WO2011153906A1 - 一种调整设备功率的方法、检测控制子系统及设备系统 - Google Patents

一种调整设备功率的方法、检测控制子系统及设备系统 Download PDF

Info

Publication number
WO2011153906A1
WO2011153906A1 PCT/CN2011/074824 CN2011074824W WO2011153906A1 WO 2011153906 A1 WO2011153906 A1 WO 2011153906A1 CN 2011074824 W CN2011074824 W CN 2011074824W WO 2011153906 A1 WO2011153906 A1 WO 2011153906A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
temperature
heater
detected
maximum available
Prior art date
Application number
PCT/CN2011/074824
Other languages
English (en)
French (fr)
Inventor
纪鹤
吕昕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011153906A1 publication Critical patent/WO2011153906A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40045Details regarding the feeding of energy to the node from the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for adjusting power of a device, a detection control subsystem, and a device system.
  • the WLAN Wireless Local Area Network
  • RF Radio Frequency
  • FMC fixed-mobile convergence, convergence of fixed and mobile networks
  • the WLAN standard will enter the l ln phase from l lb/g. In theory, the traffic can be increased from 54 Mbps to 600 Mbps.
  • the number of WLAN device access users is mostly above 100, and the power consumption is generally 4 inches.
  • WLAN devices use POE (Power Over Ethernet), and the current standard power supply is only 30W, so the power supply is limited.
  • the embodiment of the invention provides a method for solving the problem that the high power cannot be supported in the device system powered by the prior art.
  • an embodiment of the present invention provides a detection control subsystem, which is characterized in that a detection control subsystem is used to adjust a device system including a power receiving device, a heater, and a power amplifier that are powered by an Ethernet transmission line.
  • the power receiving device supplies power to the heater, the power amplifier, and the detection control subsystem;
  • the detection control subsystem includes a detection module and a control module.
  • the detecting module is configured to detect a maximum available power of the powered device, an actual power of the powered device, and a key point temperature of the device system;
  • the control module is configured to determine whether the detected key point temperature is greater than a preset reference temperature, and determine whether the detected maximum available power is greater than the detected actual power adjustment, if the temperature determination result and the power determination result are at least one Satisfying, adjusting the power of at least a portion of the heater and the power amplifier such that the temperature of the device system after power adjustment is greater than the reference temperature and the actual power of the device system is less than the maximum available power.
  • An embodiment of the present invention provides an equipment system, where the equipment system includes an Ethernet transmission line. Electrically powered device, at least one heater, a communication subsystem including a power amplifier, at least one heating driver, and a detection control subsystem;
  • the power receiving device supplies power to the heater, the power amplifier, and the detection control subsystem; each of the heating drivers is electrically coupled between the heater and the power receiving device;
  • the detection control subsystem is electrically coupled to the heating driver and the power amplifier for detecting the maximum available power of the powered device, the actual power of the powered device, and the critical point temperature of the device system, if the detected key point is determined.
  • the temperature is greater than the preset reference temperature and the detected maximum available power is greater than the condition of the detected actual power adjustment. At least one of the conditions of the heater and the power amplifier is adjusted to adjust the power to adjust the device system.
  • the temperature is greater than the reference temperature and the actual power of the equipment system is less than the maximum available power.
  • Embodiments of the present invention provide a method for adjusting power of a device system, where the device system includes a power receiving device, a heater, and a power amplifier powered by an Ethernet transmission line, wherein the powered device supplies power to the heater and the power amplifier.
  • the method includes:
  • the power of at least a portion of the heater and the power amplifier is adjusted such that the temperature of the equipment system after the power adjustment is greater than the reference temperature and the actual power of the equipment system is less than the maximum available power.
  • detecting a key point temperature of the current device system, and a maximum available power and an actual power of the current outdoor device system adjusting power of the device system according to the value of the key point temperature, the maximum available power, and the actual power .
  • the power of the Heater and PA of the WLAN equipment system can be adjusted from the key point temperature value, and the maximum available power and actual power of the system, so that Not only can it meet the PoE power supply requirements in different situations, but also control the overall power of the system in real time; it can also save system power and energy in the outdoor equipment system without using other methods of power supply.
  • FIG. 1A is a schematic diagram of a device system according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of a system for providing a wireless local area network device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a POE power supply system
  • FIG. 3 is a schematic circuit diagram of detecting a current value in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a typical circuit of a PD in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of actual power detection of a device system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of control of a heating subsystem according to an embodiment of the present invention.
  • FIG. 8 is a diagram of a method of adjusting power of a device system according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a control module according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method and device system for adjusting power of a device system.
  • 1A is a schematic diagram of a device system according to an embodiment of the present invention
  • FIG. 1B is a specific application example of the device system shown in FIG. 1A.
  • the device system shown in FIG. 1A includes a PoE power system (PD 110 as shown), a heating subsystem 130, and a communication subsystem 140 including a power amplifier PA 145.
  • the PD 110 is configured to obtain power from the PSE through an Ethernet transmission line to supply power to the device system.
  • Heating subsystem 130 At least one Heater 132 (not shown) is included for providing a heat source to the equipment system to increase or maintain the ambient temperature of the equipment system.
  • the power amplification subsystem 130 includes at least one PA 145, each of which is used to power amplify signals internal to the communication subsystem 140. In an embodiment of the invention, some or all of the PAs are turned off, still receiving and/or receiving normally and/or Send a signal.
  • a detection control subsystem 120 is provided in the device system, electrically coupled to a PA, Heater, or a heating driver coupled between the Heater and the PD to power the device system. Make adjustments.
  • the detection control subsystem 120 can detect the key point temperature of the device system, the maximum available power of the PD 110, and the actual power of the PD 110, determine whether the detected key point temperature is greater than a preset reference temperature, and determine the detected Whether the maximum available power is greater than the detected actual power adjustment, if at least one of the temperature determination result and the power judgment result is not satisfied, adjusting the power of at least a part of the heater and the power amplifier, so that the temperature of the equipment system after the power adjustment is greater than the reference temperature and The actual power of the equipment system is less than the maximum available power.
  • the process of the detection control subsystem 120 adjusting the power of the device system according to the comparison result includes: if it is determined that the detected key point temperature is less than the preset reference temperature, reducing the power of the power amplifier and increasing the power of the heater; The maximum available power is less than the detected actual power adjustment and the detected keypoint temperature is greater than the preset reference temperature, reducing the power of the heater and/or power amplifier.
  • the power adjustment of the PA and Heater by the detection control subsystem 120 can be determined based on the actual power composition relationship of the equipment system, the maximum available power detected, the detected actual power, the temperature judgment result, and the power judgment result.
  • Detection control subsystem 120 can include detection module 122 and control module 124.
  • the detecting module 122 is configured to implement the temperature detecting and power detecting functions, and output the detected detection result of the key point temperature, the maximum available power of the PD 110, and the actual power of the PD 110 to the control module 124.
  • the control module 124 is configured to control the power of at least one of the PA 145 and the heating subsystem 130 based on the detection result such that the maximum available power is greater than or equal to the actual power of the power-adjusted device system.
  • the critical point temperature to be detected can be determined according to the heating components contained in the equipment system, such as detecting the temperature of the PD 110, the temperature of the heating subsystem 130, the temperature of the PA 145, and the central processing unit (CPU, Cent ra l Proces s ing One or more combinations of temperatures of Uni t ).
  • the detecting module 122 may include a temperature detecting module or a temperature detecting chip (not shown;), for example, one or more surface of the PD 110, the heating subsystem 130, and the PA 145 may be separately configured for detecting Component temperature temperature detection module temperature detection chip, each temperature inspection
  • the module temperature detecting chip can digitally process the detected temperature and store the processed temperature value.
  • the detection module 122 can detect one or more of the key point temperature, the maximum available power, and the actual power in real time, such as periodically detecting, or detecting according to a control command of the control module 124.
  • the maximum available power and actual power are used to control the power consumption of the Hea te r in the heating subsystem 130 to adjust the power of the equipment system, and can further be used to control other working elements on the equipment system other than the heating subsystem 130.
  • the power of the PA 145 is used to adjust the power of the equipment system.
  • the WLAN device system shown in Fig. 1B includes PD 1 1 0, PA 145, and heating subsystem 1 30 shown in Fig. 1A.
  • the power detection module 1222 and the temperature detection module 1224 in Fig. 1B are used to detect power and temperature, respectively.
  • the function corresponding to the control module 1 24 of Fig. 1A in the embodiment illustrated in Fig. 1B can be implemented using a common CPU 1240.
  • FIG. 1B includes an antenna array 1401, a transceiving conversion module 1403, a radio frequency transmitting module 1404, a radio frequency receiving module 1405, and a radio frequency chip module 1407.
  • the antenna array 1401 can operate at a frequency of 2. 4G or 5G, or it can use other operating bands.
  • the PA 145 is located in the RF transmitting module 1404 and is coupled between the Transceiver Conversion Module 1403 and the RF Chip Module 1507.
  • a PA (not shown) for amplifying the received signal may also be included in the RF receiving module 1405.
  • the RF chipset module 1407 can support the I EEE802. l l a /b/ g/n standard.
  • the heating drive circuit 152 is used to drive the opening or closing of the Hea ter in the heating subsystem 1 30, and specifically, can be controlled according to the instruction of the CPU 1240.
  • the CPU 1240 can also control the PA 145 to interact with the temperature detection module 1224 and the power detection module 1222, respectively, to control the temperature and power detection process.
  • the WLAN device system may further include a radio frequency transmitting module 1404, a radio frequency receiving module 1405, a transceiving and converting module 1403, and an antenna array 1401 (such as a 2. 4G or 5G antenna array), wherein the PA 145 is disposed in the radio frequency transmitting module 1404.
  • a radio frequency transmitting module 1404 a radio frequency receiving module 1405, a transceiving and converting module 1403, and an antenna array 1401 (such as a 2. 4G or 5G antenna array), wherein the PA 145 is disposed in the radio frequency transmitting module 1404.
  • FIG. 2 shows a schematic diagram of the P0E power supply system.
  • the PoE power supply uses the Ethernet cable pair to supply power, the 4, 5 links form the positive pole, and the 7 and 8 links form the negative pole.
  • the PD is powered by the PSE, and the voltage supply range on the PD chip side is 36V_57V. If the transmitted power is superimposed on the signal pair, the transmit (TX) and receive (RX) transformers have the center tap of the secondary coil; in addition, the idle line pair can also be used to transmit power.
  • TX transmit
  • RX receive
  • the power detecting module 1224 may be based on detecting the maximum available power.
  • the Iclass value at the CLASS end of the PD is determined, and the specific determination method is described in detail below.
  • the Iclass detection circuit shown in Figure 3 can be added to detect the current value Iclass in Figure 3.
  • an analog-to-digital converter A/D conversion module
  • the processing module obtains the Vclass, and calculates the Iclass value according to the Rclass value.
  • FIG. 4 is a schematic diagram of a typical circuit of a PD according to an embodiment of the present invention. When detecting the input voltage of the PD, it can be analyzed according to the actual PoE power supply. In practice, a typical circuit diagram of a PoE post-stage voltage conversion power supply is shown in Figure 4.
  • the measurement of lin can use series resistors.
  • the measurement of Vin can be directly obtained by the A/D analog-to-digital converter after the series resistors R1 and R2 are divided.
  • the processing module is based on the input Vin and lin. Calculate the actual power.
  • FIG. 6 is a schematic diagram of control of a heating subsystem according to an embodiment of the present invention.
  • the heating subsystem includes a heating drive switch circuit (shown in dashed lines to the right of Figure 6) and a voltage regulation circuit (shown by the dotted line in Figure 6).
  • the heating drive switch circuit includes a first voltage dividing resistor 1 ⁇ , a second voltage dividing resistor RPTC, an adjustable voltage regulator U, and a switch Q.
  • the second voltage divider resistor RPTC is a positive temperature coefficient thermistor, and the resistance increases as the temperature increases.
  • the switch Q is a metal oxide semiconductor field effect transistor (MOSFET), Kl ⁇ Kn are switches, Ra, Rb (Rl ⁇ Rn) are voltage output regulating resistors, and Vout is Heater.
  • the control terminal of U When the equipment system is just turned on at low temperature, the control terminal of U is valid by default. At this time, U is turned on, RPTC and R form a voltage dividing circuit, and the voltage Vsg across R is used as the source gate of Q (S is the source in the figure) , G is the gate) The voltage drop causes Q to conduct and the Heater begins to heat up. Heater heating causes the ambient temperature to rise, causing the resistance of the RPTC to increase and Vsg to decrease. When Vsg is less than the turn-on voltage Vt of Q, the source and drain of Q (D is the drain in Figure 6) are disconnected, and the Heater stops. It is hot on the equipment system.
  • Vsg Vout*R/ ( R+RPTC )
  • the RPTC value can be determined from the temperature profile of the RPTC resistor and the temperature profile of the RPTC value.
  • the temperature profile can be pre-collected and stored in the equipment system, or the temperature profile provided by the manufacturer of the RPTC can be used. Specifically, the temperature profile can be fitted to a function of temperature and resistance value, and the resistance value of the RPTC can be calculated using the detected temperature and function.
  • the temperature curve can be discretized and recorded in a temperature-resistance meter, and the temperature-resistance meter records the correspondence between the temperature and the resistance value of the RPTC, so that the detected temperature can be used to check the temperature - The resistance meter obtains the RPTC value.
  • the value of R can be calculated by using the turn-on voltage Vt, the RPTC value at the critical temperature, and the Vout value.
  • the control of U is added, and U can be turned off, so that Q is turned off to achieve the purpose that Heater does not work. Therefore, the embodiment of the present invention can also turn off part of the Heater when the ambient temperature is lower than required to save power of the entire equipment system.
  • This control can be implemented by the control module shown in FIG. 6.
  • the supply voltage of the Hea ter can also be adjusted by the voltage adjustment circuit in Figure 6.
  • the resistance of Rb the power supply voltage of Hea ter can be changed, thereby realizing the heating power adjustment of Hea ter.
  • Embodiments of the present invention provide a method for adjusting power of a device system, the device system including PD, Hea ter, and a communication subsystem 140 including a PA, as shown in FIG. 1A and FIG. 1B.
  • the board of the device system goes to the normal working state:
  • the Heater When the environment of the device system is in a low temperature state, the Heater is directly turned on after the board is powered. When the Heater is heated until the ambient temperature of the equipment system meets the minimum operating temperature requirement, the working module on the board is triggered, such as the communication subsystem is started. After the communication subsystem is initialized, it enters the normal working state. Normally zero can be used as the minimum operating temperature for the equipment system to start, equipment The minimum operating temperature will not change after the setting.
  • the normal operation of the equipment system such as the processing in the normal working state of the communication subsystem, includes the following steps:
  • Step 701 The device system is in a normal working state, detecting the critical point temperature of the device system, the maximum available power of the P D, and the actual power of the device system.
  • the critical point temperature may include the temperature of the power source, the temperature of the central processing unit CPU (part of the control module 150), the temperature of the PA, the temperature of the Heater, the temperature of other heat generating components, and a combination of at least two of the foregoing.
  • the device system detects the critical point temperature of the device system, the available power of the PD, and the actual power of the device system in a normal working state.
  • Key temperature includes: one or more combinations of power supply temperature, CPU temperature, PA temperature, Heater temperature.
  • the critical point temperature, the maximum available power of the PD, and the actual power of the PD can be used in subsequent power adjustments to the equipment system.
  • the query when detecting the maximum available power of the PD, the query may be performed according to a preset rating table, and the rating table indicates the power grading attribute of the PD.
  • the power level of the PD depends on the grading end of the PD (the CLASS side).
  • the level indicates the relationship between the level identifier of the CLASS end, the hierarchical characteristic electrical parameter of the CLASS end, and the available power, that is, the power level attribute indicating multiple power levels.
  • the power level attribute of a power level includes a level identifier corresponding to the power level, a hierarchical feature electrical parameter, and an available power, where the available power includes the maximum available power of the PD.
  • the electrical parameters are matched to the corresponding maximum available power.
  • the grading characteristic electrical parameters on the CLASS side include the current value Iclass and/or the resistance value Rclass at the CLASS end.
  • the actual power of the PD is determined by detecting the input voltage Vin of the PD and the input current Iin, and determining the actual power by the relationship between the two products. Of course, it can also be obtained by using a dedicated power detecting circuit.
  • Step 702 Determine whether the key point temperature is greater than a reference temperature, and whether the detected maximum available power is greater than the detected actual power. If at least one of the temperature determination result and the power judgment result is not satisfied, adjust at least one of the heater and the power amplifier. A portion of the power is such that the temperature of the equipment system after power adjustment is greater than the reference temperature and the actual power of the equipment system is less than the maximum available power.
  • Different key points in the equipment system can have different reference temperatures, which can be specific according to the actual situation. set up. At this time, the temperature of the key point is greater than the reference temperature, including: The temperature of each key point is greater than the reference temperature corresponding to the key point.
  • a plurality of key points may be divided according to the component types to which the key points are attached, and key points of different component types are set corresponding to different temperature threshold points, and the component types include power, CPU, PA, Heater. At least two combinations.
  • the key points are divided by the manufacturer or the standards to be followed, and the temperature threshold points of the key points of different manufacturers or different standards are set differently. At this time, the temperature of the key point is greater than the reference temperature, including: The temperature of each type of key point is greater than the reference temperature corresponding to the key point of the type.
  • the Heater's control can be implemented using the system shown in Figure 6.
  • each PA control can also reduce the PA supply voltage to reduce the PA power.
  • the opening and closing of each PA can be controlled independently or in a unified manner.
  • the power adjustment of the Heater and the PA can be determined according to the power composition relationship of the equipment system, the temperature judgment result, the power judgment result, and the detected maximum available power, so that the temperature of the equipment system after the power adjustment is greater than the reference temperature and the actual operation of the equipment system The power is less than the maximum available power.
  • the equipment system in the normal working state, reduces or shuts down the heating amount of the Heater in the heating subsystem, and only maintains the temperature of the system. This saves the power from the Heater and ensures the high-power PA operation of the system. Therefore, in the embodiment of the present invention, by increasing the detection of the key point temperature and the maximum available power and actual power of the PD, the key point temperature value, and the maximum available power of the PD and the actual power of the device system can be used.
  • the power composition relationship of the equipment system adjusts the power of the equipment system's Heater and PA, so that it can not only meet the PoE power supply requirements in different situations, but also control the overall power of the system in real time. It can also be used without other methods of power supply. Next, save system power and energy in the equipment system.
