subfield period, that is, the blue LED luminance value and the pixel.
  • the transmittance for each is determined. Specifically, as shown in FIG. 13D, a value of “80” is determined as the blue LED luminance value in the third subfield period, and each transmittance of the pixels 1 to 8 is determined. .
  • a blue light emission operation is performed. Specifically, for example, in the pixel 1, blue light emission (display) is performed with a blue output luminance value of “80”, that is, luminance of 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the blue output luminance value is also “0”, and blue light is not emitted.
  • the green and red light emitting diodes 13g and 13r are not lit in the third subfield period. That is, as shown in FIG. 13D, the controller 15 of the present embodiment sets the green LED luminance value, the green output luminance value, the red LED luminance value, and the red output luminance value for all the pixels 1 to 8 as “ The value is 0 ”.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the controller 15 determines that all the histogram values of the maximum values of white, yellow, cyan, and magenta are all 0 in the image signal stored in the storage device 4.
  • the power saving priority mode is executed. Thereby, in this embodiment, it is determined whether the CBU suppression mode is operable in the first part of the operation flow. If it is determined that the CBU suppression mode cannot be operated, the power saving priority mode is immediately selected. Since the operation of the CBU suppression mode flow is omitted, unnecessary operations after the determination of the CBU suppression mode can be omitted.
  • FIG. 14 is a diagram for explaining a main configuration of a liquid crystal display device according to the third embodiment of the present invention.
  • the main difference between the present embodiment and the second embodiment is that a mode switching register for switching modes in the liquid crystal display device is provided.
  • symbol is attached
  • the liquid crystal display device 1 of the present embodiment is provided with a mode switching register 16 as mode switching means and a controller 17 connected thereto.
  • the mode switching register 16 is configured to select the CBU suppression mode or the power saving priority mode and instruct the controller 17 in accordance with an instruction from the outside (that is, an instruction from the user).
  • the mode switching register 16 suppresses CBU that causes the light emitting diode 13 of at least one color among the plurality of light emitting diodes 13 to be lit in the three subfield periods.
  • FIG. 15 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG.
  • the controller 17 of this embodiment determines whether or not the mode set by the mode switching register 16 is the CBU suppression mode. When it is determined that the CBU suppression mode is set, the controller 17 executes the process of step S1 as in the first embodiment.
  • step S6 when it is determined in step S6 that the CBU suppression mode is not set, that is, the power saving priority mode is set, the controller 17 executes the conventional FSD process (step S7). That is, the controller 17 performs the same process as that in step S1002 in the second embodiment.
  • the present embodiment can achieve the same operations and effects as those of the second embodiment. Further, in the present embodiment, it is possible to set whether the color braking phenomenon is surely suppressed by the mode switching register (mode switching means) 16 or power saving of the liquid crystal display device 1 is achieved.
  • the display device of the present invention is not limited to this, and information is obtained using light of a light source.
  • the present invention can be applied to various non-light emitting display devices for display.
  • the display device of the present invention can be suitably used for a transflective liquid crystal display device or a projection display device such as a rear projection using the liquid crystal panel as a light valve.
  • display devices using DMD (Digital Micromirror Device) elements, organic EL (electroluminescence) display devices, plasma display panels (PDP: Plasma Display Panel), field emission displays (FED: Field Display, etc.)
  • DMD Digital Micromirror Device
  • organic EL electroluminescence
  • PDP Plasma Display Panel
  • FED Field Display, etc.
  • the present invention can also be applied to other display devices.
  • the light source of the present invention is not limited to this, for example, a cold cathode fluorescent tube.
  • a light emitting device such as a discharge tube such as a hot cathode fluorescent tube, a light emitting element such as an organic EL (Electronic Luminescence) or inorganic EL element, or a PDP (Plasma Display Panel) can be used as a light source.
  • a light-emitting diode as a light source as in the above-described embodiments in that a display device with low power consumption and excellent environmental characteristics can be easily configured.
  • the light emitting diode of the present invention is not limited to the above 3in1 type light emitting diode, and each of R, G, and B uses a single color individual light emitting diode or a white (W) light emitting diode emitting white light.
  • a so-called four-in-one (4in1) type light emitting diode in which four light emitting diodes such as RGBW and GRGB are integrated can be applied.
  • light emitting diodes of colors other than RGBW can be added. In this case, it is necessary to add a color to the pixel configuration of the liquid crystal panel, but a wider range of colors can be reproduced. Specific colors to be added include, for example, yellow and magenta.
  • the case where light emitting diodes of different colors and different colors that can be mixed with white light (for example, RGB) are used is composed of only white light emitting diodes.
  • white light for example, RGB
  • N is There is no limitation as long as information display is performed by dividing into subfield periods of an integer of 3 or more. Specifically, for example, four or more subfield periods added with black may be used, and the present invention is applied to a plurality of continuous subfield periods constituting one frame period (1 TV field period). be able to.
  • the case where the histogram is acquired for each pixel has been described.
  • the present invention is not limited to this, and each histogram of the maximum values of all the mixed colors composed of a combination of a plurality of colors of light sources from the image signal stored in the storage unit, and each of the plurality of colors. What is necessary is just to acquire each histogram of the minimum value for every pixel.
  • a plurality of display areas are set on the display unit (liquid crystal panel), and a plurality of illumination areas into which the light from the light source is incident on the plurality of display areas are provided as backlight units (backlights).
  • the present invention can also be applied to a display device of a local dimming (area active backlight) driving method in which a light source is lit and driven in units of illumination areas.
  • the present invention is useful for a display device that can reliably suppress the color breaking phenomenon regardless of the display image.
  • Liquid crystal display device Liquid crystal panel (display unit) 3 Backlight device (backlight part) 4.
  • Storage device storage unit
  • Controller control unit
  • mode switching register mode switching means 13 Light emitting diode (light source) 13r Red light emitting diode (light source) 13g Green light-emitting diode (light source) 13b Blue light emitting diode (light source)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A liquid crystal display device (1) includes a backlight device (backlight unit) (3) and a liquid crystal panel (display unit) (2) for displaying information and displays information by dividing one frame period into first to third sub-field periods. In the liquid crystal display device (1), a controller (control unit) (6) selects, among light sources (13) having a plurality of colors, a light source color used as a reference for calculating the permeability of each pixel in each of the three sub-field periods on the basis of an image signal stored in a storage device (storage unit) (4), calculates the permeability of each pixel on the basis of the selected color, and determines, among the light sources (13) having the plurality of colors, a light source subjected to a lighting operation and the luminance value of the light source in each of the three sub-field periods.

Description

表示装置Display device
 本発明は、表示装置、特に液晶表示装置などの非発光型の表示装置に関する。 The present invention relates to a display device, particularly a non-light-emitting display device such as a liquid crystal display device.
 近年、例えば液晶表示装置は、在来のブラウン管に比べて薄型、軽量などの特長を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに幅広く利用されている。このような液晶表示装置には、光を発光するバックライト装置と、バックライト装置に設けられた光源からの光に対しシャッターの役割を果たすことで所望画像を表示する液晶パネルとが含まれている。 In recent years, for example, liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes. Such a liquid crystal display device includes a backlight device that emits light, and a liquid crystal panel that displays a desired image by acting as a shutter for light from a light source provided in the backlight device. Yes.
 また、上記のような液晶表示装置には、カラーフィルタが設けられていない液晶パネルに対して、赤色(R)、緑色(G)、及び青色(B)の3色の発光ダイオード(LED)を光源として用い、各色のLEDを順次点滅させることにより、1つのフレーム期間において赤色のみの画像、緑色のみの画像、青色のみの画像を順に表示する駆動方式、いわゆる、フィールドシーケンシャル駆動方式によって、カラー表示を行うことが知られている。 Further, the liquid crystal display device as described above has three colors of light emitting diodes (LEDs) of red (R), green (G), and blue (B) for a liquid crystal panel not provided with a color filter. Color display using a driving method that displays red-only images, green-only images, and blue-only images in sequence in one frame period by sequentially flashing the LEDs of each color as a light source, so-called field sequential driving method Is known to do.
 ところが、上記のような通常のフィールドシーケンシャル駆動方式では、赤色、緑色、及び青色の各色の画像を高速に切り替えてカラー表示を行っていたので、動画表示を行った場合などにおいて、表示画像の色が分離して見えてしまうという、カラーブレーキング(色割れ)現象と呼ばれる問題点を生じることがあった。 However, in the normal field sequential drive system as described above, since the color display is performed by switching the images of red, green, and blue at high speed, the color of the display image is displayed when the moving image is displayed. May cause a problem called color braking (color breakage) phenomenon.
 そこで、従来の液晶表示装置には、例えば下記特許文献1に記載されているように、赤色、緑色、及び青色の発光ダイオードのうち、少なくとも緑色の発光ダイオードを発光させる第1のサブフィールド期間と、赤色及び青色の発光ダイオードのうち、少なくとも赤色の発光ダイオードを発光させる第2のサブフィールド期間と、青色の発光ダイオードを発光させる第3のサブフィールド期間を、1フレーム期間に設定する。さらには、この従来の液晶表示装置では、第1~第3の各サブフィールド期間において、画像信号に応じて各発光ダイオードの発光時間を決定するとともに、決定した発光時間に応じて、液晶パネルへの画像出力信号(指示信号)を生成する。これにより、この従来の液晶表示装置では、カラーブレーキング現象を抑制可能とされていた。 Therefore, in a conventional liquid crystal display device, for example, as described in Patent Document 1 below, a first subfield period in which at least a green light emitting diode among red, green, and blue light emitting diodes emits light is provided. Among the red and blue light emitting diodes, a second subfield period in which at least the red light emitting diode emits light and a third subfield period in which the blue light emitting diode emits light are set as one frame period. Further, in this conventional liquid crystal display device, in each of the first to third subfield periods, the light emission time of each light emitting diode is determined according to the image signal, and to the liquid crystal panel according to the determined light emission time. Image output signal (instruction signal) is generated. Thereby, in this conventional liquid crystal display device, the color breaking phenomenon can be suppressed.
特開2009-134156号公報JP 2009-134156 A
 しかしながら、上記のような従来の液晶表示装置では、色の処理順序が緑色、赤色、及び青色と固定的に決められていたので、外部から入力された画像信号、すなわち表示画像によっては、カラーブレーキング現象を抑制できないことがあった。 However, in the conventional liquid crystal display device as described above, since the color processing order is fixedly determined as green, red, and blue, depending on the image signal input from the outside, that is, the display image, the color brake In some cases, the bending phenomenon could not be suppressed.
 上記の課題を鑑み、本発明は、表示画像に関わらず、カラーブレーキング現象を確実に抑制することができる表示装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a display device that can reliably suppress the color breaking phenomenon regardless of the display image.
 上記の目的を達成するために、本発明にかかる表示装置は、白色光に混色可能な複数色の光源を有するバックライト部と、複数の画素を備えるとともに、前記バックライト部からの照明光を用いて、情報を表示する表示部を備えるとともに、1フレーム期間をN個(Nは、3以上の整数)のサブフィールド期間に分割して情報表示を行う表示装置であって、
 入力された画像信号を記憶する記憶部と、
 前記記憶部に記憶されている画像信号を用いて、前記バックライト部及び前記表示部の駆動制御を行う制御部を備え、
 前記制御部は、前記記憶部に記憶されている画像信号に基づいて、前記N個の各サブフィールド期間において、前記複数色の光源のうち、画素毎の透過率を算出する基準となる光源の色を選択して、選択した色を基に画素毎の透過率を算出するとともに、前記N個の各サブフィールド期間において、前記複数色の光源のうち、点灯動作させる光源及びその輝度値を決定することを特徴とするものである。
In order to achieve the above object, a display device according to the present invention includes a backlight unit having a plurality of color light sources that can be mixed with white light, a plurality of pixels, and illumination light from the backlight unit. And a display device that displays information and displays information by dividing one frame period into N (N is an integer of 3 or more) subfield periods,
A storage unit for storing the input image signal;
A control unit that performs drive control of the backlight unit and the display unit using an image signal stored in the storage unit,
The control unit, based on an image signal stored in the storage unit, of a light source serving as a reference for calculating a transmittance for each pixel among the light sources of the plurality of colors in each of the N subfield periods. The color is selected, the transmittance for each pixel is calculated based on the selected color, and the light source to be turned on and its luminance value are determined among the light sources of the plurality of colors in each of the N subfield periods. It is characterized by doing.
 上記のように構成された表示装置では、制御部が、記憶部に記憶されている画像信号に基づいて、N個の各サブフィールド期間において、複数色の光源のうち、画素毎の透過率を算出する基準となる光源の色を選択する。また、制御部は、選択した色を基に画素毎の透過率を算出するとともに、N個の各サブフィールド期間において、複数色の光源のうち、点灯動作させる光源及びその輝度値を決定する。これにより、上記従来例と異なり、表示画像に関わらず、カラーブレーキング現象を確実に抑制することができる。 In the display device configured as described above, the control unit calculates the transmittance for each pixel of the light sources of a plurality of colors in each of the N subfield periods based on the image signal stored in the storage unit. Select the color of the light source that is the reference for calculation. In addition, the control unit calculates the transmittance for each pixel based on the selected color, and determines the light source to be turned on and the luminance value among the light sources of a plurality of colors in each of the N subfield periods. Thus, unlike the conventional example, the color braking phenomenon can be reliably suppressed regardless of the display image.
 また、上記表示装置において、前記制御部は、前記記憶部に記憶されている画像信号から光源の複数色の組合せで構成される全ての混色の最大値の各ヒストグラム、及び複数色毎の最小値の各ヒストグラムを画素毎に取得し、取得したヒストグラムに基づいて、前記N個の各サブフィールド期間での画素毎の透過率を算出する基準となる色を選択することが好ましい。 Further, in the above display device, the control unit includes each histogram of the maximum values of all the mixed colors constituted by a combination of a plurality of colors of light sources from the image signal stored in the storage unit, and a minimum value for each of the plurality of colors. It is preferable that each of the histograms is acquired for each pixel, and based on the acquired histogram, a reference color for calculating the transmittance for each pixel in each of the N subfield periods is selected.
 この場合、制御部は各サブフィールド期間において、表示する画像での混色化及び輝度の集中を考慮して、上記基準となる色を選択することができ、カラーブレーキング現象をより確実に抑制することができる。 In this case, the control unit can select the reference color in consideration of color mixture and luminance concentration in the displayed image in each subfield period, and more reliably suppress the color breaking phenomenon. be able to.
 また、上記表示装置において、前記制御部が、前記記憶部に記憶されている画像信号から光源の複数色の組合せで構成される全ての混色の最大値の各ヒストグラムを画素毎に取得して、これらの最大値の各ヒストグラムの値が全て0であることを判別した場合は、前記制御部は、前記N個のサブフィールド期間において、1つのサブフィールド期間で1つの色の光源だけが点灯動作するように、複数色の光源を所定の順番で点灯動作させることが好ましい。 Further, in the display device, the control unit acquires, for each pixel, each histogram of the maximum values of all the mixed colors configured by a combination of a plurality of light source colors from the image signal stored in the storage unit, When it is determined that the values of the histograms of these maximum values are all 0, the control unit turns on only the light source of one color in one subfield period in the N subfield periods. As described above, it is preferable to turn on the light sources of a plurality of colors in a predetermined order.
 この場合、1つのサブフィールド期間において、複数色の光源が点灯動作されないので、表示装置の消費電力を低減することができる。 In this case, since the light sources of a plurality of colors are not turned on in one subfield period, the power consumption of the display device can be reduced.
 また、上記表示装置において、前記N個のサブフィールド期間として、第1、第2、及び第3のサブフィールド期間が用いられ、
 前記複数色の光源として、赤色、緑色、及び青色の光をそれぞれ発光する赤色、緑色、及び青色の発光ダイオードが用いられ、
 前記第1のサブフィールド期間において、前記制御部は、前記記憶部に記憶されている画像信号に基づき、赤色、緑色、及び青色のうち、いずれか1つの色を画素毎の透過率を算出する基準となる色として選択し、選択した色の発光ダイオードでの輝度値を決定するとともに、当該第1のサブフィールド期間での画素毎の透過率を算出し、かつ、算出した画素毎の透過率を用いて、赤色、緑色、及び青色のうち、残りの2つの色の各発光ダイオードでの輝度値を決定し、
 前記第2のサブフィールド期間において、前記制御部は、前記記憶部に記憶されている画像信号に基づき、赤色、緑色、及び青色のうち、前記いずれか1つの色を除く、2つの色の一方の色を画素毎の透過率を算出する基準となる色として選択し、選択した色の発光ダイオードでの輝度値を決定するとともに、当該第2のサブフィールド期間での画素毎の透過率を算出し、かつ、算出した画素毎の透過率を用いて、前記2つの色の他方の色の発光ダイオードでの輝度値を決定し、
 前記第3のサブフィールド期間において、前記制御部は、前記記憶部に記憶されている画像信号に基づき、赤色、緑色、及び青色のうち、前記2つの色の他方の色を画素毎の透過率を算出する基準となる色として選択し、選択した色の発光ダイオードでの輝度値を決定するとともに、当該第3のサブフィールド期間での画素毎の透過率を算出してもよい。
In the display device, the first, second, and third subfield periods are used as the N subfield periods.
As the multi-color light sources, red, green, and blue light emitting diodes that emit red, green, and blue light, respectively, are used.
In the first subfield period, the control unit calculates a transmittance for each pixel of any one of red, green, and blue based on the image signal stored in the storage unit. Select the reference color, determine the luminance value of the light emitting diode of the selected color, calculate the transmittance for each pixel in the first subfield period, and calculate the calculated transmittance for each pixel Is used to determine the luminance value of each light emitting diode of the remaining two colors of red, green, and blue,
In the second subfield period, the control unit, based on the image signal stored in the storage unit, removes any one of the two colors of red, green, and blue. Is selected as a reference color for calculating the transmittance of each pixel, the luminance value of the light emitting diode of the selected color is determined, and the transmittance of each pixel in the second subfield period is calculated. And determining the luminance value of the light emitting diode of the other color of the two colors using the calculated transmittance for each pixel,
In the third subfield period, based on the image signal stored in the storage unit, the control unit converts the other color of the two colors among red, green, and blue to the transmittance for each pixel. May be selected as a reference color for calculating and the luminance value in the light emitting diode of the selected color may be determined, and the transmittance for each pixel in the third subfield period may be calculated.
 この場合、各サブフィールド期間において、赤色、緑色、青色の各色光の輝度値及び画素毎の透過率を適切に決定することが可能となる。この結果、これらの各色光の色純度を適切に使用することができ、優れた表示品位を有するカラー表示可能な表示装置を容易に構成することができる。 In this case, it is possible to appropriately determine the luminance value of each color light of red, green, and blue and the transmittance for each pixel in each subfield period. As a result, the color purity of each color light can be used appropriately, and a display device having excellent display quality and capable of color display can be easily configured.
 また、上記表示装置において、前記N個のサブフィールド期間において、前記複数色の光源のうち、少なくとも1つの色の光源を点灯動作させるか、または前記N個のサブフィールド期間において、1つのサブフィールド期間で1つの色の光源だけが点灯動作するように、複数色の光源を所定の順番で点灯動作させるかを切り替えるモード切替手段を備えていることが好ましい。 In the display device, the light source of at least one color among the light sources of the plurality of colors is turned on in the N subfield periods, or one subfield in the N subfield periods. It is preferable to provide a mode switching means for switching whether or not the light sources of a plurality of colors are turned on in a predetermined order so that only one color light source is turned on during the period.
 この場合、モード切替手段によってカラーブレーキング現象を確実に抑制させるのか、または表示装置の省電力化を図るのかを設定することができる。 In this case, it is possible to set whether the color braking phenomenon is surely suppressed by the mode switching means or whether the display device can save power.
 本発明によれば、表示画像に関わらず、カラーブレーキング現象を確実に抑制することができる表示装置を提供することが可能となる。 According to the present invention, it is possible to provide a display device that can reliably suppress the color breaking phenomenon regardless of the display image.
図1は、本発明の第1の実施形態にかかる液晶表示装置の要部構成を説明する図である。FIG. 1 is a diagram for explaining a main configuration of a liquid crystal display device according to a first embodiment of the present invention. 図2は、図1に示した液晶パネルの要部構成を説明する図である。FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. 図3は、図1に示したバックライト装置の要部構成を示す平面図である。FIG. 3 is a plan view showing a main configuration of the backlight device shown in FIG. 図4は、図1に示した液晶表示装置の基本的な動作を示すフローチャートである。FIG. 4 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG. 図5は、図4に示した第1のサブフィールド期間での具体的な動作を示すフローチャートである。FIG. 5 is a flowchart showing a specific operation in the first subfield period shown in FIG. 図6は、図4に示した第2のサブフィールド期間での具体的な動作を示すフローチャートである。FIG. 6 is a flowchart showing a specific operation in the second subfield period shown in FIG. 図7は、図4に示した第3のサブフィールド期間での具体的な動作を示すフローチャートである。FIG. 7 is a flowchart showing a specific operation in the third subfield period shown in FIG. 図8(a)~図8(b)は、図1に示したコントローラでの処理動作の一例を説明する図である。FIG. 8A to FIG. 8B are diagrams for explaining an example of the processing operation in the controller shown in FIG. 図9(a)~図9(d)は、図1に示したコントローラでの処理動作の一例を説明する図である。FIG. 9A to FIG. 9D are diagrams for explaining an example of the processing operation in the controller shown in FIG. 図10(a)~図10(d)は、図1に示したコントローラでの別の処理動作の一例を説明する図である。FIGS. 10A to 10D are diagrams for explaining an example of another processing operation in the controller shown in FIG. 図11は、本発明の第2の実施形態にかかる液晶表示装置の要部構成を説明する図である。FIG. 11 is a diagram for explaining a main configuration of a liquid crystal display device according to the second embodiment of the present invention. 図12は、図11に示した液晶表示装置における、第1のサブフィールド期間での具体的な動作を示すフローチャートである。FIG. 12 is a flowchart showing a specific operation in the first subfield period in the liquid crystal display device shown in FIG. 図13(a)~図13(d)は、図11に示したコントローラでのコンベンショナルFSD処理の処理動作の一例を説明する図である。FIGS. 13A to 13D are diagrams for explaining an example of the processing operation of the conventional FSD process in the controller shown in FIG. 図14は、本発明の第3の実施形態にかかる液晶表示装置の要部構成を説明する図である。FIG. 14 is a diagram for explaining a main configuration of a liquid crystal display device according to the third embodiment of the present invention. 図15は、図14に示した液晶表示装置の基本的な動作を示すフローチャートである。FIG. 15 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG.
 以下、本発明の表示装置の好ましい実施形態について、図面を参照しながら説明する。なお、以下の説明では、本発明を透過型の液晶表示装置に適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Hereinafter, preferred embodiments of the display device of the present invention will be described with reference to the drawings. In the following description, the case where the present invention is applied to a transmissive liquid crystal display device will be described as an example. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる液晶表示装置の要部構成を説明する図である。図1において、本実施形態の液晶表示装置1には、情報を表示する表示部としての液晶パネル2と、液晶パネル2に対して、照明光を照射するバックライト部としてのバックライト装置3とが設けられており、これらの液晶パネル2とバックライト装置3とが透過型の液晶表示装置1として一体化されている。
[First Embodiment]
FIG. 1 is a diagram for explaining a main configuration of a liquid crystal display device according to a first embodiment of the present invention. In FIG. 1, a liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 as a display unit for displaying information, and a backlight device 3 as a backlight unit for irradiating the liquid crystal panel 2 with illumination light. The liquid crystal panel 2 and the backlight device 3 are integrated as a transmissive liquid crystal display device 1.
 また、本実施形態の液晶表示装置1は、外部から入力された画像信号を記憶する記憶装置4と、この記憶装置4に順次接続された演算装置5及び制御部としてのコントローラ6を備えている。また、このコントローラ6には、液晶パネル2の駆動を行うゲートドライバ7及びソースドライバ8と、バックライト装置3の駆動制御を行うバックライト制御装置9とが接続されている。ゲートドライバ7及びソースドライバ8は、コントローラ6からの指示信号(制御信号)に基づいて、液晶パネル2に設けられた後述のソース配線及びゲート配線をそれぞれ駆動するようになっている。 Further, the liquid crystal display device 1 of the present embodiment includes a storage device 4 that stores an image signal input from the outside, an arithmetic device 5 that is sequentially connected to the storage device 4, and a controller 6 that serves as a control unit. . The controller 6 is connected to a gate driver 7 and a source driver 8 that drive the liquid crystal panel 2, and a backlight control device 9 that controls driving of the backlight device 3. The gate driver 7 and the source driver 8 drive a source wiring and a gate wiring, which will be described later, provided on the liquid crystal panel 2 based on an instruction signal (control signal) from the controller 6.
 また、本実施形態の液晶表示装置1では、後に詳述するように、1フレーム期間(1TVフィールド期間)が第1、第2、及び第3のサブフィールド期間に分割されて、情報表示を行うように構成されている。 In the liquid crystal display device 1 of the present embodiment, as will be described in detail later, one frame period (one TV field period) is divided into first, second, and third subfield periods to display information. It is configured as follows.
 ここで、図2及び図3をそれぞれ参照して、液晶パネル2及びバックライト装置3について具体的に説明する。 Here, the liquid crystal panel 2 and the backlight device 3 will be described in detail with reference to FIGS. 2 and 3 respectively.
 図2は、図1に示した液晶パネルの要部構成を説明する図である。図3は、図1に示したバックライト装置の要部構成を示す平面図である。 FIG. 2 is a diagram for explaining a main configuration of the liquid crystal panel shown in FIG. FIG. 3 is a plan view showing a main configuration of the backlight device shown in FIG.
 図2において、液晶パネル2には、上記ゲートドライバ7及びソースドライバ8が接続されている。これらのゲートドライバ7及びソースドライバ8は、液晶パネル2に設けられた複数の画素Pを画素単位に駆動する駆動回路であり、ゲートドライバ7及びソースドライバ8には、複数のゲート線G1~GN(Nは、2以上の整数)及び複数のソース線S1~SM(Mは、2以上の整数)がそれぞれ接続されている。これらのゲート線G1~GN及びソース線S1~SMは、マトリクス状に配列されており、当該マトリクス状に区画された各領域には、上記複数の各画素Pの領域が形成されている。 In FIG. 2, the gate driver 7 and the source driver 8 are connected to the liquid crystal panel 2. The gate driver 7 and the source driver 8 are drive circuits that drive a plurality of pixels P provided in the liquid crystal panel 2 in units of pixels. The gate driver 7 and the source driver 8 include a plurality of gate lines G1 to GN. (N is an integer of 2 or more) and a plurality of source lines S1 to SM (M is an integer of 2 or more) are connected to each other. The gate lines G1 to GN and the source lines S1 to SM are arranged in a matrix, and the regions of the plurality of pixels P are formed in the regions partitioned in the matrix.
 また、この液晶パネル2には、カラーフィルタが設けられておらず、バックライト装置3に設けられた赤緑青(RGB)の発光ダイオードが順次点灯駆動されることにより、各画素Pは、発光ダイオードからの光を変調する光変調を行って、赤色、緑色、及び青色の画素として機能するようになっている。 Further, the liquid crystal panel 2 is not provided with a color filter, and red, green and blue (RGB) light emitting diodes provided in the backlight device 3 are driven to turn on sequentially, so that each pixel P has a light emitting diode. The light is modulated so as to modulate the light from, and functions as red, green, and blue pixels.
 また、各ゲート線G1~GNには、画素P毎に設けられるとともに、例えば薄膜トランジスタ(Thin Film Transistor)を用いたスイッチング素子10のゲートが接続されている。一方、各ソース線S1~SMには、スイッチング素子10のソースが接続されている。また、各スイッチング素子10のドレインには、画素P毎に設けられた画素電極11が接続されている。また、各画素Pでは、共通電極12が液晶パネル2に設けられた液晶層(図示せず)を間に挟んだ状態で画素電極11に対向するよう構成されている。 The gate lines G1 to GN are provided for each pixel P, and connected to the gate of the switching element 10 using, for example, a thin film transistor (ThinThFilm Transistor). On the other hand, the source of the switching element 10 is connected to each of the source lines S1 to SM. In addition, a pixel electrode 11 provided for each pixel P is connected to the drain of each switching element 10. In each pixel P, the common electrode 12 is configured to face the pixel electrode 11 with a liquid crystal layer (not shown) provided on the liquid crystal panel 2 interposed therebetween.
 また、液晶パネル2では、ソースドライバ8に対して、上記コントローラ6から制御信号が入力されるようになっている。そして、ソースドライバ8は、入力した制御信号に応じた電圧信号をソース線S1~SMに対して適宜出力する。また、ゲートドライバ7は、コントローラ6からの制御信号を基にゲート線G1~GNに対して、対応するスイッチング素子10のゲートをオン状態にするゲート信号を順次出力する。これにより、液晶パネル2では、入力された画像信号に対応する入力画像の表示を行うために、画素P毎に透過率が変更され、当該入力画像が表示される。 In the liquid crystal panel 2, a control signal is input from the controller 6 to the source driver 8. Then, the source driver 8 appropriately outputs a voltage signal corresponding to the input control signal to the source lines S1 to SM. The gate driver 7 sequentially outputs gate signals for turning on the gates of the corresponding switching elements 10 to the gate lines G1 to GN based on the control signal from the controller 6. Thereby, in the liquid crystal panel 2, in order to display the input image corresponding to the input image signal, the transmittance is changed for each pixel P, and the input image is displayed.
 また、図3を参照して、バックライト装置3について具体的に説明する。 The backlight device 3 will be specifically described with reference to FIG.
 図3に示すように、バックライト装置3は、光源としての複数の発光ダイオード13と、複数の発光ダイオード13を収容した有底状の筐体14とを備えている。また、バックライト装置3では、図示しない拡散板が筺体14の開口部を塞ぐように設けられており、拡散板を介して液晶パネル2側に平面状の照明光を照射するようになっている。また、バックライト装置3では、図3に例示するように、液晶パネル2の表示面での横方向及び縦方向にそれぞれ平行に設けられる10行及び10列、合計100個の発光ダイオード13が使用されている。 As shown in FIG. 3, the backlight device 3 includes a plurality of light emitting diodes 13 as light sources and a bottomed casing 14 that houses the plurality of light emitting diodes 13. In the backlight device 3, a diffusion plate (not shown) is provided so as to block the opening of the housing 14, and planar illumination light is irradiated to the liquid crystal panel 2 side through the diffusion plate. . Further, in the backlight device 3, as illustrated in FIG. 3, a total of 100 light emitting diodes 13 in 10 rows and 10 columns provided in parallel in the horizontal and vertical directions on the display surface of the liquid crystal panel 2 are used. Has been.
