WO2011155220A1 - Induction cooker - Google Patents

Induction cooker Download PDF

Info

Publication number
WO2011155220A1
WO2011155220A1 PCT/JP2011/003306 JP2011003306W WO2011155220A1 WO 2011155220 A1 WO2011155220 A1 WO 2011155220A1 JP 2011003306 W JP2011003306 W JP 2011003306W WO 2011155220 A1 WO2011155220 A1 WO 2011155220A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference value
capacitance
detection unit
detected
heating
Prior art date
Application number
PCT/JP2011/003306
Other languages
French (fr)
Japanese (ja)
Inventor
祐史 山本
史太佳 小笠原
高志 武平
正也 武部
雅志 木下
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012519283A priority Critical patent/JP5830665B2/en
Publication of WO2011155220A1 publication Critical patent/WO2011155220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like

Definitions

  • the present invention relates to an induction heating cooker, and particularly to an induction heating cooker having a function of detecting a spill from a heated container such as a pan during cooking.
  • FIG. 5 is a diagram showing a configuration of a conventional induction heating cooker described in Patent Document 1.
  • FIG. 6 is a graph showing a change in capacitance in an electrode for performing the overflow detection described in Patent Document 1.
  • the conventional induction heating cooker is a drive circuit that inputs low frequency power from an AC power supply 101 and supplies high frequency power to the heating coil 104 in order to induction heat a heating container (not shown). 102.
  • a plurality of small disk-shaped electrodes 103 are concentrically distributed on the outer periphery of the heating coil 104.
  • Each electrode 103 that is distributed is connected to a capacitance measuring circuit 106.
  • a capacitance between each electrode 103 and the capacitance measuring circuit 106 is detected by the capacitance measuring circuit 106.
  • this capacitance is simply referred to as “the capacitance of each electrode 103”.
  • each electrode 103 depends on the arrangement of a dielectric (for example, a top plate) around each electrode 103 and a conductor (for example, a metal heating container, a heating coil 104, etc.).
  • a dielectric for example, a top plate
  • a conductor for example, a metal heating container, a heating coil 104, etc.
  • the capacitance of any one of the electrodes 103 increases when the liquid spilled is present. By detecting such an increase in capacitance, it is intended to detect a spill.
  • the control circuit 105 determines that the spill is over and stops the operation of the drive circuit 102, or The high-frequency current flowing through the heating coil 104 is reduced.
  • the conventional induction heating cooker determines that spilling occurs and stops the operation of the drive circuit 102 or reduces the current of the heating coil 104, which is difficult for the user. It was an inconvenient cooker.
  • a top plate having a smooth surface and no unevenness is provided as a cooking surface, and it is configured so that dirt generated by spilling can be easily wiped off.
  • the top surface of the top plate or the periphery of the induction heating cooker will be severely soiled in a short time if the spillage is left as it is.
  • the spillage is small, if the spillage continues for a long time, there is a problem that the dirt becomes severe as well. Therefore, it is important to notify the user immediately when a spill occurs, or to stop or reduce the heating operation.
  • the spilling is not detected and the heating operation is stopped or reduced, the cooking operation unintended by the user is interrupted. If the frequency of such false detections is high, it is easy to use. Is bad, and it becomes a big problem.
  • An object of the present invention is to provide an easy-to-use induction heating cooker that can reduce erroneous detection of spillage in a heating container that occurs during heating and that can accurately detect the occurrence of spillage.
  • An induction heating cooker includes a top plate on which a heating container is placed; A heating coil that is provided below the top plate and induction-heats the heating container; An inverter for supplying a high frequency current to the heating coil; An electrode provided on the back surface of the top plate in the vicinity of the periphery of the heating coil; A capacitance detector for detecting a capacitance of the electrode by supplying a high frequency signal to the electrode; A load movement detection unit for detecting a fluctuation range of the magnitude of the magnetic coupling between the heating container and the heating coil in a load movement detection period; A storage unit that stores a reference value corresponding to the capacitance detected by the capacitance detection unit before a spill occurs; A control unit that controls the heating output to be a set first set value, When the amount of change with respect to the reference value in the capacitance detected by the capacitance detection unit is greater than or equal to an output reduction threshold and the fluctuation range of the magnitude of the magnetic coupling is less than
  • the induction heating cooker according to the first aspect of the present invention configured as described above can greatly reduce the erroneous detection of spillage in the heating container that occurs during heating, and reliably detect the occurrence of spillage. Can do.
  • the load movement detection unit in the first aspect includes a heating input / output detection unit that detects input / output of the inverter, and the heating input / output detection
  • the variation width of the magnetic coupling may be detected by detecting the change width of the heating output detected by the part.
  • the load movement detection unit includes an on-time detection unit that monitors an on-time of a switching element constituting the inverter, You may comprise so that the fluctuation range of the said magnetic coupling may be detected by detecting the change width of the said on time which an on time detection part detects.
  • the overflow detection unit in the first aspect is a second overflow detection period set for a predetermined period when the amount of change is equal to or greater than the output reduction threshold. And when it is detected that the fluctuation range of the magnitude of the magnetic coupling detected by the load movement detection unit is less than a predetermined value, the spill suppression operation is performed after the second spill detection period ends. Also good.
  • the load movement detection unit is a heating coil current detection unit that measures a high-frequency current supplied to the heating coil. It may be configured.
  • the load movement detection unit according to the first or second aspect may be an input current detection unit that measures an input current of the inverter. .
  • the drifting detection unit includes a reference value update mode and a reference value update stop mode, and shifts to the reference value update mode.
  • the capacitance detected by the capacitance detection unit is stored in the storage unit as the reference value, and the capacitance detected by the capacitance detection unit within the reference value detection period is changed with respect to the reference value.
  • the reference value detection period elapses with the capacitance detected by the capacitance detection unit within the reference value detection period as the reference value.
  • the amount of change of the capacitance detected by the capacitance detection unit within the reference value detection period with respect to the reference value is greater than or equal to the reference value update stop threshold. If, it may be configured to shift to the reference value update stopping mode for stopping the updating of the reference value to the storage unit.
  • the overflow detection unit detects the capacitance of the electrode a plurality of times within a reference value detection period, and the capacitance When the amount of change of the plurality of capacitances detected by the detection unit with respect to the reference value is less than the reference value update stop threshold, an average value of the plurality of capacitances detected within the reference value detection period is newly calculated.
  • the reference value may be updated as a reference value.
  • the boiling-out detection unit according to the seventh aspect shifts to the reference value update mode, the capacitance of the electrode within the reference value detection period. And when the change amount of the detected plurality of capacitances with respect to the reference value is equal to or greater than the reference value update stop threshold, the reference value for the storage unit is shifted to the reference value update mode. The update may be stopped.
  • the mode when the overflow detection unit in the seventh aspect does not determine that the overflow has occurred since the amount of change is equal to or greater than the output reduction threshold, the mode may be shifted to the second standby mode, and after waiting for the second standby period, the mode may be shifted to the reference value update mode.
  • the boiling-out detection unit according to the seventh aspect shifts to a standby mode after starting heating, and shifts to the reference value update mode after a standby period. It may be configured.
  • the overflow detection unit is configured so that the capacitance is not less than the reference value update stop threshold.
  • the maximum value in the capacitance detected by the detection unit may be stored, and if the predetermined value or more is decreased from the maximum value, it may be configured not to determine that the overflow is detected.
  • an easy-to-use induction heating cooker that can reduce erroneous detection of spillage in a heating container that occurs during heating and can accurately detect the occurrence of spillage.
  • the block diagram which shows the structure of the induction heating cooking appliance of Embodiment 1 which concerns on this invention.
  • the block diagram which shows the structure of the electrostatic capacitance detection part in the induction heating cooking appliance of Embodiment 1.
  • FIG. The top view which shows the various electrodes etc. which were formed in the top plate in the induction heating cooking appliance of Embodiment 1.
  • FIG. 1A is a block diagram showing the configuration of the induction heating cooker according to the first embodiment of the present invention.
  • 1B is a circuit diagram illustrating a configuration of a capacitance detection unit in the induction heating cooker according to Embodiment 1.
  • FIG. 1A the induction heating cooker according to Embodiment 1 is provided below a top plate (top plate) 2 on which a heating container (for example, an iron pan or the like) 1 is placed, and below the top plate 2.
  • the heating coil 3 includes a heating coil 3 that generates a high-frequency magnetic field and induction-heats the bottom surface of the heating container 1 disposed opposite to the heating container 1 and one or more switching elements 4a such as IGBTs.
  • Inverter 4 to be supplied, rectifier 5 that rectifies AC power supply 6 and supplies DC current to inverter 4, current transformer 7 aa that monitors the heating coil current flowing in heating coil 3, and heating corresponding to the heating output of inverter 4
  • a heating coil current detector 7a that detects a coil current (high-frequency current) and functions as a load movement detector, and a current transformer that monitors the input current of the inverter 4 bb and an output signal of the current transformer 7bb are input to detect an input current (low frequency current) corresponding to the heating output of the inverter 4 and to function as a load movement detection unit, and to turn on the switching element 4a
  • the heating output of the inverter 4 is varied based on the on-time detection unit 7c that monitors time, the heating coil current detection signal output from the heating coil current detection unit 7a, and the input current detection signal output from the input current detection unit 7b.
  • the control unit 8 that controls the drive and the back surface of the top plate 2 (in FIG. 1A, the surface on which the heating container 1 is placed is the front surface, and the opposite surface) is patterned in a band shape with a highly conductive material.
  • a storage unit 12 for storing the magnitude of the heating coil current detected by the heating coil current detection unit 7a detected every period and the magnitude of the input current detected by the input current detection unit 7b every predetermined period;
  • a spill detector 11 that detects a spill state of the heating container 1 based on a capacitance detection signal and a heating output detection signal (including a heating coil current detection signal or an input current detection signal).
  • detecting the capacitance of the electrode means “the magnitude of the capacitance between the electrode and a predetermined potential (for example, the common potential of the capacitance detection unit 10 or the earth potential) and the capacitance between the electrodes. Is detected.
  • the structure and function for detecting the boiling state in the heating container 1 are mainly demonstrated, and the function and structure for detecting other states, for example, heating Description of the state detection function other than the spilled state, such as detection when the container 1 is shifted, floated, burned, and a small object load such as a knife or fork is placed on the top plate 2, is omitted.
  • the configuration other than the configuration necessary for explaining the configuration for detecting the overflowing state is omitted.
  • FIG. 2 is a plan view of the top plate 2 showing various electrodes formed by pattern-printing a conductive paint on the back surface of the top plate 2 in the induction heating cooker of Embodiment 1 and baking at high temperature. is there.
  • the top plate 2 shown in FIG. 2 is formed of heat resistant glass, for example, crystallized glass.
  • Two circle patterns 2a and 2b are drawn on the surface of the top plate 2 so that the user can recognize the heating position where the heating container (for example, pan) 1 as the object to be heated is to be placed. For example, the position corresponding to the outer periphery of the heating coil 3 having a maximum output of 3 kW is shown.
  • a configuration having two heating coils 3 will be described.
  • the number of heating coils 3 is not limited to two, and any number of heating coils 3 such as one, three, and four.
  • a circle pattern and electrodes are formed on at least one heating coil 3 according to the number of the heating coils 3.
  • a plurality of operation electrodes 16 serving as operation switches for the user to set the operation of the induction heating cooker are provided on the top plate. 2 is printed in the same manner as the electrodes for detecting spillage.
  • the position where the operation electrode 16 is provided is a region closer to the user side than the circle patterns 2 a and 2 b on the top plate 2.
  • the user side in the top plate 2 is referred to as the near side, and the opposite is referred to as the back side.
  • the position on the top plate 2 is specified as the left side and the right side of the top plate 2.
  • an electrode group consisting of a plurality of strip-shaped electrodes 9 (spill detection electrodes 9a to 9g) having a predetermined distance from the circle patterns 2a and 2b.
  • a and electrode group B are formed. These electrode group A and electrode group B serve as state detection electrodes for detecting a spilled state.
  • the left rear electrode 9a having an arc-shaped portion along the annular circle pattern 2a on the back side of the left side, and on the front side of the left side
  • a left front electrode 9b having an arc-shaped portion along the circle pattern 2a and a left center electrode 9c having an arc-shaped portion along the circle pattern 2a are formed on the center side.
  • the left circle pattern 2a is surrounded by the electrode group A including the left rear electrode 9a, the left front electrode 9b, and the left center electrode 9c. That is, the electrode group A has a radius larger than that of the circle pattern 2a, and is arranged at a position concentrically with the circle pattern 2a or in the vicinity thereof.
  • connection portions 19a, 19b, and 19c that are wider than the arc-shaped portions are formed at one end of each of the left rear electrode 9a, the left front electrode 9b, and the left center electrode 9c.
  • the connection portions 19a, 19b, and 19c come into contact with one end of a connection terminal 10a, which will be described later, fixed to the capacitance detection portion 10 (see FIG. 1), whereby the capacitance detection portion 10 and the electrode 9a. , 9b, 9c are electrically connected.
  • connection portions 19a, 19b, and 19c are provided on the top plate 2, when the top plate 2 is attached to the main body provided with the capacitance detection unit 10, the connection terminal 10a and the connection portions 19a, 19b, Even if there is a slight shift in the mutual positional relationship of 19c, the connection terminal 10a and the connection portions 19a, 19b, and 19c can be electrically connected reliably.
  • the right rear electrode 9d having an arc-shaped portion along the circular pattern 2b on the right side and the circle pattern 2b on the right front side.
  • a right front electrode 9e having an arc-shaped portion along the circle pattern 2b and a right center electrode 9f having an arc-shaped portion along the circle pattern 2b are formed on the center side.
  • the right circle pattern 2b is surrounded by the electrode group B including the right rear electrode 9d, the right front electrode 9e, and the right center electrode 9f. That is, the electrode group B has a larger radius than the circle pattern 2b, and is arranged at a position on or near the circle pattern 2b.
  • connection portions 19d, 19e, and 19f that are wider than the arc-shaped portion are formed at one end of each of the right rear electrode 9d, the right front electrode 9e, and the right center electrode 9f.
  • a protective electrode 9g is provided at the center of the top plate 2, between the left center electrode 9c and the right center electrode 9f, and a wiring pattern 9aa led out from the left rear electrode 9a to the connecting portion 19a, and the right rear electrode. It is provided in a region between the wiring patterns 9dd led out from 9d to the connecting portion 19d. Further, the protective electrode 9g is led out and arranged in a region parallel to the arrangement of the operation electrodes 16 on the near side of the central portion of the top plate 2.
  • connection part 19g is formed in the edge part, and it contacts with the end of the connection terminal 10a of the electrostatic capacitance detection part 10 like other electrodes, and the electrostatic capacitance detection part 10 and It has a function as a connection means for electrical connection.
  • the temperature detection part 17 for detecting the temperature of the heating container 1, and the operation part 18 for a user to set the heating conditions of the said induction heating cooker, etc. Is provided.
  • the temperature signal of the heating container 1 from the temperature detection unit 17 and the setting signal from the operation unit 18 are input to the control unit 8 so as to drive and control the inverter 4 having the switching element 4a.
  • the induction heating cooker according to the first embodiment is provided with a display unit 20 so that the heating conditions set by the user, the operation state of the induction heating cooker, and the like are displayed.
  • FIG. 1B is a circuit diagram illustrating a configuration of the capacitance detection unit 10 in the induction heating cooker according to the first embodiment.
  • the capacitance detection unit 10 includes a connection terminal 10a whose one end contacts the electrode 9, a high-frequency signal generation unit 13 that supplies a high-frequency signal (for example, 350 kHz) to each electrode 9, and a connection terminal.
  • a capacitor 10b connected between the other end of 10a and the high-frequency signal generator 13 and a connection point between the connection terminal 10a and the terminal of the capacitor 10b are connected to each electrode from the high-frequency signal generator 13 via the capacitor 10.
  • connection terminal 10a is formed of an elastic body made of a metal having good conductivity such as phosphor bronze whose contact portion is gold-plated.
  • the connection portions (19a to 19g) of the electrodes 9 (9a to 9g) are supplied with a high-frequency signal from the high-frequency signal generation unit 13 of the capacitance detection unit 10, and the electrodes 9 (9a to 9g). ) Is electrically connected to the rectifying unit 14 in order to detect the capacitance.
  • a pan or the like as the heating container 1 is placed at the position indicated by the circle patterns 2a and 2b, and the user heats at the operation unit 18.
  • Conditions etc. are set and induction heating operation is started.
  • the control unit 8 drives and controls the inverter 4 so that the heating output becomes the first set value P1 (for example, 3 kW) automatically set by the control unit 8 in the operation unit 18 or the automatic control mode.
  • P1 for example, 3 kW
  • the top plate 2 which is mainly an electrical insulator and air exist. Thereafter, by continuing the induction heating operation, the heated contents in the heating container 1 are brought into a boiling state, and the spillage can be generated.
  • a liquid containing an electrolyte is present around the electrode 9.
  • capacitive coupling between the electrode 9 and the pan bottom increases.
  • the capacitive coupling between the electrode 9 and the heating coil 3 becomes larger than when no spilling occurs.
  • the capacitance at the electrode 9 increases. If the spilling state continues, the increased state of the capacitance changes according to the amount of spilling and the state of spilling.
  • the detection of the overflowing state is performed by detecting the capacitance detection signal (Vd) from the capacitance detection unit 10 and the heating coil current detection output from the heating coil current detection unit 7a. This is performed in the overflow detector 11 based on the signal and the input current detection signal output from the input current detector 7b.
  • FIG. 3A shows a capacitance detection signal (Vd) ((a) of FIG. 3A) detected by the induction heating cooker of Embodiment 1 and a heating output (P) output from the inverter 4 (of FIG. 3A).
  • 3B is a waveform diagram illustrating an example of a capacitance detection signal (Vd) input from the capacitance detection unit 10 to the spillover detection unit 11.
  • the vertical axis indicates the capacitance detection signal (Vd)
  • the horizontal axis indicates the elapsed time
  • (b) of FIG. 3A shows the capacitance shown in (a) of FIG. The relationship between the detection signal (Vd) and the heating output (P) from the inverter 4 is shown.
  • the electrode 9 forms a capacitor 10 c with the common potential of the capacitance detection unit 10.
  • the capacitance of the capacitor 10c changes depending on the arrangement of the conductor around the electrode 9.
  • the capacitance of the capacitor 10c is referred to as “the capacitance of the electrode 9”.
  • the voltage Va of the high-frequency signal generator 13 is divided by a capacitor 10b and a capacitor 10c, rectified by a rectifier 14, and further smoothed by a capacitor 10d to become a DC voltage (Vd ').
  • This DC voltage (Vd ′) is input to the voltage detector 15.
  • the voltage detection unit 15 performs AC-DC conversion on the direct-current voltage (Vd ′) and outputs the converted voltage as a capacitance detection signal (Vd) to the overflow detection unit 11.
  • the electrostatic capacitance detection part 10 detects the electrostatic capacitance of the electrode 9, and outputs the electrostatic capacitance detection signal (Vd) corresponding to the magnitude
  • the capacitance detection signal (Vd) decreases due to the occurrence of spillage from the heating container 1 at the time indicated by point A and the increase in the capacitance of any electrode 9. It shows the case.
  • the overflow detection operation in the state shown in FIG. First, in the initial stage of the induction heating operation for heating the heating container 1 (not shown in FIG. 3A (a)), the contents of the heating container 1 are not spilled, and the voltage detection of the capacitance detection unit 10 is performed.
  • the capacitance detection signal (Vd) detected by the unit 15 does not change due to spillage.
  • a certain standby period for example, 5 seconds
  • the heating operation is stopped or the heating output is suppressed by the overflow detection operation. It is configured not to operate. That is, the heating operation is stopped or the heating output is suppressed according to the detection result of the overflow detector 11 only when it is determined that the overflow has occurred after the standby time has elapsed.
  • the high frequency voltage input from each electrode 9 is rectified by the rectifier 14 and the voltage detector 15. Is input.
  • the DC voltage detected by the voltage detector 15 is digitized and output as a capacitance detection signal (Vd).
  • the capacitance detection signal (Vd) is input as it is every predetermined time (for example, every time the zero point of the commercial power source is detected twice).
  • an average value every time a predetermined number of times (for example, 5 or 6 times) is input (for example, about every 0.1 sec). May be input as a capacitance detection signal (Vd).
  • an average value of the capacitance detection signal (Vd) in the reference value detection period (T0) (for example, 1 second) is calculated, and the calculated average value is stored in the storage unit 12 as the reference value (V0).
  • the reference value (V0) calculated as described above corresponds to the capacitance detected by the capacitance detection unit 10 before spilling occurs. Based on the fluctuation amount ( ⁇ V) of the capacitance detection signal (Vd) with respect to the reference value (V0), the overflow detection unit 11 performs arithmetic processing to determine the presence or absence of the overflow state.
  • the change amount ( ⁇ V) of the capacitance detection signal (Vd) is less than the first change amount ( ⁇ V1)
  • the average value of the capacitance detection signal (Vd) in the reference value detection period (T0) detected at the beginning of the overflow detection operation is registered in the storage unit 12 as the reference value (V0).
  • a preset value may be used for the first reference value (V0).
  • the detected capacitance detection signal (Vd) is compared with the registered reference value (V0) until the reference value detection period (T0) elapses again after the reference value (V0) is registered. The amount of change ( ⁇ V) is detected.
  • the average of the capacitance detection signal (Vd) in the reference value detection period (T0) A value is obtained and updated and registered in the storage unit 12 as a new reference value (V0).
  • the change amount ( ⁇ V) of the capacitance detection signal (Vd) with respect to the reference value (V0) is less than the first change amount ( ⁇ V1) during the elapse of the reference value detection period (T0).
  • the average value of the capacitance detection signal (Vd) is updated and registered as the reference value (V0) instead of the reference value (V0) updated up to the previous time.
  • the change amount ( ⁇ V) of the capacitance detection signal (Vd) in the reference value detection period (T0) is less than the first change amount ( ⁇ V1), the average of the capacitance reference signal (Vd) during that period
  • the value is updated and registered in the storage unit 12 as a new reference value (V0), and this reference value (V0) is compared with the latest capacitance detection signal (Vd).
  • the latest reference value (V0) is changed during a period in which the amount of change in the capacitance detection signal (Vd) changes within a small fluctuation range determined in advance within the reference value detection period (T0).
  • the storage unit 12 is sequentially updated and stored. In the overflow detection operation, the above-described reference value update processing is sequentially performed.
  • the first change amount ( ⁇ V1) serving as a threshold value whether or not to update and register as the reference value (V0), that is, the reference value update stop threshold value is, for example, “3 digits”.
  • “1 digit” is the minimum unit of digital display.
  • the latest capacitance detection signal (Vd) is updated and registered.
  • the reference value (V0) is compared and the amount of change is equal to or less than the first change amount ( ⁇ V1: for example, 3 digits), so that the capacitance detection detected during the reference value detection period (T0) elapses.
  • the average value of the signal (Vd) is updated and registered as the reference value (V0) and recorded in the storage unit 12.
  • the detected capacitance detection signal (Vd) is averaged every reference value detection period (T0), and the latest reference value is obtained. Updated as (V0).
  • the reference value (V0) that has been updated and registered up to the previous time is updated. Continue to be registered without.
  • the reference value (V0) at point A is fixed as the reference value.
  • the capacitance detection signal (Vd) is compared with the average value of the capacitance detection signal (Vd) in the latest reference value detection period (T0) registered as the reference value (V0) and changed. A quantity ( ⁇ V) is calculated.
  • the reference value update stop mode the reference value (V0) is fixed, and the change amount ( ⁇ V) of the capacitance detection signal (Vd) with respect to the fixed reference value (V0) is calculated.
  • the reference value update stop period is set to about 3 seconds, for example.
  • the reference value update stop state is entered, but the reference value detection period (T0) (for example, 1 second) If the change amount ( ⁇ V) of the capacitance detection signal (Vd) newly detected during () is less than or equal to the first change amount ( ⁇ V1), the spill detector 11 determines that it is a normal induction heating operation. Thus, the reference value update mode is set and the reference value update process is executed.
  • a capacitance detection signal (corresponding to the capacitance of the electrode 9 detected by the capacitance detection unit 20 in the reference value update stop mode (spillover determination period)) ( When the change amount ( ⁇ V) with respect to the reference value (V0) in Vd) becomes equal to or greater than the first change amount ( ⁇ V1), the first overflow detection period (T1) is entered.
  • the amount of change ( ⁇ V) is further greater than or equal to the second amount of change (output reduction threshold: ⁇ V2) (the time indicated by point C in FIG.
  • the first overflow detection period (T1) is Ends and enters the second overflow detection period (T2).
  • the output reduction threshold value that is the second change amount ( ⁇ V2) that is a threshold value indicating whether or not to shift to the second boiling over detection period (T2) is, for example, “14 digits”.
  • “1 digit” indicates the minimum unit of digital display. It is set to enter the third overflow detection period (T3) after the second overflow detection period has elapsed from when the change amount ( ⁇ V) of the capacitance detection signal (Vd) is equal to or greater than the second change amount (output reduction threshold: ⁇ V2). ing.
  • the third overflow detection period (T3) is set to 1 second in the induction heating cooker of the first embodiment.
  • the heating output of the inverter 4 is set by the operation unit 18 or is automatically cooked in the first overflow detection period (T1) and the second overflow detection period (T2).
  • the first set value (P1: 3 kW, for example) automatically set in the mode is set.
  • the second set value (P2: smaller than the first set value (P1)) is set. For example, it is reduced (watt down) to 0.3 kW).
  • the fluctuation state of the heating coil current (high-frequency current) supplied to the inverter 4 and the input current is used for the overflow detection.
  • the electrostatic capacitance detection signal (Vd) from the electrostatic capacitance detection unit 10 fluctuates, in addition to the occurrence of spilling, for example, the heating container 1 may be moved and cooked by the user.
  • the heating container 1 which is a load moves on the top plate 2, since the arrangement of the heating container 1 with respect to the heating coil 3 is changed, the magnitude of the magnetic coupling between the heating coil 3 and the load is large. Changes.
  • the ON time of the switching element 4a in the inverter 4 is the same, the smaller the distance between the heating container 1 and the heating coil 3, the greater the magnetic coupling, and the smaller the heating coil current and the input current. .
  • the ON time of the switching element 4a of the inverter 4 is changed, and the magnitudes of the heating coil current and the input current also fluctuate. It will be. As a result, the high frequency current and the input current supplied from the inverter 4 to the heating coil 3 fluctuate.
  • the position of the heating container 1 with respect to the heating coil 3 does not change, so that the magnetic coupling does not change and the high-frequency current and input current supplied from the inverter 4 to the heating coil 3 change.
  • the input current of the inverter 4 is detected by the input current detector 7b
  • the high-frequency current supplied from the inverter 4 to the heating coil 3 is detected by the heating coil current detector 7a, and the detected input current and high-frequency current are stored.
  • T4 time point before the first predetermined period
  • FIG. 3B is a graph for explaining the detection operation in the load movement detection period (T4), and the vertical axis indicates the magnitude of the input current (Iin), the heating coil current (IL), or the ON time (Ton) of the switching element.
  • the horizontal axis indicates the elapsed time.
  • the spillover detection unit 11 is, for example, a fluctuation range ( ⁇ IL) of the heating coil current (IL) detected by the heating coil current detection unit (load movement detection unit) 7a. ).
  • the load movement detection period (T4) is a change in the capacitance detected by the capacitance detection unit 10 with respect to the reference value (V0) corresponding to the capacitance detected by the capacitance detection unit 10 before spilling occurs.
  • the amount ( ⁇ V) is set so as to include the time point when the output reduction threshold (second variation: ⁇ V2) is reached.
  • the change amount ( ⁇ V2) with respect to the reference value (V0) of the capacitance detection signal (Vd) indicated by the point C in FIG. 3A is the second change amount ( ⁇ V2).
  • the fluctuation range ( ⁇ IL) of the heating coil current can be measured before, after, or before and after the time point when the change amount ( ⁇ V) becomes equal to or greater than the output reduction threshold value ( ⁇ V2).
  • the fluctuation range ( ⁇ IL) is less than a predetermined value (for example, 15 digits) at the end of the second overflow detection period (T2) indicated by a point D in FIG. It is determined that the change amount ( ⁇ V) of the detection signal (Vd) is likely to have occurred due to spillage, and the third spillover period (T3) is entered, and the fluctuation range ( ⁇ IL) is a predetermined value (for example, In the case of 15 digits) or more, it is determined that it is not caused by a spill, and the reference value update stop mode is shifted to the reference value update mode.
  • a predetermined value for example, 15 digits
  • the load movement detection unit includes an on-time detection unit 7c that monitors the on-time (Ton: conduction period) of the switching element 4a instead of or together with the heating coil current detection unit 7a or the input current detection unit 7b.
  • the on-time detection unit 7 c detects the change width of the on-time (conduction period: Ton) of one or more switching elements 4 a constituting the inverter 4, thereby increasing the magnitude of magnetic coupling between the heating coil 3 and the heating container 1.
  • the fluctuation range ( ⁇ Ton) of the height is detected.
  • the controller 8 drives the heating coil 3 by controlling on / off of the switching element 4a, and changes the heating output of the inverter 4 by changing the on-time of the switching element 4a (for example, lengthens the on-time).
  • the on-time of the switching element 4a (when there are a plurality of switching elements 4a, the on-time of all the switching elements) is the same. For example, when the magnetic coupling decreases, the heating output of the inverter 4 decreases. In this case, in order to perform control to return to the set output, the control unit 8 changes the on-time (Ton) to be increased by feedback control.
  • the on-time detection unit 7c as a load movement detection unit monitors the on-time (conduction period) of the switching element 4a and detects a change in the on-time (Ton) of the switching element 4a that occurs in response to a change in magnetic coupling. To do.
  • the on-time detector 7c by detecting the variation of the on-time (Ton) by the on-time detector 7c, whether or not the fluctuation is detected by measuring the variation width ( ⁇ IL) of the heating coil current (IL) in the heating coil current detector 7a.
  • the change in the load movement detection period (T4) of the ON time (Ton) of the switching element 4a is detected, the fluctuation range ( ⁇ Ton) of the magnetic coupling is measured, and the capacitance detection signal It is possible to identify whether or not the change amount ( ⁇ V) of (Vd) is due to spillage.
  • the capacitance change rate for example, 8 digits / second
  • the capacitance detection signal (Vd) is less than a predetermined value in the second leakage detection period (T2)
  • the reference value update stop mode is canceled, and the process proceeds to the reference value update mode.
  • the rate of change in capacitance detected by the capacitance detection signal (Vd) is greater than or equal to a predetermined value, it is determined that there is a possibility of spilling.
  • the spill detection unit 11 is based on the capacitance change rate detected by the capacitance detection signal (Vd) and the fluctuation range of the magnitude of the magnetic coupling. Detects spilling.
  • the fluctuation range of the magnitude of the magnetic coupling is not limited to the parameters of the heating coil current, the input current, and the on-time (conduction period) of the switching element, but is determined by the voltage or current generated in the inverter 4. It can be detected by measuring a parameter that fluctuates in response to a change in magnetic coupling and calculating a fluctuation range of each parameter.
  • the overflow detection unit 11 waits by reducing the heating output to the second set value (P2) in order to determine the overflow detection. If it is detected during the third overflow detection period (T3) that the capacitance detection signal (Vd) has changed without being overflowed, the heating output is set to the first set value (without determining the overflow detection). Returning to P1), the reference value update stop process may be terminated. Thereby, it is possible to prevent the cooking from being interrupted unnecessarily.
  • the capacitance detection signal (Vd) is a predetermined value with respect to the maximum value (Vd (min)) detected in the reference value update stop mode. (For example, 15 digits) It is good also as a case where it jumps up.
  • the spillage detection unit 11 determines that the spillage has occurred, the spillage detection unit 11 stops heating and displays the occurrence of the spillage on the display unit 20 or informs by voice. In order to perform the heating operation again in this state, it is necessary to first press the heating stop key.
  • the reference value update stop mode which starts when the detected change amount ( ⁇ V) of the capacitance detection signal (Vd) becomes equal to or greater than the first change amount ( ⁇ V1), at least one spilled electrode (9a to 9a to 9g)
  • a predetermined value for example, 145 digits / second
  • the induction heating operation is stopped instantaneously or the heating output May be configured to be reduced to a third setting value (P3: for example, 0.1 kW) lower than the second setting value (P2).
  • the amount of change of the remaining two electrodes in the three electrodes 9 (left rear electrode 9a, left front electrode 9b, left center electrode 9c, or right rear electrode 9d, right front electrode 9e, right center electrode 9f) (
  • a predetermined value for example, 10 digits
  • the overflow detection unit 11 shifts to the second standby mode, the overflow detection operation that is executed in the reference value update mode and the reference value update stop mode is prohibited in the second standby period (for example, 2 seconds).
  • the process shifts to the reference value update mode.
  • you may comprise so that it may transfer to the 3rd standby mode which waits until the variation
  • the third standby mode if the amount of change ( ⁇ V) with respect to the reference value (V0) stored in the reference value update stop mode is equal to or greater than a predetermined value (for example, 50 digits), the third standby period (for example, 2 (Seconds), and the operation is repeated until the value becomes less than the predetermined value.
  • the minimum capacitance detection signal (Vd (min)) detected in the reference value update stop mode (spillover determination period) and the detected capacitance detection signal (Vd) are not limited to the second overflow detection period. If a comparison is detected and a jump exceeding a predetermined value (for example, 15 digits) is detected, it is determined that the spillover state has not occurred, and the process returns to the reference value update processing operation after shifting to the second standby mode. This is because the capacitance signal does not jump abruptly in the spilled state.
  • the three electrodes 9 (the left rear electrode 9a, the left front electrode 9b, the left center electrode 9c, or the right rear electrode) for detecting the capacitance of the heating container 1 in each heating coil 3 are used.
  • the relevance of each electrostatic capacitance detection signal from the electrode 9d, the right front electrode 9e, and the right center electrode 9f) is used as a determination material for detection of overflowing. For example, if the capacitances of the three electrodes 9 show significantly different transitions (time changes), there is a possibility of small spills. On the other hand, if the capacitances of the three electrodes 9 show the same transition, there is a possibility that large spillage has occurred or the heating container 1 has been touched.
  • a threshold value serving as a determination criterion is set to a high value, and when the threshold value is exceeded, it is determined that there is a large spillage, thereby enabling a more accurate determination.
  • the capacitances of the three electrodes 9 change similarly, for example, in the three electrodes 9, each of the start points of the second overflow detection period (time point C in FIG. 3A) is included within a predetermined period.
  • any one of the electrodes shifts to the second spill detection period within a period of 0.5 seconds after any one electrode shifts to the second spill detection period
  • the capacitance of the three electrodes 9 shows the same transition.
  • the reference value update mode ends and the reference value update stop mode is entered.
  • the capacitance detection signal (capacitance voltage at point A in FIG. 3A (a)) detected immediately before entering the reference value update stop mode is used as the reference value (V0).
  • the detected capacitance detection signal (Vd) becomes larger than the second change amount (output reduction threshold: ⁇ V2) during the reference value update stop period, the process shifts to the second overflow detection period and is set in advance.
  • the second overflow detection period (T2) which is the period, ends, the process shifts to the third overflow detection period.
  • the heating output of the inverter 4 is reduced (second set value: P2, for example, 0.3 kW). Thereafter, when the third overflow detection period (T3), which is a preset period, ends, the overflow detection is confirmed and the heating output is stopped.
  • the rate of change per unit time of the capacitance detection signal (Vd) is equal to or greater than a predetermined value (for example, 145 digits / second) in the second overflow detection period (T2) and the third overflow detection period (T3).
  • a predetermined value for example, 145 digits / second
  • the above-described overflow detection operation is reset and a new one is generated.
  • the spill detection operation is started.
  • the second standby time during which the heating output suppression operation of stopping the heating by the spillover detection operation or reducing to the third heating output is not performed is performed at the start of heating. It is set shorter than the waiting time (for example, 3 seconds). It should be noted that the length of the standby time during which no overflow detection operation is performed in this initial stage is appropriately set according to the situation (output, temperature, etc.).
  • the overflow detection unit 11 of the induction heating cooker compares the capacitance signal (Vd) output by the voltage detection unit 15 every predetermined period (for example, commercial power cycle) with a reference value (V0).
  • a predetermined period for example, commercial power cycle
  • V0 a reference value
  • the capacitance of the electrode 9 is detected a plurality of times (for example, 5 or 6 times) within a predetermined detection period (for example, about 0.1 second), and a plurality of detected electrostatic capacitances are detected.
  • An average value of the capacitance may be calculated and adopted as the capacitance signal (Vd), and the average value of the capacitance may be compared with the reference value (V0).
  • the spill detector 11 is in any one of a plurality of capacitances detected a plurality of times within a reference value detection period (T0) (for example, 1 second).
  • T0 a reference value detection period
  • the amount of change with respect to the reference value (V0) becomes equal to or greater than the reference value update stop threshold (3 digits)
  • the update of the reference value (V0) to the storage unit 12 is stopped, and the detection period at that time is reset and new
  • the measurement of the reference value detection period may be started, and the storage unit 12 may be configured to execute the reference value update process.
  • the capacitance detected by any one of the plurality of electrodes 9 (9a to 9g) provided near the periphery of each heating coil 3 is the reference value (V0).
  • the reference value update process is executed when the amount of change is less than the reference value update stop threshold, and the reference value update stop process is executed when the amount of change is greater than the reference value update stop threshold.
  • the induction heating cooker of Embodiment 1 reduces the heating output of the inverter 4 when the detected capacitance has a change amount equal to or greater than an output reduction threshold (for example, 14 digits) (second set value: P2), and when the fluctuation value of the high-frequency current detection signal in the overflow detection period becomes equal to or less than the predetermined fluctuation value, the induction heating cooker is stopped or the heating output of the inverter 4 is further reduced (third Set value: P3).
  • an output reduction threshold for example, 14 digits
  • FIG. 4A is a display state diagram of the menu display unit in the operation unit 18 and the display unit 20 when the user sets the heating conditions before the induction heating operation of the first embodiment is performed. As shown in FIG. 4A, only the “menu” operation switch is displayed in the menu display section. When the user selects (presses) the “menu” mark, as shown in FIG.
  • the induction heating operation is started and the burn-in detection operation is started.
  • the burning detection operation is to detect burning of the contents of the heating container 1 and is detected by the temperature detection unit 17 based on information such as a rapid temperature rise. During this induction heating operation, only the burn-out detection operation is activated, and the overflow detection operation is not started.
  • FIG. 4C shows a menu display portion in the state shown in FIG. 4C.
  • “Fukibokore” mark is newly displayed from the menu display section shown in FIG. 4B, and “Heating” and “Pot mark” are blinkingly displayed. That is, when the user selects (presses) the “cut / start” mark in this state, the induction heating operation is started, and the burn-in detection operation and the overflow detection operation are started.
  • FIG. 4D shows the display state of the menu display section during the induction heating operation. As shown in FIG. 4D, “heating”, “pan mark”, “menu”, and “off / start” are displayed during the induction heating operation, and the user can change the menu at any time during the induction heating operation. It is possible to stop the heating operation.
  • the operation unit 18 in the induction heating cooker according to the first embodiment includes operation switches (left and right movements) required in the induction heating cooker such as selection of a heater, temperature setting (heating power adjustment), timer setting, and the like. Arrow marks to indicate, marks to indicate increase / decrease (+,-), and the like).
  • the induction heating cooker of the present invention includes signals and inverters from a plurality of arc-shaped electrodes provided on the back of the top plate near the periphery of the heating coil. Based on the high-frequency current output by the sensor, the amount of change in capacitance generated in the electrode and the fluctuation state of the high-frequency current are detected with high accuracy, greatly reducing false detection of spillage in the heating vessel during induction heating operation. In addition, the occurrence of spilling can be reliably detected, and the induction heating cooker is highly reliable and safe.

Abstract

Disclosed is a highly reliable induction cooker wherein false detection of boiling over from a cooking container when the cooking container is heated is significantly reduced. The boiling over detecting unit (11) of the induction cooker is so configured as to stop a heating operation or reduce heating power to a third set value (P3), which is smaller than a second set value (P2), in the case where the fluctuation range of a high frequency current detected during a load moving detection period (T4) by a current detecting unit (7), said fluctuation range being stored in a storage unit (12), is smaller than a predetermined value, in a boiling over detecting period after the change quantity of a detected capacitance with respect to a reference value becomes equivalent to or larger than a power reduction threshold value (∆V2).

Description

誘導加熱調理器Induction heating cooker
 本発明は、誘導加熱調理器に関するものであり、特に、加熱調理時において鍋などの加熱容器からのふきこぼれを検知するふきこぼれ検知機能を有する誘導加熱調理器に関するものである。 The present invention relates to an induction heating cooker, and particularly to an induction heating cooker having a function of detecting a spill from a heated container such as a pan during cooking.
 従来の誘導加熱調理器において、ふきこぼれ検知は、例えば、日本の特開2008-159494号公報(特許文献1)に記載されているように、加熱コイルの外周に複数の電極を設け、これらの電極の静電容量の変化に基づいて行われていた。 In a conventional induction heating cooker, the detection of boiling over is performed by providing a plurality of electrodes on the outer periphery of the heating coil as described in Japanese Patent Application Laid-Open No. 2008-159494 (Patent Document 1). It was done based on the change in capacitance.
 図5は特許文献1に記載されている従来の誘導加熱調理器の構成を示す図である。図6は特許文献1に記載されているふきこぼれ検知を行うための電極における静電容量の変化を示すグラフである。 FIG. 5 is a diagram showing a configuration of a conventional induction heating cooker described in Patent Document 1. In FIG. FIG. 6 is a graph showing a change in capacitance in an electrode for performing the overflow detection described in Patent Document 1.
 図5に示すように、従来の誘導加熱調理器は、加熱容器(図示せず)を誘導加熱するため、交流電源101から低周波電力を入力して高周波電力を加熱コイル104に供給する駆動回路102を備えている。また、小さい円板状の複数の電極103が加熱コイル104の外周に同心円状に分散配置されている。分散配置された各電極103は、静電容量測定回路106に接続されている。静電容量測定回路106により、各電極103と静電容量測定回路106との間の静電容量が検出されている。この静電容量を以下、単に、「各電極103の静電容量」という。各電極103の静電容量は各電極103の周囲の誘電体(例えば、天板など)及び導電体(例えば、金属製の加熱容器、加熱コイル104など)の配置に依存する。このように構成された、従来の誘導加熱調理器において、加熱コイル104の上に天板(トッププレート)を介して載置された鍋などの加熱容器の周縁部分から液体がふきこぼれたとき、いずれかの電極103の上または近傍にふきこぼれた液体が存在することになる。このように、ふきこぼれた液体が存在するといずれかの電極103の静電容量が増加する。このような静電容量の増加を検知することにより、ふきこぼれを検知しようとするものである。いずれかの電極103の上または近傍にふきこぼれが発生すると、電極103と加熱容器または加熱コイル104との間には水分が介在することになり、加熱コイル104と電極103の静電容量は急激に増加する。したがって、上記のように電極103の静電容量を検知することによりふきこぼれを検知することは可能である。 As shown in FIG. 5, the conventional induction heating cooker is a drive circuit that inputs low frequency power from an AC power supply 101 and supplies high frequency power to the heating coil 104 in order to induction heat a heating container (not shown). 102. A plurality of small disk-shaped electrodes 103 are concentrically distributed on the outer periphery of the heating coil 104. Each electrode 103 that is distributed is connected to a capacitance measuring circuit 106. A capacitance between each electrode 103 and the capacitance measuring circuit 106 is detected by the capacitance measuring circuit 106. Hereinafter, this capacitance is simply referred to as “the capacitance of each electrode 103”. The capacitance of each electrode 103 depends on the arrangement of a dielectric (for example, a top plate) around each electrode 103 and a conductor (for example, a metal heating container, a heating coil 104, etc.). In the conventional induction heating cooker configured as described above, when liquid is spilled from the peripheral portion of a heating container such as a pan placed on the heating coil 104 via a top plate (top plate), There will be liquid spilled on or near the electrode 103. As described above, the capacitance of any one of the electrodes 103 increases when the liquid spilled is present. By detecting such an increase in capacitance, it is intended to detect a spill. When spilling occurs on or near any of the electrodes 103, moisture is interposed between the electrode 103 and the heating container or the heating coil 104, and the electrostatic capacitance of the heating coil 104 and the electrode 103 rapidly increases. To increase. Therefore, it is possible to detect the spillage by detecting the capacitance of the electrode 103 as described above.
 従来の誘導加熱調理器においては、電極103の静電容量が急増したことを検出したとき(図6参照)、制御回路105はふきこぼれと判断して、駆動回路102の動作を停止するか、若しくは加熱コイル104に流す高周波電流を低減している。 In the conventional induction heating cooker, when it is detected that the capacitance of the electrode 103 has increased rapidly (see FIG. 6), the control circuit 105 determines that the spill is over and stops the operation of the drive circuit 102, or The high-frequency current flowing through the heating coil 104 is reduced.
特開2008-159494号公報JP 2008-159494 A
 上記のように、加熱コイル104の外周に分散配置された電極103を用いて、その静電容量を検知することによりふきこぼれを検知することは可能であるが、電極103の静電容量変化はふきこぼれだけで生じる現象でないところに問題がある。例えば、電極103の近傍の天板上に濡れ雑巾などの水分を含んだ物を使用者が置いた場合においても、電極103が検知する静電容量は大幅に変化する。また、使用者が加熱容器の位置をずらした場合においても、電極103で検知する静電容量は変化する。このような、ふきこぼれでない状況においても、従来の誘導加熱調理器においては、ふきこぼれと判断して、駆動回路102の動作を停止し、若しくは加熱コイル104の電流を低減してしまい、使用者にとっては使い勝手の悪い調理器となっていた。 As described above, it is possible to detect the spillage by detecting the electrostatic capacity using the electrodes 103 dispersedly arranged on the outer periphery of the heating coil 104, but the capacitance change of the electrode 103 is spilled. There is a problem that is not a phenomenon that occurs only by itself. For example, even when the user places an object containing moisture such as a wet cloth on the top plate near the electrode 103, the capacitance detected by the electrode 103 changes significantly. Further, even when the user shifts the position of the heating container, the capacitance detected by the electrode 103 changes. Even in such a situation where no spilling occurs, the conventional induction heating cooker determines that spilling occurs and stops the operation of the drive circuit 102 or reduces the current of the heating coil 104, which is difficult for the user. It was an inconvenient cooker.
 誘導加熱調理器においては、表面が滑らかで凹凸のない天板が調理面として設けられており、ふきこぼれなどにより生じた汚れを容易に拭き取ることができるよう構成されている。しかし、ふきこぼれが発生してもそのまま放置すると、ふきこぼれが大量に発生した場合には天板上面あるいは誘導加熱調理器周囲が短時間でひどく汚れてしまうという問題がある。また、ふきこぼれが少量の場合であっても、長時間ふきこぼれが継続すると同様に汚れがひどくなるという問題がある。したがって、ふきこぼれが発生した場合には、使用者に直ぐに報知すること、あるいは加熱動作を停止若しくは低減することは重要である。しかしながら、ふきこぼれでは無い場合にふきこぼれと検知して、加熱動作を停止若しくは低減することは、使用者の意図しない調理の中断となってしまい、そのような誤検出の頻度が高い場合には、使い勝手が悪く、大きな問題となる。 In the induction heating cooker, a top plate having a smooth surface and no unevenness is provided as a cooking surface, and it is configured so that dirt generated by spilling can be easily wiped off. However, there is a problem that if a large amount of spillage occurs, the top surface of the top plate or the periphery of the induction heating cooker will be severely soiled in a short time if the spillage is left as it is. In addition, even when the spillage is small, if the spillage continues for a long time, there is a problem that the dirt becomes severe as well. Therefore, it is important to notify the user immediately when a spill occurs, or to stop or reduce the heating operation. However, if the spilling is not detected and the heating operation is stopped or reduced, the cooking operation unintended by the user is interrupted. If the frequency of such false detections is high, it is easy to use. Is bad, and it becomes a big problem.
 本発明は、加熱時に生じる加熱容器におけるふきこぼれの誤検出を低減することができるとともに、ふきこぼれの発生を精度良く検出することができる使い勝手の良い誘導加熱調理器を提供することを目的とする。 An object of the present invention is to provide an easy-to-use induction heating cooker that can reduce erroneous detection of spillage in a heating container that occurs during heating and that can accurately detect the occurrence of spillage.
 本発明に係る第1の観点の誘導加熱調理器は、加熱容器を載置する天板と、
 前記天板の下方に設けられ、前記加熱容器を誘導加熱する加熱コイルと、
 前記加熱コイルに高周波電流を供給するインバータと、
 前記加熱コイルの周囲近傍で前記天板裏面に設けられた電極と、
 前記電極に高周波信号を供給して前記電極の静電容量を検知する静電容量検知部と、
 負荷移動検知期間内における前記加熱容器と前記加熱コイル間の磁気結合の大きさの変動幅を検知する負荷移動検知部と、
 ふきこぼれが起きる前に、前記静電容量検知部が検知する静電容量に対応する基準値を記憶する記憶部と、
 前記加熱出力が設定された第1設定値になるように制御する制御部と、を備え、
 前記ふきこぼれ検知部は、前記静電容量検知部において検知された静電容量における前記基準値に対する変化量が出力低減閾値以上でかつ前記磁気結合の大きさの変動幅が所定値未満である場合、前記加熱出力を前記第1設定値より小さい予め設定された第2設定値に低減するかまたは加熱を停止するふきこぼれ抑制動作を行なうと共に、前記負荷移動検知期間は、前記変化量が前記出力低減閾値に達した時点を含むよう構成されている。このように構成された本発明に係る第1の観点の誘導加熱調理器は、加熱時に生じる加熱容器におけるふきこぼれの誤検出を大幅に低減することができるとともに、ふきこぼれの発生を確実に検出することができる。
An induction heating cooker according to a first aspect of the present invention includes a top plate on which a heating container is placed;
A heating coil that is provided below the top plate and induction-heats the heating container;
An inverter for supplying a high frequency current to the heating coil;
An electrode provided on the back surface of the top plate in the vicinity of the periphery of the heating coil;
A capacitance detector for detecting a capacitance of the electrode by supplying a high frequency signal to the electrode;
A load movement detection unit for detecting a fluctuation range of the magnitude of the magnetic coupling between the heating container and the heating coil in a load movement detection period;
A storage unit that stores a reference value corresponding to the capacitance detected by the capacitance detection unit before a spill occurs;
A control unit that controls the heating output to be a set first set value,
When the amount of change with respect to the reference value in the capacitance detected by the capacitance detection unit is greater than or equal to an output reduction threshold and the fluctuation range of the magnitude of the magnetic coupling is less than a predetermined value, The heating output is reduced to a preset second setting value smaller than the first setting value, or a spillage suppression operation for stopping heating is performed, and the change amount is the output reduction threshold during the load movement detection period. It is comprised so that the time of reaching | attaining may be included. The induction heating cooker according to the first aspect of the present invention configured as described above can greatly reduce the erroneous detection of spillage in the heating container that occurs during heating, and reliably detect the occurrence of spillage. Can do.
 本発明に係る第2の観点の誘導加熱調理器において、前記の第1の観点における前記負荷移動検知部は、前記インバータの入出力を検知する加熱入出力検知部を含み、前記加熱入出力検知部の検知する前記加熱出力の変化幅を検知することにより前記磁気結合の変動幅を検知するよう構成してもよい。 In the induction heating cooker of the second aspect according to the present invention, the load movement detection unit in the first aspect includes a heating input / output detection unit that detects input / output of the inverter, and the heating input / output detection The variation width of the magnetic coupling may be detected by detecting the change width of the heating output detected by the part.
 本発明に係る第3の観点の誘導加熱調理器において、前記の第1の観点における前記負荷移動検知部は、前記インバータを構成するスイッチング素子のオン時間をモニターするオン時間検知部を含み、前記オン時間検知部の検知する前記オン時間の変化幅を検知することにより前記磁気結合の変動幅を検知するよう構成してもよい。 In the induction heating cooker according to the third aspect of the present invention, the load movement detection unit according to the first aspect includes an on-time detection unit that monitors an on-time of a switching element constituting the inverter, You may comprise so that the fluctuation range of the said magnetic coupling may be detected by detecting the change width of the said on time which an on time detection part detects.
 本発明に係る第4の観点の誘導加熱調理器において、前記の第1の観点における前記ふきこぼれ検知部は、前記変化量が前記出力低減閾値以上となると所定の期間設定される第2ふきこぼれ検知期間に移行し、前記負荷移動検知部が検知した前記磁気結合の大きさの変動幅が所定値未満であることを検知すると、前記第2ふきこぼれ検知期間終了後前記ふきこぼれ抑制動作を行うよう構成してもよい。 In the induction heating cooker according to the fourth aspect of the present invention, the overflow detection unit in the first aspect is a second overflow detection period set for a predetermined period when the amount of change is equal to or greater than the output reduction threshold. And when it is detected that the fluctuation range of the magnitude of the magnetic coupling detected by the load movement detection unit is less than a predetermined value, the spill suppression operation is performed after the second spill detection period ends. Also good.
 本発明に係る第5の観点の誘導加熱調理器において、前記の第1又は第2の観点における前記負荷移動検知部は、前記加熱コイルへ供給される高周波電流を測定する加熱コイル電流検知部で構成してもよい。 In the induction heating cooker according to the fifth aspect of the present invention, the load movement detection unit according to the first or second aspect is a heating coil current detection unit that measures a high-frequency current supplied to the heating coil. It may be configured.
 本発明に係る第6の観点の誘導加熱調理器において、前記の第1又は第2の観点における前記負荷移動検知部は、前記インバータの入力電流を測定する入力電流検知部で構成してもよい。 In the induction heating cooker according to the sixth aspect of the present invention, the load movement detection unit according to the first or second aspect may be an input current detection unit that measures an input current of the inverter. .
 本発明に係る第7の観点の誘導加熱調理器において、前記の第1の観点における前記ふきこぼれ検知部は、基準値更新モードと基準値更新停止モードとを備え、前記基準値更新モードに移行すると、前記静電容量検知部が検知した静電容量を前記記憶部に前記基準値として記憶すると共に、基準値検知期間内において前記静電容量検知部が検知した静電容量の前記基準値に対する変化量が、前記出力低減閾値より小さい基準値更新停止閾値未満の場合、当該基準値検知期間内に前記静電容量検知部が検知した静電容量を前記基準値として、前記基準値検知期間経過する毎に更新して前記記憶部に記憶させ、前記基準値検知期間内において前記静電容量検知部が検知した静電容量の基準値に対する変化量が前記基準値更新停止閾値以上である場合、前記記憶部に対する前記基準値の更新を停止させる前記基準値更新停止モードに移行するよう構成してもよい。 In the induction heating cooker according to the seventh aspect of the present invention, the drifting detection unit according to the first aspect includes a reference value update mode and a reference value update stop mode, and shifts to the reference value update mode. The capacitance detected by the capacitance detection unit is stored in the storage unit as the reference value, and the capacitance detected by the capacitance detection unit within the reference value detection period is changed with respect to the reference value. When the amount is less than the reference value update stop threshold smaller than the output reduction threshold, the reference value detection period elapses with the capacitance detected by the capacitance detection unit within the reference value detection period as the reference value. Each time it is updated and stored in the storage unit, the amount of change of the capacitance detected by the capacitance detection unit within the reference value detection period with respect to the reference value is greater than or equal to the reference value update stop threshold. If, it may be configured to shift to the reference value update stopping mode for stopping the updating of the reference value to the storage unit.
 本発明に係る第8の観点の誘導加熱調理器において、前記の第7の観点における前記ふきこぼれ検知部は、基準値検知期間内において前記電極の静電容量を複数回検知し、前記静電容量検知部が検知した複数の静電容量の前記基準値に対する変化量が前記基準値更新停止閾値未満の場合、当該基準値検知期間内において検知された複数の静電容量の平均値を新たな前記基準値として前記基準値を更新するよう構成してもよい。 In the induction heating cooker according to the eighth aspect of the present invention, the overflow detection unit according to the seventh aspect detects the capacitance of the electrode a plurality of times within a reference value detection period, and the capacitance When the amount of change of the plurality of capacitances detected by the detection unit with respect to the reference value is less than the reference value update stop threshold, an average value of the plurality of capacitances detected within the reference value detection period is newly calculated. The reference value may be updated as a reference value.
 本発明に係る第9の観点の誘導加熱調理器において、前記の第7の観点における前記ふきこぼれ検知部は、前記基準値更新モードに移行すると、前記基準値検知期間内において前記電極の静電容量を複数回検知し、検知された複数の静電容量の前記基準値に対する変化量が前記基準値更新停止閾値以上である場合、前記基準値更新モードに移行するまで、前記記憶部に対する前記基準値の更新を停止させるよう構成してもよい。 In the induction heating cooker according to the ninth aspect of the present invention, when the boiling-out detection unit according to the seventh aspect shifts to the reference value update mode, the capacitance of the electrode within the reference value detection period. And when the change amount of the detected plurality of capacitances with respect to the reference value is equal to or greater than the reference value update stop threshold, the reference value for the storage unit is shifted to the reference value update mode. The update may be stopped.
 本発明に係る第10の観点の誘導加熱調理器において、前記の第7の観点における前記ふきこぼれ検知部は、前記変化量が前記出力低減閾値以上となってから、ふきこぼれと判定しない場合は、前記基準値更新停止モード終了後、第2待機モードに移行し、第2待機期間待機した後に、前記基準値更新モードに移行するよう構成してもよい。 In the induction heating cooker according to the tenth aspect of the present invention, when the overflow detection unit in the seventh aspect does not determine that the overflow has occurred since the amount of change is equal to or greater than the output reduction threshold, After completion of the reference value update stop mode, the mode may be shifted to the second standby mode, and after waiting for the second standby period, the mode may be shifted to the reference value update mode.
 本発明に係る第11の観点の誘導加熱調理器において、前記の第7の観点における前記ふきこぼれ検知部は、加熱開始後、待機モードに移行し待機期間後に、前記基準値更新モードに移行するよう構成してもよい。 In the induction heating cooker according to the eleventh aspect of the present invention, the boiling-out detection unit according to the seventh aspect shifts to a standby mode after starting heating, and shifts to the reference value update mode after a standby period. It may be configured.
 本発明に係る第12の観点の誘導加熱調理器において、前記の第1乃至第11の観点における前記ふきこぼれ検知部は、前記変化量が前記基準値更新停止閾値以上となってから前記静電容量検知部が検知した静電容量における最大値を記憶し、前記最大値から所定値以上減少すると、ふきこぼれ検知と判定しないよう構成してもよい。 In the induction heating cooker according to a twelfth aspect of the present invention, the overflow detection unit according to the first to eleventh aspects is configured so that the capacitance is not less than the reference value update stop threshold. The maximum value in the capacitance detected by the detection unit may be stored, and if the predetermined value or more is decreased from the maximum value, it may be configured not to determine that the overflow is detected.
 本発明によれば、加熱時に生じる加熱容器におけるふきこぼれの誤検出を低減することができるとともに、ふきこぼれの発生を精度良く検出することができる使い勝手の良い誘導加熱調理器を提供することができる。 According to the present invention, it is possible to provide an easy-to-use induction heating cooker that can reduce erroneous detection of spillage in a heating container that occurs during heating and can accurately detect the occurrence of spillage.
本発明に係る実施の形態1の誘導加熱調理器の構成を示すブロック図The block diagram which shows the structure of the induction heating cooking appliance of Embodiment 1 which concerns on this invention. 実施の形態1の誘導加熱調理器における静電容量検知部の構成を示すブロック図The block diagram which shows the structure of the electrostatic capacitance detection part in the induction heating cooking appliance of Embodiment 1. FIG. 実施の形態1の誘導加熱調理器における天板に形成された各種電極などを示す平面図The top view which shows the various electrodes etc. which were formed in the top plate in the induction heating cooking appliance of Embodiment 1. (a)実施の形態1の誘導加熱調理器において検出された静電容量検知信号を示す図、及び(b)インバータから出力された加熱出力の一例を示す図(A) The figure which shows the electrostatic capacitance detection signal detected in the induction heating cooking appliance of Embodiment 1, and (b) The figure which shows an example of the heating output output from the inverter 負荷移動検知期間における入力電流、加熱コイル電流またはスイッチング素子のオン時間の一例を示す図The figure which shows an example of the ON time of the input current in the load movement detection period, a heating coil current, or a switching element 実施の形態1の誘導加熱調理器における操作部及び表示部のメニュー表示部の状態を示す図であり、ふきこぼれ検知動作の設定手順を示す図It is a figure which shows the state of the menu display part of the operation part in the induction heating cooking appliance of Embodiment 1, and a display part, and is a figure which shows the setting procedure of the overflow detection operation | movement 実施の形態1の誘導加熱調理器における操作部及び表示部のメニュー表示部の状態を示す図であり、ふきこぼれ検知動作の設定手順を示す図It is a figure which shows the state of the menu display part of the operation part in the induction heating cooking appliance of Embodiment 1, and a display part, and is a figure which shows the setting procedure of the overflow detection operation | movement 実施の形態1の誘導加熱調理器における操作部及び表示部のメニュー表示部の状態を示す図であり、ふきこぼれ検知動作の設定手順を示す図It is a figure which shows the state of the menu display part of the operation part in the induction heating cooking appliance of Embodiment 1, and a display part, and is a figure which shows the setting procedure of the overflow detection operation | movement 実施の形態1の誘導加熱調理器における操作部及び表示部のメニュー表示部の状態を示す図であり、ふきこぼれ検知動作の設定手順を示す図It is a figure which shows the state of the menu display part of the operation part in the induction heating cooking appliance of Embodiment 1, and a display part, and is a figure which shows the setting procedure of the overflow detection operation | movement 実施の形態1の誘導加熱調理器における操作部及び表示部のメニュー表示部の状態を示す図であり、ふきこぼれ検知動作の設定手順を示す図It is a figure which shows the state of the menu display part of the operation part in the induction heating cooking appliance of Embodiment 1, and a display part, and is a figure which shows the setting procedure of the overflow detection operation | movement 従来の誘導加熱調理器の構成を示すブロック図Block diagram showing the configuration of a conventional induction heating cooker 従来の誘導加熱調理器におけるふきこぼれ検知における静電容量の変化を示すグラフA graph showing the change in capacitance in detecting boiling over in a conventional induction heating cooker
 以下、本発明の誘導加熱調理器に係る具体的な実施の形態について添付の図面を参照して説明する。なお、本発明は、以下の実施の形態に記載した具体的な構成に限定されるものではなく、実施の形態において説明する技術的思想と同様の技術的思想及び当技術分野における技術常識に基づいて構成されるものを含むものである。 Hereinafter, specific embodiments according to the induction heating cooker of the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the specific configurations described in the following embodiments, and is based on the same technical idea as the technical idea described in the embodiment and the common general technical knowledge in this technical field. Is included.
(実施の形態1)
 図1Aは、本発明に係る実施の形態1の誘導加熱調理器の構成を示すブロック図である。図1Bは、実施の形態1の誘導加熱調理器における静電容量検知部の構成を示す回路図である。図1Aにおいて、実施の形態1の誘導加熱調理器は、加熱容器(例えば、鉄製の鍋など)1が載置される天板(トッププレート)2と、天板2の下方に設けられ、高周波電流が供給されると高周波磁界を発生して対向して配置された加熱容器1の底面を誘導加熱する加熱コイル3と、IGBTなど1つ以上のスイッチング素子4aを含み加熱コイル3に高周波電流を供給するインバータ4と、交流電源6を整流してインバータ4に直流電流を供給する整流器5と、加熱コイル3に流れる加熱コイル電流をモニターするカレントトランス7aaと、インバータ4の加熱出力に対応する加熱コイル電流(高周波電流)を検知し負荷移動検知部として機能する加熱コイル電流検知部7aと、インバータ4の入力電流をモニターするカレントトランス7bbと、カレントトランス7bbの出力信号を入力してインバータ4の加熱出力に対応する入力電流(低周波電流)を検知し負荷移動検知部として機能する入力電流検知部7bと、スイッチング素子4aのオン時間をモニターするオン時間検知部7cと、加熱コイル電流検知部7aから出力される加熱コイル電流検知信号及び入力電流検知部7bから出力される入力電流検知信号に基づきインバータ4の加熱出力を可変するように駆動制御する制御部8と、天板2の裏面(図1Aにおいて、加熱容器1が載置されている面を表面として、その反対側の面)に導電性の良い材料で帯状にパターン印刷された複数の電極9と、各電極9の静電容量を検知する静電容量検知部10と、静電容量検知部10において検知された静電容量の大きさ、所定の期間毎に検知した加熱コイル電流検知部7aで検知された加熱コイル電流の大きさ及び所定の期間毎に入力電流検知部7bにおいて検知された入力電流の大きさを記憶する記憶部12と、静電容量検知信号及び加熱出力検知信号(加熱コイル電流検知信号または入力電流検知信号を含む)などに基づいて加熱容器1のふきこぼれ状態を検知するふきこぼれ検知部11と、を有して構成されている。なお「電極の静電容量を検知する」とは、「電極と所定の電位(例えば、静電容量検知部10のコモン電位または、アース電位など)と電極間の静電容量の大きさの大小を検知する」ことをいう。また、実施の形態1の誘導加熱調理器においては、加熱容器1におけるふきこぼれ状態を検知するための構成及び機能を主として説明するものであり、その他の状態を検知するための機能及び構成、例えば加熱容器1におけるずらし、浮かし、焦げ付き、及びナイフやフォークなどの小物負荷が天板2に載せられた場合の検知、などのふきこぼれ状態以外の状態検知機能などについての説明は省略しており、図1Aのブロック図においても、ふきこぼれ状態を検知する構成を説明するために必要な構成以外は省略している。
(Embodiment 1)
FIG. 1A is a block diagram showing the configuration of the induction heating cooker according to the first embodiment of the present invention. 1B is a circuit diagram illustrating a configuration of a capacitance detection unit in the induction heating cooker according to Embodiment 1. FIG. In FIG. 1A, the induction heating cooker according to Embodiment 1 is provided below a top plate (top plate) 2 on which a heating container (for example, an iron pan or the like) 1 is placed, and below the top plate 2. When a current is supplied, the heating coil 3 includes a heating coil 3 that generates a high-frequency magnetic field and induction-heats the bottom surface of the heating container 1 disposed opposite to the heating container 1 and one or more switching elements 4a such as IGBTs. Inverter 4 to be supplied, rectifier 5 that rectifies AC power supply 6 and supplies DC current to inverter 4, current transformer 7 aa that monitors the heating coil current flowing in heating coil 3, and heating corresponding to the heating output of inverter 4 A heating coil current detector 7a that detects a coil current (high-frequency current) and functions as a load movement detector, and a current transformer that monitors the input current of the inverter 4 bb and an output signal of the current transformer 7bb are input to detect an input current (low frequency current) corresponding to the heating output of the inverter 4 and to function as a load movement detection unit, and to turn on the switching element 4a The heating output of the inverter 4 is varied based on the on-time detection unit 7c that monitors time, the heating coil current detection signal output from the heating coil current detection unit 7a, and the input current detection signal output from the input current detection unit 7b. The control unit 8 that controls the drive and the back surface of the top plate 2 (in FIG. 1A, the surface on which the heating container 1 is placed is the front surface, and the opposite surface) is patterned in a band shape with a highly conductive material. A plurality of printed electrodes 9, a capacitance detection unit 10 that detects the capacitance of each electrode 9, a size of the capacitance detected by the capacitance detection unit 10, a predetermined amount A storage unit 12 for storing the magnitude of the heating coil current detected by the heating coil current detection unit 7a detected every period and the magnitude of the input current detected by the input current detection unit 7b every predetermined period; And a spill detector 11 that detects a spill state of the heating container 1 based on a capacitance detection signal and a heating output detection signal (including a heating coil current detection signal or an input current detection signal). . Note that “detecting the capacitance of the electrode” means “the magnitude of the capacitance between the electrode and a predetermined potential (for example, the common potential of the capacitance detection unit 10 or the earth potential) and the capacitance between the electrodes. Is detected. Moreover, in the induction heating cooking appliance of Embodiment 1, the structure and function for detecting the boiling state in the heating container 1 are mainly demonstrated, and the function and structure for detecting other states, for example, heating Description of the state detection function other than the spilled state, such as detection when the container 1 is shifted, floated, burned, and a small object load such as a knife or fork is placed on the top plate 2, is omitted. Also in this block diagram, the configuration other than the configuration necessary for explaining the configuration for detecting the overflowing state is omitted.
 図2は、実施の形態1の誘導加熱調理器における天板2の裏面に導電性塗料をパターン印刷して、高温で焼成することにより形成された各種電極などを示す天板2の平面図である。図2に示す天板2は、耐熱性のガラス、例えば結晶化ガラスで形成されている。天板2の表面には、被加熱物である加熱容器(例えば、鍋など)1が載置されるべき加熱位置を使用者が認識できるように表示する2つのサークルパターン2a,2bが描かれており、例えば最大出力が3kWの加熱コイル3の外周に対応する位置を示している。なお、実施の形態1においては2つの加熱コイル3を有する構成について説明するが、加熱コイル3の数は2個に限定されるものではなく、1個、3個、4個などいくつ加熱コイル3を用いても良く、その加熱コイル3の数に応じて少なくとも1個の加熱コイル3に対してサークルパターン及び電極が形成される。 FIG. 2 is a plan view of the top plate 2 showing various electrodes formed by pattern-printing a conductive paint on the back surface of the top plate 2 in the induction heating cooker of Embodiment 1 and baking at high temperature. is there. The top plate 2 shown in FIG. 2 is formed of heat resistant glass, for example, crystallized glass. Two circle patterns 2a and 2b are drawn on the surface of the top plate 2 so that the user can recognize the heating position where the heating container (for example, pan) 1 as the object to be heated is to be placed. For example, the position corresponding to the outer periphery of the heating coil 3 having a maximum output of 3 kW is shown. In the first embodiment, a configuration having two heating coils 3 will be described. However, the number of heating coils 3 is not limited to two, and any number of heating coils 3 such as one, three, and four. A circle pattern and electrodes are formed on at least one heating coil 3 according to the number of the heating coils 3.
 図2に示すように、実施の形態1の誘導加熱調理器における天板2においては、使用者が当該誘導加熱調理器の動作を設定するための操作スイッチとなる複数の操作電極16が天板2の裏面に吹きこぼれを検知する電極と同様に印刷されている。操作電極16が設けられている位置は、天板2におけるサークルパターン2a,2bより使用者側に近い領域である。以下の説明において、天板2における使用者側を手前側と称し、その反対を奥側と称する。また、図2に示す図面上の位置おいて、天板2の左側及び右側と称して天板2における位置を特定する。 As shown in FIG. 2, in the top plate 2 in the induction heating cooker according to the first embodiment, a plurality of operation electrodes 16 serving as operation switches for the user to set the operation of the induction heating cooker are provided on the top plate. 2 is printed in the same manner as the electrodes for detecting spillage. The position where the operation electrode 16 is provided is a region closer to the user side than the circle patterns 2 a and 2 b on the top plate 2. In the following description, the user side in the top plate 2 is referred to as the near side, and the opposite is referred to as the back side. Further, at the position on the drawing shown in FIG. 2, the position on the top plate 2 is specified as the left side and the right side of the top plate 2.
 サークルパターン2a,2bの外側近傍、すなわち加熱コイル3の周囲近傍には、サークルパターン2a,2bから所定の間隔を有して複数の帯状の電極9(ふきこぼれ検知電極9a~9g)からなる電極群A、及び電極群Bが形成されている。これらの電極群A、及び電極群Bがふきこぼれ状態などを検知するための状態検知電極となる。 In the vicinity of the outside of the circle patterns 2a and 2b, that is, in the vicinity of the periphery of the heating coil 3, an electrode group consisting of a plurality of strip-shaped electrodes 9 (spill detection electrodes 9a to 9g) having a predetermined distance from the circle patterns 2a and 2b. A and electrode group B are formed. These electrode group A and electrode group B serve as state detection electrodes for detecting a spilled state.
 図2に示す天板2における左側のサークルパターン2aの外側近傍において、左側の奥側には円環形状のサークルパターン2aに沿った円弧状部分を有する左後電極9a、左側の手前側にはサークルパターン2aに沿った円弧状部分を有する左前電極9b、及び中央側にはサークルパターン2aに沿った円弧状部分を有する左中央電極9cが形成されている。これらの左後電極9a、左前電極9b及び左中央電極9cから構成される電極群Aにより、左側のサークルパターン2aが取り囲まれるよう構成されている。すなわち、電極群Aは、サークルパターン2aより半径が大きく、サークルパターン2aと同心円上またはその近傍の位置に配列されている。また、左後電極9a、左前電極9b及び左中央電極9cの各電極の一方の端部には円弧状部分より幅の広い接続部19a,19b,19cがそれぞれ形成されている。これらの接続部19a,19b,19cには、静電容量検知部10(図1参照)に固定された、後述する接続端子10aの一端が接触することにより、静電容量検知部10と電極9a,9b,9cとを電気的に接続している。これらの接続部19a,19b,19cが天板2に設けられているため、静電容量検知部10が設けられた本体に天板2を取り付けたとき、接続端子10aと接続部19a,19b,19cの相互の位置関係に多少のずれがあったとしても、接続端子10aと接続部19a,19b,19cを電気的に確実に接続することが可能となる。 In the vicinity of the outer side of the left circle pattern 2a in the top plate 2 shown in FIG. 2, the left rear electrode 9a having an arc-shaped portion along the annular circle pattern 2a on the back side of the left side, and on the front side of the left side A left front electrode 9b having an arc-shaped portion along the circle pattern 2a and a left center electrode 9c having an arc-shaped portion along the circle pattern 2a are formed on the center side. The left circle pattern 2a is surrounded by the electrode group A including the left rear electrode 9a, the left front electrode 9b, and the left center electrode 9c. That is, the electrode group A has a radius larger than that of the circle pattern 2a, and is arranged at a position concentrically with the circle pattern 2a or in the vicinity thereof. In addition, connection portions 19a, 19b, and 19c that are wider than the arc-shaped portions are formed at one end of each of the left rear electrode 9a, the left front electrode 9b, and the left center electrode 9c. The connection portions 19a, 19b, and 19c come into contact with one end of a connection terminal 10a, which will be described later, fixed to the capacitance detection portion 10 (see FIG. 1), whereby the capacitance detection portion 10 and the electrode 9a. , 9b, 9c are electrically connected. Since these connection portions 19a, 19b, and 19c are provided on the top plate 2, when the top plate 2 is attached to the main body provided with the capacitance detection unit 10, the connection terminal 10a and the connection portions 19a, 19b, Even if there is a slight shift in the mutual positional relationship of 19c, the connection terminal 10a and the connection portions 19a, 19b, and 19c can be electrically connected reliably.
 同様に、右側のサークルパターン2bの外側近傍部分においても、右側の奥側には円環形状のサークルパターン2bに沿った円弧状部分を有する右後電極9d、右側の手前側にはサークルパターン2bに沿った円弧状部分を有する右前電極9e、及び中央側にはサークルパターン2bに沿った円弧状部分を有する右中央電極9fが形成されている。これらの右後電極9d、右前電極9e及び右中央電極9fから構成される電極群Bにより、右側のサークルパターン2bが取り囲まれるよう構成されている。すなわち、電極群Bは、サークルパターン2bより半径が大きく、サークルパターン2bと同心円上またはその近傍の位置に配列されている。また、右後電極9d、右前電極9e及び右中央電極9fの各電極の一方の端部には円弧状部分より幅の広い接続部19d,19e,19fがそれぞれ形成されている。これらの接続部19d,19e,19fを天板2に設けることにより、接続部19a,19b,19cと同様、静電容量検知部10が設けられた本体に天板2を取り付けたとき、接続端子10aと接続部19d,19e,19fの相互の位置関係に多少のずれがあったとしても、接続端子10aと接続部19d,19e,19fを電気的に確実に接続することが可能となる。 Similarly, in the vicinity of the outer side of the right circle pattern 2b, the right rear electrode 9d having an arc-shaped portion along the circular pattern 2b on the right side and the circle pattern 2b on the right front side. A right front electrode 9e having an arc-shaped portion along the circle pattern 2b and a right center electrode 9f having an arc-shaped portion along the circle pattern 2b are formed on the center side. The right circle pattern 2b is surrounded by the electrode group B including the right rear electrode 9d, the right front electrode 9e, and the right center electrode 9f. That is, the electrode group B has a larger radius than the circle pattern 2b, and is arranged at a position on or near the circle pattern 2b. In addition, connection portions 19d, 19e, and 19f that are wider than the arc-shaped portion are formed at one end of each of the right rear electrode 9d, the right front electrode 9e, and the right center electrode 9f. By providing these connection portions 19d, 19e, and 19f on the top plate 2, when the top plate 2 is attached to the main body provided with the capacitance detection unit 10, as with the connection portions 19a, 19b, and 19c, the connection terminals Even if there is a slight deviation in the mutual positional relationship between the terminal 10a and the connecting portions 19d, 19e, and 19f, the connecting terminal 10a and the connecting portions 19d, 19e, and 19f can be electrically connected reliably.
 天板2の中央には保護電極9gが設けられており、左中央電極9cと右中央電極9fとの間であり、左後電極9aから接続部19aに導出する配線パターン9aaと、右後電極9dから接続部19dに導出する配線パターン9ddの間の領域に設けられている。また、保護電極9gは、天板2の中央部分の手前側において、操作電極16の並びと平行な領域に導出して配設されている。保護電極9gにおいても、その端部に接続部19gが形成されており、他の電極と同様に、静電容量検知部10の接続端子10aの一端と接触して、静電容量検知部10と電気的に接続するための接続手段としての機能を有している。 A protective electrode 9g is provided at the center of the top plate 2, between the left center electrode 9c and the right center electrode 9f, and a wiring pattern 9aa led out from the left rear electrode 9a to the connecting portion 19a, and the right rear electrode. It is provided in a region between the wiring patterns 9dd led out from 9d to the connecting portion 19d. Further, the protective electrode 9g is led out and arranged in a region parallel to the arrangement of the operation electrodes 16 on the near side of the central portion of the top plate 2. Also in the protective electrode 9g, the connection part 19g is formed in the edge part, and it contacts with the end of the connection terminal 10a of the electrostatic capacitance detection part 10 like other electrodes, and the electrostatic capacitance detection part 10 and It has a function as a connection means for electrical connection.
 また、実施の形態1の誘導加熱調理器には、加熱容器1の温度を検出するための温度検知部17、及び使用者が当該誘導加熱調理器の加熱条件などを設定するための操作部18が設けられている。温度検知部17からの加熱容器1の温度信号及び操作部18からの設定信号は制御部8に入力されて、スイッチング素子4aを有するインバータ4を駆動制御するよう構成されている。さらに、実施の形態1の誘導加熱調理器には、表示部20が設けられており、使用者が設定した加熱条件、当該誘導加熱調理器の動作状態などが表示されるよう構成されている。 Moreover, in the induction heating cooker of Embodiment 1, the temperature detection part 17 for detecting the temperature of the heating container 1, and the operation part 18 for a user to set the heating conditions of the said induction heating cooker, etc. Is provided. The temperature signal of the heating container 1 from the temperature detection unit 17 and the setting signal from the operation unit 18 are input to the control unit 8 so as to drive and control the inverter 4 having the switching element 4a. Furthermore, the induction heating cooker according to the first embodiment is provided with a display unit 20 so that the heating conditions set by the user, the operation state of the induction heating cooker, and the like are displayed.
 図1Bは、実施の形態1の誘導加熱調理器における静電容量検知部10の構成を示す回路図である。図1Aに示すように、静電容量検知部10は、一端が電極9に接触する接続端子10aと、各電極9に高周波信号(例えば、350kHz)を供給する高周波信号発生部13と、接続端子10aの他端と高周波信号発生部13との間に接続されたコンデンサ10bと、接続端子10aとコンデンサ10bの端子との接続点に接続され、高周波信号発生部13からコンデンサ10を介して各電極9に供給される高周波電流を整流する整流部14と、整流部14において整流された直流電圧を検知する電圧検知部15と、を有して構成されている。接続端子10aは接触部が金メッキされたリン青銅などの導電性の良い金属製の弾性体で形成されている。前述の各電極9(9a~9g)における各接続部(19a~19g)は、静電容量検知部10の高周波信号発生部13からの高周波信号が供給されるとともに、各電極9(9a~9g)の静電容量を検出するために整流部14に電気的に接続されている。 FIG. 1B is a circuit diagram illustrating a configuration of the capacitance detection unit 10 in the induction heating cooker according to the first embodiment. As shown in FIG. 1A, the capacitance detection unit 10 includes a connection terminal 10a whose one end contacts the electrode 9, a high-frequency signal generation unit 13 that supplies a high-frequency signal (for example, 350 kHz) to each electrode 9, and a connection terminal. A capacitor 10b connected between the other end of 10a and the high-frequency signal generator 13 and a connection point between the connection terminal 10a and the terminal of the capacitor 10b are connected to each electrode from the high-frequency signal generator 13 via the capacitor 10. 9 includes a rectifying unit 14 that rectifies a high-frequency current supplied to the power supply 9 and a voltage detection unit 15 that detects a DC voltage rectified in the rectifying unit 14. The connection terminal 10a is formed of an elastic body made of a metal having good conductivity such as phosphor bronze whose contact portion is gold-plated. The connection portions (19a to 19g) of the electrodes 9 (9a to 9g) are supplied with a high-frequency signal from the high-frequency signal generation unit 13 of the capacitance detection unit 10, and the electrodes 9 (9a to 9g). ) Is electrically connected to the rectifying unit 14 in order to detect the capacitance.
 上記のように構成された実施の形態1の誘導加熱調理器において、加熱容器1である鍋などがサークルパターン2a,2bで示された位置に載置されて、使用者が操作部18において加熱条件などを設定して、誘導加熱動作が開始される。制御部8は、加熱出力が操作部18または自動制御モードで制御部8により自動的に設定された第1設定値P1(例えば、3kW)になるようにインバータ4を駆動し制御する。誘導加熱動作が開始された加熱初期段階においては、ふきこぼれが無い状態であり、電極9と加熱容器1との間、電極9と加熱コイル3との間、及び電極9と天板2の周囲に設けられ接地された金属フレーム(図示せず)には、主として電気絶縁物である天板2及び空気が存在している。その後、誘導加熱動作が継続することにより、加熱された加熱容器1内の内容物が沸騰状態となり、ふきこぼれが発生可能な状態となる。そして、ふきこぼれが発生すると、電極9の周りに電解質を含んだ液体が電極9の周りに存在することになる。例えば、鍋底に触れた液体が電極9の直上部またはその近傍に連続して広がると、電極9と鍋底との容量結合が大きくなる。この結果、鍋底と対向する加熱コイル3と電極9との間の静電容量が大きくなるので、電極9と加熱コイル3との容量結合が、ふきこぼれが発生しない場合に比べて大きくなる。この結果、電極9における静電容量は増加する。ふきこぼれ状態が続けば、静電容量の増加状態は、ふきこぼれの量やふきこぼれの状態に応じて変化する。 In the induction heating cooker according to the first embodiment configured as described above, a pan or the like as the heating container 1 is placed at the position indicated by the circle patterns 2a and 2b, and the user heats at the operation unit 18. Conditions etc. are set and induction heating operation is started. The control unit 8 drives and controls the inverter 4 so that the heating output becomes the first set value P1 (for example, 3 kW) automatically set by the control unit 8 in the operation unit 18 or the automatic control mode. In the initial heating stage in which the induction heating operation is started, there is no spillage, and there is no leakage between the electrode 9 and the heating container 1, between the electrode 9 and the heating coil 3, and around the electrode 9 and the top plate 2. In the metal frame (not shown) which is provided and grounded, the top plate 2 which is mainly an electrical insulator and air exist. Thereafter, by continuing the induction heating operation, the heated contents in the heating container 1 are brought into a boiling state, and the spillage can be generated. When the spilling occurs, a liquid containing an electrolyte is present around the electrode 9. For example, when the liquid that has touched the bottom of the pan spreads continuously directly above or near the electrode 9, capacitive coupling between the electrode 9 and the pan bottom increases. As a result, since the electrostatic capacitance between the heating coil 3 and the electrode 9 facing the pan bottom increases, the capacitive coupling between the electrode 9 and the heating coil 3 becomes larger than when no spilling occurs. As a result, the capacitance at the electrode 9 increases. If the spilling state continues, the increased state of the capacitance changes according to the amount of spilling and the state of spilling.
 上記のように、誘導加熱動作において、加熱容器1の内容物の温度が沸騰温度に到達してもふきこぼれが開始するまでは、ふきこぼれ状態を検知する必要はないが、加熱開始後一定時間が経過して、内容物が沸騰状態を継続した場合には、ふきこぼれが発生する可能性があるため、常にふきこぼれ状態を検知する必要がある。このため、実施の形態1の誘導加熱調理器においては、内容物が加熱開始からふきこぼれ動作が開始するまでの一定時間として5秒間を設定して、この5秒間はふきこぼれ検知動作による加熱動作の停止または加熱出力の抑制動作を行わないよう構成されている。
 実施の形態1の誘導加熱調理器においては、ふきこぼれ状態の検知を、静電容量検知部10からの静電容量検知信号(Vd)、及び加熱コイル電流検知部7aから出力される加熱コイル電流検知信号と入力電流検知部7bから出力される入力電流検知信号などに基づいてふきこぼれ検知部11において行っている。
As described above, in the induction heating operation, even if the temperature of the contents of the heating container 1 reaches the boiling temperature, it is not necessary to detect the spilling state until the spilling starts, but a certain time has elapsed after the heating is started. Thus, when the contents continue to boil, there is a possibility that spilling may occur, so it is necessary to always detect the spilling state. For this reason, in the induction heating cooker according to the first embodiment, 5 seconds is set as a certain time from the start of heating the contents until the spilling operation starts, and the heating operation is stopped by the spilling detection operation for 5 seconds. Or it is comprised so that the suppression operation of a heating output may not be performed.
In the induction heating cooker according to the first embodiment, the detection of the overflowing state is performed by detecting the capacitance detection signal (Vd) from the capacitance detection unit 10 and the heating coil current detection output from the heating coil current detection unit 7a. This is performed in the overflow detector 11 based on the signal and the input current detection signal output from the input current detector 7b.
 図3Aは実施の形態1の誘導加熱調理器において検出された静電容量検知信号(Vd)((図3Aの(a))と、インバータ4から出力された加熱出力(P)(図3Aの(b))の一例を示している。図3Aの(a)は、静電容量検知部10からふきこぼれ検知部11に入力される静電容量検知信号(Vd)の一例を示す波形図であり、図3Aの(a)において、縦軸が静電容量検知信号(Vd)を示し、横軸に経過時間を示す。図3Aの(b)は、図3Aの(a)に示す静電容量検知信号(Vd)とインバータ4からの加熱出力(P)の関係を示している。 FIG. 3A shows a capacitance detection signal (Vd) ((a) of FIG. 3A) detected by the induction heating cooker of Embodiment 1 and a heating output (P) output from the inverter 4 (of FIG. 3A). 3B is a waveform diagram illustrating an example of a capacitance detection signal (Vd) input from the capacitance detection unit 10 to the spillover detection unit 11. 3A, the vertical axis indicates the capacitance detection signal (Vd), and the horizontal axis indicates the elapsed time, and (b) of FIG. 3A shows the capacitance shown in (a) of FIG. The relationship between the detection signal (Vd) and the heating output (P) from the inverter 4 is shown.
 図1Bに示すように、電極9は、静電容量検知部10のコモン電位との間でコンデンサ10cを形成する。コンデンサ10cの静電容量は、電極9の周囲の導電体の配置に依存して変わる。以下、コンデンサ10cの静電容量を「電極9の静電容量」という。図1Bにおいて、高周波信号発生器13の電圧Vaは、コンデンサ10bとコンデンサ10cにより分割されて、整流器14により整流され、さらにコンデンサ10dにより平滑されて直流電圧(Vd’)となる。この直流電圧(Vd’)は電圧検知部15に入力される。電圧検知部15は、直流電圧(Vd’)をAC-DC変換し、静電容量検知信号(Vd)として、ふきこぼれ検知部11に出力する。このように、静電容量検知部10は、電極9の静電容量を検知し、その大きさに対応した静電容量検知信号(Vd)を出力する。図3Aの(a)においては、点Aで示す時点において加熱容器1からのふきこぼれが発生していずれかの電極9の静電容量が増加したことにより、静電容量検知信号(Vd)が減少している場合を示している。 As shown in FIG. 1B, the electrode 9 forms a capacitor 10 c with the common potential of the capacitance detection unit 10. The capacitance of the capacitor 10c changes depending on the arrangement of the conductor around the electrode 9. Hereinafter, the capacitance of the capacitor 10c is referred to as “the capacitance of the electrode 9”. In FIG. 1B, the voltage Va of the high-frequency signal generator 13 is divided by a capacitor 10b and a capacitor 10c, rectified by a rectifier 14, and further smoothed by a capacitor 10d to become a DC voltage (Vd '). This DC voltage (Vd ′) is input to the voltage detector 15. The voltage detection unit 15 performs AC-DC conversion on the direct-current voltage (Vd ′) and outputs the converted voltage as a capacitance detection signal (Vd) to the overflow detection unit 11. Thus, the electrostatic capacitance detection part 10 detects the electrostatic capacitance of the electrode 9, and outputs the electrostatic capacitance detection signal (Vd) corresponding to the magnitude | size. In FIG. 3A (a), the capacitance detection signal (Vd) decreases due to the occurrence of spillage from the heating container 1 at the time indicated by point A and the increase in the capacitance of any electrode 9. It shows the case.
[ふきこぼれ検知動作]
 以下、図3Aの(a)に示す状態におけるふきこぼれ検知動作について説明する。
 まず、加熱容器1に対する加熱開始の誘導加熱動作の初期段階(図3Aの(a)においては図示無し)においては、加熱容器1の内容物のふきこぼれはなく、静電容量検知部10の電圧検知部15により検知された静電容量検知信号(Vd)のふきこぼれによる変化はない。前述のように、実施の形態1の誘導加熱調理器においては、誘導加熱動作の開始から一定の待機期間(例えば、5秒間)は待機モードとなりふきこぼれ検知動作による加熱動作の停止または加熱出力の抑制動作を行わないよう構成されている。すなわち、待機時間が経過後において、ふきこぼれが起こっていると判断したときのみ、ふきこぼれ検知部11の検知結果に応じた加熱動作の停止または加熱出力の抑制動作を行う。
[Blowout detection operation]
Hereinafter, the overflow detection operation in the state shown in FIG.
First, in the initial stage of the induction heating operation for heating the heating container 1 (not shown in FIG. 3A (a)), the contents of the heating container 1 are not spilled, and the voltage detection of the capacitance detection unit 10 is performed. The capacitance detection signal (Vd) detected by the unit 15 does not change due to spillage. As described above, in the induction heating cooker according to the first embodiment, a certain standby period (for example, 5 seconds) from the start of the induction heating operation becomes the standby mode, and the heating operation is stopped or the heating output is suppressed by the overflow detection operation. It is configured not to operate. That is, the heating operation is stopped or the heating output is suppressed according to the detection result of the overflow detector 11 only when it is determined that the overflow has occurred after the standby time has elapsed.
 誘導加熱動作開始から一定の待機期間(例えば、5秒間)が経過して、ふきこぼれ検知動作が開始されると、各電極9から入力される高周波電圧は整流部14で整流されて電圧検知部15に入力される。電圧検知部15において検出された直流電圧はデジタル化されて静電容量検知信号(Vd)として出力される。静電容量検知信号(Vd)は、ふきこぼれが発生しない場合でも変化する場合がある。このため、点Aで示す時点まで、実施の形態1の誘導加熱調理器の誘導加熱動作においては、電圧検知部15は一定時間(例えば、商用電源の1周期=16.7msecまたは20msec)経過する毎に、ふきこぼれ検知部11に各電極9の静電容量に対応する静電容量検知信号(Vd)を出力している。 When a certain waiting period (for example, 5 seconds) elapses from the start of the induction heating operation and the overflow detection operation is started, the high frequency voltage input from each electrode 9 is rectified by the rectifier 14 and the voltage detector 15. Is input. The DC voltage detected by the voltage detector 15 is digitized and output as a capacitance detection signal (Vd). The capacitance detection signal (Vd) may change even when no spill occurs. For this reason, in the induction heating operation of the induction heating cooker according to the first embodiment, the voltage detection unit 15 elapses for a certain period of time (for example, one cycle of the commercial power supply = 16.7 msec or 20 msec) until the time indicated by the point A. Every time, a capacitance detection signal (Vd) corresponding to the capacitance of each electrode 9 is output to the spill detector 11.
 ふきこばれ検知部11においては、静電容量検知信号(Vd)を、所定時間毎に(例えば、商用電源のゼロ点を2回検知するごとに=商用電源1周期ごとに)そのまま入力してもよいし、静電容量検知信号(Vd)にノイズが重畳しやすい場合には、所定回数(例えば、5回または6回)入力する毎に(例えば、約0.1sec毎に)平均した値を静電容量検知信号(Vd)として入力してもよい。そして、静電容量検知信号(Vd)の基準値検知期間(T0)(例えば、1秒間)における平均値を算出して、その算出された平均値を、基準値(V0)として記憶部12に記憶する。上記のように算出された基準値(V0)は、ふきこぼれが起きる前に静電容量検知部10が検知する静電容量に対応する。この基準値(V0)に対する静電容量検知信号(Vd)の変動量(ΔV)に基づいてふきこぼれ検知部11において演算処理されふきこぼれ状態の有無が判断される。 In the wipe detection unit 11, the capacitance detection signal (Vd) is input as it is every predetermined time (for example, every time the zero point of the commercial power source is detected twice). Alternatively, when noise is likely to be superimposed on the capacitance detection signal (Vd), an average value every time a predetermined number of times (for example, 5 or 6 times) is input (for example, about every 0.1 sec). May be input as a capacitance detection signal (Vd). Then, an average value of the capacitance detection signal (Vd) in the reference value detection period (T0) (for example, 1 second) is calculated, and the calculated average value is stored in the storage unit 12 as the reference value (V0). Remember. The reference value (V0) calculated as described above corresponds to the capacitance detected by the capacitance detection unit 10 before spilling occurs. Based on the fluctuation amount (ΔV) of the capacitance detection signal (Vd) with respect to the reference value (V0), the overflow detection unit 11 performs arithmetic processing to determine the presence or absence of the overflow state.
[静電容量検知信号(Vd)の変化量(ΔV)が第1変化量(ΔV1)未満の場合]
 ふきこぼれ検知部11においては、ふきこぼれ検知動作の最初に検知された基準値検知期間(T0)における静電容量検知信号(Vd)の平均値が基準値(V0)として記憶部12に登録される。なお、最初の基準値(V0)に関しては、予め設定した値を用いてもよい。そして、基準値(V0)が登録された時から再度基準値検知期間(T0)経過するまで、検知された静電容量検知信号(Vd)は、登録された基準値(V0)と比較され、その変化量(ΔV)が検出される。検出された変化量(ΔV)が、予め設定された第1変化量(基準値更新停止閾値:ΔV1)未満であれば、基準値検知期間(T0)の静電容量検知信号(Vd)の平均値が求められ、新たな基準値(V0)として記憶部12に更新登録される。このように、基準値検知期間(T0)経過する間に、基準値(V0)に対する静電容量検知信号(Vd)の変化量(ΔV)が、すべて第1変化量(ΔV1)未満であれば、その間の静電容量検知信号(Vd)の平均値が前回までに更新された基準値(V0)に代えて、基準値(V0)として更新登録される。
[When the change amount (ΔV) of the capacitance detection signal (Vd) is less than the first change amount (ΔV1)]
In the overflow detector 11, the average value of the capacitance detection signal (Vd) in the reference value detection period (T0) detected at the beginning of the overflow detection operation is registered in the storage unit 12 as the reference value (V0). Note that a preset value may be used for the first reference value (V0). The detected capacitance detection signal (Vd) is compared with the registered reference value (V0) until the reference value detection period (T0) elapses again after the reference value (V0) is registered. The amount of change (ΔV) is detected. If the detected change amount (ΔV) is less than a preset first change amount (reference value update stop threshold: ΔV1), the average of the capacitance detection signal (Vd) in the reference value detection period (T0) A value is obtained and updated and registered in the storage unit 12 as a new reference value (V0). As described above, if the change amount (ΔV) of the capacitance detection signal (Vd) with respect to the reference value (V0) is less than the first change amount (ΔV1) during the elapse of the reference value detection period (T0). In the meantime, the average value of the capacitance detection signal (Vd) is updated and registered as the reference value (V0) instead of the reference value (V0) updated up to the previous time.
 したがって、静電容量検知信号(Vd)の基準値検知期間(T0)における変化量(ΔV)が、第1変化量(ΔV1)未満であれば、その間の静電容量基準信号(Vd)の平均値が新たな基準値(V0)として記憶部12に更新登録され、この基準値(V0)と最新の静電容量検知信号(Vd)とが比較される。このように、静電容量検知信号(Vd)の変化量が基準値検知期間(T0)内に予めきめられた小さな変動範囲内で変化している期間においては、最新の基準値(V0)が記憶部12に順次更新されて記憶されている。ふきこぼれ検知動作においては、上記の基準値更新処理が順次行われていくが、もし、変化量(ΔV)が基準値(V0)以上となったとき、後述するように基準値更新処理は停止される。実施の形態1の誘導加熱調理器において、基準値(V0)として更新登録するか否かの閾値となる第1変化量(ΔV1)、即ち基準値更新停止閾値は、例えば、「3digit」としている。ここで、「1digit」とはデジタル表示の最小単位で、実施の形態1では、電圧検知部15を構成するマイクロコンピュータの電源電圧が5Vであるので、5V/8bit=約19.5mVを示している。 Therefore, if the change amount (ΔV) of the capacitance detection signal (Vd) in the reference value detection period (T0) is less than the first change amount (ΔV1), the average of the capacitance reference signal (Vd) during that period The value is updated and registered in the storage unit 12 as a new reference value (V0), and this reference value (V0) is compared with the latest capacitance detection signal (Vd). As described above, the latest reference value (V0) is changed during a period in which the amount of change in the capacitance detection signal (Vd) changes within a small fluctuation range determined in advance within the reference value detection period (T0). The storage unit 12 is sequentially updated and stored. In the overflow detection operation, the above-described reference value update processing is sequentially performed. However, if the amount of change (ΔV) becomes equal to or greater than the reference value (V0), the reference value update processing is stopped as described later. The In the induction heating cooker according to the first embodiment, the first change amount (ΔV1) serving as a threshold value whether or not to update and register as the reference value (V0), that is, the reference value update stop threshold value is, for example, “3 digits”. . Here, “1 digit” is the minimum unit of digital display. In the first embodiment, since the power supply voltage of the microcomputer constituting the voltage detection unit 15 is 5 V, 5V / 8 bits = about 19.5 mV is indicated. Yes.
 上記のように、ふきこぼれ状態が発生していない通常の誘導加熱動作、すなわち、電極9の静電容量が急激に変化しない状態においては、最新の静電容量検知信号(Vd)と更新登録された基準値(V0)とが比較され、その変化量は第1変化量(ΔV1:例えば、3digit)以下であるため、基準値検知期間(T0)経過する毎にその間に検出された静電容量検知信号(Vd)の平均値が基準値(V0)として更新登録され記憶部12に記録される。このように、実施の形態1の誘導加熱調理器において、通常の誘導加熱動作においては、検出された静電容量検知信号(Vd)が基準値検知期間(T0)毎に平均され最新の基準値(V0)として更新される。 As described above, in the normal induction heating operation in which no spillage occurs, that is, in the state where the capacitance of the electrode 9 does not change abruptly, the latest capacitance detection signal (Vd) is updated and registered. The reference value (V0) is compared and the amount of change is equal to or less than the first change amount (ΔV1: for example, 3 digits), so that the capacitance detection detected during the reference value detection period (T0) elapses. The average value of the signal (Vd) is updated and registered as the reference value (V0) and recorded in the storage unit 12. As described above, in the induction heating cooker according to the first embodiment, in the normal induction heating operation, the detected capacitance detection signal (Vd) is averaged every reference value detection period (T0), and the latest reference value is obtained. Updated as (V0).
[静電容量検知信号(Vd)の変化量(ΔV)が第1変化量(ΔV1)以上の場合]
 次に、ふきこぼれ検知部11において、静電容量検知信号(Vd)が基準値(V0)と比較して第1変化量(基準値更新停止閾値:ΔV1)以上に変化している場合の動作について説明する。
 図3Aの(a)のグラフにおいて、静電容量検知信号(Vd)の基準値(V0)に対する変化量(ΔV)が点Bで示す第1変化量(ΔV1)を越えた時点において、実施の形態1の誘導加熱調理器は、基準値更新停止モードに入り、前述の基準値更新処理を禁止する基準値更新停止処理を実行する。すなわち、検出された静電容量検知信号(Vd)が基準値(V0)に比して第1変化量(ΔV1)以上大きいため、前回までに更新登録された基準値(V0)が更新されることなく登録され続ける。図3Aの(a)においては、点Aにおける基準値(V0)が基準値として固定される。このため、静電容量検知信号(Vd)は、基準値(V0)として登録されていた最新の基準値検知期間(T0)における静電容量検知信号(Vd)の平均値と比較されて、変化量(ΔV)が算出される。このように、基準値更新停止モードにおいては基準値(V0)が固定されて、その固定された基準値(V0)に対する静電容量検知信号(Vd)の変化量(ΔV)が算出される。本実施の形態1においては基準値更新停止期間を例えば約3秒とする。
[When the change amount (ΔV) of the capacitance detection signal (Vd) is equal to or greater than the first change amount (ΔV1)]
Next, the operation when the capacitance detection signal (Vd) is changed to a first change amount (reference value update stop threshold: ΔV1) or more in comparison with the reference value (V0) in the spill detector 11. explain.
In the graph of (a) of FIG. 3A, when the change amount (ΔV) of the capacitance detection signal (Vd) with respect to the reference value (V0) exceeds the first change amount (ΔV1) indicated by the point B, the implementation is performed. The induction heating cooker of Form 1 enters the reference value update stop mode, and executes the reference value update stop process for prohibiting the above-described reference value update process. That is, since the detected capacitance detection signal (Vd) is larger than the reference value (V0) by the first change amount (ΔV1), the reference value (V0) that has been updated and registered up to the previous time is updated. Continue to be registered without. In FIG. 3A (a), the reference value (V0) at point A is fixed as the reference value. For this reason, the capacitance detection signal (Vd) is compared with the average value of the capacitance detection signal (Vd) in the latest reference value detection period (T0) registered as the reference value (V0) and changed. A quantity (ΔV) is calculated. Thus, in the reference value update stop mode, the reference value (V0) is fixed, and the change amount (ΔV) of the capacitance detection signal (Vd) with respect to the fixed reference value (V0) is calculated. In the first embodiment, the reference value update stop period is set to about 3 seconds, for example.
 なお、静電容量検知信号(Vd)の基準値(V0)に対する変化量が第1変化量(ΔV1)以上となって基準値更新停止期間(ふきこぼれ判定期間ともいう)に移行した場合においても、次に検出された静電容量検知信号(Vd)が基準値(V0)に比べて、第1変化量(ΔV1)未満に戻った場合には、基準値更新停止モードが解除されて、そのとき以後に検出された静電容量検知信号(Vd)の平均値が基準値(V0)として新たに登録される。したがって、静電容量検知信号(Vd)の変化量が第1変化量(ΔV1)以上となった場合には、基準値更新停止状態となるが、基準値検知期間(T0)(例えば、1秒間)の間に新たに検出された静電容量検知信号(Vd)の変化量(ΔV)が第1変化量(ΔV1)以下であれば、ふきこぼれ検知部11は、通常の誘導加熱動作と判断して、基準値更新モードとなり基準値更新処理が実行される。 Even when the change amount of the capacitance detection signal (Vd) with respect to the reference value (V0) is equal to or greater than the first change amount (ΔV1) and the reference value update stop period (also referred to as the overflow detection period) is started, Next, when the detected capacitance detection signal (Vd) returns below the first change amount (ΔV1) compared to the reference value (V0), the reference value update stop mode is canceled, and then The average value of the capacitance detection signal (Vd) detected thereafter is newly registered as the reference value (V0). Accordingly, when the change amount of the capacitance detection signal (Vd) becomes equal to or greater than the first change amount (ΔV1), the reference value update stop state is entered, but the reference value detection period (T0) (for example, 1 second) If the change amount (ΔV) of the capacitance detection signal (Vd) newly detected during () is less than or equal to the first change amount (ΔV1), the spill detector 11 determines that it is a normal induction heating operation. Thus, the reference value update mode is set and the reference value update process is executed.
[静電容量検知信号(Vd)の変化量(ΔV)が第2変化量(ΔV2)以上の場合]
 実施の形態1の誘導加熱調理器においては、前述の基準値更新停止モード(ふきこぼれ判定期間)において、静電容量検知部20が検知した電極9の静電容量に対応する静電容量検知信号(Vd)における基準値(V0)に対する変化量(ΔV)が、第1変化量(ΔV1)以上になると、第1ふきこぼれ検知期間(T1)に入る。変化量(ΔV)が、さらに第2変化量(出力低減閾値:ΔV2)以上となった場合(図3Aの(a)の点Cで示す時点)には、第1ふきこぼれ検知期間(T1)は終了し、第2ふきこぼれ検知期間(T2)に入る。実施の形態1の誘導加熱調理器において、第2ふきこぼれ検知期間(T2)に移行するか否かの閾値となる第2変化量(ΔV2)である出力低減閾値は、例えば、「14digit」としている。ここで、「1digit」とはデジタル表示の最小単位を示している。静電容量検知信号(Vd)の変化量(ΔV)が第2変化量(出力低減閾値:ΔV2)以上の時から第2ふきこぼれ検知期間経過後に第3ふきこぼれ検知期間(T3)に入るよう設定されている。この第3ふきこぼれ検知期間(T3)は、実施の形態1の誘導加熱調理器においては1秒間に設定されている。
[When the change amount (ΔV) of the capacitance detection signal (Vd) is equal to or greater than the second change amount (ΔV2)]
In the induction heating cooker according to the first embodiment, a capacitance detection signal (corresponding to the capacitance of the electrode 9 detected by the capacitance detection unit 20 in the reference value update stop mode (spillover determination period)) ( When the change amount (ΔV) with respect to the reference value (V0) in Vd) becomes equal to or greater than the first change amount (ΔV1), the first overflow detection period (T1) is entered. When the amount of change (ΔV) is further greater than or equal to the second amount of change (output reduction threshold: ΔV2) (the time indicated by point C in FIG. 3A), the first overflow detection period (T1) is Ends and enters the second overflow detection period (T2). In the induction heating cooker according to the first embodiment, the output reduction threshold value that is the second change amount (ΔV2) that is a threshold value indicating whether or not to shift to the second boiling over detection period (T2) is, for example, “14 digits”. . Here, “1 digit” indicates the minimum unit of digital display. It is set to enter the third overflow detection period (T3) after the second overflow detection period has elapsed from when the change amount (ΔV) of the capacitance detection signal (Vd) is equal to or greater than the second change amount (output reduction threshold: ΔV2). ing. The third overflow detection period (T3) is set to 1 second in the induction heating cooker of the first embodiment.
 第1の実施形態の誘導加熱調理器においては、第1ふきこぼれ検知期間(T1)及び第2ふきこぼれ検知期間(T2)において、インバータ4の加熱出力が、操作部18により設定された、あるいは自動調理モードで自動的に設定された第1設定値(P1:例えば3kW)とされており、第3ふきこぼれ検知期間(T3)に移行すると第1設定値(P1)より小さな第2設定値(P2:例えば0.3kW)に低減(ワットダウン)される。 In the induction heating cooker according to the first embodiment, the heating output of the inverter 4 is set by the operation unit 18 or is automatically cooked in the first overflow detection period (T1) and the second overflow detection period (T2). The first set value (P1: 3 kW, for example) automatically set in the mode is set. When the third overflow detection period (T3) is entered, the second set value (P2: smaller than the first set value (P1)) is set. For example, it is reduced (watt down) to 0.3 kW).
 第2のふきこぼれ検知期間(T2)においては、インバータ4に供給される加熱コイル電流(高周波電流)及び入力電流の変動状態がふきこぼれ検出に用いられている。静電容量検知部10からの静電容量検知信号(Vd)が変動する場合としては、ふきこぼれの発生の他に、例えば加熱容器1を使用者がずらして調理する場合が考えられる。このように、負荷である加熱容器1が天板2上を移動した場合には、加熱コイル3に対する加熱容器1の配置が変更されるため、加熱コイル3と負荷との間の磁気結合の大きさが変化する。インバータ4におけるスイッチング素子4aのオン時間が同一である場合には、加熱容器1と加熱コイル3の距離が小さくなればなるほど、磁気結合は大きくなり、加熱コイル電流及び入力電流の大きさは小さくなる。また、磁気結合の変化により、入力電力が変動するため、フィードバック制御が実行されると、インバータ4のスイッチング素子4aのオン時間が変更され、加熱コイル電流及び入力電流の大きさも安定するまで変動することになる。この結果、インバータ4から加熱コイル3に供給される高周波電流及び入力電流が変動することになる。一方、ふきこぼれの発生の場合には、加熱コイル3に対する加熱容器1の位置は変わらないため、上記磁気結合の変動がなく、インバータ4から加熱コイル3に供給される高周波電流及び入力電流が変動することはない。したがって、インバータ4の入力電流を入力電流検知部7bで検知し、インバータ4から加熱コイル3に供給される高周波電流を加熱コイル電流検知部7aで検知するとともに、検知した入力電流及び高周波電流を記憶部12に記憶することにより、入力電流及び高周波電流の変動の推移を検出し、加熱容器1と加熱コイル3間の磁気結合の大きさの変化を検出することが可能となる。実施の形態1の誘導加熱調理器においては、ふきこぼれ検知部11に入力電流検知部7b及び加熱コイル電流検知部7aから入出力電流信号として入力電流検知信号及び高周波電流検知信号が所定期間毎(例えば、商用電源1周期=約16.7ミリ秒毎)に入力されており、第1所定期間(T4)(例えば、2秒間)前の時点から現在に至るまでのデータが更新されながら、順次記憶部12に記憶されている。 In the second overflow detection period (T2), the fluctuation state of the heating coil current (high-frequency current) supplied to the inverter 4 and the input current is used for the overflow detection. As a case where the electrostatic capacitance detection signal (Vd) from the electrostatic capacitance detection unit 10 fluctuates, in addition to the occurrence of spilling, for example, the heating container 1 may be moved and cooked by the user. Thus, when the heating container 1 which is a load moves on the top plate 2, since the arrangement of the heating container 1 with respect to the heating coil 3 is changed, the magnitude of the magnetic coupling between the heating coil 3 and the load is large. Changes. When the ON time of the switching element 4a in the inverter 4 is the same, the smaller the distance between the heating container 1 and the heating coil 3, the greater the magnetic coupling, and the smaller the heating coil current and the input current. . Moreover, since input power fluctuates due to a change in magnetic coupling, when feedback control is executed, the ON time of the switching element 4a of the inverter 4 is changed, and the magnitudes of the heating coil current and the input current also fluctuate. It will be. As a result, the high frequency current and the input current supplied from the inverter 4 to the heating coil 3 fluctuate. On the other hand, in the case of occurrence of spillage, the position of the heating container 1 with respect to the heating coil 3 does not change, so that the magnetic coupling does not change and the high-frequency current and input current supplied from the inverter 4 to the heating coil 3 change. There is nothing. Therefore, the input current of the inverter 4 is detected by the input current detector 7b, the high-frequency current supplied from the inverter 4 to the heating coil 3 is detected by the heating coil current detector 7a, and the detected input current and high-frequency current are stored. By storing in the unit 12, it is possible to detect changes in the input current and the high-frequency current, and to detect a change in the magnitude of the magnetic coupling between the heating container 1 and the heating coil 3. In the induction heating cooker of the first embodiment, the input current detection signal and the high frequency current detection signal are input to the boiling detection unit 11 as input / output current signals from the input current detection unit 7b and the heating coil current detection unit 7a every predetermined period (for example, , One cycle of commercial power supply = approximately every 16.7 milliseconds), and sequentially stored while data from the time point before the first predetermined period (T4) (for example, 2 seconds) to the present is updated. Stored in the unit 12.
 図3Bは、負荷移動検知期間(T4)における検知動作を説明するためのグラフであり、縦軸が入力電流(Iin)、加熱コイル電流(IL)又はスイッチング素子のオン時間(Ton)の大きさを示しており、横軸は経過時間を示す。ふきこぼれ検知部11は、負荷移動検知期間(T4)において、図3Bに示すように、例えば、加熱コイル電流検知部(負荷移動検知部)7aが検知した加熱コイル電流(IL)の変動幅(ΔIL)を測定する。例えば、加熱コイル電流(IL)の変動幅(ΔIL)は、負荷移動検知期間(T4)に測定した加熱コイル電流の最大値(MAX)及び最小値(MIN)を求め、両者の差を演算することで求められる。負荷移動検知期間(T4)は、静電容量検知部10が検知した静電容量における、ふきこぼれが起きる前に静電容量検知部10が検知する静電容量に対応する基準値(V0)に対する変化量(ΔV)が、出力低減閾値(第2変化量:ΔV2)に達した時点を含むように設定される。すなわち、負荷移動検知期間(T4)は、図3Aの(a)の点Cで示す、静電容量検知信号(Vd)の基準値(V0)に対する変化量(ΔV2)が第2変化量(ΔV2)となった時点を負荷移動検知期間(T4)内に含む。これにより、変化量(ΔV)が出力低減閾値(ΔV2)以上となった時点の以前、以後、あるいは前後にわたって、加熱コイル電流の変動幅(ΔIL)を測定することができる。 FIG. 3B is a graph for explaining the detection operation in the load movement detection period (T4), and the vertical axis indicates the magnitude of the input current (Iin), the heating coil current (IL), or the ON time (Ton) of the switching element. The horizontal axis indicates the elapsed time. In the load movement detection period (T4), as shown in FIG. 3B, the spillover detection unit 11 is, for example, a fluctuation range (ΔIL) of the heating coil current (IL) detected by the heating coil current detection unit (load movement detection unit) 7a. ). For example, for the fluctuation range (ΔIL) of the heating coil current (IL), the maximum value (MAX) and the minimum value (MIN) of the heating coil current measured during the load movement detection period (T4) are obtained, and the difference between them is calculated. It is required by that. The load movement detection period (T4) is a change in the capacitance detected by the capacitance detection unit 10 with respect to the reference value (V0) corresponding to the capacitance detected by the capacitance detection unit 10 before spilling occurs. The amount (ΔV) is set so as to include the time point when the output reduction threshold (second variation: ΔV2) is reached. That is, during the load movement detection period (T4), the change amount (ΔV2) with respect to the reference value (V0) of the capacitance detection signal (Vd) indicated by the point C in FIG. 3A is the second change amount (ΔV2). ) Is included in the load movement detection period (T4). Thereby, the fluctuation range (ΔIL) of the heating coil current can be measured before, after, or before and after the time point when the change amount (ΔV) becomes equal to or greater than the output reduction threshold value (ΔV2).
 ふきこぼれ検知部11は、図3Aの(a)の点Dで示す第2ふきこぼれ検知期間(T2)の終了時点で変動幅(ΔIL)が所定値(例えば、15digit)未満である場合、静電容量検知信号(Vd)の変化量(ΔV)がふきこぼれに起因して起こった可能性が高いと判断して、第3ふきこぼれ期間(T3)に移行し、変動幅(ΔIL)が所定値(例えば、15digit)以上である場合には、ふきこぼれに起因するものでないとして、基準値更新停止モードから、基準値更新モードに移行する。
 負荷移動検知部は、加熱コイル電流検知部7a若しくは入力電流検知部7bに代え、又はそれらと共に、スイッチング素子4aのオン時間(Ton:導通期間)をモニターするオン時間検知部7cを含む。オン時間検知部7cは、インバータ4を構成する1つ以上のスイッチング素子4aのオン時間(導通期間:Ton)の変化幅を検知することにより、加熱コイル3と加熱容器1との磁気結合の大きさの変動幅(ΔTon)を検知するものである。制御部8は、スイッチング素子4aをオン・オフ制御することにより加熱コイル3を駆動し、スイッチング素子4aのオン時間を変更することによりインバータ4の加熱出力を変更する(例えば、オン時間を長くすることにより、加熱出力を大きくする)ように制御する。スイッチング素子4aのオン時間(スイッチング素子4aが複数ある場合には全てのスイッチング素子のオン時間)が同一で、例えば、磁気結合が小さくなるとインバータ4の加熱出力は小さくなる。この場合、設定された出力に戻す制御を行うため、制御部8は、フィードバック制御によりオン時間(Ton)が大きくなるように変更する。負荷移動検知部としてのオン時間検知部7cは、スイッチング素子4aのオン時間(導通期間)をモニターして、磁気結合の変化に対応して生じるスイッチング素子4aのオン時間(Ton)の変化を検知する。このようにオン時間検知部7cでオン時間(Ton)の変動を検知することより、前述の加熱コイル電流検知部7aにおける加熱コイル電流(IL)の変動幅(ΔIL)を測定してふきこぼれか否かを識別する場合と同様に、スイッチング素子4aのオン時間(Ton)の負荷移動検知期間(T4)における変化を検知して、磁気結合の変動幅(ΔTon)を測定し、静電容量検知信号(Vd)の変化量(ΔV)がふきこぼれによるものか否かを識別することができる。
When the fluctuation range (ΔIL) is less than a predetermined value (for example, 15 digits) at the end of the second overflow detection period (T2) indicated by a point D in FIG. It is determined that the change amount (ΔV) of the detection signal (Vd) is likely to have occurred due to spillage, and the third spillover period (T3) is entered, and the fluctuation range (ΔIL) is a predetermined value (for example, In the case of 15 digits) or more, it is determined that it is not caused by a spill, and the reference value update stop mode is shifted to the reference value update mode.
The load movement detection unit includes an on-time detection unit 7c that monitors the on-time (Ton: conduction period) of the switching element 4a instead of or together with the heating coil current detection unit 7a or the input current detection unit 7b. The on-time detection unit 7 c detects the change width of the on-time (conduction period: Ton) of one or more switching elements 4 a constituting the inverter 4, thereby increasing the magnitude of magnetic coupling between the heating coil 3 and the heating container 1. The fluctuation range (ΔTon) of the height is detected. The controller 8 drives the heating coil 3 by controlling on / off of the switching element 4a, and changes the heating output of the inverter 4 by changing the on-time of the switching element 4a (for example, lengthens the on-time). To increase the heating output). The on-time of the switching element 4a (when there are a plurality of switching elements 4a, the on-time of all the switching elements) is the same. For example, when the magnetic coupling decreases, the heating output of the inverter 4 decreases. In this case, in order to perform control to return to the set output, the control unit 8 changes the on-time (Ton) to be increased by feedback control. The on-time detection unit 7c as a load movement detection unit monitors the on-time (conduction period) of the switching element 4a and detects a change in the on-time (Ton) of the switching element 4a that occurs in response to a change in magnetic coupling. To do. In this way, by detecting the variation of the on-time (Ton) by the on-time detector 7c, whether or not the fluctuation is detected by measuring the variation width (ΔIL) of the heating coil current (IL) in the heating coil current detector 7a. As in the case of identifying the switching element 4a, the change in the load movement detection period (T4) of the ON time (Ton) of the switching element 4a is detected, the fluctuation range (ΔTon) of the magnetic coupling is measured, and the capacitance detection signal It is possible to identify whether or not the change amount (ΔV) of (Vd) is due to spillage.
 ふきこぼれ検知部11は、第2ふきこぼれ検知期間(T2)において、静電容量検知信号(Vd)で検知された静電容量変化率(例えば、8digit/秒)が所定値未満であると、加熱容器1に使用者が触れたか、加熱容器1がずらされたと判定して基準値更新停止モードを解除して、基準値更新モードに移行する。一方、静電容量検知信号(Vd)で検知された静電容量変化率が所定値以上であれば、ふきこぼれの可能性があると判定する。
 第2ふきこぼれ検知期間(T2)が終了するまでに、ふきこぼれ検知部11は、静電容量検知信号(Vd)で検知される静電容量変化率と、磁気結合の大きさの変動幅に基づき、ふきこぼれが起きたことを検知する。磁気結合の大きさの変動幅は、上記の加熱コイル電流、入力電流、スイッチング素子のオン時間(導通期間)のパラメータに本発明は限定されるものではなく、インバータ4に発生する電圧又は電流で磁気結合の変化に対応して変動するパラメータを測定し、各パラメータの変動幅を演算することにより検知することができる。
When the capacitance change rate (for example, 8 digits / second) detected by the capacitance detection signal (Vd) is less than a predetermined value in the second leakage detection period (T2), It is determined that the user has touched 1 or the heating container 1 has been shifted, the reference value update stop mode is canceled, and the process proceeds to the reference value update mode. On the other hand, if the rate of change in capacitance detected by the capacitance detection signal (Vd) is greater than or equal to a predetermined value, it is determined that there is a possibility of spilling.
By the end of the second spill detection period (T2), the spill detection unit 11 is based on the capacitance change rate detected by the capacitance detection signal (Vd) and the fluctuation range of the magnitude of the magnetic coupling. Detects spilling. The fluctuation range of the magnitude of the magnetic coupling is not limited to the parameters of the heating coil current, the input current, and the on-time (conduction period) of the switching element, but is determined by the voltage or current generated in the inverter 4. It can be detected by measuring a parameter that fluctuates in response to a change in magnetic coupling and calculating a fluctuation range of each parameter.
 ふきこぼれ検知部11は、第3ふきこぼれ検知期間(T3)に移行後、ふきこぼれ判定を確定するため加熱出力を第2設定値(P2)に低下させて待機する。第3ふきこぼれ検知期間(T3)中に、静電容量検知信号(Vd)がふきこぼれでは生じない変化をしたことを検知した場合には、ふきこぼれ判定を確定することなく加熱出力を第1設定値(P1)に戻し、基準値更新停止処理を終了してもよい。これにより、不必要に調理を中断させることを防止することができる。
 静電容量検知信号(Vd)においてふきこぼれでは生じない変化として、例えば、静電容量検知信号(Vd)が、基準値更新停止モードで検知された最大値(Vd(min))に対して所定値(例えば、15digit)以上跳ね上がった場合としてもよい。
 ふきこぼれ検知部11は、ふきこぼれが起きたとする判定を確定すると、加熱を停止するとともに表示部20にふきこぼれが生じたことを表示するか又は音声にて報知する。この状態で、再度加熱動作を行うには、まず、加熱停止キーを押すことが必要となる。
After the transition to the third overflow detection period (T3), the overflow detection unit 11 waits by reducing the heating output to the second set value (P2) in order to determine the overflow detection. If it is detected during the third overflow detection period (T3) that the capacitance detection signal (Vd) has changed without being overflowed, the heating output is set to the first set value (without determining the overflow detection). Returning to P1), the reference value update stop process may be terminated. Thereby, it is possible to prevent the cooking from being interrupted unnecessarily.
As a change that does not occur in the capacitance detection signal (Vd), for example, the capacitance detection signal (Vd) is a predetermined value with respect to the maximum value (Vd (min)) detected in the reference value update stop mode. (For example, 15 digits) It is good also as a case where it jumps up.
When the spillage detection unit 11 determines that the spillage has occurred, the spillage detection unit 11 stops heating and displays the occurrence of the spillage on the display unit 20 or informs by voice. In order to perform the heating operation again in this state, it is necessary to first press the heating stop key.
 なお、検知された静電容量検知信号(Vd)の変化量(ΔV)が第1変化量(ΔV1)以上となったときから始まる、基準値更新停止モードにおいて、少なくとも1つのふきこぼれ電極(9a乃至9g)からの検知信号における静電容量の推移である静電容量変化率が所定値(例えば、145digit/秒)以上となったときに、瞬時に誘導加熱動作の停止を行うか、若しくは加熱出力を大幅に低減した、第2設定値(P2)より更に低い第3設定値(P3:例えば、0.1kW)に低減するよう構成してもよい。この場合において、3つの電極9(左後電極9a,左前電極9b,左中央電極9c、若しくは右後電極9d,右前電極9e,右中央電極9f)における残りの他の2つ電極の変化量(ΔV)がともに基準値(V0)に対して、所定値(例えば、10digit)以上となっている場合には、加熱容器1に手が触れられた可能性があると判定して、基準値更新停止モードから第2待機モードに移行する。ふきこぼれ検知部11は、第2待機モードに移行すると、第2待機期間(例えば、2秒間)においては基準値更新モード及び基準値更新停止モードにおいて実行されるようなふきこぼれ検知動作が禁止される。第2待機モードが終了すると、基準値更新モードに移行する。なお、基準値更新停止モードから第2待機モードに移行する前に、変化量(ΔV)が安定するまで待機する第3待機モードに移行するように構成しても良い。この第3待機モードにおいては、基準値更新停止モードにおいて記憶された基準値(V0)に対する変化量(ΔV)が、所定値(例えば、50digit)以上であると、第3待機期間(例えば、2秒間)待機し、所定値未満となるまでその動作を繰り返し、所定値未満となったとき待機モードに移行する。 In the reference value update stop mode, which starts when the detected change amount (ΔV) of the capacitance detection signal (Vd) becomes equal to or greater than the first change amount (ΔV1), at least one spilled electrode (9a to 9a to 9g) When the capacitance change rate, which is the change in capacitance in the detection signal from 9g), exceeds a predetermined value (for example, 145 digits / second), the induction heating operation is stopped instantaneously or the heating output May be configured to be reduced to a third setting value (P3: for example, 0.1 kW) lower than the second setting value (P2). In this case, the amount of change of the remaining two electrodes in the three electrodes 9 (left rear electrode 9a, left front electrode 9b, left center electrode 9c, or right rear electrode 9d, right front electrode 9e, right center electrode 9f) ( When both ΔV) are equal to or greater than a predetermined value (for example, 10 digits) with respect to the reference value (V0), it is determined that the heating container 1 may be touched, and the reference value is updated. Transition from the stop mode to the second standby mode. When the overflow detection unit 11 shifts to the second standby mode, the overflow detection operation that is executed in the reference value update mode and the reference value update stop mode is prohibited in the second standby period (for example, 2 seconds). When the second standby mode ends, the process shifts to the reference value update mode. In addition, you may comprise so that it may transfer to the 3rd standby mode which waits until the variation | change_quantity ((DELTA) V) is stabilized before shifting to a 2nd standby mode from a reference value update stop mode. In the third standby mode, if the amount of change (ΔV) with respect to the reference value (V0) stored in the reference value update stop mode is equal to or greater than a predetermined value (for example, 50 digits), the third standby period (for example, 2 (Seconds), and the operation is repeated until the value becomes less than the predetermined value.
 第2ふきこぼれ検知期間のみでなく、基準値更新停止モード(ふきこぼれ判定期間)において検出された最小の静電容量検知信号(Vd(min))と、検出された静電容量検知信号(Vd)が比較されて、所定値(例えば、15digit)を越える跳ね上がりが検出された場合にはふきこぼれ状態ではないと判断して、第2待機モードに移行した後に基準値更新処理動作に復帰すると良い。これは、ふきこぼれ状態では静電容量信号が急激に跳ね上がらないためである。 The minimum capacitance detection signal (Vd (min)) detected in the reference value update stop mode (spillover determination period) and the detected capacitance detection signal (Vd) are not limited to the second overflow detection period. If a comparison is detected and a jump exceeding a predetermined value (for example, 15 digits) is detected, it is determined that the spillover state has not occurred, and the process returns to the reference value update processing operation after shifting to the second standby mode. This is because the capacitance signal does not jump abruptly in the spilled state.
 なお、上記の基準値更新停止モードにおいて、各加熱コイル3における加熱容器1に対して静電容量を検出する3つの電極9(左後電極9a,左前電極9b,左中央電極9c、若しくは右後電極9d,右前電極9e,右中央電極9f)からの各静電容量検知信号の関連性は、ふきこぼれ検出の判定材料として用いられる。例えば、3つの電極9の静電容量が大きく異なる推移(時間変化)を示していれば、小さなふきこぼれの可能性がある。一方、3つの電極9の静電容量が同様の推移を示していれば、大きなふきこぼれが発生したか、又は加熱容器1に手を触れたなどの可能性があるため、このように各静電容量が同様に推移する場合には、その後の推移状態により大きなふきこぼれか否かを判定しても良い。そのときの判定においては、判定基準となる閾値を高い値に設定して、その閾値を越えたとき、大きなふきこぼれと判定することにより、より精度の高い判定が可能となる。
 なお、3つの電極9の静電容量が同様に推移するとは、例えば、3つの電極9において、それぞれが第2ふきこぼれ検知期間の開始時点(図3AのCの時点)がすべて所定期間内に含まれていること(例えば、いずれか一つの電極が第2ふきこぼれ検知期間に移行してから0.5秒の期間内に、他の全ての電極が第2ふきこぼれ検知期間に移行すること)を示すものであり、このような状態のとき、3つの電極9の静電容量が同様の推移を示していると判定する。
In the reference value update stop mode, the three electrodes 9 (the left rear electrode 9a, the left front electrode 9b, the left center electrode 9c, or the right rear electrode) for detecting the capacitance of the heating container 1 in each heating coil 3 are used. The relevance of each electrostatic capacitance detection signal from the electrode 9d, the right front electrode 9e, and the right center electrode 9f) is used as a determination material for detection of overflowing. For example, if the capacitances of the three electrodes 9 show significantly different transitions (time changes), there is a possibility of small spills. On the other hand, if the capacitances of the three electrodes 9 show the same transition, there is a possibility that large spillage has occurred or the heating container 1 has been touched. When the capacity changes in the same manner, it may be determined whether or not there is a large spillage depending on the subsequent transition state. In the determination at that time, a threshold value serving as a determination criterion is set to a high value, and when the threshold value is exceeded, it is determined that there is a large spillage, thereby enabling a more accurate determination.
It should be noted that the capacitances of the three electrodes 9 change similarly, for example, in the three electrodes 9, each of the start points of the second overflow detection period (time point C in FIG. 3A) is included within a predetermined period. (For example, any one of the electrodes shifts to the second spill detection period within a period of 0.5 seconds after any one electrode shifts to the second spill detection period) In such a state, it is determined that the capacitance of the three electrodes 9 shows the same transition.
 上記のように、実施の形態1の誘導加熱調理器は、第2ふきこぼれ判定期間(T2)において、ふきこぼれの可能性があると判定した場合には、第2ふきこぼれ検知期間(T2)終了とともに、第3ふきこぼれ検知期間(T3)に移行して加熱出力が低減(第2設定値:P2に設定変更)され、第3ふきこぼれ検知期間T3が終了してふきこぼれ発生したとの判定が確定したとき誘導加熱動作が停止されている。この状態が、図3Aの(a)及び(b)に示されている。図3Aの(a)及び(b)に示すように、静電容量検知信号(Vd)において基準値(V0)からの変化量(ΔV)が第1変化量(基準値更新停止閾値:ΔV1)以上となったときに、基準値更新モードが終了して、基準値更新停止モードに入る。基準値更新停止モードにおいては、基準値更新停止モードに入る直前において検出された静電容量検知信号(図3Aの(a)における点Aの静電容量電圧)が基準値(V0)として用いられる。この基準値更新停止期間において、検出された静電容量検知信号(Vd)が第2変化量(出力低減閾値:ΔV2)以上大きくなったとき、第2ふきこぼれ検知期間に移行し、予め設定された期間である第2ふきこぼれ検知期間(T2)が終了すると、第3ふきこぼれ検知期間に移行する。第3ふきこぼれ検知期間(T3)に移行すると、インバータ4の加熱出力は低減(第2設定値:P2、例えば、0.3kW)される。その後、予め設定された期間である第3ふきこぼれ検知期間(T3)が終了すると、ふきこぼれ判定が確定し、加熱出力は停止される。
 また、第2ふきこぼれ検知期間(T2)及び第3ふきこぼれ検知期間(T3)において、静電容量検知信号(Vd)の単位時間あたりの変化率が所定値(例えば、145digit/秒)以上となったとき、さらなる加熱出力の低減(第3設定値P3:例えば、0.1kWに変更)または加熱停止が実行されて、ふきこぼれ判定が確定する。
As described above, when the induction heating cooker of Embodiment 1 determines that there is a possibility of spilling in the second spillage determination period (T2), along with the end of the second spillover detection period (T2), It is guided when the third overflow detection period (T3) is entered and the heating output is reduced (the second setting value is changed to P2), and it is determined that the overflow has occurred after the third overflow detection period T3 ends. The heating operation is stopped. This state is shown in FIGS. 3A (a) and (b). As shown in (a) and (b) of FIG. 3A, the change amount (ΔV) from the reference value (V0) in the capacitance detection signal (Vd) is the first change amount (reference value update stop threshold: ΔV1). When this is the case, the reference value update mode ends and the reference value update stop mode is entered. In the reference value update stop mode, the capacitance detection signal (capacitance voltage at point A in FIG. 3A (a)) detected immediately before entering the reference value update stop mode is used as the reference value (V0). . When the detected capacitance detection signal (Vd) becomes larger than the second change amount (output reduction threshold: ΔV2) during the reference value update stop period, the process shifts to the second overflow detection period and is set in advance. When the second overflow detection period (T2), which is the period, ends, the process shifts to the third overflow detection period. When the third overflow detection period (T3) starts, the heating output of the inverter 4 is reduced (second set value: P2, for example, 0.3 kW). Thereafter, when the third overflow detection period (T3), which is a preset period, ends, the overflow detection is confirmed and the heating output is stopped.
In addition, the rate of change per unit time of the capacitance detection signal (Vd) is equal to or greater than a predetermined value (for example, 145 digits / second) in the second overflow detection period (T2) and the third overflow detection period (T3). When the heating output is further reduced (third set value P3: changed to 0.1 kW, for example) or heating is stopped, the spillage determination is confirmed.
 なお、実施の形態1の誘導加熱調理器の誘導加熱動作中において、使用者が操作部18において出力変更(火力変更)を行った場合には、前述のふきこぼれ検知動作はリセットされて、新たなふきこぼれ検知動作が開始される。ただし、新たに設定された誘導加熱動作の初期段階において、ふきこぼれ検知動作により加熱を停止するかまたは第3の加熱出力に低減するという加熱出力抑制動作を行わない第2待機時間は加熱開始時の待機時間に比べ短く設定されている(例えば、3秒)。なお、この初期段階においてふきこぼれ検知動作を行わない待機時間の長さは、その状況(出力、温度など)に応じて適宜設定される。 In addition, during the induction heating operation of the induction heating cooker according to the first embodiment, when the user changes the output (changes the heating power) in the operation unit 18, the above-described overflow detection operation is reset and a new one is generated. The spill detection operation is started. However, in the newly set initial stage of the induction heating operation, the second standby time during which the heating output suppression operation of stopping the heating by the spillover detection operation or reducing to the third heating output is not performed is performed at the start of heating. It is set shorter than the waiting time (for example, 3 seconds). It should be noted that the length of the standby time during which no overflow detection operation is performed in this initial stage is appropriately set according to the situation (output, temperature, etc.).
 実施の形態1の誘導加熱調理器のふきこぼれ検知部11は、電圧検知部15が一定期間(例えば、商用電源周期)毎に出力する静電容量信号(Vd)を基準値(V0)と比較するよう構成した例について説明したが、所定検知期間(例えば、約0.1秒間)内において電極9の静電容量を複数回(例えば5または6回)検知して、検知された複数の静電容量の平均値を算出して、静電容量信号(Vd)として採用し、その静電容量の平均値を基準値(V0)と比較するよう構成してもよい。後者のように構成することにより、ノイズなどが静電容量信号(Vd)に重畳する場合に、ふきこぼれ状態の検知精度を高めることが可能となる。 The overflow detection unit 11 of the induction heating cooker according to the first embodiment compares the capacitance signal (Vd) output by the voltage detection unit 15 every predetermined period (for example, commercial power cycle) with a reference value (V0). Although the example configured as described above has been described, the capacitance of the electrode 9 is detected a plurality of times (for example, 5 or 6 times) within a predetermined detection period (for example, about 0.1 second), and a plurality of detected electrostatic capacitances are detected. An average value of the capacitance may be calculated and adopted as the capacitance signal (Vd), and the average value of the capacitance may be compared with the reference value (V0). With the latter configuration, when noise or the like is superimposed on the capacitance signal (Vd), it is possible to improve the detection accuracy of the overflowing state.
 また、実施の形態1の誘導加熱調理器においては、ふきこぼれ検知部11が、基準値検知期間(T0)(例えば、1秒間)内において、複数回検知された複数の静電容量のいずれかにおける基準値(V0)に対する変化量が基準値更新停止閾値(3digit)以上となったとき、記憶部12に対する基準値(V0)の更新を停止させるとともに、そのときの検知期間がリセットされて、新たに基準値検知期間の計測が開始され、記憶部12に対して基準値更新処理を実行させるよう構成してもよい。 In addition, in the induction heating cooker of the first embodiment, the spill detector 11 is in any one of a plurality of capacitances detected a plurality of times within a reference value detection period (T0) (for example, 1 second). When the amount of change with respect to the reference value (V0) becomes equal to or greater than the reference value update stop threshold (3 digits), the update of the reference value (V0) to the storage unit 12 is stopped, and the detection period at that time is reset and new Alternatively, the measurement of the reference value detection period may be started, and the storage unit 12 may be configured to execute the reference value update process.
 実施の形態1の誘導加熱調理器は、各加熱コイル3の周囲近傍に設けられた複数の電極9(9a~9g)におけるいずれか1つの電極により検出された静電容量が、基準値(V0)に対して基準値更新停止閾値未満の変化量の場合には基準値更新処理を実行し、基準値更新停止閾値以上の変化量の場合には基準値更新停止処理を実行している。さらに、実施の形態1の誘導加熱調理器は、検出された静電容量が出力低減閾値(例えば、14digit)以上の変化量を有する場合にはインバータ4の加熱出力を低減(第2設定値:P2)し、さらにふきこぼれ検知期間における高周波電流検知信号の変動値が所定変動値以下となった場合には、当該誘導加熱調理器を停止するか、若しくはインバータ4の加熱出力をさらに低減(第3設定値:P3)するよう構成されている。 In the induction heating cooker according to the first embodiment, the capacitance detected by any one of the plurality of electrodes 9 (9a to 9g) provided near the periphery of each heating coil 3 is the reference value (V0). ), The reference value update process is executed when the amount of change is less than the reference value update stop threshold, and the reference value update stop process is executed when the amount of change is greater than the reference value update stop threshold. Furthermore, the induction heating cooker of Embodiment 1 reduces the heating output of the inverter 4 when the detected capacitance has a change amount equal to or greater than an output reduction threshold (for example, 14 digits) (second set value: P2), and when the fluctuation value of the high-frequency current detection signal in the overflow detection period becomes equal to or less than the predetermined fluctuation value, the induction heating cooker is stopped or the heating output of the inverter 4 is further reduced (third Set value: P3).
[メニュー表示]
 図4Aから図4Eは、実施の形態1の誘導加熱調理器における操作部18及び表示部20のメニュー表示部の状態を示しており、ふきこぼれ検知動作を設定する手順を示している。
 図4Aは、実施の形態1の誘導加熱調理器が誘導加熱動作前である、使用者が加熱条件を設定するときの操作部18及び表示部20におけるメニュー表示部の表示状態図である。図4Aに示すように、メニュー表示部には「メニュー」の操作スイッチのみが表示されている。使用者が「メニュー」マークを選択(押圧)すると、図4Bに示すように、「メニュー」の他に、「加熱」、「鍋マーク」、「揚げ物」、「焼き物」、「やかんマーク」、「こげつき」及び「切/スタート」のマークが表示される。このとき、「加熱」のマークのみが点滅表示される。
[Menu display]
4A to 4E show the states of the operation display unit 18 and the menu display unit of the display unit 20 in the induction heating cooker according to the first embodiment, and show the procedure for setting the overflow detection operation.
FIG. 4A is a display state diagram of the menu display unit in the operation unit 18 and the display unit 20 when the user sets the heating conditions before the induction heating operation of the first embodiment is performed. As shown in FIG. 4A, only the “menu” operation switch is displayed in the menu display section. When the user selects (presses) the “menu” mark, as shown in FIG. 4B, in addition to the “menu”, “heating”, “pan mark”, “fried food”, “baked food”, “kettle mark”, “Koketsu” and “Off / Start” marks are displayed. At this time, only the “heating” mark blinks.
 図4Bに示す状態において、「切/スタート」マークを選択(押圧)すると、誘導加熱動作が開始されるとともに、こげつき検知動作が開始される。こげつき検知動作とは、加熱容器1の内容物のこげつきを検知するものであり、温度検知部17において急激な温度上昇などの情報に基づいて検知される。この誘導加熱動作のときには、こげつき検知動作のみが作動して、ふきこぼれ検知動作は開始されていない。 In the state shown in FIG. 4B, when the “cut / start” mark is selected (pressed), the induction heating operation is started and the burn-in detection operation is started. The burning detection operation is to detect burning of the contents of the heating container 1 and is detected by the temperature detection unit 17 based on information such as a rapid temperature rise. During this induction heating operation, only the burn-out detection operation is activated, and the overflow detection operation is not started.
 図4Bに示す状態において、「メニュー」マークを選択(押圧)すると、図4Cに示すようにメニュー表示部が表示される。図4Cに示すように、図4Bに示すメニュー表示部から、あらたに「ふきこぼれ」のマークが表示されるとともに、「加熱」及び「鍋マーク」が点滅表示される。すなわち、この状態において使用者が「切/スタート」マークを選択(押圧)することにより、誘導加熱動作が開始されるとともに、こげつき検知動作及びふきこぼれ検知動作が開始されることを示している。図4Dは誘導加熱動作中のメニュー表示部の表示状態を示している。図4Dに示すように、誘導加熱動作中は「加熱」、「鍋マーク」、「メニュー」及び「切/スタート」が表示されており、誘導加熱動作中において使用者はいつでもメニュー変更、若しくは誘導加熱動作を停止することが可能である。 In the state shown in FIG. 4B, when the “menu” mark is selected (pressed), a menu display portion is displayed as shown in FIG. 4C. As shown in FIG. 4C, “Fukibokore” mark is newly displayed from the menu display section shown in FIG. 4B, and “Heating” and “Pot mark” are blinkingly displayed. That is, when the user selects (presses) the “cut / start” mark in this state, the induction heating operation is started, and the burn-in detection operation and the overflow detection operation are started. FIG. 4D shows the display state of the menu display section during the induction heating operation. As shown in FIG. 4D, “heating”, “pan mark”, “menu”, and “off / start” are displayed during the induction heating operation, and the user can change the menu at any time during the induction heating operation. It is possible to stop the heating operation.
 上記のように、ふきこぼれ検知動作が設定された誘導加熱動作中において、前述のふきこぼれ検知動作の結果、ふきこぼれ判定が確定してふきこぼれ発生を検知すると、図4Eに示すように、メニュー表示部には「ふきこぼれ」が点滅表示される。なお、実施の形態1の誘導加熱調理器においては、ふきこぼれを検知するとメニュー表示部に「ふきこぼれ」が点滅表示される構成であるが、「ふきこぼれ」が点滅表示されるとともにふきこぼれ状態であることを音声にて報知する構成としてもよい。 As described above, during the induction heating operation in which the overflow detection operation is set, as a result of the above-described overflow detection operation, when the overflow detection is confirmed and the occurrence of the overflow is detected, as shown in FIG. “Blowout” flashes. In addition, in the induction heating cooker of Embodiment 1, it is the structure by which "Fukikobo" flashes and is displayed on the menu display part when it detects the overflow, but "Fukikobo" flashes and is in the state of being overflowing. It is good also as a structure alert | reported by an audio | voice.
 なお、実施の形態1の誘導加熱調理器におけるメニュー表示部では、「メニュー」のマークを押圧して選択するたびに、「加熱」の次に、「揚げ物」、「焼き物」、「やかんマーク」、そして「加熱」が順次点滅して、被加熱物の選択を行うよう構成されている。なお、「やかんマーク」は湯沸かし動作を示している。
 また、実施の形態1の誘導加熱調理器における操作部18には、加熱ヒータの選択、温度設定(火力調整)、タイマー設定などの誘導加熱調理器において必要とされる操作スイッチ(左右の移動を示す矢印マーク、増減(+,-)を示すマークなど)が設けられている。
In the menu display section of the induction heating cooker according to the first embodiment, every time the “menu” mark is pressed and selected, the “fried food”, “baked food”, “kettle mark” next to “heating” Then, “heating” blinks sequentially, and the object to be heated is selected. The “kettle mark” indicates a kettle operation.
The operation unit 18 in the induction heating cooker according to the first embodiment includes operation switches (left and right movements) required in the induction heating cooker such as selection of a heater, temperature setting (heating power adjustment), timer setting, and the like. Arrow marks to indicate, marks to indicate increase / decrease (+,-), and the like).
 上記のように、本発明の誘導加熱調理器は、実施の形態において具体的に例示したように、加熱コイルの周囲近傍で天板裏面に設けられた複数の円弧状の電極からの信号及びインバータが出力する高周波電流などに基づいて、電極に生じた静電容量の変化量及び高周波電流の変動状態などを精度高く検出して、誘導加熱動作時に生じる加熱容器におけるふきこぼれの誤検出を大幅に低減するとともに、ふきこぼれの発生を確実に検出することができ、信頼性及び安全性の高い誘導加熱調理器となる。 As described above, as specifically illustrated in the embodiment, the induction heating cooker of the present invention includes signals and inverters from a plurality of arc-shaped electrodes provided on the back of the top plate near the periphery of the heating coil. Based on the high-frequency current output by the sensor, the amount of change in capacitance generated in the electrode and the fluctuation state of the high-frequency current are detected with high accuracy, greatly reducing false detection of spillage in the heating vessel during induction heating operation. In addition, the occurrence of spilling can be reliably detected, and the induction heating cooker is highly reliable and safe.
 誘導加熱動作時に生じる加熱容器におけるふきこぼれの誤検出を大幅に低減することができる信頼性の高い誘導加熱調理器を市場に提供することができる。 It is possible to provide a highly reliable induction heating cooker that can greatly reduce the erroneous detection of spillage in the heating container that occurs during the induction heating operation to the market.
 2 天板
 3 加熱コイル
 4 インバータ
 5 整流器
 6 交流電源
 7a 加熱コイル電流検知部(負荷移動検知部)
 7b 入力電流検知部(負荷移動検知部)
 7c オン時間検知部(負荷移動検知部)
 8 制御部
 9 電極
 9a~9f 電極
 10 静電容量検知部
 11 ふきこぼれ検知部
 12 記憶部
 13 高周波信号発生器
 14 整流部
 15 電圧検知部
 18 操作部
 20 表示部
2 Top plate 3 Heating coil 4 Inverter 5 Rectifier 6 AC power supply 7a Heating coil current detection part (load movement detection part)
7b Input current detector (load movement detector)
7c On-time detector (load movement detector)
DESCRIPTION OF SYMBOLS 8 Control part 9 Electrode 9a-9f Electrode 10 Capacitance detection part 11 Overflow detection part 12 Memory | storage part 13 High frequency signal generator 14 Rectification part 15 Voltage detection part 18 Operation part 20 Display part

Claims (12)

  1.  加熱容器を載置する天板と、
     前記天板の下方に設けられ、前記加熱容器を誘導加熱する加熱コイルと、
     前記加熱コイルに高周波電流を供給するインバータと、
     前記加熱コイルの周囲近傍で前記天板裏面に設けられた電極と、
     前記電極に高周波信号を供給して前記電極の静電容量を検知する静電容量検知部と、
     負荷移動検知期間内における前記加熱容器と前記加熱コイル間の磁気結合の大きさの変動幅を検知する負荷移動検知部と、
     ふきこぼれが起きる前に、前記静電容量検知部が検知する静電容量に対応する基準値を記憶する記憶部と、
     前記加熱出力が設定された第1設定値になるように制御する制御部と、を備え、
     前記ふきこぼれ検知部は、前記静電容量検知部において検知された静電容量における前記基準値に対する変化量が出力低減閾値以上でかつ前記磁気結合の大きさの変動幅が所定値未満である場合、前記加熱出力を前記第1設定値より小さい予め設定された第2設定値に低減するかまたは加熱を停止するふきこぼれ抑制動作を行なうと共に、前記負荷移動検知期間は、前記変化量が前記出力低減閾値に達した時点を含むよう構成された誘導加熱調理器。
    A top plate on which the heating container is placed;
    A heating coil that is provided below the top plate and induction-heats the heating container;
    An inverter for supplying a high frequency current to the heating coil;
    An electrode provided on the back surface of the top plate in the vicinity of the periphery of the heating coil;
    A capacitance detector for detecting a capacitance of the electrode by supplying a high frequency signal to the electrode;
    A load movement detection unit for detecting a fluctuation range of the magnitude of the magnetic coupling between the heating container and the heating coil in a load movement detection period;
    A storage unit that stores a reference value corresponding to the capacitance detected by the capacitance detection unit before a spill occurs;
    A control unit that controls the heating output to be a set first set value,
    When the amount of change with respect to the reference value in the capacitance detected by the capacitance detection unit is greater than or equal to an output reduction threshold and the fluctuation range of the magnitude of the magnetic coupling is less than a predetermined value, The heating output is reduced to a preset second setting value smaller than the first setting value, or a spillage suppression operation for stopping heating is performed, and the change amount is the output reduction threshold during the load movement detection period. An induction heating cooker configured to include a point in time reached.
  2.  前記負荷移動検知部は、前記インバータの入出力を検知する加熱入出力検知部を含み、前記加熱入出力検知部の検知する前記加熱出力の変化幅を検知することにより前記磁気結合の変動幅を検知するよう構成された請求項1に記載の誘導加熱調理器。 The load movement detection unit includes a heating input / output detection unit that detects input / output of the inverter, and detects the variation range of the heating output detected by the heating input / output detection unit, thereby reducing the variation range of the magnetic coupling. The induction heating cooker of claim 1 configured to detect.
  3.  前記負荷移動検知部は、前記インバータを構成するスイッチング素子のオン時間をモニターするオン時間検知部を含み、前記オン時間検知部の検知する前記オン時間の変化幅を検知することにより前記磁気結合の変動幅を検知するよう構成された請求項1に記載の誘導加熱調理器。 The load movement detection unit includes an on-time detection unit that monitors an on-time of a switching element that constitutes the inverter, and detects a change width of the on-time that is detected by the on-time detection unit. The induction heating cooker of Claim 1 comprised so that a fluctuation range might be detected.
  4.  前記ふきこぼれ検知部は、前記変化量が前記出力低減閾値以上となると所定の期間設定される第2ふきこぼれ検知期間に移行し、前記負荷移動検知部が検知した前記磁気結合の大きさの変動幅が所定値未満であることを検知すると、前記第2ふきこぼれ検知期間終了後前記ふきこぼれ抑制動作を行うよう構成された請求項1に記載の誘導加熱調理器。 When the amount of change is equal to or greater than the output reduction threshold, the overflow detection unit shifts to a second overflow detection period set for a predetermined period, and the fluctuation range of the magnitude of the magnetic coupling detected by the load movement detection unit is increased. 2. The induction heating cooker according to claim 1, wherein when it is detected that the value is less than a predetermined value, the operation of suppressing the overflow is performed after the end of the second overflow detection period.
  5.  前記負荷移動検知部は、前記加熱コイルへ供給される高周波電流を測定する加熱コイル電流検知部である請求項1又は2に記載の誘導加熱調理器。 The induction heating cooker according to claim 1 or 2, wherein the load movement detection unit is a heating coil current detection unit that measures a high-frequency current supplied to the heating coil.
  6.  前記負荷移動検知部は、前記インバータの入力電流を測定する入力電流検知部である請求項1又は2に記載の誘導加熱調理器。 The induction heating cooker according to claim 1 or 2, wherein the load movement detection unit is an input current detection unit that measures an input current of the inverter.
  7.  前記ふきこぼれ検知部は、基準値更新モードと基準値更新停止モードとを備え、前記基準値更新モードに移行すると、前記静電容量検知部が検知した静電容量を前記記憶部に前記基準値として記憶すると共に、基準値検知期間内において前記静電容量検知部が検知した静電容量の前記基準値に対する変化量が、前記出力低減閾値より小さい基準値更新停止閾値未満の場合、当該基準値検知期間内に前記静電容量検知部が検知した静電容量を前記基準値として、前記基準値検知期間経過する毎に更新して前記記憶部に記憶させ、前記基準値検知期間内において前記静電容量検知部が検知した静電容量の基準値に対する変化量が前記基準値更新停止閾値以上である場合、前記記憶部に対する前記基準値の更新を停止させる前記基準値更新停止モードに移行するよう構成された請求項1に記載の誘導加熱調理器。 The overflow detection unit includes a reference value update mode and a reference value update stop mode, and when transitioning to the reference value update mode, the capacitance detected by the capacitance detection unit is stored in the storage unit as the reference value. When the change amount of the capacitance detected by the capacitance detection unit within the reference value detection period with respect to the reference value is less than the reference value update stop threshold smaller than the output reduction threshold, the reference value detection is performed. The capacitance detected by the capacitance detection unit within a period is updated as the reference value every time the reference value detection period elapses and is stored in the storage unit, and the electrostatic capacitance is detected within the reference value detection period. When the change amount of the capacitance detected by the capacitance detection unit with respect to the reference value is equal to or greater than the reference value update stop threshold, the reference value update stop mode for stopping the update of the reference value to the storage unit. Induction heating cooker according to claim 1 configured to shift to de.
  8.  前記ふきこぼれ検知部は、基準値検知期間内において前記電極の静電容量を複数回検知し、前記静電容量検知部が検知した複数の静電容量の前記基準値に対する変化量が前記基準値更新停止閾値未満の場合、当該基準値検知期間内において検知された複数の静電容量の平均値を新たな前記基準値として前記基準値を更新するよう構成された請求項7に記載の誘導加熱調理器。 The overflow detection unit detects the capacitance of the electrode a plurality of times within a reference value detection period, and a change amount of the plurality of capacitances detected by the capacitance detection unit with respect to the reference value is updated to the reference value. The induction heating cooking of Claim 7 comprised so that the said reference value might be updated by making the average value of several electrostatic capacitance detected within the said reference value detection period into the said new reference value when it is less than a stop threshold value. vessel.
  9.  前記ふきこぼれ検知部は、前記基準値更新モードに移行すると、前記基準値検知期間内において前記電極の静電容量を複数回検知し、検知された複数の静電容量の前記基準値に対する変化量が前記基準値更新停止閾値以上である場合、前記基準値更新モードに移行するまで、前記記憶部に対する前記基準値の更新を停止させるよう構成された請求項7に記載の誘導加熱調理器。 When the overflow detection unit shifts to the reference value update mode, the capacitance of the electrode is detected a plurality of times within the reference value detection period, and a change amount of the detected plurality of capacitances with respect to the reference value is detected. The induction heating cooker of Claim 7 comprised so that the update of the said reference value with respect to the said memory | storage part may be stopped until it transfers to the said reference value update mode, when it is more than the said reference value update stop threshold value.
  10.  前記ふきこぼれ検知部は、前記変化量が前記出力低減閾値以上となってから、ふきこぼれと判定しない場合は、前記基準値更新停止モード終了後、第2待機モードに移行し、第2待機期間待機した後に、前記基準値更新モードに移行するよう構成された請求項7に記載の誘導加熱調理器。 If the amount of change is equal to or greater than the output reduction threshold and does not determine that overflow is detected, the overflow detection unit shifts to the second standby mode after waiting for the reference value update stop mode and waits for the second standby period. The induction heating cooker according to claim 7, which is configured to shift to the reference value update mode later.
  11.  前記ふきこぼれ検知部は、加熱開始後、待機モードに移行し待機期間後に、前記基準値更新モードに移行するよう構成された請求項7に記載の誘導加熱調理器。 The induction cooking device according to claim 7, wherein the spill detector is configured to shift to a standby mode after starting heating and to shift to the reference value update mode after a standby period.
  12.  前記ふきこぼれ検知部は、前記変化量が前記基準値更新停止閾値以上となってから前記静電容量検知部が検知した静電容量における最大値を記憶し、前記最大値から所定値以上減少すると、ふきこぼれ検知と判定しないよう構成された請求項1乃至11のいずれか一項に記載の誘導加熱調理器。 The overflow detection unit stores a maximum value of the capacitance detected by the capacitance detection unit after the amount of change becomes equal to or greater than the reference value update stop threshold, and when the capacitance decreases from the maximum value by a predetermined value or more, The induction heating cooker according to any one of claims 1 to 11, wherein the induction heating cooker is configured not to determine that the spilling is detected.
PCT/JP2011/003306 2010-06-10 2011-06-10 Induction cooker WO2011155220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519283A JP5830665B2 (en) 2010-06-10 2011-06-10 Induction heating cooker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133361 2010-06-10
JP2010-133361 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155220A1 true WO2011155220A1 (en) 2011-12-15

