WO2011153691A1 - 用于反馈信道质量信号的方法、移动台、基站和无线通信系统 - Google Patents
用于反馈信道质量信号的方法、移动台、基站和无线通信系统 Download PDFInfo
- Publication number
- WO2011153691A1 WO2011153691A1 PCT/CN2010/073714 CN2010073714W WO2011153691A1 WO 2011153691 A1 WO2011153691 A1 WO 2011153691A1 CN 2010073714 W CN2010073714 W CN 2010073714W WO 2011153691 A1 WO2011153691 A1 WO 2011153691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel quality
- carrier component
- signal
- quality signal
- carrier
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0632—Channel quality parameters, e.g. channel quality indicator [CQI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
Definitions
- Mobile station base station and wireless communication system
- the present invention relates to wireless communication technologies, and more particularly to a method for transmitting channel quality signals, a mobile station, a base station, and a wireless communication system in a wireless communication system.
- IMT's advanced fourth-generation mobile communication systems can support high peak data rates for mobile communications users.
- the multi-antenna technology is a technology that effectively improves the transmission performance of the uplink and the downlink.
- the bandwidth of a single carrier component is divided into N subbands, each of which contains k resource blocks (resource block) And Nj consecutive subbands form the bandwidth part jo.
- the feedback is for a single CQI/PML for the bandwidth of the entire carrier component.
- subband CQI/PMI feedback select the index of the subband with the best signal in each bandwidth part and feed back the index to the CQI of the response.
- each downlink subframe has a CRS (Common Reference Signal).
- the mobile station calculates the CQI/PMI according to the CRS signal in the downlink subframe transmitted by the received base station, and feeds back to the base station, so that the base station selects a suitable modulation and coding scheme (MCS) and a transport block size (TSS) according to the CQI value. .
- MCS modulation and coding scheme
- TSS transport block size
- the subframe labeled W is a subframe with wideband CQI/PMI feedback of carrier component 1
- the subframe labeled B1, B2 has the same for carrier component 1.
- the data and the CRS are simultaneously transmitted in one resource block (RB), and the data uses the CQI feedback obtained based on the CRS transmitted in the previous subframe, and based on the currently transmitted CRS.
- the calculated CQI is used by subsequent subframes. That is, the CQI has at least one subframe delay.
- the conventional communication system transmits a CRS signal in each downlink subframe, and when the subband CQI is fed back, the fed back subband index and the corresponding CQI follow the latest received downlink subframe.
- the CRS transmitted in the change is not limited to, but not limited
- the CRS signal is not transmitted in every downlink subframe, but every cycle such as 5 subframes or 10 subframes.
- Send CSI-RS channel status indicator - reference signal.
- the base station since the base station does not transmit the CSI-RS signal within the feedback interval of the two subband CQIs, k periods for the subband of the bandwidth portion
- the feedback and the wideband CQI/PMI feedback actually contain the same information. In other words, if the same CQI/PMI feedback scheme as in the LTE system Rel.8 is used in the LTE system Rel.10, system resources will be wasted.
- At least one object of the present invention is to provide a method, a mobile station, a base station, and a wireless communication system for feeding back channel quality signals in a wireless communication system, which are capable of overcoming at least some of the disadvantages and deficiencies of the prior art described above, and The channel quality signal for multiple carrier components is fed back.
- a method for feeding back a channel quality signal in a wireless communication system includes: receiving a plurality of reference signals carried by a plurality of carrier components, according to The received reference signal calculates a channel quality signal for each carrier component; and feeds back channel quality signals for the respective carrier components in a predetermined order.
- the channel quality signal may comprise a wideband channel quality signal and a sub-band channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the channel quality signal for each carrier component is fed back in a predetermined order.
- the method includes sequentially feeding back a wideband channel quality signal for the first carrier component to the Nth carrier component, and feeding back a subband channel quality signal for the first carrier component to the Nth carrier component between the respective wideband channel quality signals.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the channel quality signal for each carrier component is fed back in a predetermined order.
- the method includes sequentially feeding back a wideband channel quality signal for the first carrier component to the Nth carrier component, and then feeding back the subband signal signal for the first carrier component to the Nth carrier component.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the channel quality signal for each carrier component is fed back in a predetermined order.
- the method includes sequentially feeding back the wideband channel quality signal and the subband channel quality signal for the first carrier component up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the calculating the channel quality signal may comprise utilizing a precoding matrix index included in the corresponding wideband channel quality signal when calculating the subband channel quality signal.
- calculating a channel quality signal according to the received corresponding reference signal may include a calculation time before the feedback timing of the channel quality signal, according to the latest received, for the same channel quality signal
- the reference signal of the carrier component is used to calculate the channel quality signal.
- receiving a plurality of reference signals carried by a plurality of carrier components may comprise receiving, for each carrier component, a reference signal carried by the carrier component in accordance with a predetermined reference signal period.
- the reference signal periods of the reference signals carried by the plurality of carrier components may be the same.
- the number of at least two of the sub-band channel quality signals for the respective carrier components may be different from each other.
- feeding back channel quality signals for respective carrier components may include feeding back subband channel quality signals through PUCCH, and feeding back wideband channel quality signals through PUCCH or PUSCH.
- a mobile station comprising: a reference signal receiving unit configured to receive a plurality of reference signals carried by a plurality of carrier components; a computing unit, Configuring to calculate a channel quality signal for each carrier component based on the received corresponding reference signal; and a feedback unit configured to feed back channel quality signals for the respective carrier components in a predetermined order.
- the channel quality signal may comprise a wideband channel quality signal and a sub-band channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the feedback unit may be configured to sequentially feed back the first carrier The component is transmitted to the wideband channel quality signal of the Nth carrier component, and the subband signal signal for the first carrier component to the Nth carrier component is sequentially fed back between the respective wideband channel quality signals.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the feedback unit may be configured to sequentially feed back the first carrier The component is transmitted to the wideband channel quality signal of the Nth carrier component, and then the subband channel quality signal for the first carrier component to the Nth carrier component is sequentially fed back.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the feedback unit may be configured to sequentially feed back the first carrier
- the component wideband channel quality signal and the subband channel quality signal are up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the computing unit may be configured to utilize a precoding matrix index included in the corresponding wideband channel quality signal when calculating the subband channel quality signal.
- the computing unit may be configured to calculate, based on the most recently received reference signal for the same carrier component as the channel quality signal, at a computing instant prior to the feedback instant of the channel quality signal The channel quality signal is calculated.
- the reference signal receiving unit may be configured to receive, for each of the carrier components, a reference signal carried by the carrier component in accordance with a predetermined reference signal period.
- the reference signal periods of the reference signals carried by the plurality of carrier components may be the same.
- the number of at least two of the sub-band channel quality signals for the respective carrier components may be different from each other.
- the feedback unit may be configured to feed back the sub-band channel quality signal through the PUCCH and to feed back the wideband channel quality signal through the PUCCH or PUSCH.
- a base station comprising: a reference signal transmitting unit configured to transmit a plurality of reference signals carried by a plurality of carrier components; and a signal signal A receiving unit configured to receive channel quality signals for respective carrier components transmitted by the same mobile station.
- the channel quality signal may comprise a wideband channel quality signal and a sub-band channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the channel quality signal receiving unit may be configured to sequentially receive for The wideband channel quality signal of the first carrier component to the Nth carrier component, and the subband channel quality signals for the first carrier component to the Nth carrier component are sequentially received between the respective wideband signal signals.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the channel quality signal receiving unit may be configured to sequentially receive for a wideband channel quality signal from the first carrier component to the Nth carrier component, - - Then sequentially receive subband channel quality signals for the first carrier component to the Nth carrier component.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, N is a positive integer greater than 1, and the channel quality signal receiving unit may be configured to sequentially receive for The wideband channel quality signal and the subband channel quality signal of the first carrier component are up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the reference signal transmitting unit may be configured to transmit, for each of the carrier components, a reference signal carried by the carrier component in accordance with a predetermined reference signal period.
- the reference signal periods of the reference signals carried by the plurality of carrier components may be the same.
- the number of at least two of the sub-band channel quality signals for the respective carrier components may be different from each other.
- the channel quality signal receiving unit may be configured to receive the subband channel quality signal on the PUCCH and to receive the wideband channel quality signal on the PUCCH or PUSCH.
- a wireless communication system comprising a mobile station as described above and a base station as described above.
- a signal signal for a plurality of carrier components can be efficiently fed back.
- FIG. 1 is a schematic diagram showing prior art CQI feedback
- FIG. 2 is a schematic diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 1 of Embodiment 1 of the present invention
- FIG. 3 is a schematic diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 2 of Embodiment 1 of the present invention
- FIG. 3 is a schematic diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 2 of Embodiment 1 of the present invention
- FIG. 4 is a diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 3 of Embodiment 1 of the present invention
- FIG. 5 is a schematic diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 4 of Embodiment 1 of the present invention
- FIG. 6 is a schematic diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 5 of Embodiment 1 of the present invention
- FIG. 7 is a flow chart showing a method for feeding back a channel quality signal in a wireless communication system according to Embodiment 1 of the present invention.
- FIG. 8 shows a schematic diagram of a mobile station according to a second embodiment of the present invention.
- FIG. 9 is a schematic diagram of a base station according to Embodiment 3 of the present invention.
- FIG. 10 is a schematic diagram showing a wireless communication system according to Embodiment 4 of the present invention.
- the present invention generally relates to a method for feeding back channel quality signals in a wireless communication system and a mobile station, a base station, and a wireless communication system using the same. Therefore, the selection of the modulation and coding scheme of the base station side, the modulation and coding process, the scheduling algorithm, and the wireless data transceiving process as described above, which are not known to those skilled in the art having little relevance to the present invention, are omitted herein.
- the description of the process of ranging, synchronization, and codec is focused on describing the process associated with the feedback channel quality signal.
- Figure 7 is a flow chart showing a method for feeding back a channel quality signal in a wireless communication system according to a first embodiment of the present invention.
- a method for feeding back a channel quality signal in a wireless communication system according to Embodiment 1 of the present invention starts from step S701.
- step S701 the mobile station receives a plurality of reference signals transmitted by the base station and carried by the plurality of carrier components. For example, a reference signal for the first carrier component carried by the first carrier component, a reference signal for the second carrier component carried by the second carrier component, and the like.
- the mobile station calculates a channel quality signal for each carrier component based on the received corresponding reference signal. For example, the mobile station calculates a channel quality signal for the first carrier component based on the reference signal for the first carrier component, a channel quality signal for the second carrier component from the reference signal for the second carrier component, and the like.
- step S703 the channel quality signals for the respective carrier components are fed back in a predetermined order. For example, the channel quality signal for the first carrier component is fed back first, then the channel quality signal for the second carrier component is fed back, and so on.
- the reference signal in this embodiment may be, for example, a CRS (Common Reference Signal).
- the channel quality signal in this embodiment may be, for example, CQI and/or PMI.
- the method for feeding back a channel quality signal in a wireless communication system receives a plurality of reference signals transmitted by a plurality of carrier components transmitted by a base station and feeds back the respective carriers in a predetermined order.
- a channel quality signal of a component instead of receiving a reference signal transmitted in each subframe carried by one carrier component and only feeding back a channel quality signal for the one carrier component in the prior art, and thus can effectively feedback for multiple The channel quality signal of the carrier component.
- the channel quality signal may include a wideband channel quality signal and a subband channel quality signal.
- the reference signal period of the reference signal carried by the plurality of carrier components is the same.
- the number of at least two of the sub-band channel quality signals for the respective carrier components is different from each other .
- step S701 may include: receiving, for each carrier component, a predetermined reference signal period.
- the reference signal carried by the carrier component.
- the predetermined reference signal period can be flexibly set according to the requirements of the actual application to meet the delay requirement between the reference signal of the actual wireless communication system and the channel quality signal feedback. It is intended to be within the spirit and scope of the invention as claimed.
- step S702 may include: utilizing a corresponding wideband channel quality when calculating the subband channel quality signal.
- the precoding matrix index contained in the signal may include: utilizing a corresponding wideband channel quality when calculating the subband channel quality signal.
- step S702 may include: calculating a time before the feedback moment of the channel quality signal, according to the latest The received channel quality signal is calculated for a reference signal for the same carrier component as the channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, where N is A positive integer greater than one.
- step S703 may include: sequentially feeding back a wideband channel quality signal for the first carrier component to the Nth carrier component, and feeding back subband channel quality for the first carrier component to the Nth carrier component between the respective wideband channel quality signals signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than one.
- step S703 may include: sequentially feeding back a wideband channel quality signal for the first carrier component to the Nth carrier component, and then feeding back the subband channel quality signal for the first carrier component to the Nth carrier component.
- the multiple carrier components may include a first carrier component to an Nth carrier component, where N is A positive integer greater than one.
- step S703 may include: sequentially feeding back the wideband channel quality signal and the subband channel quality signal for the first carrier component up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the feedback order of the wideband signal signal and the subband channel quality signal in the above step S703 is merely exemplary and not limiting.
- the present channel quality signal feedback and sub-band channel quality signal feedback sequence are to meet the application requirements of the actual wireless communication system, and are all within the spirit and scope of the claimed invention.
- step S703 may include: feeding back a sub-band channel quality signal by using a physical uplink control channel (PUCCH), And feeding back the wideband channel quality signal through the PUCCH or the physical uplink shared channel (PUSCH).
- the PUSCH can be used to feed back the wideband channel quality signal by means of triggering of downlink control signaling.
- Example 2 is a diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 1 of the first embodiment of the present invention.
- the reference signals carried by the respective carrier components are respectively received according to a predetermined reference signal period.
- the period of the wideband CQI feedback is doubled, the wideband CQI/PMI value for the first carrier component is fed back, and the wideband CQI/PWI value for the second carrier component is fed back (see the two subframes marked with W in FIG. 2). ).
- the subband CQI for the first carrier component is first fed back (see the C1B1 and C1B2 labeled subframes in FIG. 2), and the subband CQI for the second carrier component is fed back. (See the sub-frames labeled with C2B1 and C2B2 in Figure 2).
- the bandwidth of the carrier component is not the same, then the feedback amount of the CQI/PMI of the carrier component is also - - Not the same, correspondingly, there may be different CQI/PMI feedback modes, so that there are different CSI transmission modes correspondingly.
- FIG. 3 a schematic diagram of a method for feeding back a channel quality signal in a wireless communication system according to Example 2 of Embodiment 1 of the present invention is shown in FIG.
- the reference signals carried by the respective carrier components are respectively received according to a predetermined reference signal period.
- N p is the feedback period of the subband CQI
- H is the interval between the two wideband CQI feedbacks.
- the two carrier components correspond to two bandwidth portions and one bandwidth portion, respectively. Since each bandwidth portion needs to feed back an optimal sub-band CQI, in one cycle, two sub-band CQIs need to be fed back for the first carrier component, and only one sub-band CQI needs to be fed back for the second carrier component.
- C1W is the wideband CQI feedback for the first carrier component and C2W is the wideband CQI feedback for the second carrier component.
- C1B1 is subband CQI feedback for a first bandwidth portion of the first carrier component
- C1B2 is subband CQI feedback for a second bandwidth portion of the first carrier component
- C2B1 is a subband CQI for a bandwidth portion of the second carrier component Feedback.
- the feedback mode corresponding to the two carrier components is different from the feedback mode corresponding to the three carrier components.
- FIG. 2 and FIG. 4 respectively show schematic diagrams of a method for feeding back a channel quality signal in a wireless communication system according to Example 1 and Example 3 of Embodiment 1 of the present invention.
- the reference signals carried by the respective carrier components are respectively received according to a predetermined reference signal period.
- These two carrier components each correspond to two bandwidth portions. Since each bandwidth portion needs to feed back an optimal subband CQI, two subband CQIs need to be fed back for the first carrier component in one cycle, and two subbands need to be fed back for the second carrier component.
- C1W is the wideband CQI feedback for the first carrier component and C2W is the wideband CQI feedback for the second carrier component.
- C1B1 is subband CQI feedback for a first bandwidth portion of the first carrier component
- C1B2 is subband CQI feedback for a second bandwidth portion of the first carrier component
- C2B1 is for a first bandwidth portion of the second carrier component
- C2B2 is a subband CQI feedback for the second bandwidth portion of the second carrier component.
- Example 3 for the first carrier component, - a second carrier component and a third carrier component, respectively receiving reference signals carried by the respective carrier components in accordance with a predetermined reference signal period.
- These three carrier components each correspond to two bandwidth portions. Since each bandwidth portion needs to feed back an optimal sub-band CQI, two sub-band CQIs need to be fed back for the first carrier component in one cycle, and two sub-band CQIs need to be fed back for the second carrier component, and for the third The carrier component needs to feed back two subband CQIs.
- C1W is wideband CQI feedback for the first carrier component
- C2W is wideband CQI feedback for the second carrier component
- C3W is wideband CQI feedback for the third carrier component.
- C1B1 is subband CQI feedback for a first bandwidth portion of the first carrier component
- C1B2 is subband CQI feedback for a second bandwidth portion of the first carrier component
- C2B1 is for a first bandwidth portion of the second carrier component
- C2B2 is subband CQI feedback for the second bandwidth portion of the second carrier component
- C3B1 is subband CQI feedback for the first bandwidth portion of the third carrier component
- C3B2 is the second for the third carrier component Subband CQI feedback for the bandwidth portion.
- the information contained in the wideband CQI/PMI feedback (such as wideband PMI information) needs to be used in the calculation of the CQI of the subband, then in order to use the subband CQI scheduling When the PMI is used to precode the data in the process, all broadband CQI/PMI feedback should be fed back before the feedback subband CQI feedback.
- FIG. 5 is a diagram showing a method for feeding back a channel quality signal in a wireless communication system of Example 4 according to Embodiment 1 of the present invention.
- the reference signals carried by the respective carrier components are respectively received according to a predetermined reference signal period.
- These two carrier components each correspond to two bandwidth portions. Since each bandwidth portion needs to feed back an optimal sub-band CQI, in one cycle, two sub-band CQIs need to be fed back for the first carrier component, and two sub-band CQIs need to be fed back for the second carrier component.
- all wideband CQI/PMI feedback is sent prior to transmitting subband CQI feedback.
- C1W is wideband CQI feedback for the first carrier component
- C2W is wideband CQI feedback for the second carrier component
- all broadband CQI/PMI feedback is transmitted before transmitting subband CQI feedback C1W and C2W.
- C1B1 is subband CQI feedback for a first bandwidth portion of the first carrier component
- C1B2 is subband CQI feedback for a second bandwidth portion of the first carrier component
- C2B1 is a first bandwidth portion for the second carrier component
- C2B2 is a sub-band CQI anti-debt for the second bandwidth portion of the second carrier component.
- the order of sub-band CQI feedback for each carrier component can be appropriately changed.
- the subband CQI for the first carrier component may be fed back first, and then the subband CQI for the second carrier component may be fed back.
- the sub-band CQI for each carrier component can also be fed back alternately in turn. It will be understood by those skilled in the art that the order of sub-band CQI feedback for each carrier component can be flexibly selected according to the needs of the actual application, all of which are within the spirit and scope of the claimed invention.
- the sub-band CQI (C1B1, C1B2) for the first carrier component is fed back first, and then the sub-band CQI (C2B1, C2B2) for the second carrier component is fed back.
- FIG. 6 is a diagram showing a method for feeding back a channel quality signal in a wireless communication system according to Example 5 of Embodiment 1 of the present invention.
- the reference signals carried by the respective carrier components are respectively received according to a predetermined reference signal period.
- These two carrier components each correspond to two bandwidth portions. Since each bandwidth portion needs to feed back an optimal sub-band CQI, in one cycle, two sub-band CQIs need to be fed back for the first carrier component, and two sub-band CQIs need to be fed back for the second carrier component. Further, as described above, the sub-band CQIs for the respective carrier components are alternately fed back in turn.
- C1W is the wideband CQI feedback for the first carrier component and C2W is the wideband CQI feedback for the second carrier component.
- sub-band CQI feedback for each carrier component is alternately performed alternately in the interval between the feedbacks C1W and C2W.
- C1B1 is subband CQI feedback for a first bandwidth portion of the first carrier component
- C2B1 is subband CQI feedback for a first bandwidth portion of the second carrier component
- C1B2 is a second bandwidth portion for the first carrier component
- C2B2 is sub-band CQI feedback for the second bandwidth portion of the second carrier component.
- subband CQI feedback for the first bandwidth portion of the first carrier component is performed first, and subband CQI feedback for the first bandwidth portion of the second carrier component is performed, and then Subband CQI feedback for the second bandwidth portion of the first carrier component is performed, followed by subband CQI feedback for the second bandwidth portion of the second carrier component, and so on.
- a base station, a mobile station, and a wireless communication system using a method for feeding back a channel quality signal in a wireless communication system according to an embodiment of the present invention are also provided.
- Figure 8 shows a schematic diagram of a mobile station 800 in accordance with a second embodiment of the present invention.
- a mobile station 800 includes a reference signal receiving unit 801, a calculating unit 802, and a feedback unit 803.
- the reference signal receiving unit 801 is configured to receive a plurality of reference signals carried by a plurality of carrier components.
- the computing unit 802 is configured to calculate a channel quality signal for each carrier component based on the received corresponding reference signal.
- the feedback unit 803 is configured to feed back channel quality signals for the respective carrier components in a predetermined order.
- each unit in the mobile station 800 according to the second embodiment of the present invention may refer to the method for feeding back channel quality signals in the wireless communication system according to the first embodiment of the present invention described above.
- the specific implementation of each step Therefore, for the sake of brevity of the description, the specific implementation of each of the above units will not be described in detail herein.
- the mobile station receives the plurality of reference signals carried by the plurality of carrier components transmitted by the base station and feeds back the respective carrier components in a predetermined order.
- a channel quality signal instead of receiving a reference signal transmitted in each subframe carried by one carrier component in the prior art and feeding back only the channel quality signal for the one carrier component, thus being able to effectively feed back for multiple The channel quality signal of the carrier component.
- the channel quality signal may include a wideband channel quality signal and a subband channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than one.
- the feedback unit may be configured to sequentially feed back the wideband channel quality signal for the first carrier component to the Nth carrier component, and sequentially feed back the subcarrier component to the Nth carrier component between the respective wideband channel quality signals. With channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than one.
- the feedback unit can be configured to sequentially feed back the wideband channel quality signal for the first carrier component to the Nth carrier component, and then sequentially feed back the subband channel quality signals for the first carrier component to the Nth carrier component.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than one.
- the feedback unit can be configured to sequentially feed back the wideband channel quality signal and the subband channel quality signal for the first carrier component up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the computing unit may be configured to utilize a precoding matrix index contained in a corresponding wideband channel quality signal when calculating the subband channel quality signal.
- the computing unit may be configured to calculate at the calculation time before the feedback moment of the channel quality signal, according to the latest received, for the same channel quality signal
- the reference signal of the carrier component is used to calculate the channel quality signal.
- the reference signal receiving unit may be configured to receive, for each carrier component, a reference signal carried by the carrier component in accordance with a predetermined reference signal period.
- reference signal periods of reference signals carried by the plurality of carrier components may be the same.
- subbands for respective carrier components - - may be different from each other.
- the feedback unit may be configured to feed back the sub-band channel quality signal via the PUCCH and to feed back the wideband channel quality signal via the PUCCH or PUSCH.
- the predetermined reference signal period, feedback time, calculation time, wideband channel quality signal (CQI) and sub-band channel quality adopted by the mobile station 900 according to the second embodiment of the present invention are as described above.
- the feedback order of the signals (CQI) and the like are merely exemplary and not limiting.
- Those skilled in the art can flexibly set different predetermined reference signal periods, feedback moments, calculation timings, wideband CQI feedback, and sub-band CQI feedback sequences according to actual application requirements, etc., to meet the actual wireless communication system. Application requirements are intended to be within the spirit and scope of the invention as claimed.
- FIG 9 shows a schematic diagram of a base station 900 in accordance with a third embodiment of the present invention.
- the base station 900 includes a reference signal transmitting unit 901 and a channel quality signal receiving unit 902.
- the reference signal transmitting unit 901 is configured to transmit a plurality of reference signals carried by a plurality of carrier components.
- the signal signal receiving unit 902 is configured to receive channel quality signals for respective carrier components transmitted by the same mobile station.
- each unit in the base station 900 according to Embodiment 3 of the present invention reference may be made to each of the methods for feeding back channel quality signals in the wireless communication system according to Embodiment 1 of the present invention described above.
- a base station is carried by multiple carrier components by transmission. - a plurality of reference signals and receiving channel quality signals for respective carrier components transmitted by the same mobile station, instead of transmitting reference signals transmitted in each subframe of one carrier component bearer in the prior art and only receiving for The channel quality signal of the one carrier component can therefore effectively receive feedback from the same mobile station for channel quality signals for multiple carrier components.
- the channel quality signal may include a wideband channel quality signal and a subband channel quality signal.
- the multiple carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than 1.
- the channel quality signal receiving unit may be configured to sequentially receive the wideband channel quality signal for the first carrier component to the Nth carrier component, and sequentially receive the first carrier component to the Nth carrier between the respective wideband channel quality signals. Subband channel quality signal of the component.
- the multiple carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than 1.
- the channel quality signal receiving unit may be configured to sequentially receive the wideband channel quality signal for the first carrier component to the Nth carrier component, and then sequentially receive the subband channel quality signals for the first carrier component to the Nth carrier component.
- the multiple carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than 1.
- the channel quality signal receiving unit may be configured to sequentially receive the wideband channel quality signal and the subband channel quality signal for the first carrier component up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the reference signal transmitting unit may be configured to transmit, for each carrier component, a reference signal carried by the carrier component in accordance with a predetermined reference signal period.
- the reference signal periods of the reference signals carried by the plurality of carrier components may be the same.
- the number of at least two of the sub-band channel quality signals for the respective carrier components may be different from each other.
- the channel quality signal receiving unit may be configured to receive the subband channel quality signal on the PUCCH and receive the wideband channel quality signal on the PUCCH or PUSCH.
- the predetermined reference signal period employed by 1000, the order in which the wideband channel quality signal and the subband channel quality signal are received, and the like are merely exemplary and not limiting. Those skilled in the art will be able to receive the wideband channel quality signal feedback, the order of the sub-band channel quality signals, etc., to meet the application requirements of the actual wireless communication system, which are all within the spirit and scope of the claimed invention.
- Figure 10 shows a schematic diagram of a wireless communication system 1000 in accordance with a fourth embodiment of the present invention.
- the wireless communication system 1000 includes a mobile station 1004 and a base station 1007.
- the mobile station 1004 includes a reference signal receiving unit 1001, a calculating unit 1002, and a feedback unit 1003.
- the reference signal receiving unit 1001 is configured to receive a plurality of reference signals carried by a plurality of carrier components.
- Computing unit 1002 is configured to calculate a channel quality signal for each carrier component based on the received corresponding reference signal.
- the feedback unit 1003 is configured to feed back channel quality signals for the respective carrier components in a predetermined order.
- the base station 1007 includes a reference signal transmitting unit 1005 and a channel quality signal receiving unit 1006.
- the reference signal transmitting unit 1005 is configured to transmit a plurality of reference signals carried by a plurality of carrier components.
- the signal signal receiving unit 1006 is configured to receive channel quality signals for respective carrier components transmitted by the same mobile station.
- a specific implementation of each unit in the wireless communication system 1000 according to Embodiment 4 of the present invention may refer to the method for feeding back a channel quality signal in the wireless communication system according to Embodiment 1 of the present invention described above.
- the specific implementation of each step Therefore, for the sake of brevity of the description, the specific implementation of each of the above units will not be described in detail herein.
- the mobile station 1004 in the wireless communication system 1000 receives a plurality of reference signals carried by the plurality of carrier components transmitted by the base station 1007 and feeds back channels for the respective carrier components in a predetermined order.
- Quality signal not in the prior art - receiving a reference signal transmitted in each subframe carried by one carrier component and feeding back only the channel quality signal for the one carrier component, and thus can effectively feed back channel quality signals for a plurality of carrier components.
- the channel quality signal may include a wideband channel quality signal and a subband channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than one.
- the feedback unit may be configured to sequentially feed back the wideband channel quality signal for the first carrier component to the Nth carrier component, and sequentially feed back the subcarrier component to the Nth carrier component between the respective wideband channel quality signals. With channel quality signal.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than one.
- the feedback unit can be configured to sequentially feed back the wideband channel quality signal for the first carrier component to the Nth carrier component, and then sequentially feed back the subband channel quality signals for the first carrier component to the Nth carrier component.
- the plurality of carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than one.
- the feedback unit can be configured to sequentially feed back the wideband channel quality signal and the subband channel quality signal for the first carrier component up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the computing unit may be configured to utilize a precoding matrix index contained in a corresponding wideband channel quality signal when calculating the subband channel quality signal.
- the computing unit may be configured to calculate at a timing before a feedback moment of the channel quality signal, according to the latest received, for the same channel quality signal
- the reference signal of the carrier component is used to calculate the channel quality signal.
- the reference signal receiving unit may be configured to receive, for each carrier component, a reference signal carried by the carrier component in accordance with a predetermined reference signal period.
- the reference signal periods of the reference signals carried by the plurality of carrier components may be the same.
- subbands for respective carrier components - - may be different from each other.
- the feedback unit may be configured to feed back the sub-band channel quality signal via the PUCCH and to feed back the wideband channel quality signal via the PUCCH or PUSCH.
- the channel quality signal may include a wideband channel quality signal and a subband channel quality signal.
- the multiple carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than 1.
- the channel quality signal receiving unit may be configured to sequentially receive the wideband channel quality signal for the first carrier component to the Nth carrier component, and sequentially receive the first carrier component to the Nth carrier between the respective wideband channel quality signals. Subband channel quality signal of the component.
- the multiple carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than 1.
- the channel quality signal receiving unit may be configured to sequentially receive the wideband channel quality signal for the first carrier component to the Nth carrier component, and then sequentially receive the subband channel quality signals for the first carrier component to the Nth carrier component.
- the multiple carrier components may include a first carrier component to an Nth carrier component, and N is a positive integer greater than 1.
- the channel quality signal receiving unit may be configured to sequentially receive the wideband channel quality signal and the subband channel quality signal for the first carrier component up to the wideband channel quality signal and the subband channel quality signal for the Nth carrier component.
- the reference signal transmitting unit may be configured to transmit, for each carrier component, a reference signal carried by the carrier component in accordance with a predetermined reference signal period.
- the reference signal periods of the reference signals carried by the multiple carrier components may be the same.
- the number of at least two of the sub-band channel quality signals for the respective carrier components may be different from each other.
- the channel quality signal receiving unit may be configured to receive a subband channel quality signal on a PUCCH and a wideband channel quality signal on a PUCCH or PUSCH.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Description
- - 用于反馈信道质量信号的方法、
移动台、 基站和无线通信系统
技术领域
[01] 本发明涉及无线通信技术,更具体地, 涉及无线通信系统中的用于反 馈信道质量信号的方法、 移动台、 基站以及无线通信系统。
背景技术
[02]为了满足来自快速增长的移动通信系统用户的无线宽带服务需求, 国 际电信联盟已经开始了下一代移动通信系统(即, IMT先进第四代移动通 信系统)的标准化进程。 根据性能和技术需求, IMT先进移动通信系统可 以支持用于移动通信用户的艮高的峰值数据速率。 其中, 多天线技术是有 效改善上行链路和下行链路的传输性能的技术。
[03] 然而, 由于终端尺寸和处理复杂度的限制以及可被安装在移动台上的 天线数量的成本限制, 多天线技术实际上不能持续提高传输性能。 为了实 现 IMT先进移动通信系统的性能需求, 近来提出了载波聚合 (carrier aggregation )技术以聚合两个或更多个载波分量 ( carrier component ), 以 用于支持宽带宽上的高数据速率传输(即, 针对单个移动台的高达 100 MHz ), 同时保持对传统系统的向后兼容性。
[04]在 IMT先进移动通信系统中,如何有效地反馈每个载波分量的 CQI(信 道质量指示符) /PMI (预编码矩阵索引)是关键的挑战。
[05]在作为下一代移动通信系统的例子的 LTE (长期演进) 系统 Rel.8中, 单个载波分量的带宽被划分为 N个子带( subband ),每个子带包含 k个资源 块( resource block ), 而 Nj个连续的子带构成了带宽部分 (bandwidth part) jo对于宽带 CQI/PMI反馈而言,反馈的是针对整个载波分量的带宽的单个 CQI/PML 对于子带 CQI/PMI反馈而言, 选择每个带宽部分中的具有最佳 信 量的子带的索引并反馈该索引以 ^Jf†应的 CQI。 在宽带 CQI/PMI和 子带 CQI/PMI均被配置的情况下, 宽带 CQI/PMI具有周期 H*Np, 其中整 数 H被定义为 H=J*K+1, J是单个载波分量中的带宽部分的数量。在每两个 连续的宽带 CQI/PMI反馈之间剩余的 J*K个反馈时刻, 用于针对带宽部分
- - 的 K个全周期上的子带 CQI反馈, 其中带宽部分的每个全周期应当从第 0个 带宽部分开始升序地至第 J-1个带宽部分, 如图 1所示。
[06】在图 1中, J=2, 即, 有两个带宽部分; 反馈周期 Np=2; 全周期数量 K=4; 宽带 ΡΜΙ反馈周期 H= ( J*K+1 ) =9。也就是说,假设从基站发送 CRS 到移动台获得对应的 CQI之间的时延为 2个子帧,则在两次宽带 CQI反馈间 隔中,可以对每个带宽部分进行 k个周期的子带 CQI反馈。 由于在每个子帧 中都发送了 CRS,所以 k个周期所反馈的 CQI值可能为不同的子带, 即使为 相同的子带, 也可能是不同的 CQI值。
[07]在图 1中的下面一行中, 每个下行子帧都具有 CRS (公共参考信号)。 移动台根据接收到的基站发送的下行子帧中的 CRS信号来计算 CQI/PMI 并反馈给基站, 以便于基站根据该 CQI值来选择合适的调制编码方案 ( MCS )和传输块尺寸 ( TBS )。
[08]在图 1中的上面一行中, 标有 W的子帧是具有载波分量 1的宽带 CQI/PMI反馈的子帧, 标有 Bl、 B2的子帧是具有针对载波分量 1中的第 1 个或第 2个带宽部分中的所选子带的子带 CQI反馈的子帧。
[09]在下行信道中, 数据和 CRS是在一个资源块(RB )中同时传输的, 数 据使用的是基于之前的子帧中发送的 CRS而得到的 CQI反馈, 而基于当前 发送的 CRS所计算得到的 CQI被随后的子帧使用。 也就是说, CQI至少有 一个子帧的时延。
[10]如图 1所示, 传统的通信系统在每个下行子帧中都发送 CRS信号, 在 反馈子带 CQI时, 所反馈的子带索引和对应的 CQI随着最新接收的下行子 帧中传输的 CRS而变化。
[11] 与 LTE系统 Rel.8不同, 在 LTE系统 Rel.10中, 并不是在每个下行子帧 中都发送 CRS信号, 而是每隔诸如 5个子帧或 10个子帧之类的周期才发送 CSI-RS (信道状态指示符-参考信号)。 在这种情况下, 如果仍然采用上述 的 CQI/PMI反馈方式, 则由于在两次子带 CQI的反馈间隔内, 基站并没有 发送 CSI-RS信号, 因此针对带宽部分的子带的 k个周期的反馈以及宽带 CQI/PMI反馈中实际上包含相同的信息。 换言之, 如果在 LTE系统 Rel.10 中使用与 LTE系统 Rel.8中相同的 CQI/PMI反馈方案, 系统资源会出现浪 费。
[12]此外, LTE系统 Rel.8中的 CQI/PMI反馈方案也不能解决采用载波聚合 的情况下的多个载波分量的 CQI/PMI反馈的问题。
- -
发明内容
[13] 在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些 方面的基本理解。 应当理解, 这个概述并不是关于本发明的穷举性概述。 它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范 围。其目的仅仅是以简化的形式给出某些概念, 以此作为稍后论述的更详 细描述的前序。
[14] 本发明的至少一个目的在于提供无线通信系统中的用于反馈信道质 量信号的方法、移动台、基站以及无线通信系统, 其能够至少克服上述现 有技术的部分缺点和不足,以有效地反馈针对多个载波分量的信道质量信 号。
[15] 为了实现上述目的,根据本发明的一个实施例,提供了一种无线通信 系统中的用于反馈信道质量信号的方法, 包括:接收由多个载波分量承载 的多个参考信号,根据接收的相对应的参考信号计算针对各个载波分量的 信道质量信号; 以及按预定顺序反馈针对各个载波分量的信道质量信号。
[16] 根据本发明的实施例,该信道质量信号可包括宽带信道质量信号和子 带信道质量信号。
[17] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且按预定顺序反馈针对各个载波分 量的信道质量信号可包括依次反馈针对第 1载波分量到第 N载波分量的 宽带信道质量信号,并且在各个宽带信道质量信号之间反馈针对第 1载波 分量到第 N载波分量的子带信道质量信号。
[18] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且按预定顺序反馈针对各个载波分 量的信道质量信号可包括依次反馈针对第 1载波分量到第 N载波分量的 宽带信道质量信号, 然后反馈针对第 1载波分量到第 N载波分量的子带 信 量信号。
[19] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且按预定顺序反馈针对各个载波分 量的信道质量信号可包括依次反馈针对第 1 载波分量的宽带信道质量信 号和子带信道质量信号直到针对第 N载波分量的宽带信道质量信号和子 带信道质量信号。
- -
[20] 根据本发明的实施例,该计算信道质量信号可包括在计算子带信道质 量信号时利用相对应的宽带信道质量信号中包含的预编码矩阵索引。
[21] 根据本发明的实施例,根据接收的相对应的参考信号计算信道质量信 号可包括在该信道质量信号的反馈时刻之前的计算时刻,根据最新接收到 的、针对与该信道质量信号相同的载波分量的参考信号来计算该信道质量 信号。
[22] 根据本发明的实施例,接收由多个载波分量承载的多个参考信号可包 括针对每一个载波分量,按照预定的参考信号周期接收由该载波分量承载 的参考信号。
[23] 根据本发明的实施例,该多个载波分量所承载的参考信号的参考信号 周期可相同。
[24] 根据本发明的实施例,针对各个载波分量的子带信道质量信号中的至 少两个的数目可互不相同。
[25] 根据本发明的实施例,反馈针对各个载波分量的信道质量信号可包括 通过 PUCCH反馈子带信道质量信号,以及通过 PUCCH或者 PUSCH反 馈宽带信道质量信号。
[26] 为了实现上述目的, 根据本发明的另一实施例, 提供了一种移动台, 包括: 参考信号接收单元,被配置以接收由多个载波分量承载的多个参考 信号;计算单元,被配置以根据接收的相对应的参考信号计算针对各个载 波分量的信道质量信号; 以及反馈单元,被配置以按预定顺序反馈针对各 个载波分量的信道质量信号。
[27] 根据本发明的实施例,该信道质量信号可包括宽带信道质量信号和子 带信道质量信号。
[28] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且该反馈单元可被配置以依次反馈 针对第 1载波分量到第 N载波分量的宽带信道质量信号, 并且在各个宽 带信道质量信号之间依次反馈针对第 1载波分量到第 N载波分量的子带 信 量信号。
[29] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且该反馈单元可被配置以依次反馈 针对第 1载波分量到第 N载波分量的宽带信道质量信号, 然后依次反馈 针对第 1载波分量到第 N载波分量的子带信道质量信号。
- -
[30] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且该反馈单元可被配置以依次反馈 针对第 1载波分量的宽带信道质量信号和子带信道质量信号直到针对第 N 载波分量的宽带信道质量信号和子带信道质量信号。
[31] 根据本发明的实施例,该计算单元可被配置以在计算子带信道质量信 号时利用相对应的宽带信道质量信号中包含的预编码矩阵索引。
[32] 根据本发明的实施例,该计算单元可被配置以在该信道质量信号的反 馈时刻之前的计算时刻,根据最新接收到的、针对与该信道质量信号相同 的载波分量的参考信号来计算该信道质量信号。
[33] 根据本发明的实施例,该参考信号接收单元可被配置以针对每一个载 波分量, 按照预定的参考信号周期接收由该载波分量承载的参考信号。
[34] 根据本发明的实施例,该多个载波分量所承载的参考信号的参考信号 周期可相同。
[35] 根据本发明的实施例,针对各个载波分量的子带信道质量信号中的至 少两个的数目可互不相同。
[36] 根据本发明的实施例,该反馈单元可被配置以通过 PUCCH反馈子带 信道质量信号, 以及通过 PUCCH或者 PUSCH反馈宽带信道质量信号。
[37] 为了实现上述目的,根据本发明的另一实施例,提供了一种基站, 包 括: 参考信号发送单元,被配置以发送由多个载波分量承载的多个参考信 号; 以及信 量信号接收单元,被配置以接收由同一移动台发送的针对 各个载波分量的信道质量信号。
[38] 根据本发明的实施例,该信道质量信号可包括宽带信道质量信号和子 带信道质量信号。
[39] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且该信道质量信号接收单元可被配 置以依次接收针对第 1载波分量到第 N载波分量的宽带信道质量信号, 并且在各个宽带信 量信号之间依次接收针对第 1载波分量到第 N载 波分量的子带信道质量信号。
[40] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且该信道质量信号接收单元可被配 置以依次接收针对第 1载波分量到第 N载波分量的宽带信道质量信号,
- - 然后依次接收针对第 1载波分量到第 N载波分量的子带信道质量信号。
[41] 根据本发明的实施例, 该多个载波分量可包括第 1 载波分量到第 N 个载波分量, N为大于 1的正整数, 并且该信道质量信号接收单元可被配 置以依次接收针对第 1 载波分量的宽带信道质量信号和子带信道质量信 号直到针对第 N载波分量的宽带信道质量信号和子带信道质量信号。
[42] 根据本发明的实施例,该参考信号发送单元可被配置以针对每一个载 波分量, 按照预定的参考信号周期发送由该载波分量承载的参考信号。
[43] 根据本发明的实施例,该多个载波分量所承载的参考信号的参考信号 周期可相同。
[44] 根据本发明的实施例,针对各个载波分量的子带信道质量信号中的至 少两个的数目可互不相同。
[45] 根据本发明的实施例, 该信道质量信号接收单元可被配置以在 PUCCH上接收子带信道质量信号, 以及在 PUCCH或者 PUSCH上接收 宽带信道质量信号。
[46] 为了实现上述目的,根据本发明的另一实施例,提供了一种无线通信 系统, 包括如上文所述的移动台和如上文所述的基站。
[47] 根据本发明的实施例,能够有效地反馈针对多个载波分量的信 量 信号。
[48] 通过以下结合附图对本发明的最佳实施例的详细说明,本发明的这些 以及其它的优点将更加明显。
附图说明
[49] 本发明可以通过参考下文中结合附图所给出的描述而得到更好的理 解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似 的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本 说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本 发明的原理和优点。 在附图中:
[50] 图 1示出了现有技术的 CQI反馈的示意图;
[51] 图 2 示出了根据本发明实施例一的示例一的无线通信系统中的用于 反馈信道质量信号的方法的示意图;
[52] 图 3 示出了根据本发明实施例一的示例二的无线通信系统中的用于 反馈信道质量信号的方法的示意图;
[53] 图 4 示出了根据本发明实施例一的示例三的无线通信系统中的用于 反馈信道质量信号的方法的示意图;
[54] 图 5 示出了根据本发明实施例一的示例四的无线通信系统中的用于 反馈信道质量信号的方法的示意图;
[55] 图 6 示出了根据本发明实施例一的示例五的无线通信系统中的用于 反馈信道质量信号的方法的示意图;
[56] 图 7 示出了根据本发明实施例一的无线通信系统中的用于反馈信道 质量信号的方法的流程图;
[57] 图 8示出了根据本发明实施例二的移动台的示意图;
[58] 图 9示出了根据本发明实施例三的基站的示意图; 以及
[59] 图 10示出了才艮据本发明实施例四的无线通信系统的示意图。
[60] 本领域技术人员应当理解,附图中的元件仅仅是为了简单和清楚起见 而示出的, 而且不一定是按比例绘制的。 例如, 附图中某些元件的尺寸可 能相对于其他元件放大了, 以便有助于提高对本发明实施例的理解。
具体实施方式
[61] 在下文中将结合附图对本发明的示范性实施例进行详细描述。为了清 楚和简明起见, 在说明书中并未描述实际实施方式的所有特征。 然而, 应 该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方 式的决定, 以便实现开发人员的具体目标, 例如, 符合与系统及业务相关 的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改 变。 此外, 还应该了解, 虽然开发工作有可能是非常复杂和费时的, 但对 得益于^开内容的本领域技术人员来说,这种开发工作仅仅是例行的任 务。
[62] 在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发 明,在附图和说明中仅仅描述了与根据本发明的方案密切相关的装置结构 和 /或处理步骤, 而省略了对与本发明关系不大的、 本领域普通技术人员 已知的部件和处理的表示和描述。
- -
[63] 例如,本发明主要涉及无线通信系统中的用于反馈信道质量信号的方 法以及使用该方法的移动台、基站和无线通信系统。 因此, 在此略去了对 与本发明关系不大的本领域普通技术人员已知的如上文所述的基站侧的 调制编码方式的选择、调制编码过程、调度算法、 以及无线数据收发过程 中的测距、 同步和编解码等过程的描述, 而只侧重于对与反馈信道质量信 号相关的过程进行描述。
[64] 图 7 示出了根据本发明实施例一的无线通信系统中的用于反馈信道 质量信号的方法的流程图。
[65] 如图 7所示,根据本发明实施例一的无线通信系统中的用于反馈信道 质量信号的方法从步骤 S701开始。
[66] 在步骤 S701中, 移动台接收基站发送的由多个载波分量承载的多个 参考信号。 例如, 由第一载波分量承载的针对第一载波分量的参考信号、 由第二载波分量承载的针对第二载波分量的参考信号, 等等。
[67] 然后, 在步骤 S702中, 移动台才据接收的相对应的参考信号来计算 针对各个载波分量的信道质量信号。例如,移动台根据针对第一载波分量 的参考信号来计算针对第一载波分量的信道质量信号,根据针对第二载波 分量的参考信号来计算针对第二载波分量的信道质量信号, 等等。
[68] 最后, 在步骤 S703中, 按预定顺序反馈针对各个载波分量的信道质 量信号。 例如, 先反馈针对第一载波分量的信道质量信号, 然后反馈针对 第二载波分量的信道质量信号, 等等。
[69] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的载波分量的数量、所采用的反馈针对各个载波 分量的信道质量信号的预定顺序,等等,其均应在本发明的权利要求所请 求保护的精神和范围之内。 本实施例中的参考信号可以是例如 CRS (公 共参考信号)。 本实施例中的信道质量信号可以是例如 CQI和 /或 PMI。
[70] 由上述可知,根据本发明实施例的无线通信系统中的用于反馈信道质 量信号的方法通过接收基站发送的由多个载波分量承载的多个参考信号 并且按预定顺序反馈针对各个载波分量的信道质量信号,而不是现有技术 中的接收由一个载波分量承载的在每个子帧均发送的参考信号并且仅反 馈针对该一个载波分量的信道质量信号,因此能够有效地反馈针对多个载 波分量的信道质量信号。
[71] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信道质
- - 量信号的方法中,所述信道质量信号可包括宽带信道质量信号和子带信道 质量信号。
[72] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信道质 量信号的方法中,所述多个载波分量所承载的参考信号的参考信号周期相 同。
[73] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信道质 量信号的方法中,针对各个载波分量的子带信道质量信号中的至少两个的 数目互不相同。
[74] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信 量信号的方法中, 步骤 S701可包括: 针对每一个载波分量, 按照预定的 参考信号周期接收由该载波分量承载的参考信号。
[75] 本领域的技术人员应当理解,可以根据实际应用的需求而灵活地设定 该预定的参考信号周期,以满足实际的无线通信系统的参考信号与信道质 量信号反馈之间的时延要求,其均应在本发明所请求保护的精神和范围之 内。
[76] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信道质 量信号的方法中, 步骤 S702可包括: 在计算子带信道质量信号时利用相 对应的宽带信道质量信号中包含的预编码矩阵索引。
[77] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信 量信号的方法中, 步骤 S702可包括: 在该信道质量信号的反馈时刻之前 的计算时刻,根据最新接收到的、针对与该信道质量信号相同的载波分量 的参考信号来计算该信道质量信号。
[78] 本领域的技术人员应当理解,可以根据实际应用的需求而灵活地设定 该反馈时刻和计算时刻,以满足实际的无线通信系统的参考信号与信道质 量信号反馈之间的时延要求,其均应在本发明所请求保护的精神和范围之 内。
[79] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信 量信号的方法中, 该多个载波分量可包括第 1载波分量到第 N个载波分 量, N为大于 1的正整数。 此外, 步骤 S703可包括: 依次反馈针对第 1 载波分量到第 N载波分量的宽带信道质量信号, 并且在各个宽带信道质 量信号之间反馈针对第 1载波分量到第 N载波分量的子带信道质量信号。
[80] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信道质
. . 量信号的方法中, 该多个载波分量可包括第 1载波分量到第 N个载波分 量, N为大于 1的正整数。 此外, 步骤 S703可包括: 依次反馈针对第 1 载波分量到第 N载波分量的宽带信道质量信号, 然后反馈针对第 1载波 分量到第 N载波分量的子带信道质量信号。
[81] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信道质 量信号的方法中, 该多个载波分量可包括第 1载波分量到第 N个载波分 量, N为大于 1的正整数。 此外, 步骤 S703可包括: 依次反馈针对第 1 载波分量的宽带信道质量信号和子带信道质量信号直到针对第 N载波分 量的宽带信道质量信号和子带信道质量信号。
[82] 本领域的技术人员应当理解, 上述的步骤 S703中的宽带信 量信 号和子带信道质量信号的反馈顺序仅仅是示例性的, 而不是限定性的。本 信道质量信号反馈和子带信道质量信号反馈^顺序,以满足实际的无线通 信系统的应用需求, 其均应在本发明所请求保护的精神和范围之内。
[83] 可选地,在根据本发明实施例一的无线通信系统中的用于反馈信道质 量信号的方法中, 步骤 S703可包括: 通过物理上行控制信道( PUCCH ) 反馈子带信道质量信号, 以及通过 PUCCH 或者物理上行共享信道 ( PUSCH )反馈宽带信道质量信号。 例如, 可以通过下行链路控制信令 的触发方式来利用 PUSCH反馈宽带信道质量信号。
[84] 下面通过几个示例来进一步说明根据本发明实施例一的无线通信系 统中的用于反馈信道质量信号的方法的不同的宽带信道质量信号反馈和 子带信道质量信号反馈的顺序的示例。
[85] 图 2 示出了根据本发明实施例一的示例一的无线通信系统中的用于 反馈信道质量信号的方法的示意图。
[86] 如图 2所示,针对第一载波分量和第二载波分量,按照预定的参考信 号周期分别接收由各个载波分量承载的参考信号。 将宽带 CQI反馈的周 期扩大一倍, 先反馈针对第一载波分量的宽带 CQI/PMI值, 再反馈针对 第二载波分量的宽带 CQI/PWI值(见图 2中的用 W标记的两个子帧)。 在这两个宽带 CQI/PWI反馈之间,先反馈针对第一载波分量的子带 CQI (见图 2中的用 C1B1和 C1B2标记的子帧), 再反馈针对第二载波分量 的子带 CQI (见图 2中的用 C2B1和 C2B2标记的子帧)。
[87] 如果载波分量的带宽不相同, 那么载波分量的 CQI/PMI的反馈量也
- - 不一样, 对应地, 可以有不同的 CQI/PMI反馈方式, 从而对应地有不同 的 CSI发送方式。
[88] 例如,如图 3所示,在图 3中示出了根据本发明实施例一的示例二的 无线通信系统中的用于反馈信道质量信号的方法的示意图。
[89] 如图 3所示,针对第一载波分量和第二载波分量,按照预定的参考信 号周期分别接收由各个载波分量承载的参考信号。 在图 3 中, Np为子带 CQI的反馈周期, H为两个宽带 CQI反馈之间的间隔。 假定第一载波分 量的带宽为 5 MHz,第二载波分量的带宽为 1.4 MHz,则这两个载波分量 分别对应于两个带宽部分和一个带宽部分。由于每个带宽部分需要反馈一 个最佳的子带的 CQI, 所以在一个周期中, 针对第一载波分量需要反馈 两个子带 CQI, 而针对第二载波分量只需要反馈一个子带 CQI。
[90] 因此,如图 3所示, C1W是针对第一载波分量的宽带 CQI反馈, C2W 是针对第二载波分量的宽带 CQI反馈。 C1B1是针对第一载波分量的第一 带宽部分的子带 CQI反馈, C1B2是针对第一载波分量的第二带宽部分的 子带 CQI反馈, C2B1是针对第二载波分量的带宽部分的子带 CQI反馈。
[91] 此外, 与载波聚合的载波分量的数目相对应地, 可以有不同的 CQI/PMI 的反馈方式。 例如, 与两个载波分量相对应的反馈方式与三个 载波分量相对应的反馈方式不相同。
[92] 例如,图 2和图 4分别示出了相*据本发明实施例一的示例一和示例三 的无线通信系统中的用于反馈信道质量信号的方法的示意图。
[93] 在才据本发明实施例一的示例一中,如图 2所示,针对第一载波分量 和第二载波分量,按照预定的参考信号周期分别接收由各个载波分量承载 的参考信号。这两个载波分量各对应于两个带宽部分。 由于每个带宽部分 需要反馈一个最佳的子带的 CQI, 所以在一个周期中, 针对第一载波分 量需要反馈两个子带 CQI, 并且针对第二载波分量需要反馈两个子带
[94] 因此, 在图 2中, C1W是针对第一载波分量的宽带 CQI反馈, C2W 是针对第二载波分量的宽带 CQI反馈。 C1B1是针对第一载波分量的第一 带宽部分的子带 CQI反馈, C1B2是针对第一载波分量的第二带宽部分的 子带 CQI反馈, C2B1是针对第二载波分量的第一带宽部分的子带 CQI 反馈, C2B2是针对第二载波分量的第二带宽部分的子带 CQI反馈。
[95] 在根据本发明实施例一的示例三中,如图 4所示,针对第一载波分量、
- - 第二载波分量和第三载波分量,按照预定的参考信号周期分别接收由各个 载波分量承载的参考信号。这三个载波分量各对应于两个带宽部分。 由于 每个带宽部分需要反馈一个最佳的子带的 CQI, 所以在一个周期中, 针 对第一载波分量需要反馈两个子带 CQI, 针对第二载波分量需要反馈两 个子带 CQI, 并且针对第三载波分量需要反馈两个子带 CQI。
[96] 因此, 在图 4中, C1W是针对第一载波分量的宽带 CQI反馈, C2W 是针对第二载波分量的宽带 CQI反馈, C3W是针对第三载波分量的宽带 CQI反馈。 C1B1是针对第一载波分量的第一带宽部分的子带 CQI反馈, C1B2是针对第一载波分量的第二带宽部分的子带 CQI反馈, C2B1是针 对第二载波分量的第一带宽部分的子带 CQI反馈, C2B2是针对第二载波 分量的第二带宽部分的子带 CQI反馈, C3B1是针对第三载波分量的第一 带宽部分的子带 CQI反馈, C3B2是针对第三载波分量的第二带宽部分的 子带 CQI反馈。
[97] 此外, 如果在实际的无线通信系统设计中, 对子带的 CQI的计算中 需要使用宽带 CQI/PMI反馈中包含的信息(例如宽带 PMI信息), 那么 为了在使用子带 CQI调度的过程中对数据进行预编码时使用到该 PMI, 则应该在反馈子带 CQI反馈之前反馈所有宽带 CQI/PMI反馈。
[98] 例如,图 5示出了根据本发明实施例一的示例四的无线通信系统中的 用于反馈信道质量信号的方法的示意图。
[99] 如图 5所示,针对第一载波分量和第二载波分量,按照预定的参考信 号周期分别接收由各个载波分量承载的参考信号。这两个载波分量各对应 于两个带宽部分。 由于每个带宽部分需要反馈一个最佳的子带的 CQI, 所以在一个周期中, 针对第一载波分量需要反馈两个子带 CQI, 并且针 对第二载波分量需要反馈两个子带 CQI。 此外, 如上文所述, 在发送子 带 CQI反馈之前发送所有宽带 CQI/PMI反馈。
[100] 因此, 在图 5中, C1W是针对第一载波分量的宽带 CQI反馈, C2W 是针对第二载波分量的宽带 CQI反馈, 并且在发送子带 CQI反馈之前发 送所有的宽带 CQI/PMI反馈 C1W和 C2W。 此外, C1B1是针对第一载 波分量的第一带宽部分的子带 CQI反馈, C1B2是针对第一载波分量的第 二带宽部分的子带 CQI反馈, C2B1是针对第二载波分量的第一带宽部分 的子带 CQI反馈, C2B2是针对第二载波分量的第二带宽部分的子带 CQI 反债。
- -
[101] 此外, 例如, 如果 CSI反馈周期为 5 ms, 那么为了使得 CQI反馈更 为准确, 可以适当地改变针对各个载波分量的子带 CQI反馈的顺序。 例 如, 可以先反馈针对第一载波分量的子带 CQI, 然后再反馈针对第二载 波分量的子带 CQI。 此外, 也可以交替轮流地反馈针对各个载波分量的 子带 CQI。 本领域的技术人员应当理解, 可以根据实际应用的需求而灵 活地选择针对各个载波分量的子带 CQI反馈的顺序, 其均应在本发明所 要求保护的精神和范围之内。
[102] 例如, 如图 2所示, 先反馈针对第一载波分量的子带 CQI ( C1B1、 C1B2 ), 然后再反馈针对第二载波分量的子带 CQI ( C2B1、 C2B2 )。
[103] 例如,图 6示出了根据本发明实施例一的示例五的无线通信系统中的 用于反馈信道质量信号的方法的示意图。
[104] 如图 6所示,针对第一载波分量和第二载波分量,按照预定的参考信 号周期分别接收由各个载波分量承载的参考信号。这两个载波分量各对应 于两个带宽部分。 由于每个带宽部分需要反馈一个最佳的子带的 CQI, 所以在一个周期中, 针对第一载波分量需要反馈两个子带 CQI, 并且针 对第二载波分量需要反馈两个子带 CQI。 此外, 如上文所述, 交替轮流 地反馈针对各个载波分量的子带 CQI。
[105] 因此, 在图 6中, C1W是针对第一载波分量的宽带 CQI反馈, C2W 是针对第二载波分量的宽带 CQI反馈。 此外, 在反馈 C1W和 C2W之间 的间隔中交替轮流地进行针对各载波分量的子带 CQI反馈。 其中, C1B1 是针对第一载波分量的第一带宽部分的子带 CQI反馈, C2B1是针对第二 载波分量的第一带宽部分的子带 CQI反馈, C1B2是针对第一载波分量的 第二带宽部分的子带 CQI反馈, C2B2是针对第二载波分量的第二带宽部 分的子带 CQI反馈。
[106] 也就是说,如图 6所示,先进行针对第一载波分量的第一带宽部分的 子带 CQI反馈,再进行针对第二载波分量的第一带宽部分的子带 CQI反 馈, 然后进行针对第一载波分量的第二带宽部分的子带 CQI反馈, 随后 进行针对第二载波分量的第二带宽部分的子带 CQI反馈, 等等。
[107] 本领域的技术人员应当理解,上述的根据本发明的实施例一的示例一 至示例五中的宽带信道质量信号)和子带信道质量信号的反馈顺序仅仅是 示例性的, 而不是限定性的。本领域的技术人员完全可以根据实际应用的 需求而灵活地设定不同的宽带信道质量信号反馈和子带信道质量信号反
- - 馈的顺序, 以满足实际的无线通信系统的应用需求,其均应在本发明所请 求保护的精神和范围之内。
[108] 此外, 需要说明的是, 虽然以上结合图 7所示的流程图对根据本发明 实施例一的无线通信系统中的用于反馈信道质量信号的方法进行了描述, 但是本领域技术人员应当理解, 图 7所示的流程图仅仅是示例性的, 而不 是对本发明的范围的限制, 本领域技术人员完全可以根据实际需要对图 8 所示的流程图进行变型或修改。
[109] 还需要指出的是,执行上述图 7所示的流程图中的系列处理的步骤时 可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间 顺序执行。 某些步骤可以并行或彼此独立地执行。
[110] 根据本发明的实施例,还提供了使用根据本发明实施例的无线通信系 统中的用于反馈信道质量信号的方法的基站、 移动台和无线通信系统。
[111] 图 8示出了根据本发明实施例二的移动台 800的示意图。
[112] 如图 8所示,根据本发明实施例二的移动台 800包括参考信号接收单 元 801、 计算单元 802和反馈单元 803。
[113] 参考信号接收单元 801 被配置以接收由多个载波分量承载的多个参 考信号。
[114] 计算单元 802被配置以根据接收的相对应的参考信号计算针对各个 载波分量的信道质量信号。
[115] 反馈单元 803被配置以按预定顺序反馈针对各个载波分量的信道质 量信号。
[116] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的载波分量的数量、所采用的反馈针对各个载波 分量的信道质量信号的预定顺序,等等,其均应在本发明的权利要求所请 求保护的精神和范围之内。
[117] 根据本发明的实施例二的移动台 800 中的各个单元的具体实现可以 参照上文所描述的根据本发明的实施例一的无线通信系统中的用于反馈 信道质量信号的方法的各个步骤的具体实现。 因此, 为了说明书的简洁起 见, 在此就不再对上述各个单元的具体实现进行详细描述了。
[118] 由上述可知,根据本发明实施例的移动台通过接收基站发送的由多个 载波分量承载的多个参考信号并且按预定顺序反馈针对各个载波分量的
- - 信道质量信号,而不是现有技术中的接收由一个载波分量承载的在每个子 帧均发送的参考信号并且仅反馈针对该一个载波分量的信道质量信号,因 此能够有效地反馈针对多个载波分量的信道质量信号。
[119] 可选地,在根据本发明实施例的移动台中,该信道质量信号可包括宽 带信道质量信号和子带信道质量信号。
[120] 可选地,在根据本发明实施例的移动台中,该多个载波分量可包括第 1载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该反馈单元 可被配置以依次反馈针对第 1载波分量到第 N载波分量的宽带信道质量 信号,并且在各个宽带信道质量信号之间依次反馈针对第 1载波分量到第 N载波分量的子带信道质量信号。
[121] 可选地,在根据本发明实施例的移动台中,该多个载波分量可包括第 1载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该反馈单元 可被配置以依次反馈针对第 1载波分量到第 N载波分量的宽带信道质量 信号, 然后依次反馈针对第 1载波分量到第 N载波分量的子带信道质量 信号。
[122] 可选地,在根据本发明实施例的移动台中,该多个载波分量可包括第 1载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该反馈单元 可被配置以依次反馈针对第 1 载波分量的宽带信道质量信号和子带信道 质量信号直到针对第 N载波分量的宽带信道质量信号和子带信道质量信 号。
[123] 可选地,在根据本发明实施例的移动台中,该计算单元可被配置以在 计算子带信道质量信号时利用相对应的宽带信道质量信号中包含的预编 码矩阵索引。
[124] 可选地,在根据本发明实施例的移动台中,该计算单元可被配置以在 该信道质量信号的反馈时刻之前的计算时刻,根据最新接收到的、针对与 该信道质量信号相同的载波分量的参考信号来计算该信道质量信号。
[125] 可选地,在根据本发明实施例的移动台中,该参考信号接收单元可被 配置以针对每一个载波分量,按照预定的参考信号周期接收由该载波分量 承载的参考信号。
[126] 可选地,在根据本发明实施例的移动台中,该多个载波分量所承载的 参考信号的参考信号周期可相同。
[127] 可选地,在根据本发明实施例的移动台中,针对各个载波分量的子带
- - 信道质量信号中的至少两个的数目可互不相同。
[128] 可选地,在根据本发明实施例的移动台中,该反馈单元可被配置以通 过 PUCCH反馈子带信道质量信号,以及通过 PUCCH或者 PUSCH反馈 宽带信道质量信号。
[129] 本领域的技术人员应当理解,上述的根据本发明的实施例二的移动台 900所采用的预定的参考信号周期、 反馈时刻、 计算时刻、 宽带信道质量 信号( CQI )和子带信道质量信号( CQI )的反馈顺序等仅仅是示例性的, 而不是限定性的。本领域的技术人员完全可以根据实际应用的需求而灵活 地设定不同的预定的参考信号周期、 反馈时刻、 计算时刻、 宽带 CQI反 馈和子带 CQI反馈的顺序等, 以满足实际的无线通信系统的应用需求, 其均应在本发明所请求保护的精神和范围之内。
[130] 此外, 需要说明的是, 虽然以上结合图 8所示的示意图对根据本实施 例的移动台 800进行了描述,但是本领域技术人员应当理解, 图 8所示的 示意图仅仅是示例性的, 而不是对本发明的范围的限制,本领域技术人员 完全可以根据实际需要对图 8所示的示意图进行变型或修改。
[131] 图 9示出了根据本发明实施例三的基站 900的示意图。
[132] 如图 9所示,根据本发明实施例三的基站 900包括参考信号发送单元 901和信道质量信号接收单元 902。
[133] 参考信号发送单元 901 被配置以发送由多个载波分量承载的多个参 考信号。
[134] 信 量信号接收单元 902被配置以接收由同一移动台发送的针对 各个载波分量的信道质量信号。
[135] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的载波分量的数量、所采用的接收针对各个载波 分量的信道质量信号的顺序,等等,其均应在本发明的权利要求所请求保 护的精神和范围之内。
[136] 根据本发明的实施例三的基站 900 中的各个单元的具体实现可以参 照上文所描述的根据本发明的实施例一的无线通信系统中的用于反馈信 道质量信号的方法的各个步骤的具体实现。因此,为了说明书的简洁起见, 在此就不再对上述各个单元的具体实现进行详细描述了。
[137] 由上述可知,根据本发明实施例的基站通过发送由多个载波分量承载
- - 的多个参考信号并且接收由同一移动台发送的针对各个载波分量的信道 质量信号,而不是现有技术中的发送一个载波分量承载的在每个子帧均发 送的参考信号并且仅接收针对该一个载波分量的信道质量信号,因此能够 有效地接收来自同一移动台的针对多个载波分量的信道质量信号的反馈。
[138] 可选地,在根据本发明实施例的基站中,该信道质量信号可包括宽带 信道质量信号和子带信道质量信号。
[139] 可选地, 在根据本发明实施例的基站中, 该多个载波分量可包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该信道质量 信号接收单元可被配置以依次接收针对第 1载波分量到第 N载波分量的 宽带信道质量信号, 并且在各个宽带信道质量信号之间依次接收针对第 1 载波分量到第 N载波分量的子带信道质量信号。
[140] 可选地, 在根据本发明实施例的基站中, 该多个载波分量可包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该信道质量 信号接收单元可被配置以依次接收针对第 1载波分量到第 N载波分量的 宽带信道质量信号, 然后依次接收针对第 1载波分量到第 N载波分量的 子带信道质量信号。
[141] 可选地, 在根据本发明实施例的基站中, 该多个载波分量可包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该信道质量 信号接收单元可被配置以依次接收针对第 1 载波分量的宽带信道质量信 号和子带信道质量信号直到针对第 N载波分量的宽带信道质量信号和子 带信道质量信号。
[142] 可选地,在根据本发明实施例的基站中,该参考信号发送单元可被配 置以针对每一个载波分量,按照预定的参考信号周期发送由该载波分量承 载的参考信号。
[143] 可选地,在根据本发明实施例的基站中,该多个载波分量所承载的参 考信号的参考信号周期可相同。
[144] 可选地,在根据本发明实施例的基站中,针对各个载波分量的子带信 道质量信号中的至少两个的数目可互不相同。
[145] 可选地,在根据本发明实施例的基站中,该信道质量信号接收单元可 被配置以在 PUCCH 上接收子带信道质量信号, 以及在 PUCCH 或者 PUSCH上接收宽带信道质量信号。
[146] 本领域的技术人员应当理解, 上述的根据本发明的实施例三的基站
- -
1000 所采用的预定的参考信号周期、 接收宽带信道质量信号和子带信道 质量信号的顺序等仅仅是示例性的, 而不是限定性的。本领域的技术人员 接收宽带信道质量信号反馈 ^子带信道质量信号的顺序等,以满足实际的 无线通信系统的应用需求, 其均应在本发明所请求保护的精神和范围之 内。
[147] 此外, 需要说明的是, 虽然以上结合图 9所示的示意图对才据本实施 例的基站 900进行了描述,但是本领域技术人员应当理解, 图 9所示的示 意图仅仅是示例性的, 而不是对本发明的范围的限制,本领域技术人员完 全可以根据实际需要对图 9所示的示意图进行变型或修改。
[148] 图 10示出了才据本发明实施例四的无线通信系统 1000的示意图。
[149] 如图 10所示, 无线通信系统 1000包括移动台 1004和基站 1007。
[150] 移动台 1004包括参考信号接收单元 1001、 计算单元 1002和反馈单 元 1003。 参考信号接收单元 1001被配置以接收由多个载波分量承载的多 个参考信号。 计算单元 1002被配置以根据接收的相对应的参考信号计算 针对各个载波分量的信道质量信号。 反馈单元 1003被配置以按预定顺序 反馈针对各个载波分量的信道质量信号。
[151] 基站 1007 包括参考信号发送单元 1005 和信道质量信号接收单元 1006。 参考信号发送单元 1005被配置以发送由多个载波分量承载的多个 参考信号。 信 量信号接收单元 1006被配置以接收由同一移动台发送 的针对各个载波分量的信道质量信号。
[152] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的载波分量的数量、所采用的反馈针对各个载波 分量的信道质量信号的预定顺序,等等,其均应在本发明的权利要求所请 求保护的精神和范围之内。
[153] 根据本发明的实施例四的无线通信系统 1000中的各个单元的具体实 现可以参照上文所描述的根据本发明的实施例一的无线通信系统中的用 于反馈信道质量信号的方法的各个步骤的具体实现。 因此, 为了说明书的 简洁起见, 在此就不再对上述各个单元的具体实现进行详细描述了。
[154] 由上述可知, 根据本发明实施例的无线通信系统 1000 中的移动台 1004通过接收基站 1007发送的由多个载波分量承载的多个参考信号并且 按预定顺序反馈针对各个载波分量的信道质量信号,而不是现有技术中的
- - 接收由一个载波分量承载的在每个子帧均发送的参考信号并且仅反馈针 对该一个载波分量的信道质量信号,因此能够有效地反馈针对多个载波分 量的信道质量信号。
[155] 可选地,在根据本发明实施例的移动台中,该信道质量信号可包括宽 带信道质量信号和子带信道质量信号。
[156] 可选地,在根据本发明实施例的移动台中,该多个载波分量可包括第 1载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该反馈单元 可被配置以依次反馈针对第 1载波分量到第 N载波分量的宽带信道质量 信号,并且在各个宽带信道质量信号之间依次反馈针对第 1载波分量到第 N载波分量的子带信道质量信号。
[157] 可选地,在根据本发明实施例的移动台中,该多个载波分量可包括第 1载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该反馈单元 可被配置以依次反馈针对第 1载波分量到第 N载波分量的宽带信道质量 信号, 然后依次反馈针对第 1载波分量到第 N载波分量的子带信道质量 信号。
[158] 可选地,在根据本发明实施例的移动台中,该多个载波分量可包括第 1载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该反馈单元 可被配置以依次反馈针对第 1 载波分量的宽带信道质量信号和子带信道 质量信号直到针对第 N载波分量的宽带信道质量信号和子带信道质量信 号。
[159] 可选地,在根据本发明实施例的移动台中,该计算单元可被配置以在 计算子带信道质量信号时利用相对应的宽带信道质量信号中包含的预编 码矩阵索引。
[160] 可选地,在根据本发明实施例的移动台中,该计算单元可被配置以在 该信道质量信号的反馈时刻之前的计算时刻,根据最新接收到的、针对与 该信道质量信号相同的载波分量的参考信号来计算该信道质量信号。
[161] 可选地,在根据本发明实施例的移动台中,该参考信号接收单元可被 配置以针对每一个载波分量,按照预定的参考信号周期接收由该载波分量 承载的参考信号。
[162] 可选地,在根据本发明实施例的移动台中,该多个载波分量所承载的 参考信号的参考信号周期可相同。
[163] 可选地,在根据本发明实施例的移动台中,针对各个载波分量的子带
- - 信道质量信号中的至少两个的数目可互不相同。
[164] 可选地,在根据本发明实施例的移动台中,该反馈单元可被配置以通 过 PUCCH反馈子带信道质量信号,以及通过 PUCCH或者 PUSCH反馈 宽带信道质量信号。
[165] 可选地,在根据本发明实施例的基站中,该信道质量信号可包括宽带 信道质量信号和子带信道质量信号。
[166] 可选地, 在根据本发明实施例的基站中, 该多个载波分量可包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该信道质量 信号接收单元可被配置以依次接收针对第 1载波分量到第 N载波分量的 宽带信道质量信号, 并且在各个宽带信道质量信号之间依次接收针对第 1 载波分量到第 N载波分量的子带信道质量信号。
[167] 可选地, 在根据本发明实施例的基站中, 该多个载波分量可包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该信道质量 信号接收单元可被配置以依次接收针对第 1载波分量到第 N载波分量的 宽带信道质量信号, 然后依次接收针对第 1载波分量到第 N载波分量的 子带信道质量信号。
[168] 可选地, 在根据本发明实施例的基站中, 该多个载波分量可包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数。 此外, 该信道质量 信号接收单元可被配置以依次接收针对第 1 载波分量的宽带信道质量信 号和子带信道质量信号直到针对第 N载波分量的宽带信道质量信号和子 带信道质量信号。
[169] 可选地,在根据本发明实施例的基站中,该参考信号发送单元可被配 置以针对每一个载波分量,按照预定的参考信号周期发送由该载波分量承 载的参考信号。
[170] 可选地,在根据本发明实施例的基站中,该多个载波分量所承载的参 考信号的参考信号周期可相同。
[171] 可选地,在根据本发明实施例的基站中,针对各个载波分量的子带信 道质量信号中的至少两个的数目可互不相同。
[172] 可选地,在根据本发明实施例的基站中,该信道质量信号接收单元可 被配置以在 PUCCH 上接收子带信道质量信号, 以及在 PUCCH 或者 PUSCH上接收宽带信道质量信号。
- -
[173] 此外, 需要说明的是, 虽然以上结合图 10所示的示意图对根据本实 施例的无线通信系统 1000进行了描述, 但是本领域技术人员应当理解, 图 10所示的示意图仅仅是示例性的, 而不是对本发明的范围的限制, 本 领域技术人员完全可以根据实际需要对图 10所示的示意图进行变型或修 改。
[174] 虽然已经详细说明了本发明及其优点,但是应当理解在不脱离由所附 的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替 代和变换。
[175] 最后, 还需要说明的是, 在本文中, 诸如第一和第二等之类的关系术 语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定 要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而 且, 术语"包括"、 "包含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多限制的情况下, 由语句"包括一 个 ...... "限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者 设备中还存在另外的相同要素。
[176] 以上虽然结合附图详细描述了本发明的实施例,但 当明白,上面 所描述的实施方式只是用于说明本发明, 而并不构成对本发明的限制。对 于本领域的技术人员来说,可以在不偏离本发明的精神和范围的情况下对 上述实施方式作出各种修改和变更。 因此,本发明的范围仅由所附的权利 要求及其等效内容来限定。
Claims
1. 一种无线通信系统中的用于反馈信道质量信号的方法, 包括: 接收由多个载波分量承载的多个参考信号,
根据接收的相对应的参考信号计算针对各个载波分量的信道质量信 号; 以及
按预定顺序反馈针对各个载波分量的信道质量信号。
2.如权利要求 1所述的方法, 其中所述信道质量信号包括宽带信道 质量信号和子带信道质量信号。
3.如权利要求 2所述的方法, 其中所述多个载波分量包括第 1载波 分量到第 N个载波分量, N为大于 1的正整数, 并且
所述按预定顺序反馈针对各个载波分量的信道质量信号包括依次反 馈针对第 1载波分量到第 N载波分量的宽带信道质量信号, 并且在各个 宽带信道质量信号之间反馈针对第 1载波分量到第 N载波分量的子带信 量信号。
4.如权利要求 2所述的方法, 其中所述多个载波分量包括第 1载波 分量到第 N个载波分量, N为大于 1的正整数, 并且
所述按预定顺序反馈针对各个载波分量的信道质量信号包括依次反 馈针对第 1载波分量到第 N载波分量的宽带信道质量信号, 然后反馈针 对第 1载波分量到第 N载波分量的子带信道质量信号。
5.如权利要求 2所述的方法, 其中所述多个载波分量包括第 1载波 分量到第 N个载波分量, N为大于 1的正整数, 并且
所述按预定顺序反馈针对各个载波分量的信道质量信号包括依次反 馈针对第 1 载波分量的宽带信道质量信号和子带信道质量信号直到针对 第 N载波分量的宽带信道质量信号和子带信道质量信号。
6.如权利要求 4或 5所述的方法, 其中所述计算信 量信号包括 在计算子带信道质量信号时利用相对应的宽带信道质量信号中包含的预 编码矩阵索引。
7.如权利要求 1所述的方法, 其中根据接收的相对应的参考信号计 算信道质量信号包括在该信道质量信号的反馈时刻之前的计算时刻,根据 最新接收到的、针对与该信道质量信号相同的载波分量的参考信号来计算 该信道质量信号。
8.如权利要求 1所述的方法, 其中接收由多个载波分量承载的多个 参考信号包括针对每一个载波分量,按照预定的参考信号周期接收由该载 波分量承载的参考信号。
9.如权利要求 8所述的方法, 其中所述多个载波分量所承载的参考 信号的参考信号周期相同。
10. 如权利要求 2所述的方法, 其中针对各个载波分量的子带信道质 量信号中的至少两个的数目互不相同。
11.如权利要求 2所述的方法, 其中反馈针对各个载波分量的信道质 量信号包括通过 PUCCH反馈子带信道质量信号,以及通过 PUCCH或者 PUSCH反馈宽带信道质量信号。
12. 一种移动台, 包括:
参考信号接收单元,被配置以接收由多个载波分量承载的多个参考信 号;
计算单元,被配置以根据接收的相对应的参考信号计算针对各个载波 分量的信道质量信号; 以及
反馈单元,被配置以按预定顺序反馈针对各个载波分量的信道质量信 号。
13. 如权利要求 12所述的移动台, 其中所述信道质量信号包括宽带 信道质量信号和子带信道质量信号。
14. 如权利要求 13所述的移动台, 其中所述多个载波分量包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数, 并且
所述反馈单元被配置以依次反馈针对第 1载波分量到第 N载波分量 的宽带信道质量信号,并且在各个宽带信道质量信号之间依次反馈针对第 1载波分量到第 N载波分量的子带信道质量信号。
15. 如权利要求 13所述的移动台, 其中所述多个载波分量包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数, 并且
所述反馈单元被配置以依次反馈针对第 1载波分量到第 N载波分量 的宽带信道质量信号, 然后依次反馈针对第 1载波分量到第 N载波分量 的子带信道质量信号。
16. 如权利要求 13所述的移动台, 其中所述多个载波分量包括第 1 载波分量到第 N个载波分量, N为大于 1的正整数, 并且
所述反馈单元被配置以依次反馈针对第 1 载波分量的宽带信道质量 信号和子带信道质量信号直到针对第 N载波分量的宽带信道质量信号和 子带信道质量信号。
17. 如权利要求 15或 16所述的移动台, 其中所述计算单元被配置以 在计算子带信道质量信号时利用相对应的宽带信道质量信号中包含的预 编码矩阵索引。
18. 如权利要求 12所述的移动台, 其中所述计算单元被配置以在该 信道质量信号的反馈时刻之前的计算时刻,根据最新接收到的、针对与该 信道质量信号相同的载波分量的参考信号来计算该信道质量信号。
19. 如权利要求 12所述的移动台, 其中所述参考信号接收单元被配 置以针对每一个载波分量,按照预定的参考信号周期接收由该载波分量承 载的参考信号。
20. 如权利要求 19所述的移动台, 其中所述多个载波分量所承载的 参考信号的参考信号周期相同。
21. 如权利要求 13所述的移动台, 其中针对各个载波分量的子带信 道质量信号中的至少两个的数目互不相同。
22. 如权利要求 13所述的移动台, 其中所述反馈单元被配置以通过 PUCCH反馈子带信道质量信号, 以及通过 PUCCH或者 PUSCH反馈宽 带信道质量信号。
23. 一种基站, 包括:
参考信号发送单元,被配置以发送由多个载波分量承载的多个参考信 号; 以及
信 量信号接收单元,被配置以接收由同一移动台发送的针对各个 载波分量的信道质量信号。
24. 如权利要求 23所述的基站, 其中所述信道质量信号包括宽带信 道质量信号和子带信道质量信号。
25. 如权利要求 24所述的基站, 其中所述多个载波分量包括第 1载 波分量到第 N个载波分量, N为大于 1的正整数, 并且
所述信道质量信号接收单元被配置以依次接收针对第 1 载波分量到 第 N载波分量的宽带信道质量信号, 并且在各个宽带信道质量信号之间 依次接收针对第 1载波分量到第 N载波分量的子带信道质量信号。
26. 如权利要求 24所述的基站, 其中所述多个载波分量包括第 1载 波分量到第 N个载波分量, N为大于 1的正整数, 并且
所述信道质量信号接收单元被配置以依次接收针对第 1 载波分量到 第 N载波分量的宽带信道质量信号, 然后依次接收针对第 1载波分量到 第 N载波分量的子带信道质量信号。
27. 如权利要求 24所述的基站, 其中所述多个载波分量包括第 1载 波分量到第 N个载波分量, N为大于 1的正整数, 并且
所述信道质量信号接收单元被配置以依次接收针对第 1 载波分量的 宽带信道质量信号和子带信道质量信号直到针对第 N载波分量的宽带信 道质量信号和子带信道质量信号。
28. 如权利要求 23所述的基站, 其中所述参考信号发送单元被配置 以针对每一个载波分量,按照预定的参考信号周期发送由该载波分量承载 的参考信号。
29. 如权利要求 28所述的基站, 其中所述多个载波分量所承载的参 考信号的参考信号周期相同。
30. 如权利要求 24所述的基站, 其中针对各个载波分量的子带信道 质量信号中的至少两个的数目互不相同。
31. 如权利要求 24所述的基站, 其中所述信道质量信号接收单元被 配置以在 PUCCH上接收子带信道质量信号,以及在 PUCCH或者 PUSCH 上接收宽带信道质量信号。
32. 一种无线通信系统, 包括如权利要求 12-22之一所述的移动台和 如权利要求 23-31之一所述的基站。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/073714 WO2011153691A1 (zh) | 2010-06-09 | 2010-06-09 | 用于反馈信道质量信号的方法、移动台、基站和无线通信系统 |
CN2010800644051A CN102771075A (zh) | 2010-06-09 | 2010-06-09 | 用于反馈信道质量信号的方法、移动台、基站和无线通信系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/073714 WO2011153691A1 (zh) | 2010-06-09 | 2010-06-09 | 用于反馈信道质量信号的方法、移动台、基站和无线通信系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011153691A1 true WO2011153691A1 (zh) | 2011-12-15 |
Family
ID=45097449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/073714 WO2011153691A1 (zh) | 2010-06-09 | 2010-06-09 | 用于反馈信道质量信号的方法、移动台、基站和无线通信系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102771075A (zh) |
WO (1) | WO2011153691A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029700A1 (fr) * | 2006-09-04 | 2008-03-13 | Sharp Kabushiki Kaisha | Dispositif de terminal de communication, dispositif de commande de communication, système de communication et procédé de communication |
CN101253709A (zh) * | 2005-08-29 | 2008-08-27 | 三星电子株式会社 | 无线通信系统中反馈信道质量信息的设备和方法及使用该信息的调度设备和方法 |
CN101267384A (zh) * | 2007-03-13 | 2008-09-17 | 松下电器产业株式会社 | 减少自适应多数据流传输系统中反馈信息量的方法和装置 |
-
2010
- 2010-06-09 WO PCT/CN2010/073714 patent/WO2011153691A1/zh active Application Filing
- 2010-06-09 CN CN2010800644051A patent/CN102771075A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253709A (zh) * | 2005-08-29 | 2008-08-27 | 三星电子株式会社 | 无线通信系统中反馈信道质量信息的设备和方法及使用该信息的调度设备和方法 |
WO2008029700A1 (fr) * | 2006-09-04 | 2008-03-13 | Sharp Kabushiki Kaisha | Dispositif de terminal de communication, dispositif de commande de communication, système de communication et procédé de communication |
CN101267384A (zh) * | 2007-03-13 | 2008-09-17 | 松下电器产业株式会社 | 减少自适应多数据流传输系统中反馈信息量的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102771075A (zh) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210368520A1 (en) | Method and device for transmitting, by terminal, uplink control information in communication system | |
US11019522B2 (en) | Periodic channel state information reporting for time division duplex (TDD) carrier aggregation systems | |
EP3455988B1 (en) | Multi-resolution csi feedback | |
US9258048B2 (en) | Method and terminal for feeding back channel state information | |
CN110912589B (zh) | 在移动通信系统中发送和接收反馈信息的方法和装置 | |
CN110178323A (zh) | 用于在移动通信系统中上报半永久性信道状态的方法和设备 | |
CN102055570B (zh) | 半静态调度数据的传输方法及装置 | |
WO2011160451A1 (zh) | 信道状态信息的反馈方法及终端 | |
HUE027676T2 (en) | CSI Report for CSI-RS Resources | |
WO2012149892A1 (zh) | 信道状态信息上报方法及装置 | |
WO2011129585A2 (ko) | 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치 | |
CN103283166A (zh) | 在lte-a tdd系统中带信道选择的pucch格式1b的资源分配 | |
WO2012068880A1 (zh) | 一种信道状态信息反馈方法及装置 | |
WO2012130051A1 (zh) | 一种用于实现链路自适应的方法、网络设备及终端设备 | |
WO2018012850A1 (ko) | 다중 안테나 통신 시스템에서 단말이 비주기적 하이브리드 csi을 보고하는 방법 및 이를 위한 장치 | |
WO2020155119A1 (zh) | 上报信道状态信息的方法和装置 | |
WO2010121502A1 (zh) | 一种非周期信道质量信息发送方法 | |
US20230269612A1 (en) | Ultra-low latency csi timeline for urllc csi reporting | |
CN102291225B (zh) | 一种信道状态信息周期反馈方法及装置 | |
WO2012022202A1 (zh) | 信道状态信息的反馈方法及装置 | |
CN102752033B (zh) | 移动通信系统中多用户信道质量的确定方法及其用户终端和基站 | |
WO2012058949A1 (zh) | 一种缓存区状态报告反馈方法及装置 | |
CN103748820B (zh) | 上报信道状态信息、确定调制编码方式的方法及装置 | |
WO2011140982A1 (zh) | 反馈及获取多个cc的csi的方法、ue及基站 | |
WO2011153691A1 (zh) | 用于反馈信道质量信号的方法、移动台、基站和无线通信系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080064405.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10852684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10852684 Country of ref document: EP Kind code of ref document: A1 |