 また、複数の各発光ダイオード13には、例えば赤色(R)、緑色(G)、及び青色(B)の光をそれぞれ発光する赤色、緑色、及び青色の発光ダイオード13r、13g、13bを一体的に構成した、いわゆるスリーインワン(3in1)タイプが使用されている。すなわち、バックライト装置3では、白色光に混色可能な複数色の光源が用いられている。 Further, for example, red, green, and blue light-emitting diodes 13r, 13g, and 13b that emit red (R), green (G), and blue (B) light, respectively, are integrated with each of the plurality of light-emitting diodes 13. The so-called three-in-one (3 in 1) type configured as described above is used. That is, the backlight device 3 uses light sources of a plurality of colors that can be mixed with white light.
 図1に戻って、記憶装置4は、記憶部を構成するものであり、外部から入力された1フレーム分の画像信号を一時的に保持できるように構成されている。演算装置5は、記憶装置4に記憶されている画像信号に対して、所定の画像処理を行うようになっている。すなわち、演算装置5は、記憶装置4に保持されている画像信号を読み出し、読み出した画像信号に対して、γ補正などの出力画質向上のための上記所定の画像処理を行う。その後、演算装置5は、画像処理後の画像信号をコントローラ6に出力する。 Returning to FIG. 1, the storage device 4 constitutes a storage unit, and is configured to temporarily hold an image signal for one frame input from the outside. The arithmetic device 5 performs predetermined image processing on the image signal stored in the storage device 4. That is, the arithmetic device 5 reads the image signal held in the storage device 4 and performs the predetermined image processing for improving the output image quality such as γ correction on the read image signal. Thereafter, the arithmetic device 5 outputs the image signal after the image processing to the controller 6.
 コントローラ6は、記憶装置4に記憶されている画像信号に基づいて、ゲートドライバ7及びソースドライバ8に対して制御信号を出力するとともに、バックライト制御装置9に対しても、発光ダイオード13の制御信号を出力する。また、コントローラ6は、後に詳述するように、記憶装置4に記憶されている画像信号に基づいて、上記3個の各サブフィールド期間において、RGBの発光ダイオード13r、13g、13bのうち、画素毎の透過率を算出する基準となる発光ダイオード13の色を選択して、選択した色を基に画素毎の透過率を算出するとともに、3個の各サブフィールド期間において、RGBの発光ダイオード13r、13g、13bのうち、点灯動作させる光源及びその輝度値を決定するように構成されている。 The controller 6 outputs a control signal to the gate driver 7 and the source driver 8 based on the image signal stored in the storage device 4, and also controls the light emitting diode 13 to the backlight control device 9. Output a signal. Further, as will be described in detail later, the controller 6 selects a pixel among the RGB light emitting diodes 13r, 13g, and 13b in each of the three subfield periods based on the image signal stored in the storage device 4. The color of the light emitting diode 13 serving as a reference for calculating the transmittance for each pixel is selected, the transmittance for each pixel is calculated based on the selected color, and the RGB light emitting diode 13r is used in each of the three subfield periods. , 13g, and 13b, the light source to be turned on and the luminance value thereof are determined.
 バックライト制御装置9は、コントローラ6からの制御信号に基づいて、発光ダイオード13を発光させる。すなわち、バックライト装置3では、各発光ダイオード13r、13g、13bがコントローラ6で求められた輝度値(LED輝度値)となるように、点灯動作が行われる。 The backlight control device 9 causes the light emitting diode 13 to emit light based on a control signal from the controller 6. That is, in the backlight device 3, the lighting operation is performed so that each of the light emitting diodes 13r, 13g, and 13b has the luminance value (LED luminance value) obtained by the controller 6.
 上記のように構成された本実施形態の液晶表示装置1の動作について、図4~図7を用いて具体的に説明する。なお、以下の説明では、コントローラ6での動作について主に説明する。 The operation of the liquid crystal display device 1 of the present embodiment configured as described above will be specifically described with reference to FIGS. In the following description, the operation of the controller 6 will be mainly described.
 図4は、図1に示した液晶表示装置の基本的な動作を示すフローチャートである。図5は、図4に示した第1のサブフィールド期間での具体的な動作を示すフローチャートである。図6は、図4に示した第2のサブフィールド期間での具体的な動作を示すフローチャートである。図7は、図4に示した第3のサブフィールド期間での具体的な動作を示すフローチャートである。 FIG. 4 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG. FIG. 5 is a flowchart showing a specific operation in the first subfield period shown in FIG. FIG. 6 is a flowchart showing a specific operation in the second subfield period shown in FIG. FIG. 7 is a flowchart showing a specific operation in the third subfield period shown in FIG.
 図4のステップS1に示すように、本実施形態のコントローラ6は、まず第1のサブフィールド期間での画素毎の透過率を算出する基準の色を選択する。この基準の色の選択では、コントローラ6は、後に詳述するように、記憶装置4に記憶されている画像信号から発光ダイオード13の複数色の組合せで構成される全ての混色の最大値の各ヒストグラム、及び複数色毎の最小値の各ヒストグラムを画素毎に取得し、取得したヒストグラムを基に行われる(後掲のステップS3においても、同様。)。 As shown in step S1 of FIG. 4, the controller 6 of the present embodiment first selects a reference color for calculating the transmittance for each pixel in the first subfield period. In the selection of the reference color, the controller 6, as will be described in detail later, sets each of the maximum values of all the mixed colors composed of combinations of a plurality of colors of the light emitting diodes 13 from the image signal stored in the storage device 4. The histogram and each histogram of the minimum value for each of the plurality of colors are acquired for each pixel, and the process is performed based on the acquired histogram (the same applies to step S3 described later).
 次に、図4のステップS2に示すように、本実施形態のコントローラ6は、第1のサブフィールド期間での画素毎の透過率と各色のLED輝度値を算出する。 Next, as shown in step S2 of FIG. 4, the controller 6 of this embodiment calculates the transmittance for each pixel and the LED luminance value of each color in the first subfield period.
 続いて、図4のステップS3に示すように、本実施形態のコントローラ6は、第2のサブフィールド期間での画素毎の透過率を算出する基準の色を選択する。 Subsequently, as shown in step S3 of FIG. 4, the controller 6 of the present embodiment selects a reference color for calculating the transmittance for each pixel in the second subfield period.
 次に、図4のステップS4に示すように、本実施形態のコントローラ6は、第2のサブフィールド期間での画素毎の透過率と各色のLED輝度値を算出する。 Next, as shown in step S4 of FIG. 4, the controller 6 of the present embodiment calculates the transmittance for each pixel and the LED luminance value of each color in the second subfield period.
 最後に、図4のステップS5に示すように、本実施形態のコントローラ6は、第3のサブフィールド期間での画素毎の透過率と色のLED輝度値を算出する。 Finally, as shown in step S5 of FIG. 4, the controller 6 of the present embodiment calculates the transmittance and color LED luminance value for each pixel in the third subfield period.
 具体的にいえば、上記ステップS1及びS2においては、図5に示す処理動作が順次行われる。 More specifically, the processing operations shown in FIG. 5 are sequentially performed in steps S1 and S2.
 すなわち、第1のサブフィールド期間での処理動作として、まず図5のステップS100に示すように、本実施形態のコントローラ6は、記憶装置4に記憶されている画像信号から白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラムを画素毎に取得する。 That is, as the processing operation in the first subfield period, first, as shown in step S100 of FIG. 5, the controller 6 of the present embodiment uses white, yellow, and cyan colors from the image signal stored in the storage device 4. , And the histogram of the maximum value of magenta color is acquired for each pixel.
 次に、図5のステップS101に示すように、本実施形態のコントローラ6は、記憶装置4に記憶されている画像信号から赤色、緑色、及び青色の最小値の各ヒストグラムを画素毎に取得する。 Next, as shown in step S <b> 101 of FIG. 5, the controller 6 of the present embodiment obtains each histogram of red, green, and blue minimum values for each pixel from the image signal stored in the storage device 4. .
 続いて、図5のステップS102に示すように、本実施形態のコントローラ6は、取得された最大値の各ヒストグラム中の値が大きく面積(画素数)の広い混色(つまり、白色、黄色、シアン色、及びマゼンダ色)を1つ選択する。また、このとき、本実施形態のコントローラ6は、最大値のヒストグラムで白色と他の混色の面積が近く、かつ、他の混色の面積>白色の面積である場合には、白色を優先させるか他の混色を優先させるかを、当該コントローラ6に設定されたスレッショルド値及び設定フラグなどにより決定するようになっている。また、この説明以外に、例えば白色を常に優先するように設定することもできる。 Subsequently, as shown in step S102 of FIG. 5, the controller 6 of the present embodiment is a mixed color (that is, white, yellow, cyan) having a large value (large number of pixels) in each histogram of the acquired maximum value in each histogram. Color and magenta color). At this time, the controller 6 of the present embodiment gives priority to white when the area of white and other mixed colors is close and the area of other mixed colors> area of white in the maximum histogram. Whether to give priority to other color mixing is determined by a threshold value and a setting flag set in the controller 6. In addition to this description, for example, it may be set so that white is always prioritized.
 次に、図5のステップS103に示すように、本実施形態のコントローラ6は、上記ステップS101で取得された最小値の各ヒストグラム中の赤色、緑色、及び青色のうち、ステップS102で選択された混色を構成する原色で、その値が小さく面積(画素数)の広い原色を1つ選択する。 Next, as shown in step S103 of FIG. 5, the controller 6 of the present embodiment is selected in step S102 from among red, green, and blue in each histogram of the minimum value acquired in step S101. One primary color having a small area and a large area (number of pixels) is selected from the primary colors constituting the mixed color.
 続いて、図5のステップS104に示すように、本実施形態のコントローラ6は、ステップS103で選択された原色を第1のサブフィールド期間での画素毎の透過率を算出する基準の色とする。 Subsequently, as shown in step S104 of FIG. 5, the controller 6 of the present embodiment uses the primary color selected in step S103 as a reference color for calculating the transmittance for each pixel in the first subfield period. .
 次に、図5のステップS105に示すように、本実施形態のコントローラ6は、ステップS103で選択された原色の最大の値を検出する。つまり、コントローラ6は、記憶装置4に記憶されている画像信号において、上記選択された原色の成分値(信号値)のうち、最大の成分値を検出する。 Next, as shown in step S105 of FIG. 5, the controller 6 of the present embodiment detects the maximum value of the primary color selected in step S103. That is, the controller 6 detects the maximum component value among the component values (signal values) of the selected primary color in the image signal stored in the storage device 4.
 続いて、図5のステップS106に示すように、本実施形態のコントローラ6は、ステップS103で選択された原色のLED輝度値を算出する。つまり、コントローラ6は、第1のサブフィールド期間での透過率を最大値(つまり、100%)として、ステップS105で検出された最大の成分値を、ステップS103で選択された原色のLED輝度値とする。 Subsequently, as shown in step S106 of FIG. 5, the controller 6 of the present embodiment calculates the LED luminance value of the primary color selected in step S103. That is, the controller 6 sets the transmittance in the first subfield period to the maximum value (that is, 100%), and uses the maximum component value detected in step S105 as the LED luminance value of the primary color selected in step S103. And
 次に、図5のステップS107に示すように、本実施形態のコントローラ6は、画素毎の透過率を算出する。つまり、コントローラ6は、記憶装置4に記憶されている画像信号において、上記選択された原色での画素毎の成分値を、ステップS106で算出されたLED輝度値にて割ることによって、画素毎の透過率を算出する。 Next, as shown in step S <b> 107 of FIG. 5, the controller 6 of this embodiment calculates the transmittance for each pixel. That is, in the image signal stored in the storage device 4, the controller 6 divides the component value for each pixel in the selected primary color by the LED luminance value calculated in step S <b> 106, thereby Calculate the transmittance.
 続いて、図5のステップS108に示すように、本実施形態のコントローラ6は、ステップS107で算出された画素毎の透過率を用いて、ステップS103で選択された原色以外の2種類の各原色について画素毎のLED輝度値を算出する。つまり、コントローラ6は、記憶装置4に記憶されている画像信号において、上記原色以外の2種類の各原色での画素毎の成分値を、ステップS107で算出された対応する画素の透過率にて割ることによって、各原色での画素毎のLED輝度値を算出する。 Subsequently, as shown in step S108 of FIG. 5, the controller 6 of the present embodiment uses the transmittance for each pixel calculated in step S107 to provide each of the two primary colors other than the primary color selected in step S103. LED brightness value for each pixel is calculated. That is, in the image signal stored in the storage device 4, the controller 6 calculates the component value for each pixel in each of the two primary colors other than the primary color as the transmittance of the corresponding pixel calculated in step S <b> 107. By dividing, the LED luminance value for each pixel in each primary color is calculated.
 但し、このステップS108を行うとき、画素の透過率が“0”であるときは、LED輝度値を無限大の値とする。これにより、透過率が“0”の画素は、後続のステップS109でのLED輝度値の決定処理から除外される。また、このステップS108を行うとき、上記ステップS102で選択された混色が白色以外の色(つまり、黄色、シアン色、及びマゼンダ色のいずれかの色)であるときは、その白色以外の混色を構成しない原色の発光ダイオード13は、第1のサブフィールド期間において、点灯動作をさせない。つまり、コントローラ6は、白色以外の混色を構成しない原色での画素毎のLED輝度値を“0”とする。 However, when this step S108 is performed, if the transmittance of the pixel is “0”, the LED luminance value is set to an infinite value. As a result, the pixel having the transmittance of “0” is excluded from the determination process of the LED luminance value in the subsequent step S109. When this step S108 is performed, if the color mixture selected in step S102 is a color other than white (that is, any one of yellow, cyan, and magenta), the color mixture other than white is selected. The primary color light emitting diodes 13 that are not configured are not lit in the first subfield period. That is, the controller 6 sets the LED luminance value for each pixel in the primary colors that do not constitute a mixed color other than white to “0”.
 次に、図5のステップS109に示すように、本実施形態のコントローラ6は、上記2種類の各原色において、ステップS108で算出されたLED輝度値の最小値を、対応する原色でのLED輝度値とする。 Next, as shown in step S109 of FIG. 5, the controller 6 of the present embodiment uses the minimum value of the LED luminance value calculated in step S108 for each of the two types of primary colors as the LED luminance in the corresponding primary color. Value.
 また、上記ステップS3及びS4においては、図6に示す処理動作が順次行われる。 Further, in steps S3 and S4, the processing operations shown in FIG. 6 are sequentially performed.
