WO2011155126A1 - Solid-state imaging device and method for driving solid-state imaging device - Google Patents

Solid-state imaging device and method for driving solid-state imaging device Download PDF

Info

Publication number
WO2011155126A1
WO2011155126A1 PCT/JP2011/002702 JP2011002702W WO2011155126A1 WO 2011155126 A1 WO2011155126 A1 WO 2011155126A1 JP 2011002702 W JP2011002702 W JP 2011002702W WO 2011155126 A1 WO2011155126 A1 WO 2011155126A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer unit
vertical transfer
imaging device
state imaging
solid
Prior art date
Application number
PCT/JP2011/002702
Other languages
French (fr)
Japanese (ja)
Inventor
朗 塚本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011155126A1 publication Critical patent/WO2011155126A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14837Frame-interline transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/625Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of smear
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/715Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors using frame interline transfer [FIT]

Definitions

  • the present invention relates to a CCD (Charge Coupled Device) type solid-state imaging device and a driving method thereof.
  • CCD Charge Coupled Device
  • FIG. 20 is a top view schematically showing the configuration of the solid-state imaging device described in Patent Document 1.
  • This solid-state imaging device is a FIT (Frame Interline Transfer) type solid-state imaging device as shown in FIG.
  • an image area (sensor unit) 102 including photodiodes 111 arranged two-dimensionally with a predetermined number of matrices and vertical transfer units 112 arranged between columns of photodiodes 111, and an image A storage area (storage unit) 103 capable of temporarily storing charge signals of all rows of the photodiodes 111 in the area 102 and shielded from light, a horizontal transfer unit 104, and an output amplifier 105 are formed on the semiconductor substrate 101. .
  • the signal charge accumulated in the photodiode 111 in a certain accumulation period is read out to the vertical transfer unit 112 in the image area 102, and the signal is transferred to the storage area 103 in a sufficiently short time compared to the accumulation period. It is transferred at high speed to move the charge.
  • the high-speed transfer significantly shortens the time required for the signal charge in the vertical transfer unit 112 to pass through the image area 102 being exposed, so that the noise charge due to smear can be greatly reduced.
  • the signal charges transferred to the storage area 103 are sequentially output from the horizontal transfer unit 104 and output as a voltage corresponding to the signal charge amount by the output amplifier 105.
  • the solid-state imaging device shown in the prior art requires a storage area capable of storing signal charges of all pixel rows (all rows of photodiodes) in the image area. Therefore, as the number of pixels in the sensor unit increases, a larger storage area is required, and there is a problem that the chip size becomes nearly twice that of an IT (Interline Transfer) type solid-state imaging device that does not provide a storage area. For this reason, it is difficult to significantly reduce the storage area even if the vertical transfer unit of the storage area is different from the vertical transfer unit of the image area. As a result, it is difficult to achieve both reduction in noise charge and downsizing of the solid-state imaging device.
  • IT Interline Transfer
  • the solid-state imaging device shown in the related art suppresses noise charge due to dark current (dark output) by driving the vertical transfer unit of the storage area to All-Gate-Pinning.
  • dark current dark output
  • the channel width of the vertical transfer unit is also reduced, and the narrow channel effect becomes remarkable. Therefore, as shown in FIG. 21, unless the concentration of the impurity region forming the vertical transfer channel of the vertical transfer portion is significantly increased, the target potential cannot be obtained in the vertical transfer portion.
  • the concentration of the impurity region is greatly increased, since impurities are introduced by ion implantation, the generation of crystal defects in the semiconductor substrate becomes significant, and the increase in dark current becomes significant.
  • the density of implanted defects generated is significantly increased by increasing the concentration of the impurity region forming the vertical transfer channel of the vertical transfer portion. For this reason, in the dark output of the vertical transfer unit in the solid-state imaging device with a fine cell structure, not only the semiconductor substrate interface level but also the crystal defects in the bulk are dominant, and the impurity concentration distribution to suppress the interface state The adjustment of only this does not provide a sufficient dark current suppression effect. Further, in the solid-state imaging device having a fine cell structure, even if the vertical transfer portion is widened to the limit of the cell pitch, it is insufficient to reduce the injection defect density.
  • an object of the present invention is to provide a small solid-state imaging device capable of reducing noise charges and a driving method thereof.
  • a solid-state imaging device holds an image area for converting an optical image of a subject formed on an imaging surface into a signal, and a signal of the image area FIT (Frame Interline Transfer) type solid-state imaging device including a storage area for the image, wherein the image area corresponds to a plurality of photoelectric conversion elements arranged in a two-dimensional manner and a row of the photoelectric conversion elements. And a first vertical transfer unit that transfers the signal charges of the photoelectric conversion elements in the corresponding column in the vertical direction, and the storage area is provided corresponding to the first vertical transfer unit.
  • FIT Flash Interline Transfer
  • the second vertical transfer unit has a second vertical transfer unit that holds the signal charge transferred by the corresponding first vertical transfer unit and transfers it in the vertical direction. , Wherein the number which can be stored in the same time and independently of each signal charges of the plurality of the photoelectric conversion element is smaller than the total number of rows of the photoelectric conversion element.
  • the photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and in the first vertical transfer unit, signal charges of the photoelectric conversion elements in k (k is a natural number of 2 or more) rows are provided.
  • the number of signals that can be simultaneously and independently stored in the second vertical transfer unit mixed by charge coupling may be m / k or more.
  • the photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and in the first vertical transfer unit, the signal charges of the m photoelectric conversion elements in L rows are L times (L is a natural number of 2 or more). ) Is read by the first vertical transfer unit, and the second vertical transfer unit is capable of simultaneously storing the signal charges of the photoelectric conversion elements simultaneously and independently when m / L or more. There may be.
  • the solid-state imaging device may further include a discharge unit that is provided between the storage area and the image area and that can discharge noise charges in the image area.
  • the solid-state imaging device is further provided between a horizontal transfer unit that transfers the signal charges transferred by the second vertical transfer unit in a horizontal direction, the storage area, and the horizontal transfer unit, A horizontal adder that can selectively transfer any one of the signal charges of the second vertical transfer unit to the horizontal transfer unit may be provided.
  • the solid-state imaging device is of the FIT type, and the signal charge in the image area is transferred to the storage area at high speed, so that the noise charge due to smear can be reduced.
  • the area of the storage area is made smaller than the area of the image area, and the solid-state imaging device is reduced in size.
  • the channel width of the second vertical transfer unit may be wider than the channel width of the first vertical transfer unit.
  • the impurity concentration of the vertical transfer channel of the second vertical transfer unit can be reduced as compared with the vertical transfer channel of the first vertical transfer unit, the dark current is reduced and the noise charge due to the dark current is reduced. can do.
  • the impurity concentration of the vertical transfer channel of the second vertical transfer unit may be lower than the impurity concentration of the vertical transfer channel of the first vertical transfer unit.
  • noise charge due to dark current can be reduced.
  • the solid-state imaging device is further provided between the storage area and the image area, and selectively corresponds to the signal charge of any of the plurality of first vertical transfer units.
  • a horizontal adder that can be transferred to the transfer unit is provided, and the number of the second vertical transfer units may be smaller than the number of the first vertical transfer units.
  • the solid-state imaging device driving method includes an image area for converting an optical image of a subject formed on an imaging surface into a signal, and a storage for holding the signal of the image area.
  • a FIT (Frame Interline Transfer) type solid-state imaging device driving method including an area, wherein the image area corresponds to a plurality of photoelectric conversion elements arranged in a two-dimensional manner and a row of the photoelectric conversion elements. And a first vertical transfer unit that transfers the signal charges of the photoelectric conversion elements in the corresponding column in the vertical direction, and the storage area is provided corresponding to the first vertical transfer unit.
  • a second vertical transfer unit that holds the signal charge transferred by the corresponding first vertical transfer unit and transfers the signal charge in the vertical direction.
  • the method includes operating the first vertical transfer unit to discharge noise charges in the image area, reading the signal charge of the photoelectric conversion element to the corresponding first vertical transfer unit, and reading the read signal Transferring the charge to the corresponding second vertical transfer unit, wherein the second vertical transfer unit has a number of signals that can be accumulated simultaneously and independently for each of the plurality of photoelectric conversion elements. Fewer than the total number of rows of photoelectric conversion elements.
  • the photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and the signal charges of the photoelectric conversion elements in k (k is a natural number of 2 or more) rows are charged in the first vertical transfer unit.
  • the mixed signal charges are mixed, and the mixed signal charges are transferred from the first vertical transfer unit to the second vertical transfer unit.
  • the second vertical transfer unit simultaneously and simultaneously transfers the signal charges of the photoelectric conversion elements.
  • the number that can be stored independently may be m / k or more.
  • the photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and in reading signal charges from the photoelectric conversion elements to the first vertical transfer unit, signals from the m photoelectric conversion elements are provided.
  • the charges are read L times (L is a natural number of 2 or more) interlaced operation to the first vertical transfer unit, and the second vertical transfer unit accumulates the signal charges of the photoelectric conversion elements simultaneously and independently.
  • the possible number may be m / L or more.
  • the noise charge due to smear can be reduced, and at the same time, the solid-state imaging device can be miniaturized.
  • an increase in chip size can be suppressed while realizing a significant reduction in smear, and a high-quality solid-state imaging device can be realized with a small size and low price.
  • FIG. 1 is a top view schematically showing the configuration of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a color filter array of the solid-state imaging device according to the embodiment.
  • FIG. 3 is a diagram illustrating the readout gate wiring in the image area of the solid-state imaging device according to the embodiment.
  • FIG. 4 is a top view schematically showing an example of a specific configuration of the first discharge unit and the first horizontal addition unit of the solid-state imaging device according to the embodiment.
  • FIG. 5 is a top view schematically illustrating an example of a specific configuration of the second discharge unit and the second horizontal addition unit of the solid-state imaging device according to the embodiment.
  • FIG. 6 is a drive timing chart showing an outline of operations in the vertical and horizontal pixel addition mode of the solid-state imaging device according to the embodiment.
  • FIG. 7 is a drive timing chart showing an outline of the operation in the vertical / horizontal pixel addition mode of the solid-state imaging device according to the embodiment.
  • FIG. 8 is a drive timing chart showing an outline of the operation in the all-pixel readout mode of the solid-state imaging device according to the embodiment.
  • FIG. 9 is a diagram showing an operation sequence from the start of shooting a movie to the end of shooting in the digital still camera according to the embodiment.
  • FIG. 10 is a diagram illustrating a sequence from the start of shooting of a normal still image to the end of shooting in the digital still camera according to the embodiment.
  • FIG. 11 is a diagram illustrating a sequence from the start of continuous still image shooting to the end of shooting in the digital still camera according to the embodiment.
  • FIG. 12 is a graph showing the channel width dependence of the saturation signal amount per unit gate length of the second vertical transfer unit according to the simulation of the solid-state imaging device according to the embodiment.
  • FIG. 13 is a top view illustrating another example of the specific configuration of the first discharge unit and the first horizontal addition unit of the solid-state imaging device according to the embodiment.
  • FIG. 14 is a top view illustrating another example of a specific configuration of the second discharge unit and the second horizontal addition unit of the solid-state imaging device according to the embodiment.
  • FIG. 15 is a top view schematically showing another example of the configuration of the solid-state imaging device according to the embodiment.
  • FIG. 16 is a top view schematically showing the configuration of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 17 is a drive timing chart showing an outline of the operation in the all-pixel readout mode of the solid-state imaging device according to the embodiment.
  • FIG. 18 is a drive timing chart showing an outline of the operation in the all-pixel readout mode of the solid-state imaging device according to the embodiment.
  • FIG. 19 is a top view showing an example of the structure of the vertical transfer channel in the storage area of the solid-state imaging device according to the embodiment.
  • FIG. 20 is a top view schematically showing the configuration of the solid-state imaging device described in Patent Document 1.
  • FIG. 21 is a diagram illustrating the relationship between the channel width of the vertical transfer unit and the potential of the vertical transfer unit at a plurality of impurity concentrations.
  • FIG. 22 is a diagram showing the relationship between the density of implantation defects formed in the vertical transfer portion by ion implantation and the concentration of impurities to be ion implanted.
  • the vertical direction means the direction along the vertical transfer unit
  • the horizontal direction means the direction along the horizontal transfer unit, that is, the width direction of the vertical transfer unit.
  • FIG. 1 is a top view schematically showing the configuration of the solid-state imaging device according to the first embodiment of the present invention.
  • This solid-state imaging device is a FIT (Frame Interline Transfer) type solid-state imaging device.
  • FIT Fluor Interline Transfer
  • FIG. 1 on the surface of the semiconductor substrate 1, an image area 2, a storage area 3, a first discharge unit 4, a first horizontal addition unit 5, a horizontal transfer unit (horizontal CCD) 6, a first Two discharge units 7, a second horizontal addition unit 8 and an output amplifier 9 are provided.
  • the first discharge unit 4 and the first horizontal addition unit 5 are arranged between the image area 2 and the storage area 3.
  • the second discharge unit 7 and the second horizontal addition unit 8 are arranged between the storage area 3 and the horizontal transfer unit 6. Further, the output amplifier 9 is disposed at the exit end of the horizontal transfer unit 6.
  • Image area 2 is an area for converting an optical image of a subject formed on the imaging surface into a signal.
  • This image area 2 is a photodiode (PD) as photoelectric conversion elements in m (m is a natural number of 2 or more) rows formed so as to be arranged in a two-dimensional array (arranged in a square lattice in the example of FIG. 1). ) 10 and a first vertical transfer unit (first vertical CCD) 11 provided corresponding to each column of photodiodes 10 and transferring the signal charges of the corresponding photodiodes 10 in the vertical direction.
  • PD photodiode
  • first vertical CCD first vertical transfer unit
  • the first vertical transfer unit 11 receives photodiodes for k (k is a natural number of 2 or more) rows in the image area 2 (first vertical transfer unit 11) by supplying a drive pulse to the transfer electrode from the outside. It has an electrode structure capable of mixing (adding) 10 signal charges by charge coupling.
  • the storage area 3 is a light-shielded area for holding the image area 2 signal.
  • the storage area 3 is provided corresponding to the first vertical transfer unit 11 of the image area 2, holds the signal charge transferred by the corresponding first vertical transfer unit 11, and transfers it in the vertical direction.
  • Two vertical transfer units (second vertical CCDs) 12 are provided.
  • the second vertical transfer unit 12 is provided continuously with the corresponding first vertical transfer unit 11 and is electrically connected.
  • the number of columns of the first vertical transfer unit 11 and the second vertical transfer unit 12 is different with the first horizontal addition unit 5 provided between the image area 2 and the storage area 3 interposed therebetween. Specifically, the number of columns of the second vertical transfer unit 12 is smaller than the number of columns of the first vertical transfer unit 11, and the second vertical transfer unit 12 has b (b is a natural number of 2 or more) first numbers. C (c is a natural number of 1 or more smaller than b) are provided corresponding to the vertical transfer units 11.
  • the channel width of the second vertical transfer unit 12 is wider than the channel width of the first vertical transfer unit 11.
  • the impurity concentration of the vertical transfer channel of the second vertical transfer unit 12 is lower than the impurity concentration of the vertical transfer channel of the first vertical transfer unit 11.
  • one second vertical transfer unit 12 can store (hold) signal charges of at least m / k rows of photodiodes 10 simultaneously and independently for each row.
  • the number of signal charges that can be stored separately and independently is m / k or more.
  • the number of rows in the storage area 3 is set to m / k or more.
  • the number of transfer stages of the second vertical transfer unit 12 is set to m / k or more.
  • the storage area 3 has a structure smaller than a normal storage area, and the number of one second vertical transfer unit 12 that can store the signal charges of the photodiodes 10 separately and independently is stored. It is less than m which is the total number of rows of photoelectric conversion elements. For example, the number of transfer stages of the second vertical transfer unit 12 is less than m. Accordingly, the area of the storage area 3 is significantly smaller than that of the image area 2, and the area of the semiconductor substrate 1 can be reduced.
  • the number of signals that can be stored in one second vertical transfer unit 12 by simultaneously and independently separating the signal charges of the photodiode 10 is m / k or more.
  • L is a natural number of 2 or more
  • one second vertical transfer unit 12 The number of signal charges of the diode 10 that can be stored separately and independently may be m / L or more, or may be m / L or more and m / k or more.
  • the first horizontal adder 5 controls the reading of signal charges from the first vertical transfer unit 11 to the second vertical transfer unit 12, and the signal charges of any one of the first vertical transfer units 11 in a plurality of columns. Is selectively transferred to the corresponding second vertical transfer unit 12 to add the signal charges in the horizontal direction (horizontal pixel addition).
  • the first discharge unit 4 includes a first drain control gate (control electrode) for enabling selective discharge of signal charges and noise charges, and a first drain, and reduces dark current and smear. In addition, signal thinning of signal charges is realized.
  • the first discharge unit 4 can discharge noise charges in the image area 2 to the outside of the image area 2 and the storage area 3.
  • the first discharge unit 4 is effective for discharging unnecessary smear charges in a smear charge sweeping operation to be described later.
  • the second discharge unit 7 provided at the exit of the storage area 3 has a function as an overflow drain that discharges excess charges and a function of selectively discharging signal charges, and the signal charges that have been thinned out in columns are removed. It can be sent to the horizontal transfer unit 6.
  • the selective discharge function is realized by supplying a control pulse to the second drain control gate of the second discharge unit 7.
  • a second horizontal adder 8 provided adjacent to the second discharge unit 7 controls the reading of signal charges from the second vertical transfer unit 12 to the horizontal transfer unit 6, and the second columns of second columns It has a function of selectively transferring any signal charge of the vertical transfer unit 12 to the horizontal transfer unit 6 and adding the signal charge in the horizontal direction.
  • the horizontal addition may be performed in combination with the operation of the horizontal transfer unit 6.
  • the horizontal transfer unit 6 transfers the signal charge received from each second vertical transfer unit 12 in the storage area 3 (the signal charge transferred by the second vertical transfer unit 12) in the horizontal direction.
  • the output amplifier 9 outputs a voltage value signal corresponding to the amount of signal charges transferred in the horizontal direction by the horizontal transfer unit 6 as a captured image signal.
  • the image area 2 includes m rows of photodiodes 10 arranged in a two-dimensional array (in the illustrated example, a square lattice), and a first vertical transfer unit 11 formed along the column of each photodiode 10.
  • an on-chip color filter corresponding to each photodiode 10 is provided above the corresponding photodiode 10.
  • a so-called Bayer color filter shown in FIG. 2 is provided, and filters corresponding to three primary colors of R (red), G (green), and B (blue) are arranged above each photodiode 10.
  • FIG. 3 is a diagram showing the photodiode 10 and the gate wiring of the first vertical transfer unit 11 provided correspondingly.
  • a transfer gate for transferring signal charges in the vertical direction (vertical transfer) in the first vertical transfer unit 11 is a read gate 13 for reading signal charges from the photodiode 10 to the first vertical transfer unit 11. Is also used.
  • FIG. 3 for the sake of simplicity, only one readout gate 13 necessary for one pixel (one photodiode 10) is shown, but actually, the transfer gate for vertical transfer is the same as the readout gate 13. Exist separately.
  • the read gates 13 of each row are connected by wiring 14 so as to operate independently in a certain repeating unit. That is, independent drive pulses can be supplied to the readout gates 13 in each row, and the readout of signal charges from the photodiode 10 to the first vertical transfer unit 11 can be controlled independently in the repeating unit of each row. is there.
  • the R (red) signal charge of FIG. 2 is added by three pixels in the first vertical transfer unit 11, and the G (green) signal charge is similarly added to the first vertical transfer unit 11. It is possible to add three pixels and transfer them independently in the first vertical transfer unit 11 alternately in the transfer direction. By doing so, the signal charges in the image area 2 constituted by the m rows of photodiodes 10 are reduced to m / 3 rows of signal charges in the image area 2. Here, it is assumed that three pixels are added in the vertical direction. In general, when k pixels are added, the signal charges in the image area 2 formed by the m rows of photodiodes 10 are reduced to m / k rows of signal charges. Can do. Therefore, with the electrode structure as shown in FIG. 3, it is possible to add signal charges for k rows in the image area 2 by driving the first vertical transfer unit 11.
  • the drive mode for performing the signal charge addition (vertical pixel addition) operation in the vertical direction is referred to as a vertical pixel addition mode.
  • all signal charges of the m rows of photodiodes 10 in the image area 2 are independently read out to the first vertical transfer unit 11.
  • the signal charges of a specific row pass through the first discharge unit 4 and are stored in the storage area 3 (second).
  • This method can also be used in combination with vertical pixel addition.
  • FIG. 4 is a top view schematically showing an example of a specific configuration of the first discharge unit 4 and the first horizontal addition unit 5.
  • the first discharge unit 4 includes a first drain control gate 15 and a first drain 16, and the first horizontal addition unit 5 includes a first horizontal addition control gate 17, a mixing unit 18, a second drain, and the like.
  • the horizontal addition control gate 19, the first save gate 20, and the second save gate 21 are configured.
  • the vertical transfer channels of the first vertical transfer unit 11, the second vertical transfer unit 12, the first discharge unit 4, and the first horizontal addition unit 5 are not shown, but are actually continuous. Exists under the gate.
  • two columns of second vertical transfer units 12 are provided corresponding to three columns of first vertical transfer units 11, and A, B, and C columns of first vertical transfer units 11. Is transferred to the second vertical transfer unit 12 in either X or Y column. Similarly, signal charges are transferred to the set of the first vertical transfer unit 11 in the D, E, and F columns and the second vertical transfer unit 12 in the Z and W columns.
  • the first drain 16 operates so as to discharge electric charge when the first drain control gate 15 is turned on.
  • the operation of the first horizontal adder 5 will be described.
  • the image area 2 includes the color filters of the Bayer arrangement shown in FIG. 2, for example, R (red) signal charges are transferred to the A, C, and E columns, and G (green) are transferred to the B, D, and F columns. Signal charge is transferred. This is the same even when vertical pixel addition is performed. Therefore, as shown in FIG. 4, if the first horizontal addition control gate 17 is configured so that the A, C, E columns and the B, D, F columns operate independently, the signal charge of R (red) Only the signal charges of G (green) can be transferred to the mixing unit 18.
  • the R (red) signal charges derived from the A, C, and E columns transferred to the mixing unit 18 open the X and Z columns and simultaneously close the Y and W columns by the operation of the second horizontal addition control gate 19. Is selectively distributed to the X and Z rows.
  • the G (green) signal charges derived from the B, D, and F columns transferred to the mixing unit 18 are closed by the operation of the second horizontal addition control gate 19 and at the same time the Y and W columns are closed. Is selectively distributed to the X and Z rows.
  • the signal charges for the A and C columns are added to the X column, and only the signal charge for one column of the E column is allocated to the Z column. The same applies to the G (green) signal charge.
  • the signal charges in the m rows of the photodiode 10 are reduced to 1 / k by the vertical pixel addition for k rows in the image area 2, and further, the function of the first horizontal adder 5 performs the photo
  • the number of the second vertical transfer units 12 may be as many as 2/3 or less of the number of the first vertical transfer units 11. Since the number of columns of the second vertical transfer unit 12 in the storage area 3 is smaller than the number of columns of the photodiode 10 in the image area 2, the channel width of the second vertical transfer unit 12 in the storage area 3 can be reduced. The channel width of the second first vertical transfer unit 11 can be greatly increased. In some cases, the channel width of the second vertical transfer unit 12 can be made wider than one pixel pitch of the image area 2. This greatly contributes to the increase of the saturation charge amount per unit channel length, and is therefore very effective in reducing the second vertical transfer unit 12 in the charge transfer direction. Further, since the number of rows in the storage area 3 may be 1 / (1 / k) of the number of added pixels in the image area 2, the vertical length of the entire storage area 3 can be greatly reduced.
  • FIG. 5 is a top view schematically showing an example of a specific configuration of the second discharge unit 7 and the second horizontal addition unit 8.
  • the horizontal transfer unit 6 shows a boundary line for each stage where independent signal charges can be transferred, and one stage of the horizontal transfer unit 6 is provided for every two columns of the second vertical transfer unit 12. Is a corresponding configuration.
  • the second discharge unit 7 includes a second drain control gate 22 and a second drain 23, and the second horizontal addition unit 8 includes a third save gate 24 and a third horizontal addition control gate 25. It is configured.
  • the vertical transfer channel of the second vertical transfer unit 12, the second discharge unit 7 and the second horizontal addition unit 8, and the horizontal transfer channel of the horizontal transfer unit 6 are not shown, but are actually continuous. Exist under the gate.
  • the third horizontal addition control gate 25 is connected to an independent different wiring 26 in each column.
  • the third save gate 24 and the third horizontal addition control gate 25 are wired so that they can be controlled (driven) independently in a cycle of four columns corresponding to each column of the second vertical transfer unit 12.
  • the signal charge transferred through the X, Y, Z, and W columns of the second vertical transfer unit 12 passes through the second discharge unit 7 and reaches the second horizontal addition unit 8.
  • the second discharge unit 7 functions as an overflow drain that prevents the charges from overflowing in the horizontal transfer unit 6.
  • the second drain control gate 22 it is possible to selectively discharge charges in a predetermined column to the second drain 23 selectively. As a result, column deduction of signal charges can be performed, so that the number of columns can be reduced without using horizontal pixel addition.
  • the signal charges for the A and C2 columns are distributed to the X column by the distribution in the first horizontal adder 5. Only the signal charges for one column of the E column are distributed to the Z column. Similarly, for the G (green) signal charge, only the B column signal charge is allocated to the Y column, and the D and F2 column signal charges are allocated to the W column and transferred to the third save gate 24. It is coming.
  • the third horizontal addition control gates 25 in the X and W columns are turned ON, the R (red) signal charges for the A and C columns in the X column, and the D and F2 columns in the W column.
  • the signal charge of G (green) is transferred to the horizontal transfer unit 6.
  • the third horizontal addition control gates 25 in the Y and Z columns are turned on, and the G (green) signal charge resulting from the B column in the Y column and the Z column are in the Z column.
  • the R (red) signal charge resulting from the E column is transferred to the horizontal transfer unit 6.
  • the horizontal transfer unit 6 focusing on the G (green) signal charge, the signal charges in the Y column and the W column are added, and as a result, the signal charges in the B, D, and F3 columns of the image area 2 are added. That's right. At the same time, the addition of the three columns in the image area 2 is completed for the R (red) signal charge. Thereafter, the horizontal transfer unit 6 is transferred, and all these signal charges are output through the output amplifier 9.
  • FIGS. 6 and 7 are drive timing charts showing an outline of the operation of the solid-state imaging device in the horizontal / vertical pixel addition mode.
  • periods T1 to T5 and T1 ' indicate operation periods in which the drive timing is divided into functions (by operations realized by the solid-state imaging device). The operation of each part of the solid-state imaging device will be described with reference to FIGS.
  • a period T1 in FIG. 6 is a sweeping period in which the first vertical transfer unit 11 is operated and the first discharge unit 4 sweeps and discharges noise charges in the image area 2 from the image area 2 due to dark current, smear, and the like. It is.
  • the first vertical transfer unit 11 is driven by the image area vertical pulse supplied to the transfer gate, and the first discharge unit 4 is supplied to the first drain control gate 15. Driven by pulses.
  • the exposure period while the charge generated by the photoelectric conversion is continuously accumulated in the photodiode 10, the entire vertical image area 2 is irradiated with light, so that smear charges are accumulated in the first vertical transfer unit 11. go.
  • smear by high-speed transfer is performed prior to reading the signal charge of the photodiode 10 to the first vertical transfer unit 11. Charges are swept out.
  • the first drain control gate 15 is turned on by the first discharge unit 4, so that the smear charges that are swept out are discharged by the first drain 16 and are not transferred to the storage area 3.
  • the second vertical transfer unit 12 in the area 3 may be stopped.
  • the period T1 ′ in FIG. 7 is the same sweeping period as the period T1 in FIG. 6, but instead of discharging the smear charge to the first drain 16, the second vertical transfer unit 12 in the storage area 3 also performs a high-speed transfer operation. And the second drain control gate 22 of the second discharge section 7 is turned on, so that smear charges are swept out to the second drain 23. During this period, the second discharge section 7 is driven by the second drain section operation pulse supplied to the second drain control gate 22. When the dark current in the second vertical transfer unit 12 is large, if the second vertical transfer unit 12 also transfers at high speed as shown in FIG. ) Can also be discharged. If the purpose is to discharge the dark output of the storage area 3, the first drain control gate 15 may be turned ON at T1 'in FIG.
  • 6 and 7 is a readout period in which the signal charge of the photodiode 10 is read out to the corresponding first vertical transfer unit 11.
  • the first vertical transfer unit 11 is driven by a read pulse supplied to the read gate 13.
  • the signal charge accumulated in the photodiode 10 is read out to the first vertical transfer unit 11 and the vertical pixel mixing described in detail above, that is, the signal charges of the plurality of photodiodes 10 are converted into the first vertical transfer.
  • a period of mixing in the transfer unit 11 is also included. After this operation is completed, the signal charges of all the photodiodes 10 to be read have moved to the first vertical transfer unit 11.
  • 6 and 7 is a high-speed transfer period in which the signal charge read out to the first vertical transfer unit 11 is transferred at high speed to the corresponding second vertical transfer unit 12.
  • the second vertical transfer unit 12 is driven by the storage area vertical pulse supplied to the transfer gate, and the first horizontal adder unit 5 is supplied to the horizontal addition control gate. Driven by pulses.
  • the signal charge mixed with the vertical pixels is transferred from the first vertical transfer unit 11 to the second vertical transfer unit 12 through the first discharge unit 4 and the first horizontal addition unit 5.
  • signal thinning by a sweep operation to the first drain 16 as necessary and horizontal pixel addition described in detail above are performed, and the signal charges of the plurality of first vertical transfer units 11 are mixed.
  • the signal charges of the plurality of first vertical transfer units 11 are mixed.
  • a period T4 in FIGS. 6 and 7 is a horizontal pixel addition period in which horizontal pixel addition is performed by the second horizontal adder 8.
  • the second horizontal adder 8 is supplied to the horizontal addition control gate. It is driven by the second horizontal adder gate pulse.
  • the signal charges accumulated in the second vertical transfer units 12 of the plurality of columns in the storage area 3 are added by the second horizontal addition unit 8 in units of rows, and the added signal charges are transferred to the horizontal transfer unit 6.
  • signal charges are transferred to the horizontal transfer unit 6 in units of two rows. Can do.
  • the signal charges of the second vertical transfer unit 12 are directly output from the second column transfer units 12 in a plurality of columns directly to the output amplifier 9 in parallel.
  • the output of signal charges corresponding to one exposure period is completed after the period T1 to T5 or the period T1 'to T5.
  • the second vertical transfer unit 12 may be configured so that the number of signal charges of the photodiodes 10 that can be stored simultaneously and independently is m / k or more.
  • the number of rows of pixels to be accumulated in the storage area 3 that is, how many rows of signal charges of the photodiodes 10 should be accumulated simultaneously and independently
  • R number of pixels in image area 2 / number of columns in storage area 3 (number of columns in second vertical transfer unit 12)
  • k is the number of vertical pixel additions (the number of vertical pixel additions)
  • Number of pixels to be stored in storage area 3 number of pixels in image area 2 / (k ⁇ R) (Equation 2) Should be satisfied.
  • the number of pixels to be accumulated in the storage area 3 is the number of pixels in the image area 2.
  • / (3 ⁇ (3/2)) that is, the number of rows of pixels in the image area ⁇ (2/9).
  • a solid-state imaging device when a solid-state imaging device is configured by arranging 12 million pixels of a pixel cell having a square area of 1.54 microns in the image area 2 of 3000 pixels in the vertical direction and 4000 pixels in the horizontal direction, 1000 pixels in the vertical direction. It is only necessary to provide the storage area 3 that can store signal charges corresponding to a total of 2.7 million pixels in total 2700 pixels in the horizontal direction.
  • FIG. 8 is a drive timing chart showing an outline of the operation of the solid-state imaging device in the all-pixel readout mode in which the horizontal pixel addition and the vertical pixel addition are not performed.
  • the operation in FIG. 8 is based on the premise of field reading, and shows the signal charge reading in the first field in detail.
  • periods S1 to S5 indicate operation periods in which the drive timing is divided by function. The operation of each part of the solid-state imaging device will be described with reference to FIG.
  • a period S1 in FIG. 8 is a sweeping period in which the first vertical transfer unit 11 is operated and the first discharge unit 4 sweeps and discharges noise charges in the image area 2 from the image area 2 due to dark current, smear, and the like. It is.
  • the operation and purpose of this period are the same as those in the periods T1 and T1 'in the all-pixel readout mode of FIGS.
  • a period S2 in FIG. 8 is a reading period in which signal charges of some photodiodes 10 (photodiodes 10 in a predetermined row arranged at a constant row interval) are read out to the corresponding first vertical transfer units 11.
  • the point that vertical pixel addition is not performed in the first vertical transfer unit 11 is different from the operation in the period T2 in FIGS.
  • Periods S4 and S5 are repeated at least several times in all rows of the storage area 3 in order to read out all the signal charges in the storage area 3, and are repeated until all of the signal charges for one field accumulated in the storage area 3 are read out.
  • the output of signal charge for one field is completed after the period S1 to S5. By repeating this up to the Lth field, the output of the signal charges of all the pixels corresponding to one exposure period is completed.
  • the second vertical transfer unit 12 may be configured such that the number of signal charges of the photodiode 10 that can be stored simultaneously and independently is not less than m / L.
  • FIG. 9 is a diagram showing an operation sequence from the start of shooting a movie to the end of shooting with a digital still camera.
  • FIG. 10 is a diagram illustrating an operation sequence from the start of shooting of a normal still image to the end of shooting in the digital still camera.
  • FIG. 11 is a diagram illustrating an operation sequence from the start of continuous still image shooting to the end of shooting in a digital still camera.
  • the mechanical shutter is opened at the start of shooting, and the image area is continuously irradiated with light until the end of shooting. For this reason, smear is usually a major problem in image quality.
  • the number of pixels of a digital still camera in recent years has exceeded 10 million pixels, the number of pixels necessary for recording as a moving image is at most 300,000 to 2.1 million pixels. Therefore, the configuration of the solid-state imaging device of the present embodiment that can greatly reduce the smear charge while reducing the number of output pixels to the number of pixels suitable for moving image recording in the vertical and horizontal pixel addition mode is very useful.
  • the configuration of the solid-state imaging device according to the present embodiment is very effective for a digital still camera that can capture both still images and moving images.
  • image area 2 is composed of a 1.54 micron square pixel cell arranged in a vertical direction of 3000 pixels and a horizontal direction of 4000 pixels accounting for 12 million pixels, a mixture of 3 pixels in the vertical direction and 3 pixels in the horizontal direction.
  • the size of the storage area 3 required in the case of a solid-state imaging device having a vertical / horizontal pixel addition mode for performing is estimated. Information necessary for this estimation is the relationship between the channel width and length of the second vertical transfer unit 12 in the storage area 3 that satisfies the required saturation signal amount.
  • FIG. 12 is a graph of the channel width dependence of the saturation signal amount per unit gate length (one transfer stage) of the second vertical transfer unit 12 by simulation.
  • the required saturation signal amount is 1, and in the following, the width of the first vertical transfer unit 11 in the image area 2 is displayed in actual dimensions.
  • the channel width of the first vertical transfer unit 11 is about 0.3 microns.
  • the second vertical transfer unit 12 can obtain a saturation signal amount about 6 times that of the first vertical transfer unit 11 in the image area 2 per unit gate length. Therefore, the gate length of the second vertical transfer unit 12 in the storage area 3 may be about 1/6 of the gate length of the first vertical transfer unit 11 in the image area 2.
  • the solid-state imaging device of the present embodiment it is possible to realize a digital still camera compatible with both still images and moving images with a practical chip size.
  • the solid-state imaging device is a FIT type solid-state imaging device, and the signal charge in the image area 2 is transferred to the storage area 3 at high speed, so that noise charges due to smear can be reduced. .
  • the area of the storage area 3 is configured to be smaller than the area of the image area 2, the solid-state imaging device can be miniaturized.
  • the number of columns of the second vertical transfer unit 12 in the storage area 3 is smaller than the number of columns of the first vertical transfer unit 11 in the image area 2. Accordingly, even when the pixels of the image area 2 are miniaturized, a sufficient channel width can be secured for the second vertical transfer unit 12, and thus dark current can be suppressed.
  • the signal charges of the three rows of photodiodes 10 provided with the same color filter are added using the first horizontal adder 5 and the second horizontal adder 8.
  • other addition methods are possible.
  • the signal charges of the four rows of photodiodes 10 provided with the same color filter are added to the first horizontal adder 5 having the configuration shown in FIG. 13 and the second charge having the configuration shown in FIG.
  • the horizontal adder 8 that is, it is possible to use the first horizontal adder 5 configured so that the second vertical transfer units 12 in two columns correspond to the first vertical transfer units 11 in four columns.
  • the horizontal transfer unit 6 has a configuration in which one stage of the horizontal transfer unit 6 corresponds to every two columns of the second vertical transfer unit 12, that is, one horizontal transfer unit 6 of every four columns of the photodiodes 10. The steps correspond to each other.
  • the second vertical transfer unit 12 in the storage area 3 can be made wider than in the case of adding three pixels in the horizontal direction.
  • one stage of the horizontal transfer unit 6 corresponds to every two columns of the second vertical transfer unit 12, that is, one stage of the horizontal transfer unit 6 corresponds to every two columns of the photodiodes 10. It must be configured to
  • the number of columns of the second vertical transfer unit 12 in the storage area 3 is set to the number of columns of the first vertical transfer unit 11 in the image area 2 using the first horizontal adder 5. Less than.
  • the solid-state imaging device has the configuration shown in FIG. 15 in which the first horizontal adder 5 is omitted, and it is also possible to perform pixel addition in the horizontal direction using only the second horizontal adder 8.
  • the ratio R of the number of columns of the first vertical transfer unit 11 and the number of columns of the second vertical transfer unit 12 defined by Equation 1 is 1, and the number of rows in the storage area 3 is equal to the vertical pixel addition number k.
  • Number of rows in storage area number of pixels in image area / number of rows / k (Formula 4) It becomes. Even in this case, the essential effect that the storage area can be formed in a smaller number of rows than the number of rows of the image area 2 and smaller than that of the conventional solid-state imaging device does not change.
  • the first discharge unit 4 and the second discharge unit 7 are necessary for simplifying the drive mode in the present embodiment or realizing various drive modes. However, even if the configuration is omitted, the effect is not lost.
  • solid-state imaging devices have achieved a practical level of reduction of smear signals by shielding the vertical transfer unit, but when solid-state imaging devices are created using the back-illuminated pixel technology, which has been a remarkable technology development in recent years.
  • the vertical transfer section needs to be shielded from light inside the semiconductor substrate, it is not feasible.
  • the solid-state imaging device according to the present embodiment can reduce smear signals at a transfer rate without relying on light shielding, it is particularly preferable to use the solid-state imaging device for a back-illuminated solid-state imaging device.
  • the vertical direction means the direction along the vertical transfer unit
  • the horizontal direction means the direction along the horizontal transfer unit, that is, the width direction of the vertical transfer unit.
  • FIG. 16 is a top view schematically showing the configuration of the solid-state imaging device according to the second embodiment of the present invention.
  • This solid-state imaging device is a FIT type solid-state imaging device. As shown in FIG. 16, on the surface of the semiconductor substrate 1, an image area 27, a storage area 28, a first discharge unit 4, a horizontal transfer unit 6, a second discharge unit 7, a horizontal addition unit 31, and an output are provided. An amplifier 9 is provided.
  • the image area 27 is an area for converting an optical image of a subject formed on the imaging surface into a signal.
  • This image area 27 is provided corresponding to m rows of photodiodes 10 formed so as to be arranged in a two-dimensional array (arranged in a square lattice in the example of FIG. 16) and the columns of the photodiodes 10.
  • a first vertical transfer unit 29 for transferring the signal charge of the corresponding photodiode 10 in the vertical direction.
  • the first vertical transfer unit 29 is an electrode that can read the signal charges of all the photodiodes 10 in the image area 27 L times into the first vertical transfer unit 29 by supplying a drive pulse to the transfer electrode from the outside. It has a structure.
  • the first discharge unit 4 has a control electrode for enabling selective discharge of signal charges, and realizes sweeping of noise charges and row thinning of signal charges of the first vertical transfer unit 29.
  • the first discharge unit 4 is disposed between the image area 27 and the storage area 28.
  • the second discharge unit 7 and the horizontal addition unit 31 are disposed between the storage area 28 and the horizontal transfer unit 6.
  • the storage area 28 is a light-shielded area for holding the image area 27 signal.
  • the image area 27 is provided corresponding to the first vertical transfer unit 29, holds the signal charge transferred by the corresponding first vertical transfer unit 29, and transfers the second vertical transfer in the vertical direction.
  • the unit 30 is provided.
  • the second vertical transfer unit 30 is provided continuously with the corresponding first vertical transfer unit 29 and is electrically connected.
  • the number of columns of the first vertical transfer unit 29 and the second vertical transfer unit 30 is different. Specifically, the number of columns of the second vertical transfer unit 30 is smaller than the number of columns of the first vertical transfer unit 29, and the second vertical transfer unit 30 has b (b is a natural number of 2 or more) first numbers. C (c is a natural number of 1 or more smaller than b) are provided corresponding to the vertical transfer units 29, and one second vertical transfer unit 30 is shared by a plurality of first vertical transfer units 29.
  • the channel width of the second vertical transfer unit 30 is wider than the channel width of the first vertical transfer unit 29.
  • the impurity concentration of the vertical transfer channel of the second vertical transfer unit 30 is lower than the impurity concentration of the vertical transfer channel of the first vertical transfer unit 29.
  • one second vertical transfer unit 30 stores the signal charges of the photodiodes 10 so that at least m / L rows of the signal charges of the photodiodes 10 can be accumulated simultaneously and independently for each row.
  • the number that can be stored separately and independently is m / L or more. That is, the number of rows in the storage area 28 is set to m / L or more.
  • the number of transfer stages of the second vertical transfer unit 30 is set to m / L or more.
  • the storage area 28 has a structure smaller than the conventional storage area, and one second vertical transfer unit 30 is capable of storing the signal charges of the photodiode 10 simultaneously and independently by separating them. Is less than m, which is the total number of rows of photodiodes 10. For example, the number of transfer stages of the second vertical transfer unit 30 is less than m. Therefore, the area of the storage area 28 is significantly smaller than that of the image area 27, and the area of the semiconductor substrate 1 can be reduced. Note that the number of rows in the storage area 28 may be larger than the integer multiple of m / L.
  • the second discharge unit 7 provided at the exit of the storage area 28 has a function as an overflow drain for discharging excess charges and a function for selectively discharging signal charges. It can be sent to the horizontal transfer unit 6.
  • the selective discharge function is realized by supplying a control pulse to the second drain control gate of the second discharge unit 7.
  • a horizontal adder 31 provided adjacent to the second discharge unit 7 controls reading of signal charges from the second vertical transfer unit 30 to the horizontal transfer unit 6, and a plurality of columns of second vertical transfer units.
  • 30 has a function of selectively transferring any one of the signal charges 30 to the horizontal transfer unit 6 and adding the signal charges in the horizontal direction. The horizontal addition may be performed in combination with the operation of the horizontal transfer unit 6.
  • the horizontal transfer unit 6 transfers the signal charges received from the second vertical transfer units 30 in the storage area 28 in the horizontal direction.
  • the output amplifier 9 outputs a voltage value signal corresponding to the amount of signal charges transferred in the horizontal direction by the horizontal transfer unit 6 as a captured image signal.
  • the signal charge of the photodiode 10 is read out to the first vertical transfer unit 29 by the L-interlaced interlace operation. 28. Therefore, the signal charge read from one photodiode 10 can be transferred using a packet (potential well) having a length corresponding to L pixels (length in the charge transfer direction) of the first vertical transfer unit 29. it can. As a result, the width of the first vertical transfer unit 29 (the length in the direction orthogonal to the charge transfer direction) can be reduced as compared with the configuration in which the all-pixel simultaneous reading mode is performed. Can be expanded. Therefore, the solid-state imaging device of FIG.
  • the storage area 28 since the image area 27 has m rows, the storage area 28 only needs to be able to transfer signal charges of the photodiodes 10 in m / L rows independently and simultaneously, so that the size can be greatly reduced as compared with the conventional solid-state imaging device. It is.
  • a fine pixel image sensor is mainly used to record a still image with a digital still camera.
  • the operation sequence of the digital still camera when the solid-state imaging device of this embodiment is used is as shown in FIG. As shown in FIG. 10, the exposure is completed using the mechanical shutter, and after the light is shielded, reading by the L-time interlace operation is started.
  • 17 and 18 are drive timing charts showing an outline of the operation of the solid-state imaging device in the all-pixel readout mode in which L times of interlaced readout are performed.
  • the periods S1 to S5 and the periods U1 to U7 indicate operation periods in which the drive timing is divided by function (by operation realized by the solid-state imaging device).
  • the number of lines in the storage area 28 may be an integer multiple of m / L with respect to the number m of lines in the image area 27.
  • the storage area 28 has 2 m / L rows and can operate in units of upper and lower m / L rows, that is, the upper half m / L row of the storage area 28 and the lower half m / L of the storage area 28.
  • the drive as shown in FIG. 18 is possible.
  • FIG. 18 shows in detail the read operation of the first field in the all-pixel read mode in such a configuration. The operation of each part of the solid-state imaging device will be described with reference to FIG.
  • the period U1 is a smear sweeping period in which the first vertical transfer unit 29 is operated and the first discharge unit 4 sweeps and discharges smear charges from the image area 27 by the first discharge unit 4.
  • the period U1 actually serves not only to smear charges but also to sweep out noise charges due to the dark current of the first vertical transfer unit 29 generated during the exposure period.
  • the swept noise charge is discharged from the first drain 16 of the first discharge unit 4, the second discharge unit is provided when the first discharge unit 4 is not provided or is not operated. 7 to the second drain 23 or the horizontal transfer unit 6.
  • the period U2 is a first readout period in which the signal charge of the photodiode 10 in the first field is read out to the corresponding first vertical transfer unit 29. Since the signal charges of all the photodiodes 10 are read out divided into L fields, the signal charges of the 1 / L photodiodes 10 of all the photodiodes 10 to be read out after this period have passed are the first vertical transfer units. It has moved to 29.
  • the period U3 is a first high-speed transfer period in which the signal charges of the photodiode 10 in the first field read out to the first vertical transfer unit 29 are transferred to the corresponding second vertical transfer unit 30 at high speed. During this period, all transfer gates in the storage area 28 (transfer gates in all transfer stages of the second vertical transfer unit 30) operate to accumulate signal charges in the lower half of the storage area 28.
  • the period U4 is a second readout period in which the signal charge of the photodiode 10 in the second field is read out to the corresponding first vertical transfer unit 29.
  • the operation during this period is the same as the operation during the first reading period U2.
  • the period U5 is a second high-speed transfer period in which the signal charge of the photodiode 10 in the second field read out to the first vertical transfer unit 29 is transferred to the corresponding second vertical transfer unit 30 at high speed.
  • the upper half transfer gate of the storage area 28 (the transfer gate of the upper half transfer stage of the second vertical transfer unit 30) operates to accumulate signal charges in the upper half area of the storage area 28.
  • the signal charge accumulated in the lower half of the storage area 28 in the period U3 does not move.
  • signal charges of 2 / L of the photodiodes 10 of all the photodiodes 10 are accumulated in the storage area 28.
  • the period U6 is a vertical-horizontal transfer period in which the signal charges of the second vertical transfer unit 30 are transferred to the horizontal transfer unit 6. During this period, signal charges of 2 / L of the photodiodes 10 accumulated in the storage area 28 are transferred to the horizontal transfer unit 6 row by row.
  • signal charges are transferred to the horizontal transfer unit 6 in units of two rows. Can do.
  • the signal charge of the second vertical transfer unit 30 is directly output from the second vertical transfer units 30 in a plurality of columns to the output amplifier 9 in parallel.
  • the period U7 is an output period in which the signal charge transferred by the horizontal transfer unit 6 is output to the output amplifier 9.
  • the signal charges in the storage area 28 for one row transferred to the horizontal transfer unit 6 in the period U6 are sequentially output to the outside of the solid-state imaging device through the output amplifier 9.
  • Periods U6 and U7 are repeated at least several times in all rows in the storage area 28 in order to read out all signal charges in the storage area 28, and all 2 / L signal charges in all the photodiodes 10 accumulated in the storage area 3 are read out. Repeat until. As a result, an output signal for one field is obtained.
  • the output of signal charges of all pixels is completed by repeating the periods U1 to U7 L / 2 times. Therefore, the output signal is divided into L / 2 fields.
  • Increasing the number of interlaces L in the image area 27 is advantageous in terms of pixel performance, but is disadvantageous in terms of readout speed due to an increase in the blanking period.
  • the number of interlaces can be increased by providing the storage area 28 with the number of rows of m / L p (p is a natural number of 2 or more) times the number of rows m of the image area 27 and driving as shown in FIG.
  • p is a natural number of 2 or more
  • the impurity concentration for forming the vertical transfer channel of the vertical transfer portion must be set to a high concentration of about 1E13 cm ⁇ 2 in an example of As ion implantation. This is more than twice the impurity concentration when an equivalent potential is obtained with a sufficiently wide vertical transfer channel.
  • the heat treatment is performed at a low temperature in order to suppress the lateral spread of impurities, and as shown in FIG. 21, the residual defect density due to ion implantation shows a tendency to increase the power with respect to the increase in impurity concentration. . Therefore, in a solid-state imaging device with fine pixels, an increase in dark current is a major issue as a price to enlarge the photodiode by narrowing the vertical transfer unit by interlaced readout for the purpose of increasing sensitivity.
  • the second vertical transfer unit 30 in the storage area 28 Since the pitch between the second vertical transfer units 30 need only be allocated to the separation between the vertical transfer channel and the adjacent vertical transfer channel, the width can be increased to 1.3 microns.
  • the second vertical transfer unit 30 compares the vertical transfer channel impurity concentration for obtaining the same potential as the vertical transfer channel of the first vertical transfer unit 29 with respect to the vertical transfer channel of the first vertical transfer unit 29.
  • the storage area 28 with low dark current can be realized.
  • the signal charge read from the photodiode 10 is transferred at a speed 10 times or more higher than that of the conventional one by the first vertical transfer unit 29 having a large dark current. Since the second vertical transfer unit 30 accumulates and waits for the output, the dark current in the output signal can be greatly reduced.
  • the vertical transfer channel 32 is connected to the storage area 28 as shown in FIG.
  • a configuration of meandering is also possible.
  • the transfer gate electrode 33 of the second vertical transfer unit 30 can be arranged in the horizontal direction, the vertical dimension of the storage area 28 is set to the required number of rows of the storage area 28. Further reduction is possible.
  • the configuration of the storage area 28 having the meandering transfer channel as shown in FIG. 19 can also be applied to the second vertical transfer unit 12 of the solid-state imaging device according to the first embodiment of the present invention.
  • the solid-state imaging device of the present embodiment can reduce noise charges due to smear and dark current for the same reason as the solid-state imaging device of the first embodiment, and at the same time, the solid-state imaging device can be reduced in size.
  • the first discharge unit 4 and the second discharge unit 7 are necessary for simplifying the drive mode in the present embodiment or realizing various drive modes. However, even if the configuration is omitted, the effect is not lost.
  • the solid-state imaging device and the driving method thereof according to the present invention have been described based on the embodiment.
  • the present invention is not limited to this embodiment.
  • the present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.
  • the present invention relates to a solid-state imaging device and a driving method thereof, and is particularly useful for a solid-state imaging device and a driving method thereof that achieve both high pixel performance and low cost by reducing the chip size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Disclosed is a small solid-state imaging device in which noise charges can be reduced, and also disclosed is a method for driving the solid-state imaging device. A FIT type solid-state imaging device comprises an image area (2) and a storage area (3). The image area (2) comprises: a plurality of photodiodes (10) which are arranged in a two-dimensional form; and a first vertical transfer section (11) which is disposed corresponding to the columns of the photodiodes (10), and which transfers in the vertical direction signal charges of the photodiodes (10) of the corresponding column. The storage area (3) comprises a second vertical transfer section (12) which is provided corresponding to the first vertical transverse section (11), which retains the signal charges that are transferred by the corresponding first vertical transfer section (11), and which transfers the signal charges in the vertical direction. In the second vertical transfer section (12), the number of signal charges of each of the plurality of photodiodes (10) that can be accumulated simultaneously and independently is smaller than the total number of rows of the photodiodes (10).

Description

固体撮像装置、固体撮像装置の駆動方法Solid-state imaging device and driving method of solid-state imaging device
 本発明は、CCD(Charge Coupled Device)型固体撮像装置とその駆動方法に関する。 The present invention relates to a CCD (Charge Coupled Device) type solid-state imaging device and a driving method thereof.
 以下、図20を用いて、特許文献1に示された従来技術の固体撮像装置(イメージセンサ)について説明する。図20は、特許文献1に記載の固体撮像装置の構成を模式的に示す上面図である。 Hereinafter, a conventional solid-state imaging device (image sensor) disclosed in Patent Document 1 will be described with reference to FIG. FIG. 20 is a top view schematically showing the configuration of the solid-state imaging device described in Patent Document 1.
 この固体撮像装置は、図20に示すように、FIT(Frame Interline Transfer)型固体撮像装置である。同固体撮像装置では、所定の行列数で2次元状に配置されたフォトダイオード111と、フォトダイオード111の列間に配置された垂直転送部112とからなるイメージエリア(センサ部)102と、イメージエリア102のフォトダイオード111の全行の電荷信号を一時的に格納可能で遮光されたストレージエリア(蓄積部)103と、水平転送部104と、出力アンプ105とが半導体基板101に形成されている。 This solid-state imaging device is a FIT (Frame Interline Transfer) type solid-state imaging device as shown in FIG. In the solid-state imaging device, an image area (sensor unit) 102 including photodiodes 111 arranged two-dimensionally with a predetermined number of matrices and vertical transfer units 112 arranged between columns of photodiodes 111, and an image A storage area (storage unit) 103 capable of temporarily storing charge signals of all rows of the photodiodes 111 in the area 102 and shielded from light, a horizontal transfer unit 104, and an output amplifier 105 are formed on the semiconductor substrate 101. .
 図20の固体撮像装置では、一定の蓄積期間でフォトダイオード111に蓄積された信号電荷はイメージエリア102の垂直転送部112に読み出され、蓄積期間に比べて十分短時間でストレージエリア103に信号電荷を移動させるために高速で転送される。高速転送によって、垂直転送部112中の信号電荷が露光中のイメージエリア102を通過するのに要する時間が著しく短くなるため、スミアによるノイズ電荷の大幅低減が可能となる。そして、ストレージエリア103に転送された信号電荷は順次水平転送部104から出力され、出力アンプ105により信号電荷量に応じた電圧として出力される。 In the solid-state imaging device of FIG. 20, the signal charge accumulated in the photodiode 111 in a certain accumulation period is read out to the vertical transfer unit 112 in the image area 102, and the signal is transferred to the storage area 103 in a sufficiently short time compared to the accumulation period. It is transferred at high speed to move the charge. The high-speed transfer significantly shortens the time required for the signal charge in the vertical transfer unit 112 to pass through the image area 102 being exposed, so that the noise charge due to smear can be greatly reduced. The signal charges transferred to the storage area 103 are sequentially output from the horizontal transfer unit 104 and output as a voltage corresponding to the signal charge amount by the output amplifier 105.
特開2008-227254号公報JP 2008-227254 A
 しかしながら、従来技術に示された固体撮像装置は、イメージエリアの全画素行(フォトダイオードの全行)の信号電荷を蓄積可能なストレージエリアが必要である。そのため、センサ部の画素数が増えるほど大きなストレージエリアが必要となり、チップサイズがストレージエリアを設けないIT(Interline Transfer)型固体撮像装置の2倍近くになるという課題がある。このため、ストレージエリアの垂直転送部をイメージエリアの垂直転送部とは異なるものとすることによっても、ストレージエリアの大幅な面積縮小は困難である。その結果、ノイズ電荷の低減と固体撮像装置の小型化との両立は困難である。 However, the solid-state imaging device shown in the prior art requires a storage area capable of storing signal charges of all pixel rows (all rows of photodiodes) in the image area. Therefore, as the number of pixels in the sensor unit increases, a larger storage area is required, and there is a problem that the chip size becomes nearly twice that of an IT (Interline Transfer) type solid-state imaging device that does not provide a storage area. For this reason, it is difficult to significantly reduce the storage area even if the vertical transfer unit of the storage area is different from the vertical transfer unit of the image area. As a result, it is difficult to achieve both reduction in noise charge and downsizing of the solid-state imaging device.
 また、従来技術に示された固体撮像装置は、ストレージエリアの垂直転送部をAll-Gate-Pinning駆動することで暗電流(暗出力)によるノイズ電荷を抑制している。しかし、固体撮像装置の小型化に伴い画素(セル)が微細化されたとき、垂直転送部のチャネル幅も小さくなり狭チャネル効果が顕著となる。従って、図21に示すように垂直転送部の垂直転送チャネルを形成する不純物領域の濃度を大幅に増加させなければ垂直転送部で狙いのポテンシャルが得られなくなってきている。しかし、不純物領域の濃度を大幅に増加させれば、イオン注入により不純物を導入するため半導体基板での結晶欠陥の発生が顕著となり、暗電流の増加が顕著になる。 In addition, the solid-state imaging device shown in the related art suppresses noise charge due to dark current (dark output) by driving the vertical transfer unit of the storage area to All-Gate-Pinning. However, when a pixel (cell) is miniaturized with the miniaturization of the solid-state imaging device, the channel width of the vertical transfer unit is also reduced, and the narrow channel effect becomes remarkable. Therefore, as shown in FIG. 21, unless the concentration of the impurity region forming the vertical transfer channel of the vertical transfer portion is significantly increased, the target potential cannot be obtained in the vertical transfer portion. However, if the concentration of the impurity region is greatly increased, since impurities are introduced by ion implantation, the generation of crystal defects in the semiconductor substrate becomes significant, and the increase in dark current becomes significant.
 また、図22に示すように、垂直転送部の垂直転送チャネルを形成する不純物領域の濃度の増加により、発生する注入欠陥密度は著しく大きくなる。このため、微細セル構造の固体撮像装置における垂直転送部の暗出力においては半導体基板界面準位だけでなくバルク中の結晶欠陥が支配的になっており界面準位を抑制するための不純物濃度分布の調整だけでは暗電流抑制の効果が十分に得られない。また、微細セル構造の固体撮像装置ではセルピッチの限界まで垂直転送部を拡幅しても、注入欠陥密度を低減するには不十分である。 Further, as shown in FIG. 22, the density of implanted defects generated is significantly increased by increasing the concentration of the impurity region forming the vertical transfer channel of the vertical transfer portion. For this reason, in the dark output of the vertical transfer unit in the solid-state imaging device with a fine cell structure, not only the semiconductor substrate interface level but also the crystal defects in the bulk are dominant, and the impurity concentration distribution to suppress the interface state The adjustment of only this does not provide a sufficient dark current suppression effect. Further, in the solid-state imaging device having a fine cell structure, even if the vertical transfer portion is widened to the limit of the cell pitch, it is insufficient to reduce the injection defect density.
 そこで、本発明は、かかる問題点に鑑み、ノイズ電荷を低減することが可能な小型の固体撮像装置及びその駆動方法を提供することを目的とする。 Therefore, in view of such problems, an object of the present invention is to provide a small solid-state imaging device capable of reducing noise charges and a driving method thereof.
 上記目的を達成するために、本発明の一態様に係る固体撮像装置は、撮像面に結像される被写体の光学像を信号に変換するためのイメージエリアと、前記イメージエリアの信号を保持するためのストレージエリアとを備えるFIT(Frame Interline Transfer)型の固体撮像装置であって、前記イメージエリアは、2次元状に配列された複数の光電変換素子と、前記光電変換素子の列に対応して設けられ、対応する列の前記光電変換素子の信号電荷を垂直方向に転送する第1の垂直転送部とを有し、前記ストレージエリアは、前記第1の垂直転送部に対応して設けられ、対応する前記第1の垂直転送部により転送された信号電荷を保持し、かつ垂直方向に転送する第2の垂直転送部を有し、前記第2の垂直転送部は、複数の前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数が前記光電変換素子の全行数より少ないことを特徴とする。 In order to achieve the above object, a solid-state imaging device according to an aspect of the present invention holds an image area for converting an optical image of a subject formed on an imaging surface into a signal, and a signal of the image area FIT (Frame Interline Transfer) type solid-state imaging device including a storage area for the image, wherein the image area corresponds to a plurality of photoelectric conversion elements arranged in a two-dimensional manner and a row of the photoelectric conversion elements. And a first vertical transfer unit that transfers the signal charges of the photoelectric conversion elements in the corresponding column in the vertical direction, and the storage area is provided corresponding to the first vertical transfer unit. The second vertical transfer unit has a second vertical transfer unit that holds the signal charge transferred by the corresponding first vertical transfer unit and transfers it in the vertical direction. , Wherein the number which can be stored in the same time and independently of each signal charges of the plurality of the photoelectric conversion element is smaller than the total number of rows of the photoelectric conversion element.
 ここで、前記光電変換素子は、m(mは2以上の自然数)行設けられ、前記第1の垂直転送部では、k(kは2以上の自然数)行の前記光電変換素子の信号電荷が電荷結合により混合され、前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/k以上であってもよい。 Here, the photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and in the first vertical transfer unit, signal charges of the photoelectric conversion elements in k (k is a natural number of 2 or more) rows are provided. The number of signals that can be simultaneously and independently stored in the second vertical transfer unit mixed by charge coupling may be m / k or more.
 また、前記光電変換素子は、m(mは2以上の自然数)行設けられ、前記第1の垂直転送部では、m行の前記光電変換素子の信号電荷がL回(Lは2以上の自然数)のインターレース動作で前記第1の垂直転送部に読み出され、前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/L以上であってもよい。 The photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and in the first vertical transfer unit, the signal charges of the m photoelectric conversion elements in L rows are L times (L is a natural number of 2 or more). ) Is read by the first vertical transfer unit, and the second vertical transfer unit is capable of simultaneously storing the signal charges of the photoelectric conversion elements simultaneously and independently when m / L or more. There may be.
 また、前記固体撮像装置は、さらに、前記ストレージエリアと前記イメージエリアとの間に設けられ、前記イメージエリアのノイズ電荷を排出可能な排出部を備えてもよい。 The solid-state imaging device may further include a discharge unit that is provided between the storage area and the image area and that can discharge noise charges in the image area.
 また、前記固体撮像装置は、さらに、前記第2の垂直転送部により転送された信号電荷を水平方向に転送する水平転送部と、前記ストレージエリアと前記水平転送部との間に設けられ、複数の前記第2の垂直転送部のいずれかの信号電荷を選択的に前記水平転送部に転送可能な水平加算部を備えてもよい。 The solid-state imaging device is further provided between a horizontal transfer unit that transfers the signal charges transferred by the second vertical transfer unit in a horizontal direction, the storage area, and the horizontal transfer unit, A horizontal adder that can selectively transfer any one of the signal charges of the second vertical transfer unit to the horizontal transfer unit may be provided.
 本態様によれば、固体撮像装置はFIT型であり、イメージエリアの信号電荷は高速でストレージエリアに転送されるため、スミアによるノイズ電荷を低減することができる。同時に、第2の垂直転送部にはイメージエリアの光電変換素子の全行の信号電荷が同時かつ独立に蓄積されないので、ストレージエリアの面積をイメージエリアの面積よりも小さくし、固体撮像装置を小型化することができる。 According to this aspect, the solid-state imaging device is of the FIT type, and the signal charge in the image area is transferred to the storage area at high speed, so that the noise charge due to smear can be reduced. At the same time, since the signal charges of all the rows of the photoelectric conversion elements in the image area are not accumulated simultaneously and independently in the second vertical transfer unit, the area of the storage area is made smaller than the area of the image area, and the solid-state imaging device is reduced in size. Can be
 また、前記第2の垂直転送部のチャネル幅は、前記第1の垂直転送部のチャネル幅より広くてもよい。 The channel width of the second vertical transfer unit may be wider than the channel width of the first vertical transfer unit.
 本態様によれば、第2の垂直転送部の垂直転送チャネルの不純物濃度を第1の垂直転送部の垂直転送チャネルに比べて低減できるため、暗電流を低減し、暗電流によるノイズ電荷を低減することができる。 According to this aspect, since the impurity concentration of the vertical transfer channel of the second vertical transfer unit can be reduced as compared with the vertical transfer channel of the first vertical transfer unit, the dark current is reduced and the noise charge due to the dark current is reduced. can do.
 また、前記第2の垂直転送部の垂直転送チャネルの不純物濃度は、前記第1の垂直転送部の垂直転送チャネルの不純物濃度より低くてもよい。 Further, the impurity concentration of the vertical transfer channel of the second vertical transfer unit may be lower than the impurity concentration of the vertical transfer channel of the first vertical transfer unit.
 本態様によれば、暗電流によるノイズ電荷を低減することができる。 According to this aspect, noise charge due to dark current can be reduced.
 また、前記固体撮像装置は、さらに、前記ストレージエリアと前記イメージエリアとの間に設けられ、複数の前記第1の垂直転送部のいずれかの信号電荷を選択的に対応する前記第2の垂直転送部に転送可能な水平加算部を備え、前記第2の垂直転送部の数は、前記第1の垂直転送部の数より少なくてもよい。 In addition, the solid-state imaging device is further provided between the storage area and the image area, and selectively corresponds to the signal charge of any of the plurality of first vertical transfer units. A horizontal adder that can be transferred to the transfer unit is provided, and the number of the second vertical transfer units may be smaller than the number of the first vertical transfer units.
 本態様によれば、第2の垂直転送部について十分なチャネル幅を確保することができるので、暗電流を低減し、暗電流によるノイズ電荷を低減することができる。 According to this aspect, since a sufficient channel width can be secured for the second vertical transfer unit, dark current can be reduced, and noise charge due to dark current can be reduced.
 また、本発明の一態様に係る固体撮像装置の駆動方法は、撮像面に結像される被写体の光学像を信号に変換するためのイメージエリアと、前記イメージエリアの信号を保持するためのストレージエリアとを備えるFIT(Frame Interline Transfer)型の固体撮像装置の駆動方法であって、前記イメージエリアは、2次元状に配列された複数の光電変換素子と、前記光電変換素子の列に対応して設けられ、対応する列の前記光電変換素子の信号電荷を垂直方向に転送する第1の垂直転送部とを有し、前記ストレージエリアは、前記第1の垂直転送部に対応して設けられ、対応する前記第1の垂直転送部により転送された信号電荷を保持し、かつ垂直方向に転送する第2の垂直転送部を有し、前記固体撮像装置の駆動方法は、前記第1の垂直転送部を動作させて前記イメージエリアのノイズ電荷を排出する工程と、前記光電変換素子の信号電荷を対応する前記第1の垂直転送部に読み出し、該読み出した信号電荷を対応する前記第2の垂直転送部に転送する工程とを含み、前記第2の垂直転送部は、複数の前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数が前記光電変換素子の全行数より少ないことを特徴とする。 The solid-state imaging device driving method according to one aspect of the present invention includes an image area for converting an optical image of a subject formed on an imaging surface into a signal, and a storage for holding the signal of the image area. A FIT (Frame Interline Transfer) type solid-state imaging device driving method including an area, wherein the image area corresponds to a plurality of photoelectric conversion elements arranged in a two-dimensional manner and a row of the photoelectric conversion elements. And a first vertical transfer unit that transfers the signal charges of the photoelectric conversion elements in the corresponding column in the vertical direction, and the storage area is provided corresponding to the first vertical transfer unit. A second vertical transfer unit that holds the signal charge transferred by the corresponding first vertical transfer unit and transfers the signal charge in the vertical direction. The method includes operating the first vertical transfer unit to discharge noise charges in the image area, reading the signal charge of the photoelectric conversion element to the corresponding first vertical transfer unit, and reading the read signal Transferring the charge to the corresponding second vertical transfer unit, wherein the second vertical transfer unit has a number of signals that can be accumulated simultaneously and independently for each of the plurality of photoelectric conversion elements. Fewer than the total number of rows of photoelectric conversion elements.
 ここで、前記光電変換素子は、m(mは2以上の自然数)行設けられ、前記第1の垂直転送部内でk(kは2以上の自然数)行の前記光電変換素子の信号電荷を電荷結合により混合し、混合した信号電荷を前記第1の垂直転送部から前記第2の垂直転送部に転送し、前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/k以上であってもよい。 Here, the photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and the signal charges of the photoelectric conversion elements in k (k is a natural number of 2 or more) rows are charged in the first vertical transfer unit. The mixed signal charges are mixed, and the mixed signal charges are transferred from the first vertical transfer unit to the second vertical transfer unit. The second vertical transfer unit simultaneously and simultaneously transfers the signal charges of the photoelectric conversion elements. The number that can be stored independently may be m / k or more.
 また、前記光電変換素子は、m(mは2以上の自然数)行設けられ、前記光電変換素子から前記第1の垂直転送部への信号電荷の読み出しにおいて、m行の前記光電変換素子の信号電荷をL回(Lは2以上の自然数)のインターレース動作で前記第1の垂直転送部に読み出し、前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/L以上であってもよい。 The photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows, and in reading signal charges from the photoelectric conversion elements to the first vertical transfer unit, signals from the m photoelectric conversion elements are provided. The charges are read L times (L is a natural number of 2 or more) interlaced operation to the first vertical transfer unit, and the second vertical transfer unit accumulates the signal charges of the photoelectric conversion elements simultaneously and independently. The possible number may be m / L or more.
 本態様によれば、スミアによるノイズ電荷を低減すると同時に、固体撮像装置を小型化することができる。 According to this aspect, the noise charge due to smear can be reduced, and at the same time, the solid-state imaging device can be miniaturized.
 本発明により、スミアの大幅な低減を実現しながらチップサイズの増大を抑制し、小型で低価格ながら高画質の固体撮像装置を実現することができる。 According to the present invention, an increase in chip size can be suppressed while realizing a significant reduction in smear, and a high-quality solid-state imaging device can be realized with a small size and low price.
図1は、本発明の第1の実施形態に係る固体撮像装置の構成を模式的に示す上面図である。FIG. 1 is a top view schematically showing the configuration of the solid-state imaging device according to the first embodiment of the present invention. 図2は、同実施形態に係る固体撮像装置のカラーフィルター配列を示す図である。FIG. 2 is a diagram illustrating a color filter array of the solid-state imaging device according to the embodiment. 図3は、同実施形態に係る固体撮像装置のイメージエリアの読み出しゲート配線を示す図である。FIG. 3 is a diagram illustrating the readout gate wiring in the image area of the solid-state imaging device according to the embodiment. 図4は、同実施形態に係る固体撮像装置の第1の排出部及び第1の水平加算部の具体的な構成の一例を模式的に示す上面図である。FIG. 4 is a top view schematically showing an example of a specific configuration of the first discharge unit and the first horizontal addition unit of the solid-state imaging device according to the embodiment. 図5は、同実施形態に係る固体撮像装置の第2の排出部及び第2の水平加算部の具体的な構成の一例を模式的に示す上面図である。FIG. 5 is a top view schematically illustrating an example of a specific configuration of the second discharge unit and the second horizontal addition unit of the solid-state imaging device according to the embodiment. 図6は、同実施形態に係る固体撮像装置の垂直水平画素加算モードの動作の概略を示す駆動タイミングチャートである。FIG. 6 is a drive timing chart showing an outline of operations in the vertical and horizontal pixel addition mode of the solid-state imaging device according to the embodiment. 図7は、同実施形態に係る固体撮像装置の垂直水平画素加算モードの動作の概略を示す駆動タイミングチャートである。FIG. 7 is a drive timing chart showing an outline of the operation in the vertical / horizontal pixel addition mode of the solid-state imaging device according to the embodiment. 図8は、同実施形態に係る固体撮像装置の全画素読み出しモードの動作の概略を示す駆動タイミングチャートである。FIG. 8 is a drive timing chart showing an outline of the operation in the all-pixel readout mode of the solid-state imaging device according to the embodiment. 図9は、同実施形態に係るデジタルスチルカメラにおける動画の撮影開始から撮影終了までの動作シーケンスを示す図である。FIG. 9 is a diagram showing an operation sequence from the start of shooting a movie to the end of shooting in the digital still camera according to the embodiment. 図10は、同実施形態に係るデジタルスチルカメラにおける通常の静止画の撮影開始から撮影終了までのシーケンスを示す図である。FIG. 10 is a diagram illustrating a sequence from the start of shooting of a normal still image to the end of shooting in the digital still camera according to the embodiment. 図11は、同実施形態に係るデジタルスチルカメラにおける連続静止画の撮影開始から撮影終了までのシーケンス示す図である。FIG. 11 is a diagram illustrating a sequence from the start of continuous still image shooting to the end of shooting in the digital still camera according to the embodiment. 図12は、同実施形態に係る固体撮像装置のシミュレーションによる第2の垂直転送部の単位ゲート長あたりの飽和信号量のチャネル幅依存性を示すグラフである。FIG. 12 is a graph showing the channel width dependence of the saturation signal amount per unit gate length of the second vertical transfer unit according to the simulation of the solid-state imaging device according to the embodiment. 図13は、同実施形態に係る固体撮像装置の第1の排出部及び第1の水平加算部の具体的な構成の他の例を示す上面図である。FIG. 13 is a top view illustrating another example of the specific configuration of the first discharge unit and the first horizontal addition unit of the solid-state imaging device according to the embodiment. 図14は、同実施形態に係る固体撮像装置の第2の排出部及び第2の水平加算部の具体的な構成の他の例を示す上面図である。FIG. 14 is a top view illustrating another example of a specific configuration of the second discharge unit and the second horizontal addition unit of the solid-state imaging device according to the embodiment. 図15は、同実施形態に係る固体撮像装置の構成の他の例を模式的に示す上面図である。FIG. 15 is a top view schematically showing another example of the configuration of the solid-state imaging device according to the embodiment. 図16は、本発明の第2の実施形態に係る固体撮像装置の構成を模式的に示す上面図である。FIG. 16 is a top view schematically showing the configuration of the solid-state imaging device according to the second embodiment of the present invention. 図17は、同実施形態に係る固体撮像装置の全画素読み出しモードの動作の概略を示す駆動タイミングチャートである。FIG. 17 is a drive timing chart showing an outline of the operation in the all-pixel readout mode of the solid-state imaging device according to the embodiment. 図18は、同実施形態に係る固体撮像装置の全画素読み出しモードの動作の概略を示す駆動タイミングチャートである。FIG. 18 is a drive timing chart showing an outline of the operation in the all-pixel readout mode of the solid-state imaging device according to the embodiment. 図19は、同実施形態に係る固体撮像装置のストレージエリアの垂直転送チャネルの構造の一例を示す上面図である。FIG. 19 is a top view showing an example of the structure of the vertical transfer channel in the storage area of the solid-state imaging device according to the embodiment. 図20は、特許文献1に記載の固体撮像装置の構成を模式的に示す上面図である。FIG. 20 is a top view schematically showing the configuration of the solid-state imaging device described in Patent Document 1. 図21は、複数の不純物濃度における垂直転送部のチャネル幅と垂直転送部のポテンシャルとの関係を示す図である。FIG. 21 is a diagram illustrating the relationship between the channel width of the vertical transfer unit and the potential of the vertical transfer unit at a plurality of impurity concentrations. 図22は、イオン注入により垂直転送部に形成される注入欠陥密度とイオン注入する不純物の濃度との関係を示す図である。FIG. 22 is a diagram showing the relationship between the density of implantation defects formed in the vertical transfer portion by ion implantation and the concentration of impurities to be ion implanted.
 (第1の実施形態)
 以下、本発明の第1の実施形態に係るCCD型固体撮像装置及びその駆動方法について、図面を参照しながら説明する。以下で垂直方向とは垂直転送部に沿った方向、水平方向とは水平転送部に沿った方向、すなわち垂直転送部の幅方向のことを意味する。
(First embodiment)
Hereinafter, a CCD solid-state imaging device and a driving method thereof according to a first embodiment of the present invention will be described with reference to the drawings. Hereinafter, the vertical direction means the direction along the vertical transfer unit, and the horizontal direction means the direction along the horizontal transfer unit, that is, the width direction of the vertical transfer unit.
 図1は本発明の第1の実施形態に係る固体撮像装置の構成を模式的に示す上面図である。 FIG. 1 is a top view schematically showing the configuration of the solid-state imaging device according to the first embodiment of the present invention.
 この固体撮像装置は、FIT(Frame Interline Transfer)型の固体撮像装置である。そして、図1に示すように、半導体基板1の表面には、イメージエリア2、ストレージエリア3、第1の排出部4、第1の水平加算部5、水平転送部(水平CCD)6、第2の排出部7、第2の水平加算部8及び出力アンプ9が設けられている。 This solid-state imaging device is a FIT (Frame Interline Transfer) type solid-state imaging device. As shown in FIG. 1, on the surface of the semiconductor substrate 1, an image area 2, a storage area 3, a first discharge unit 4, a first horizontal addition unit 5, a horizontal transfer unit (horizontal CCD) 6, a first Two discharge units 7, a second horizontal addition unit 8 and an output amplifier 9 are provided.
 第1の排出部4と第1の水平加算部5とは、イメージエリア2とストレージエリア3との間に配置されている。また、第2の排出部7と第2の水平加算部8とは、ストレージエリア3と水平転送部6との間に配置されている。さらに、出力アンプ9は、水平転送部6の出口端部に配置されている。 The first discharge unit 4 and the first horizontal addition unit 5 are arranged between the image area 2 and the storage area 3. The second discharge unit 7 and the second horizontal addition unit 8 are arranged between the storage area 3 and the horizontal transfer unit 6. Further, the output amplifier 9 is disposed at the exit end of the horizontal transfer unit 6.
 イメージエリア2は、撮像面に結像される被写体の光学像を信号に変換するためのエリアである。このイメージエリア2は、二次元アレイ状に配列(図1の例では正方格子状に配列)するように形成されたm(mは2以上の自然数)行の光電変換素子としてのフォトダイオード(PD)10と、各フォトダイオード10の列に対応して設けられ、対応するフォトダイオード10の信号電荷を垂直方向に転送する第1の垂直転送部(第1の垂直CCD)11とを備える。第1の垂直転送部11は、外部からその転送電極への駆動パルスの供給により、イメージエリア2(第1の垂直転送部11)内でk(kは2以上の自然数)行分のフォトダイオード10の信号電荷を電荷結合により混合(加算)することが可能な電極構造を有している。 Image area 2 is an area for converting an optical image of a subject formed on the imaging surface into a signal. This image area 2 is a photodiode (PD) as photoelectric conversion elements in m (m is a natural number of 2 or more) rows formed so as to be arranged in a two-dimensional array (arranged in a square lattice in the example of FIG. 1). ) 10 and a first vertical transfer unit (first vertical CCD) 11 provided corresponding to each column of photodiodes 10 and transferring the signal charges of the corresponding photodiodes 10 in the vertical direction. The first vertical transfer unit 11 receives photodiodes for k (k is a natural number of 2 or more) rows in the image area 2 (first vertical transfer unit 11) by supplying a drive pulse to the transfer electrode from the outside. It has an electrode structure capable of mixing (adding) 10 signal charges by charge coupling.
 ストレージエリア3は、イメージエリア2の信号を保持するための遮光されたエリアである。このストレージエリア3は、イメージエリア2の第1の垂直転送部11に対応して設けられ、対応する第1の垂直転送部11により転送された信号電荷を保持し、かつ垂直方向に転送する第2の垂直転送部(第2の垂直CCD)12を備える。第2の垂直転送部12は、対応する第1の垂直転送部11と連続して設けられ、電気的に接続されている。 The storage area 3 is a light-shielded area for holding the image area 2 signal. The storage area 3 is provided corresponding to the first vertical transfer unit 11 of the image area 2, holds the signal charge transferred by the corresponding first vertical transfer unit 11, and transfers it in the vertical direction. Two vertical transfer units (second vertical CCDs) 12 are provided. The second vertical transfer unit 12 is provided continuously with the corresponding first vertical transfer unit 11 and is electrically connected.
 イメージエリア2とストレージエリア3との間に設けられた第1の水平加算部5を挟んで第1の垂直転送部11と第2の垂直転送部12との列数が異なっている。具体的には、第2の垂直転送部12の列数は第1の垂直転送部11の列数より少なく、第2の垂直転送部12はb(bは2以上の自然数)個の第1の垂直転送部11に対応してc(cはbより小さい1以上の自然数)個設けられている。 The number of columns of the first vertical transfer unit 11 and the second vertical transfer unit 12 is different with the first horizontal addition unit 5 provided between the image area 2 and the storage area 3 interposed therebetween. Specifically, the number of columns of the second vertical transfer unit 12 is smaller than the number of columns of the first vertical transfer unit 11, and the second vertical transfer unit 12 has b (b is a natural number of 2 or more) first numbers. C (c is a natural number of 1 or more smaller than b) are provided corresponding to the vertical transfer units 11.
 第2の垂直転送部12のチャネル幅は、第1の垂直転送部11のチャネル幅よりも広い。第2の垂直転送部12の垂直転送チャネルの不純物濃度は、第1の垂直転送部11の垂直転送チャネルの不純物濃度より低い。 The channel width of the second vertical transfer unit 12 is wider than the channel width of the first vertical transfer unit 11. The impurity concentration of the vertical transfer channel of the second vertical transfer unit 12 is lower than the impurity concentration of the vertical transfer channel of the first vertical transfer unit 11.
 ストレージエリア3は、少なくともm/k行分のフォトダイオード10の信号電荷を同時かつ行毎で独立に蓄積(保持)できるように、1つの第2の垂直転送部12はフォトダイオード10のそれぞれの信号電荷を同時かつ独立に分離して蓄積可能な数がm/k以上とされている。すわわち、ストレージエリア3の行数がm/k以上とされている。例えば、第2の垂直転送部12の転送段数がm/k以上とされている。 In the storage area 3, one second vertical transfer unit 12 can store (hold) signal charges of at least m / k rows of photodiodes 10 simultaneously and independently for each row. The number of signal charges that can be stored separately and independently is m / k or more. In other words, the number of rows in the storage area 3 is set to m / k or more. For example, the number of transfer stages of the second vertical transfer unit 12 is set to m / k or more.
 ストレージエリア3は通常のストレージエリアよりも縮小された構造になっており、1つの第2の垂直転送部12はフォトダイオード10のそれぞれの信号電荷を同時かつ独立に分離して蓄積可能な数が光電変換素子の全行数であるmよりも少なくされている。例えば、第2の垂直転送部12の転送段数がmよりも少なくされている。従って、ストレージエリア3の面積は、イメージエリア2よりも大幅に少ない面積となっており、半導体基板1の面積縮小を可能にしている。 The storage area 3 has a structure smaller than a normal storage area, and the number of one second vertical transfer unit 12 that can store the signal charges of the photodiodes 10 separately and independently is stored. It is less than m which is the total number of rows of photoelectric conversion elements. For example, the number of transfer stages of the second vertical transfer unit 12 is less than m. Accordingly, the area of the storage area 3 is significantly smaller than that of the image area 2, and the area of the semiconductor substrate 1 can be reduced.
 なお、1つの第2の垂直転送部12はフォトダイオード10のそれぞれの信号電荷を同時かつ独立に分離して蓄積可能な数がm/k以上とされているとした。しかし、m行のフォトダイオード10の信号電荷がL回(Lは2以上の自然数)のインターレース動作で第1の垂直転送部11に読み出される場合、1つの第2の垂直転送部12は、フォトダイオード10のそれぞれの信号電荷を同時かつ独立に分離して蓄積可能な数がm/L以上とされてもよいし、m/L以上かつm/k以上とされてもよい。 It is assumed that the number of signals that can be stored in one second vertical transfer unit 12 by simultaneously and independently separating the signal charges of the photodiode 10 is m / k or more. However, when the signal charges of the m rows of the photodiodes 10 are read out to the first vertical transfer unit 11 by L times (L is a natural number of 2 or more), one second vertical transfer unit 12 The number of signal charges of the diode 10 that can be stored separately and independently may be m / L or more, or may be m / L or more and m / k or more.
 第1の水平加算部5は、第1の垂直転送部11から第2の垂直転送部12への信号電荷の読み出しを制御し、複数列の第1の垂直転送部11のいずれかの信号電荷を選択的に対応する第2の垂直転送部12に転送して信号電荷を水平方向に加算(水平画素加算)する機能を有する。 The first horizontal adder 5 controls the reading of signal charges from the first vertical transfer unit 11 to the second vertical transfer unit 12, and the signal charges of any one of the first vertical transfer units 11 in a plurality of columns. Is selectively transferred to the corresponding second vertical transfer unit 12 to add the signal charges in the horizontal direction (horizontal pixel addition).
 第1の排出部4は、信号電荷及びノイズ電荷の選択的排出を可能にするための第1のドレイン制御ゲート(制御電極)と、第1のドレインとを有し、暗電流及びスミアの低減並びに信号電荷の行間引きなどを実現している。第1の排出部4は、イメージエリア2のノイズ電荷をイメージエリア2及びストレージエリア3外に排出可能としている。第1の排出部4は、後に説明するスミア電荷掃きだし動作において、不要なスミア電荷を排出するために有効である。 The first discharge unit 4 includes a first drain control gate (control electrode) for enabling selective discharge of signal charges and noise charges, and a first drain, and reduces dark current and smear. In addition, signal thinning of signal charges is realized. The first discharge unit 4 can discharge noise charges in the image area 2 to the outside of the image area 2 and the storage area 3. The first discharge unit 4 is effective for discharging unnecessary smear charges in a smear charge sweeping operation to be described later.
 ストレージエリア3の出口部に設けられた第2の排出部7は、過剰電荷を排出するオーバーフロードレインとしての機能と、信号電荷の選択的排出機能を有しており、列間引きをした信号電荷を水平転送部6に送り出すことができるようになっている。選択的排出機能は、第2の排出部7の第2のドレイン制御ゲートへの制御パルスの供給により実現される。 The second discharge unit 7 provided at the exit of the storage area 3 has a function as an overflow drain that discharges excess charges and a function of selectively discharging signal charges, and the signal charges that have been thinned out in columns are removed. It can be sent to the horizontal transfer unit 6. The selective discharge function is realized by supplying a control pulse to the second drain control gate of the second discharge unit 7.
 第2の排出部7に隣接して設けられた第2の水平加算部8は、第2の垂直転送部12から水平転送部6への信号電荷の読み出しを制御し、複数列の第2の垂直転送部12のいずれかの信号電荷を選択的に水平転送部6に転送して信号電荷を水平方向に加算する機能を有する。水平加算は、水平転送部6の動作と組み合わせて行うことがある。 A second horizontal adder 8 provided adjacent to the second discharge unit 7 controls the reading of signal charges from the second vertical transfer unit 12 to the horizontal transfer unit 6, and the second columns of second columns It has a function of selectively transferring any signal charge of the vertical transfer unit 12 to the horizontal transfer unit 6 and adding the signal charge in the horizontal direction. The horizontal addition may be performed in combination with the operation of the horizontal transfer unit 6.
 水平転送部6は、ストレージエリア3の各第2の垂直転送部12から受け取った信号電荷(第2の垂直転送部12により転送された信号電荷)を水平方向に転送する。出力アンプ9は、水平転送部6により水平方向に転送されてきた信号電荷の電荷量に応じた電圧値信号を撮像画像信号として出力する。 The horizontal transfer unit 6 transfers the signal charge received from each second vertical transfer unit 12 in the storage area 3 (the signal charge transferred by the second vertical transfer unit 12) in the horizontal direction. The output amplifier 9 outputs a voltage value signal corresponding to the amount of signal charges transferred in the horizontal direction by the horizontal transfer unit 6 as a captured image signal.
 次に図1の固体撮像装置の機能と動作を詳細に説明する。 Next, the function and operation of the solid-state imaging device of FIG. 1 will be described in detail.
 イメージエリア2は、二次元アレイ状(図示の例では正方格子状)に配列形成されたm行のフォトダイオード10と、各フォトダイオード10の列に沿って形成された第1の垂直転送部11とを備えるが、通常は各フォトダイオード10に対応したオンチップカラーフィルターが対応するフォトダイオード10上方に設けられている。例えば、図2に示すいわゆるベイヤー配列のカラーフィルターが設けられ、R(赤)、G(緑)、B(青)の3原色に対応するフィルターが各フォトダイオード10上方に配置される。 The image area 2 includes m rows of photodiodes 10 arranged in a two-dimensional array (in the illustrated example, a square lattice), and a first vertical transfer unit 11 formed along the column of each photodiode 10. In general, an on-chip color filter corresponding to each photodiode 10 is provided above the corresponding photodiode 10. For example, a so-called Bayer color filter shown in FIG. 2 is provided, and filters corresponding to three primary colors of R (red), G (green), and B (blue) are arranged above each photodiode 10.
 図3はフォトダイオード10及びそれに対応して設けられた第1の垂直転送部11のゲート配線を示す図である。 FIG. 3 is a diagram showing the photodiode 10 and the gate wiring of the first vertical transfer unit 11 provided correspondingly.
 第1の垂直転送部11において垂直方向への信号電荷の転送(垂直転送)を行うための転送ゲートがフォトダイオード10から第1の垂直転送部11への信号電荷の読み出しのための読み出しゲート13を兼用している。なお、図3では簡単のために、1画素(一つのフォトダイオード10)に必ず一つ必要な読み出しゲート13のみを示しているが、実際には垂直転送のための転送ゲートが読み出しゲート13とは別に存在している。 A transfer gate for transferring signal charges in the vertical direction (vertical transfer) in the first vertical transfer unit 11 is a read gate 13 for reading signal charges from the photodiode 10 to the first vertical transfer unit 11. Is also used. In FIG. 3, for the sake of simplicity, only one readout gate 13 necessary for one pixel (one photodiode 10) is shown, but actually, the transfer gate for vertical transfer is the same as the readout gate 13. Exist separately.
 図3に示すように、各行の読み出しゲート13がある繰り返し単位の中で独立して動作するように配線14により接続されている。つまり、各行の読み出しゲート13には独立した駆動パルスが供給可能であり、フォトダイオード10から第1の垂直転送部11への信号電荷の読み出しが各行である繰り返し単位の中で独立に制御可能である。 As shown in FIG. 3, the read gates 13 of each row are connected by wiring 14 so as to operate independently in a certain repeating unit. That is, independent drive pulses can be supplied to the readout gates 13 in each row, and the readout of signal charges from the photodiode 10 to the first vertical transfer unit 11 can be controlled independently in the repeating unit of each row. is there.
 図3の電極構造により、例えば図2のR(赤)の信号電荷を第1の垂直転送部11内で3画素加算し、G(緑)の信号電荷も同様に第1の垂直転送部11内で3画素加算し、それを第1の垂直転送部11内で転送方向に交互に独立して転送することが可能である。このようにすることによって、m行のフォトダイオード10で構成されたイメージエリア2の信号電荷はイメージエリア2内でm/3行の信号電荷に縮約される。ここでは垂直方向の3画素加算を想定したが、一般にk画素加算した場合にはm行のフォトダイオード10で構成されたイメージエリア2の信号電荷はm/k行の信号電荷に縮約することができる。従って、図3のような電極構造とすることにより、第1の垂直転送部11の駆動により、イメージエリア2内でk行分の信号電荷を加算することが可能となる。このような垂直方向での信号電荷の加算(垂直画素加算)の動作を行う駆動モードを以下では垂直画素加算モードとよぶ。 3, for example, the R (red) signal charge of FIG. 2 is added by three pixels in the first vertical transfer unit 11, and the G (green) signal charge is similarly added to the first vertical transfer unit 11. It is possible to add three pixels and transfer them independently in the first vertical transfer unit 11 alternately in the transfer direction. By doing so, the signal charges in the image area 2 constituted by the m rows of photodiodes 10 are reduced to m / 3 rows of signal charges in the image area 2. Here, it is assumed that three pixels are added in the vertical direction. In general, when k pixels are added, the signal charges in the image area 2 formed by the m rows of photodiodes 10 are reduced to m / k rows of signal charges. Can do. Therefore, with the electrode structure as shown in FIG. 3, it is possible to add signal charges for k rows in the image area 2 by driving the first vertical transfer unit 11. Hereinafter, the drive mode for performing the signal charge addition (vertical pixel addition) operation in the vertical direction is referred to as a vertical pixel addition mode.
 垂直画素加算を行わない駆動モード(以下全画素読み出しモードという)では、イメージエリア2のm行のフォトダイオード10の信号電荷すべては独立して第1の垂直転送部11に読み出される。 In the drive mode in which vertical pixel addition is not performed (hereinafter referred to as all pixel readout mode), all signal charges of the m rows of photodiodes 10 in the image area 2 are independently read out to the first vertical transfer unit 11.
 なお、垂直画素加算以外にm行のフォトダイオード10の信号電荷の行数を縮約させる手段としては、特定の行の信号電荷が第1の排出部4を通過してストレージエリア3(第2の垂直転送部12)に転送される際に、第1の排出部4を動作させ、第1の垂直転送部11から排出して第2の垂直転送部12に転送させない方法もある。この方法は、垂直画素加算と併用することも可能である。 As a means for reducing the number of signal charges of the m rows of photodiodes 10 other than the vertical pixel addition, the signal charges of a specific row pass through the first discharge unit 4 and are stored in the storage area 3 (second There is also a method in which the first discharge unit 4 is operated to be discharged from the first vertical transfer unit 11 and not transferred to the second vertical transfer unit 12 when being transferred to the vertical transfer unit 12). This method can also be used in combination with vertical pixel addition.
 図4は第1の排出部4及び第1の水平加算部5の具体的な構成の一例を模式的に示した上面図である。 FIG. 4 is a top view schematically showing an example of a specific configuration of the first discharge unit 4 and the first horizontal addition unit 5.
 第1の排出部4は、第1のドレイン制御ゲート15及び第1のドレイン16により構成され、第1の水平加算部5は、第1の水平加算制御ゲート17、混合部18、第2の水平加算制御ゲート19、第1の退避ゲート20、及び第2の退避ゲート21により構成されている。図4では、第1の垂直転送部11、第2の垂直転送部12、第1の排出部4及び第1の水平加算部5の垂直転送チャネルは表記していないが、実際には連続したゲートの下に存在する。 The first discharge unit 4 includes a first drain control gate 15 and a first drain 16, and the first horizontal addition unit 5 includes a first horizontal addition control gate 17, a mixing unit 18, a second drain, and the like. The horizontal addition control gate 19, the first save gate 20, and the second save gate 21 are configured. In FIG. 4, the vertical transfer channels of the first vertical transfer unit 11, the second vertical transfer unit 12, the first discharge unit 4, and the first horizontal addition unit 5 are not shown, but are actually continuous. Exists under the gate.
 図4の構成では、3列の第1の垂直転送部11に対応して2列の第2の垂直転送部12が設けられており、A、B、C列の第1の垂直転送部11を転送された信号電荷はX、Y何れかの列の第2の垂直転送部12に転送される。また、D、E、F列の第1の垂直転送部11とZ、W列の第2の垂直転送部12との組についてもこれと同様に信号電荷が転送される。 In the configuration of FIG. 4, two columns of second vertical transfer units 12 are provided corresponding to three columns of first vertical transfer units 11, and A, B, and C columns of first vertical transfer units 11. Is transferred to the second vertical transfer unit 12 in either X or Y column. Similarly, signal charges are transferred to the set of the first vertical transfer unit 11 in the D, E, and F columns and the second vertical transfer unit 12 in the Z and W columns.
 第1のドレイン16は、第1のドレイン制御ゲート15をONにした場合に電荷を排出するように動作する。 The first drain 16 operates so as to discharge electric charge when the first drain control gate 15 is turned on.
 第1の水平加算部5の動作について説明する。イメージエリア2が図2に示すベイヤー配列のカラーフィルターを備えていた場合、例えばA、C、E列にR(赤)の信号電荷が転送され、B、D、F列にG(緑)の信号電荷が転送される。これは、垂直画素加算を行っても同じである。従って、図4のように、第1の水平加算制御ゲート17をA、C、E列とB、D、F列が独立に動作するように構成しておけば、R(赤)の信号電荷だけを混合部18に転送したり、G(緑)の信号電荷だけを混合部18に転送したりすることができる。 The operation of the first horizontal adder 5 will be described. When the image area 2 includes the color filters of the Bayer arrangement shown in FIG. 2, for example, R (red) signal charges are transferred to the A, C, and E columns, and G (green) are transferred to the B, D, and F columns. Signal charge is transferred. This is the same even when vertical pixel addition is performed. Therefore, as shown in FIG. 4, if the first horizontal addition control gate 17 is configured so that the A, C, E columns and the B, D, F columns operate independently, the signal charge of R (red) Only the signal charges of G (green) can be transferred to the mixing unit 18.
 混合部18に転送されたA、C、E列由来のR(赤)の信号電荷は第2の水平加算制御ゲート19の動作により、X、Z列を開放すると同時にY、W列を閉じることにより選択的にX、Z列に振り分けられる。同様に、混合部18に転送されたB、D、F列由来のG(緑)の信号電荷は第2の水平加算制御ゲート19の動作により、X、Z列を閉じると同時にY、W列を開放することにより選択的にX、Z列に振り分けられる。このとき、R(赤)の信号電荷に関しては、X列にはA、C2列分の信号電荷が加算され、Z列にはE列の1列分の信号電荷だけが振り分けられる。これはG(緑)の信号電荷についても同様である。 The R (red) signal charges derived from the A, C, and E columns transferred to the mixing unit 18 open the X and Z columns and simultaneously close the Y and W columns by the operation of the second horizontal addition control gate 19. Is selectively distributed to the X and Z rows. Similarly, the G (green) signal charges derived from the B, D, and F columns transferred to the mixing unit 18 are closed by the operation of the second horizontal addition control gate 19 and at the same time the Y and W columns are closed. Is selectively distributed to the X and Z rows. At this time, regarding the R (red) signal charge, the signal charges for the A and C columns are added to the X column, and only the signal charge for one column of the E column is allocated to the Z column. The same applies to the G (green) signal charge.
 このようにして、イメージエリア2の6列の第1の垂直転送部11を転送された信号電荷は他の色の信号電荷とは混合されることなく、ストレージエリア3の4列の第2の垂直転送部12に振り分けられる。 In this way, the signal charges transferred through the six columns of the first vertical transfer units 11 in the image area 2 are not mixed with the signal charges of the other colors, and the second column in the storage area 3 Sorted to the vertical transfer unit 12.
 ここまで説明したように、イメージエリア2でのk行分の垂直画素加算によってフォトダイオード10のm行の信号電荷が1/kに縮約され、さらに第1の水平加算部5の機能によりフォトダイオード10の列数は2/3(=4/6)に縮約される。従って、ストレージエリア3の規模は、イメージエリア2のフォトダイオード10の全行数の1/kかつ全列数の2/3の列数であればよい。すなわち、ストレージエリア3には、フォトダイオード10の全行数の1/kのフォトダイオード10の信号電荷を同時かつ独立に蓄積可能な第2の垂直転送部12をフォトダイオード10の全列数の2/3だけ設ければよい。言い換えると、第2の垂直転送部12は第1の垂直転送部11の2/3以下の数だけ設ければよい。ストレージエリア3の第2の垂直転送部12の列数がイメージエリア2のフォトダイオード10の列数よりも少なくて済むことにより、ストレージエリア3の第2の垂直転送部12のチャネル幅をイメージエリア2の第1の垂直転送部11のチャネル幅に比べて大幅に拡大することが可能である。場合によっては第2の垂直転送部12のチャネル幅をイメージエリア2の1画素ピッチよりも広くすることも可能である。これは単位チャネル長あたりの飽和電荷量の拡大に大きく寄与するため、第2の垂直転送部12を電荷転送方向に縮小することに非常に効果がある。さらに、ストレージエリア3の行数はイメージエリア2の画素加算数分の1(=1/k)でよいため、ストレージエリア3全体の垂直方向の長さを大幅に縮小可能である。 As described so far, the signal charges in the m rows of the photodiode 10 are reduced to 1 / k by the vertical pixel addition for k rows in the image area 2, and further, the function of the first horizontal adder 5 performs the photo The number of columns of the diodes 10 is reduced to 2/3 (= 4/6). Therefore, the size of the storage area 3 may be 1 / k of the total number of rows of the photodiodes 10 in the image area 2 and 2/3 of the total number of columns. That is, in the storage area 3, the second vertical transfer unit 12 capable of simultaneously and independently storing the signal charges of the photodiodes 10 of 1 / k of the total number of rows of the photodiodes 10 is provided for the number of columns of the photodiodes 10. Only 2/3 should be provided. In other words, the number of the second vertical transfer units 12 may be as many as 2/3 or less of the number of the first vertical transfer units 11. Since the number of columns of the second vertical transfer unit 12 in the storage area 3 is smaller than the number of columns of the photodiode 10 in the image area 2, the channel width of the second vertical transfer unit 12 in the storage area 3 can be reduced. The channel width of the second first vertical transfer unit 11 can be greatly increased. In some cases, the channel width of the second vertical transfer unit 12 can be made wider than one pixel pitch of the image area 2. This greatly contributes to the increase of the saturation charge amount per unit channel length, and is therefore very effective in reducing the second vertical transfer unit 12 in the charge transfer direction. Further, since the number of rows in the storage area 3 may be 1 / (1 / k) of the number of added pixels in the image area 2, the vertical length of the entire storage area 3 can be greatly reduced.
 なお、垂直画素加算及び水平画素加算をしないでイメージエリア2の全画素の信号電荷を独立にストレージエリア3に読み出す場合には、イメージエリア2を多フィールドに分割するインターレース読み出しをして各フィールドの画素数を垂直画素加算及び水平画素加算をした後の信号電荷の数よりも少なくすることにより読み出しできることが出来る。 In addition, when the signal charges of all the pixels in the image area 2 are independently read out to the storage area 3 without performing vertical pixel addition and horizontal pixel addition, interlaced readout that divides the image area 2 into multiple fields is performed. Reading can be performed by making the number of pixels smaller than the number of signal charges after vertical pixel addition and horizontal pixel addition.
 次に、第1の水平加算部5による画素加算以降の固体撮像装置の動作について説明する。 Next, the operation of the solid-state imaging device after pixel addition by the first horizontal adder 5 will be described.
 図5は第2の排出部7及び第2の水平加算部8の具体的な構成の一例を模式的に示した上面図である。なお、図5では、水平転送部6は独立した信号電荷を転送できる1段分ごとに境界線が示されており、第2の垂直転送部12の2列毎に水平転送部6の1段が対応する構成になっている。 FIG. 5 is a top view schematically showing an example of a specific configuration of the second discharge unit 7 and the second horizontal addition unit 8. In FIG. 5, the horizontal transfer unit 6 shows a boundary line for each stage where independent signal charges can be transferred, and one stage of the horizontal transfer unit 6 is provided for every two columns of the second vertical transfer unit 12. Is a corresponding configuration.
 第2の排出部7は、第2のドレイン制御ゲート22及び第2のドレイン23により構成され、第2の水平加算部8は、第3の退避ゲート24及び第3の水平加算制御ゲート25により構成されている。図5では、第2の垂直転送部12、第2の排出部7及び第2の水平加算部8の垂直転送チャネル並びに水平転送部6の水平転送チャネルは表記していないが、実際には連続したゲートの下に存在する。 The second discharge unit 7 includes a second drain control gate 22 and a second drain 23, and the second horizontal addition unit 8 includes a third save gate 24 and a third horizontal addition control gate 25. It is configured. In FIG. 5, the vertical transfer channel of the second vertical transfer unit 12, the second discharge unit 7 and the second horizontal addition unit 8, and the horizontal transfer channel of the horizontal transfer unit 6 are not shown, but are actually continuous. Exist under the gate.
 第3の水平加算制御ゲート25には各列に独立の異なる配線26が接続されている。第3の退避ゲート24及び第3の水平加算制御ゲート25は第2の垂直転送部12の各列に対応して4列周期で独立に制御(駆動)できるように配線されている。 The third horizontal addition control gate 25 is connected to an independent different wiring 26 in each column. The third save gate 24 and the third horizontal addition control gate 25 are wired so that they can be controlled (driven) independently in a cycle of four columns corresponding to each column of the second vertical transfer unit 12.
 第2の垂直転送部12のX、Y、Z、W列を転送された信号電荷は第2の排出部7を通って第2の水平加算部8に至る。第2の排出部7は、水平転送部6で電荷があふれないようにするオーバーフロードレインの働きをする。また、第2のドレイン制御ゲート22をONすることにより、所定の列の電荷を選択的に第2のドレイン23に完全排出することができる。これにより、信号電荷の列間引きができるので、水平画素加算によらない列数の縮約も可能となる。 The signal charge transferred through the X, Y, Z, and W columns of the second vertical transfer unit 12 passes through the second discharge unit 7 and reaches the second horizontal addition unit 8. The second discharge unit 7 functions as an overflow drain that prevents the charges from overflowing in the horizontal transfer unit 6. In addition, by turning on the second drain control gate 22, it is possible to selectively discharge charges in a predetermined column to the second drain 23 selectively. As a result, column deduction of signal charges can be performed, so that the number of columns can be reduced without using horizontal pixel addition.
 次に、第2の排出部7による列間引きをしない場合の第2の排出部7及び第2の水平加算部8の動作を説明する。 Next, operations of the second discharge unit 7 and the second horizontal addition unit 8 when the second discharge unit 7 does not perform row thinning will be described.
 先に図4を用いて説明したように、第1の水平加算部5での振り分けにより、R(赤)の信号電荷に関しては、X列にはA、C2列分の信号電荷が振り分けられ、Z列にはE列の1列分の信号電荷だけが振り分けられている。G(緑)の信号電荷についても同様にY列にはB列の信号電荷だけが振り分けられ、W列にはD、F2列分の信号電荷が振り分けられ、第3の退避ゲート24まで転送されてきている。 As described above with reference to FIG. 4, with respect to the R (red) signal charge, the signal charges for the A and C2 columns are distributed to the X column by the distribution in the first horizontal adder 5. Only the signal charges for one column of the E column are distributed to the Z column. Similarly, for the G (green) signal charge, only the B column signal charge is allocated to the Y column, and the D and F2 column signal charges are allocated to the W column and transferred to the third save gate 24. It is coming.
 ここでまず、X列とW列の第3の水平加算制御ゲート25をONし、X列にあるA、C2列分のR(赤)の信号電荷とW列にあるD、F2列分のG(緑)の信号電荷を水平転送部6まで転送する。 First, the third horizontal addition control gates 25 in the X and W columns are turned ON, the R (red) signal charges for the A and C columns in the X column, and the D and F2 columns in the W column. The signal charge of G (green) is transferred to the horizontal transfer unit 6.
 次に、水平転送部6を一段送った後にY列とZ列の第3の水平加算制御ゲート25をONし、Y列にあるB列起因のG(緑)の信号電荷とZ列にあるE列起因のR(赤)の信号電荷を水平転送部6まで転送する。 Next, after the horizontal transfer unit 6 has been sent one stage, the third horizontal addition control gates 25 in the Y and Z columns are turned on, and the G (green) signal charge resulting from the B column in the Y column and the Z column are in the Z column. The R (red) signal charge resulting from the E column is transferred to the horizontal transfer unit 6.
 これにより、水平転送部6では、G(緑)の信号電荷に着目すると、Y列とW列の信号電荷が加算され、結果としてイメージエリア2のB、D、F3列の信号電荷が加算されたことになる。同時にR(赤)の信号電荷についても同様にイメージエリア2の3列の加算が完了したことになる。その後、水平転送部6を転送し、出力アンプ9を通してこれらの信号電荷がすべて出力される。 As a result, in the horizontal transfer unit 6, focusing on the G (green) signal charge, the signal charges in the Y column and the W column are added, and as a result, the signal charges in the B, D, and F3 columns of the image area 2 are added. That's right. At the same time, the addition of the three columns in the image area 2 is completed for the R (red) signal charge. Thereafter, the horizontal transfer unit 6 is transferred, and all these signal charges are output through the output amplifier 9.
 以上のように、第1の水平加算部5と第2の水平加算部8の両者の働きにより、水平方向に同色3列の信号電荷の加算ができる。以下では、このような水平画素加算の動作を行う駆動モードを水平画素加算モードと呼ぶ。また、垂直画素加算とあわせて水平画素加算の動作を行う駆動モードを垂直水平画素加算モードと呼ぶ。 As described above, by the action of both the first horizontal adder 5 and the second horizontal adder 8, signal charges of the same color in three columns can be added in the horizontal direction. Hereinafter, such a driving mode for performing the horizontal pixel addition operation is referred to as a horizontal pixel addition mode. A driving mode in which the horizontal pixel addition operation is performed together with the vertical pixel addition is referred to as a vertical horizontal pixel addition mode.
 図6及び図7は水平垂直画素加算モードの固体撮像装置の動作の概略を示す駆動タイミングチャートである。図6及び図7では、期間T1~T5、T1’は駆動タイミングを機能別(固体撮像装置で実現される動作別)に区分した動作期間を示している。固体撮像装置の各部の動作を図6及び図7を参照しながら説明する。 6 and 7 are drive timing charts showing an outline of the operation of the solid-state imaging device in the horizontal / vertical pixel addition mode. In FIGS. 6 and 7, periods T1 to T5 and T1 'indicate operation periods in which the drive timing is divided into functions (by operations realized by the solid-state imaging device). The operation of each part of the solid-state imaging device will be described with reference to FIGS.
 図6の期間T1は、第1の垂直転送部11を動作させて第1の排出部4により暗電流及びスミア等によるイメージエリア2のノイズ電荷のイメージエリア2からの掃きだし及び排出を行う掃き出し期間である。この期間では、第1の垂直転送部11がその転送ゲートに供給されるイメージエリア垂直パルスにより駆動され、第1の排出部4が第1のドレイン制御ゲート15に供給される第1ドレイン部動作パルスにより駆動される。露光期間で、フォトダイオード10に光電変換により生成された電荷が蓄積され続けている間も、イメージエリア2全体に光が照射されているため第1の垂直転送部11にはスミア電荷がたまって行く。そこで、このスミア電荷が本来の信号(被写体の光学像を示す信号)に混合するのを避けるためにフォトダイオード10の信号電荷を第1の垂直転送部11に読み出すのに先立って高速転送によるスミア電荷の掃き出しが行われる。このとき第1の排出部4で第1のドレイン制御ゲート15をONさせておくことにより、掃き出されたスミア電荷は第1のドレイン16で排出され、ストレージエリア3には転送されないので、ストレージエリア3の第2の垂直転送部12は停止していてかまわない。 A period T1 in FIG. 6 is a sweeping period in which the first vertical transfer unit 11 is operated and the first discharge unit 4 sweeps and discharges noise charges in the image area 2 from the image area 2 due to dark current, smear, and the like. It is. In this period, the first vertical transfer unit 11 is driven by the image area vertical pulse supplied to the transfer gate, and the first discharge unit 4 is supplied to the first drain control gate 15. Driven by pulses. During the exposure period, while the charge generated by the photoelectric conversion is continuously accumulated in the photodiode 10, the entire vertical image area 2 is irradiated with light, so that smear charges are accumulated in the first vertical transfer unit 11. go. Therefore, in order to avoid mixing this smear charge with the original signal (signal indicating the optical image of the subject), smear by high-speed transfer is performed prior to reading the signal charge of the photodiode 10 to the first vertical transfer unit 11. Charges are swept out. At this time, the first drain control gate 15 is turned on by the first discharge unit 4, so that the smear charges that are swept out are discharged by the first drain 16 and are not transferred to the storage area 3. The second vertical transfer unit 12 in the area 3 may be stopped.
 図7の期間T1’も図6の期間T1と同様の掃き出し期間であるが、スミア電荷を第1のドレイン16に排出しない代わりに、ストレージエリア3の第2の垂直転送部12も高速転送動作をさせ、第2の排出部7の第2のドレイン制御ゲート22をONさせておくことにより、第2のドレイン23にスミア電荷を掃き出すようにしている点が異なる。この期間では、第2の排出部7がその第2のドレイン制御ゲート22に供給される第2ドレイン部動作パルスにより駆動される。第2の垂直転送部12の暗電流が大きい場合には、図7のように第2の垂直転送部12も高速転送すれば、イメージエリア2のスミア電荷とともにストレージエリア3の暗電流(暗出力)も排出することができる。ストレージエリア3の暗出力の排出も目的とする場合には、図7のT1’において第1のドレイン制御ゲート15もONさせておいてもかまわない。 The period T1 ′ in FIG. 7 is the same sweeping period as the period T1 in FIG. 6, but instead of discharging the smear charge to the first drain 16, the second vertical transfer unit 12 in the storage area 3 also performs a high-speed transfer operation. And the second drain control gate 22 of the second discharge section 7 is turned on, so that smear charges are swept out to the second drain 23. During this period, the second discharge section 7 is driven by the second drain section operation pulse supplied to the second drain control gate 22. When the dark current in the second vertical transfer unit 12 is large, if the second vertical transfer unit 12 also transfers at high speed as shown in FIG. ) Can also be discharged. If the purpose is to discharge the dark output of the storage area 3, the first drain control gate 15 may be turned ON at T1 'in FIG.
 図6及び図7の期間T2は、フォトダイオード10の信号電荷を対応する第1の垂直転送部11に読み出す読み出し期間である。この期間では第1の垂直転送部11がその読み出しゲート13に供給される読み出しパルスにより駆動される。ここでは、フォトダイオード10に蓄積された信号電荷を第1の垂直転送部11に読み出すとともに、先に詳しく述べた垂直画素混合を行う期間、つまり複数のフォトダイオード10の信号電荷を第1の垂直転送部11内で混合する期間も含んでいる。この動作完了後には読み出したい全フォトダイオード10の信号電荷は第1の垂直転送部11に移動している。 6 and 7 is a readout period in which the signal charge of the photodiode 10 is read out to the corresponding first vertical transfer unit 11. During this period, the first vertical transfer unit 11 is driven by a read pulse supplied to the read gate 13. Here, the signal charge accumulated in the photodiode 10 is read out to the first vertical transfer unit 11 and the vertical pixel mixing described in detail above, that is, the signal charges of the plurality of photodiodes 10 are converted into the first vertical transfer. A period of mixing in the transfer unit 11 is also included. After this operation is completed, the signal charges of all the photodiodes 10 to be read have moved to the first vertical transfer unit 11.
 図6及び図7の期間T3は、第1の垂直転送部11に読み出した信号電荷を対応する第2の垂直転送部12に高速転送する高速転送期間である。この期間では、第2の垂直転送部12がその転送ゲートに供給されるストレージエリア垂直パルスにより駆動され、第1の水平加算部5がその水平加算制御ゲートに供給される第1水平加算部ゲートパルスにより駆動される。垂直画素混合された信号電荷は、第1の垂直転送部11から第1の排出部4及び第1の水平加算部5をへて第2の垂直転送部12まで転送される。この転送の途中では必要に応じた第1のドレイン16への掃きだし動作による信号間引き、及び先に詳しく説明した水平画素加算が行われ、複数の第1の垂直転送部11の信号電荷が混合されて1つの第2の垂直転送部12に転送される。この転送動作を高速で行うことにより、読み出された信号電荷が完全に遮光されたストレージエリア3に到達する期間が短くなり、スミア電荷を大幅に低減できる。 6 and 7 is a high-speed transfer period in which the signal charge read out to the first vertical transfer unit 11 is transferred at high speed to the corresponding second vertical transfer unit 12. In this period, the second vertical transfer unit 12 is driven by the storage area vertical pulse supplied to the transfer gate, and the first horizontal adder unit 5 is supplied to the horizontal addition control gate. Driven by pulses. The signal charge mixed with the vertical pixels is transferred from the first vertical transfer unit 11 to the second vertical transfer unit 12 through the first discharge unit 4 and the first horizontal addition unit 5. In the middle of this transfer, signal thinning by a sweep operation to the first drain 16 as necessary and horizontal pixel addition described in detail above are performed, and the signal charges of the plurality of first vertical transfer units 11 are mixed. Are transferred to one second vertical transfer unit 12. By performing this transfer operation at a high speed, the period during which the read signal charges reach the completely shielded storage area 3 is shortened, and the smear charges can be greatly reduced.
 図6及び図7の期間T4は、第2の水平加算部8により水平画素加算を行う水平画素加算期間であり、この期間では第2の水平加算部8がその水平加算制御ゲートに供給される第2水平加算部ゲートパルスにより駆動される。ストレージエリア3の複数列の第2の垂直転送部12に蓄積された信号電荷は行単位で第2の水平加算部8により加算され、加算された信号電荷が水平転送部6に転送される。複数の並行した水平転送部6が設けられ、異なる列の第2の垂直転送部12が異なる水平転送部6に接続される構成では、信号電荷を2行単位で水平転送部6に転送することができる。また、水平転送部6を有さない構成では、第2の垂直転送部12の信号電荷は複数列の第2の垂直転送部12から並列に直接出力アンプ9に出力される。 A period T4 in FIGS. 6 and 7 is a horizontal pixel addition period in which horizontal pixel addition is performed by the second horizontal adder 8. In this period, the second horizontal adder 8 is supplied to the horizontal addition control gate. It is driven by the second horizontal adder gate pulse. The signal charges accumulated in the second vertical transfer units 12 of the plurality of columns in the storage area 3 are added by the second horizontal addition unit 8 in units of rows, and the added signal charges are transferred to the horizontal transfer unit 6. In a configuration in which a plurality of parallel horizontal transfer units 6 are provided and the second vertical transfer units 12 in different columns are connected to different horizontal transfer units 6, signal charges are transferred to the horizontal transfer unit 6 in units of two rows. Can do. Further, in the configuration without the horizontal transfer unit 6, the signal charges of the second vertical transfer unit 12 are directly output from the second column transfer units 12 in a plurality of columns directly to the output amplifier 9 in parallel.
 図6及び図7の期間T5は、水平転送部6により転送された信号電荷を出力アンプ9に出力する出力期間であり、この期間では水平転送部6がその転送ゲートに供給される水平パルスにより駆動される。期間T4において水平転送部6に転送された1行分のストレージエリア3の信号電荷が出力アンプ9を通して固体撮像装置外部に順次出力される。期間T4とT5はストレージエリア3の信号電荷をすべて読み出すためにストレージエリア3の全行数回繰り返される。 6 and 7 is an output period in which the signal charge transferred by the horizontal transfer unit 6 is output to the output amplifier 9, and during this period, the horizontal transfer unit 6 uses a horizontal pulse supplied to its transfer gate. Driven. The signal charges in the storage area 3 for one row transferred to the horizontal transfer unit 6 in the period T4 are sequentially output to the outside of the solid-state imaging device through the output amplifier 9. Periods T4 and T5 are repeated several times in all rows in the storage area 3 in order to read out all signal charges in the storage area 3.
 期間T1~T5又は期間T1’~T5を経て1露光期間に対応する信号電荷の出力がすべて完了する。 The output of signal charges corresponding to one exposure period is completed after the period T1 to T5 or the period T1 'to T5.
 図6及び図7の第1の垂直転送部11から第2の垂直転送部12への信号電荷の転送において、第1の垂直転送部11内でk行のフォトダイオード10の信号電荷が電荷結合により混合され、混合された信号電荷が第2の垂直転送部12に転送される。従って、この場合、第2の垂直転送部12は、フォトダイオード10のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/k以上となるよう構成されればよい。 In the transfer of the signal charge from the first vertical transfer unit 11 to the second vertical transfer unit 12 in FIGS. 6 and 7, the signal charge of the photodiodes 10 in the k rows in the first vertical transfer unit 11 is charge coupled. And the mixed signal charge is transferred to the second vertical transfer unit 12. Therefore, in this case, the second vertical transfer unit 12 may be configured so that the number of signal charges of the photodiodes 10 that can be stored simultaneously and independently is m / k or more.
 ここで、ストレージエリア3で蓄積すべき画素の行数、つまり何行分のフォトダイオード10の信号電荷を同時かつ独立に蓄積すべきかは、
R=イメージエリア2の画素の列数/ストレージエリア3の列数(第2の垂直転送部12の列数)(数式1)
としたとき、kを垂直方向の画素加算数(垂直画素加算数)として、
ストレージエリア3で蓄積すべき画素の行数=イメージエリア2の画素の行数/(k×R)(数式2)
を満たせばよい。例えば、垂直方向に3画素の加算を行い、かつ水平画素加算(R=3/2)を行う場合には、ストレージエリア3で蓄積すべき画素の行数は、イメージエリア2の画素の行数/(3×(3/2))つまりイメージエリアの画素の行数×(2/9)である。
Here, the number of rows of pixels to be accumulated in the storage area 3, that is, how many rows of signal charges of the photodiodes 10 should be accumulated simultaneously and independently,
R = number of pixels in image area 2 / number of columns in storage area 3 (number of columns in second vertical transfer unit 12) (Formula 1)
Where k is the number of vertical pixel additions (the number of vertical pixel additions)
Number of pixels to be stored in storage area 3 = number of pixels in image area 2 / (k × R) (Equation 2)
Should be satisfied. For example, when 3 pixels are added in the vertical direction and horizontal pixel addition (R = 3/2) is performed, the number of pixels to be accumulated in the storage area 3 is the number of pixels in the image area 2. / (3 × (3/2)), that is, the number of rows of pixels in the image area × (2/9).
 例えば、イメージエリア2が1.54ミクロン正方の画素セルを、垂直方向に3000画素、水平方向に4000画素の会計1200万画素配置して固体撮像装置が構成される場合には、垂直方向に1000画素、水平方向に2700画素の合計270万画素相当の信号電荷を同時に独立して蓄積可能なストレージエリア3を設ければよい。 For example, when a solid-state imaging device is configured by arranging 12 million pixels of a pixel cell having a square area of 1.54 microns in the image area 2 of 3000 pixels in the vertical direction and 4000 pixels in the horizontal direction, 1000 pixels in the vertical direction. It is only necessary to provide the storage area 3 that can store signal charges corresponding to a total of 2.7 million pixels in total 2700 pixels in the horizontal direction.
 図8は、水平画素加算及び垂直画素加算を行わない全画素読み出しモードの固体撮像装置の動作の概略を示す駆動タイミングチャートである。図8の動作では、フィールド読み出しを前提としており、第1フィールドの信号電荷の読み出しを詳細に示している。図8では、期間S1~S5は駆動タイミングを機能別に区分した動作期間を示している。固体撮像装置の各部の動作を図8を参照しながら説明する。 FIG. 8 is a drive timing chart showing an outline of the operation of the solid-state imaging device in the all-pixel readout mode in which the horizontal pixel addition and the vertical pixel addition are not performed. The operation in FIG. 8 is based on the premise of field reading, and shows the signal charge reading in the first field in detail. In FIG. 8, periods S1 to S5 indicate operation periods in which the drive timing is divided by function. The operation of each part of the solid-state imaging device will be described with reference to FIG.
 図8の期間S1は、第1の垂直転送部11を動作させて第1の排出部4により暗電流及びスミア等によるイメージエリア2のノイズ電荷のイメージエリア2からの掃きだし及び排出を行う掃き出し期間である。この期間の動作及びその目的は図6、図7の全画素読み出しモードにおける期間T1、T1’におけるものと同様である。 A period S1 in FIG. 8 is a sweeping period in which the first vertical transfer unit 11 is operated and the first discharge unit 4 sweeps and discharges noise charges in the image area 2 from the image area 2 due to dark current, smear, and the like. It is. The operation and purpose of this period are the same as those in the periods T1 and T1 'in the all-pixel readout mode of FIGS.
 図8の期間S2は、一部のフォトダイオード10(一定の行間隔をおいて並んだ所定行のフォトダイオード10)の信号電荷を対応する第1の垂直転送部11に読み出す読み出し期間である。第1の垂直転送部11での垂直画素加算を行わない点が図6、図7の期間T2における動作と異なる。イメージエリア2をL個のフィールドに分割してL回に分けてイメージエリア2の全信号電荷を読み出す場合(L回のフィールド読み出しを行う場合)には、1フィールドの信号電荷の読み出し完了後には読み出したい全フォトダイオード10の1/L個のフォトダイオード10の信号電荷が第1の垂直転送部11に移動している。ここで、垂直水平画素混合モードにおける垂直画素加算数kと、数式1で定義した第1の垂直転送部11と第2の垂直転送部12の列数比Rに対して、
k×R<=L(数式3)
であるようにフィールド分割を決めておくことにより、各フィールドの独立した信号電荷をあふれることなくストレージエリア3に蓄積できる。
A period S2 in FIG. 8 is a reading period in which signal charges of some photodiodes 10 (photodiodes 10 in a predetermined row arranged at a constant row interval) are read out to the corresponding first vertical transfer units 11. The point that vertical pixel addition is not performed in the first vertical transfer unit 11 is different from the operation in the period T2 in FIGS. When the image area 2 is divided into L fields and all the signal charges in the image area 2 are read out in L times (when the field reading is performed L times), after the signal charges in one field are read out, The signal charges of 1 / L photodiodes 10 of all the photodiodes 10 to be read have moved to the first vertical transfer unit 11. Here, with respect to the vertical pixel addition number k in the vertical / horizontal pixel mixed mode and the column number ratio R of the first vertical transfer unit 11 and the second vertical transfer unit 12 defined in Equation 1,
k × R <= L (Formula 3)
Thus, by determining the field division, independent signal charges in each field can be stored in the storage area 3 without overflowing.
 図8の期間S3は、第1の垂直転送部11に読み出した信号電荷を対応する第2の垂直転送部12に高速転送する高速転送期間である。この期間の動作及びその目的は図6、図7の全画素読み出しモードにおける期間T3におけるものと同様である。 8 is a high-speed transfer period in which the signal charge read out to the first vertical transfer unit 11 is transferred to the corresponding second vertical transfer unit 12 at high speed. The operation and purpose of this period are the same as those in the period T3 in the all-pixel readout mode of FIGS.
 図8の期間S4は、第2の垂直転送部12の信号電荷を水平転送部6に転送する垂直-水平転送期間である。この期間では、ストレージエリア3に蓄積された1フィールド分の信号電荷が1行ずつ、水平転送部6に転送される。複数の並行した水平転送部6が設けられ、異なる列の第2の垂直転送部12が異なる水平転送部6に接続される構成では、信号電荷を2行単位で水平転送部6に転送することができる。また、水平転送部6を有さない構成では、第2の垂直転送部12の信号電荷は複数列の第2の垂直転送部12から並列に直接出力アンプ9に出力される。 8 is a vertical-horizontal transfer period in which the signal charges of the second vertical transfer unit 12 are transferred to the horizontal transfer unit 6. During this period, signal charges for one field accumulated in the storage area 3 are transferred to the horizontal transfer unit 6 line by line. In a configuration in which a plurality of parallel horizontal transfer units 6 are provided and the second vertical transfer units 12 in different columns are connected to different horizontal transfer units 6, signal charges are transferred to the horizontal transfer unit 6 in units of two rows. Can do. Further, in the configuration without the horizontal transfer unit 6, the signal charges of the second vertical transfer unit 12 are directly output from the second column transfer units 12 in a plurality of columns directly to the output amplifier 9 in parallel.
 図8の期間S5は、水平転送部6により転送された信号電荷を出力アンプ9に出力する出力期間である。期間S4において水平転送部6に転送された1行分のストレージエリア3の信号電荷が出力アンプ9を通して固体撮像装置外部に順次出力される。期間S4と期間S5はストレージエリア3の信号電荷をすべて読み出すために少なくともストレージエリア3の全行数回繰り返され、ストレージエリア3に蓄積された1フィールド分の信号電荷をすべて読み出すまで繰り返される。 8 is an output period in which the signal charges transferred by the horizontal transfer unit 6 are output to the output amplifier 9. The signal charges in the storage area 3 for one row transferred to the horizontal transfer unit 6 in the period S4 are sequentially output to the outside of the solid-state imaging device through the output amplifier 9. Periods S4 and S5 are repeated at least several times in all rows of the storage area 3 in order to read out all the signal charges in the storage area 3, and are repeated until all of the signal charges for one field accumulated in the storage area 3 are read out.
 期間S1~S5を経て1フィールド分の信号電荷の出力がすべて完了する。これを第Lフィールドまで繰り返すことにより1露光期間に対応する全画素の信号電荷の出力がすべて完了する。 The output of signal charge for one field is completed after the period S1 to S5. By repeating this up to the Lth field, the output of the signal charges of all the pixels corresponding to one exposure period is completed.
 図8のフォトダイオード10から第1の垂直転送部11への信号電荷の読み出しにおいて、全行のフォトダイオード10の信号電荷がL回のインターレース動作で第1の垂直転送部11に読み出される。従って、この場合、第2の垂直転送部12は、フォトダイオード10のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/L以上となるようにされればよい。 In the readout of signal charges from the photodiode 10 to the first vertical transfer unit 11 in FIG. 8, the signal charges of the photodiodes 10 in all rows are read out to the first vertical transfer unit 11 by L interlace operations. Accordingly, in this case, the second vertical transfer unit 12 may be configured such that the number of signal charges of the photodiode 10 that can be stored simultaneously and independently is not less than m / L.
 ここで、垂直水平画素加算モードと全画素読み出しモードがどのように使われるか、デジタルスチルカメラにおける使用を一例として説明する。近年のデジタルスチルカメラは、静止画撮影のみならず動画の撮影も可能である。 Here, how the vertical and horizontal pixel addition mode and the all-pixel readout mode are used will be described as an example of use in a digital still camera. Recent digital still cameras can shoot not only still images but also moving images.
 図9は、デジタルスチルカメラにおける動画の撮影開始から撮影終了までの動作シーケンスを示す図である。図10はデジタルスチルカメラにおける通常の静止画の撮影開始から撮影終了までの動作シーケンスを示す図である。図11はデジタルスチルカメラにおける連続静止画の撮影開始から撮影終了までの動作シーケンスを示す図である。 FIG. 9 is a diagram showing an operation sequence from the start of shooting a movie to the end of shooting with a digital still camera. FIG. 10 is a diagram illustrating an operation sequence from the start of shooting of a normal still image to the end of shooting in the digital still camera. FIG. 11 is a diagram illustrating an operation sequence from the start of continuous still image shooting to the end of shooting in a digital still camera.
 動画撮影では、図9に示すように、撮影開始時にメカニカルシャッターが開き、撮影終了までの間イメージエリアには光が照射され続ける。そのため通常ではスミアが画質上の大きな課題である。また、近年のデジタルスチルカメラの画素数は1000万画素を超えているにもかかわらず、動画として記録するのに必要な画素数は高々30万画素~210万画素である。従って、垂直水平画素加算モードにより出力画素数を動画記録に適した画素数まで縮尺しながらスミア電荷の大幅低減のできる本実施形態の固体撮像装置の構成は非常に有用である。 In moving image shooting, as shown in FIG. 9, the mechanical shutter is opened at the start of shooting, and the image area is continuously irradiated with light until the end of shooting. For this reason, smear is usually a major problem in image quality. Moreover, although the number of pixels of a digital still camera in recent years has exceeded 10 million pixels, the number of pixels necessary for recording as a moving image is at most 300,000 to 2.1 million pixels. Therefore, the configuration of the solid-state imaging device of the present embodiment that can greatly reduce the smear charge while reducing the number of output pixels to the number of pixels suitable for moving image recording in the vertical and horizontal pixel addition mode is very useful.
 一方、通常の静止画撮影では、図10に示すように、メカニカルシャッターを開放してからフォトダイオードを縦型オーバーフロードレイン(VOD)によりリセットして露光を開始するが、露光終了はメカニカルシャッターにより制御される。メカニカルシャッターにより遮光された後に垂直転送部中のスミア電荷を排出し、その後にフォトダイオードの信号電荷の読み出しと出力を行う。このため、従来の固体撮像装置においてもスミアによる画質劣化の懸念がない。しかし、連続撮影する場合には、1フレームの静止画の撮影の都度、メカニカルシャッターを閉じていては高速撮影ができないので、図11に示すように、動画撮影に類似した撮影シーケンスになる。このような場合にも本実施形態の固体撮像装置の構成では図8に示した全画素読み出しモードの動作によりスミアによる画質劣化を大幅に低減した静止画撮影が可能となる。 On the other hand, in normal still image shooting, as shown in FIG. 10, after opening the mechanical shutter, the photodiode is reset by the vertical overflow drain (VOD) to start exposure, but the end of exposure is controlled by the mechanical shutter. Is done. After being shielded from light by the mechanical shutter, the smear charge in the vertical transfer section is discharged, and then the signal charge of the photodiode is read and output. For this reason, even in the conventional solid-state imaging device, there is no fear of image quality deterioration due to smear. However, in the case of continuous shooting, since a high-speed shooting cannot be performed with the mechanical shutter closed every time a still image of one frame is shot, as shown in FIG. Even in such a case, the configuration of the solid-state imaging device according to the present embodiment enables still image shooting in which image quality degradation due to smear is significantly reduced by the operation in the all-pixel readout mode shown in FIG.
 このように、本実施形態の固体撮像装置の構成は静止画及び動画両方の撮影に対応したデジタルスチルカメラで非常に有効である。 As described above, the configuration of the solid-state imaging device according to the present embodiment is very effective for a digital still camera that can capture both still images and moving images.
 一例としてイメージエリア2が1.54ミクロン正方の画素セルを垂直方向に3000画素、水平方向に4000画素の会計1200万画素配置して構成され、垂直方向に3画素、水平方向に3画素の混合を行う垂直水平画素加算モードを有する固体撮像装置の場合に必要なストレージエリア3の大きさを見積る。この見積もりに必要な情報は、必要な飽和信号量を満足するストレージエリア3の第2の垂直転送部12のチャネル幅と長さの関係である。 As an example, image area 2 is composed of a 1.54 micron square pixel cell arranged in a vertical direction of 3000 pixels and a horizontal direction of 4000 pixels accounting for 12 million pixels, a mixture of 3 pixels in the vertical direction and 3 pixels in the horizontal direction. The size of the storage area 3 required in the case of a solid-state imaging device having a vertical / horizontal pixel addition mode for performing is estimated. Information necessary for this estimation is the relationship between the channel width and length of the second vertical transfer unit 12 in the storage area 3 that satisfies the required saturation signal amount.
 図12はシミュレーションによる第2の垂直転送部12の単位ゲート長(1転送段)あたりの飽和信号量のチャネル幅依存性のグラフである。図12では、要な飽和信号量を1とし、以下ではイメージエリア2の第1の垂直転送部11の幅は実際の寸法で表示した。 FIG. 12 is a graph of the channel width dependence of the saturation signal amount per unit gate length (one transfer stage) of the second vertical transfer unit 12 by simulation. In FIG. 12, the required saturation signal amount is 1, and in the following, the width of the first vertical transfer unit 11 in the image area 2 is displayed in actual dimensions.
 例えばイメージエリア2が1.54ミクロン(μm)正方の画素セルで構成される場合、第1の垂直転送部11のチャネル幅は約0.3ミクロンである。本実施形態の固体撮像装置では第2の垂直転送部12は、1.54ミクロン×3/2=2.31ミクロンピッチで並べればよいので約2.0ミクロンのチャネル幅で設計することができる。 For example, when the image area 2 is composed of 1.54 micron (μm) square pixel cells, the channel width of the first vertical transfer unit 11 is about 0.3 microns. In the solid-state imaging device according to the present embodiment, the second vertical transfer units 12 may be arranged with a pitch of 1.54 microns × 3/2 = 2.31 microns, and thus can be designed with a channel width of about 2.0 microns. .
 図12に示したシミュレーション結果から、第2の垂直転送部12では、単位ゲート長あたり、イメージエリア2の第1の垂直転送部11の約6倍の飽和信号量が得られる。従って、ストレージエリア3の第2の垂直転送部12のゲート長はイメージエリア2の第1の垂直転送部11のゲート長の約1/6あればよい。そもそも、垂直方向に3画素混合を前提としているので、ストレージエリア3は、垂直方向に1000画素相当の行数があればよい。これらより、ストレージエリア3の垂直方向のサイズは、1.54ミクロン×1000画素×1/6=256ミクロンあればよい。これは、イメージエリア2の垂直方向のサイズが、1.54ミクロン×3000画素=4620ミクロンであることを考慮すると非常にコンパクトであり、ストレージエリア3がチップサイズに及ぼす影響は10%に満たないことがわかる。 From the simulation results shown in FIG. 12, the second vertical transfer unit 12 can obtain a saturation signal amount about 6 times that of the first vertical transfer unit 11 in the image area 2 per unit gate length. Therefore, the gate length of the second vertical transfer unit 12 in the storage area 3 may be about 1/6 of the gate length of the first vertical transfer unit 11 in the image area 2. In the first place, since it is assumed that three pixels are mixed in the vertical direction, the storage area 3 only needs to have 1000 pixels in the vertical direction. Accordingly, the vertical size of the storage area 3 may be 1.54 microns × 1000 pixels × 1/6 = 256 microns. This is very compact considering that the vertical size of the image area 2 is 1.54 microns × 3000 pixels = 4620 microns, and the influence of the storage area 3 on the chip size is less than 10%. I understand that.
 このように、本実施形態の固体撮像装置では静止画及び動画両方の撮影に対応したデジタルスチルカメラを実用的なチップサイズで実現することが可能である。 As described above, in the solid-state imaging device of the present embodiment, it is possible to realize a digital still camera compatible with both still images and moving images with a practical chip size.
 以上のように、本実施形態の固体撮像装置は、FIT型固体撮像装置であり、イメージエリア2の信号電荷は高速でストレージエリア3に転送されるため、スミアによるノイズ電荷を低減することができる。同時に、ストレージエリア3の面積はイメージエリア2の面積よりも小さく構成されるため、固体撮像装置を小型化することができる。 As described above, the solid-state imaging device according to the present embodiment is a FIT type solid-state imaging device, and the signal charge in the image area 2 is transferred to the storage area 3 at high speed, so that noise charges due to smear can be reduced. . At the same time, since the area of the storage area 3 is configured to be smaller than the area of the image area 2, the solid-state imaging device can be miniaturized.
 また、本実施形態の固体撮像装置では、ストレージエリア3の第2の垂直転送部12の列数はイメージエリア2の第1の垂直転送部11の列数よりも少ない。従って、イメージエリア2の画素が微細化された場合でも第2の垂直転送部12について十分なチャネル幅を確保することができるので、暗電流を抑制することができる。 Further, in the solid-state imaging device of the present embodiment, the number of columns of the second vertical transfer unit 12 in the storage area 3 is smaller than the number of columns of the first vertical transfer unit 11 in the image area 2. Accordingly, even when the pixels of the image area 2 are miniaturized, a sufficient channel width can be secured for the second vertical transfer unit 12, and thus dark current can be suppressed.
 なお、本実施形態の固体撮像装置では、第1の水平加算部5及び第2の水平加算部8を用いて同色のカラーフィルターが設けられた3列のフォトダイオード10の信号電荷を加算する場合を示したが、他の加算方式も可能である。 In the solid-state imaging device of the present embodiment, the signal charges of the three rows of photodiodes 10 provided with the same color filter are added using the first horizontal adder 5 and the second horizontal adder 8. However, other addition methods are possible.
 例えば、同色のカラーフィルターが設けられた4列のフォトダイオード10の信号電荷の加算は、図13に示すような構成の第1の水平加算部5と、図14に示すような構成の第2の水平加算部8を用いることにより可能である。すなわち、4列の第1の垂直転送部11に2列の第2の垂直転送部12が対応するように構成された第1の水平加算部5を用いることにより可能である。ただし図14では、水平転送部6は、第2の垂直転送部12の2列毎に水平転送部6の1段が対応する構成、すなわちフォトダイオード10の4列毎に水平転送部6の1段が対応する構成になっている。 For example, the signal charges of the four rows of photodiodes 10 provided with the same color filter are added to the first horizontal adder 5 having the configuration shown in FIG. 13 and the second charge having the configuration shown in FIG. This is possible by using the horizontal adder 8. That is, it is possible to use the first horizontal adder 5 configured so that the second vertical transfer units 12 in two columns correspond to the first vertical transfer units 11 in four columns. However, in FIG. 14, the horizontal transfer unit 6 has a configuration in which one stage of the horizontal transfer unit 6 corresponds to every two columns of the second vertical transfer unit 12, that is, one horizontal transfer unit 6 of every four columns of the photodiodes 10. The steps correspond to each other.
 このような水平方向に4画素の加算の場合には、数式1で定義した第1の垂直転送部11の列数と第2の垂直転送部12の列数の比Rが2となるため、ストレージエリア3の第2の垂直転送部12について水平方向に3画素の加算の場合よりも幅を太くすることが可能である。 In the case of addition of four pixels in the horizontal direction, since the ratio R of the number of columns of the first vertical transfer unit 11 and the number of columns of the second vertical transfer unit 12 defined by Equation 1 is 2, The second vertical transfer unit 12 in the storage area 3 can be made wider than in the case of adding three pixels in the horizontal direction.
 同様に、水平方向に2画素加算の場合には、図13に示した第1の水平加算部5により2列のフォトダイオード10の信号電荷の加算が完了するため、第2の水平加算部8は不要である。ただし、水平転送部6は、第2の垂直転送部12の2列毎に水平転送部6の1段が対応する構成、すなわちフォトダイオード10の2列毎に水平転送部6の1段が対応する構成になっている必要がある。 Similarly, in the case of adding two pixels in the horizontal direction, since the addition of the signal charges of the two rows of photodiodes 10 is completed by the first horizontal adder 5 shown in FIG. 13, the second horizontal adder 8 Is unnecessary. However, in the horizontal transfer unit 6, one stage of the horizontal transfer unit 6 corresponds to every two columns of the second vertical transfer unit 12, that is, one stage of the horizontal transfer unit 6 corresponds to every two columns of the photodiodes 10. It must be configured to
 また、本実施形態の固体撮像装置では、第1の水平加算部5を用いてストレージエリア3の第2の垂直転送部12の列数がイメージエリア2の第1の垂直転送部11の列数よりも少なくするとした。しかし、固体撮像装置は、第1の水平加算部5が省略された図15に示す構成を有し、第2の水平加算部8のみで水平方向の画素加算を行うことも可能である。この場合、数式1で定義した第1の垂直転送部11の列数と第2の垂直転送部12の列数の比Rが1となり、ストレージエリア3の行数は、垂直画素加算数kに対して、
ストレージエリアの行数=イメージエリアの画素数行数/k(数式4)
となる。この場合でもイメージエリア2の行数よりも少ない行数に、従来の固体撮像装置よりも小型にストレージエリアを形成できるという本質的な効果は変わらない。
In the solid-state imaging device according to the present embodiment, the number of columns of the second vertical transfer unit 12 in the storage area 3 is set to the number of columns of the first vertical transfer unit 11 in the image area 2 using the first horizontal adder 5. Less than. However, the solid-state imaging device has the configuration shown in FIG. 15 in which the first horizontal adder 5 is omitted, and it is also possible to perform pixel addition in the horizontal direction using only the second horizontal adder 8. In this case, the ratio R of the number of columns of the first vertical transfer unit 11 and the number of columns of the second vertical transfer unit 12 defined by Equation 1 is 1, and the number of rows in the storage area 3 is equal to the vertical pixel addition number k. for,
Number of rows in storage area = number of pixels in image area / number of rows / k (Formula 4)
It becomes. Even in this case, the essential effect that the storage area can be formed in a smaller number of rows than the number of rows of the image area 2 and smaller than that of the conventional solid-state imaging device does not change.
 また、本実施形態の固体撮像装置では、第1の排出部4及び第2の排出部7は、本実施形態における駆動モードを簡略化したり、多様な駆動モードを実現したりするためには必要であるが、仮に省略した構成においても、その効果が失われるものではない。 Further, in the solid-state imaging device according to the present embodiment, the first discharge unit 4 and the second discharge unit 7 are necessary for simplifying the drive mode in the present embodiment or realizing various drive modes. However, even if the configuration is omitted, the effect is not lost.
 また、一般的な固体撮像装置は垂直転送部を遮光することによって実用レベルのスミア信号の低減を実現しているが、近年技術開発のめざましい裏面照射型画素技術で固体撮像装置を作成した場合には垂直転送部を半導体基板内部で遮光する必要があり実現性に乏しい。しかし、本実施形態に係る固体撮像装置は、遮光に頼ることなく転送速度でスミア信号を低減できるため、特に、裏面照射型固体撮像装置に用いることが好ましい。 In addition, general solid-state imaging devices have achieved a practical level of reduction of smear signals by shielding the vertical transfer unit, but when solid-state imaging devices are created using the back-illuminated pixel technology, which has been a remarkable technology development in recent years. However, since the vertical transfer section needs to be shielded from light inside the semiconductor substrate, it is not feasible. However, since the solid-state imaging device according to the present embodiment can reduce smear signals at a transfer rate without relying on light shielding, it is particularly preferable to use the solid-state imaging device for a back-illuminated solid-state imaging device.
 (第2の実施形態)
 以下、本発明の第2の実施形態に係るCCD型固体撮像装置及びその駆動方法について、図面を参照しながら説明する。以下で垂直方向とは垂直転送部に沿った方向、水平方向とは水平転送部に沿った方向、すなわち垂直転送部の幅方向のことを意味する。
(Second Embodiment)
Hereinafter, a CCD solid-state imaging device and a driving method thereof according to a second embodiment of the present invention will be described with reference to the drawings. Hereinafter, the vertical direction means the direction along the vertical transfer unit, and the horizontal direction means the direction along the horizontal transfer unit, that is, the width direction of the vertical transfer unit.
 図16は本発明の第2の実施形態に係る固体撮像装置の構成を模式的に示す上面図である。 FIG. 16 is a top view schematically showing the configuration of the solid-state imaging device according to the second embodiment of the present invention.
 この固体撮像装置は、FIT型の固体撮像装置である。そして、図16に示すように、半導体基板1の表面には、イメージエリア27、ストレージエリア28、第1の排出部4、水平転送部6、第2の排出部7、水平加算部31及び出力アンプ9が設けられている。 This solid-state imaging device is a FIT type solid-state imaging device. As shown in FIG. 16, on the surface of the semiconductor substrate 1, an image area 27, a storage area 28, a first discharge unit 4, a horizontal transfer unit 6, a second discharge unit 7, a horizontal addition unit 31, and an output are provided. An amplifier 9 is provided.
 イメージエリア27は、撮像面に結像される被写体の光学像を信号に変換するためのエリアである。このイメージエリア27は、二次元アレイ状に配列(図16の例では正方格子状に配列)するように形成されたm行のフォトダイオード10と、各フォトダイオード10の列に対応して設けられ、対応するフォトダイオード10の信号電荷を垂直方向に転送する第1の垂直転送部29とを備える。第1の垂直転送部29は、外部から転送電極への駆動パルスの供給により、イメージエリア27の全フォトダイオード10の信号電荷を第1の垂直転送部29内にL回のインターレース読み出しができる電極構造を備えている。 The image area 27 is an area for converting an optical image of a subject formed on the imaging surface into a signal. This image area 27 is provided corresponding to m rows of photodiodes 10 formed so as to be arranged in a two-dimensional array (arranged in a square lattice in the example of FIG. 16) and the columns of the photodiodes 10. And a first vertical transfer unit 29 for transferring the signal charge of the corresponding photodiode 10 in the vertical direction. The first vertical transfer unit 29 is an electrode that can read the signal charges of all the photodiodes 10 in the image area 27 L times into the first vertical transfer unit 29 by supplying a drive pulse to the transfer electrode from the outside. It has a structure.
 第1の排出部4は、信号電荷の選択的排出を可能にするための制御電極を有し、第1の垂直転送部29のノイズ電荷の掃きだし及び信号電荷の行間引きなどを実現する。第1の排出部4は、イメージエリア27とストレージエリア28との間に配置されている。第2の排出部7と水平加算部31とは、ストレージエリア28と水平転送部6との間に配置されている。 The first discharge unit 4 has a control electrode for enabling selective discharge of signal charges, and realizes sweeping of noise charges and row thinning of signal charges of the first vertical transfer unit 29. The first discharge unit 4 is disposed between the image area 27 and the storage area 28. The second discharge unit 7 and the horizontal addition unit 31 are disposed between the storage area 28 and the horizontal transfer unit 6.
 ストレージエリア28は、イメージエリア27の信号を保持するための遮光されたエリアである。このイメージエリア27は、第1の垂直転送部29に対応して設けられ、対応する第1の垂直転送部29により転送された信号電荷を保持し、かつ垂直方向に転送する第2の垂直転送部30を備える。第2の垂直転送部30は、対応する第1の垂直転送部29と連続して設けられ、電気的に接続されている。 The storage area 28 is a light-shielded area for holding the image area 27 signal. The image area 27 is provided corresponding to the first vertical transfer unit 29, holds the signal charge transferred by the corresponding first vertical transfer unit 29, and transfers the second vertical transfer in the vertical direction. The unit 30 is provided. The second vertical transfer unit 30 is provided continuously with the corresponding first vertical transfer unit 29 and is electrically connected.
 第1の垂直転送部29と第2の垂直転送部30との列数は異なっている。具体的には、第2の垂直転送部30の列数は第1の垂直転送部29の列数より少なく、第2の垂直転送部30はb(bは2以上の自然数)個の第1の垂直転送部29に対応してc(cはbより小さい1以上の自然数)個設けられ、1つの第2の垂直転送部30は複数の第1の垂直転送部29で共用されている。 The number of columns of the first vertical transfer unit 29 and the second vertical transfer unit 30 is different. Specifically, the number of columns of the second vertical transfer unit 30 is smaller than the number of columns of the first vertical transfer unit 29, and the second vertical transfer unit 30 has b (b is a natural number of 2 or more) first numbers. C (c is a natural number of 1 or more smaller than b) are provided corresponding to the vertical transfer units 29, and one second vertical transfer unit 30 is shared by a plurality of first vertical transfer units 29.
 第2の垂直転送部30のチャネル幅は、第1の垂直転送部29のチャネル幅よりも広い。第2の垂直転送部30の垂直転送チャネルの不純物濃度は、第1の垂直転送部29の垂直転送チャネルの不純物濃度より低い。 The channel width of the second vertical transfer unit 30 is wider than the channel width of the first vertical transfer unit 29. The impurity concentration of the vertical transfer channel of the second vertical transfer unit 30 is lower than the impurity concentration of the vertical transfer channel of the first vertical transfer unit 29.
 ストレージエリア28は、少なくともm/L行分のフォトダイオード10の信号電荷を同時かつ行毎で独立に蓄積できるように、1つの第2の垂直転送部30はフォトダイオード10のそれぞれの信号電荷を同時かつ独立に分離して蓄積可能な数がm/L以上とされている。すわわち、ストレージエリア28の行数がm/L以上とされている。例えば、第2の垂直転送部30の転送段数がm/L以上とされている。 In the storage area 28, one second vertical transfer unit 30 stores the signal charges of the photodiodes 10 so that at least m / L rows of the signal charges of the photodiodes 10 can be accumulated simultaneously and independently for each row. The number that can be stored separately and independently is m / L or more. That is, the number of rows in the storage area 28 is set to m / L or more. For example, the number of transfer stages of the second vertical transfer unit 30 is set to m / L or more.
 ストレージエリア28は、従来のストレージエリアよりも縮小された構造になっており、1つの第2の垂直転送部30はフォトダイオード10のそれぞれの信号電荷を同時かつ独立に分離して蓄積可能な数がフォトダイオード10の全行数であるmよりも少なくされている。例えば、第2の垂直転送部30の転送段数がmよりも少なくされている。従って、ストレージエリア28の面積は、イメージエリア27よりも大幅に少ない面積となっており、半導体基板1の面積縮小を可能にしている。なお、ストレージエリア28の行数はm/Lの整数倍を基準にそれ以上であってもよい。 The storage area 28 has a structure smaller than the conventional storage area, and one second vertical transfer unit 30 is capable of storing the signal charges of the photodiode 10 simultaneously and independently by separating them. Is less than m, which is the total number of rows of photodiodes 10. For example, the number of transfer stages of the second vertical transfer unit 30 is less than m. Therefore, the area of the storage area 28 is significantly smaller than that of the image area 27, and the area of the semiconductor substrate 1 can be reduced. Note that the number of rows in the storage area 28 may be larger than the integer multiple of m / L.
 ストレージエリア28の出口部に設けられた第2の排出部7は、過剰電荷を排出するオーバーフロードレインとしての機能と、信号電荷の選択的排出機能を有しており、列間引きをした信号電荷を水平転送部6に送り出すことができるようになっている。選択的排出機能は、第2の排出部7の第2のドレイン制御ゲートへの制御パルスの供給により実現される。 The second discharge unit 7 provided at the exit of the storage area 28 has a function as an overflow drain for discharging excess charges and a function for selectively discharging signal charges. It can be sent to the horizontal transfer unit 6. The selective discharge function is realized by supplying a control pulse to the second drain control gate of the second discharge unit 7.
 第2の排出部7に隣接して設けられた水平加算部31は、第2の垂直転送部30から水平転送部6への信号電荷の読み出しを制御し、複数列の第2の垂直転送部30のいずれかの信号電荷を選択的に水平転送部6に転送して信号電荷を水平方向に加算する機能を有する。水平加算は、水平転送部6の動作と組み合わせて行うことがある。 A horizontal adder 31 provided adjacent to the second discharge unit 7 controls reading of signal charges from the second vertical transfer unit 30 to the horizontal transfer unit 6, and a plurality of columns of second vertical transfer units. 30 has a function of selectively transferring any one of the signal charges 30 to the horizontal transfer unit 6 and adding the signal charges in the horizontal direction. The horizontal addition may be performed in combination with the operation of the horizontal transfer unit 6.
 水平転送部6は、ストレージエリア28の各第2の垂直転送部30から受け取った信号電荷を水平方向に転送する。出力アンプ9は、水平転送部6により水平方向に転送されてきた信号電荷の電荷量に応じた電圧値信号を撮像画像信号として出力する。 The horizontal transfer unit 6 transfers the signal charges received from the second vertical transfer units 30 in the storage area 28 in the horizontal direction. The output amplifier 9 outputs a voltage value signal corresponding to the amount of signal charges transferred in the horizontal direction by the horizontal transfer unit 6 as a captured image signal.
 次に図16の固体撮像装置の機能と動作を詳細に説明する。 Next, functions and operations of the solid-state imaging device of FIG. 16 will be described in detail.
 図16の固体撮像装置では、画素加算を行わない全画素読み出しモードの場合に、フォトダイオード10の信号電荷は、L回分割のインターレース動作で第1の垂直転送部29に読み出され、ストレージエリア28に転送される。従って、一つのフォトダイオード10から読み出された信号電荷を第1の垂直転送部29のL画素分の長さ(電荷転送方向の長さ)のパケット(ポテンシャルウェル)を使って転送することができる。その結果、第1の垂直転送部29の幅(電荷転送方向と直交する方向の長さ)を全画素同時読み出しモードを行う構成に比べて縮小することができるので、縮小する分だけフォトダイオード10の面積の拡大が可能である。従って、図16の固体撮像装置は、微細画素の固体撮像装置においては感度などの画素特性向上に非常に有効である。また、イメージエリア27がm行なのに対し、ストレージエリア28はm/L行のフォトダイオード10の信号電荷を独立かつ同時に転送できればよい構成のため従来の固体撮像装置に比べて大幅な小型化が可能である。 In the solid-state imaging device of FIG. 16, in the all-pixel readout mode in which pixel addition is not performed, the signal charge of the photodiode 10 is read out to the first vertical transfer unit 29 by the L-interlaced interlace operation. 28. Therefore, the signal charge read from one photodiode 10 can be transferred using a packet (potential well) having a length corresponding to L pixels (length in the charge transfer direction) of the first vertical transfer unit 29. it can. As a result, the width of the first vertical transfer unit 29 (the length in the direction orthogonal to the charge transfer direction) can be reduced as compared with the configuration in which the all-pixel simultaneous reading mode is performed. Can be expanded. Therefore, the solid-state imaging device of FIG. 16 is very effective in improving pixel characteristics such as sensitivity in a solid-state imaging device with fine pixels. Further, since the image area 27 has m rows, the storage area 28 only needs to be able to transfer signal charges of the photodiodes 10 in m / L rows independently and simultaneously, so that the size can be greatly reduced as compared with the conventional solid-state imaging device. It is.
 微細画素のイメージセンサは主にデジタルスチルカメラで静止画を記録するのに用いられる。本実施形態の固体撮像装置が用いられる場合のデジタルスチルカメラの動作シーケンスは図10に示したとおりである。図10に示したように、メカニカルシャッターを用いて露光が完了され、遮光した後にL回インターレース動作による読み出しが開始される。 A fine pixel image sensor is mainly used to record a still image with a digital still camera. The operation sequence of the digital still camera when the solid-state imaging device of this embodiment is used is as shown in FIG. As shown in FIG. 10, the exposure is completed using the mechanical shutter, and after the light is shielded, reading by the L-time interlace operation is started.
 図17及び図18はL回のインターレース読み出しを行う全画素読み出しモードの固体撮像装置の動作の概略を示す駆動タイミングチャートである。図17及び図18では、期間S1~S5、期間U1~U7は駆動タイミングを機能別(固体撮像装置で実現される動作別)に区分した動作期間を示している。 17 and 18 are drive timing charts showing an outline of the operation of the solid-state imaging device in the all-pixel readout mode in which L times of interlaced readout are performed. 17 and 18, the periods S1 to S5 and the periods U1 to U7 indicate operation periods in which the drive timing is divided by function (by operation realized by the solid-state imaging device).
 ここで、イメージエリア27の読み出しをL回のインターレース読み出しで行うことにより全画素の信号電荷がLフィールドに分割されて出力される。これは、第1の実施形態の固体撮像装置における図8の動作と基本的に同様であるので以下でその説明は省略する。 Here, by reading out the image area 27 by L interlaced readout, the signal charges of all the pixels are divided into L fields and output. Since this is basically the same as the operation of FIG. 8 in the solid-state imaging device of the first embodiment, the description thereof will be omitted below.
 また、イメージエリア27の行数mに対してストレージエリア28の行数がm/Lの整数倍であってもよいと先に述べた。例えば、ストレージエリア28が2m/L行であり、上下m/L行単位で動作可能な構成の場合、つまりストレージエリア28の上半分のm/L行とストレージエリア28の下半分のm/L行とが独立して駆動制御可能な構成の場合には図18に示すような駆動が可能となる。図18はこのような構成のときの全画素読み出しモードの第1フィールドの読み出しの動作を詳細に示している。固体撮像装置の各部の動作を図18を参照しながら説明する。 In addition, as described above, the number of lines in the storage area 28 may be an integer multiple of m / L with respect to the number m of lines in the image area 27. For example, when the storage area 28 has 2 m / L rows and can operate in units of upper and lower m / L rows, that is, the upper half m / L row of the storage area 28 and the lower half m / L of the storage area 28. In the case where the drive control can be performed independently of the rows, the drive as shown in FIG. 18 is possible. FIG. 18 shows in detail the read operation of the first field in the all-pixel read mode in such a configuration. The operation of each part of the solid-state imaging device will be described with reference to FIG.
 期間U1は、第1の垂直転送部29を動作させて第1の排出部4によりイメージエリア27のスミア電荷のイメージエリア27からの掃きだし及び排出を行うスミア掃きだし期間である。期間U1は、実際には、スミア電荷だけでなく露光期間中に発生した第1の垂直転送部29の暗電流によるノイズ電荷を掃き出す目的も兼ねている。掃き出されたノイズ電荷は第1の排出部4の第1のドレイン16から排出される場合を示しているが、第1の排出部4を備えないか動作させない場合には第2の排出部7の第2のドレイン23または水平転送部6に排出される。 The period U1 is a smear sweeping period in which the first vertical transfer unit 29 is operated and the first discharge unit 4 sweeps and discharges smear charges from the image area 27 by the first discharge unit 4. The period U1 actually serves not only to smear charges but also to sweep out noise charges due to the dark current of the first vertical transfer unit 29 generated during the exposure period. Although the swept noise charge is discharged from the first drain 16 of the first discharge unit 4, the second discharge unit is provided when the first discharge unit 4 is not provided or is not operated. 7 to the second drain 23 or the horizontal transfer unit 6.
 期間U2は、第1フィールドのフォトダイオード10の信号電荷を対応する第1の垂直転送部29に読み出す第1の読み出し期間である。L個のフィールドに分割して全フォトダイオード10の信号電荷を読み出すので、この期間が経過した後には読み出したい全フォトダイオード10の1/Lのフォトダイオード10の信号電荷が第1の垂直転送部29に移動している。 The period U2 is a first readout period in which the signal charge of the photodiode 10 in the first field is read out to the corresponding first vertical transfer unit 29. Since the signal charges of all the photodiodes 10 are read out divided into L fields, the signal charges of the 1 / L photodiodes 10 of all the photodiodes 10 to be read out after this period have passed are the first vertical transfer units. It has moved to 29.
 期間U3は、第1の垂直転送部29に読み出した第1フィールドのフォトダイオード10の信号電荷を対応する第2の垂直転送部30に高速転送する第1の高速転送期間である。この期間中はストレージエリア28の全転送ゲート(第2の垂直転送部30の全転送段の転送ゲート)が動作して信号電荷がストレージエリア28の下半分の領域に蓄積される。 The period U3 is a first high-speed transfer period in which the signal charges of the photodiode 10 in the first field read out to the first vertical transfer unit 29 are transferred to the corresponding second vertical transfer unit 30 at high speed. During this period, all transfer gates in the storage area 28 (transfer gates in all transfer stages of the second vertical transfer unit 30) operate to accumulate signal charges in the lower half of the storage area 28.
 期間U4は、第2フィールドのフォトダイオード10の信号電荷を対応する第1の垂直転送部29に読み出す第2の読み出し期間である。この期間の動作は第1の読み出し期間U2の動作と同じである。 The period U4 is a second readout period in which the signal charge of the photodiode 10 in the second field is read out to the corresponding first vertical transfer unit 29. The operation during this period is the same as the operation during the first reading period U2.
 期間U5は、第1の垂直転送部29に読み出した第2フィールドのフォトダイオード10の信号電荷を対応する第2の垂直転送部30に高速転送する第2の高速転送期間である。この期間中はストレージエリア28の上半分の転送ゲート(第2の垂直転送部30の上半分の転送段の転送ゲート)のみが動作して信号電荷がストレージエリア28の上半分の領域に蓄積される。このとき、期間U3でストレージエリア28の下半分に蓄積された信号電荷は移動しない。期間U1~U5を経て、全フォトダイオード10の2/Lのフォトダイオード10の信号電荷がストレージエリア28に蓄積される。 The period U5 is a second high-speed transfer period in which the signal charge of the photodiode 10 in the second field read out to the first vertical transfer unit 29 is transferred to the corresponding second vertical transfer unit 30 at high speed. During this period, only the upper half transfer gate of the storage area 28 (the transfer gate of the upper half transfer stage of the second vertical transfer unit 30) operates to accumulate signal charges in the upper half area of the storage area 28. The At this time, the signal charge accumulated in the lower half of the storage area 28 in the period U3 does not move. Through the periods U 1 to U 5, signal charges of 2 / L of the photodiodes 10 of all the photodiodes 10 are accumulated in the storage area 28.
 期間U6は、第2の垂直転送部30の信号電荷を水平転送部6に転送する垂直-水平転送期間である。この期間では、ストレージエリア28に蓄積された全フォトダイオード10の2/Lのフォトダイオード10の信号電荷が1行ずつ、水平転送部6に転送される。複数の並行した水平転送部6が設けられ、異なる列の第2の垂直転送部30が異なる水平転送部6に接続される構成では、信号電荷を2行単位で水平転送部6に転送することができる。また、水平転送部6を有さない構成では、第2の垂直転送部30の信号電荷は複数列の第2の垂直転送部30から並列に直接出力アンプ9に出力される。 The period U6 is a vertical-horizontal transfer period in which the signal charges of the second vertical transfer unit 30 are transferred to the horizontal transfer unit 6. During this period, signal charges of 2 / L of the photodiodes 10 accumulated in the storage area 28 are transferred to the horizontal transfer unit 6 row by row. In a configuration in which a plurality of parallel horizontal transfer units 6 are provided and the second vertical transfer units 30 in different columns are connected to different horizontal transfer units 6, signal charges are transferred to the horizontal transfer unit 6 in units of two rows. Can do. Further, in the configuration without the horizontal transfer unit 6, the signal charge of the second vertical transfer unit 30 is directly output from the second vertical transfer units 30 in a plurality of columns to the output amplifier 9 in parallel.
 期間U7は、水平転送部6により転送された信号電荷を出力アンプ9に出力する出力期間である。期間U6において水平転送部6に転送された1行分のストレージエリア28の信号電荷が出力アンプ9を通して固体撮像装置外部に順次出力される。期間U6と期間U7はストレージエリア28の信号電荷をすべて読み出すために少なくともストレージエリア28の全行数回繰り返され、ストレージエリア3に蓄積された全フォトダイオード10の2/Lの信号電荷をすべて読み出すまで繰り返される。これにより1フィールド分の出力信号が得られる。 The period U7 is an output period in which the signal charge transferred by the horizontal transfer unit 6 is output to the output amplifier 9. The signal charges in the storage area 28 for one row transferred to the horizontal transfer unit 6 in the period U6 are sequentially output to the outside of the solid-state imaging device through the output amplifier 9. Periods U6 and U7 are repeated at least several times in all rows in the storage area 28 in order to read out all signal charges in the storage area 28, and all 2 / L signal charges in all the photodiodes 10 accumulated in the storage area 3 are read out. Repeat until. As a result, an output signal for one field is obtained.
 期間U1~U7をL/2回繰り返すことにより全画素の信号電荷の出力がすべて完了する。従って、出力信号はL/2のフィールドに分割されることになる。 The output of signal charges of all pixels is completed by repeating the periods U1 to U7 L / 2 times. Therefore, the output signal is divided into L / 2 fields.
 なお、図18では、期間U1~U3の動作の2回の繰り返しによりストレージエリア28に転送された信号電荷を水平転送部6及び出力アンプ9を通じて出力した後、この一連の動作をL/2回繰り返すとした。しかし、第2の垂直転送部30を動作させて、複数回のインターレース動作で第1の垂直転送部29に読み出された信号電荷が第2の垂直転送部30に転送された後、第2の垂直転送部30の信号電荷が水平転送部6に転送されれば2回という数字に限定されない。 In FIG. 18, after the signal charge transferred to the storage area 28 is output through the horizontal transfer unit 6 and the output amplifier 9 by repeating the operations in the periods U1 to U3 twice, this series of operations is performed L / 2 times. Repeated. However, after the second vertical transfer unit 30 is operated and the signal charges read out to the first vertical transfer unit 29 by a plurality of interlace operations are transferred to the second vertical transfer unit 30, the second As long as the signal charge of the vertical transfer unit 30 is transferred to the horizontal transfer unit 6, the number is not limited to two.
 イメージエリア27でのインターレース回数Lを増加させることは、画素の性能の点では有利であるが、ブランキング期間が増えるために読み出し速度の点では不利である。しかし、イメージエリア27の行数mに対してm/Lのp(pは2以上の自然数)倍の行数のストレージエリア28を設けて図18のような駆動をすることにより、インターレース数に対してフィールド数をp分の1にすることができるので、インターレース数と読み出し速度の両方を増加させることが可能となる。 Increasing the number of interlaces L in the image area 27 is advantageous in terms of pixel performance, but is disadvantageous in terms of readout speed due to an increase in the blanking period. However, the number of interlaces can be increased by providing the storage area 28 with the number of rows of m / L p (p is a natural number of 2 or more) times the number of rows m of the image area 27 and driving as shown in FIG. On the other hand, since the number of fields can be reduced to 1 / p, both the number of interlaces and the reading speed can be increased.
 次に本実施形態の固体撮像装置の構成が暗電流特性に及ぼす効果について説明する。 Next, the effect of the configuration of the solid-state imaging device according to this embodiment on the dark current characteristics will be described.
 例えば、イメージエリアが1.54ミクロンピッチの正方画素で構成される固体撮像装置では、L=8の場合に垂直転送部のチャネル幅は0.30ミクロンで設計される。このようにチャネル幅が非常に狭い場合には、垂直転送部は十分幅の広い垂直転送チャネルの場合の半分以下のポテンシャルしか得られない。これを補うために、垂直転送部の垂直転送チャネルを形成する不純物濃度はAsのイオン注入の一例では1E13cm-2前後の高濃度にせざるを得ない。これは、十分幅の広い垂直転送チャネルで同等のポテンシャルを得る場合の不純物濃度の2倍以上である。さらに、近年の微細画素では不純物の横広がりを抑制するために熱処理が低温化されており、図21に示したようにイオン注入による残留欠陥密度が不純物濃度増加に対してべき乗の増加傾向を示す。従って、微細画素の固体撮像装置においては、高感度化の目的でインターレース読み出しにより垂直転送部の狭チャネル化を行ってフォトダイオードを拡大する代償として、暗電流増加が大きな課題である。 For example, in a solid-state imaging device having an image area composed of square pixels with a pitch of 1.54 microns, the channel width of the vertical transfer unit is designed to be 0.30 microns when L = 8. In this way, when the channel width is very narrow, the vertical transfer unit can obtain a potential less than half that of a sufficiently wide vertical transfer channel. In order to compensate for this, the impurity concentration for forming the vertical transfer channel of the vertical transfer portion must be set to a high concentration of about 1E13 cm −2 in an example of As ion implantation. This is more than twice the impurity concentration when an equivalent potential is obtained with a sufficiently wide vertical transfer channel. Further, in recent fine pixels, the heat treatment is performed at a low temperature in order to suppress the lateral spread of impurities, and as shown in FIG. 21, the residual defect density due to ion implantation shows a tendency to increase the power with respect to the increase in impurity concentration. . Therefore, in a solid-state imaging device with fine pixels, an increase in dark current is a major issue as a price to enlarge the photodiode by narrowing the vertical transfer unit by interlaced readout for the purpose of increasing sensitivity.
 これに対し、本実施形態の固体撮像装置では、例えばイメージエリア27が1.54ミクロンピッチの正方画素で構成される固体撮像装置ならば、ストレージエリア28の第2の垂直転送部30は、隣接する第2の垂直転送部30間のピッチを垂直転送チャネルと隣接する垂直転送チャネルとの分離のみに配分すればよいので、1.3ミクロン幅まで拡幅可能である。その結果、第2の垂直転送部30は、第1の垂直転送部29の垂直転送チャネルと同じポテンシャルを得るための垂直転送チャネルの不純物濃度を第1の垂直転送部29の垂直転送チャネルに比べて大幅に低減できて低暗電流のストレージエリア28を実現できる。図17及び図18に示した動作では、フォトダイオード10から読み出された信号電荷は、暗電流の大きい第1の垂直転送部29により従来の10倍以上の高速で転送され、低暗電流の第2の垂直転送部30で蓄積され出力を待つので、出力信号にのる暗電流を大幅に低減可能となる。 On the other hand, in the solid-state imaging device of this embodiment, for example, if the image area 27 is a solid-state imaging device composed of square pixels with a pitch of 1.54 microns, the second vertical transfer unit 30 in the storage area 28 Since the pitch between the second vertical transfer units 30 need only be allocated to the separation between the vertical transfer channel and the adjacent vertical transfer channel, the width can be increased to 1.3 microns. As a result, the second vertical transfer unit 30 compares the vertical transfer channel impurity concentration for obtaining the same potential as the vertical transfer channel of the first vertical transfer unit 29 with respect to the vertical transfer channel of the first vertical transfer unit 29. The storage area 28 with low dark current can be realized. In the operations shown in FIGS. 17 and 18, the signal charge read from the photodiode 10 is transferred at a speed 10 times or more higher than that of the conventional one by the first vertical transfer unit 29 having a large dark current. Since the second vertical transfer unit 30 accumulates and waits for the output, the dark current in the output signal can be greatly reduced.
 ここで、第2の垂直転送部30のチャネル幅が第1の垂直転送部29のチャネル幅の2~3倍でよい場合には、図19に示したように垂直転送チャネル32をストレージエリア28で蛇行させる構成も可能である。この場合には、第2の垂直転送部30の転送ゲート電極33を水平方向にも配置することが可能なので、必要なストレージエリア28の行数に対して、ストレージエリア28の垂直方向の寸法をさらに縮小することが可能である。なお、図19に示すような蛇行した転送チャネルを有するストレージエリア28の構成は本発明の第1の実施形態の固体撮像装置の第2の垂直転送部12にも応用できる。 Here, when the channel width of the second vertical transfer unit 30 may be two to three times the channel width of the first vertical transfer unit 29, the vertical transfer channel 32 is connected to the storage area 28 as shown in FIG. A configuration of meandering is also possible. In this case, since the transfer gate electrode 33 of the second vertical transfer unit 30 can be arranged in the horizontal direction, the vertical dimension of the storage area 28 is set to the required number of rows of the storage area 28. Further reduction is possible. The configuration of the storage area 28 having the meandering transfer channel as shown in FIG. 19 can also be applied to the second vertical transfer unit 12 of the solid-state imaging device according to the first embodiment of the present invention.
 このように、本施形態ではインターレース構成による画素の高感度と、不純物濃度の低い低暗電流のチャネルで信号蓄積することによる低暗電流化とを実用的なチップサイズで実現することが可能である。 As described above, in this embodiment, it is possible to realize a high sensitivity of a pixel by an interlace configuration and a low dark current by storing a signal in a low dark current channel with a low impurity concentration with a practical chip size. is there.
 以上のように、本実施形態の固体撮像装置は、第1の実施形態の固体撮像装置と同様の理由により、スミア及びに暗電流よるノイズ電荷を低減することができ、同時に固体撮像装置を小型化することができる。 As described above, the solid-state imaging device of the present embodiment can reduce noise charges due to smear and dark current for the same reason as the solid-state imaging device of the first embodiment, and at the same time, the solid-state imaging device can be reduced in size. Can be
 なお、図17および図18の説明では、垂直画素加算及び水平画素加算についての説明を省略したが、第1の実施形態の固体撮像装置と同様に本実施形態の固体撮像装置においても垂直画素加算を実現することは可能であるし、水平加算部31と水平転送部6を用いて水平画素加算を行うことも可能である。 In the description of FIGS. 17 and 18, description of vertical pixel addition and horizontal pixel addition is omitted, but vertical pixel addition is also performed in the solid-state imaging device of the present embodiment in the same manner as the solid-state imaging device of the first embodiment. It is possible to realize the horizontal pixel addition using the horizontal adder 31 and the horizontal transfer unit 6.
 また、本実施形態の固体撮像装置では、第1の排出部4及び第2の排出部7は、本実施形態における駆動モードを簡略化したり、多様な駆動モードを実現したりするためには必要であるが、仮に省略した構成においても、その効果が失われるものではない。 Further, in the solid-state imaging device according to the present embodiment, the first discharge unit 4 and the second discharge unit 7 are necessary for simplifying the drive mode in the present embodiment or realizing various drive modes. However, even if the configuration is omitted, the effect is not lost.
 以上、本発明の固体撮像装置及びその駆動方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。 As described above, the solid-state imaging device and the driving method thereof according to the present invention have been described based on the embodiment. However, the present invention is not limited to this embodiment. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of invention.
 本発明は、固体撮像装置とその駆動方法に関するものであり、特に高画素性能化とチップサイズの小型化による低コスト化とを両立する固体撮像装置とその駆動方法に有用である。 The present invention relates to a solid-state imaging device and a driving method thereof, and is particularly useful for a solid-state imaging device and a driving method thereof that achieve both high pixel performance and low cost by reducing the chip size.
  1、101  半導体基板
  2、27、102  イメージエリア
  3、28、103  ストレージエリア
  4  第1の排出部
  5  第1の水平加算部
  6、104  水平転送部
  7  第2の排出部
  8  第2の水平加算部
  9、105  出力アンプ
  10、111  フォトダイオード
  11、29  第1の垂直転送部
  12、30  第2の垂直転送部
  13  読み出しゲート
  14  配線
  15  第1のドレイン制御ゲート
  16  第1のドレイン
  17  第1の水平加算制御ゲート
  18  混合部
  19  第2の水平加算制御ゲート
  20  第1の退避ゲート
  21  第2の退避ゲート
  22  第2のドレイン制御ゲート
  23  第2のドレイン
  24  第3の退避ゲート
  25  第3の水平加算制御ゲート
  26  配線
  31  水平加算部
  32  垂直転送チャネル
  33  転送ゲート電極
  112  垂直転送部
DESCRIPTION OF SYMBOLS 1,101 Semiconductor substrate 2,27,102 Image area 3,28,103 Storage area 4 1st discharge part 5 1st horizontal addition part 6, 104 Horizontal transfer part 7 2nd discharge part 8 2nd horizontal addition Unit 9, 105 Output amplifier 10, 111 Photodiode 11, 29 First vertical transfer unit 12, 30 Second vertical transfer unit 13 Read gate 14 Wiring 15 First drain control gate 16 First drain 17 First Horizontal addition control gate 18 Mixing unit 19 Second horizontal addition control gate 20 First save gate 21 Second save gate 22 Second drain control gate 23 Second drain 24 Third save gate 25 Third horizontal Addition control gate 26 Wiring 31 Horizontal adder 32 Vertical transfer channel 33 Transfer gate Gate electrode 112 vertical transfer section

Claims (12)

  1.  撮像面に結像される被写体の光学像を信号に変換するためのイメージエリアと、前記イメージエリアの信号を保持するためのストレージエリアとを備えるFIT(Frame Interline Transfer)型の固体撮像装置であって、
     前記イメージエリアは、
     2次元状に配列された複数の光電変換素子と、
     前記光電変換素子の列に対応して設けられ、対応する列の前記光電変換素子の信号電荷を垂直方向に転送する第1の垂直転送部とを有し、
     前記ストレージエリアは、
     前記第1の垂直転送部に対応して設けられ、対応する前記第1の垂直転送部により転送された信号電荷を保持し、かつ垂直方向に転送する第2の垂直転送部を有し、
     前記第2の垂直転送部は、複数の前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数が前記光電変換素子の全行数より少ない
     固体撮像装置。
    A FIT (Frame Interline Transfer) type solid-state imaging device including an image area for converting an optical image of a subject formed on an imaging surface into a signal and a storage area for holding a signal of the image area. And
    The image area is
    A plurality of photoelectric conversion elements arranged two-dimensionally;
    A first vertical transfer unit that is provided corresponding to the column of the photoelectric conversion elements and transfers the signal charges of the photoelectric conversion elements of the corresponding column in the vertical direction;
    The storage area is
    A second vertical transfer unit that is provided corresponding to the first vertical transfer unit, holds the signal charge transferred by the corresponding first vertical transfer unit, and transfers the signal charge in the vertical direction;
    The second vertical transfer unit may be configured such that the number of signal charges of each of the plurality of photoelectric conversion elements that can be stored simultaneously and independently is less than the total number of rows of the photoelectric conversion elements.
  2.  前記光電変換素子は、m(mは2以上の自然数)行設けられ、
     前記第1の垂直転送部では、k(kは2以上の自然数)行の前記光電変換素子の信号電荷が電荷結合により混合され、
     前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/k以上である
     請求項1に記載の固体撮像装置。
    The photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows,
    In the first vertical transfer unit, signal charges of the photoelectric conversion elements in k (k is a natural number of 2 or more) rows are mixed by charge coupling,
    The solid-state imaging device according to claim 1, wherein the second vertical transfer unit is capable of simultaneously and independently storing signal charges of the photoelectric conversion elements at least m / k.
  3.  前記光電変換素子は、m(mは2以上の自然数)行設けられ、
     前記第1の垂直転送部では、m行の前記光電変換素子の信号電荷がL回(Lは2以上の自然数)のインターレース動作で前記第1の垂直転送部に読み出され、
     前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/L以上である
     請求項1又は2に記載の固体撮像装置。
    The photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows,
    In the first vertical transfer unit, signal charges of the photoelectric conversion elements in m rows are read to the first vertical transfer unit by an L-interlace operation (L is a natural number of 2 or more),
    3. The solid-state imaging device according to claim 1, wherein the second vertical transfer unit has a number of m / L or more capable of simultaneously and independently accumulating signal charges of the photoelectric conversion elements. 4.
  4.  前記第2の垂直転送部のチャネル幅は、前記第1の垂直転送部のチャネル幅より広い
     請求項3記載の固体撮像装置。
    The solid-state imaging device according to claim 3, wherein a channel width of the second vertical transfer unit is wider than a channel width of the first vertical transfer unit.
  5.  前記第2の垂直転送部の垂直転送チャネルの不純物濃度は、前記第1の垂直転送部の垂直転送チャネルの不純物濃度より低い
     請求項1~4のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein an impurity concentration of a vertical transfer channel of the second vertical transfer unit is lower than an impurity concentration of a vertical transfer channel of the first vertical transfer unit.
  6.  前記固体撮像装置は、さらに、
     前記ストレージエリアと前記イメージエリアとの間に設けられ、前記イメージエリアのノイズ電荷を排出可能な排出部を備える
     請求項1~5のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    The solid-state imaging device according to any one of claims 1 to 5, further comprising a discharge unit provided between the storage area and the image area and capable of discharging noise charges in the image area.
  7.  前記固体撮像装置は、さらに、
     前記第2の垂直転送部により転送された信号電荷を水平方向に転送する水平転送部と、
     前記ストレージエリアと前記水平転送部との間に設けられ、複数の前記第2の垂直転送部のいずれかの信号電荷を選択的に前記水平転送部に転送可能な水平加算部を備える
     請求項1~6のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    A horizontal transfer unit for transferring the signal charges transferred by the second vertical transfer unit in a horizontal direction;
    2. A horizontal adder provided between the storage area and the horizontal transfer unit and capable of selectively transferring a signal charge of any of the plurality of second vertical transfer units to the horizontal transfer unit. The solid-state imaging device according to any one of 1 to 6.
  8.  前記固体撮像装置は、さらに、
     前記ストレージエリアと前記イメージエリアとの間に設けられ、複数の前記第1の垂直転送部のいずれかの信号電荷を選択的に対応する前記第2の垂直転送部に転送可能な水平加算部を備え、
     前記第2の垂直転送部の数は、前記第1の垂直転送部の数より少ない
     請求項1~7のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    A horizontal adder provided between the storage area and the image area and capable of selectively transferring a signal charge of any of the plurality of first vertical transfer units to the corresponding second vertical transfer unit; Prepared,
    The solid-state imaging device according to any one of claims 1 to 7, wherein the number of the second vertical transfer units is smaller than the number of the first vertical transfer units.
  9.  撮像面に結像される被写体の光学像を信号に変換するためのイメージエリアと、前記イメージエリアの信号を保持するためのストレージエリアとを備えるFIT(Frame Interline Transfer)型の固体撮像装置の駆動方法であって、
     前記イメージエリアは、
     2次元状に配列された複数の光電変換素子と、
     前記光電変換素子の列に対応して設けられ、対応する列の前記光電変換素子の信号電荷を垂直方向に転送する第1の垂直転送部とを有し、
     前記ストレージエリアは、
     前記第1の垂直転送部に対応して設けられ、対応する前記第1の垂直転送部により転送された信号電荷を保持し、かつ垂直方向に転送する第2の垂直転送部を有し、
     前記固体撮像装置の駆動方法は、
     前記第1の垂直転送部を動作させて前記イメージエリアのノイズ電荷を排出する工程と、
     前記光電変換素子の信号電荷を対応する前記第1の垂直転送部に読み出し、該読み出した信号電荷を対応する前記第2の垂直転送部に転送する工程とを含み、
     前記第2の垂直転送部は、複数の前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数が前記光電変換素子の全行数より少ない
     固体撮像装置の駆動方法。
    Driving a FIT (Frame Interline Transfer) type solid-state imaging device including an image area for converting an optical image of a subject formed on the imaging surface into a signal and a storage area for holding the signal of the image area A method,
    The image area is
    A plurality of photoelectric conversion elements arranged two-dimensionally;
    A first vertical transfer unit that is provided corresponding to the column of the photoelectric conversion elements and transfers the signal charges of the photoelectric conversion elements of the corresponding column in the vertical direction;
    The storage area is
    A second vertical transfer unit provided corresponding to the first vertical transfer unit, holding the signal charge transferred by the corresponding first vertical transfer unit, and transferring the signal charge in the vertical direction;
    The driving method of the solid-state imaging device is:
    Operating the first vertical transfer unit to discharge noise charges in the image area;
    Reading the signal charge of the photoelectric conversion element to the corresponding first vertical transfer unit, and transferring the read signal charge to the corresponding second vertical transfer unit,
    The method of driving a solid-state imaging device, wherein the second vertical transfer unit has a smaller number of signal charges of each of the plurality of photoelectric conversion elements that can be stored simultaneously and independently than the total number of rows of the photoelectric conversion elements.
  10.  前記光電変換素子は、m(mは2以上の自然数)行設けられ、
     前記第1の垂直転送部内でk(kは2以上の自然数)行の前記光電変換素子の信号電荷を電荷結合により混合し、混合した信号電荷を前記第1の垂直転送部から前記第2の垂直転送部に転送し、
     前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/k以上である
     請求項9に記載の固体撮像装置の駆動方法。
    The photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows,
    In the first vertical transfer unit, k (k is a natural number of 2 or more) rows of signal charges of the photoelectric conversion elements are mixed by charge coupling, and the mixed signal charge is mixed from the first vertical transfer unit to the second Transfer to the vertical transfer section,
    10. The driving method of the solid-state imaging device according to claim 9, wherein the second vertical transfer unit is capable of simultaneously and independently accumulating signal charges of the photoelectric conversion elements at least m / k.
  11.  前記光電変換素子は、m(mは2以上の自然数)行設けられ、
     前記光電変換素子から前記第1の垂直転送部への信号電荷の読み出しにおいて、m行の前記光電変換素子の信号電荷をL回(Lは2以上の自然数)のインターレース動作で前記第1の垂直転送部に読み出し、
     前記第2の垂直転送部は、前記光電変換素子のそれぞれの信号電荷を同時かつ独立に蓄積可能な数がm/L以上である
     請求項9に記載の固体撮像装置の駆動方法。
    The photoelectric conversion elements are provided in m (m is a natural number of 2 or more) rows,
    In reading signal charges from the photoelectric conversion elements to the first vertical transfer unit, the signal charges of the m photoelectric conversion elements in the m rows are L times (L is a natural number of 2 or more) interlaced operation. Read to the transfer unit,
    10. The driving method of the solid-state imaging device according to claim 9, wherein the second vertical transfer unit is capable of simultaneously and independently accumulating signal charges of the photoelectric conversion elements at least m / L.
  12.  前記固体撮像装置は、さらに、
     前記第2の垂直転送部により転送された信号電荷を水平方向に転送する第2の垂直転送部を備え、
     前記固体撮像装置の駆動方法は、さらに、
     複数回のインターレース動作で前記第1の垂直転送部に読み出された信号電荷が前記第2の垂直転送部に転送された後、前記第2の垂直転送部を動作させて前記第2の垂直転送部の信号電荷を前記水平転送部に転送する工程を含む
     請求項11に記載の固体撮像装置の駆動方法。
    The solid-state imaging device further includes:
    A second vertical transfer unit for transferring the signal charge transferred by the second vertical transfer unit in a horizontal direction;
    The driving method of the solid-state imaging device further includes
    After the signal charge read to the first vertical transfer unit by a plurality of interlace operations is transferred to the second vertical transfer unit, the second vertical transfer unit is operated to operate the second vertical transfer unit. The method for driving a solid-state imaging device according to claim 11, further comprising: transferring a signal charge of a transfer unit to the horizontal transfer unit.
PCT/JP2011/002702 2010-06-08 2011-05-16 Solid-state imaging device and method for driving solid-state imaging device WO2011155126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010131542 2010-06-08
JP2010-131542 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011155126A1 true WO2011155126A1 (en) 2011-12-15

Family

ID=45097748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002702 WO2011155126A1 (en) 2010-06-08 2011-05-16 Solid-state imaging device and method for driving solid-state imaging device

Country Status (1)

Country Link
WO (1) WO2011155126A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191577A (en) * 1987-04-27 1989-04-11 Mitsubishi Electric Corp Solid-state image pickup element
JP2000253317A (en) * 1999-03-02 2000-09-14 Canon Inc Solid-state image pickup device and its driving method
JP2008227254A (en) * 2007-03-14 2008-09-25 Fujifilm Corp Ccd solid-state image pickup element
JP2010098624A (en) * 2008-10-20 2010-04-30 Sony Corp Solid-state imaging element and method of driving the same, and imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191577A (en) * 1987-04-27 1989-04-11 Mitsubishi Electric Corp Solid-state image pickup element
JP2000253317A (en) * 1999-03-02 2000-09-14 Canon Inc Solid-state image pickup device and its driving method
JP2008227254A (en) * 2007-03-14 2008-09-25 Fujifilm Corp Ccd solid-state image pickup element
JP2010098624A (en) * 2008-10-20 2010-04-30 Sony Corp Solid-state imaging element and method of driving the same, and imaging apparatus

Similar Documents

Publication Publication Date Title
US6930716B2 (en) Imaging apparatus capable of adding together signal charges from pixels and reading out the added pixel signals
US7476835B2 (en) Driving method for solid-state imaging device and imaging apparatus
US20080088725A1 (en) Solid-state imaging device
US20090059045A1 (en) Imaging apparatus and method for driving solid-state imaging device
US7952636B2 (en) Method for driving solid-state imaging device and imaging apparatus
JP4484449B2 (en) Solid-state imaging device
JP2000350222A (en) Solid-state image pickup device and control method therefor
JP2008099329A (en) Solid-state imaging device and method for controlling the same
US20070258004A1 (en) Solid-state imaging device, driving method thereof, and camera
JP4833722B2 (en) Imaging device, solid-state imaging device, and driving method of imaging device
JP4566848B2 (en) Imaging device and driving method of imaging device
JP2009117979A (en) Method of driving solid-state imaging device
JP2010263305A (en) Imaging apparatus and method of driving the same
JP2009055321A (en) Imaging device and method of driving ccd solid image sensor
JP4178621B2 (en) Solid-state imaging device, driving method thereof, and camera system
JP2012238951A (en) Imaging apparatus
JP4759444B2 (en) Method for driving CCD type solid-state imaging device, solid-state imaging device
JP2014217011A (en) Solid state image sensor and imaging apparatus
WO2011155126A1 (en) Solid-state imaging device and method for driving solid-state imaging device
US7898589B2 (en) Driving apparatus for driving an imaging device
JP4004833B2 (en) Method for driving solid-state imaging device and imaging apparatus
JP4296025B2 (en) Solid-state imaging device and driving method thereof
JP5614476B2 (en) Solid-state imaging device driving method, solid-state imaging device, and camera system
JP2008160674A (en) Solid-state image pickup device and solid-state image pickup device driving method
JP2008301328A (en) Ccd solid-state imaging element and driving method thereof, and imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP