WO2011152180A1 - Laser module and method for producing same - Google Patents

Laser module and method for producing same Download PDF

Info

Publication number
WO2011152180A1
WO2011152180A1 PCT/JP2011/060910 JP2011060910W WO2011152180A1 WO 2011152180 A1 WO2011152180 A1 WO 2011152180A1 JP 2011060910 W JP2011060910 W JP 2011060910W WO 2011152180 A1 WO2011152180 A1 WO 2011152180A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
laser
base
conversion element
laser diode
Prior art date
Application number
PCT/JP2011/060910
Other languages
French (fr)
Japanese (ja)
Inventor
神戸聡
鈴木誠
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Publication of WO2011152180A1 publication Critical patent/WO2011152180A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity

Definitions

  • the present invention relates to a laser module and a manufacturing method thereof, for example, a laser module that converts laser light into harmonic light and a manufacturing method thereof.
  • Laser modules that convert laser light into harmonic light are known.
  • a technique for driving a lens is known in order to optically couple a laser diode and a harmonic conversion element with high accuracy (for example, Patent Documents 1 and 2).
  • JP 2007-109978 A Japanese Patent Laid-Open No. 7-128546
  • Such a laser module is required to achieve both optical coupling of a laser diode and a harmonic conversion element with high accuracy using a lens and a reduction in manufacturing cost.
  • the present invention has been made in view of the above problems, and an object thereof is to perform optical coupling between a laser diode and a harmonic conversion element with high accuracy and to reduce manufacturing costs.
  • the present invention includes a step of disposing a base including a first upper surface, a second upper surface, and an enclosure formed so as to cover an upper portion and a side portion of one lens that is a finite system and not cover a lower portion. Fixing a laser diode for emitting laser light on the first upper surface, fixing a harmonic conversion element for converting the laser light into a harmonic of the laser light on the second upper surface, and the laser diode And adjusting the position of the lens so that the laser diode and the harmonic conversion element are optically coupled after holding the lens from the lower part of the lens after fixing the harmonic conversion element And a step of fixing the lens to the enclosure after the step of adjusting the position of the lens. According to the present invention, optical coupling between a laser diode and a harmonic conversion element can be performed with high accuracy, and the manufacturing cost can be reduced.
  • the base may be formed integrally using the same material. According to this configuration, it is possible to suppress a shift in optical coupling between the laser diode and the harmonic conversion element.
  • the step of adjusting the position of the lens includes a step of adjusting the position of the lens by moving the lens in two directions orthogonal to the optical axis direction of the laser beam and the optical axis. It can be configured. According to this configuration, optical coupling between the laser diode and the harmonic conversion element can be performed more precisely.
  • the step of adjusting the position of the lens includes moving the lens in the optical axis direction and tilting the lens with respect to two directions orthogonal to the optical axis direction. It can be set as the structure including the process of adjusting a position. According to this configuration, optical coupling between the laser diode and the harmonic conversion element can be performed more precisely.
  • the step of fixing the lens may include a step of fixing an upper portion and a side portion of the lens to the enclosure portion. According to this configuration, the lens can be more firmly fixed to the base.
  • the present invention includes a base, a laser diode that is fixed on the upper surface of the base and emits laser light, and a harmonic conversion element that is fixed on the upper surface of the base and converts the laser light into a harmonic of the laser light.
  • a lens that is fixed to the base and optically couples the laser diode and the harmonic conversion element, and the base covers the upper and side portions of the lens and covers the lower portion. It is a laser module characterized by including the enclosure part which is not covered.
  • the base may be formed integrally using the same material.
  • the lens may be fixed to the enclosure at the upper and side portions of the lens.
  • optical coupling between the laser diode and the harmonic conversion element can be performed with high accuracy and the manufacturing cost can be reduced.
  • FIG. 1A to FIG. 1C are views (part 1) illustrating a method for manufacturing a laser module according to the first embodiment.
  • 2A and 2B are diagrams (part 2) illustrating the method for manufacturing the laser module according to the first embodiment.
  • FIGS. 3A and 3B are views (No. 3) illustrating the method for manufacturing the laser module according to the first embodiment.
  • FIG. 4A and FIG. 4B are diagrams (part 4) illustrating the method for manufacturing the laser module according to the first embodiment.
  • FIGS. 5A to 5D are views (No. 5) illustrating the method for manufacturing the laser module according to the first embodiment.
  • 6A and 6B are diagrams illustrating a method of adjusting the position of the lens in the second embodiment.
  • FIG. 7 is a cross-sectional view of the laser module according to the third embodiment.
  • FIG. 1A to FIG. 5D are diagrams showing a method for manufacturing a laser module according to the first embodiment.
  • 1A is a top view of the base 10
  • FIG. 1B is an AA cross-sectional view
  • FIG. 1C is a BB cross-sectional view.
  • the base 10 includes a first upper surface 12 to which the laser diode is to be fixed and a second upper surface 14 to which the harmonic conversion element is to be fixed.
  • a space 18 in which the lens is to be stored is provided, and an enclosure portion 16 that is to surround the upper portion and the side portion of the lens is provided. It is open.
  • the base 10 is formed so as to cover the upper and side portions of the lens and not the lower portion.
  • the base 10 is made of, for example, a metal material such as aluminum, magnesium, or zinc, or a highly rigid resin material such as a liquid crystal polymer.
  • the base 10 is integrally formed using, for example, a die casting method.
  • the lower surface of the base 10 is flat. However, by providing irregularities on the lower surface of the base 10, heat dissipation can be improved.
  • the base 10 can be subjected to surface treatment such as anodizing or plating. The plating process can be performed with good solder wettability, for example.
  • FIG. 2 (a) is a top view of the base
  • FIG. 2 (b) is an AA cross-sectional view of the base.
  • the laser diode 20 is fixed on the first upper surface 12 of the base 10.
  • the laser diode 20 is fixed on the submount 22 using solder.
  • the submount 22 is fixed on the first upper surface 12 using an adhesive 28.
  • the adhesive 28 for example, an epoxy adhesive can be used. In addition to the adhesive, solder or welding can also be used.
  • the submount 22 preferably has high thermal conductivity and excellent heat dissipation.
  • the submount 22 for example, aluminum nitride, alumina ceramic, or the like can be used.
  • the laser diode 20 is a laser diode that emits laser light having a wavelength of 1064 nm, for example.
  • the laser diode 20 may be a DFB (distributed feedback) laser or a Fabry-Perot laser. Further, a QW (quantum well) type laser or a QD (quantum dot) type laser may be used.
  • a pad (not shown) formed on the upper surface of the laser diode 20 is connected to an external power source. The laser diode 20 emits laser light by passing a current through the pad.
  • FIG. 3A is a top view of the base
  • FIG. 3B is an AA cross-sectional view of the base (a side view of the harmonic conversion element).
  • the harmonic conversion element 30 is fixed on the second upper surface 14 of the base 10 using an adhesive 38.
  • the adhesive 38 for example, an epoxy adhesive can be used. In addition to the adhesive, solder or welding can also be used.
  • the harmonic conversion element 30 converts the laser light into harmonic light of the laser light.
  • the harmonic conversion element 30 is, for example, a second harmonic conversion element using pseudo phase matching, and is, for example, PPLN (PeriodicallyioPoled Lithium Niobate). Laser light propagates in the vicinity of the waveguide 31 of the PPLN.
  • PPLN PeriodicallyioPoled Lithium Niobate
  • PPLN converts, for example, laser light having a wavelength of 1064 nm into green light having a wavelength of 532 nm.
  • the laser diode 20 emits laser light from the light emitting point 24.
  • the harmonic conversion element 30 converts light incident on the incident side coupling point 34 into harmonic light, and emits harmonic light 52 from the light emitting point 36. The reason why the harmonic conversion element 30 is fixed obliquely with respect to the optical axis is to suppress reflection of the laser light.
  • FIG. 4 (a) is a bottom view of the base
  • FIG. 4 (b) is an AA cross-sectional view of the base (lens and harmonic conversion element are side views).
  • the lens 40 is disposed in the space 18 in the enclosure 16 (that is, between the laser diode 20 and the harmonic conversion element 30).
  • the lens 40 is one lens that is a finite system.
  • the lens 40 is, for example, a glass lens or a resin lens.
  • the lens 40 is held by a clamp part 42, and the clamp part 42 is driven by a drive part.
  • the laser beam 50 along the optical axis 51 emitted from the laser diode 20 is coupled to the incident side coupling point 34 of the harmonic conversion element 30 by the lens 40.
  • At least a part of the harmonic light emitted along the optical axis 54 from the light emitting point 36 of the harmonic conversion element 30 is converted into an electric signal by the light receiving element 46.
  • the drive unit 44 adjusts the position of the lens 40 so that the output of the light receiving element 46 is maximized.
  • the direction of the optical axis 51 of the laser diode is defined as the Z direction 74
  • the vertical direction is defined as the X direction 70
  • the direction perpendicular to the X direction 70 and the Z direction 74 is defined as the Y direction 72.
  • the drive unit 44 adjusts the position of the lens 40 so that the intensity of the harmonic light detected by the light receiving element 46 is maximized by moving the lens 40 in the X direction 70 and the Y direction 72.
  • the drive unit 44 adjusts the position of the lens so that the intensity of the harmonic light detected by the light receiving element 46 is maximized by moving the lens 40 in the Z direction 74.
  • the position of the lens 40 in the X direction and the Y direction can be determined first, and then the focus of the lens 40 can be adjusted. Therefore, the position of the lens 40 can be determined with higher accuracy. Further, the adjustment in the X direction and the Y direction and the adjustment in the Z direction may be repeated. In this way, the drive unit 44 adjusts the position of the lens 40 so that the laser diode 20 and the harmonic conversion element 30 are optically coupled.
  • the lens 40 is fixed to the enclosure 16 of the base 10 using an adhesive 48 on the side of the lens 40.
  • the adhesive 48 for example, an ultraviolet curable resin or a thermosetting resin can be used.
  • FIG. 5A is a top view of the completed laser module (see through the cover)
  • FIG. 5B is a cross-sectional view taken along the line AA of the laser module (a lens and a harmonic conversion element are side views)
  • FIG. (C) is a cross-sectional view of the laser module taken along the line BB (the base 10 on the back side is not shown).
  • FIG. 5D is a bottom view of the laser module.
  • the lens 40 is fixed to the enclosure 16 at the side using an adhesive 48.
  • a cover 60 is provided so as to cover the base 10, the laser diode 20, and the harmonic conversion element 30. Thereby, the laser module 100 is completed.
  • the laser diode 20 and the harmonic conversion element 30 are optically coupled using one lens 40 of a finite system.
  • the number of parts is reduced, and the size and the manufacturing cost are reduced as compared with the case where the laser diode 20 and the harmonic conversion element 30 are optically coupled using an infinite system lens. be able to.
  • the laser diode 20 and the harmonic conversion element 30 are fixed to the base 10 from the upper side, and the lens 40 is adjusted from the lower side.
  • the tool for fixing the laser diode 20 and the harmonic conversion element 30 and the drive unit 44 for adjusting the lens 40 can be arranged separately in the vertical direction. Therefore, the laser module manufacturing apparatus can be simplified and the manufacturing cost of the laser module can be reduced.
  • the enclosure part 16 covers the upper part and side part of the lens 40, it can suppress that the lens 40 is damaged in a subsequent process. Furthermore, the enclosure 10 can suppress the base 10 from warping. Thereby, it can suppress that the optical coupling of the laser diode 20 and the harmonic conversion element 30 shift
  • the base 10 is integrally formed using the same material. Therefore, the laser diode 20, the harmonic conversion element 30, and the lens 40 are fixed to the base 10 formed integrally. Therefore, the optical coupling between the laser diode 20 and the harmonic conversion element 30 can be prevented from shifting during the manufacturing process or in use.
  • the lens 40 is moved in the direction of the optical axis 51 (for example, the Z direction 74) of the laser light 50 and in two directions orthogonal to the optical axis 51 (for example, the X direction 70 and the Y direction 72).
  • the position of the lens 40 is adjusted.
  • the optical coupling between the laser diode 20 and the harmonic conversion element 30 can be performed more precisely.
  • the two directions orthogonal to the optical axis need only intersect, but are preferably orthogonal to each other. This facilitates adjustment of the optical axis.
  • FIG. 6 (a) and 6 (b) are diagrams showing a method for adjusting the position of the lens 40 in the second embodiment.
  • 6A is a bottom view of the base
  • FIG. 6B is a cross-sectional view of the base.
  • the angle 80 of the lens 40 is adjusted so that the lens 40 is inclined with respect to the X direction.
  • the angle 82 of the lens 40 is adjusted so that the lens is inclined with respect to the Y direction.
  • the lens is moved in the Z direction 74 to adjust the position of the lens 40.
  • the position of the lens 40 can be determined with higher accuracy.
  • the position of the lens 40 can be adjusted by moving the lens 40 in the direction of the optical axis 51 and tilting the lens 40 with respect to two directions orthogonal to the optical axis direction. .
  • the optical coupling between the laser diode 20 and the harmonic conversion element 30 can be performed more precisely.
  • the two directions orthogonal to the optical axis need only intersect, but are preferably orthogonal to each other. This facilitates adjustment of the optical axis.
  • FIG. 7 is a cross-sectional view of the laser module in Example 3 (the base 10 on the back side is not shown).
  • the lens 40 can be fixed to the enclosure 16 of the base 10 on the upper part and both side surfaces of the lens 40. Thereby, the lens 40 can be more firmly fixed to the base 10.

Abstract

Disclosed is a method for producing a laser module comprising a process for disposing a base (10) provided with a first upper surface (12), a second upper surface (14), and a surrounding portion (16) formed so as not to cover the bottom portion of a lens (49) which is a finite system but to cover the upper and side portions of the lens; a process for securing a laser diode (20) which emits laser light onto the first upper surface of the laser diode (20), and securing a harmonic conversion element (30) which converts the laser light into the harmonic of the laser light, onto the second upper surface; a process for retaining the lens from the bottom of the lens, and adjusting the position of the lens so that the laser diode is optically coupled to the harmonic conversion element after the process for securing the laser diode and the harmonic conversion element; and a process for securing the lens to the surrounding portion after the process for adjusting the position of the lens.

Description

レーザモジュールおよびその製造方法Laser module and manufacturing method thereof
 本発明は、レーザモジュールおよびその製造方法に関し、例えば、レーザ光を高調波光に変換するレーザモジュールおよびその製造方法に関する。 The present invention relates to a laser module and a manufacturing method thereof, for example, a laser module that converts laser light into harmonic light and a manufacturing method thereof.
 レーザ光を高調波光に変換するレーザモジュールが知られている。このようなレーザモジュールにおいて、レーザダイオードと高調波変換素子とを精度よく光結合させるため、レンズを駆動させる技術が知られている(例えば、特許文献1および2)。 Laser modules that convert laser light into harmonic light are known. In such a laser module, a technique for driving a lens is known in order to optically couple a laser diode and a harmonic conversion element with high accuracy (for example, Patent Documents 1 and 2).
特開2007-109978号公報JP 2007-109978 A 特開平7-128546号公報Japanese Patent Laid-Open No. 7-128546
 このようなレーザモジュールにおいては、レンズを用いてレーザダイオードと高調波変換素子との光結合を高精度に行なうことと製造コストの削減を両立することが求められている。 Such a laser module is required to achieve both optical coupling of a laser diode and a harmonic conversion element with high accuracy using a lens and a reduction in manufacturing cost.
 本発明は、上記課題に鑑みなされたものであり、レーザダイオードと高調波変換素子との光結合を高精度に行い、かつ製造コストを削減することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to perform optical coupling between a laser diode and a harmonic conversion element with high accuracy and to reduce manufacturing costs.
 本発明は、第1上面と、第2上面と、有限系である1つのレンズの上部および側部を覆い下部を覆わないように形成された囲い部と、を備えたベースを配置する工程と、レーザ光を出射するレーザダイオードを前記第1上面上に固定し、前記レーザ光を前記レーザ光の高調波に変換する高調波変換素子を前記第2上面上に固定する工程と、前記レーザダイオードと前記高調波変換素子とを固定する工程の後、前記レンズの下部から前記レンズを保持し前記レーザダイオードと前記高調波変換素子とが光結合するように、前記レンズの位置を調整する工程と、前記レンズの位置を調整する工程の後、前記レンズを前記囲い部に固定する工程と、を含むことを特徴とするレーザモジュールの製造方法である。本発明によれば、レーザダイオードと高調波変換素子との光結合を高精度に行い、かつ製造コストを削減することができる。 The present invention includes a step of disposing a base including a first upper surface, a second upper surface, and an enclosure formed so as to cover an upper portion and a side portion of one lens that is a finite system and not cover a lower portion. Fixing a laser diode for emitting laser light on the first upper surface, fixing a harmonic conversion element for converting the laser light into a harmonic of the laser light on the second upper surface, and the laser diode And adjusting the position of the lens so that the laser diode and the harmonic conversion element are optically coupled after holding the lens from the lower part of the lens after fixing the harmonic conversion element And a step of fixing the lens to the enclosure after the step of adjusting the position of the lens. According to the present invention, optical coupling between a laser diode and a harmonic conversion element can be performed with high accuracy, and the manufacturing cost can be reduced.
 上記構成において、前記ベースは同じ材料を用い一体に形成されている構成とすることができる。この構成によれば、レーザダイオードと高調波変換素子との光結合のずれを抑制することができる。 In the above configuration, the base may be formed integrally using the same material. According to this configuration, it is possible to suppress a shift in optical coupling between the laser diode and the harmonic conversion element.
 上記構成において、前記レンズの位置を調整する工程は、前記レンズを前記レーザ光の光軸方向および前記光軸に直交する2つの方向に移動させることにより、前記レンズの位置を調整する工程を含む構成とすることができる。この構成によれば、レーザダイオードと高調波変換素子との光結合をより精密に行なうことができる。 In the above configuration, the step of adjusting the position of the lens includes a step of adjusting the position of the lens by moving the lens in two directions orthogonal to the optical axis direction of the laser beam and the optical axis. It can be configured. According to this configuration, optical coupling between the laser diode and the harmonic conversion element can be performed more precisely.
 上記構成において、前記レンズの位置を調整する工程は、前記レンズを前記光軸方向に移動させ、かつ前記レンズを前記光軸方向に直交する2つの方向に対しそれぞれ傾斜させることにより、前記レンズの位置を調整する工程を含む構成とすることができる。この構成によれば、レーザダイオードと高調波変換素子との光結合をより精密に行なうことができる。 In the above configuration, the step of adjusting the position of the lens includes moving the lens in the optical axis direction and tilting the lens with respect to two directions orthogonal to the optical axis direction. It can be set as the structure including the process of adjusting a position. According to this configuration, optical coupling between the laser diode and the harmonic conversion element can be performed more precisely.
 上記構成において、前記レンズを固定する工程は、前記レンズの上部および側部を前記囲い部に固定する工程を含む構成とすることができる。この構成によれば、レンズをより強固にベースに固定することができる。 In the above configuration, the step of fixing the lens may include a step of fixing an upper portion and a side portion of the lens to the enclosure portion. According to this configuration, the lens can be more firmly fixed to the base.
 本発明は、ベースと、前記ベース上面上に固定され、レーザ光を出射するレーザダイオードと、前記ベース上面上に固定され、前記レーザ光を前記レーザ光の高調波に変換する高調波変換素子と、前記ベースに固定され、前記レーザダイオードと前記高調波変換素子とを光結合させる有限系である1つのレンズと、を具備し、前記ベースは、前記レンズの上部および側部を覆い、下部を覆っていない囲い部を備えることを特徴とするレーザモジュールである。 The present invention includes a base, a laser diode that is fixed on the upper surface of the base and emits laser light, and a harmonic conversion element that is fixed on the upper surface of the base and converts the laser light into a harmonic of the laser light. A lens that is fixed to the base and optically couples the laser diode and the harmonic conversion element, and the base covers the upper and side portions of the lens and covers the lower portion. It is a laser module characterized by including the enclosure part which is not covered.
 上記構成において、前記ベースは同じ材料を用い一体に形成されている構成とすることができる。 In the above configuration, the base may be formed integrally using the same material.
 上記構成において、前記レンズは、前記レンズの上部および側部において前記囲い部に固定されている構成とすることができる。 In the above configuration, the lens may be fixed to the enclosure at the upper and side portions of the lens.
 本発明によれば、レーザダイオードと高調波変換素子との光結合を高精度に行い、かつ製造コストを削減することができる。 According to the present invention, optical coupling between the laser diode and the harmonic conversion element can be performed with high accuracy and the manufacturing cost can be reduced.
図1(a)から図1(c)は、実施例1に係るレーザモジュールの製造方法を示す図(その1)である。FIG. 1A to FIG. 1C are views (part 1) illustrating a method for manufacturing a laser module according to the first embodiment. 図2(a)および図2(b)は、実施例1に係るレーザモジュールの製造方法を示す図(その2)である。2A and 2B are diagrams (part 2) illustrating the method for manufacturing the laser module according to the first embodiment. 図3(a)および図3(b)は、実施例1に係るレーザモジュールの製造方法を示す図(その3)である。FIGS. 3A and 3B are views (No. 3) illustrating the method for manufacturing the laser module according to the first embodiment. 図4(a)および図4(b)は、実施例1に係るレーザモジュールの製造方法を示す図(その4)である。FIG. 4A and FIG. 4B are diagrams (part 4) illustrating the method for manufacturing the laser module according to the first embodiment. 図5(a)から図5(d)は、実施例1に係るレーザモジュールの製造方法を示す図(その5)である。FIGS. 5A to 5D are views (No. 5) illustrating the method for manufacturing the laser module according to the first embodiment. 図6(a)および図6(b)は、実施例2におけるレンズの位置を調整する方法を示す図である。6A and 6B are diagrams illustrating a method of adjusting the position of the lens in the second embodiment. 図7は、実施例3におけるレーザモジュールの断面図である。FIG. 7 is a cross-sectional view of the laser module according to the third embodiment.
 以下、図面を参照し実施例について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 図1(a)から図5(d)は、実施例1に係るレーザモジュールの製造方法を示す図である。図1(a)はベース10の上面図、図1(b)はA-A断面図、図1(c)はB-B断面図である。図1(a)から図1(c)のように、ベース10はレーザダイオードを固定すべき第1上面12と高調波変換素子を固定すべき第2上面14とを備えている。第1上面12と第2上面14との間には、レンズを収納すべき空間18が設けられ、レンズの上部および側部を囲むべき囲い部16が設けられている、囲い部16の下方は開放されている。すなわち、ベース10は、レンズの上部および側部を覆い下部を覆わないように形成されている。ベース10は、例えば、アルミニウム、マグネシウムまたは亜鉛等の金属材料、液晶ポリマー等の剛性の高い樹脂材料で形成される。ベース10は、例えばダイキャスト法等を用い、一体として成形されている。実施例1においてはベース10の下面は平坦であるが、ベース10の下面に凹凸を設けることにより、放熱性を高めることもできる。また、ベース10にアルマイト処理またはメッキ処理等の表面処理加工を施すこともできる。メッキ処理は、例えば半田の濡れ性のよい処理を行うことができる。 FIG. 1A to FIG. 5D are diagrams showing a method for manufacturing a laser module according to the first embodiment. 1A is a top view of the base 10, FIG. 1B is an AA cross-sectional view, and FIG. 1C is a BB cross-sectional view. As shown in FIGS. 1A to 1C, the base 10 includes a first upper surface 12 to which the laser diode is to be fixed and a second upper surface 14 to which the harmonic conversion element is to be fixed. Between the first upper surface 12 and the second upper surface 14, a space 18 in which the lens is to be stored is provided, and an enclosure portion 16 that is to surround the upper portion and the side portion of the lens is provided. It is open. That is, the base 10 is formed so as to cover the upper and side portions of the lens and not the lower portion. The base 10 is made of, for example, a metal material such as aluminum, magnesium, or zinc, or a highly rigid resin material such as a liquid crystal polymer. The base 10 is integrally formed using, for example, a die casting method. In the first embodiment, the lower surface of the base 10 is flat. However, by providing irregularities on the lower surface of the base 10, heat dissipation can be improved. Further, the base 10 can be subjected to surface treatment such as anodizing or plating. The plating process can be performed with good solder wettability, for example.
 図2(a)はベースの上面図、図2(b)はベースのA-A断面図である。図2(a)および図2(b)のように、ベース10の第1上面12上にレーザダイオード20を固定する。例えば、レーザダイオード20はサブマウント22上に半田を用い固定されている。サブマウント22を第1上面12上に接着剤28を用い固定する。接着剤28としては例えばエポキシ系接着剤を用いることができる。接着剤以外にも半田または溶接を用いることもできる。サブマウント22は、熱伝導性が高く、放熱性に優れていることが好ましい。サブマウント22として、例えば窒化アルミニウム、アルミナセラミック等を用いることができる。レーザダイオード20は、例えば1064nmの波長のレーザ光を出射するレーザダイオードである。レーザダイオード20は、DFB(分布帰還)型レーザでもよいし、ファブリペロ型レーザでもよい。また、QW(量子井戸)型レーザでもよいし、QD(量子ドット)型レーザでもよい。レーザダイオード20の上面等に形成されたパッド(不図示)が外部電源に接続されている。パッドに電流を流すことにより、レーザダイオード20は、レーザ光を出射する。 2 (a) is a top view of the base, and FIG. 2 (b) is an AA cross-sectional view of the base. As shown in FIGS. 2A and 2B, the laser diode 20 is fixed on the first upper surface 12 of the base 10. For example, the laser diode 20 is fixed on the submount 22 using solder. The submount 22 is fixed on the first upper surface 12 using an adhesive 28. As the adhesive 28, for example, an epoxy adhesive can be used. In addition to the adhesive, solder or welding can also be used. The submount 22 preferably has high thermal conductivity and excellent heat dissipation. As the submount 22, for example, aluminum nitride, alumina ceramic, or the like can be used. The laser diode 20 is a laser diode that emits laser light having a wavelength of 1064 nm, for example. The laser diode 20 may be a DFB (distributed feedback) laser or a Fabry-Perot laser. Further, a QW (quantum well) type laser or a QD (quantum dot) type laser may be used. A pad (not shown) formed on the upper surface of the laser diode 20 is connected to an external power source. The laser diode 20 emits laser light by passing a current through the pad.
 図3(a)はベースの上面図、図3(b)はベースのA-A断面図(高調波変換素子については側面図)である。図3(a)および図3(b)のように、ベース10の第2上面14上に高調波変換素子30を接着剤38を用い固定する。接着剤38としては例えばエポキシ系接着剤を用いることができる。接着剤以外にも半田または溶接を用いることもできる。高調波変換素子30は、レーザ光をレーザ光の高調波光に変換する。高調波変換素子30は、例えば擬似位相整合を用いた第2高調波変換素子であり、例えばPPLN(Periodically Poled Lithium Niobate)である。PPLNの導波路31付近をレーザ光が伝搬する。PPLNは、例えば1064nmの波長のレーザ光を532nmのグリーン光に変換する。レーザダイオード20は発光点24からレーザ光を出射する。一方、高調波変換素子30は、入射側結合点34に入射した光を高調波光に変換し、発光点36から高調波光52を出射する。高調波変換素子30を光軸に対し斜めに固定しているのは、レーザ光の反射を抑制するためである。 3A is a top view of the base, and FIG. 3B is an AA cross-sectional view of the base (a side view of the harmonic conversion element). As shown in FIGS. 3A and 3B, the harmonic conversion element 30 is fixed on the second upper surface 14 of the base 10 using an adhesive 38. As the adhesive 38, for example, an epoxy adhesive can be used. In addition to the adhesive, solder or welding can also be used. The harmonic conversion element 30 converts the laser light into harmonic light of the laser light. The harmonic conversion element 30 is, for example, a second harmonic conversion element using pseudo phase matching, and is, for example, PPLN (PeriodicallyioPoled Lithium Niobate). Laser light propagates in the vicinity of the waveguide 31 of the PPLN. PPLN converts, for example, laser light having a wavelength of 1064 nm into green light having a wavelength of 532 nm. The laser diode 20 emits laser light from the light emitting point 24. On the other hand, the harmonic conversion element 30 converts light incident on the incident side coupling point 34 into harmonic light, and emits harmonic light 52 from the light emitting point 36. The reason why the harmonic conversion element 30 is fixed obliquely with respect to the optical axis is to suppress reflection of the laser light.
 図4(a)はベースの下面図、図4(b)はベースのA-A断面図(レンズおよび高調波変換素子は側面図)である。図4(a)および図4(b)のように、囲い部16内の空間18(すなわちレーザダイオード20と高調波変換素子30との間)にレンズ40を配置する。レンズ40は、有限系である1つのレンズである。レンズ40は、例えば硝子レンズまたは樹脂レンズ等である。レンズ40はクランプ部42により保持されており、クランプ部42は駆動部により駆動される。レーザダイオード20が出射した光軸51に沿ったレーザ光50はレンズ40により高調波変換素子30の入射側結合点34に結合する。高調波変換素子30の発光点36から光軸54に沿って出射された高調波光の少なくとも一部は、受光素子46により電気信号に変換される。駆動部44は受光素子46の出力が最大となるように、レンズ40の位置を調整する。 4 (a) is a bottom view of the base, and FIG. 4 (b) is an AA cross-sectional view of the base (lens and harmonic conversion element are side views). As shown in FIGS. 4A and 4B, the lens 40 is disposed in the space 18 in the enclosure 16 (that is, between the laser diode 20 and the harmonic conversion element 30). The lens 40 is one lens that is a finite system. The lens 40 is, for example, a glass lens or a resin lens. The lens 40 is held by a clamp part 42, and the clamp part 42 is driven by a drive part. The laser beam 50 along the optical axis 51 emitted from the laser diode 20 is coupled to the incident side coupling point 34 of the harmonic conversion element 30 by the lens 40. At least a part of the harmonic light emitted along the optical axis 54 from the light emitting point 36 of the harmonic conversion element 30 is converted into an electric signal by the light receiving element 46. The drive unit 44 adjusts the position of the lens 40 so that the output of the light receiving element 46 is maximized.
 例えば、レーザダイオードの光軸51の方向をZ方向74、Z方向74に直交し上下方向をX方向70、X方向70およびZ方向74にそれぞれ直交する方向をY方向72とする。駆動部44は、レンズ40をX方向70およびY方向72に移動することにより、受光素子46が検出する高調波光の強度が最大になるようにレンズ40の位置を調整する。次に、駆動部44は、レンズ40をZ方向74に移動することにより、受光素子46が検出する高調波光の強度が最大になるようにレンズの位置を調整する。これにより、最初にX方向、Y方向のレンズ40の位置を決め、その後レンズ40の焦点を合わせることができる。よって、より高精度にレンズ40の位置を決めることができる。さらに、X方向およびY方向の調整と、Z方向の調整と、を繰り返してもよい。このようにして、駆動部44は、レーザダイオード20と高調波変換素子30とが光結合するように、レンズ40の位置を調整する。レンズ40をレンズ40の側部において接着剤48を用いベース10の囲い部16に固定する。接着剤48としては、例えば紫外線硬化型樹脂または熱硬化型樹脂を用いることができる。 For example, the direction of the optical axis 51 of the laser diode is defined as the Z direction 74, the vertical direction is defined as the X direction 70, and the direction perpendicular to the X direction 70 and the Z direction 74 is defined as the Y direction 72. The drive unit 44 adjusts the position of the lens 40 so that the intensity of the harmonic light detected by the light receiving element 46 is maximized by moving the lens 40 in the X direction 70 and the Y direction 72. Next, the drive unit 44 adjusts the position of the lens so that the intensity of the harmonic light detected by the light receiving element 46 is maximized by moving the lens 40 in the Z direction 74. Thereby, the position of the lens 40 in the X direction and the Y direction can be determined first, and then the focus of the lens 40 can be adjusted. Therefore, the position of the lens 40 can be determined with higher accuracy. Further, the adjustment in the X direction and the Y direction and the adjustment in the Z direction may be repeated. In this way, the drive unit 44 adjusts the position of the lens 40 so that the laser diode 20 and the harmonic conversion element 30 are optically coupled. The lens 40 is fixed to the enclosure 16 of the base 10 using an adhesive 48 on the side of the lens 40. As the adhesive 48, for example, an ultraviolet curable resin or a thermosetting resin can be used.
 図5(a)は完成したレーザモジュールの上面図(カバーを透視している)、図5(b)はレーザモジュールのA-A断面図(レンズおよび高調波変換素子は側面図)、図5(c)はレーザモジュールのB-B断面図である(奥側のベース10は不図示)。図5(d)はレーザモジュールの下面図である。図5(a)から図5(d)のように、レンズ40は、側部において囲い部16に接着剤48を用い固定されている。ベース10、レーザダイオード20および高調波変換素子30を覆うようにカバー60を設ける。これにより、レーザモジュール100が完成する。 5A is a top view of the completed laser module (see through the cover), FIG. 5B is a cross-sectional view taken along the line AA of the laser module (a lens and a harmonic conversion element are side views), and FIG. (C) is a cross-sectional view of the laser module taken along the line BB (the base 10 on the back side is not shown). FIG. 5D is a bottom view of the laser module. As shown in FIGS. 5A to 5D, the lens 40 is fixed to the enclosure 16 at the side using an adhesive 48. A cover 60 is provided so as to cover the base 10, the laser diode 20, and the harmonic conversion element 30. Thereby, the laser module 100 is completed.
 実施例1によれば、図5(a)および図5(b)のように、有限系の1つのレンズ40を用い、レーザダイオード20と高調波変換素子30とを光結合させている。このため、特許文献1および特許文献2のように、無限系レンズを用いレーザダイオード20と高調波変換素子30とを光結合させる場合に比べ、部品点数を減らし、小型化および製造コストを削減することができる。しかしながら、有限系の1つのレンズ40を用いた場合、レーザダイオード20と高調波変換素子30とを光結合の調整が難しい。そこで、レンズ40の位置の複雑な調整が行なわれる。この際、レーザダイオード20および高調波変換素子30は上側からベース10に固定し、レンズ40は下側から調整する。これにより、レーザダイオード20および高調波変換素子30を固定するツールと、レンズ40を調整する駆動部44を上下に分けて配置することができる。よって、レーザモジュールの製造装置を簡素化できレーザモジュールの製造コストを削減することができる。 According to the first embodiment, as shown in FIGS. 5A and 5B, the laser diode 20 and the harmonic conversion element 30 are optically coupled using one lens 40 of a finite system. For this reason, as in Patent Document 1 and Patent Document 2, the number of parts is reduced, and the size and the manufacturing cost are reduced as compared with the case where the laser diode 20 and the harmonic conversion element 30 are optically coupled using an infinite system lens. be able to. However, when one lens 40 of a finite system is used, it is difficult to adjust the optical coupling between the laser diode 20 and the harmonic conversion element 30. Therefore, complicated adjustment of the position of the lens 40 is performed. At this time, the laser diode 20 and the harmonic conversion element 30 are fixed to the base 10 from the upper side, and the lens 40 is adjusted from the lower side. Thereby, the tool for fixing the laser diode 20 and the harmonic conversion element 30 and the drive unit 44 for adjusting the lens 40 can be arranged separately in the vertical direction. Therefore, the laser module manufacturing apparatus can be simplified and the manufacturing cost of the laser module can be reduced.
 また、囲い部16がレンズ40の上部および側部をカバーしているため、その後の工程において、レンズ40が損傷を受けることを抑制できる。さらに、囲い部16により、ベース10が反ることを抑制できる。これにより、レーザダイオード20と高調波変換素子30との光結合が製造工程や使用中にずれることを抑制できる。 Moreover, since the enclosure part 16 covers the upper part and side part of the lens 40, it can suppress that the lens 40 is damaged in a subsequent process. Furthermore, the enclosure 10 can suppress the base 10 from warping. Thereby, it can suppress that the optical coupling of the laser diode 20 and the harmonic conversion element 30 shift | deviates during a manufacturing process or use.
 また、実施例1によれば、ベース10は同じ材料を用い一体に形成されている。これにより、レーザダイオード20、高調波変換素子30およびレンズ40が一体に形成されたベース10に固定される。よって、レーザダイオード20と高調波変換素子30との光結合が製造工程や使用中にずれることを抑制できる。 Further, according to the first embodiment, the base 10 is integrally formed using the same material. Thereby, the laser diode 20, the harmonic conversion element 30, and the lens 40 are fixed to the base 10 formed integrally. Therefore, the optical coupling between the laser diode 20 and the harmonic conversion element 30 can be prevented from shifting during the manufacturing process or in use.
 さらに、実施例1によれば、レンズ40をレーザ光50の光軸51方向(例えばZ方向74)および光軸51に直交する2つの方向(例えばX方向70およびY方向72)に移動させることにより、レンズ40の位置を調整する。これにより、レーザダイオード20と高調波変換素子30との光結合をより精密に行なうことができる。なお、光軸に直交する2つの方向は、交差していればよいが、互いに直交していることが好ましい。これにより、光軸の調整が容易になる。 Further, according to the first embodiment, the lens 40 is moved in the direction of the optical axis 51 (for example, the Z direction 74) of the laser light 50 and in two directions orthogonal to the optical axis 51 (for example, the X direction 70 and the Y direction 72). Thus, the position of the lens 40 is adjusted. Thereby, the optical coupling between the laser diode 20 and the harmonic conversion element 30 can be performed more precisely. Note that the two directions orthogonal to the optical axis need only intersect, but are preferably orthogonal to each other. This facilitates adjustment of the optical axis.
 図6(a)および図6(b)は、実施例2におけるレンズ40の位置を調整する方法を示す図である。図6(a)はベースの下面図、図6(b)はベースの断面図である。図6(a)のように、X方向に対しレンズ40を傾けるようにレンズ40の角度80を調整する。また図6(b)のように、Y方向に対しレンズを傾けるようにレンズ40の角度82を調整する。その後、レンズをZ方向74に移動させ、レンズ40の位置を調整する。これにより、より高精度にレンズ40の位置を決めることができる。 6 (a) and 6 (b) are diagrams showing a method for adjusting the position of the lens 40 in the second embodiment. 6A is a bottom view of the base, and FIG. 6B is a cross-sectional view of the base. As shown in FIG. 6A, the angle 80 of the lens 40 is adjusted so that the lens 40 is inclined with respect to the X direction. Further, as shown in FIG. 6B, the angle 82 of the lens 40 is adjusted so that the lens is inclined with respect to the Y direction. Thereafter, the lens is moved in the Z direction 74 to adjust the position of the lens 40. Thereby, the position of the lens 40 can be determined with higher accuracy.
 実施例2のように、レンズ40を光軸51の方向に移動させ、かつレンズ40を光軸方向に直交する2つの方向に対しそれぞれ傾斜させることにより、レンズ40の位置を調整することができる。これにより、レーザダイオード20と高調波変換素子30との光結合をより精密に行なうことができる。なお、光軸に直交する2つの方向は、交差していればよいが、互いに直交していることが好ましい。これにより、光軸の調整が容易になる。 As in the second embodiment, the position of the lens 40 can be adjusted by moving the lens 40 in the direction of the optical axis 51 and tilting the lens 40 with respect to two directions orthogonal to the optical axis direction. . Thereby, the optical coupling between the laser diode 20 and the harmonic conversion element 30 can be performed more precisely. Note that the two directions orthogonal to the optical axis need only intersect, but are preferably orthogonal to each other. This facilitates adjustment of the optical axis.
 図7は、実施例3におけるレーザモジュールの断面図である(奥側のベース10は不図示)。図7のように、レンズ40の上部および両側面において、レンズ40をベース10の囲い部16に固定することができる。これにより、レンズ40をより強固にベース10に固定することができる。 FIG. 7 is a cross-sectional view of the laser module in Example 3 (the base 10 on the back side is not shown). As shown in FIG. 7, the lens 40 can be fixed to the enclosure 16 of the base 10 on the upper part and both side surfaces of the lens 40. Thereby, the lens 40 can be more firmly fixed to the base 10.
 以上、発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (8)

  1.  第1上面と、第2上面と、有限系である1つのレンズの上部および側部を覆い下部を覆わないように形成された囲い部と、を備えたベースを配置する工程と、
     レーザ光を出射するレーザダイオードを前記第1上面上に固定し、前記レーザ光を前記レーザ光の高調波に変換する高調波変換素子を前記第2上面上に固定する工程と、
     前記レーザダイオードと前記高調波変換素子とを固定する工程の後、前記レンズの下部から前記レンズを保持し前記レーザダイオードと前記高調波変換素子とが光結合するように、前記レンズの位置を調整する工程と、
     前記レンズの位置を調整する工程の後、前記レンズを前記囲い部に固定する工程と、
    を含むことを特徴とするレーザモジュールの製造方法。
    Disposing a base including a first upper surface, a second upper surface, and an enclosure formed so as to cover an upper portion and a side portion of one lens that is a finite system and not cover a lower portion;
    Fixing a laser diode that emits laser light on the first upper surface, and fixing a harmonic conversion element that converts the laser light into harmonics of the laser light on the second upper surface;
    After the step of fixing the laser diode and the harmonic conversion element, the position of the lens is adjusted so that the lens is held from below the lens and the laser diode and the harmonic conversion element are optically coupled. And the process of
    After the step of adjusting the position of the lens, fixing the lens to the enclosure;
    A method for manufacturing a laser module, comprising:
  2.  前記ベースは同じ材料を用い一体に形成されていることを特徴とする請求項1記載のレーザモジュールの製造方法。 The method for manufacturing a laser module according to claim 1, wherein the base is integrally formed using the same material.
  3.  前記レンズの位置を調整する工程は、前記レンズを前記レーザ光の光軸方向および前記光軸方向に直交する2つの方向に移動させることにより、前記レンズの位置を調整する工程を含むことを特徴とする請求項1または2記載のレーザモジュールの製造方法。 The step of adjusting the position of the lens includes the step of adjusting the position of the lens by moving the lens in two directions orthogonal to the optical axis direction of the laser beam and the optical axis direction. A method for manufacturing a laser module according to claim 1 or 2.
  4.  前記レンズの位置を調整する工程は、前記レンズを前記光軸方向に移動させ、かつ前記レンズを前記光軸方向に直交する2つの方向に対しそれぞれ傾斜させることにより、前記レンズの位置を調整する工程を含むことを特徴とする請求項1または2記載のレーザモジュールの製造方法。 The step of adjusting the position of the lens adjusts the position of the lens by moving the lens in the optical axis direction and tilting the lens with respect to two directions orthogonal to the optical axis direction. 3. The method of manufacturing a laser module according to claim 1, further comprising a step.
  5.  前記レンズを固定する工程は、前記レンズの上部および側部を前記囲い部に固定する工程を含むことを特徴とする請求項1から4のいずれか一項記載のレーザモジュールの製造方法。 The method for manufacturing a laser module according to any one of claims 1 to 4, wherein the step of fixing the lens includes a step of fixing an upper portion and a side portion of the lens to the enclosure portion.
  6.  ベースと、
     前記ベース上面上に固定され、レーザ光を出射するレーザダイオードと、
     前記ベース上面上に固定され、前記レーザ光を前記レーザ光の高調波に変換する高調波変換素子と、
     前記ベースに固定され、前記レーザダイオードと前記高調波変換素子とを光結合させる有限系である1つのレンズと、
     を具備し、
     前記ベースは、前記レンズの上部および側部を覆い、下部を覆っていない囲い部を備えることを特徴とするレーザモジュール。
    Base and
    A laser diode that is fixed on the upper surface of the base and emits laser light;
    A harmonic conversion element fixed on the upper surface of the base and converting the laser beam into a harmonic of the laser beam;
    One lens that is fixed to the base and is a finite system that optically couples the laser diode and the harmonic conversion element;
    Comprising
    The laser module according to claim 1, wherein the base includes an enclosure that covers an upper portion and a side portion of the lens and does not cover a lower portion.
  7.  前記ベースは同じ材料を用い一体に形成されていることを特徴とする請求項6記載のレーザモジュール。 The laser module according to claim 6, wherein the base is integrally formed using the same material.
  8.  前記レンズは、前記レンズの上部および側部において前記囲い部に固定されていることを特徴とする請求項6または7記載のレーザモジュール。 The laser module according to claim 6 or 7, wherein the lens is fixed to the enclosure at an upper part and a side part of the lens.
PCT/JP2011/060910 2010-06-01 2011-05-12 Laser module and method for producing same WO2011152180A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-125476 2010-06-01
JP2010125476A JP5211107B2 (en) 2010-06-01 2010-06-01 Laser module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011152180A1 true WO2011152180A1 (en) 2011-12-08

Family

ID=45066562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060910 WO2011152180A1 (en) 2010-06-01 2011-05-12 Laser module and method for producing same

Country Status (2)

Country Link
JP (1) JP5211107B2 (en)
WO (1) WO2011152180A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195437A (en) * 2012-03-15 2013-09-30 Mitsubishi Electric Corp Light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168065A (en) * 1993-12-13 1995-07-04 Matsushita Electric Ind Co Ltd Optical semiconductor module
JPH10213722A (en) * 1997-01-30 1998-08-11 Nec Corp Semiconductor laser module
JP2005049416A (en) * 2003-07-30 2005-02-24 Noritsu Koki Co Ltd Laser system and wavelength transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168065A (en) * 1993-12-13 1995-07-04 Matsushita Electric Ind Co Ltd Optical semiconductor module
JPH10213722A (en) * 1997-01-30 1998-08-11 Nec Corp Semiconductor laser module
JP2005049416A (en) * 2003-07-30 2005-02-24 Noritsu Koki Co Ltd Laser system and wavelength transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195437A (en) * 2012-03-15 2013-09-30 Mitsubishi Electric Corp Light emitting device

Also Published As

Publication number Publication date
JP5211107B2 (en) 2013-06-12
JP2011253865A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US10181694B2 (en) Optical module
EP2179481B1 (en) Alignment method in wavelength-converted, wavelength-modulated semiconductor lasers
JP2004179607A (en) Laser device
US20130258505A1 (en) Optical apparatus and method of manufacturing the same
WO2016084833A1 (en) Method for producing optical module
KR20110025774A (en) Folded adjustable optical path in a frequency doubled semiconductor laser
WO2018003156A1 (en) Optical module
JP2016092364A (en) Light emission device and lamp equipment
JP2011175245A (en) Laser light source
KR101455800B1 (en) Laser diode module and optical structure for use therein
JP5598845B2 (en) Laser module
JP5211107B2 (en) Laser module and manufacturing method thereof
WO2021166511A1 (en) Semiconductor laser device
JP6929103B2 (en) Optical module
EP2256877B1 (en) Optical module
JP2010085819A (en) Projection type display device
JP6485002B2 (en) Light source device
WO2017057243A1 (en) Device and method for optical axis alignment and assembly of optical communication module
JP2007189194A (en) Vertical external cavity surface emitting laser with second higher harmonic generating crystal having mirror surface
JP2020021805A (en) Optical module
US7991254B2 (en) Optical package with multi-component mounting frame
KR20080107581A (en) Green-laser optical package
JP6316899B2 (en) Laser oscillator
WO2021261232A1 (en) Optical waveguide package, light-emitting device, and projection system
CA2964209C (en) Light-source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789589

Country of ref document: EP

Kind code of ref document: A1