 すなわち、第2のサブフィールド期間での処理動作として、まず図6のステップS200に示すように、本実施形態のコントローラ6は、ステップS103で選択された原色以外の2種類の各原色において、画像信号の成分値から第1のサブフィールド期間にて表示される出力輝度値を引き、第2のサブフィールド期間での成分値とする。つまり、コントローラ6は、記憶装置4に記憶されている画像信号において、上記2種類の各原色での画素毎の成分値から、ステップS107で算出された対応する画素の透過率とステップS109で定められた対応する原色でのLED輝度値とを乗算することにて求められる、第1のサブフィールド期間での出力輝度値を引くことにより、第2のサブフィールド期間での各原色の成分値を算出する。 That is, as the processing operation in the second subfield period, first, as shown in step S200 of FIG. 6, the controller 6 of the present embodiment performs image processing for each of the two primary colors other than the primary color selected in step S103. The output luminance value displayed in the first subfield period is subtracted from the component value of the signal to obtain the component value in the second subfield period. That is, in the image signal stored in the storage device 4, the controller 6 determines in step S109 the transmittance of the corresponding pixel calculated in step S107 from the component values for each pixel in the two primary colors. By subtracting the output luminance value in the first subfield period, which is obtained by multiplying the LED luminance value in the corresponding primary color, the component value of each primary color in the second subfield period is obtained. calculate.
 次に、図6のステップS201に示すように、本実施形態のコントローラ6は、ステップS200で算出された2種類の原色の最小値の各ヒストグラムを画素毎に取得する。 Next, as shown in step S201 of FIG. 6, the controller 6 of the present embodiment acquires each histogram of the minimum values of the two primary colors calculated in step S200 for each pixel.
 続いて、図6のステップS202に示すように、本実施形態のコントローラ6は、上記ステップS201で取得された最小値の各ヒストグラム中で、その値が小さく面積(画素数)の広い原色を1つ選択する。 Subsequently, as shown in step S202 of FIG. 6, the controller 6 according to the present embodiment selects a primary color having a small value and a wide area (number of pixels) in each histogram of the minimum values acquired in step S201. Select one.
 次に、図6のステップS203に示すように、本実施形態のコントローラ6は、ステップS202で選択された原色を第2のサブフィールド期間での画素毎の透過率を算出する基準の色とする。 Next, as shown in step S <b> 203 of FIG. 6, the controller 6 of the present embodiment uses the primary color selected in step S <b> 202 as a reference color for calculating the transmittance for each pixel in the second subfield period. .
 続いて、図6のステップS204に示すように、本実施形態のコントローラ6は、ステップS202で選択された原色の最大の値を検出する。つまり、コントローラ6は、ステップS200で算出された第2のサブフィールド期間での対応する原色の成分値のうち、最大の成分値を検出する。 Subsequently, as shown in step S204 of FIG. 6, the controller 6 of the present embodiment detects the maximum value of the primary colors selected in step S202. That is, the controller 6 detects the maximum component value among the corresponding primary color component values in the second subfield period calculated in step S200.
 次に、図6のステップS205に示すように、本実施形態のコントローラ6は、ステップS202で選択された原色のLED輝度値を算出する。つまり、コントローラ6は、第2のサブフィールド期間での透過率を最大値(つまり、100%)として、ステップS204で検出された最大の成分値を、ステップS202で選択された原色のLED輝度値とする。 Next, as shown in step S205 of FIG. 6, the controller 6 of the present embodiment calculates the LED luminance value of the primary color selected in step S202. That is, the controller 6 sets the transmittance in the second subfield period to the maximum value (that is, 100%), and uses the maximum component value detected in step S204 as the LED luminance value of the primary color selected in step S202. And
 続いて、図6のステップS206に示すように、本実施形態のコントローラ6は、画素毎の透過率を算出する。つまり、コントローラ6は、ステップS200で算出された第2のサブフィールド期間での対応する原色の画素毎の成分値を、ステップS205で算出されたLED輝度値にて割ることによって、画素毎の透過率を算出する。 Subsequently, as shown in step S <b> 206 of FIG. 6, the controller 6 of the present embodiment calculates the transmittance for each pixel. That is, the controller 6 divides the component value for each pixel of the corresponding primary color in the second subfield period calculated in step S200 by the LED luminance value calculated in step S205, thereby transmitting each pixel. Calculate the rate.
 次に、図6のステップS207に示すように、本実施形態のコントローラ6は、ステップS206で算出された画素毎の透過率を用いて、ステップS202で選択された原色以外の原色について画素毎のLED輝度値を算出する。つまり、コントローラ6は、記憶装置4に記憶されている画像信号において、上記原色以外の原色での画素毎の成分値を、ステップS206で算出された対応する画素の透過率にて割ることによって、当該原色での画素毎のLED輝度値を算出する。 Next, as shown in step S207 of FIG. 6, the controller 6 of the present embodiment uses the transmissivity for each pixel calculated in step S206 for each primary color other than the primary color selected in step S202. The LED brightness value is calculated. That is, in the image signal stored in the storage device 4, the controller 6 divides the component value for each pixel in a primary color other than the primary color by the transmittance of the corresponding pixel calculated in step S206. The LED luminance value for each pixel in the primary color is calculated.
 但し、このステップS207を行うとき、上記ステップS108と同様に、画素の透過率が“0”であるときは、LED輝度値を無限大の値とする。これにより、透過率が“0”の画素は、後続のステップS208でのLED輝度値の決定処理から除外される。 However, when this step S207 is performed, the LED luminance value is set to an infinite value when the transmittance of the pixel is “0”, as in step S108. As a result, a pixel having a transmittance of “0” is excluded from the LED luminance value determination process in the subsequent step S208.
 続いて、図6のステップS208に示すように、本実施形態のコントローラ6は、上記原色以外の原色において、ステップS207で算出されたLED輝度値の最小値を、当該原色でのLED輝度値とする。 Subsequently, as shown in step S208 of FIG. 6, the controller 6 of the present embodiment uses the minimum value of the LED luminance value calculated in step S207 for the primary colors other than the primary colors as the LED luminance value of the primary color. To do.
 また、上記ステップS5においては、図7に示す処理動作が順次行われる。 In step S5, the processing operations shown in FIG. 7 are sequentially performed.
 すなわち、第3のサブフィールド期間での処理動作として、まず図7のステップS300に示すように、本実施形態のコントローラ6は、ステップS202で選択された原色以外の残りの原色において、画像信号の成分値から第1及び第2のサブフィールド期間にて表示される出力輝度値を引き、第3のサブフィールド期間での成分値とする。つまり、コントローラ6は、記憶装置4に記憶されている画像信号において、上記残りの原色での画素毎の成分値から、ステップS107で算出された対応する画素の透過率とステップS109で定められた当該原色でのLED輝度値とを乗算することにて求められる、第1のサブフィールド期間での出力輝度値と、ステップS206で算出された対応する画素の透過率とステップS208で定められた当該原色でのLED輝度値とを乗算することにて求められる、第2のサブフィールド期間での出力輝度値とを引くことにより、第3のサブフィールド期間での当該原色の成分値を算出する。 That is, as a processing operation in the third subfield period, first, as shown in step S300 of FIG. 7, the controller 6 of the present embodiment uses the remaining primary colors other than the primary color selected in step S202. The output luminance value displayed in the first and second subfield periods is subtracted from the component value to obtain the component value in the third subfield period. That is, in the image signal stored in the storage device 4, the controller 6 determines the corresponding pixel transmittance calculated in step S107 from the component values for each pixel in the remaining primary colors in step S109. The output luminance value in the first subfield period, which is obtained by multiplying the LED luminance value in the primary color, the transmittance of the corresponding pixel calculated in step S206, and the relevant value determined in step S208 The component value of the primary color in the third subfield period is calculated by subtracting the output brightness value in the second subfield period, which is obtained by multiplying the LED brightness value in the primary color.
 続いて、図7のステップS301に示すように、本実施形態のコントローラ6は、上記残りの原色の最大の値を検出する。つまり、コントローラ6は、ステップS300で算出された第3のサブフィールド期間での当該原色の成分値のうち、最大の成分値を検出する。 Subsequently, as shown in step S301 in FIG. 7, the controller 6 of the present embodiment detects the maximum value of the remaining primary colors. That is, the controller 6 detects the maximum component value among the component values of the primary color in the third subfield period calculated in step S300.
 次に、図7のステップS302に示すように、本実施形態のコントローラ6は、上記残りの原色のLED輝度値を算出する。つまり、コントローラ6は、第3のサブフィールド期間での透過率を最大値(つまり、100%)として、ステップS301で検出された最大の成分値を、当該原色のLED輝度値とする。 Next, as shown in step S302 of FIG. 7, the controller 6 of the present embodiment calculates the LED brightness values of the remaining primary colors. That is, the controller 6 sets the transmittance in the third subfield period to the maximum value (that is, 100%), and sets the maximum component value detected in step S301 as the LED luminance value of the primary color.
 続いて、図7のステップS303に示すように、本実施形態のコントローラ6は、画素毎の透過率を算出する。つまり、コントローラ6は、ステップS300で算出された第3のサブフィールド期間での上記残りの原色の画素毎の成分値を、ステップS302で算出されたLED輝度値にて割ることによって、画素毎の透過率を算出する。 Subsequently, as shown in step S <b> 303 of FIG. 7, the controller 6 of the present embodiment calculates the transmittance for each pixel. That is, the controller 6 divides the component value for each pixel of the remaining primary color in the third subfield period calculated in step S300 by the LED luminance value calculated in step S302, so that Calculate the transmittance.
 ここで、上記図5~図7に示した処理動作について、図8~図10を参照して具体的に説明する。 Here, the processing operation shown in FIGS. 5 to 7 will be specifically described with reference to FIGS.
 図8(a)~図8(b)は、図1に示したコントローラでの処理動作の一例を説明する図である。図9(a)~図9(d)は、図1に示したコントローラでの処理動作の一例を説明する図である。図10(a)~図10(d)は、図1に示したコントローラでの別の処理動作の一例を説明する図である。 FIG. 8A to FIG. 8B are diagrams for explaining an example of the processing operation in the controller shown in FIG. FIG. 9A to FIG. 9D are diagrams for explaining an example of the processing operation in the controller shown in FIG. FIGS. 10A to 10D are diagrams for explaining an example of another processing operation in the controller shown in FIG.
 以下の説明では、図8(a)に例示するように、直線上に並べられた8個の画素に対する処理動作について説明する。 In the following description, as illustrated in FIG. 8A, processing operations for eight pixels arranged on a straight line will be described.
 また、以下の説明では、記憶装置4に記憶されている画像信号において、各画素の赤色成分値、緑色成分値、及び青色成分値がそれぞれ図8(a)に例示する値である場合について説明する。具体的には、例えば画素1では、赤色成分値、緑色成分値、及び青色成分値の全ての値が“80”であり、この画素1では、最大輝度の80%の輝度で白色の発光(表示)を行うことが求められている。また、例えば画素7では、赤色成分値、緑色成分値、及び青色成分値がそれぞれ“0”、“80”、及び“”0“であり、この画素7では、最大輝度の80%の輝度で緑色の発光(表示)を行うことが求められている。 In the following description, a case where the red component value, the green component value, and the blue component value of each pixel are values illustrated in FIG. 8A in the image signal stored in the storage device 4 will be described. To do. Specifically, for example, in the pixel 1, all values of the red component value, the green component value, and the blue component value are “80”, and in this pixel 1, white light emission with a luminance of 80% of the maximum luminance ( Display). For example, in the pixel 7, the red component value, the green component value, and the blue component value are “0”, “80”, and “” 0 ”, respectively, and in this pixel 7, the luminance is 80% of the maximum luminance. It is required to emit green light (display).
 本実施形態のコントローラ6が、図5のステップS100及びS101の処理動作を行うことにより、図8(a)に示した画像信号から図8(b)に示すヒストグラムが取得される。つまり、白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラムが画素毎に取得された後、赤色、緑色、及び青色の最小値の各ヒストグラムが画素毎に取得される。 The controller 6 of the present embodiment performs the processing operations of steps S100 and S101 of FIG. 5, whereby the histogram shown in FIG. 8B is acquired from the image signal shown in FIG. That is, after the histograms of the maximum values of white, yellow, cyan, and magenta are acquired for each pixel, the histograms of the minimum values of red, green, and blue are acquired for each pixel.
 続いて、本実施形態のコントローラ6は、図5のステップS102の処理動作を行う。このとき、コントローラ6が、予め設定された設定フラグに従って、白色を選択した場合について説明する。この場合、コントローラ6は、白色を構成する原色として赤色、緑色、及び青色を選択するとともに、図8(b)に示した赤色最小値、緑色最小値、及び青色最小値から、面積(画素数)の広い青色を第1のサブフィールド期間での画素毎の透過率を算出する基準の色とする。 Subsequently, the controller 6 of the present embodiment performs the processing operation of step S102 in FIG. At this time, a case where the controller 6 selects white according to a preset setting flag will be described. In this case, the controller 6 selects red, green, and blue as the primary colors constituting white, and calculates the area (number of pixels) from the red minimum value, green minimum value, and blue minimum value shown in FIG. ) Is a reference color for calculating the transmittance of each pixel in the first subfield period.
 そして、本実施形態のコントローラ6が図5のステップS105~S107の処理動作を行うことにより、第1のサブフィールド期間での青色の発光ダイオード13bの輝度値、つまり青色LED輝度値及び画素毎の透過率が決定される。具体的には、図9(a)に示すように、第1のサブフィールド期間での青色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Then, the controller 6 according to the present embodiment performs the processing operation of steps S105 to S107 in FIG. The transmittance is determined. Specifically, as shown in FIG. 9A, a value of “80” is determined as the blue LED luminance value in the first subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第1のサブフィールド期間での実際の表示動作においては、各画素1~8は同図9(a)に青色出力輝度値(=青色LED輝度値×透過率/100)にて示す値で青色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の青色出力輝度値、すなわち最大輝度の80%の輝度で青色の発光(表示)が行われる。また、例えば画素5では、透過率の値が“0”であるので、青色出力輝度値も“0”となって青色が発光されない。 Further, in the actual display operation in the first subfield period, each of the pixels 1 to 8 has a blue output luminance value (= blue LED luminance value × transmittance / 100) shown in FIG. A blue light emission operation (display operation) is performed. Specifically, for example, in the pixel 1, blue light emission (display) is performed with a blue output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 5, since the transmittance value is “0”, the blue output luminance value is also “0”, and blue light is not emitted.
 続いて、本実施形態のコントローラ6が図5のステップS108~S109の処理動作を行うことにより、第1のサブフィールド期間での緑色及び赤色の発光ダイオード13g、13rの各輝度値、つまり緑色LED輝度値及び赤色LED輝度値が決定される。具体的には、図9(a)に示すように、第1のサブフィールド期間での緑色LED輝度値及び赤色LED輝度値として“80”の値が定められる。 Subsequently, the controller 6 according to the present embodiment performs the processing operations of steps S108 to S109 in FIG. 5, whereby the luminance values of the green and red light emitting diodes 13g and 13r in the first subfield period, that is, the green LED. A luminance value and a red LED luminance value are determined. Specifically, as shown in FIG. 9A, a value of “80” is determined as the green LED luminance value and the red LED luminance value in the first subfield period.
 また、第1のサブフィールド期間での実際の表示動作においては、上記青色の発光動作と同時に、各画素1~8は同図9(a)に緑色出力輝度値(=緑色LED輝度値×透過率/100)にて示す値で緑色の発光動作(表示動作)を行うとともに、赤色出力輝度値(=赤色LED輝度値×透過率/100)にて示す値で赤色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の緑色出力輝度値、すなわち最大輝度の80%の輝度で緑色の発光(表示)が行われる。また、例えば画素5では、透過率の値が“0”であるので、緑色出力輝度値も“0”となって緑色が発光されない。同様に、例えば画素1では、“80”の赤色出力輝度値、すなわち最大輝度の80%の輝度で赤色の発光(表示)が行われる。また、例えば画素5では、透過率の値が“0”であるので、赤色出力輝度値も“0”となって赤色が発光されない。 Further, in the actual display operation in the first subfield period, simultaneously with the blue light emission operation, each of the pixels 1 to 8 has a green output luminance value (= green LED luminance value × transmission in FIG. 9A). The green light emission operation (display operation) is performed at a value indicated by (rate / 100), and the red light emission operation (display operation) is indicated by a red output luminance value (= red LED luminance value × transmittance / 100). I do. Specifically, for example, in the pixel 1, green light emission (display) is performed with a green output luminance value of “80”, that is, a luminance of 80% of the maximum luminance. For example, in the pixel 5, since the transmittance value is “0”, the green output luminance value is also “0” and green light is not emitted. Similarly, for example, the pixel 1 emits red light (display) with a red output luminance value of “80”, that is, 80% of the maximum luminance. For example, in the pixel 5, since the transmittance value is “0”, the red output luminance value is also “0” and red light is not emitted.
 次に、本実施形態のコントローラ6が図6のステップS200の処理動作を行うことにより、図9(b)に示すように、第2のサブフィールド期間での成分値が求められる。すなわち、コントローラ6は、画素毎に、図8(a)に示した赤色成分値及び緑色成分値から図9(a)に示した赤色出力輝度値及び緑色出力輝度値をそれぞれ引くことにより、第2のサブフィールド期間での赤色成分値及び緑色成分値が算出される。なお、画素1~8の各青色成分値は、“0”の値である。すなわち、青色が第1のサブフィールド期間での基準の色とされて、当該第1のサブフィールド期間において、全ての画素1~8で画像信号に応じた発光動作が行われるために、これらの画素1~8の各青色成分値は、“0”の値である。 Next, when the controller 6 of the present embodiment performs the processing operation of step S200 in FIG. 6, the component values in the second subfield period are obtained as shown in FIG. 9B. That is, the controller 6 subtracts the red output luminance value and the green output luminance value shown in FIG. 9A from the red component value and the green component value shown in FIG. The red component value and the green component value in the two subfield periods are calculated. The blue component values of the pixels 1 to 8 are “0” values. That is, blue is used as a reference color in the first subfield period, and in each of the pixels 1 to 8 in the first subfield period, the light emission operation according to the image signal is performed. Each blue component value of the pixels 1 to 8 is a value of “0”.
 続いて、本実施形態のコントローラ6が図6のステップS202~S203の処理動作を行うことにより、第2のサブフィールド期間での画素毎の透過率を算出する基準の色が赤色に決定される。つまり、コントローラ6は、図9(b)に示す赤色成分値及び緑色成分値のうち、最小値(つまり、“0”の値)の画素数の多い赤色成分値を見出して、赤色を第2のサブフィールド期間での画素毎の透過率を算出する基準の色とする。 Subsequently, when the controller 6 of the present embodiment performs the processing operations of steps S202 to S203 in FIG. 6, the reference color for calculating the transmittance for each pixel in the second subfield period is determined to be red. . That is, the controller 6 finds a red component value having a large number of pixels of the minimum value (that is, a value of “0”) from among the red component value and the green component value shown in FIG. The reference color for calculating the transmittance for each pixel in the sub-field period is used.
 次に、本実施形態のコントローラ6が図6のステップS204~S206の処理動作を行うことにより、第2のサブフィールド期間での赤色の発光ダイオード13rの輝度値、つまり赤色LED輝度値及び画素毎の透過率が決定される。具体的には、図9(c)に示すように、第2のサブフィールド期間での赤色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Next, the controller 6 of the present embodiment performs the processing operations of steps S204 to S206 in FIG. 6, so that the luminance value of the red light emitting diode 13r in the second subfield period, that is, the red LED luminance value and each pixel. Is determined. Specifically, as shown in FIG. 9C, a value of “80” is determined as the red LED luminance value in the second subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第2のサブフィールド期間での実際の表示動作においては、各画素1~8は同図9(c)に赤色出力輝度値(=赤色LED輝度値×透過率/100)にて示す値で赤色の発光動作(表示動作)を行う。具体的には、例えば画素5では、“80”の赤色出力輝度値、すなわち最大輝度の80%の輝度で赤色の発光(表示)が行われる。また、例えば画素7では、透過率の値が“0”であるので、赤色出力輝度値も“0”となって赤色が発光されない。 In the actual display operation in the second subfield period, each of the pixels 1 to 8 has a value indicated by a red output luminance value (= red LED luminance value × transmittance / 100) in FIG. 9C. The red light emission operation (display operation) is performed with. Specifically, for example, the pixel 5 emits red light (display) with a red output luminance value of “80”, that is, 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the red output luminance value is also “0”, and red light is not emitted.
 続いて、本実施形態のコントローラ6が図6のステップS207~S208の処理動作を行うことにより、第2のサブフィールド期間での緑色の発光ダイオード13gの輝度値、つまり緑色LED輝度値が決定される。具体的には、図9(c)に示すように、第2のサブフィールド期間での緑色LED輝度値として“80”の値が定められる。 Subsequently, the controller 6 according to the present embodiment performs the processing operations of steps S207 to S208 in FIG. 6 to determine the luminance value of the green light emitting diode 13g in the second subfield period, that is, the green LED luminance value. The Specifically, as shown in FIG. 9C, a value of “80” is determined as the green LED luminance value in the second subfield period.
 また、第2のサブフィールド期間での実際の表示動作においては、上記赤色の発光動作と同時に、各画素1~8は同図9(c)に緑色出力輝度値(=緑色LED輝度値×透過率/100)にて示す値で緑色の発光動作(表示動作)を行う。なお、第2のサブフィールド期間では、図9(b)に示したように、全ての画素1~8の各青色成分値は“0”であるので、青色LED輝度値及び青色出力輝度値は、図9(c)に示すように、全ての画素1~8において、“0”の値となる。すなわち、第2のサブフィールド期間では、青色の発光動作(表示動作)は行われない。 Further, in the actual display operation in the second subfield period, simultaneously with the red light emission operation, each of the pixels 1 to 8 has a green output luminance value (= green LED luminance value × transmission in FIG. 9C). The green light emission operation (display operation) is performed at a value indicated by (rate / 100). In the second subfield period, as shown in FIG. 9B, since the blue component values of all the pixels 1 to 8 are “0”, the blue LED luminance value and the blue output luminance value are As shown in FIG. 9C, all the pixels 1 to 8 have a value of “0”. That is, the blue light emission operation (display operation) is not performed in the second subfield period.
 次に、本実施形態のコントローラ6が図7のステップS300~S303の処理動作を行うことにより、第3のサブフィールド期間での緑色の発光ダイオード13gの輝度値、つまり緑色LED輝度値及び画素毎の透過率が決定される。具体的には、図9(d)に示すように、第3のサブフィールド期間での緑色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Next, the controller 6 according to the present embodiment performs the processing operations of steps S300 to S303 in FIG. 7, so that the luminance value of the green light emitting diode 13g in the third subfield period, that is, the green LED luminance value and each pixel. Is determined. Specifically, as shown in FIG. 9D, a value of “80” is determined as the green LED luminance value in the third subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第3のサブフィールド期間での実際の表示動作においては、各画素1~8は同図9(d)に緑色出力輝度値(=緑色LED輝度値×透過率/100)にて示す値で緑色の発光動作(表示動作)を行う。具体的には、例えば画素7では、“80”の緑色出力輝度値、すなわち最大輝度の80%の輝度で緑色の発光(表示)が行われる。また、例えば画素1では、透過率の値が“0”であるので、緑色出力輝度値も“0”となって緑色が発光されない。なお、第3のサブフィールド期間では、全ての画素1~8の各青色成分値及び各赤色成分値は“0”であるので、青色LED輝度値と青色出力輝度値及び赤色LED輝度値と赤色出力輝度値は、図9(d)に示すように、全ての画素1~8において、“0”の値となる。すなわち、第3のサブフィールド期間では、青色及び赤色の発光動作(表示動作)は行われない。 Further, in the actual display operation in the third subfield period, each of the pixels 1 to 8 has a value indicated by a green output luminance value (= green LED luminance value × transmittance / 100) in FIG. 9D. The green light emission operation (display operation) is performed with. Specifically, for example, the pixel 7 emits green light (display) with a green output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 1, since the transmittance value is “0”, the green output luminance value is also “0”, and green light is not emitted. In the third subfield period, the blue component value and the red component value of all the pixels 1 to 8 are “0”, so the blue LED luminance value, the blue output luminance value, the red LED luminance value, and the red color. As shown in FIG. 9D, the output luminance value is “0” in all the pixels 1 to 8. That is, the blue and red light emission operations (display operations) are not performed in the third subfield period.
 また、本実施形態のコントローラ6が、図5のステップS102の処理動作を行うときに、コントローラ6が、予め設定された設定フラグに従って、混色(つまり、白色、黄色、シアン色、及びマゼンダ色)のうち、図8(b)に示すように、面積(画素数)の広い黄色を選択した場合について説明する。この場合、コントローラ6は、黄色を構成する原色として赤色及び緑色を選択するとともに、図8(b)に示した赤色最小値及び緑色最小値から、面積(画素数)の広い赤色を第1のサブフィールド期間での画素毎の透過率を算出する基準の色とする。また、コントローラ6は、第1のサブフィールド期間では、黄色を構成していない青色については、その発光動作(表示動作)を行わない。 Further, when the controller 6 of the present embodiment performs the processing operation of step S102 of FIG. 5, the controller 6 performs color mixing (that is, white, yellow, cyan, and magenta) according to a preset setting flag. Of these, as shown in FIG. 8B, a case where yellow having a large area (number of pixels) is selected will be described. In this case, the controller 6 selects red and green as the primary colors constituting yellow, and the red having a wide area (number of pixels) from the red minimum value and the green minimum value shown in FIG. A reference color for calculating the transmittance of each pixel in the subfield period is used. Further, the controller 6 does not perform the light emission operation (display operation) for blue that does not constitute yellow in the first subfield period.
 そして、本実施形態のコントローラ6が図5のステップS105~S107の処理動作を行うことにより、第1のサブフィールド期間での赤色の発光ダイオード13rの輝度値、つまり赤色LED輝度値及び画素毎の透過率が決定される。具体的には、図10(a)に示すように、第1のサブフィールド期間での赤色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Then, the controller 6 according to the present embodiment performs the processing operation of steps S105 to S107 in FIG. 5, whereby the luminance value of the red light emitting diode 13r in the first subfield period, that is, the red LED luminance value and the pixel-by-pixel value. The transmittance is determined. Specifically, as shown in FIG. 10A, a value of “80” is determined as the red LED luminance value in the first subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第1のサブフィールド期間での実際の表示動作においては、各画素1~8は同図10(a)に赤色出力輝度値(=赤色LED輝度値×透過率/100)にて示す値で赤色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の赤色出力輝度値、すなわち最大輝度の80%の輝度で赤色の発光(表示)が行われる。また、例えば画素7では、透過率の値が“0”であるので、赤色出力輝度値も“0”となって赤色が発光されない。 In the actual display operation in the first subfield period, each of the pixels 1 to 8 has a value indicated by a red output luminance value (= red LED luminance value × transmittance / 100) in FIG. The red light emission operation (display operation) is performed with. Specifically, for example, in the pixel 1, red light emission (display) is performed with a red output luminance value of “80”, that is, luminance of 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the red output luminance value is also “0”, and red light is not emitted.
 続いて、本実施形態のコントローラ6が図5のステップS108~S109の処理動作を行うことにより、第1のサブフィールド期間での緑色の発光ダイオード13gの輝度値、つまり緑色LED輝度値が決定される。具体的には、図10(a)に示すように、第1のサブフィールド期間での緑色LED輝度値として“80”の値が定められる。 Subsequently, when the controller 6 of the present embodiment performs the processing operation of steps S108 to S109 in FIG. 5, the luminance value of the green light emitting diode 13g in the first subfield period, that is, the green LED luminance value is determined. The Specifically, as shown in FIG. 10A, a value of “80” is determined as the green LED luminance value in the first subfield period.
 また、第1のサブフィールド期間での実際の表示動作においては、上記赤色の発光動作と同時に、各画素1~8は同図10(a)に緑色出力輝度値(=緑色LED輝度値×透過率/100)にて示す値で緑色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の緑色出力輝度値、すなわち最大輝度の80%の輝度で緑色の発光(表示)が行われる。また、例えば画素7では、透過率の値が“0”であるので、緑色出力輝度値も“0”となって緑色が発光されない。また、この第1のサブフィールド期間では、青色の発光動作(表示動作)を行わないので、図10(a)に示すように、青色LED輝度値及び青色出力輝度値は、全ての画素1~8において、“0”の値となる。 Further, in the actual display operation in the first subfield period, simultaneously with the red light emission operation, each of the pixels 1 to 8 has a green output luminance value (= green LED luminance value × transmission in FIG. 10A). The green light emission operation (display operation) is performed at a value indicated by (rate / 100). Specifically, for example, in the pixel 1, green light emission (display) is performed with a green output luminance value of “80”, that is, a luminance of 80% of the maximum luminance. For example, in the pixel 7, since the transmittance value is “0”, the green output luminance value is also “0”, and green light is not emitted. Further, since the blue light emission operation (display operation) is not performed in the first subfield period, as shown in FIG. 10A, the blue LED luminance value and the blue output luminance value are the same for all the pixels 1 to 8, the value is “0”.
 次に、本実施形態のコントローラ6が図6のステップS200の処理動作を行うことにより、図10(b)に示すように、第2のサブフィールド期間での成分値が求められる。すなわち、コントローラ6は、画素毎に、図8(a)に示した緑色成分値及び青色成分値から図10(a)に示した緑色出力輝度値及び青色出力輝度値をそれぞれ引くことにより、第2のサブフィールド期間での緑色成分値及び青色成分値が算出される。なお、画素1~8の各赤色成分値は、“0”の値である。すなわち、赤色が第1のサブフィールド期間での基準の色とされて、当該第1のサブフィールド期間において、全ての画素1~8で画像信号に応じた発光動作が行われるために、これらの画素1~8の各赤色成分値は、“0”の値である。 Next, the controller 6 according to the present embodiment performs the processing operation of step S200 in FIG. 6 to obtain the component values in the second subfield period as shown in FIG. 10B. That is, the controller 6 subtracts the green output luminance value and the blue output luminance value shown in FIG. 10A from the green component value and the blue component value shown in FIG. The green component value and the blue component value in the two subfield periods are calculated. The red component values of the pixels 1 to 8 are “0” values. That is, red is used as a reference color in the first subfield period, and in each of the pixels 1 to 8 in the first subfield period, the light emitting operation corresponding to the image signal is performed. Each red component value of the pixels 1 to 8 is a value of “0”.