Family

ID=45097835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003306 WO2011155220A1 (en) 2010-06-10 2011-06-10 Induction cooker

Country Status (2)

Country Link
JP (1) JP5830665B2 (en)
WO (1) WO2011155220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181929A (en) * 2011-02-28 2012-09-20 Mitsubishi Electric Corp Heating cooker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045114A1 (en) * 2001-11-21 2003-05-30 Matsushita Electric Industrial Co., Ltd. Induction heating device
JP2008159494A (en) * 2006-12-26 2008-07-10 Mitsubishi Electric Corp Induction cooker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045114A1 (en) * 2001-11-21 2003-05-30 Matsushita Electric Industrial Co., Ltd. Induction heating device
JP2008159494A (en) * 2006-12-26 2008-07-10 Mitsubishi Electric Corp Induction cooker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181929A (en) * 2011-02-28 2012-09-20 Mitsubishi Electric Corp Heating cooker

Also Published As

Publication number Publication date
JPWO2011155220A1 (en) 2013-08-01
JP5830665B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5830690B2 (en) Induction heating cooker
CA2911570C (en) Induction heating cookware
JP4792931B2 (en) Cooker
WO2010084752A1 (en) Heating/cooking equipment
JP5838364B2 (en) Induction heating cooker
US9462639B2 (en) Induction heating cooker
JP5830665B2 (en) Induction heating cooker
JP5830664B2 (en) Induction heating cooker
JP4448083B2 (en) Induction heating cooker
WO2011155222A1 (en) Induction cooker
JP2005085667A (en) Induction heating cooker
JP5966155B2 (en) Induction heating cooker
JP2011187198A (en) Induction heating cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519283

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792179

Country of ref document: EP

Kind code of ref document: A1