  • the embodiment of the invention provides a method for adjusting the power of the device system, which may specifically include the following steps: Step 801: When the ambient temperature of the device system is lower than the reference temperature, the device system is powered on to turn on the Heater to heat the device system, and when heated to a temperature greater than the reference temperature, start the communication subsystem of the device system to enable the communication subsystem to start working;
  • the heating driver can be enabled to open the PoE-powered PD and heater paths with the heating driver to heat the device system.
  • the operation of enabling the heating driver can be implemented by a control module. For example, it can be realized by the heating drive switching circuit shown in FIG. 6.
  • Step 802 Detect a key point temperature of the device system, a maximum available power of the PoE-powered PD, and an actual power of the device system in a normal working state of the communication subsystem;
  • the keypoint temperatures include: power supply temperature, CPU temperature, and PA temperature.
  • a temperature sensing chip like the LM75 can be used to detect the temperature of the key point and obtain the temperature value from the temperature detecting chip.
  • the system can attach temperature detection chips to one or more key points in the power supply, CPU, PA, and Heater as needed to obtain temperature values at various key points.
  • the processor and the temperature detecting chip can communicate via an inter-integrated circuit (I2C) bus.
  • I2C inter-integrated circuit
  • the maximum available power of the PoE-powered PD can be obtained from the device where the PSE is located. It can also obtain the maximum available device system from the first classification table according to the level of the CLASS of the PD and the hierarchical characteristic electrical parameters (current value or resistance value). power. The following describes the detection method of the maximum available power of the PD in detail with examples.
  • a first rating table for indicating the power level attribute of the PD is provided on the device system.
  • the power level of the PD depends on the grading end of the PD (the CLASS side).
  • the first grading table can record the power level attributes of multiple power levels.
  • the power level attributes of each power level include the level identifier of the CLASS end and the grading characteristic electrical parameters of the CLASS end. (current value and / or resistance value) and available power.
  • the available power contains the maximum available power of the PD.
  • the first rating table in the IEEE802.3af standard can be as follows:
  • the first grading table may include five power levels (0, 1, 2, 3, and 4), and each row represents a power level attribute entry of a power level, including a level identifier corresponding to the power level, Graded electrical parameters (current value (Iclass value) and resistance value (Rclass value)), and available power.
  • the value of the first column is the level identification
  • the second column indicates the available power
  • the third column and the fourth column indicate the hierarchical characteristic electrical parameters (resistance value and current value, respectively)
  • the fourth column indicates the standard to follow.
  • the Iclass of the CLASS of the PD is defined by the standard, but the resistance Rclass of the solder on the CLASS of the PD is different. If the same device system is compatible with multiple manufacturers' PD chips, the power classification depends on the Iclass. Therefore, the maximum available power value that the PD can obtain from the PSE can be determined according to the value of the known Iclass (refer to Table 1). For the standard PSE, the Rclass value exemplified in Table 1 is only the recommended value (typical value) of a PD manufacturer chip, which is optional.
  • the current value Iclass in the figure can also be detected by adding the Iclass detection circuit shown in Figure 3. Specifically, the Vclass value of the CLASS terminal of the analog-to-digital converter A/D is used, and the Iclass value is calculated according to the Rclass value, and the maximum available power (Pmax) of the device system is determined by using the Iclass value table 1.
  • the maximum available power value that can be obtained by the PD can be determined according to the second grading table, and the second grading table stores the correspondence between the measured range of the Iclass and the power level, as shown in Table 2 below. .
  • the available power of the PD may be determined in combination with the Rclass value, such as the actual Rclass value and the Class. 0 compares the Rclass value corresponding to the Class 1 level, and the available power corresponding to the level of the Rclass corresponding to the Class 0 and Class 1 levels that is closer to the actual Rclass value is used as the available power of the PD.
  • the available power corresponding to the level of the Rclass corresponding to the Class 0 and Class 1 levels that is closer to the actual Rclass value is used as the available power of the PD.
  • Step 803 Determine whether the detected key point temperature is greater than the reference temperature, and whether the maximum available power of the PD is greater than the actual power of the device system.
  • the actual detected key point temperature may include: power supply temperature Tl, CPU temperature T2 and PA temperature T3.
  • the plurality of key points may correspond to one or more reference temperatures (or temperature conditions).
  • different reference temperatures may be provided for different key points, and the detection temperature component of the device system And requirements are as follows: T1>T (CPU), T2>T (Power), T3 ⁇ Tm>T (PAl, PA2...Pm), where T (CPU), T (Power) and T (PA1, PA2. ..Pm) Represents the reference temperature of the preset CPU, the temperature condition of the power supply, and the reference temperature of the power amplifiers PA1, PA2...Pm.
  • the actual detected temperature needs to be greater than the preset reference temperature.
  • T (CPU) is zero degrees
  • T (Power) is minus 10 degrees
  • T (PA1, PA2...Pm) is zero degrees.
  • the temperature sensing function can be implemented using a temperature detecting chip LM75 which, when detecting temperature, is similar to a thermometer capable of detecting a target point ambient temperature.
  • the LM75 can convert the temperature value into a value that is easy for the processor to read and store it in the chip's registers. The processor can then read the value through the I2C bus to get the detected keypoint temperature value.
  • Step 804 If at least one of the temperature determination result and the power determination result is not satisfied, step 805 is performed. If both the temperature determination result and the power determination result satisfy the requirement, step 802 is performed to enter the next round of detection and control.
  • Step 805 Adjust power of at least some components in the Heater and the PA according to the temperature judgment result and the power judgment result, the detected maximum available power, and the power composition relationship of the equipment system, so that the temperature of the equipment system after the power adjustment is greater than the reference temperature and the device The actual power of the system is less than the maximum available power.
  • the power composition relationship of the equipment system includes the power of all PAs, the power of all the Heater, the power of the CPU, and the power of other components that mainly dissipate power (such as the power of the working subsystem of the communication subsystem).
  • This equation can be used to budget the actual power of the system, and then determine whether the maximum available power of P D is greater than the calculated actual power to determine whether the power of the adjusted equipment system meets the requirements.
  • Pother denotes the estimated power of the other components of the CPU except the PA, Heater, and the power of the working subsystem of the communication subsystem including the PA, that is, the power of the communication subsystem minus the power of the PA included in the period. Other powers can be ignored or used with an estimate.
  • the actually detected CPU temperature TKT CPU
  • the actually detected power source temperature T2 ⁇ T Power
  • the actually detected PA temperature T3 ⁇ Tm ⁇ T When PAl, PA2...PAn), where T (CPU), T (Power), and T (PAl, ⁇ 2... ⁇ ) are preset reference temperatures.
  • the reference temperature can be set autonomously according to the actual situation. Adjust the power of Heater and PA when the temperature of the key point is abnormal.
  • the Heater power and/or PA power can be directly adjusted according to the power composition relationship of the equipment system.
  • Figure 9 illustrates an example of control modules 124, 1240 in accordance with an embodiment of the present invention. As shown in Figure 9, it can include:
  • the parameter obtaining module 1101 is configured to obtain, from a detection module of the device system, a key point temperature of the device system, a maximum available power of the PD, and an actual power; wherein the parameter obtaining module 1101 can obtain a key from the temperature detecting module (or chip) through the I2C bus. Point temperature, the maximum available power and actual power of the PD can be obtained from the power detection module through the I2C bus, and the key temperature includes: power temperature, CPU temperature, and PA temperature.
  • the determining sub-module 1102 is configured to determine whether the key point temperature is greater than a preset reference temperature, determine whether the maximum available power is greater than the actual power, and output the determination result to the adjustment sub-module 1103.
  • the determination result of the judgment sub-module 1102 may be represented by a combination of the temperature judgment result indicator and the power judgment result indicator, for example, the indicator AB, the A temperature judgment result, B represents the power judgment result, and A and B may be 0 and 1 indicates the judgment result of "not satisfied” and "satisfied”.
  • the determining sub-module 1102 can notify the adjustment sub-module 1103 according to the comprehensive judgment result that the temperature determination result and the power determination result are satisfied, and the comprehensive determination result can be used as the adjustment sub-module 1103 to determine whether the adjustment instruction needs to be adjusted. That is, both of them satisfy that no adjustment is needed, and at least one is not satisfied, indicating that adjustment is needed. Specifically, taking the indicator AB as an example, A and B do logical "and". If both are satisfied, the result of logical "and” is "1". If at least one is not satisfied, the result of logical "and” is "0". .
  • the adjusting submodule 903 is configured to adjust power of at least some components of the PA and the Heater according to the temperature determination result of the determining submodule 902 and the power composition relationship of the device system, so that the power is adjusted.
  • the conditions of the temperature of the equipment system after the whole system are greater than the reference temperature, the maximum available power and the actual power are satisfied.
  • the adjustment submodule 903 is configured to determine, according to the determination result of the adjustment submodule 903 and the power composition relationship of the device system, the power adjustment amount of the PA and the Heater, for example, if the detected key point temperature is less than the reference temperature, according to the device system.
  • the power composition relationship of the actual power increases the power of the Heater and reduces the power of the PA, or after increasing the power of the Heater, the maximum available power is still greater than the adjusted actual power, and only the power of the Heater can be increased.
  • the adjustment sub-module 903 can calculate the supply voltage of the heater according to the target power of the adjusted Heater such that the power supply temperature, the CPU temperature, and/or the PA temperature are both greater than a preset temperature condition.
  • Adjustment submodule 1103 If it is determined that the power of the PA needs to be increased or decreased, the power supply voltage of the PA may be controlled, or the control section PA may be turned on/off, so that the actual power of the adjusted system is less than the maximum available power.
  • the device system monitors the temperature of the key point and the actual power of the device system in real time, and flexibly adjusts the power of the Heater and the PA to enable the Heater to maintain the system temperature greater than the reference temperature and ensure the system system.
  • the system, method and apparatus provided by the present invention are particularly well suited for operating temperature requirements of WLAN outdoor equipment systems.
  • the detection control subsystem 120 can be implemented by a processor to pre-executely perform the method steps described above.
  • the processor communicates with secondary storage devices on the device system, ROM, RAM storage devices, input/output (I/O, Input/Output) devices.
  • the processor can be made up of one or more CPU chips.
  • Secondary storage devices typically include one or more disk drives or tape drives and are used for non-volatile storage of data, and are not large enough in RAM to hold all working data. In case of use as an overflow data storage device.
  • the secondary storage device can be used to store programs that are loaded into the RAM when selected for execution.
  • the ROM is used to store instructions and may store data that is read during program execution.
  • a ROM is a non-volatile storage device that typically has a small storage capacity relative to the larger storage capacity of the secondary storage device.
  • RAM is used to store volatile data and may store instructions. Accessing ROM and RAM is usually faster than accessing secondary storage. The description is only for the purpose of facilitating the understanding of the present invention, and the description of the present invention is not limited to the scope of the present invention.

Description

一种调整设备功率的方法、 检测控制子系统及设备系统 技术领域
本发明涉及通信技术领域, 尤其涉及一种调整设备功率的方法、检测控制 子系统及设备系统。
背景技术
WLAN ( Wireless Local Area Network, 无线局域网)系统是一种数据传输 系统, 主要釆用 RF ( Radio Frequency; 射频) 的技术, 作为 3G业务必不可 少的补充, 能够满足移动网络的最后一公里接入和促进电信的 FMC ( fixed-mobile convergence, 固网与移动网的融合 )业务。 随着通信技术的发 展, WLAN的标准将由 l lb/g进入到 l ln阶段, 理论上流量可以由 54Mbps提 升到 600Mbps。 WLAN设备接入用户数大多在 100以上, 功耗一般 4艮大。 然 而, WLAN设备多釆用 POE ( Power Over Ethernet , 以太网供电)的方式, 而 现行标准中最大供电功率仅为 30W, 因此其供电功率受限。
发明内容
本发明实施例提供一种方法, 以解决现有技术中 ΡοΕ供电的设备系统中 无法支持大功率的问题。
为解决上述技术问题, 本发明实施例提供了一种检测控制子系统, 其特征 在于, 检测控制子系统用于调整包含以太网传输线供电的受电设备、 加热器、 功率放大器的设备系统, 所述受电设备为所述加热器、功率放大器和检测控制 子系统供电; 其中,
检测控制子系统包括检测模块和控制模块,
所述检测模块, 用于检测受电设备的最大可用功率、 受电设备的实际功率 和所述设备系统的关键点温度;
所述控制模块, 用于判断检测到的关键点温度是否大于预设的参考温 度, 以及判断检测到的最大可用功率是否大于检测到的实际功率调整, 如 果温度判断结果和功率判断结果至少一个不满足, 调整加热器和功率放大 器中至少一部分的功率, 以使功率调整后设备系统的温度大于参考温度且 设备系统的实际功率小于最大可用功率。
本发明实施例提供了一种设备系统, 所述设备系统包含以太网传输线供 电的受电设备、 至少一个加热器、 包含功率放大器的通信子系统, 至少一 个加热驱动器, 和检测控制子系统;
所述受电设备为所述加热器、 功率放大器和检测控制子系统供电; 每一个加热驱动器电耦合于加热器和受电设备之间;
所述检测控制子系统, 电耦合于加热驱动器、 功率放大器, 用于检测 受电设备的最大可用功率、 受电设备的实际功率和所述设备系统的关键点 温度, 如果确定检测到的关键点温度是大于预设的参考温度和检测到的最 大可用功率大于检测到的实际功率调整的条件中至少一个条件不满足, 调 整加热器和功率放大器中至少一部分的功率, 以使功率调整后设备系统的 温度大于参考温度且设备系统的实际功率小于最大可用功率。
本发明实施例提供了一种调整设备系统功率的方法, 所述设备系统包括 以太网传输线供电的受电设备、加热器和功率放大器, 其中所述受电设备为所 述加热器和功率放大器供电, 该方法包括:
检测设备系统的关键点温度, 以及受电设备的最大可用功率和受电设 备的实际功率;
判断检测到的关键点温度是否大于预设的参考温度并判断所述检测到 的最大可用功率是否大于检测到的实际功率;
如果温度判断结果和功率判断结果至少一个不满足, 调整加热器和功率放 大器中至少一部分的功率, 以使功率调整后设备系统的温度大于参考温度 且设备系统的实际功率小于最大可用功率。
本发明实施例具有以下优点:
在本发明实施例中, 检测当前设备系统的关键点温度, 以及当前室外 设备系统的最大可用功率和实际功率; 根据所述关键点温度、 最大可用功 率和实际功率的值, 调整设备系统的功率。 通过增加对关键点温度以及系 统最大可用功率和实际功率的检测, 可以由关键点温度值, 以及系统最大 可用功率和实际功率的值, 来对 WLAN设备系统的 Heater和 PA的功率进 行调整, 这样不仅能够满足不同情况下的 PoE供电要求, 来实时控制系统 的总体功率; 还能够在无需釆用其他方式供电的情况下, 节约室外设备系 统中系统功率和能量。 附图说明 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1A是本发明实施例提供的设备系统示意图;
图 1B是本发明实施例提供无线局域网设备系统示意图;
图 2是 POE供电系统的示意图;
图 3是本发明实施例中检测电流值的电路示意图;
图 4是本发明实施例中 PD典型电路示意图;
图 5是本发明实施例中设备系统的实际功率检测示意图;
图 6是本发明实施例的加热子系统控制示意图;
图 7是本发明实施例的调整设备系统的功率的方法;
图 8是本发明的另一实施例的调整设备系统功率的方法;
图 9是本发明实施例控制模块的示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
为使本发明实施例的上述目的、 特征和优点能够更加明显易懂, 下面 结合附图和具体实施方式对本发明实施例作进一步详细的说明。
本发明实施例提供了一种调整设备系统功率的方法和设备系统。 参考 图 1A, 为本发明实施例提供的设备系统示意图, 图 1B为图 1A所示的设 备系统的一个具体应用实例。
图 1A所示的设备系统包括 PoE供电系统(如图所示 PD 110 )、 加热子 系统 130、 包含功率放大器 PA 145的通信子系统 140。 PD 110 , 用于通过 以太网传输线从 PSE处获得电源, 为所述设备系统供电。 加热子系统 130 包含至少一个 Heater 132 (图中未示出), 用于为设备系统提供热源, 以提 高或维持设备系统的环境温度。功率放大子系统 130包括至少一个 PA 145 , 每一个 PA 145用于对通信子系统 140内部的信号进行功率放大, 在本发明 的实施例中, 关闭部分或全部 PA, 仍能正常接收和 /或发送信号。
如图 1A所示,在本发明的一个实例中,在设备系统中提供了检测控制 子系统 120, 电耦合于 PA、 Heater或耦合于 Heater与 PD之间的加热驱动 器, 以对设备系统的功率进行调整。 例如, 检测控制子系统 120, 可以检测 设备系统的关键点温度, PD 110的最大可用功率和 PD 110的实际功率, 判 断检测到的关键点温度是否大于预设的参考温度, 以及判断检测到的最大 可用功率是否大于检测到的实际功率调整, 如果温度判断结果和功率判断 结果至少一个不满足, 调整加热器和功率放大器中至少一部分的功率, 以 使功率调整后设备系统的温度大于参考温度且设备系统的实际功率小于最 大可用功率。 其中, 检测控制子系统 120根据比较结果调整设备系统的功 率的处理包括: 如果判断检测到的关键点温度小于预设参考温度, 降低功 率放大器的功率并提高加热器的功率; 如果判断检测到的最大可用功率小 于检测到的实际功率调整且检测到的关键点温度大于预设参考温度, 降低 加热器和 /或功率放大器的功率。 检测控制子系统 120对 PA和 Heater的功 率调整可以根据设备系统实际的功率组成关系、 检测到的最大可用功率、 检测到的实际功率、 温度判断结果和功率判断结果确定。
检测控制子系统 120可以包括检测模块 122和控制模块 124。 检测模 块 122用于实现温度检测和功率检测功能, 并将检测到的关键点温度、 PD 110的最大可用功率、 PD 110的实际功率等检测结果输出给控制模块 124。 控制模块 124用于根据检测结果对 PA 145和加热子系统 130中至少一个元 件的功率进行控制以使最大可用功率大于或等于功率调整后设备系统的实 际功率。 需要检测的关键点温度可以根据设备系统中包含的发热元器件确 定, 例如检测 PD 110的温度、 加热子系统 1 30的温度、 PA 145的温度、 中央处理器 (CPU, Cent ra l Proces s ing Uni t ) 的温度的一种或多种组合。 具体的, 检测模块 122 可以包括温度检测模块或温度检测芯片 (图中未示 出;), 例如在 PD 110、 加热子系统 1 30、 PA 145 中一个或多个件表面可以 分别设置用于检测元件温度的温度检测模块温度检测芯片, 每一个温度检 测模块温度检测芯片可以对检测到的温度进行数字处理并存储处理后的温 度值。 检测模块 122 可以对关键点温、 最大可用功率和实际功率中的一个 或多个参数进行实时检测, 例如周期性检测、 或根据控制模块 124 的控制 指令检测。最大可用功率和实际功率用于控制加热子系统 1 30中 Hea te r的 功耗以调整设备系统的功率, 还可进一步用于控制设备系统上除加热子系 统 1 30之外的其它工作元件, 如 PA 145的功率以调整设备系统的功率。
图 1 B所示的 WLAN设备系统包含图 1A所示 PD 1 1 0、 PA 145、 加热子 系统 1 30。 图 1B中功率检测模块 1222和温度检测模块 1224分别用于检测 功率和温度的功能。 在图 1B所述的实施例中对应图 1A中控制模块 1 24的 功能可以釆用公共的 CPU 1240实现。 对应图 1A中的 WLAN通信子系统, 图 1 B包括天线阵列 1401、 收发转换模块 1403、 射频发送模块 1404、 射频接 收模块 1405和射频套片模块 1407等。 天线阵列 1401 的工作频段可以为 2. 4G或 5G , 也可以釆用其它工作频段。 图 1B所示的实施例中, PA 145位 于射频发送模块 1404中, 耦合于收发转换模块 1403和射频套片模块 1507 之间。 射频接收模块 1405 中也可以包括用于放大接收到的信号的 PA (图 中未示出)。 射频套片模块 1407可以支持 I EEE802. l l a /b/ g/n标准。 加热 驱动电路 152用于驱动加热子系统 1 30中 Hea ter的开启或关闭, 具体的, 可以根据 CPU 1240的指令控制。 CPU 1240还可以控制 PA 145 , 分别与温 度检测模块 1224和功率检测模块 1222交互以对温度和功率的检测过程进 行控制。 WLAN设备系统还可以包括射频发送模块 1404、射频接收模块 1405、 收发转换模块 1403以及天线阵列 1401 (如 2. 4G或 5G天线阵列), 其中, PA 145设置于射频发送模块 1404中。
下面结合图 2-6 , 针对设备系统中 P0E供电、 功率检测、 加热器控制 等功能等进一步详细描述。
如图 2所示为 P0E供电系统的示意图。 PoE供电釆用以太网线对进行 供电, 4、 5链接形成正极, 7、 8链接形成负极。 由 PSE给 PD供电, PD 芯片侧的电压供电范围为 36V_57V。 如果传输的电源叠加在信号线对上, 发射 (TX ) 和接收(RX ) 变压器的次级线圈中心抽头来实现的; 另外, 也 可以利用空闲线对传输电源。 具体方式可以参考现有的方式, 不再赘述。
本发明实施例中, 功率检测模块 1224在检测最大可用功率时, 可以基 于 PD的 CLASS端的 Iclass值确定, 具体确定方法在下文中详细描述。 为 了获得 Iclass值, 可以增加图 3所示的 Iclass检测电路, 用于检测出图 3 中的电流值 Iclass。具体的,模数转换器( A/D转换模块)耦合到 PD的 CLASS 端的电阻 Rclass 两端, 利用该模数转换器釆样 Vclass值; 处理模块获得 Vclass, 并根据 Rclass值计算 Iclass值。 利用 Iclass值确定 PD的最大可用 功率的方法将在下文详细描述。
图 4所示为本发明实施例提供的 PD典型电路示意图。检测 PD的输入 电压时, 可以根据实际中的 PoE供电情况来具体分析。 在实际中一种 PoE 后级电压转换供电的典型电路图如图 4所示。
可以看出, 只需要测量出设备系统的输入电压 Vin、 和输入电流 lin的 值便可以计算出设备系统当前的实际功率。 如图 5所示, lin的测量可以釆 用串联电阻, Vin的测量可以直接釆用串联电阻 Rl、 R2分压后由 A/D模数 转换器釆样得到, 处理模块根据输入的 Vin和 lin计算实际功率。
图 6所示为本发明实施例提供的加热子系统控制示意图。 该加热子系 统包括加热驱动开关电路(图 6右边虚线所示) 和电压调整电路(图 6坐 边虚线所示)。
1 )加热驱动开关电路
加热驱动开关电路包括第一分压电阻1^、第二分压电阻 RPTC、可调稳 压器 U和开关 Q。 第二分压电阻 RPTC是正温度系数热敏电阻, 电阻随温 度升高而增大。 开关 Q 是 P 沟道增强型金属氧化物半导体场效应管 ( MOSFET, metal oxide semiconductor field effect transistor ), Kl〜Kn为开 关, Ra、 Rb ( Rl〜Rn ) 为电压输出调节电阻, Vout为 Heater的供电电压, 其计算公式为: Vout = V0* ( Ra+Rb ) /Ra ( V0为基准电压, 表示电源模块 输出到 Ra两端的电压), Vin为输入电压。
设备系统低温下刚接通电源时, U的控制端默认为有效,此时 U导通, RPTC和 R形成分压电路, R两端的电压 Vsg作为 Q的源栅极(图中 S为 源极, G为栅极 )压降可以使 Q导通, Heater开始加热。 Heater加热使环 境温度升高, 从而引起 RPTC阻值增大, Vsg减小, 当 Vsg小于 Q的开启 电压 Vt时, Q的源漏(图 6中 D为漏极 )极通路断开, Heater停止对设备 系统力口热。 为了保证分压后 Q可以导通使 Heater开始加热, 需要合理设计 RPTC 和 R的值。 Vsg、 R、 RPTC和 Vout存在如下关系: Vsg= Vout*R/ ( R+RPTC )。 当 Heater加热到一定临界温度 (例如大于 0度, 5度), 由于 RPTC的阻 值随温度升高而变大导致 Vsg<Vt, 即 Vsg= Vout *R/ ( R+RPTC ) <Vt, 其 中 RPTC值可以根据 RPTC电阻的表示温度和 RPTC值的温度曲线确定, 该温度曲线可以预先釆集并保存在设备系统中, 也可以用 RPTC的生产厂 商提供的温度曲线。 具体的, 可以将温度曲线拟合成温度和电阻值的函数, 利用检测到的温度和函数计算 RPTC的电阻值。 优选的, 为了简化计算, 可以将温度曲线离散化记录到一个温度 -电阻表中, 该温度-电阻表记录了 RPTC 的温度和电阻值的对应关系, 这样就可以利用检测到的温度查温度- 电阻表获得 RPTC值。 根据上述公式, 可以利用开启电压 Vt, 临界温度时 的 RPTC值及 Vout值, 计算 R的值。
在图 6所示的电路中增加了对 U的控制, 可以关断 U, 从而使 Q截至 以达到 Heater不工作的目的。 因此, 在环境温度低于要求时, 本发明实施 例也可以关断部分 Heater从而节省整个设备系统的功率。 该控制可以由图 6所示的控制模块实现。
2 ) 电压调整电路
同时, Hea ter的供电电压还可以通过图 6中的电压调整电路来实现电 压大小的调节。 根据图 120中的电压调整电路中, Vout =V。* ( Ra+Rb ) / Ra , Rb= ( Rl | | R2. . . I | Rn ), Rb为 n个电阻 R并联起来的总电阻, 可以由 n个 开关 K对该 n个电阻进行控制, V。为基准电压。 N个开关 K可由控制模块控 制。 在本实施例中, 通过调整 Rb阻值, 就可以改变 Hea ter供电电压大小, 从而实现 Hea ter的加热功率调节。
本发明实施例提供了一种调整设备系统的功率的方法, 该设备系统包 含 PD 、 Hea ter , 包含 PA的通信子系统 140 , 如图 1A和图 1B所示。
设备系统的单板上电到进入正常工作状态处理过程:
设备系统的环境处于低温状态时, 单板上电后直接开启 Heater。 当 Heater加热到使设备系统的环境温度满足最低工作温度要求后触发单板上 的工作模块, 如通信子系统启动。 通信子系统进行初始化后进入正常工作 状态。 通常情况下可以将零度作为设备系统启动的最低工作温度, 设备系 统的最低工作温度在设定之后一般不会改变。
设备系统正常工作状态, 如通信子系统正常工作状态中的处理过程包 括如下步骤:
步骤 701 : 设备系统在正常工作状态, 检测设备系统的关键点温度, P D的最大可用功率和设备系统的实际功率。
关键点温度可以包括电源的温度、 中央处理器 CPU的温度(控制模块 150的一部分)、 PA的温度、 Heater的温度、 其它发热元件的温度以及上述 至少两个温度的组合。
在本步骤中, 设备系统在正常工作状态检测设备系统的关键点温度, PD的可用功率和设备系统的实际功率。 关键点温度包括: 电源温度、 CPU 温度、 PA温度、 Heater温度的一种或多种组合。 该关键点温度、 PD的最 大可用功率和的 PD 的实际功率的值可以在后续对设备系统的功率调整中 使用。
其中, 在检测 PD 的最大可用功率时, 可以根据预置的分级表进行查 询, 分级表表示 PD的功率分级属性。 PD的功率级别取决于 PD的分级端 ( CLASS端), 分级表示出了 CLASS端的级别标识、 CLASS端的分级特 征电参数和可用功率之间的关系, 即表示多个功率级别的功率级别属性, 每一个功率级别的功率级别属性包括该功率级别对应的级别标识、 分级特 征电参数与可用功率, 该可用功率包含了 PD 的最大可用功率。 根据功率 级别、 检测到的 CLASS端的分级特征电参数匹配到对应的最大可用功率。 CLASS 端的分级特征电参数包括 CLASS 端的电流值 Iclass 和 /或电阻值 Rclass。
PD的实际功率, 通过检测 PD的输入电压 Vin和输入电流 Iin , 以两者 的乘积的关系式确定实际功率, 当然也可以釆用专用的功率检测电路得到。
步骤 702: 判断所述关键点温度是否大于参考温度, 以及检测到的最 大可用功率是否大于检测到的实际功率, 如果温度判断结果和功率判断结 果至少一个不满足, 调整加热器和功率放大器中至少一部分的功率, 以使 功率调整后设备系统的温度大于参考温度且设备系统的实际功率小于最大 可用功率。
设备系统中不同关键点可有不同的参考温度, 可以根据实际情况具体 设定。 此时, 关键点温度大于参考温度包括: 每一个关键点温度都大于该 关键点对应的参考温度。
在本发明的实施例中, 可以将多个关键点按关键点所附着的元件类型 划分, 设定不同元件类型的关键点对应不同的温度阈值点, 元件类型包括 电源、 CPU、 PA、 Heater 的至少两种组合。 在另一种实施例中, 将关键点 按厂家或遵循的标准划分, 设定不同厂家或不同标准的关键点的温度阈值 点不同。 此时, 关键点温度大于参考温度包括: 每一类关键点的温度都大 于该类关键点对应的参考温度。
如果关键点的温度低于参考温度, 提高加热器的功率使调整后的关键 点温度大于参考温度。 进一步的, 如果关键点的温度低于参考温度, 实际 功率大于最大可用功率, 则先降低 PA的功率再提高 Heater的功率使调整 后的关键点温度大于参考温度且调整后的实际功率。 具体的, Heater 的控 制可以釆用图 6所示的系统实现。
由于设备系统可以包括多个 PA, 可以关闭一部分 PA达到降低 PA的 功率。每一个 PA的控制也可以釆用降低 PA的供电电压以降低 PA的功率。 每一个 PA的开启和关断可以独立控制, 也可以统一控制。
Heater和 PA的功率的调整可以根据设备系统的功率组成关系、温度判 断结果和功率判断结果、 检测到的最大可用功率综合确定, 以达到功率调 整后设备系统的温度大于参考温度且设备系统的实际功率小于最大可用功 率。
在本实施例中, 设备系统, 在正常工作状态, 将加热子系统中 Heater 的加热量降低或关闭, 仅仅起到维持系统温度正常即可。 这样从 Heater节 省下来的功率, 还可以保证系统的大功率 PA工作。 因此, 在本发明实施例 中, 通过增加对关键点温度以及 PD 的最大可用功率和实际功率的检测, 可以由关键点温度值, 以及 PD 的最大可用功率和设备系统的实际功率的 值, 以设备系统的功率组成关系来对设备系统的 Heater和 PA的功率进行 调整, 这样不仅能够满足不同情况下的 PoE供电要求, 来实时控制系统的 总体功率; 还能够在无需釆用其他方式供电的情况下, 节约设备系统中系 统功率和能量。
本发明实施例提供调整设备系统功率的方法, 具体可以包括以下步骤: 步骤 801 : 设备系统的环境温度低于参考温度时, 设备系统电后开启 Heater 以对设备系统进行加热, 当加热到温度大于参考温度时启动设备系 统的通信子系统以使通信子系统开始工作;
在本步骤中, 可以使能加热驱动器, 利用加热驱动器打开 PoE供电的 PD和加热器的通路, 使加热器对设备系统进行加热。 使能加热驱动器的操 作可由控制模块实现。 例如, 可以利用图 6所示的加热驱动开关电路实现。
步骤 802: 在通信子系统正常工作状态, 检测设备系统的关键点温度、 PoE供电的 PD的最大可用功率和设备系统的实际功率;
所述关键点温度包括: 电源温度、 CPU温度和 PA温度。 在本步骤中, 可以釆用类似 LM75 的温度检测芯片来检测关键点温度, 从温度检测芯片 处获得温度值。 系统根据需要可以在电源、 CPU、 PA、 Heater 中一个或多 个关键点上附着温度检测芯片, 从而获得各个关键点的温度值。 处理器和 温度检测芯片间可以通过内置集成电路( I2C , inter-integrated circuit )总线 通信。
PoE供电的 PD的最大可用功率可以从 PSE所在的设备处获得, 也可 以根据 PD的 CLASS端的级别、 分级特征电参数 (电流值或电阻值), 从 第一分级表中获取设备系统的最大可用功率。 下面结合实例, 详细说明 PD 的最大可用功率的检测方法。
在设备系统上设置有用于表示 PD的功率级别属性的第一分级表。 PD 的功率级别取决于 PD的分级端( CLASS端), 第一分级表可以记录多个功 率级别的功率级别属性,每一个功率级别的功率级别属性包括 CLASS端的 级别标识、 CLASS端的分级特征电参数(电流值和 /或电阻值)与可用功率。 这里, 可用功率包含 PD的最大可用功率。
参考表 1 , 在 IEEE802.3af标准中第一分级表具体可以如下所示:
表 1
Figure imgf000012_0001
如表 1所示, 第一分级表可以包含 5个功率级别 (0、 1、 2、 3和 4 ), 每一行表示一个功率级别的功率级别属性表项, 包括该功率级别对应的级 别标识、 分级特征电参数(电流值( Iclass值)和电阻值( Rclass值))、 和 可用功率。 第一列的值为级别标识, 第二列表示可用功率, 第三列和第四 列表示分级特征电参数(分别为电阻值和电流值),第四列表示遵循的标准。
对于标准的 PSE, 不同的 PD芯片生产厂家, PD的 CLASS端的 Iclass 是按标准定义的, 但是 PD的 CLASS端上焊接的电阻 Rclass是不同的。 同 一个设备系统如果兼容多个厂家的 PD芯片, 其功率分级取决于 Iclass, 因 此, 可以根据已知的 Iclass的值(参考表 1 )来确定 PD能够从 PSE获得的 最大可用功率值。 对标准的 PSE来说, 表 1中举例的 Rclass值只是某一个 PD厂家芯片的推荐值 (典型值), 是可选项。
对于非标准的 PSE, 还可以通过增加图 3所示的 Iclass检测电路检测 出图中的电流值 Iclass。 具体的, 利用模数转换器 A/D釆样 PD的 CLASS 端的 Vclass值, 并根据 Rclass值计算 Iclass值, 利用 Iclass值查表 1确定 设备系统的最大可用功率 (Pmax )。
在实际中还可以根据第二分级表来判断 PD 可以获得的最大可用功率 值, 第二分级表保存了测量到的 Iclass 的范围区间与功率级别之间的对应 关系, 例如如下的表 2所示。
表 2
Figure imgf000013_0002
Figure imgf000013_0001
Figure imgf000013_0003
1 0.44-3.84 953 ±1% 802.3af
2 3.84-6.49 549 ±1% 802.3af
3 6.49-12.95 357 ±1% 802.3af
4 12.96 -25.5 255 ±1% 802.3at 例如,假设 CLASS端实际的 Rclass=549ohm(欧姆),根据检测到的 Vclass 确定 PD给 PSE回馈的电流 Iclass值为 17〜 20mA (毫安), 查表 2的确定 PD 的 CLASS端符合 Class 2等级,然后根据表 3获得 PSE可以给 PD供电的功率范围 是 3.84- 6.49W (瓦), 这种情况下可给 PD提供的最大功率为 6.49W。 在本 发明的其它实施例中, 如果查表 2确定 CLASS端符合 Class 0 or 1等级, 在此 情况下,在查表 1时,可以结合 Rclass值确定 PD的可用功率,例如实际 Rclass 值和 Class 0和 Class 1等级对应的 Rclass值比较, Class 0和 Class 1等级对应的 Rclass中更接近实际的 Rclass值的那个等级对应的可用功率作为 PD的可用 功率。 当然, 也可釆用插值方法。 步骤 803: 判断检测到的关键点温度是否 大于参考温度, 以及 PD的最大可用功率是否大于设备系统的实际功率; 在本实施例中, 实际检测到关键点温度可以包括: 电源温度 Tl, CPU温 度 T2和 PA温度 T3。 多个关键点可以对应一个或多个参考温度(或称为温度 条件),在本发明实施例提供的设备系统中可以为不同的关键点提供各自不 同的参考温度, 对于设备系统的检测温度组成和要求如下: T1>T (CPU), T2>T ( Power), T3〜Tm>T (PAl、 PA2...Pm), 其中 T (CPU)、 T (Power) 和 T (PA1、 PA2...Pm) 分别表示预设的 CPU的参考温度、 电源的温度条件 和功放 PA1、 PA2...Pm 的参考温度。 实际检测到的温度都需要大于预设的 参考温度。 作为一个示例, T (CPU) 为零度、 T (Power) 为零下 10度和 T (PA1、 PA2...Pm) 为零度。
在本发明的所有实施例中, 温度检测功能可以釆用温度检测芯片 LM75 实现, 其在检测温度时, 类似于温度计能检测目标点环境温度。 LM75可以 将温度值转换成便于处理器读取的数值并存于芯片的寄存器, 然后处理器 可以通过 I2C总线读取该数值, 使处理器获得检测到的关键点温度值。
步骤 804: 如果温度判断结果和功率判断结果至少一个不满足, 执行步 骤 805, 如果温度判断结果和功率判断结果都满足要求, 执行步骤 802, 进 入下一轮检测和控制。 步骤 805: 根据温度判断结果和功率判断结果、 检测到的最大可用功率、 设备系统的功率组成关系调整 Heater和 PA中至少一部分元件的功率, 以使 功率调整后设备系统的温度大于参考温度且设备系统的实际功率小于最大 可用功率, 设备系统的功率组成关系包括所有 PA的功率、 所有 Heater的功 率、 CPU的功率以及其它主要耗散功率的元件的功率 (例如通信子系统工 作模块的功率)。
在实际中, 设备系统的实际功率 P的组成关系可以用如下等式表示: P = P ( PAl+PA2+...+PAn ) +P ( Heater 1 +Heater2+ ... +Heatern ) +P ( CPU ) +Pother。
这个等式可以用来对系统的实际功率进行预算, 再判断 P D的最大可用 功率是否大于计算出的实际功率, 以确定调整后的设备系统的功率是否满 足要求。 其中, Pother表示除设备系统中除 PA、 Heater, CPU的其它元件的 估计功率, 例如, 包含 PA的通信子系统工作模块的功率, 即通信子系统的 功率减去期内包含的 PA的功率。 其它功率可以忽略不计或釆用一个估计 值。
具体的, 当关键点温度都发生异常时, 例如, 实际检测到的 CPU温度 TKT ( CPU ), 实际检测到的电源温度 T2<T ( Power ), 实际检测到的 PA温 度 T3〜Tm<T ( PAl、 PA2...PAn )时, 其中, T ( CPU )、 T ( Power )和 T ( PAl、 ΡΑ2...ΡΑη ) 为预设的参考温度。 该参考温度可以根据实际情况的不同自主 设置。 当关键点温度都异常时可以通过调整 Heater和 PA的功率
( ΡΑ1+ΡΑ2+...+ΡΑη ) 来使得调整后的实际功率 P小于最大可用功率 Pmax。 例如, 保证 Power和 CPU可以只开启 Heaterl和 Heater2 , 而其他的 Heater3〜m 和 PAl !!都关掉或只进行小功率加热。
当关键点温度只有部分异常时, 例如 T1>T ( CPU ), T2>T ( Power), T3〜Tm<T ( PAl、 PA2...PAn ) 时, 此时可以只开启 Heaterl和 Heater2, 这样 就能保证 CPU和电源的正常运行, 同时具体调整可以釆用将 Heater3〜m进行 小功率加热(如将 Heater3、 Heater4进行半功率加热的同时关掉 Heater5〜m ), 或关掉部分 PA的方式, 以保证满足实际功率 P小于最大可用功率 Pmax的要 求。
如果关键点温度小于参考温度且 PD的最大可用功率小于实际功率, 优 选的, 先降低 PA的功率再提高 Heater的功率;
如果关键点温度小于参考温度且 PD的最大可用功率大于实际功率, 可 以根据设备系统的功率组成关系直接提高 Heater的功率。
如果关键点温度大于参考温度且 PD的最大可用功率小于实际功率, 可 以根据设备系统的功率组成关系直接调整 Heater功率和 /或 PA的功率。
作为一个示例, 当所述电源温度、 CPU温度和 PA温度都正常, 即 T1>T
( CPU ), T2>T ( Power ), T3〜Tm>T ( PAl、 PA2...Pm ) 时, 可以将所有的 Heater都已经关闭, 计算所有 Heater关闭后设备系统实际功率 P是否大于最 大可用功率 Pmax ,如果所有 Heater关闭后设备系统实际功率 P仍大于最大可 用功率 Pmax , 则降低 PA的功率。
图 9所述为本发明实施例控制模块 124、 1240的一个示例。 如图 9所示, 可以包括:
参数获取模块 1101 , 用于从设备系统的检测模块获得设备系统的关键 点温度, PD的最大可用功率和实际功率; 其中, 参数获取模块 1101可以通 过 I2C总线从温度检测模块(或芯片) 获得关键点温度, 可以通过 I2C总线 从功率检测模块获得 PD的最大可用功率和实际功率, 所述关键点温度包 括: 电源温度、 CPU温度和 PA温度。
判断子模块 1102, 用于判断关键点温度是否大于预设的参考温度, 判 断最大可用功率是否大于实际功率,并将判断结果输出给调整子模块 1103。 可选的, 可以用温度判断结果指示符和功率判断结果指示符的组合表示判 断子模块 1102的判断结果, 例如指示符 AB, A温度判断结果, B表示功率 判断结果, A和 B可用 0和 1表示 "不满足" 和 "满足" 的判断结果。 可选的, 判断子模块 1102可以根据温度判断结果和功率判断结果是否都满足的综合 判断结果,并通知调整子模块 1103 ,该综合判断结果可作为调整子模块 1103 确定是否需要调整的控制指令, 即都满足表示不需要调整, 至少 1个不满足 表示需要调整。 具体的, 以指示符 AB为例, A和 B做逻辑 "与", 如果都 满足, 逻辑 "与" 的结果为 " 1 " , 如果至少一个不满足, 逻辑 "与" 的结 果为 "0"。
调整子模块 903 , 用于根据判断子模块 902的温度判断结果和设备系统 的功率组成关系调整 PA和 Heater中至少一部分元件的功率, 以使得功率调 整后设备系统的温度大于参考温度、 最大可用功率和实际功率的条件均满 足。
具体的, 调整子模块 903 , 用于根据调整子模块 903的判断结果和设备 系统的功率组成关系确定 PA和 Heater的功率调整量, 例如, 如果检测到的 关键点温度小于参考温度, 根据设备系统实际功率的功率组成关系提高 Heater的功率并降低 PA的功率, 或在提高 Heater的功率后, 最大可用功率仍 大于调整后的实际功率的情况下可以仅仅提高 Heater的功率。 调整子模块 903可以根据调整后 Heater的目标功率计算加热器的供电电压, 以使得所述 电源温度、 CPU温度和 /或 PA温度均大于预设的温度条件。 调整子模块 1103 如果确定需要提高或降低 PA的功率, 可以控制 PA的供电电压, 或控制部分 PA的开启 /关闭, 以便于调整后系统的实际功率小于所述最大可用功率。
在本发明的实施例中, 正常工作时, 设备系统实时监控关键点的温度 和设备系统的实际功率,灵活调整 Heater和 PA的功率以使 Heater起到维持系 统温度大于参考温度和保证设备系统的大功率 PA工作的需要。 本发明提供 的系统、 方法和设备尤其适用于 WLAN室外设备系统对工作温度要求。
需要说明的是, 在本文中, 术语 "包括"、 "包含" 或者其任何其他变 体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物 品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或 者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多 限制的情况下, 由语句 "包括一个 ... ... " 限定的要素, 并不排除在包括所 述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算 机可读存储介质中, 存储介质可以包括: 只读存储器 (ROM, Read-only memory ), 随机存取存储器 (RAM, Radom Access Memory )、 磁盘或光盘 等。 例如, 检测控制子系统 120可以由处理器实现, 指令性地执行上述方法 步骤。 处理器与设备系统上的次级存储装置、 ROM、 RAM的存储设备、 输 入 /输出 (I/O, Input/Output )设备通信。 该处理器可以由一个或多个 CPU 芯片。 次级存储装置典型地包括一个或多个磁盘驱动器或磁带驱动器, 并 用于数据的非易失性存储, 并且在 RAM没有足够大到保存所有工作数据的 情况下用作溢出数据存储设备。 次级存储装置可用于存储在被选择以便执 行时加载到 RAM中的程序。 ROM用于存储指令, 并且可能存储在程序执行 期间读取的数据。 ROM是非易失性存储设备, 相对于次级存储装置的较大 存储容量, 其通常具有小存储容量。 RAM用于存储易失性数据并且可能存 储指令。 访问 ROM和 RAM通常比访问次级存储装置更快。 说明只是用于帮助理解本发明, 对于本领域的一般技术人员, 依据本发明 实施例, 在具体实施方式及应用范围上均会有改变之处, 本说明书内容不 应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种检测控制子系统, 其特征在于, 检测控制子系统用于调整包 含以太网传输线供电的受电设备、 加热器、 功率放大器的设备系统, 所述 受电设备为所述加热器、 功率放大器和检测控制子系统供电; 其中,
检测控制子系统包括检测模块和控制模块,
所述检测模块, 用于检测受电设备的最大可用功率、 受电设备的实际 功率和所述设备系统的关键点温度;
所述控制模块, 用于判断检测到的关键点温度是否大于预设的参考温 度, 以及判断检测到的最大可用功率是否大于检测到的实际功率调整, 如 果温度判断结果和功率判断结果至少一个不满足, 调整加热器和功率放大 器中至少一部分的功率, 以使功率调整后设备系统的温度大于参考温度且 设备系统的实际功率小于最大可用功率。
2、 根据权利要求 1所述的设备系统, 其特征在于, 所述检测模块包 括功率检测模块, 所述功率检测模块用于检测受电设备分级端的电流值, 并利用检测 'J的电流值和预先设置的分级表确定受电设备的最大可用功 率, 所述预先设置的分级表记录有受电设备分级端的最大可用功率和分级 端的电流值的对应关系。
3、 根据权利要求 1或 2所述的检测控制子系统, 其特征在于, 如果所述控制模块判断检测到的关键点温度小于预设参考温度, 所述 控制模块降低功率放大器的功率并提高加热器的功率;
如果所述控制模块判断检测到的最大可用功率小于检测到的实际功率 调整且检测到的关键点温度大于预设参考温度, 所述控制模块降低加热器 和 /或功率放大器的功率。
4、 根据权利要求 3所述的检测控制子系统, 其特征在于, 所述设备 系统还包括加热驱动器, 该加热驱动器耦合到所述加热器和所述受电设备 之间;
所述控制模块根据检测到的最大可用功率、 检测到的实际功率和设备 系统的功率组成关系计算调整后加热器的供电电压, 根据计算的加热器的 供电电压控制加热驱动器以调整加热器的功率。
5、 一种设备系统, 其特征在于, 所述设备系统包含以太网传输线供 电的受电设备、 至少一个加热器、 包含功率放大器的通信子系统, 至少一 个加热驱动器, 和检测控制子系统;
所述受电设备为所述加热器、 功率放大器和检测控制子系统供电; 每一个加热驱动器电耦合于加热器和受电设备之间;
所述检测控制子系统, 电耦合于加热驱动器、 功率放大器, 用于检测 受电设备的最大可用功率、 受电设备的实际功率和所述设备系统的关键点 温度, 如果确定检测到的关键点温度是大于预设的参考温度和检测到的最 大可用功率大于检测到的实际功率调整的条件中至少一个条件不满足, 调 整加热器和功率放大器中至少一部分的功率, 以使功率调整后设备系统的 温度大于参考温度且设备系统的实际功率小于最大可用功率。
6、 根据权利要求 5所述的设备系统, 其特征在于, 所述检测控制子 系统包括用于检测受电设备分级端的电流值, 并利用检测到的电流值以及 预先设置的分级表确定受电设备的最大可用功率, 所述预先设置的分级表 记录有受电设备分级端的最大可用功率和分级端的电流值的对应关系。
7、 根据权利要求 5或 6所述的设备系统, 其特征在于,
所述检测控制子系统判断检测到的关键点温度小于预设参考温度, 降 低功率放大器的功率, 并通过控制加热驱动器提高加热器的供电电压; 检测控制子系统判断检测到的最大可用功率小于检测到的实际功率且 检测到的关键点温度大于预设参考温度, 通过控制加热驱动器以降低加热 器的供电电压和 /或降低功率放大器的功率。
8、 一种调整设备系统功率的方法, 其特征在于, 所述设备系统包括以 太网传输线供电的受电设备、加热器和功率放大器, 其中所述受电设备为所述 加热器和功率放大器供电, 该方法包括:
检测设备系统的关键点温度, 以及受电设备的最大可用功率和受电设 备的实际功率;
判断检测到的关键点温度是否大于预设的参考温度并判断所述检测到 的最大可用功率是否大于检测到的实际功率;
如果温度判断结果和功率判断结果至少一个不满足, 调整加热器和功 率放大器中至少一部分的功率, 以使功率调整后设备系统的温度大于参考 温度且设备系统的实际功率小于最大可用功率。
9、 根据权利要求 8所述的方法, 其特征在于, 所述检测受电设备的 可用功率, 具体包括:
检测受电设备分级端的电流值, 并利用检测到的电流值和预先设置的 分级表确定受电设备的最大可用功率, 所述预先设置的分级表记录有受电 设备分级端的最大可用功率和分级端的电流值的对应关系。
10、 根据权利要求 8或 9所述的方法, 其特征在于,
如果判断检测到的关键点温度小于预设参考温度, 降低功率放大器的 功率并提高加热器的功率;
如果判断检测到的最大可用功率小于检测到的实际功率调整且检测到 的关键点温度大于预设参考温度, 降低加热器和 /或功率放大器的功率。
PCT/CN2011/074824 2010-06-11 2011-05-28 一种调整设备功率的方法、检测控制子系统及设备系统 WO2011153906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010205101.4A CN102281623B (zh) 2010-06-11 2010-06-11 一种调整设备功率的方法、检测控制子系统及设备系统
CN201010205101.4 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011153906A1 true WO2011153906A1 (zh) 2011-12-15

Family

ID=45097526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074824 WO2011153906A1 (zh) 2010-06-11 2011-05-28 一种调整设备功率的方法、检测控制子系统及设备系统

Country Status (2)

Country Link
CN (1) CN102281623B (zh)
WO (1) WO2011153906A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368747A (zh) * 2012-03-29 2013-10-23 苏州工业园区新宏博通讯科技有限公司 无线网络保护器以太网供电输入结构
US9557786B2 (en) 2013-11-11 2017-01-31 Mediatek Inc. Power thermal policy using micro-throttle
EP3054624B1 (en) * 2015-02-06 2017-01-04 Axis AB Method for amplifying a signal and amplifying device
CN108988800A (zh) * 2018-09-19 2018-12-11 南京拓途电子有限公司 一种低温下控制功放自发热的电路
CN109981298B (zh) * 2019-04-07 2021-01-26 恒启电子(苏州)有限公司 工业交换机poe功率管理方法及管理系统
CN110087289A (zh) * 2019-04-16 2019-08-02 深圳市博实结科技有限公司 通信模块控制方法、装置、计算机设备和存储介质
US11264954B2 (en) 2019-11-14 2022-03-01 Analog Devices, Inc. Thermal temperature sensors for power amplifiers
CN110996420B (zh) * 2019-11-14 2024-01-05 杭州九阳小家电有限公司 一种校准电磁加热设备功率的方法及电磁加热设备
CN112947187A (zh) * 2021-02-08 2021-06-11 山东惟德再制造科技有限公司 一种烘炉控制系统及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061668A (zh) * 2004-11-19 2007-10-24 凌特公司 以太网供电系统中的模拟电源管理
CN101197686A (zh) * 2007-12-04 2008-06-11 福建星网锐捷网络有限公司 一种poe交换机温度控制方法和系统
CN101371492A (zh) * 2006-01-17 2009-02-18 美国博通公司 以太网供电控制器集成电路架构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8831211B2 (en) * 2004-11-19 2014-09-09 Linear Technology Corporation Common-mode data transmission for power over ethernet system
US7509505B2 (en) * 2005-01-04 2009-03-24 Cisco Technology, Inc. Method and system for managing power delivery for power over Ethernet systems
US7496078B2 (en) * 2006-08-15 2009-02-24 Cisco Technology, Inc. Route tree building in a wireless mesh network
GB2462312B (en) * 2008-08-01 2012-03-21 Sensormatic Electronics Llc Battery backed power-over-ethernet system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061668A (zh) * 2004-11-19 2007-10-24 凌特公司 以太网供电系统中的模拟电源管理
CN101371492A (zh) * 2006-01-17 2009-02-18 美国博通公司 以太网供电控制器集成电路架构
CN101197686A (zh) * 2007-12-04 2008-06-11 福建星网锐捷网络有限公司 一种poe交换机温度控制方法和系统

Also Published As

Publication number Publication date
CN102281623A (zh) 2011-12-14
CN102281623B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2011153906A1 (zh) 一种调整设备功率的方法、检测控制子系统及设备系统
CN109782827B (zh) 散热控制方法及设备、电子设备及计算机可读存储介质
US7797560B2 (en) System and method for integrated temperature measurement in power over Ethernet applications
US9929576B2 (en) Method, device, and adaptor for dynamically adjusting charging current of adaptor to achieve thermal protection and fast charging
US8627127B2 (en) Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
US10114390B2 (en) Fan control system, computer system, and fan controlling method thereof
US6584128B2 (en) Thermoelectric cooler driver utilizing unipolar pulse width modulated synchronous rectifiers
WO2018054051A1 (zh) 电气柜的散热控制方法、装置和系统
US7375588B2 (en) Transmission amplifier
CN101667042B (zh) 一种风扇型温控方法及装置
US20060164774A1 (en) High-power foldback mechanism in system for providing power over communication link
US20160356520A1 (en) Air Conditioning System And Energy Management Method Of Air Conditioning System
TWI633743B (zh) 具均流功能之電源旁路裝置及其控制方法
CN109075714A (zh) 具有用于减少功耗的突发模式操作的开关模式电源
CN109831756B (zh) 一种基于人体智能识别及无线传感器网络的操作系统
US20200225721A1 (en) System and method for dynamically identifying a power adaptor power rating based on operating conditions
US9559512B1 (en) Programmable rise time controlled load switch and integrated temperature sensor system with interface bus
JP2000353830A (ja) ペルチェ素子駆動方法およびその装置
TWI521917B (zh) 用於電子裝置之加熱系統
EP2080075B1 (en) Operating an integrated circuit
WO2021136198A1 (zh) 接入网设备、供电方法、设备和存储介质
CN110972447B (zh) 冷却系统及医疗设备
CN109802491B (zh) 具有实时电量和环境参数显示功能的云控制系统及其控制方法
JP5728033B2 (ja) ミリ波無線装置
CN110212898B (zh) 多通道开关控制系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791897

Country of ref document: EP

Kind code of ref document: A1