 続いて、本実施形態のコントローラ6が図6のステップS202~S203の処理動作を行うことにより、第2のサブフィールド期間での画素毎の透過率を算出する基準の色が緑色に決定される。つまり、コントローラ6は、図10(b)に示す緑色成分値及び青色成分値のうち、最小値(つまり、“0”の値)の画素数の多い緑色成分値を見出して、緑色を第2のサブフィールド期間での画素毎の透過率を算出する基準の色とする。 Subsequently, when the controller 6 of the present embodiment performs the processing operations of steps S202 to S203 in FIG. 6, the reference color for calculating the transmittance for each pixel in the second subfield period is determined to be green. . That is, the controller 6 finds a green component value having a large number of pixels of the minimum value (that is, a value of “0”) out of the green component value and the blue component value shown in FIG. The reference color for calculating the transmittance for each pixel in the sub-field period is used.
 次に、本実施形態のコントローラ6が図6のステップS204~S206の処理動作を行うことにより、第2のサブフィールド期間での緑色の発光ダイオード13gの輝度値、つまり緑色LED輝度値及び画素毎の透過率が決定される。具体的には、図10(c)に示すように、第2のサブフィールド期間での緑色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Next, the controller 6 according to the present embodiment performs the processing operations of steps S204 to S206 in FIG. 6, so that the luminance value of the green light-emitting diode 13g in the second subfield period, that is, the green LED luminance value and each pixel. Is determined. Specifically, as shown in FIG. 10C, a value of “80” is determined as the green LED luminance value in the second subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第2のサブフィールド期間での実際の表示動作においては、各画素1~8は同図10(c)に緑色出力輝度値(=緑色LED輝度値×透過率/100)にて示す値で緑色の発光動作(表示動作)を行う。具体的には、例えば画素7では、“80”の緑色出力輝度値、すなわち最大輝度の80%の輝度で緑色の発光(表示)が行われる。また、例えば画素1では、透過率の値が“0”であるので、緑色出力輝度値も“0”となって緑色が発光されない。 Further, in the actual display operation in the second subfield period, each of the pixels 1 to 8 has a value indicated by a green output luminance value (= green LED luminance value × transmittance / 100) in FIG. The green light emission operation (display operation) is performed with. Specifically, for example, the pixel 7 emits green light (display) with a green output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 1, since the transmittance value is “0”, the green output luminance value is also “0”, and green light is not emitted.
 続いて、本実施形態のコントローラ6が図6のステップS207~S208の処理動作を行うことにより、第2のサブフィールド期間での青色の発光ダイオード13bの輝度値、つまり青色LED輝度値が決定される。具体的には、図10(c)に示すように、第2のサブフィールド期間での青色LED輝度値として“0”の値が定められる。これは、画素1~4では、青色成分値は、図10(b)に示すように、“80”の値であり、また、画素5~6では、青色成分値は、図10(b)に示すように、“0”の値であるが、画素の透過率が、図10(c)に示すように、“0”であるので、各青色LED輝度値を無限大の値とされる。また、画素7~8では、青色成分値は、図10(b)に示すように、“0”の値であるので、画素の透過率が、図10(c)に示すように、“100”であっても、各青色LED輝度値は、“0”の値となり、この最小値“0”が青色LED輝度値として定められる。 Subsequently, when the controller 6 of the present embodiment performs the processing operations of steps S207 to S208 in FIG. 6, the luminance value of the blue light emitting diode 13b in the second subfield period, that is, the blue LED luminance value is determined. The Specifically, as shown in FIG. 10C, a value of “0” is determined as the blue LED luminance value in the second subfield period. In the pixels 1 to 4, the blue component value is a value of “80” as shown in FIG. 10B, and in the pixels 5 to 6, the blue component value is the value shown in FIG. As shown in FIG. 10, although the value is “0”, since the transmittance of the pixel is “0” as shown in FIG. 10C, each blue LED luminance value is set to an infinite value. . In the pixels 7 to 8, since the blue component value is “0” as shown in FIG. 10B, the transmittance of the pixel is “100” as shown in FIG. ”, Each blue LED luminance value is a value of“ 0 ”, and this minimum value“ 0 ”is determined as the blue LED luminance value.
 また、第2のサブフィールド期間での実際の表示動作においては、上記緑色の発光動作と同時に、各画素1~8は同図10(c)に青色出力輝度値(=青色LED輝度値×透過率/100)にて示す値で青色の発光動作(表示動作)を行う。但し、この場合、全ての画素1~8の各青色出力輝度値が“0”の値であるので、第2のサブフィールド期間では、青色の発光動作(表示動作)は行われない。なお、第2のサブフィールド期間では、図10(b)に示したように、全ての画素1~8の各赤色成分値は“0”であるので、赤色LED輝度値及び赤色出力輝度値は、図10(c)に示すように、全ての画素1~8において、“0”の値となる。すなわち、第2のサブフィールド期間では、赤色の発光動作(表示動作)は行われない。 Further, in the actual display operation in the second subfield period, simultaneously with the green light emission operation, each of the pixels 1 to 8 has a blue output luminance value (= blue LED luminance value × transmission in FIG. 10C). The blue light emission operation (display operation) is performed at a value indicated by (rate / 100). However, in this case, since the blue output luminance values of all the pixels 1 to 8 are “0”, the blue light emission operation (display operation) is not performed in the second subfield period. In the second subfield period, as shown in FIG. 10B, the red component values of all the pixels 1 to 8 are “0”, so the red LED luminance value and the red output luminance value are As shown in FIG. 10C, all the pixels 1 to 8 have a value of “0”. That is, the red light emission operation (display operation) is not performed in the second subfield period.
 次に、本実施形態のコントローラ6が図7のステップS300~S303の処理動作を行うことにより、第3のサブフィールド期間での青色の発光ダイオード13bの輝度値、つまり青色LED輝度値及び画素毎の透過率が決定される。具体的には、図10(d)に示すように、第3のサブフィールド期間での青色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Next, the controller 6 according to the present embodiment performs the processing operation of steps S300 to S303 in FIG. 7, so that the luminance value of the blue light-emitting diode 13b in the third subfield period, that is, the blue LED luminance value and each pixel is changed. Is determined. Specifically, as shown in FIG. 10D, a value of “80” is determined as the blue LED luminance value in the third subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第3のサブフィールド期間での実際の表示動作においては、各画素1~8は同図10(d)に青色出力輝度値(=青色LED輝度値×透過率/100)にて示す値で青色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の青色出力輝度値、すなわち最大輝度の80%の輝度で青色の発光(表示)が行われる。また、例えば画素5では、透過率の値が“0”であるので、青色出力輝度値も“0”となって青色が発光されない。なお、第3のサブフィールド期間では、全ての画素1~8の各赤色成分値及び各緑色成分値は“0”であるので、赤色LED輝度値と赤色出力輝度値及び緑色LED輝度値と緑色出力輝度値は、図10(d)に示すように、全ての画素1~8において、“0”の値となる。すなわち、第3のサブフィールド期間では、赤色及び緑色の発光動作(表示動作)は行われない。 Further, in the actual display operation in the third subfield period, each of the pixels 1 to 8 has a blue output luminance value (= blue LED luminance value × transmittance / 100) shown in FIG. A blue light emission operation (display operation) is performed. Specifically, for example, in the pixel 1, blue light emission (display) is performed with a blue output luminance value of “80”, that is, luminance of 80% of the maximum luminance. For example, in the pixel 5, since the transmittance value is “0”, the blue output luminance value is also “0”, and blue light is not emitted. In the third sub-field period, the red component value and the green component value of all the pixels 1 to 8 are “0”, and therefore the red LED luminance value, the red output luminance value, the green LED luminance value, and the green color. As shown in FIG. 10D, the output luminance value is a value of “0” in all the pixels 1 to 8. That is, the red and green light emission operations (display operations) are not performed in the third subfield period.
 以上のように構成された本実施形態の液晶表示装置1では、コントローラ(制御部)6が、記憶装置(記憶部)4に記憶されている画像信号に基づいて、3個の各サブフィールド期間において、RGBの発光ダイオード13r、13g、13b(複数色の光源)のうち、画素毎の透過率を算出する基準となる発光ダイオード(光源)13の色を選択している。また、コントローラ6は、選択した色を基に画素毎の透過率を算出するとともに、3個の各サブフィールド期間において、発光ダイオード13r、13g、13bのうち、点灯動作させる発光ダイオード13及びその輝度値を決定している。つまり、本実施形態の液晶表示装置1では、コントローラ6が、図4~図7のフローチャートに示したように、入力された画像信号を解析して、カラーブレーキング現象を抑えることができるような色の順序及びその輝度値を決定している。これにより、本実施形態の液晶表示装置1では、上記従来例と異なり、表示画像に関わらず、カラーブレーキング現象を確実に抑制することができる。 In the liquid crystal display device 1 of the present embodiment configured as described above, the controller (control unit) 6 has three subfield periods based on the image signal stored in the storage device (storage unit) 4. The color of the light emitting diode (light source) 13 that is a reference for calculating the transmittance for each pixel is selected from among the RGB light emitting diodes 13r, 13g, and 13b (multiple color light sources). Further, the controller 6 calculates the transmittance for each pixel based on the selected color, and among the three light emitting diodes 13r, 13g, and 13b, the light emitting diode 13 that is lit and the luminance thereof. The value is determined. That is, in the liquid crystal display device 1 of the present embodiment, the controller 6 can analyze the input image signal and suppress the color breaking phenomenon as shown in the flowcharts of FIGS. The order of colors and their luminance values are determined. Thereby, in the liquid crystal display device 1 of this embodiment, unlike the conventional example, the color braking phenomenon can be reliably suppressed regardless of the display image.
 また、本実施形態では、コントローラ6が記憶装置4に記憶されている画像信号から白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラム、及び赤色、緑色、及び青色の最小値の各ヒストグラムを画素毎に取得し、取得したヒストグラムに基づいて、3個の各サブフィールド期間での画素毎の透過率を算出する基準となる色を選択している。これにより、本実施形態では、コントローラ6は各サブフィールド期間において、表示する画像での混色化及び輝度の集中を考慮して、上記基準となる色を選択することができ、カラーブレーキング現象をより確実に抑制することができる。 In the present embodiment, the controller 6 uses the histograms of the maximum values of white, yellow, cyan, and magenta colors from the image signal stored in the storage device 4 and the minimum values of red, green, and blue. A histogram is acquired for each pixel, and based on the acquired histogram, a reference color for calculating the transmittance for each pixel in each of the three subfield periods is selected. As a result, in this embodiment, the controller 6 can select the reference color in consideration of color mixing and luminance concentration in the displayed image in each subfield period, and the color braking phenomenon can be selected. It can suppress more reliably.
 [第2の実施形態]
 図11は、本発明の第2の実施形態にかかる液晶表示装置の要部構成を説明する図である。図において、本実施形態と上記第1の実施形態との主な相違点は、コントローラが、記憶装置に記憶されている画像信号において、白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラムの値が全て0であることを判別した場合は、3個のサブフィールド期間において、1つのサブフィールド期間で1つの色の発光ダイオードだけが点灯動作するように、RGBの発光ダイオードを所定の順番で点灯動作させる点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Second Embodiment]
FIG. 11 is a diagram for explaining a main configuration of a liquid crystal display device according to the second embodiment of the present invention. In the figure, the main difference between the present embodiment and the first embodiment is that the controller has each of the maximum values of white, yellow, cyan, and magenta colors in the image signal stored in the storage device. When it is determined that the values of the histogram are all 0, RGB light-emitting diodes are set in a predetermined manner so that only one color light-emitting diode is lit in one sub-field period in three sub-field periods. The point is to turn on the lighting in order. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図11に示すように、本実施形態の液晶表示装置1には、制御部としてのコントローラ15が設けられている。このコントローラ15は、記憶装置4に記憶されている画像信号において、白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラムの値が全て0であることを判別した場合は、3個のサブフィールド期間において、1つのサブフィールド期間で1つの色の発光ダイオード13だけが点灯動作するように、RGBの発光ダイオード13r、13g、13bを所定の順番で点灯動作させるようになっている。 That is, as shown in FIG. 11, the liquid crystal display device 1 of this embodiment is provided with a controller 15 as a control unit. If the controller 15 determines that the histogram values of the maximum values of white, yellow, cyan, and magenta are all 0 in the image signal stored in the storage device 4, the controller 15 In the subfield period, the RGB light emitting diodes 13r, 13g, and 13b are lit in a predetermined order so that only the light emitting diode 13 of one color is lit in one subfield period.
 言い換えれば、本実施形態のコントローラ15は、上記第1の実施形態に示したカラーブレーキング現象を確実に抑制可能なCBU(Color Breaking Up)抑制モードが実施可能かを判断し、実施不可と判断した場合には即座に省電力化を図ることができるコンベンショナルなFSD(Field Sequential Display)駆動を用いた省電力優先モードを選択する事を可能とする構成とされている。 In other words, the controller 15 of the present embodiment determines whether or not the CBU (Color Breaking Up) suppression mode that can reliably suppress the color braking phenomenon shown in the first embodiment can be performed, and determines that it cannot be performed. In this case, it is possible to select a power saving priority mode using conventional FSD (Field Sequential Display) driving that can immediately save power.
 ここで、上記のように構成された本実施形態の液晶表示装置1の動作について、図12及び図13を用いて具体的に説明する。なお、以下の説明では、第1の実施形態のものと異なる動作について主に説明する。 Here, the operation of the liquid crystal display device 1 of the present embodiment configured as described above will be specifically described with reference to FIGS. In the following description, operations different from those in the first embodiment will be mainly described.
 図12は、図11に示した液晶表示装置における、第1のサブフィールド期間での具体的な動作を示すフローチャートである。図13(a)~図13(d)は、図11に示したコントローラでのコンベンショナルFSD処理の処理動作の一例を説明する図である。 FIG. 12 is a flowchart showing a specific operation in the first subfield period in the liquid crystal display device shown in FIG. FIGS. 13A to 13D are diagrams for explaining an example of the processing operation of the conventional FSD process in the controller shown in FIG.
 図12に示すように、本実施形態のコントローラ15は、上記ステップS100の処理動作を行って記憶装置4に記憶されている画像信号から白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラムを画素毎に取得した後、混色が存在しているか否かについて判別する。すなわち、コントローラ15は、白色、黄色、シアン色、及びマゼンダ色の最大値の全てが“0”の値であるかどうかについて調べる(ステップS1001)。そして、コントローラ15は“0”以外の値が存在することを判別したときには、表示すべき画像に混色が存在すると判断して、第1の実施形態と同様に、ステップS101の処理動作を実行する。 As shown in FIG. 12, the controller 15 of the present embodiment performs the processing operation of step S <b> 100, and determines each of the maximum values of white, yellow, cyan, and magenta from the image signal stored in the storage device 4. After obtaining the histogram for each pixel, it is determined whether or not there is a color mixture. That is, the controller 15 checks whether all of the maximum values of white, yellow, cyan, and magenta are “0” (step S1001). When the controller 15 determines that a value other than “0” exists, the controller 15 determines that there is color mixing in the image to be displayed, and executes the processing operation of step S101 as in the first embodiment. .
 一方、ステップS1001において、“0”以外の値が存在しないことを判別したときには、コントローラ15は、表示すべき画像に混色が存在しないと判断して、コンベンショナルFSD処理(省電力優先モード)を実行する(ステップS1002)。つまり、コントローラ15は、3個のサブフィールド期間において、1つのサブフィールド期間で1つの色の発光ダイオード13だけが点灯動作するように、RGBの発光ダイオード13r、13g、13bを所定の順番で点灯動作させる。 On the other hand, when it is determined in step S1001 that there is no value other than “0”, the controller 15 determines that there is no color mixture in the image to be displayed, and executes the conventional FSD process (power saving priority mode). (Step S1002). That is, in the three subfield periods, the controller 15 lights the RGB light emitting diodes 13r, 13g, and 13b in a predetermined order so that only one color light emitting diode 13 is turned on in one subfield period. Make it work.
 以下、ステップS1002でのコンベンショナルFSD処理が、図8(a)に示した画像信号に対して、実行される場合を例示して説明する。また、第1、第2、及び第3のサブフィールド期間において、赤色、緑色、及び青色の発光ダイオード13r、13g、13bがそれぞれ点灯動作される場合を例示して説明する。 Hereinafter, a case where the conventional FSD process in step S1002 is executed on the image signal shown in FIG. 8A will be described as an example. Further, the case where the red, green, and blue light emitting diodes 13r, 13g, and 13b are turned on in the first, second, and third subfield periods will be described as an example.
 本実施形態のコントローラ15は、図8(a)に示した赤色成分値に基づいて、第1のサブフィールド期間での赤色の発光ダイオード13rの輝度値、つまり赤色LED輝度値及び画素毎の透過率を決定する。具体的には、図13(a)に示すように、第1のサブフィールド期間での赤色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 The controller 15 of the present embodiment, based on the red component value shown in FIG. 8A, the luminance value of the red light emitting diode 13r in the first subfield period, that is, the red LED luminance value and the transmission for each pixel. Determine the rate. Specifically, as shown in FIG. 13A, a value of “80” is determined as the red LED luminance value in the first subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第1のサブフィールド期間での実際の表示動作においては、各画素1~8は同図13(a)に赤色出力輝度値(=赤色LED輝度値×透過率/100)にて示す値で赤色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の赤色出力輝度値、すなわち最大輝度の80%の輝度で赤色の発光(表示)が行われる。また、例えば画素7では、透過率の値が“0”であるので、赤色出力輝度値も“0”となって赤色が発光されない。 In the actual display operation in the first subfield period, each of the pixels 1 to 8 has a value indicated by a red output luminance value (= red LED luminance value × transmittance / 100) in FIG. The red light emission operation (display operation) is performed with. Specifically, for example, in the pixel 1, red light emission (display) is performed with a red output luminance value of “80”, that is, luminance of 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the red output luminance value is also “0”, and red light is not emitted.
 さらに、このコンベンショナルFSD処理では、第1のサブフィールド期間では、緑色及び青色の発光ダイオード13g、13bは点灯動作されない。つまり、本実施形態のコントローラ15は、図13(a)に示すように、全ての画素1~8において、緑色LED輝度値と緑色出力輝度値及び青色LED輝度値と青色出力輝度値を、“0”の値とする。 Further, in this conventional FSD process, the green and blue light emitting diodes 13g and 13b are not turned on during the first subfield period. That is, as shown in FIG. 13A, the controller 15 of this embodiment sets the green LED luminance value, the green output luminance value, the blue LED luminance value, and the blue output luminance value for all the pixels 1 to 8 as “ The value is 0 ”.
 また、第2及び第3のサブフィールド期間での赤色成分値、緑色成分値、及び青色成分値は、図13(b)に示す値となる。そして、本実施形態のコントローラ15は、図13(b)に示した緑色成分値に基づいて、第2のサブフィールド期間での緑色の発光ダイオード13gの輝度値、つまり緑色LED輝度値及び画素毎の透過率を決定する。具体的には、図13(c)に示すように、第2のサブフィールド期間での緑色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Also, the red component value, the green component value, and the blue component value in the second and third subfield periods are values shown in FIG. Then, the controller 15 of the present embodiment, based on the green component value shown in FIG. 13B, the luminance value of the green light emitting diode 13g in the second subfield period, that is, the green LED luminance value and each pixel. Determine the transmittance. Specifically, as shown in FIG. 13C, a value of “80” is determined as the green LED luminance value in the second subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第2のサブフィールド期間での実際の表示動作においては、各画素1~8は同図13(c)に緑色出力輝度値(=緑色LED輝度値×透過率/100)にて示す値で緑色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の緑色出力輝度値、すなわち最大輝度の80%の輝度で緑色の発光(表示)が行われる。 In the actual display operation in the second subfield period, each of the pixels 1 to 8 has a value indicated by a green output luminance value (= green LED luminance value × transmittance / 100) in FIG. The green light emission operation (display operation) is performed with. Specifically, for example, in the pixel 1, green light emission (display) is performed with a green output luminance value of “80”, that is, a luminance of 80% of the maximum luminance.
 さらに、このコンベンショナルFSD処理では、第2のサブフィールド期間では、青色及び赤色の発光ダイオード13b、13rは点灯動作されない。つまり、本実施形態のコントローラ15は、図13(c)に示すように、全ての画素1~8において、青色LED輝度値と青色出力輝度値及び赤色LED輝度値と赤色出力輝度値を、“0”の値とする。 Furthermore, in this conventional FSD process, the blue and red light emitting diodes 13b and 13r are not turned on in the second subfield period. That is, as shown in FIG. 13C, the controller 15 of the present embodiment sets the blue LED luminance value, the blue output luminance value, the red LED luminance value, and the red output luminance value for all the pixels 1 to 8 as “ The value is 0 ”.
 最後に、本実施形態のコントローラ15は、図13(b)に示した青色成分値に基づいて、第3のサブフィールド期間での青色の発光ダイオード13bの輝度値、つまり青色LED輝度値及び画素毎の透過率を決定する。具体的には、図13(d)に示すように、第3のサブフィールド期間での青色LED輝度値として“80”の値が定められるとともに、画素1~8の各透過率が決定される。 Finally, the controller 15 of the present embodiment, based on the blue component value shown in FIG. 13B, the luminance value of the blue light emitting diode 13b in the third subfield period, that is, the blue LED luminance value and the pixel. The transmittance for each is determined. Specifically, as shown in FIG. 13D, a value of “80” is determined as the blue LED luminance value in the third subfield period, and each transmittance of the pixels 1 to 8 is determined. .
 また、第3のサブフィールド期間での実際の表示動作においては、各画素1~8は同図13(d)に青色出力輝度値(=青色LED輝度値×透過率/100)にて示す値で青色の発光動作(表示動作)を行う。具体的には、例えば画素1では、“80”の青色出力輝度値、すなわち最大輝度の80%の輝度で青色の発光(表示)が行われる。また、例えば画素7では、透過率の値が“0”であるので、青色出力輝度値も“0”となって青色が発光されない。 Further, in the actual display operation in the third subfield period, each of the pixels 1 to 8 has a blue output luminance value (= blue LED luminance value × transmittance / 100) shown in FIG. A blue light emission operation (display operation) is performed. Specifically, for example, in the pixel 1, blue light emission (display) is performed with a blue output luminance value of “80”, that is, luminance of 80% of the maximum luminance. Further, for example, in the pixel 7, since the transmittance value is “0”, the blue output luminance value is also “0”, and blue light is not emitted.
 さらに、このコンベンショナルFSD処理では、第3のサブフィールド期間では、緑色及び赤色の発光ダイオード13g、13rは点灯動作されない。つまり、本実施形態のコントローラ15は、図13(d)に示すように、全ての画素1~8において、緑色LED輝度値と緑色出力輝度値及び赤色LED輝度値と赤色出力輝度値を、“0”の値とする。 Furthermore, in this conventional FSD process, the green and red light emitting diodes 13g and 13r are not lit in the third subfield period. That is, as shown in FIG. 13D, the controller 15 of the present embodiment sets the green LED luminance value, the green output luminance value, the red LED luminance value, and the red output luminance value for all the pixels 1 to 8 as “ The value is 0 ”.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、コントローラ15は、記憶装置4に記憶されている画像信号において、白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラムの値が全て0であることを判別した場合は、上記省電力優先モードを実行する。これにより、本実施形態では、動作フローの最初の部分にてCBU抑制モードが動作可能かを判断し、CBU抑制モードの動作不可と判断した場合には即座に省電力優先モードを選択し、以後のCBU抑制モードフローの動作が省略されるので、CBU抑制モード判断以降の無用な動作を省略することができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In the present embodiment, the controller 15 determines that all the histogram values of the maximum values of white, yellow, cyan, and magenta are all 0 in the image signal stored in the storage device 4. In this case, the power saving priority mode is executed. Thereby, in this embodiment, it is determined whether the CBU suppression mode is operable in the first part of the operation flow. If it is determined that the CBU suppression mode cannot be operated, the power saving priority mode is immediately selected. Since the operation of the CBU suppression mode flow is omitted, unnecessary operations after the determination of the CBU suppression mode can be omitted.
 [第3の実施形態]
 図14は、本発明の第3の実施形態にかかる液晶表示装置の要部構成を説明する図である。図において、本実施形態と上記第2の実施形態との主な相違点は、液晶表示装置でのモードを切り替えるモード切替レジスタを設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Third Embodiment]
FIG. 14 is a diagram for explaining a main configuration of a liquid crystal display device according to the third embodiment of the present invention. In the figure, the main difference between the present embodiment and the second embodiment is that a mode switching register for switching modes in the liquid crystal display device is provided. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図14に示すように、本実施形態の液晶表示装置1には、モード切替手段としてのモード切替レジスタ16と、これに接続されたコントローラ17が設けられている。モード切替レジスタ16は、外部からの指示(つまり、ユーザからの指示)に従って、上記CBU抑制モードまたは上記省電力優先モードを選択して、コントローラ17に指示するように構成されている。言い換えれば、本実施形態の液晶表示装置1では、モード切替レジスタ16により、3個のサブフィールド期間において、複数色の発光ダイオード13のうち、少なくとも1つの色の発光ダイオード13を点灯動作させるCBU抑制モードか、または前記3個のサブフィールド期間において、1つのサブフィールド期間で1つの色の発光ダイオード13だけが点灯動作するように、複数色の発光ダイオード13を所定の順番で点灯動作させる省電力優先モードかを切り替えることができるようになっている。 That is, as shown in FIG. 14, the liquid crystal display device 1 of the present embodiment is provided with a mode switching register 16 as mode switching means and a controller 17 connected thereto. The mode switching register 16 is configured to select the CBU suppression mode or the power saving priority mode and instruct the controller 17 in accordance with an instruction from the outside (that is, an instruction from the user). In other words, in the liquid crystal display device 1 of the present embodiment, the mode switching register 16 suppresses CBU that causes the light emitting diode 13 of at least one color among the plurality of light emitting diodes 13 to be lit in the three subfield periods. Power saving in which the light emitting diodes 13 of a plurality of colors are turned on in a predetermined order so that only the light emitting diode 13 of one color is turned on in one subfield period in the three subfield periods. The priority mode can be switched.
 ここで、上記のように構成された本実施形態の液晶表示装置1の動作について、図15を用いて具体的に説明する。なお、以下の説明では、第2の実施形態のものと異なる動作について主に説明する。 Here, the operation of the liquid crystal display device 1 of the present embodiment configured as described above will be specifically described with reference to FIG. In the following description, operations different from those in the second embodiment will be mainly described.
 図15は、図14に示した液晶表示装置の基本的な動作を示すフローチャートである。 FIG. 15 is a flowchart showing the basic operation of the liquid crystal display device shown in FIG.
 図15のステップS6に示すように、本実施形態のコントローラ17は、モード切替レジスタ16によって設定されているモードがCBU抑制モードか否かについて判別する。そして、CBU抑制モードが設定されていることを判別すると、コントローラ17は、第1の実施形態と同様に、ステップS1の処理を実行する。 As shown in step S6 of FIG. 15, the controller 17 of this embodiment determines whether or not the mode set by the mode switching register 16 is the CBU suppression mode. When it is determined that the CBU suppression mode is set, the controller 17 executes the process of step S1 as in the first embodiment.
 一方、ステップS6において、CBU抑制モードが設定されていない、つまり省電力優先モードが設定されていることを判別すると、コントローラ17は、コンベンショナルFSD処理を実行する(ステップS7)。すなわち、コントローラ17は、第2の実施形態でのステップS1002と同様な処理を実行する。 On the other hand, when it is determined in step S6 that the CBU suppression mode is not set, that is, the power saving priority mode is set, the controller 17 executes the conventional FSD process (step S7). That is, the controller 17 performs the same process as that in step S1002 in the second embodiment.
 以上の構成により、本実施形態では、上記第2の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、モード切替レジスタ(モード切替手段)16によってカラーブレーキング現象を確実に抑制させるのか、または液晶表示装置1の省電力化を図るのかを設定することができる。 With the above configuration, the present embodiment can achieve the same operations and effects as those of the second embodiment. Further, in the present embodiment, it is possible to set whether the color braking phenomenon is surely suppressed by the mode switching register (mode switching means) 16 or power saving of the liquid crystal display device 1 is achieved.
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。 It should be noted that all of the above embodiments are illustrative and not restrictive. The technical scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the technical scope of the present invention.
 例えば、上記の説明では、本発明を透過型の液晶表示装置に適用した場合について説明したが、本発明の表示装置はこれに限定されるものではなく、光源の光を利用して、情報を表示する非発光型の各種表示装置に適用することができる。具体的にいえば、半透過型の液晶表示装置、あるいは上記液晶パネルをライトバルブに用いたリアプロジェクションなどの投写型表示装置に本発明の表示装置を好適に用いることができる。また、DMD(Digital Micro mirror Device)素子を用いた表示デバイス(プロジェクター)や、有機EL(electroluminescence)表示デバイス、プラズマディスプレイパネル(PDP:Plasma Display Panel)、フィールドエミッションディスプレイ(FED:Field Emission Display)などの表示装置にも適用することができる。 For example, in the above description, the case where the present invention is applied to a transmissive liquid crystal display device has been described. However, the display device of the present invention is not limited to this, and information is obtained using light of a light source. The present invention can be applied to various non-light emitting display devices for display. Specifically, the display device of the present invention can be suitably used for a transflective liquid crystal display device or a projection display device such as a rear projection using the liquid crystal panel as a light valve. Also, display devices (projectors) using DMD (Digital Micromirror Device) elements, organic EL (electroluminescence) display devices, plasma display panels (PDP: Plasma Display Panel), field emission displays (FED: Field Display, etc.) The present invention can also be applied to other display devices.
 また、上記の説明では、光源としてRGBの発光ダイオードを一体化した3in1タイプの発光ダイオードを使用した場合について説明したが、本発明の光源はこれに限定されるものではなく、例えば冷陰極蛍光管や熱陰極蛍光管等の放電管、有機EL(Electronic Luminescence)や無機EL素子等の発光素子、あるいはPDP(Plasma Display Panel)等の発光装置を光源に使用することもできる。 In the above description, a case where a 3in1 type light emitting diode in which RGB light emitting diodes are integrated is used as the light source is described. However, the light source of the present invention is not limited to this, for example, a cold cathode fluorescent tube. Alternatively, a light emitting device such as a discharge tube such as a hot cathode fluorescent tube, a light emitting element such as an organic EL (Electronic Luminescence) or inorganic EL element, or a PDP (Plasma Display Panel) can be used as a light source.
 但し、上記の各実施形態のように、光源に発光ダイオードを使用する場合の方が、消費電力が少なく、優れた環境性をもつ表示装置を容易に構成することができる点で好ましい。 However, it is preferable to use a light-emitting diode as a light source as in the above-described embodiments in that a display device with low power consumption and excellent environmental characteristics can be easily configured.
 また、本発明の発光ダイオードは上記3in1タイプの発光ダイオードに限定されるものではなく、R、G、Bそれぞれ単色個別の発光ダイオードを用いたり、白色光の発する白色(W)の発光ダイオードを用いたり、RGBWや、GRGBなど4つの発光ダイオードを一体化した、いわゆるフォーインワン(4in1)タイプの発光ダイオードを適用したりすることもできる。また、RGBW以外の色の発光ダイオードを追加することもできる。この場合には、液晶パネルの画素構成にも色の追加が必要となるが、より広範囲の色を再現できるようになる。具体的な追加する色としては、例えばイエロー、マゼンダ等がある。 In addition, the light emitting diode of the present invention is not limited to the above 3in1 type light emitting diode, and each of R, G, and B uses a single color individual light emitting diode or a white (W) light emitting diode emitting white light. Alternatively, a so-called four-in-one (4in1) type light emitting diode in which four light emitting diodes such as RGBW and GRGB are integrated can be applied. In addition, light emitting diodes of colors other than RGBW can be added. In this case, it is necessary to add a color to the pixel configuration of the liquid crystal panel, but a wider range of colors can be reproduced. Specific colors to be added include, for example, yellow and magenta.
 但し、上記の各実施形態のように、発光色が互いに異なるとともに、白色光に混色可能な複数色(例えば、RGB)の発光ダイオードを用いる場合の方が、白色の発光ダイオードのみで構成する場合に比べて、これらの各色光の色純度を容易に高めることができ、優れた表示品位を有するカラー表示可能な表示装置を容易に構成することができる点で好ましい。 However, as in the above-described embodiments, the case where light emitting diodes of different colors and different colors that can be mixed with white light (for example, RGB) are used is composed of only white light emitting diodes. Compared to the above, it is preferable in that the color purity of each color light can be easily increased, and a display device having excellent display quality and capable of color display can be easily configured.
 また、上記の説明では、1フレーム期間を第1~第3のサブフィールド期間に分割した場合について説明したが、本発明はこれに限定されるものではなく、1フレーム期間をN個(Nは、3以上の整数)のサブフィールド期間に分割して情報表示を行うものであれば何等限定されない。具体的には、例えば、黒色を加えた4つ以上のサブフィールド期間を用いてもよく、1フレーム期間(1TVフィールド期間)を構成する連続した複数のサブフィールド期間であれば本発明を適用することができる。 In the above description, the case where one frame period is divided into first to third subfield periods has been described. However, the present invention is not limited to this, and N frame periods (N is There is no limitation as long as information display is performed by dividing into subfield periods of an integer of 3 or more. Specifically, for example, four or more subfield periods added with black may be used, and the present invention is applied to a plurality of continuous subfield periods constituting one frame period (1 TV field period). be able to.
 また、上記の説明では、記憶装置(記憶部)に記憶されている画像信号から白色、黄色、シアン色、及びマゼンダ色の最大値の各ヒストグラム、及び赤色、緑色、及び青色の最小値の各ヒストグラムを画素毎に取得する場合について説明した。しかしながら、本発明はこれに限定されるものではなく、記憶部に記憶されている画像信号から光源の複数色の組合せで構成される全ての混色の最大値の各ヒストグラム、及び上記複数色毎の最小値の各ヒストグラムを画素毎に取得するものであればよい。 In the above description, the histograms of the maximum values of white, yellow, cyan, and magenta colors, and the minimum values of red, green, and blue from the image signals stored in the storage device (storage unit). The case where the histogram is acquired for each pixel has been described. However, the present invention is not limited to this, and each histogram of the maximum values of all the mixed colors composed of a combination of a plurality of colors of light sources from the image signal stored in the storage unit, and each of the plurality of colors. What is necessary is just to acquire each histogram of the minimum value for every pixel.
 また、上記の説明以外に、表示部(液晶パネル)に複数の表示エリアを設定するとともに、複数の表示エリアに対して、光源の光をそれぞれ入射させる複数の照明エリアをバックライト部(バックライト装置)に設定して、照明エリア単位に光源を点灯駆動させるローカルディミング(エリアアクティブバックライト)駆動方式の表示装置にも本発明を適用することができる。 In addition to the above description, a plurality of display areas are set on the display unit (liquid crystal panel), and a plurality of illumination areas into which the light from the light source is incident on the plurality of display areas are provided as backlight units (backlights). The present invention can also be applied to a display device of a local dimming (area active backlight) driving method in which a light source is lit and driven in units of illumination areas.
 本発明は、表示画像に関わらず、カラーブレーキング現象を確実に抑制することができる表示装置に対して有用である。 The present invention is useful for a display device that can reliably suppress the color breaking phenomenon regardless of the display image.
 1 液晶表示装置
 2 液晶パネル(表示部)
 3 バックライト装置(バックライト部)
 4 記憶装置(記憶部)
 6、15、17 コントローラ(制御部)
 16 モード切替レジスタ(モード切替手段)
 13 発光ダイオード(光源)
 13r 赤色の発光ダイオード(光源)
 13g 緑色の発光ダイオード(光源)
 13b 青色の発光ダイオード(光源)
1 Liquid crystal display device 2 Liquid crystal panel (display unit)
3 Backlight device (backlight part)
4. Storage device (storage unit)
6, 15, 17 Controller (control unit)
16 Mode switching register (mode switching means)
13 Light emitting diode (light source)
13r Red light emitting diode (light source)
13g Green light-emitting diode (light source)
13b Blue light emitting diode (light source)

Claims (5)

  1. 白色光に混色可能な複数色の光源を有するバックライト部と、複数の画素を備えるとともに、前記バックライト部からの照明光を用いて、情報を表示する表示部を備えるとともに、1フレーム期間をN個(Nは、3以上の整数)のサブフィールド期間に分割して情報表示を行う表示装置であって、
     入力された画像信号を記憶する記憶部と、
     前記記憶部に記憶されている画像信号を用いて、前記バックライト部及び前記表示部の駆動制御を行う制御部を備え、
     前記制御部は、前記記憶部に記憶されている画像信号に基づいて、前記N個の各サブフィールド期間において、前記複数色の光源のうち、画素毎の透過率を算出する基準となる光源の色を選択して、選択した色を基に画素毎の透過率を算出するとともに、前記N個の各サブフィールド期間において、前記複数色の光源のうち、点灯動作させる光源及びその輝度値を決定する、
     ことを特徴とする表示装置。
    A backlight unit having a plurality of color light sources that can be mixed with white light, a plurality of pixels, a display unit that displays information using illumination light from the backlight unit, and one frame period A display device that displays information divided into N (N is an integer of 3 or more) subfield periods,
    A storage unit for storing the input image signal;
    A control unit that performs drive control of the backlight unit and the display unit using an image signal stored in the storage unit,
    The control unit, based on an image signal stored in the storage unit, of a light source serving as a reference for calculating a transmittance for each pixel among the light sources of the plurality of colors in each of the N subfield periods. The color is selected, the transmittance for each pixel is calculated based on the selected color, and the light source to be turned on and the luminance value thereof among the light sources of the plurality of colors are determined in each of the N subfield periods. To
    A display device characterized by that.
  2. 前記制御部は、前記記憶部に記憶されている画像信号から光源の複数色の組合せで構成される全ての混色の最大値の各ヒストグラム、及び複数色毎の最小値の各ヒストグラムを画素毎に取得し、取得したヒストグラムに基づいて、前記N個の各サブフィールド期間での画素毎の透過率を算出する基準となる色を選択する請求項1に記載の表示装置。 The control unit, for each pixel, each histogram of the maximum value of all the mixed colors composed of a combination of a plurality of colors of light sources from the image signal stored in the storage unit, and each histogram of the minimum value for each of the plurality of colors. The display device according to claim 1, wherein the display device selects a color that serves as a reference for calculating transmittance for each pixel in each of the N subfield periods based on the acquired histogram.
  3. 前記制御部が、前記記憶部に記憶されている画像信号から光源の複数色の組合せで構成される全ての混色の最大値の各ヒストグラムを画素毎に取得して、これらの最大値の各ヒストグラムの値が全て0であることを判別した場合は、前記制御部は、前記N個のサブフィールド期間において、1つのサブフィールド期間で1つの色の光源だけが点灯動作するように、複数色の光源を所定の順番で点灯動作させる請求項2に記載の表示装置。 The control unit acquires, for each pixel, each histogram of the maximum value of all the mixed colors configured by a combination of a plurality of colors of light sources from the image signal stored in the storage unit, and each histogram of these maximum values In the case where it is determined that the values of all are zero, the control unit is configured to output a plurality of colors so that only one color light source is turned on in one subfield period in the N subfield periods. The display device according to claim 2, wherein the light sources are turned on in a predetermined order.
  4. 前記N個のサブフィールド期間として、第1、第2、及び第3のサブフィールド期間が用いられ、
     前記複数色の光源として、赤色、緑色、及び青色の光をそれぞれ発光する赤色、緑色、及び青色の発光ダイオードが用いられ、
     前記第1のサブフィールド期間において、前記制御部は、前記記憶部に記憶されている画像信号に基づき、赤色、緑色、及び青色のうち、いずれか1つの色を画素毎の透過率を算出する基準となる色として選択し、選択した色の発光ダイオードでの輝度値を決定するとともに、当該第1のサブフィールド期間での画素毎の透過率を算出し、かつ、算出した画素毎の透過率を用いて、赤色、緑色、及び青色のうち、残りの2つの色の各発光ダイオードでの輝度値を決定し、
     前記第2のサブフィールド期間において、前記制御部は、前記記憶部に記憶されている画像信号に基づき、赤色、緑色、及び青色のうち、前記いずれか1つの色を除く、2つの色の一方の色を画素毎の透過率を算出する基準となる色として選択し、選択した色の発光ダイオードでの輝度値を決定するとともに、当該第2のサブフィールド期間での画素毎の透過率を算出し、かつ、算出した画素毎の透過率を用いて、前記2つの色の他方の色の発光ダイオードでの輝度値を決定し、
     前記第3のサブフィールド期間において、前記制御部は、前記記憶部に記憶されている画像信号に基づき、赤色、緑色、及び青色のうち、前記2つの色の他方の色を画素毎の透過率を算出する基準となる色として選択し、選択した色の発光ダイオードでの輝度値を決定するとともに、当該第3のサブフィールド期間での画素毎の透過率を算出する請求項1~3のいずれか1項に記載の表示装置。
    As the N subfield periods, first, second, and third subfield periods are used,
    As the multi-color light sources, red, green, and blue light emitting diodes that emit red, green, and blue light, respectively, are used.
    In the first subfield period, the control unit calculates a transmittance for each pixel of any one of red, green, and blue based on the image signal stored in the storage unit. Select the reference color, determine the luminance value of the light emitting diode of the selected color, calculate the transmittance for each pixel in the first subfield period, and calculate the calculated transmittance for each pixel Is used to determine the luminance value of each light emitting diode of the remaining two colors of red, green, and blue,
    In the second subfield period, the control unit, based on the image signal stored in the storage unit, removes one of the two colors of red, green, and blue. Is selected as a reference color for calculating the transmittance of each pixel, the luminance value of the light emitting diode of the selected color is determined, and the transmittance of each pixel in the second subfield period is calculated. And determining the luminance value of the light emitting diode of the other color of the two colors using the calculated transmittance for each pixel,
    In the third subfield period, based on the image signal stored in the storage unit, the control unit converts the other color of the two colors among red, green, and blue to the transmittance for each pixel. 4. The method according to claim 1, wherein the reference color is selected as a reference color, the luminance value of the light emitting diode of the selected color is determined, and the transmittance for each pixel in the third subfield period is calculated. The display device according to claim 1.
  5. 前記N個のサブフィールド期間において、前記複数色の光源のうち、少なくとも1つの色の光源を点灯動作させるか、または前記N個のサブフィールド期間において、1つのサブフィールド期間で1つの色の光源だけが点灯動作するように、複数色の光源を所定の順番で点灯動作させるかを切り替えるモード切替手段を備えている請求項1~4のいずれか1項に記載の表示装置。 In the N subfield periods, a light source of at least one color among the light sources of the plurality of colors is turned on, or in the N subfield periods, a light source of one color in one subfield period The display device according to any one of claims 1 to 4, further comprising mode switching means for switching whether the light sources of a plurality of colors are lit in a predetermined order so that only the lit operation is performed.
PCT/JP2011/056794 2010-06-08 2011-03-22 Display device WO2011155244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-130781 2010-06-08
JP2010130781 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011155244A1 true WO2011155244A1 (en) 2011-12-15

Family

ID=45097859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056794 WO2011155244A1 (en) 2010-06-08 2011-03-22 Display device

Country Status (1)

Country Link
WO (1) WO2011155244A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002229531A (en) * 2000-11-30 2002-08-16 Canon Inc Color liquid crystal display device
JP2003248462A (en) * 2002-02-22 2003-09-05 Fujitsu Ltd Device and method for image display
JP2008165048A (en) * 2006-12-28 2008-07-17 Toshiba Corp Color display device and color display method
JP2009053475A (en) * 2007-08-28 2009-03-12 Seiko Epson Corp Display device, driving method of display device and electronic equipment
JP2010145978A (en) * 2008-12-22 2010-07-01 Sony Corp Image display device and method
JP2010250193A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002229531A (en) * 2000-11-30 2002-08-16 Canon Inc Color liquid crystal display device
JP2003248462A (en) * 2002-02-22 2003-09-05 Fujitsu Ltd Device and method for image display
JP2008165048A (en) * 2006-12-28 2008-07-17 Toshiba Corp Color display device and color display method
JP2009053475A (en) * 2007-08-28 2009-03-12 Seiko Epson Corp Display device, driving method of display device and electronic equipment
JP2010145978A (en) * 2008-12-22 2010-07-01 Sony Corp Image display device and method
JP2010250193A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Image display device

Similar Documents

Publication Publication Date Title
CN106898318B (en) The driving method of image display
CN101939691B (en) Display device
JP4856249B2 (en) Display device
US20100188322A1 (en) Color display unit
US20090115720A1 (en) Liquid crystal display, liquid crystal display module, and method of driving liquid crystal display
WO2012111471A1 (en) Display device
WO2008050506A1 (en) Liquid crystal display apparatus
WO2009110456A1 (en) Lighting device, and display device having the same
US20100013866A1 (en) Light source device and liquid crystal display unit
US20140043357A1 (en) Display device and display method
WO2011036916A1 (en) Display device and display method therefor
JP2016184531A (en) Light source device, image display device and control method for light source device
JP2009163945A (en) Light source system and display
JP5438217B2 (en) Display signal generator, display device, and image display method
JP2010066743A (en) Liquid crystal display device and method for driving the same
JP2010032732A (en) Liquid crystal display device
WO2012029701A1 (en) Liquid crystal display device, and color reproduction method thereof
WO2011132437A1 (en) Display device
JP2005049362A (en) Liquid crystal display device
WO2010109720A1 (en) Liquid crystal display apparatus
WO2013073428A1 (en) Display device
JP2008500575A (en) Color display
JP4332565B2 (en) A device in which three primary color light emitting diodes are arranged in a matrix
WO2011155244A1 (en) Display device
JP2016035806A (en) Backlight device, and liquid crystal display device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP