WO2011152036A1 - Polymer polyol and method for producing polyurethane - Google Patents

Polymer polyol and method for producing polyurethane Download PDF

Info

Publication number
WO2011152036A1
WO2011152036A1 PCT/JP2011/003041 JP2011003041W WO2011152036A1 WO 2011152036 A1 WO2011152036 A1 WO 2011152036A1 JP 2011003041 W JP2011003041 W JP 2011003041W WO 2011152036 A1 WO2011152036 A1 WO 2011152036A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
polymer
compound
weight
polymer polyol
Prior art date
Application number
PCT/JP2011/003041
Other languages
French (fr)
Japanese (ja)
Inventor
智寿 平野
興滋 加峰
佐々木 慶
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2012518247A priority Critical patent/JPWO2011152036A1/en
Publication of WO2011152036A1 publication Critical patent/WO2011152036A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/631Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyesters and/or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/636Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers characterised by the presence of a dispersion-stabiliser
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7607Compounds of C08G18/7614 and of C08G18/7657
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a polymer polyol and a method for producing polyurethane using the polymer polyol. More specifically, the present invention relates to a polymer polyol that is suitable as a polyurethane raw material such as polyurethane foam and polyurethane elastomer and imparts excellent mechanical properties to polyurethane.
  • acrylonitrile in the ethylenically unsaturated compound is used for the purpose of improving the scorch resistance of a polyurethane foam using the polymer polyol as a raw material. It is required to reduce the ratio (67 mol% or less).
  • a polymer polyol in which the acrylonitrile ratio in the polymer is lowered to increase the styrene ratio a polymer polyol having a prescribed particle size distribution (see, for example, Patent Document 1) is known.
  • a polymer polyol (see, for example, Patent Document 2) having a coarse particle concentration of 5 to 120 ppm having a diameter of 100 ⁇ m or more obtained by a continuous polymerization production method in which the dissolved oxygen concentration is controlled to 5 to 120 ppm.
  • Patent Document 2 a polymer polyol having a coarse particle concentration of 5 to 120 ppm having a diameter of 100 ⁇ m or more obtained by a continuous polymerization production method in which the dissolved oxygen concentration is controlled to 5 to 120 ppm.
  • Non-Patent Document 1 Increasing the amount of water used (Non-Patent Document 1, etc.) can increase the amount of carbon dioxide generated during foam production and is effective in reducing the density of flexible polyurethane foam. As the hardness decreases, the foam hardness decreases. As a specific technique for improving the hardness of the flexible polyurethane foam, there is a method of increasing the amount of the crosslinking agent to be used (Non-Patent Document 1), etc., but in such a method, the elongation and tensile strength of the flexible polyurethane foam are reduced. There remains a problem such as insufficient mechanical properties, and a flexible polyurethane foam is desired in which the hardness is improved and the mechanical properties are maintained.
  • An object of the present invention is to provide a polymer polyol capable of producing a polyurethane having a high tensile strength, and a method for producing a polyurethane using a polyol component containing the polymer polyol.
  • the polymer polyol (I) of the present invention is a polymer polyol in which polymer fine particles (JR) having an ethylenically unsaturated compound (E) as a structural unit are contained in a polyol (PL), wherein (PL) is The gist is that it contains the following strength improver (b), and the volume average particle diameter (R) of (JR) is 0.1 to 1.5 ⁇ m.
  • the method for producing a polyurethane according to the present invention is a method for producing a polyurethane by reacting a polyol component and an isocyanate component, wherein the polyol component is based on the above-mentioned polymer polyol (I) based on the weight of the polyol component.
  • the gist is to contain 100% by weight.
  • the polyurethane obtained using the polymer polyols (I) and (I) of the present invention has the following effects.
  • (1) The polyurethane foam produced using the polymer polyol (I) has improved mechanical properties such as improved hardness.
  • the polymer polyol of the present invention is a polymer (JR) obtained by polymerizing an ethylenically unsaturated compound (E) as a constituent unit and contained in the polyol (PL).
  • E ethylenically unsaturated compound
  • St styrene
  • ACN acrylonitrile
  • e ethylenically unsaturated monomers
  • E it is preferable to make St and / or ACN into an essential component.
  • the proportion (% by weight) of St based on the total weight of the ethylenically unsaturated compound (E) constituting the polymer fine particles (JR) is preferably 60 to 100 from the viewpoint of discoloration of the polyurethane resin and the content of coarse particles. More preferably, it is 62 to 95, next more preferably 64 to 84, and most preferably 66 to 80.
  • the proportion (% by weight) of ACN based on the total weight of the ethylenically unsaturated compound (E) constituting the polymer fine particles (JR) is preferably 0 to 40 from the viewpoint of the content of coarse particles and discoloration of the polyurethane resin. More preferably, it is 5-38, then more preferably 16-36, most preferably 20-34.
  • the weight ratio of St to ACN is preferably 100: 0 to 60:40, more preferably from the same viewpoint as the ratio of St and ACN in the ethylenically unsaturated compound (E). 95: 5 to 62:38, more preferably 84:16 to 64:36, and most preferably 80:20 to 66:34.
  • ethylenically unsaturated monomers have 2 or more carbon atoms (hereinafter abbreviated as C) and a number average molecular weight (hereinafter abbreviated as Mn) [measurement is based on gel permeation chromatography (GPC) method.
  • C carbon atoms
  • Mn number average molecular weight
  • Examples of (e1) include methacrylonitrile.
  • Examples of (e2) include ⁇ -methylstyrene, hydroxystyrene, chlorostyrene and the like.
  • (meth) acrylic acid alkyl esters (alkyl group is C1-24) Hydroxypolyoxyalkylene (alkylene group is C2-8) mono (meth) acrylate and the like.
  • (meth) acrylate means methacrylate and / or acrylate
  • (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester
  • (meth) acrylic acid in the following ( The same applies to (meth) allyl and the like, and the same notation is used hereinafter.
  • (E4) includes (poly) oxyalkylene ethers of ⁇ -alkenyl group-containing compounds and alkylene oxide adducts of unsaturated esters having a hydroxyl group.
  • the (poly) oxyalkylene ether of the ⁇ -alkenyl group-containing compound includes an alkylene oxide (hereinafter abbreviated as AO) adduct of a C3-24 unsaturated alcohol, and the unsaturated alcohol is preferably a terminal unsaturated alcohol. Used. Examples of the terminal unsaturated alcohol include allyl alcohol, 2-buten-1-ol, 3-buten-2-ol, 3-buten-1-ol, 1-hexen-3-ol and the like.
  • (poly) oxyalkylene ether means monooxyalkylene ether or polyoxyalkylene ether.
  • Examples of the AO adduct of an unsaturated ester having a hydroxyl group include an AO adduct of an unsaturated ester having a C3-24 hydroxyl group, and examples of the unsaturated compound ester having a hydroxyl group include hydroxyalkyl (C2-12) (meta ) Acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate and the like.
  • (poly) oxyalkylene ethers of ⁇ -alkenyl group-containing compounds are preferred, and AO adducts of allyl alcohol are more preferred.
  • the number of moles of AO added is preferably 1 to 9, more preferably 1 to 6, particularly preferably 1 to 3, from the viewpoint of the physical properties of the polyurethane resin.
  • AO examples include those having C2 to 12 or more, such as ethylene oxide (hereinafter abbreviated as EO), 1,2-propylene oxide (hereinafter abbreviated as PO), 1,2-, 2 , 3- or 1,3-butylene oxide (hereinafter abbreviated as BO), tetrahydrofuran (hereinafter abbreviated as THF) and 3-methyl-tetrahydrofuran (hereinafter abbreviated as MTHF), 1,3-propylene oxide, Examples include isobutylene oxide, C5-12 ⁇ -olefin oxide, substituted AO (styrene oxide, epihalohydrin, etc.), and combinations of two or more thereof (random addition and / or block addition).
  • EO ethylene oxide
  • PO 1,2-propylene oxide
  • BO 1,3-butylene oxide
  • THF tetrahydrofuran
  • MTHF 3-methyl-tetrahydrofuran
  • 1,3-propylene oxide examples include isobutylene
  • AO is preferably C2 to 8 from the viewpoint of dispersion stability and viscosity, more preferably C2 to 4, particularly preferably C2 to 3, and most preferably PO and / or EO.
  • AO from a viewpoint of dispersion stability and a viscosity, single use and combined use of 2 or more types of AO are preferable, More preferably, PO or EO is single and PO and EO are combined.
  • Mn of (e4) is preferably 110 to 490, more preferably 112 to 480, and still more preferably from the viewpoint of the low viscosity of the polymer polyol, the handleability of the polymer polyol and the hardness of the resulting polyurethane resin.
  • 116 to 450 particularly preferably 170 to 420, and most preferably 180 to 300.
  • the number of unsaturated groups ( ⁇ -alkenyl group or unsaturated ester group) in (e4) is 1 or more on average, and preferably 1 to 10 from the viewpoint of the viscosity of the polymer polyol and the physical properties of the polyurethane resin described later. More preferably, the number is 1 to 2, particularly preferably 1.
  • the solubility parameter (hereinafter referred to as SP value) of (e4) is preferably 9.5 to 13, more preferably 9.8 to 12, from the viewpoint of the viscosity of the polymer polyol and the compression hardness of the polyurethane resin described later. .5, particularly preferably 10 to 12.2.
  • ⁇ E represents the cohesive energy density
  • V represents the molecular volume
  • its value is Robert F. Fedors et al., For example, described in Polymer Engineering and Science, Vol. 14, pages 147-154.
  • the other ethylenically unsaturated monomer (e5) is preferably a C2-24 ethylenically unsaturated monomer, for example, a vinyl group-containing carboxylic acid such as (meth) acrylic acid; an aliphatic hydrocarbon monomer such as ethylene or propylene; Fluorine-containing vinyl monomers such as perfluorooctylethyl methacrylate and perfluorooctylethyl acrylate; Nitrogen-containing vinyl monomers other than unsaturated nitriles such as diaminoethyl methacrylate and morpholinoethyl methacrylate; Vinyl-modified silicones; Cyclic rings such as norbornene, cyclopentadiene and norbornadiene An olefin or a diene compound;
  • a vinyl group-containing carboxylic acid such as (meth) acrylic acid
  • an aliphatic hydrocarbon monomer such as ethylene or propylene
  • the polyfunctional monomer (e6) is preferably a C8-40 polyfunctional monomer such as divinylbenzene, ethylene di (meth) acrylate, polyalkylene oxide glycol di (meth) acrylate, pentaerythritol triallyl ether, trimethylolpropane tri. (Meth) acrylate etc. are mentioned.
  • (e1) to (e6) from the viewpoint of the viscosity of the polymer polyol and the physical properties of the polyurethane resin, (e3) and (e6) are preferable, more preferably (e6), particularly preferably a bifunctional monomer, most preferably Divinylbenzene.
  • the proportion (mol%) of the other ethylenically unsaturated monomer (e) in the ethylenically unsaturated compound (E) constituting the polymer fine particles (JR) is preferably 40 or less, and the viscosity and dispersion stability of the polymer polyol From the viewpoint of the properties and physical properties of the polyurethane resin, it is more preferably 0.01 to 30, then more preferably 0.05 to 20, particularly preferably 0.1 to 15, and most preferably 0.2 to 10.
  • the use amount (% by weight) of (e4) is preferably 0 to 0.1, more preferably, based on the weight of (E), from the viewpoint of lowering the content of the soluble polymer and the physical properties of the polyurethane resin. Is from 0 to 0.05, more preferably from 0 to 0.01.
  • polyol (PL) known polyols used in the production of polymer polyols (Japanese Patent Application Laid-Open No. 2007-191682, Japanese Patent Application Laid-Open No. 2004-002800 (corresponding US Patent Application: US2005 / 245724A1), etc.) can be used.
  • polyhydric alcohol examples include dihydric alcohols having 2 to 20 carbon atoms (aliphatic diols such as ethylene glycol, propylene glycol, 1,3- and 1,4-butanediol, 1,6-hexanediol, and neopentyl.
  • dihydric alcohols having 2 to 20 carbon atoms aliphatic diols such as ethylene glycol, propylene glycol, 1,3- and 1,4-butanediol, 1,6-hexanediol, and neopentyl.
  • Alkylene glycols such as glycols; and alicyclic diols such as cycloalkylene glycols such as cyclohexanediol and cyclohexanedimethanol; trivalent alcohols having 3 to 20 carbon atoms (aliphatic triols such as glycerin, trimethylolpropane, Alkanetriols such as methylolethane and hexanetriol); 4 to 8 or more polyhydric alcohols having 5 to 20 carbon atoms (aliphatic polyols such as pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, Intramolecular or intermolecular dehydration products of alkane polyols such as pentaerythritol and their or alkane triol; and sucrose, glucose, mannose, fructose, sugars and their derivatives such as methyl glucoside) and the like.
  • Examples of amines include alkanolamines, polyamines, and monoamines.
  • Examples of the alkanolamine include mono-, di- and tri-alkanolamines having 2 to 20 carbon atoms (for example, monoethanolamine, diethanolamine, triethanolamine and isopropanolamine).
  • Polyamines (number of primary, secondary amino groups: 2 to 8 or more) include aliphatic amines, alkylene diamines having 2 to 6 carbon atoms (for example, ethylene diamine, propylene diamine and hexamethylene diamine), carbon numbers 4-20 polyalkylene polyamines (dialkylene triamine, trialkylene tetramine, tetraalkylene pentamine, pentaalkylene hexamine and hexaalkylene heptamine whose alkylene group has 2 to 6 carbon atoms) and the like.
  • alkylene diamines having 2 to 6 carbon atoms for example, ethylene diamine, propylene diamine and hexamethylene diamine
  • carbon numbers 4-20 polyalkylene polyamines dialkylene triamine, trialkylene tetramine, tetraalkylene pentamine, pentaalkylene hexamine and hexaalkylene heptamine whose alkylene group has 2 to 6 carbon
  • aromatic polyamines having 6 to 20 carbon atoms for example, phenylenediamine, tolylenediamine, xylylenediamine, diethyltoluenediamine, methylenedianiline and diphenyletherdiamine
  • alicyclic polyamines having 4 to 20 carbon atoms for example, Isophoronediamine, cyclohexylenediamine and dicyclohexylmethanediamine
  • heterocyclic polyamines having 4 to 20 carbon atoms for example, piperazine and aminoethylpiperazine
  • Monoamine as ammonia aliphatic amine as alkylamine having 1 to 20 carbon atoms (for example, n-butylamine and octylamine); aromatic monoamine having 6 to 20 carbon atoms (for example, aniline and toluidine); -20 cycloaliphatic monoamines (eg, cyclohexylamine); C4-C20 heterocyclic monoamines (eg, piperidine), and the like.
  • Polyhydric (2 to 8 or higher) phenols include monocyclic polyhydric phenols such as pyrogallol, hydroquinone and phloroglucin; bisphenols such as bisphenol A, bisphenol F and bisphenol sulfone; condensates of phenol and formaldehyde (novolac)
  • active hydrogen compounds polyhydric alcohols are preferred from the viewpoint of mechanical properties of the resulting polyurethane resin.
  • the alkylene oxide to be added to the compound containing active hydrogen is preferably one having 2 to 8 carbon atoms from the viewpoint of the physical properties of the polyurethane resin, and includes EO, PO, 1,2-, 1,3-, 1,4- and Examples thereof include 2,3-BO, styrene oxide (hereinafter abbreviated as SO), and combinations of two or more thereof (block and / or random addition).
  • SO styrene oxide
  • % means “% by weight” unless otherwise specified.
  • polyol examples include known ones (Japanese Patent Laid-Open No. 2007-191682, etc.), and those obtained by adding PO to the active hydrogen-containing compound and PO and other AO, preferably EO
  • (1) Block added in the order of PO-AO (2) Block added in the order of PO-AO-PO-AO (3) Block added in the order of AO-PO-AO (4) PO- Block addition in the order of AO-PO (5) Random addition product in which PO and AO are mixed and added (6) Random or block addition in the order described in US Pat. No. 4,226,756
  • the hydroxyl group in (a) The equivalent is preferably 200 to 4,000, more preferably 400 to 3,000, from the viewpoint of the physical properties of the polyurethane resin. It is also preferable to use two or more types of (a) in combination so that the hydroxyl equivalent is within this range.
  • the strength improver (b) is at least one compound selected from the group consisting of an ester compound, a thioester compound, a phosphate ester compound, and an amide compound, and a divalent or higher aromatic polyvalent carboxylic acid is an essential constituent component.
  • a compound having a structure represented by the following general formula (I) is preferable.
  • R1 represents a residue obtained by removing one active hydrogen from an active hydrogen-containing compound.
  • the active hydrogen-containing compound include a hydroxyl group-containing compound, an amino group-containing compound, a carboxyl group-containing compound, a thiol group-containing compound, and a phosphate compound; a compound having two or more active hydrogen-containing functional groups in the molecule.
  • These active hydrogen-containing compounds can be used either alone or in combination. That is, the plurality of R1s may be the same or different.
  • Y represents a residue obtained by removing a carboxyl group from a trivalent or higher aromatic polycarboxylic acid.
  • a is an integer satisfying 2 ⁇ a ⁇ the number of aromatic ring substituents ⁇ 2.
  • Z represents a residue obtained by removing m active hydrogens from an active hydrogen-containing compound having a valence of at least m.
  • m represents an integer of 1 to 10.
  • hydroxyl group-containing compound examples include monohydric alcohols, dihydric to octahydric polyhydric alcohols, phenols and polyhydric phenols.
  • monohydric alcohols such as methanol, ethanol, butanol, octanol, benzyl alcohol, naphthylethanol; ethylene glycol, propylene glycol, 1,3 and 1,4-butanediol, 1,6-hexanediol, 1, Dihydric alcohols such as 10-decanediol, diethylene glycol, neopentyl glycol, cyclohexanediol, cyclohexanedimethanol, 1,4-bis (hydroxymethyl) cyclohexane and 1,4-bis (hydroxyethyl) benzene; glycerin and trimethylolpropane Trivalent alcohols such as pentaerythritol, sorbitol, mannitol, sorbito
  • amino group-containing compounds include amines, polyamines and amino alcohols. Specific examples include ammonia; monoamines such as alkylamines having 1 to 20 carbon atoms (such as butylamine) and anilines; aliphatic polyamines such as ethylenediamine, hexamethylenediamine and diethylenetriamine; and heterocyclic groups such as piperazine and N-aminoethylpiperazine.
  • Polyamines Polyamines; cycloaliphatic polyamines such as dicyclohexylmethanediamine and isophoronediamine; aromatic polyamines such as phenylenediamine, tolylenediamine and diphenylmethanediamine; alkanolamines such as monoethanolamine, diethanolamine and triethanolamine; and dicarboxylic acids
  • Polyamide polyamine obtained by condensation with excess polyamine; polyether polyamine; hydrazine (such as hydrazine and monoalkylhydrazine), dihydrazide ( Etc. Haq acid dihydrazide and dihydrazide terephthalate), guanidine (butyl guanidine and 1-cyanoguanidine, etc.); dicyandiamide; and the like.
  • carboxyl group-containing compound examples include aliphatic monocarboxylic acids such as acetic acid and propionic acid; aromatic monocarboxylic acids such as benzoic acid; aliphatic polycarboxylic acids such as succinic acid, fumaric acid, sebacic acid and adipic acid; phthalic acid , Isophthalic acid, terephthalic acid, trimellitic acid, naphthalene-1,4 dicarboxylic acid, naphthalene-2,3,6 tricarboxylic acid, pyromellitic acid, diphenic acid, 2,3-anthracene dicarboxylic acid, 2,3,6- Examples thereof include aromatic polycarboxylic acids such as anthracentricarboxylic acid and pyrene dicarboxylic acid; polycarboxylic acid polymers (functional number 2 to 100) such as (co) polymers of acrylic acid, and the like.
  • aromatic monocarboxylic acids such as benzoic acid
  • Examples of the thiol group-containing compound include monofunctional phenylthiol, alkylthiol and polythiol compounds.
  • Examples of the polythiol include divalent to octavalent polyvalent thiols. Specific examples include ethylenedithiol and 1,6-hexanedithiol.
  • Examples of phosphoric acid compounds include phosphoric acid, phosphorous acid, and phosphonic acid.
  • active hydrogen-containing compound a compound having two or more active hydrogen-containing functional groups (hydroxyl group, amino group, carboxyl group, thiol group, phosphate group, etc.) in the molecule can also be used.
  • an alkylene oxide adduct of the active hydrogen-containing compound can also be used.
  • the alkylene oxide (hereinafter abbreviated as AO) to be added to the active hydrogen-containing compound includes AO having 2 to 6 carbon atoms, such as ethylene oxide (hereinafter abbreviated as EO), 1,2-propylene oxide (hereinafter abbreviated as PO). Abbreviation), 1,3-propyloxide, 1,2-butylene oxide, 1,4-butylene oxide and the like.
  • EO ethylene oxide
  • PO 1,2-propylene oxide
  • PO 1,3-propyloxide
  • 1,2-butylene oxide 1,4-butylene oxide and the like.
  • PO EO
  • 1,2-butylene oxide are preferable from the viewpoints of properties and reactivity.
  • block addition or random addition may be used, or a combination thereof may be used.
  • an active hydrogen-containing compound obtained by a condensation reaction between the active hydrogen-containing compound and a polycarboxylic acid (aliphatic polycarboxylic acid or aromatic polycarboxylic acid) is used. Can do. In the condensation reaction, one type of active hydrogen-containing compound and polycarboxylic acid may be used, or two or more types may be used in combination.
  • the aliphatic polycarboxylic acid means a compound that satisfies the following (1) and (2).
  • One molecule has two or more carboxyl groups.
  • the carboxyl group is not directly bonded to the aromatic ring.
  • Examples of the aliphatic polycarboxylic acid include succinic acid, adipic acid, sebacic acid, maleic acid and fumaric acid.
  • the aromatic polycarboxylic acid means a compound satisfying the following (1) to (3).
  • One molecule has one or more aromatic rings.
  • the number of carboxyl groups in one molecule is 2 or more.
  • the carboxyl group is directly bonded to the aromatic ring.
  • Aromatic polycarboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, 2,2'-bibenzyldicarboxylic acid, trimellitic acid, hemilitic acid, trimesic acid, pyromellitic acid and naphthalene-1,4 dicarboxylic acid, naphthalene And aromatic polycarboxylic acids having 8 to 18 carbon atoms such as -2,3,6 tricarboxylic acid, diphenic acid, 2,3-anthracene dicarboxylic acid, 2,3,6-anthracentricarboxylic acid and pyrene dicarboxylic acid.
  • polycarboxylic acid anhydrides and lower alkyl esters can also be used.
  • the active hydrogen-containing compound R1 includes a hydroxyl group-containing compound, an amino group-containing compound, and these AO adducts.
  • a polyester compound obtained by a condensation reaction of an active hydrogen-containing compound and a polycarboxylic acid more preferably methanol, ethanol, butanol, ethylene glycol, propylene glycol, glycerin, pentaerythritol, sorbitol, sucrose, benzyl alcohol, phenol , Methylamine, dimethylamine, ethylamine, diethylamine, butylamine, dibutylamine, phenylamine, diphenylamine, their EO and / or PO adducts and their active hydrogen compounds and phthalic acid Beauty / or condensate of isophthalic acid is preferred.
  • a polycarboxylic acid more preferably methanol, ethanol, butanol, ethylene glycol, propylene glycol, glycerin, pentaerythritol, sorbitol, sucrose, benzyl alcohol, phenol , Methylamine, dimethylamine,
  • Y represents a residue obtained by removing a carboxyl group from a trivalent or higher aromatic polycarboxylic acid (C).
  • the aromatic ring of Y is composed of carbon atoms.
  • the substituent of the aromatic ring may be a hydrogen atom or another substituent, but at least one substituent is a hydrogen atom. That is, the aromatic ring of Y has at least one hydrogen atom bonded to the carbon atom constituting the aromatic ring.
  • substituents are alkyl group, vinyl group, allyl group, cycloalkyl group, halogen atom, amino group, carbonyl group, carboxyl group, hydroxyl group, hydroxyamino group, nitro group, phosphino group, thio group, thiol group Aldehyde group, ether group, aryl group, amide group, cyano group, urea group, urethane group, sulfone group, ester group and azo group.
  • the other substituents are preferably an alkyl group, a vinyl group, an allyl group, an amino group, an amide group, a urethane group and a urea group.
  • substituents on Y from the viewpoint of improving mechanical properties, two carbonyl groups are adjacent to each other, and hydrogen is arranged as a substituent between the third carbonyl group and the first or second carbonyl group.
  • the structure is preferred.
  • Examples of trivalent or higher aromatic polycarboxylic acids (C) constituting Y include trimellitic acid, hemilitic acid, trimesic acid, pyromellitic acid, naphthalene-2,3,6 tricarboxylic acid and 2,3,6-anthracene. Examples thereof include aromatic polycarboxylic acids having 8 to 18 carbon atoms such as tricarboxylic acid.
  • (C) used for Y is preferably a monocyclic compound, more preferably trimellitic acid and pyromellitic acid. It is merit acid.
  • a in the general formula (I) is an integer satisfying 2 ⁇ a ⁇ the number of aromatic ring substituents ⁇ 2.
  • the number of aromatic ring substituents is the number of substituents bonded to the carbon atoms constituting the aromatic ring.
  • a monocyclic aromatic ring composed of 6 carbons has 6 aromatic ring substituents, and a can take 2 to 4.
  • a is preferably 2 or 3 from the viewpoint of improving mechanical properties (tensile strength, tear strength, compression hardness).
  • Z in the general formula (I) represents a residue obtained by removing m active hydrogens from an active hydrogen-containing compound having a valence of at least m.
  • the active hydrogen-containing compound referred to here includes the active hydrogen-containing compound represented by R1 described above. However, the active hydrogen-containing compound represented by Z may be the same as a part of R1, but at least one R1 and Z must be different groups.
  • m represents an integer of 1 to 10. From the viewpoint of handling the strength improver and improving the physical properties of the polyurethane foam (tensile strength, tear strength, compression hardness), Z includes a hydroxyl group-containing compound, an amino group-containing compound, an AO adduct thereof, and a polycarboxylic acid. A condensate with an acid is preferably used, and m is preferably 1-8.
  • the hydroxyl value (mgKOH / g) of the strength improver (b) is preferably from 0 to 700, more preferably from 0 to 650, and still more preferably from 0 to 700, from the viewpoint of handling (viscosity) and tensile strength during molding. 600. Moreover, that the hydroxyl value of (b) is 0 means that none of R1, Y, and Z has a hydroxyl group in general formula (I).
  • the content of the strength improver (b) based on the weight of the polyol (PL) is preferably from 0.1 to 100% by weight, more preferably from 0.2 to 80% by weight, from the viewpoint of tensile strength and elongation properties. Particularly preferred is 0.5 to 60% by weight.
  • the polyol (PL) only needs to contain the strength improver (b), and when a strength improver other than (b) is used, the production method of (PL) is a strength improver other than (b). And a method of mixing (b).
  • the polymer polyol (I) of the present invention is a polymer polyol in which polymer fine particles (JR) having an ethylenically unsaturated compound (E) as a structural unit are contained in the polyol (PL).
  • the shape of the polymer fine particles (JR) is not particularly limited, and may be any shape such as a spherical shape, a spheroid shape, and a flat plate shape, but a spherical shape is preferable from the viewpoint of mechanical properties of the polyurethane resin.
  • the volume average particle diameter (R) ( ⁇ m) of the polymer fine particles (JR) is 0.1 to 1.5, preferably 0.1 to 0.9, from the viewpoint of the viscosity of the polymer polyol and the physical properties of the polyurethane resin. More preferably, it is 0.25 to 0.8, then more preferably 0.3 to 0.7, and particularly preferably 0.4 to 0.6.
  • the volume average particle diameter (R) of the polymer fine particles (JR) is less than 0.1, the viscosity increases and handling is deteriorated.
  • the volume average particle diameter (R) of the polymer fine particles (JR) exceeds 1.5, the hardness and cutting elongation of the polyurethane are lowered.
  • the volume average particle diameter is measured by the method described later.
  • the polymer fine particle content (% by weight) in the polymer polyol (I) is preferably 10 to 50 from the viewpoint of mechanical properties of the polyurethane resin described later and prevention of aggregation of the polymer fine particles (JR) in the polymer polyol. Preferably it is 10 to 45, particularly preferably 12 to 40, most preferably 15 to 35.
  • polymer fine particle content (weight%) is measured by the method mentioned later.
  • the content (% by weight) of the polyol (PL) in the polymer polyol (I) is preferably 50 to 90, more preferably from the viewpoint of preventing aggregation of the polymer fine particles (JR) and mechanical properties of the resulting polyurethane resin. 55 to 90, particularly preferably 60 to 88, and most preferably 65 to 85.
  • the ratio (soluble polymer content / polymer fine particle content) of the soluble polymer content (% by weight) and the polymer fine particle content (% by weight) in the polymer polyol (I) is the polymer fine particles in the polymer polyol. Is preferably 1/10 or less, more preferably 2.5 / 30 or less, and even more preferably 2/30 or less, from the viewpoint of reducing the particle size of the polyurethane resin, the mechanical properties of the resulting polyurethane resin, and the viscosity of the polymer polyol. Especially preferably, it is 1.5 / 30 or less.
  • the soluble polymer content is measured by the following method.
  • the residual sediment in the centrifuge tube is dried under reduced pressure at 2,666 to 3,999 Pa (20 to 30 torr) at 60 ° C. for 60 minutes, and the dried sediment is weighed to obtain (W2).
  • the value calculated by the following formula is defined as the methanol precipitate content (% by weight).
  • Methanol precipitate content (% by weight) (W2) ⁇ 100 / (W1)
  • the residual sediment in the centrifuge tube is dried under reduced pressure at 2,666-3,999 Pa (20-30 torr) at 60 ° C. for 60 minutes, the dried sediment is weighed, and the weight is defined as (W4).
  • the value calculated by the following formula is the xylene precipitate content (% by weight).
  • Xylene precipitate content (% by weight) (W4) ⁇ 100 / (W3)
  • Soluble polymer content methanol precipitate content (wt%)-xylene precipitated granule content (wt%)
  • Polymer fine particle content (% by weight) is measured by the following method.
  • ⁇ Polymer fine particle content (% by weight)> In a 50 ml centrifuge tube for centrifugation, about 5 g of polymer polyol is precisely weighed to obtain the polymer polyol weight (W5). Add 50 g of methanol and mix. Using a cooling centrifuge [model number: H-9R, manufactured by Kokusan Co., Ltd.], centrifuge at 18,000 rpm for 60 minutes at 20 ° C. The supernatant is removed using a glass pipette. The operation of adding 50 g of methanol to the residual sediment, mixing, and centrifuging in the same manner as above to remove the supernatant is repeated three more times.
  • the residual sediment in the centrifuge tube is dried under reduced pressure at 2,666-3,999 Pa (20-30 torr) at 60 ° C. for 60 minutes.
  • the value calculated by the following formula is defined as the polymer fine particle content (% by weight).
  • Polymer fine particle content (% by weight) (W6) ⁇ 100 / (W5)
  • the soluble polymer means a polymer that does not dissolve in methanol but dissolves in xylene in the above measurement method.
  • the content of the soluble polymer is large, the viscosity of the polymer polyol is increased and the handling tends to be deteriorated.
  • the ratio of soluble polymer content (% by weight) to polymer fine particle content (% by weight) (soluble polymer content / polymer fine particle content) means the weight ratio of this soluble polymer to polymer fine particles.
  • the arithmetic standard deviation of the particle diameter of the polymer fine particles (JR) is 0.6 or less from the viewpoint of ease of production of the polymer polyol, mechanical properties of the polyurethane resin and reduction of clogging of the polyurethane resin production apparatus. More preferably, it is 0.1 to 0.6, next more preferably 0.12 to 0.6, particularly preferably 0.15 to 0.6, and most preferably 0.20 to 0.58. .
  • the arithmetic standard deviation is an arithmetic standard deviation based on volume and is measured by a method described later.
  • the above-mentioned arithmetic standard deviation based on the volume refers to the arithmetic standard deviation calculated by the following formula from the particle size distribution based on the volume based on the Mie scattering theory (Light Scattering by Small Particles, Dover Publ., 1981).
  • the volume-based particle size distribution in the measurement and calculation is a range of 0.040 to 262 ⁇ m divided into 65 (0.040 to 0.044 ⁇ m, 0.044 to 0.050 ⁇ m, 0.051 to 0.057 ⁇ m,.
  • Arithmetic standard deviation [ ⁇ ⁇ (X (J) ⁇ arithmetic mean particle diameter ( ⁇ m) ⁇ 2 ⁇ q (J) / 100] 1/2
  • Arithmetic mean particle diameter ( ⁇ m) ⁇ ⁇ q (J) ⁇ X (J) ⁇ / ⁇ ⁇ q (J) ⁇
  • J is a particle size range division number (1 to 65), that is, a particle size range number sequentially numbered from the smallest value of the 65 divided particle size range;
  • X (J) is The center value of the particle number range of the division number Jth;
  • q (J) is the frequency (volume%) of particles in the particle number range of the division number Jth.
  • the content (% by weight) of polymer fine particles having a particle diameter of 0.10 mm or more in the polymer polyol (I) (hereinafter abbreviated as coarse particle content) is from the viewpoint of reducing clogging in a polyurethane resin production apparatus.
  • 0 to 30 ⁇ 10 ⁇ 4 is preferable, more preferably 0 to 20 ⁇ 10 ⁇ 4 , next more preferably 0 to 10 ⁇ 10 ⁇ 4 , particularly preferably 0. ⁇ 3 ⁇ 10 -4 .
  • the polymer polyol (I) of the present invention can be obtained by a method of producing by polymerizing an ethylenically unsaturated compound (E) in a polyol (PL).
  • This production method is a method of polymerizing the ethylenically unsaturated compound (E) in a dispersion medium containing a polyol (PL).
  • the polymerization method include radical polymerization, coordination anion polymerization, metathesis polymerization, Diels-Alder polymerization, and the like. From an industrial viewpoint, radical polymerization is preferable.
  • Radical polymerization can be performed by various methods, for example, a method of polymerizing an ethylenically unsaturated compound (E) in the presence of a radical polymerization initiator (c) in a polyol (PL) containing a dispersant (d) (US Pat.
  • a method of polymerizing an ethylenically unsaturated compound (E) in the presence of a radical polymerization initiator (c) in a polyol (PL) containing a dispersant (d) US Pat.
  • the method described in Japanese Patent No. 3383351 etc. can be used.
  • the radical polymerization initiator (c) a compound that generates a free radical to initiate polymerization can be used, such as an azo compound and a peroxide ⁇ Japanese Patent Laid-Open No. 2005-162791, Japanese Patent Laid-Open No. 2004-002800 (corresponding to US patent application: US2005 / 245724 A1) etc. ⁇ can be used.
  • the 10-hour half-life temperature of (c) is preferably from 30 to 150 ° C., more preferably from 40 to 140 ° C., particularly preferably from the viewpoint of the polymerization rate and polymerization time of (E) and the productivity of the polymer polyol. 50-130 ° C.
  • the amount (% by weight) used of (c) is preferably 0.05 to 20, more preferably from the viewpoint of the degree of polymerization of (E) and the mechanical properties of the resulting polyurethane resin, based on the total weight of (E). It is 0.1 to 5, particularly preferably 0.2 to 2.
  • the dispersant (d) various dispersants having an Mn of 1,000 or more (preferably 1,000 to 10,000), for example, known dispersants used in the production of polymer polyols ⁇ Japanese Patent Laid-Open No. 2005-162791 And the like described in JP 2004-002800 A (corresponding US Patent Application: US 2005/245724 A1), etc., and (d) is ethylene that can be copolymerized with St or ACN.
  • the reactive dispersant containing an ethylenically unsaturated group has a Mn of 1,000 or more, and is distinguished from an ethylenically unsaturated compound (E) having a Mn of less than 1,000.
  • dispersant (d) include: [1] At least a part of the hydroxyl group of the polyol is reacted with methylene dihalide and / or ethylene dihalide to obtain a high molecular weight, and the reaction product is further mixed with an ethylenically unsaturated group.
  • Ethylenically unsaturated group-containing modified polyol obtained by reacting a compound containing compound (such as those described in JP 08-333508 A, JP 2004-002800 A (corresponding US patent application: US 2005/245724 A1), etc.) Macromer type dispersant; [2]
  • the difference in solubility parameter from the polymer of the ethylenically unsaturated compound is 2 with two or more polyol affinity segments having a solubility parameter difference of 1.0 or less as a side chain.
  • polymer fine particle (JR) graft polymer having an affinity segment as a main chain Japanese Patent Laid-Open No.
  • High molecular weight polyol type dispersants such as molecular weight modified polyols (as described in JP-A-07-196749 etc.); [4] Mn is 1,000 to 1,000,000, at least a part thereof Oligomeric type dispersions such as vinyl oligomers, which are soluble in polyols, and dispersants (for example, JP-A-09-77968) that use the oligomers together with the above-mentioned [1] modified polyether polyols containing ethylenically unsaturated groups Agent.
  • Reactive dispersants ⁇ including (d2) to be described later ⁇ such as a dispersant (described in JP-A-2002-308920 (corresponding to US Pat. No. 6,756,414)) and the like.
  • a dispersant described in JP-A-2002-308920 (corresponding to US Pat. No. 6,756,414)
  • [1], [4] and [5] are preferable, and [5] is more preferable from the viewpoint of the particle diameter of the polymer fine particles (JR).
  • (d1) and / or (d2) are particularly preferred from the viewpoint of the particle diameter of the polymer fine particles (JR).
  • (D1) Vinyl oligomer having Mn of 1,000 to 1,000,000.
  • (D2) A saturated polyol (p) and a monofunctional active hydrogen-containing compound (q) having at least one ethylenically unsaturated group are bonded via a polyisocyanate (r), A nitrogen-containing bond-containing unsaturated polyol having an average ratio of the number of unsaturated groups to the number of nitrogen-containing bonds derived from NCO groups of 0.1 to 0.4.
  • the dispersant (d1) is a vinyl oligomer obtained by polymerizing an ethylenically unsaturated compound.
  • the ethylenically unsaturated compound constituting the dispersant (d1) the same ethylenically unsaturated compound (E) as described above can be used.
  • At least a part of the ethylenically unsaturated compound constituting the dispersant (d1) from the viewpoint of the particle diameter of the polymer fine particles (JR) is an ethylenically unsaturated compound ( It is preferred that it is the same as E), more preferably 30% by weight or more of the ethylenically unsaturated compound constituting (d1) is the same as (E), then more preferably 70% by weight or more, particularly preferably Is 80% by weight or more.
  • Mn in (d1) is 1,000 to 1,000,000, preferably 100,000 to 950,000, more preferably 150,000 to 900,000, from the viewpoint of the particle size of the polymer particles. Particularly preferred is 200,000 to 250,000.
  • the dispersant (d1) is soluble in the polyol (PL) from the viewpoint of the particle size of the polymer fine particles [5% by weight of (d1) and (PL) are uniformly converted to (PL) based on the total weight of (d1) and (PL). It is desirable that the laser transmittance of the mixed mixture is 10% or more.
  • Mn of a dispersing agent (d1) is measured with the following method.
  • the dispersant (d1) can be produced by a normal polymerization method of an ethylenically unsaturated compound, except that the degree of polymerization is adjusted so that Mn is 1,000 to 1,000,000. For example, it is a method in which the ethylenically unsaturated compound (E) is polymerized in the presence of a radical polymerization initiator (c) described later, if necessary, in a solvent.
  • the dispersant (d1) may be obtained by polymerizing (E) in the polyol (PL). In this case, the polymerization concentration is preferably 1 to 40% by weight, more preferably 5 to 20% by weight. is there.
  • the radical polymerization initiator is used in a relatively large amount, for example, preferably 2 to 30% by weight, more preferably 5 to 20% by weight, based on the weight of the total ethylenically unsaturated compound.
  • Solvents used as necessary for the polymerization reaction include benzene, toluene, xylene, acetonitrile, ethyl acetate, hexane, heptane, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, isopropyl alcohol, n-butanol and the like. Can be mentioned. Of these solvents, toluene, xylene, isopropyl alcohol and n-butanol are preferred from the viewpoint of viscosity and mechanical strength of the polyurethane resin to be produced.
  • chain transfer agents such as alkyl mercaptans (dodecyl mercaptan, mercaptoethanol, etc.), alcohols (isopropyl alcohol, methanol, 2-butanol, etc.), halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, chloroform, etc.) And polymerization in the presence of an enol ether described in JP-A-55-31880. The polymerization can be carried out either batchwise or continuously.
  • the polymerization reaction can be performed at a temperature equal to or higher than the decomposition temperature of the radical polymerization initiator (usually 50 to 250 ° C., preferably 80 to 200 ° C., particularly preferably 100 to 180 ° C.), and can be performed under atmospheric pressure or under pressure. Can do.
  • (D2) is formed by bonding a saturated polyol (p) and a monofunctional active hydrogen compound (q) having at least one ethylenically unsaturated group via a polyisocyanate (r).
  • the nitrogen-containing bond-containing unsaturated polyol has an average ratio of the number of unsaturated groups to the number of nitrogen-containing bonds derived from NCO groups of 0.1 to 0.4.
  • (p) constituting (d2) the same as those exemplified as the (PL) can be used.
  • (P) and (PL) may be the same or different.
  • the number of hydroxyl groups in one molecule of (p) is preferably at least 2, from the viewpoint of dispersion stability of the polymer fine particles (JR) in (PL), more preferably 2-8, and further
  • the number of hydroxyl groups in (p) is preferably from 1,000 to 3,000, more preferably from 1,500 to 2,500, from the viewpoint of dispersion stability.
  • (Q) used to obtain (d2) is a compound having one active hydrogen-containing group and at least one polymerizable unsaturated group.
  • the active hydrogen-containing group include a hydroxyl group, an amino group, an imino group, a carboxyl group, and an SH group, and a hydroxyl group is particularly preferable from the viewpoint of polymer particle stability.
  • the ethylenically unsaturated group of (q) is preferably a polymerizable double bond from the viewpoint of being easily incorporated into the polymer forming the polymer fine particles, and the number of ethylenically unsaturated groups in one molecule is 1 to 3. In particular, one is preferable. That is, preferred as (q) is an unsaturated monohydroxy compound having one polymerizable double bond.
  • the unsaturated monohydroxy compound include monohydroxy substituted unsaturated hydrocarbon, monoester of unsaturated monocarboxylic acid and dihydric alcohol, monoester of unsaturated dihydric alcohol and monocarboxylic acid, alkenyl side chain Examples thereof include phenol having a group and unsaturated polyether monool.
  • Monohydroxy substituted unsaturated hydrocarbons include C3-6 alkenols such as (meth) allyl alcohol, 2-buten-1-ol, 3-buten-2-ol, 3-buten-1-ol and the like; alkynol, An example is propargyl alcohol.
  • Examples of monoesters of unsaturated monocarboxylic acids and dihydric alcohols include C3-8 unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and itaconic acid, and dihydric alcohols (ethylene glycol, Monoesters with C2-12 dihydric alcohols such as propylene glycol and butylene glycol), and specific examples thereof include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxy Examples thereof include propyl methacrylate, 2-hydroxybutyl acrylate and 4-hydroxybutyl acrylate.
  • C3-8 unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and itaconic acid
  • dihydric alcohols ethylene glycol, Monoesters with C2-12 dihydric alcohols such as propylene glycol and butylene glycol
  • specific examples thereof include 2-hydroxyethyl acrylate, 2-hydroxye
  • Examples of the monoester of unsaturated dihydric alcohol and monocarboxylic acid include monoesters of C3-8 unsaturated dihydric alcohol and C2-12 monocarboxylic acid, such as acetic acid monoester of butenediol.
  • Examples of the phenol having an alkenyl side chain group include phenols having an alkenyl side chain group in which C of the alkenyl group is 2 to 8, such as oxystyrene and hydroxy ⁇ -methylstyrene.
  • unsaturated polyether monool examples include adducts of 1 to 50 moles of the above monohydroxy-substituted unsaturated hydrocarbon or alkylene oxide (C2 to 8) of phenol having an alkenyl side group [for example, polyoxyethylene (degree of polymerization 2 to 2). 10) monoallyl ether] and the like.
  • Examples of (q) other than the unsaturated monohydroxy compound include the following.
  • Examples of (q) having an amino group or imino group include mono- and di- (meth) allylamine, aminoalkyl (C2-4) (meth) acrylate [aminoethyl (meth) acrylate, etc.], monoalkyl (C1-12) ) Aminoalkyl (C2-4) (meth) acrylate [monomethylaminoethyl-methacrylate and the like]; (q) having a carboxyl group is the above unsaturated monocarboxylic acid; (q) having an SH group is And compounds corresponding to saturated monohydroxy compounds (OH is replaced by SH).
  • Examples of (q) having two or more polymerizable unsaturated groups include poly (meth) allyl ethers of trihydric, tetrahydric, octahydric or higher polyhydric alcohols or polyesters with unsaturated carboxylic acids [ Examples thereof include trimethylolpropane diallyl ether, pentaerythritol triallyl ether, glycerin di (meth) acrylate, and the like.
  • preferred compounds among these include C3-6 alkenols, monoesters of C3-8 unsaturated monocarboxylic acids and C2-12 dihydric alcohols, and phenols having alkenyl side groups. More preferably, monoesters of (meth) acrylic acid with ethylene glycol, propylene glycol or butylene glycol; allyl alcohol; and hydroxy ⁇ -methylstyrene, particularly preferably 2-hydroxyethyl (meth) acrylate. .
  • the molecular weight of (q) is not particularly limited, but is preferably 1,000 or less, and particularly preferably 500 or less, from the viewpoint of the viscosity of the polymer polyol.
  • the polyisocyanate (r) is a compound having at least two isocyanate groups.
  • Examples of (r1) include C (excluding carbon in the NCO group; the same applies to the following polyisocyanates) 6 to 16 aromatic diisocyanates, C6 to 20 aromatic triisocyanates, and crude products of these isocyanates. . Specific examples include 1,3- and 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4′- and / or 4,4 ′.
  • Diphenylmethane diisocyanate (MDI), crude MDI [crude diaminodiphenylmethane ⁇ condensation product of formaldehyde and aromatic amine (aniline); small amount of diaminodiphenylmethane as main product and a small amount of by-product (eg 5 to 20% by weight) Phosgenates of mixtures of polyamines with three or more functional groups: for example, polyallyl polyisocyanate (PAPI), etc.], naphthylene-1,5-diisocyanate, triphenylmethane-4,4 ′, 4 ′′ -triisocyanate, etc. It is done.
  • Examples of (r2) include C2-18 aliphatic diisocyanates. Specific examples include 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and the like.
  • Examples of (r3) include C4-16 alicyclic diisocyanates. Specific examples include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, norbornane diisocyanate, and the like. Examples of (r4) include C8-15 araliphatic diisocyanates. Specific examples include xylylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate, and the like.
  • Examples of (r5) include urethane-modified MDI, carbodiimide-modified MDI, sucrose-modified TDI, and castor oil-modified MDI. From the viewpoint of the physical properties of the polyurethane resin, aromatic diisocyanates are preferable among these, and 2,4- and / or 2,6-TDI are more preferable.
  • the nitrogen-containing bond of (d2) is generated by a reaction between an isocyanate group and an active hydrogen-containing group.
  • the active hydrogen-containing group is a hydroxyl group
  • a urethane bond is mainly generated, and when it is an amino group, A urea bond is formed in
  • an amide bond is formed, and in the case of an SH group, a thiourethane bond is formed.
  • other bonds such as a burette bond and an allophanate bond may be formed.
  • This nitrogen-containing bond is generated by the reaction between the hydroxyl group of the saturated polyol (p) and the isocyanate group of the polyisocyanate (r), the active hydrogen-containing group of the unsaturated monofunctional active hydrogen compound (q), and (r). Some are produced by reaction with isocyanate groups.
  • (D2) is a ratio obtained by the following formula so that the average ratio of the number of unsaturated groups to nitrogen-containing bonds derived from the NCO group of (r) in one molecule is 0.1 to 0.4. , (P), (q) and (r) are reacted.
  • Average value of the ratio of the number of unsaturated groups to nitrogen-containing bonds derived from the (r) NCO group in one molecule [Number of moles of (q) ⁇ number of unsaturated groups of (q)] / [number of moles of (r) ⁇ number of NCO groups of (r)]
  • the average value of the ratio of the number of unsaturated groups to nitrogen-containing bonds derived from the (r) NCO group in one molecule is more preferably 0.1 to 0.3, particularly preferably 0.2 to 0. .3.
  • the average value of the ratio of the number of unsaturated groups is within the above range, the dispersion stability of the polymer polyol is particularly good.
  • the content of the dispersant (d) is preferably 50% by weight or less based on the weight of (E), from the viewpoint of the particle diameter of the polymer fine particles (JR) and the viscosity of the resulting polymer polyol, Preferably it is 1 to 40% by weight, then more preferably 1 to 30% by weight, particularly preferably 3 to 25% by weight, most preferably 5 to 20% by weight.
  • a diluting solvent (f) may be used if necessary.
  • F includes aromatic hydrocarbons (C6-10, such as toluene, xylene); saturated aliphatic hydrocarbons (C5-15, such as hexane, heptane, normal decane); unsaturated aliphatic hydrocarbons (C5-30).
  • aromatic hydrocarbon solvents are preferred from the viewpoint of the viscosity of the polymer polyol.
  • the use amount (% by weight) of the diluting solvent (f) is preferably 0.1 to 50 based on the total weight of the ethylenically unsaturated compound (E) from the viewpoint of the viscosity of the polymer polyol and the mechanical properties of the polyurethane resin. More preferably, it is 1 to 40.
  • (f) may remain in the polymer polyol after the completion of the polymerization reaction, it is desirable to remove by vacuum stripping after the polymerization reaction from the viewpoint of the mechanical properties of the polyurethane resin.
  • a chain transfer agent (g) may be used if necessary.
  • Examples of (g) include various chain transfer agents such as aliphatic thiols (C1-20, such as n-dodecanethiol, mercaptoethanol) (Japanese Patent Laid-Open No. 2005-162791, Japanese Patent Laid-Open No. 2004-002800 (corresponding US patent application: US2005 / 245724 A1) etc. ⁇ can be used.
  • the amount (% by weight) of the chain transfer agent (g) is preferably 0.01 from the viewpoint of the viscosity of the polymer polyol and the mechanical properties of the resulting polyurethane resin, based on the total weight of the ethylenically unsaturated compound (E). ⁇ 2, more preferably 0.1 ⁇ 1.
  • the production method for obtaining the polymer polyol (I) of the present invention includes the following steps (1) and (n) from the viewpoint of the viscosity of the polymer polyol and the volume average particle diameter of the polymer fine particles.
  • the method is preferred.
  • Step (1) Ethylenic unsaturation in (PL) in the presence of fine particles (P1) and a radical polymerization initiator (c), and optionally in the presence of a dispersant (d) and / or a diluting solvent (f).
  • Step (n) for polymerizing compound (E) to obtain polymer polyol intermediate (B1) In polymer polyol intermediate (B (n-1)), in the presence of (c), if necessary (d) And / or (f) is polymerized to obtain a polymer polyol intermediate (B (n)) or polymer polyol (I) by polymerizing (E) (n represents an integer of 2 to 6).
  • N is an integer of 2 to 6, preferably an integer of 2 to 4, more preferably an integer of 2 to 3, from the viewpoint of the particle diameter of the polymer.
  • n 7 or more, the viscosity of (I) increases.
  • n 1 or less, it means that the step (n) is not included, but in this case, the volume average particle diameter (R) of the polymer fine particles is increased, and the properties of the produced polyurethane resin are deteriorated.
  • the concentration (% by weight) of the ethylenically unsaturated monomer (E) based on the total weight of (PL), (P1), (E), (c), (d) and (f) Is preferably from 7 to 40, more preferably from 10 to 35, and even more preferably from 15 to 30 from the viewpoint of the physical properties of the polyurethane resin and the particle diameter of the polymer.
  • the lower limit of the conversion rate (% by weight) of the polymer (E) in the step (1) is preferably 75% or more, more preferably 80% or more, and particularly preferably 85% or more.
  • the upper limit is preferably 99.5% or less, more preferably 99.2% or less, and particularly preferably 99% or less.
  • step (n) the ethylenically unsaturated monomer (E) based on the total weight of the polymer polyol intermediates (B (n-1)), (E), (c), (d) and (f)
  • the concentration is preferably from 7 to 40, more preferably from 10 to 35, and particularly preferably from 15 to 30 from the viewpoint of the physical properties of the polyurethane resin and the viscosity of the resulting polymer polyol.
  • the concentration of (E) in step (n) is the same as that of (E) included in (B (n-1)) when (E) is included in (B (n-1)).
  • the concentration is to be calculated.
  • polyol (PL) may be further added. In that case, the concentration is calculated by adding the added (PL).
  • the lower limit of the conversion rate (% by weight) of the polymer (E) in the step (n) is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the upper limit is preferably 99.5% or less, more preferably 99.2% or less, and particularly preferably 99% or less.
  • the polymerization temperature (° C.) is preferably from 100 to 180, more preferably from 110 to 160, particularly preferably from 120 to 140, from the viewpoint of productivity and prevention of polyol decomposition.
  • the polymerization method may be any method such as continuous polymerization, batch polymerization (drop polymerization, batch polymerization, etc.). From the viewpoint of productivity, the continuous polymerization method or batch batch polymerization method is preferable. Moreover, the polymerization methods in the step (1) and the step (n) may be the same or different.
  • the polymer polyol intermediate (B (n)) obtained in the step (n) may be used as it is as the polymer polyol (I), or the polymer polyol (I) may be obtained by carrying out a monomer removal / solvent removal treatment if necessary. . From the viewpoint of the odor of the polyurethane resin, it is preferable to perform a monomer removal treatment and a solvent removal treatment.
  • the fine particles (P1) are not particularly limited as long as they are inorganic or organic particulate substances, and may be used alone or in combination of two or more depending on the purpose. That is, any of inorganic fine particles (PA1), organic fine particles (PA2), and combinations of (PA1) and (PA2) may be used.
  • Examples of the inorganic fine particles (PA1) include silica, diatomaceous earth, alumina, zinc oxide, titania, zirconia, calcium oxide, magnesium oxide, iron oxide, copper oxide, tin oxide, chromium oxide, antimony oxide, yttrium oxide, cerium oxide, Metal oxides such as samarium oxide, lanthanum oxide, tantalum oxide, terbium oxide, europium oxide, neodymium oxide, ferrite, metal hydroxide such as calcium hydroxide, magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, hydrotalcite , Heavy calcium carbonate, light calcium carbonate, metal carbonate such as zinc carbonate, barium carbonate, dawsonite, metal sulfate such as calcium sulfate, barium sulfate, gypsum fiber, calcium silicate (wollastonite, zonotlite), kaolin, clay , Ta , Mica, montmorillonite, bentonite,
  • PA1 may be used alone or in combination of two or more depending on the purpose.
  • PA1 includes metal oxide, metal hydroxide, metal carbonate, metal sulfate, metal silicate, metal nitride, metal titanate, metal borate, metal phosphate, metal sulfide, carbon Is preferred.
  • organic fine particles examples include vinyl resins, urethane resins, epoxy resins, polyester resins, polyamides, polyimides, silicone resins, fluorine resins, phenol resins, melamine resins, benzoguanamine resins, urea resins, aniline resins, ionomer resins, Well-known organic resin microparticles
  • Fine particle (PA2) may be used alone or in combination of two or more depending on the purpose.
  • PA2) is preferably a vinyl resin, a urethane resin, an epoxy resin, a polyester resin, a fluororesin, a silicone resin, a melamine resin, or a benzoguanamine resin.
  • the fine particles (P1) may be used as they are, and surface treatment with a coupling agent such as silane, titanate, aluminate or the like (for example, a method described in JP-A-11-130979) in order to impart the adsorptivity of the polymer. Etc.), surface modification with various surfactants (methods described in JP-A-8-54752), coating treatment with wax or polymer (methods described in JP-A-2006-328261, etc.), etc. May be.
  • a coupling agent such as silane, titanate, aluminate or the like
  • the fine particles (P1) are preferably (PA1), (PA21), (PA23), and a mixture of two or more thereof. More preferred are metal oxides, metal carbonates, metal silicates and (PA21), and still more preferably silica, diatomaceous earth, heavy calcium carbonate, light calcium carbonate, kaolin, clay, talc, mica, bentonite, Activated clay, urethane resin, vinyl resin and polyester resin, particularly preferably silica, heavy calcium carbonate, light calcium carbonate, diatomaceous earth, talc, clay, activated clay, vinyl resin, most preferably ethylenic It is a polymer obtained by polymerizing the saturated compound (E).
  • the volume average particle diameter (R1) of the fine particles (P1) is preferably 0.01 ⁇ m to 1.0 ⁇ m from the viewpoint of reducing the viscosity of the polymer polyol and the cut elongation of the urethane foam, and the lower limit is more preferably 0.8.
  • the volume average particle diameter (R1) of the fine particles (P1) is suitably within the above particle diameter range so as to be a particle diameter suitable for obtaining polymer fine particles (JR) having a desired volume average particle diameter (R). Can be adjusted.
  • the volume average particle diameter (R1) of (P1) used is preferably 0.05 to 0.7 ⁇ m, particularly preferably 0.1 to 0. .5 ⁇ m.
  • (R1) of (P1) to be used is preferably 0.01 to 0.4 ⁇ m, particularly preferably 0.05 to 0.00. 3 ⁇ m.
  • the volume average particle diameter (R) means the volume average particle diameter of the polymer fine particles (JR).
  • the volume average particle diameter (R1) of (P1) and the volume average particle diameter (R) of the polymer fine particles (JR) are expressed by the following relational expressions (1) and (2). It is preferable to satisfy. Regarding the following relational expression (1), it is more preferable to satisfy the following relational expression (1 ′), and the following relational expression (1 ′′) is particularly preferable. Regarding the following relational expression (2), it is more preferable to satisfy the following relational expression (2 ′), and the following relational expression (2 ′′) is particularly preferable.
  • (R) is the volume average particle diameter of (JR)
  • R1 is the volume average particle diameter of (P1)
  • V is the polymer fine particle content (vol%) of polymer polyol
  • Q is [[((P1) Weight ⁇ (specific gravity of (P1)] / [weight of polymer polyol ⁇ specific gravity of polymer polyol ⁇ ].
  • the volume average particle diameter can be measured with a laser diffraction / scattered light particle size distribution analyzer (for example, LA-750, manufactured by Horiba, Ltd.).
  • Satisfying equation (2) indicates that (P1) having (R1) smaller than (R) is used, and in order to satisfy equation (2), (P1) satisfying this relationship is selected. do it. Satisfying the formula (1) indicates that the part derived from the fine particles (P1) in the polymer fine particles (JR) has a specific ratio, that is, used in the polymerization step with respect to the amount of the fine particles (P1) used. It shows that the amount of the ethylenically unsaturated compound (E) used has a specific relationship. By satisfying this relationship, it is easy to obtain a polymer polyol having a sufficiently small particle size, and a polyurethane resin using the polymer polyol has no problem such as scorching and is excellent in mechanical strength such as cutting elongation.
  • the ratio between the amount of the fine particles (P1) used and the amount of the ethylenically unsaturated compound (E) used may be adjusted. That is, when the formula (1) is not satisfied, it can be adjusted by increasing the amount of the fine particles (P1) used or decreasing the amount of the ethylenically unsaturated compound (E).
  • fine particle content (vol%) (V1 is the fine particle (P1) content (vol%) of (B1), and Vn is the polymer fine particle content (vol%) of (B (n)).
  • (V) represents the polymer fine particle (JR) content (vol%) of the polymer polyol.
  • Method for measuring fine particle content (vol%)> In a 50 ml centrifuge tube for centrifugation, about 5 g of the polymer polyol intermediate (B1, B (n)) or polymer polyol is precisely weighed to obtain the polymer polyol weight (W7). Add 50 g of methanol to dilute.
  • the specific gravity of the particles can be determined by the Chemical Engineering Handbook [Revised 3rd Edition] (Basics II, p. 3 to 29) or the like, or by the method of JIS-Z8807.
  • the specific gravity of the particles the true specific gravity is used when there are no voids sealed inside such as porous particles or spherical particles. Further, when there is a sealed void such as a hollow particle, the bulk specific gravity is used.
  • the specific gravity of the polymer polyol intermediate (B1, B (n)) or polymer polyol can be determined by the method of JIS-B7525 “Specific gravity floating”.
  • the dispersing device When the fine particles (P1) are dispersed in the polyol (PL), a dispersing device can be used.
  • the dispersion apparatus is not particularly limited as long as it is an emulsifier or a disperser.
  • a batch type such as a homogenizer (manufactured by IKA), polytron (manufactured by Kinematica), TK auto homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) or the like.
  • Fine particles (P1) are diluted with a diluting solvent (f) or a non-aqueous organic solvent (methyl chloride, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene, perchloroethylene, etc .; ethyl acetate Ester, ester ether such as butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate; ether such as diethyl ether, tetrahydrofuran, dioxane, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, methyl isobutyl ketone, Ketones such as di-n-butyl ketone and cyclohexanone; alcohols such as 2-ethylhexyl
  • the fine particles (P1) are preferably dispersed in the polyol (PL) in advance. That is, in the step (1), when (E) is polymerized, it may be carried out in (PL) in the presence of (P1) and (c), and (P1) is dispersed in (PL) in advance. To the polymerization reactor, or the polyol (PL) and the fine particles (P1) (or a dispersion in which (P1) is previously dispersed in the diluting solvent (f)) may be separately charged into the polymerization reactor.
  • the fine particle content (% by weight) is 7 on the basis of the weight of (P1) and (PL) from the viewpoint of the physical properties of the polyurethane resin and the particle size of the polymer. Is preferably 30, more preferably 10 to 25, and particularly preferably 12 to 20.
  • the polyol (PL) is preferably a liquid.
  • the polyol (PL) When the fine particles (P1) are dispersed, the polyol (PL) is preferably a liquid.
  • the polyol (PL) When the polyol (PL) is solid at room temperature, it may be dispersed in a liquid state at a high temperature above the melting point, or a solvent solution of (PL) may be used.
  • the viscosity of the polyol (PL) or its solvent solution when dispersing (P1) is usually 10 to 50,000 mPa ⁇ s (measured with a B-type viscometer), preferably 100 to 10, from the viewpoint of particle size uniformity. 000 mPa ⁇ s.
  • the temperature during dispersion is usually 0 to 150 ° C. (under pressure), preferably 5 to 98 ° C.
  • the viscosity of the dispersion is high, it is preferable to perform dispersion by adjusting the viscosity of the polyol (PL) or its solvent solution to the above-mentioned preferable range at a high temperature.
  • the solvent used in the solvent solution of the polyol (PL) the same solvent as the diluting solvent (f) used at the time of polymerization can be used.
  • the fine particles (P1) are dispersed in the polyol (PL)
  • a known (Japanese Patent Laid-Open No. 2003-12706, etc.) emulsifier or a known (patent No. 2006-241198) used in the production of a polymer polyol is used.
  • a dispersant (d) can also be used.
  • P1 can also be obtained by polymerizing the ethylenically unsaturated compound (E) in the polyol (PL) in the presence of the radical polymerization initiator (c) and, if necessary, the dispersant (d). it can.
  • the polymerization method a known polymerization method described later can be used.
  • (P1) is an ethylenically unsaturated compound (E) in the presence of a radical polymerization initiator (c) and, if necessary, a dispersant (d) in the polyol (PL) from the viewpoint of the storage stability of the polymer polyol. ) Is preferably obtained by polymerizing. Furthermore, it is preferable to use ACN and / or St as the ethylenically unsaturated compound (E) from the viewpoint of preventing scorch of the produced polyurethane resin.
  • the polymer polyol (I) of the present invention may contain an active hydrogen-containing compound (h) having an aromatic ring if necessary.
  • Polymerization may be carried out in the presence of (h).
  • the Mn of the active hydrogen-containing compound (h) having an aromatic ring is 150 to 2,000, preferably 300 to 1,700, more preferably 500 to 500 from the viewpoint of the particle size of the polymer fine particles in the polymer polyol. 1,600. When Mn is less than 150 or exceeds 2,000, the volume average particle diameter of the polymer fine particles becomes large.
  • the aromatic ring includes an aromatic ring in which only carbon forms a ring (benzene ring, naphthalene ring, etc.), an aromatic ring in which carbon and nitrogen form a ring (pyridine ring, etc.), and the like.
  • the content (% by weight) of the aromatic ring in (h) is preferably 4 to 90, preferably 8 to 70, more preferably 10 to 50, from the viewpoint of the volume average particle diameter of the polymer fine particles.
  • the content of the aromatic ring means a value obtained by dividing the total atomic weight of the elements forming the ring structure by the molecular weight.
  • the active hydrogen in (h) is preferably 1 to 3 and more preferably 1 to 2 per molecule of (h) from the viewpoint of the volume average particle diameter of the polymer fine particles.
  • the active hydrogen equivalent of (h) (that is, the molecular weight per active hydrogen of (h)) is preferably from 100 to 2,000, more preferably from 150 to 1, from the viewpoint of the volume average particle diameter of the polymer fine particles. 700, and more preferably 250 to 1,600.
  • (H) includes aromatic ring-containing ether (h1), aromatic ring-containing ester (h2), aromatic ring-containing urethane (h3), and the like.
  • Examples of (h1) include compounds obtained by adding alkylene oxide to phenol such as bisphenol.
  • Examples of phenol include monovalent phenols (cresol, naphthol, monostyrenated phenol, etc.), divalent phenols (catechol, resorcinol, bisphenol, etc.), trivalent or higher phenols (pyrogallol, etc.), and the like.
  • (h2) include compounds obtained by adding alkylene oxide to an aromatic ring-containing carboxylic acid such as phthalic acid.
  • Examples of the aromatic ring-containing carboxylic acid include monovalent carboxylic acids (benzoic acid, salicylic acid, etc.), divalent carboxylic acids (phthalic acid, terephthalic acid, etc.), and trivalent or higher carboxylic acids (mellitic acid, etc.).
  • Examples of (h3) include compounds obtained by polycondensation of an aromatic isocyanate such as TDI and a polyol.
  • aromatic isocyanate monovalent isocyanate (phenyl isocyanate, etc.), divalent isocyanate (tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, etc.), trivalent or higher isocyanate (triphenylmethane triisocyanate) , Tris (isocyanate phenyl) thiophosphate, polymeric MDI, etc.).
  • (h1) is preferable from the viewpoint of the viscosity of (h).
  • (h) is an alkylene oxide adduct (h- 1) is preferred.
  • X represents the hydroxyl equivalent of the active hydrogen-containing compound (i)
  • S represents the SP value of the active hydrogen-containing compound (i).
  • the hydroxyl equivalent (X) of the active hydrogen-containing compound (i) preferably satisfies the formula (3) from the viewpoint of the viscosity of (i) and the particle size of the polymer fine particles in the polymer polyol, and more preferably the formula (3) ') Is satisfied, and particularly preferably, the expression (3'') is satisfied.
  • the relationship between the SP value of the active hydrogen-containing compound (i) and the hydroxyl group equivalent preferably satisfies the formula (4). Satisfies the formula (4 ′), and particularly preferably satisfies the formula (4 ′′).
  • the hydroxyl equivalent (X) is a value that varies depending on the number of hydroxyl groups of the active hydrogen-containing compound (i) and the molecular weight of (i).
  • the active hydrogen-containing compound (i) having the following may be selected.
  • the number of structures or functional groups in which the SP value other than the hydroxyl group of (i) is large and the number of structures or functional groups in which the SP value is small are adjusted. do it.
  • S is smaller than the lower limit of the formula (4)
  • the number of structures or functional groups having an SP value larger than 10 is increased, or the number of structures or functional groups having an SP value smaller than 10 is decreased. Therefore, it can be adjusted to satisfy the equation (4).
  • S is larger than the upper limit of the formula (4), the number of structures or functional groups having an SP value larger than 12 is reduced, or the number of structures or functional groups having an SP value smaller than 12 is decreased. It can be adjusted by increasing.
  • the hydroxyl equivalent (X) When the hydroxyl equivalent (X) satisfies the formula (3), it means that (i) contains an appropriate amount of a hydroxyl group, that is, a functional group to which an alkylene oxide can be added, and has a structure in which an alkylene oxide is added to this hydroxyl group. This means that (h-1) has an appropriate affinity for polyol (PL). Further, when the SP value (S) of the hydroxyl group equivalent (X) and (i) satisfies the formula (4), depending on the amount of the hydroxyl group (i.e., the functional group to which alkylene oxide can be added) that (i) has, It means having an appropriate SP value.
  • (h) having a structure in which an alkylene oxide is added to (i) satisfying this relationship has an appropriate affinity for polymer fine particles (JR) according to the affinity with polyol (PL). It means having. Therefore, (h-1) having a structure in which alkylene oxide is added to (i) satisfying these formulas (3) and (4) has an affinity for an appropriate polyol (PL) and an appropriate polymer fine particle ( JR) means that it has an appropriate balance and has a very good dispersibility of polymer fine particles.
  • the active hydrogen of (i) is preferably 1 to 3 per molecule of (i), more preferably 1 to 2.
  • the active hydrogen equivalent of (i) (that is, the molecular weight per active hydrogen of (i)) is preferably 60 to 500, more preferably 80 to 450, and still more preferably 100 to 500, from the viewpoint of particle diameter. 400.
  • Examples of (i) include bisphenol (i1), styrenated phenol (i2), and the like, and the same as phenol described above in (h1).
  • Examples of (i1) include bisphenol, and examples of (i2) include monostyrenated phenol and distyrenated phenol.
  • (i1) is preferable from the viewpoint of the viscosity of (h) and the particle diameter of the polymer fine particles in the polymer polyol.
  • Alkylene oxide is the same as described above, and preferred ones are also the same.
  • the alkylene oxide adduct (h-1) of the active hydrogen-containing compound (i) having at least one active hydrogen and having a hydroxyl group equivalent and an SP value satisfying the formulas (3) and (4) is specifically (H-1-1) bisphenol alkylene oxide adduct, (h-1-2) styrenated phenol alkylene oxide adduct, and the like.
  • Examples of (h-1-1) include compounds obtained by adding alkylene oxide to bisphenol
  • examples of (h-1-2) include compounds obtained by adding alkylene oxide to monostyrenated phenol.
  • (h-1-1) is preferable from the viewpoint of the viscosity of (h) and the particle diameter of the polymer fine particles in the polymer polyol.
  • the content (% by weight) of (h) is preferably from 1 to 20, more preferably from the viewpoint of the volume average particle diameter of the polymer fine particles and the mechanical properties of the polyurethane resin, based on the weight of the polymer fine particles (JR). Is 1 to 15, then more preferably 1 to 10, particularly preferably 2 to 10, and most preferably 3 to 10.
  • the use amount (% by weight) of (h) in the dispersant (d) is preferably 5 to 100, more preferably 10 to 100, and particularly preferably 20 to 20 from the viewpoint of the particle size of the polymer fine particles in the polymer polyol. 100.
  • the polymer polyol obtained by polymerization may be subjected to monomer removal / solvent removal treatment.
  • monomer removal / solvent removal treatment a known method (Japanese Patent Application Laid-Open No. 2004-002800) can be applied.
  • the residual monomer ie, ethylenically unsaturated compound
  • a method of stripping the diluting solvent (f) or a method of distilling under reduced pressure while continuously adding water JP-B-62-36052, etc.
  • a solvent and a flame retardant may be added to the polymer polyol (I) of the present invention.
  • the solvent the same solvent as the diluting solvent (f) described above can be used, and unsaturated aliphatic hydrocarbons and aromatic hydrocarbons are preferable from the viewpoint of the viscosity of the polymer polyol.
  • the flame retardant various flame retardants (such as those described in JP-A No. 2005-162791, etc., phosphate esters, halogenated phosphate esters, melamine, phosphazenes, etc.) can be used, from the viewpoint of the viscosity of the polymer polyol.
  • a flame retardant having a low viscosity (100 mPa ⁇ s or less / 25 ° C.) is preferable, and among the halogenated phosphate esters, tris (chloroethyl) phosphate and tris (chloropropyl) phosphate are more preferable.
  • the amount (% by weight) of the solvent and the flame retardant used in the polymer polyol (I) is preferably 10 or less based on the total weight of the polymer fine particles (JR) and the polyol (PL). From the viewpoint of the flame retardancy of the resin and the mechanical properties of the resulting polyurethane resin, it is more preferably 0.01 to 5, more preferably 0.05 to 3, respectively.
  • the polymer polyol (I) of the present invention can be used as a polyol used for producing a polyurethane resin (polyurethane elastomer, polyurethane foam, etc.). That is, (I) or an isocyanate component (Is) comprising a polyol component (Po) containing (I) and a polyisocyanate [hereinafter, a composition comprising (Po) and (Is) is referred to as a polyurethane resin-forming composition. There is. ] Can be reacted by a known method ⁇ method described in JP-A-2004-263192 (corresponding US Patent Application: US2003 / 4217 A1) ⁇ , etc. to obtain a polyurethane resin.
  • a polyol component (Po) used for producing a polyurethane resin in addition to the polymer polyol (I) of the present invention, as a raw material for producing a polyurethane resin, a polyol is necessary as long as the effects of the present invention are not impaired. And known polymer polyols other than (I) may be used.
  • the polyol the above-described polyol (PL) or the like can be used, and as the known polymer polyol, JP 2005-162791 A, JP 2004-263192 A (corresponding US patent application: US 2003/4217 A1) and the like are described. These polymer polyols can be used.
  • the amount (% by weight) of the polyol used can be appropriately adjusted from the viewpoint of the mechanical properties of the resulting polyurethane resin, but is preferably 1 to 1,000 based on the weight of the polymer polyol (I).
  • the used amount (% by weight) of a known polymer polyol other than the polymer polyol (I) is based on the mechanical properties of the polyurethane resin, the mechanical properties of the polyurethane resin, the eyes of the discharge ports of the strainer and the manufacturing apparatus. From the viewpoint of reducing clogging, 1 to 100 is preferable.
  • the amount (% by weight) of the polymer polyol (I) used in the polyol component (Po) is preferably 10 to 100, more preferably 15 to 90, from the viewpoint of the mechanical properties of the resulting polyurethane resin and the viscosity of the polyol component. Particularly preferred is 20 to 80, and most preferred is 25 to 70.
  • isocyanate component (Is) known polyisocyanates conventionally used in the production of polyurethane resins ⁇ JP 2005-162791 A, JP 2004-263192 A (corresponding US patent application: US 2003/4217 A1)] Etc. ⁇ can be used.
  • TDI 2,4- and 2,6-tolylene diisocyanate
  • MDI 2,4- and 2,6-tolylene diisocyanate
  • TDI 2,4- and 2,6-tolylene diisocyanate
  • crude TDI refsidue when TDI is purified
  • MDI 2,4'- and 2,4'-diphenylmethane diisocyanate
  • urethane groups, carbodiimides derived from these polyisocyanates A modified polyisocyanate containing a group, allophanate group, urea group, burette group or isocyanurate group is preferred.
  • the NCO index [equivalent ratio of NCO group and active hydrogen atom (NCO group / active hydrogen atom) ⁇ 100] in the production of the polyurethane resin can be appropriately adjusted from the viewpoint of the mechanical properties of the polyurethane resin. Is more preferable, 85 to 120 is more preferable, and 95 to 115 is particularly preferable.
  • the amount (% by weight) of the catalyst used is preferably 10 or less, more preferably 0.001 to 5 based on the total weight of the polyurethane resin-forming composition.
  • various foaming agents ⁇ described in JP-A-2006-152188, JP-A-2004-263192 (corresponding US patent application: US2003 / 4217 A1), etc. ⁇ [water, HFC ( Hydrofluorocarbon), HCFC (hydrochlorofluorocarbon), methylene chloride, etc.] can be used to form a polyurethane foam.
  • the amount (% by weight) of the foaming agent can be changed depending on the desired density of the polyurethane foam, and is not particularly limited, but is preferably 20 or less based on the total weight of the polyurethane resin-forming composition.
  • a foam stabilizer can be used if necessary.
  • foam stabilizer various foam stabilizers (as described in JP-A-2005-162791, JP-A-2004-263192 (corresponding US patent application: US2003 / 4217 A1), etc.) can be used, and in polyurethane foam From the viewpoint of uniformity of cell diameter, a silicone surfactant (for example, polysiloxane-polyoxyalkylene copolymer) is preferable.
  • the amount (% by weight) of the foam stabilizer used is preferably 5 or less, more preferably 0.01 to 2, based on the total weight of the polyurethane resin-forming composition.
  • a flame retardant can be used if necessary.
  • Various flame retardants ⁇ as described in JP 2005-162791 A, JP 2004-263192 A (corresponding US Patent Application: US 2003/4217 A1) ⁇ , for example, melamine, phosphate ester, halogenated Examples thereof include phosphate esters and phosphazenes.
  • the amount (% by weight) of the flame retardant used is preferably 30 or less, more preferably 0.01 to 10, based on the total weight of the polyurethane resin-forming composition.
  • the polyurethane resin In the production of the polyurethane resin, if necessary, it is selected from the group consisting of reaction retarders, colorants, internal mold release agents, anti-aging agents, antioxidants, plasticizers, bactericides, and fillers (including carbon black). At least one other additive can be used.
  • the polyurethane resin can be produced by various methods ⁇ methods described in JP-A-2005-162791, JP-A-2004-263192 (corresponding US patent application: US2003 / 4217 A1) ⁇ , and the one-shot method. And semi-prepolymer method and prepolymer method.
  • a conventionally used production apparatus such as a low-pressure or high-pressure machine
  • an apparatus such as a kneader or an extruder can be used.
  • a closed mold or an open mold can be used.
  • the polymer polyol (I) of the present invention When the polymer polyol (I) of the present invention is used, clogging of a small opening of a production apparatus used for producing a polyurethane resin is reduced, maintenance is facilitated, and productivity can be improved. Particularly in a polyurethane foam foaming machine, clogging of the discharge head is extremely reduced and the productivity is remarkably improved.
  • Polyol (PL1-5): Polyol obtained by adding PO to bisphenol A and having a hydroxyl value of 216 and a terminal PO unit content of 56%. Terminal primary ratio 1 mol%.
  • Polyol (PL1-8): glycerin. Hydroxyl value 1829.
  • Polyol (PL1-9): PO adduct of sorbitol. Hydroxyl value 490.
  • Radical polymerization initiator c-1 1,1′-azobis (2-methylbutyronitrile) [trade name “V-59”, manufactured by Wako Pure Chemical Industries, Ltd.]
  • Volume average particle diameter ( ⁇ m) ⁇ [q (J) ⁇ X (J)] / ⁇ [q (J)] J: Particle size division number (1 to 85) q (J): Frequency distribution value (%) X (J): Particle size division number Jth particle size ( ⁇ m)
  • ⁇ Viscosity of polymer polyol The polymer polyol is measured using a BL type viscometer [manufactured by Tokyo Keiki Co., Ltd.] under the conditions of No. 3 rotor, 12 rpm or 6 rpm, and 25 ° C.
  • Production Examples 2 to 6 [Production of polymer polyol intermediates (H-2) to (H-6)]
  • polymer polyol intermediates (H-2) to (H-6) were obtained in the same manner as in Production Example 1, except that the initial charge and monomer solution mixed in the number of parts shown in Table 1 were used.
  • the volume average particle diameter and polymer fine particle content (% by weight) of (H-2) to (H-6) were measured and shown in Table 1.
  • Production Example 8 [Production of Strength Improvement Agent b-2]
  • 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0)
  • 6 mol of phthalic anhydride and an alkali catalyst (N— Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 6 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 9 [Production of Strength Improvement Agent b-3]
  • 1 mol of glycerin PO adduct (Sanyox GP-3000 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 3000, hydroxyl value 56.0)
  • 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 10 [Production of Strength Improvement Agent b-4]
  • 1 mol of glycerin PO adduct (Sanix GL-3000NS; Mn: 3000, hydroxyl value 56.0, manufactured by Sanyo Chemical Industries, Ltd.)
  • 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 11 [Production of Strength Improvement Agent b-5]
  • 1 mol of glycerin PO adduct (a-1) 3 mol of phthalic anhydride and 0.020 mol of alkali catalyst (N-ethylmorpholine) were charged, and 0.20 MPa in a nitrogen atmosphere.
  • the reaction was carried out at 120 ⁇ 10 ° C. for 1 hour for half esterification.
  • 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ⁇ 10 ° C. for 1 hour.
  • Production Example 12 [Production of Strength Improvement Agent b-6]
  • 1 mol of glycerin PO adduct (Sanyox KC-725 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 5000, hydroxyl value 34.0)
  • 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 13 [Production of Strength Improvement Agent b-7]
  • 1 mol of glycerin PO adduct (Sanyox FA-921NS; Mn: 6000, hydroxyl value 28.0) manufactured by Sanyo Chemical Industries, Ltd.
  • 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 14 [Production of Strength Improvement Agent b-8]
  • 1 mol of glycerin PO adduct (Sanix FA-921NS; Mn: 6000, hydroxyl value 28.0) manufactured by Sanyo Chemical Industries, Ltd.
  • 9 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 9 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 15 [Production of Strength Improvement Agent b-9]
  • 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0)
  • 6 mol of phthalic anhydride and an alkali catalyst (N— Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 6 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 16 [Production of Strength Improvement Agent b-10]
  • 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0)
  • 6 mol of phthalic anhydride and an alkali catalyst (N— Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 6 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 17 [Production of Strength Improvement Agent b-11]
  • 1 mol of glycerin PO adduct (a-1) 3 mol of phthalic anhydride and 0.020 mol of alkali catalyst (N-ethylmorpholine) were charged, and 0.20 MPa in a nitrogen atmosphere.
  • the reaction was carried out at 120 ⁇ 10 ° C. for 1 hour for half esterification.
  • 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ⁇ 10 ° C. for 1 hour.
  • Production Example 19 [Production of Strength Improvement Agent b-13]
  • 1 mol of trimellitic anhydride, and N-ethylmorpholine 0.02 as a catalyst 2 mol of THF was added as a solvent and a solvent, and half esterification was performed at 80 ⁇ 10 ° C. for 2 hours in a nitrogen atmosphere.
  • 2 mol of EO as the R1 constituent raw material was added dropwise over 2 hours while controlling to 80 ⁇ 10 ° C. and 0.5 MPa or less, and aged for 3 hours.
  • Production Example 20 [Production of Strength Improvement Agent b-14] A strength improver b-3 was obtained in the same manner as in Production Example 19 except that 2 mol of trimellitic anhydride and 4 mol of EO were used instead of 1 mol of trimellitic anhydride and 2 mol of EO.
  • Production Example 21 [Production of Strength Improvement Agent b-15] A strength improver b-4 was obtained in the same manner as in Production Example 19 except that pyromellitic anhydride was used instead of trimellitic anhydride and 6 mol of EO was used instead of 4 mol of EO.
  • Production Example 22 [Production of Strength Improvement Agent b-16]
  • the strength improver b-5 was prepared in the same manner as in Production Example 19 except that propylene glycol POEO adduct (PL-910; Mn: 900, hydroxyl value 124) manufactured by Sanyo Chemical Industries, Ltd. was used instead of polyethylene glycol. Obtained.
  • Production Example 25 [Production of Strength Improvement Agent b-19] The same autoclave as in Production Example 7 was charged with 2 mol of PEG-200, 1 mol of pyromellitic anhydride, 2.2 mol of triethylamine as a catalyst, and 2 mol of THF as a solvent, and half ester at 80 ⁇ 10 ° C. for 2 hours in a nitrogen atmosphere. Made. Thereafter, 2 moles of ethylene bromide was added as an R1 constituent raw material and reacted at 80 ⁇ 10 ° C. for 6 hours. After the reaction, the precipitated salt was filtered off, the organic layer was washed with water, and the target product was extracted and separated with toluene.
  • Production Example 27 [Production of Strength Improvement Agent b-21] A strength improver b-21 was obtained in the same manner as in Production Example 25 except that ethylene bromide was changed to phenyl chloride.
  • Production Example 28 [Production of Strength Improvement Agent b-22] Similar to Production Example 23 except that polytetramethylene glycol was changed to PEG-200, 1 mol of trimellitic anhydride instead of 2 mol of trimellitic anhydride, and 2 mol of PP-200 instead of 4 mol of benzyl chloride. Operation was performed to obtain a strength improver b-23.
  • Production Example 30 [Production of Strength Improvement Agent b-24] The same procedure as in Production Example 23, except that PEG-200 was substituted for polytetramethylene glycol, 1 mol of trimellitic anhydride was substituted for 2 mol of trimellitic anhydride, and 2 mol of diphenylamine was substituted for 4 mol of benzyl chloride. To obtain a strength improver b-24.
  • Production Example 35 [Production of Strength Improvement Agent m-1]
  • 1 mol of glycerin PO adduct (Sanyox GP-3000 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 3000, hydroxyl value 56.0)
  • 1 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 1 mol of PO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 36 [Production of Strength Improvement Agent m-2]
  • 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0)
  • 9 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 9 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Production Example 37 [Production of Strength Improvement Agent m-3]
  • 1 mol of glycerin PO adduct (Sanyox FA-921 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 6000, hydroxyl value 28.0)
  • 1 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ⁇ 10 ° C. for 1 hour in a nitrogen atmosphere.
  • 1 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ⁇ 10 ° C.
  • Hydroxyl value Conforms to JIS K1557, unit is mgKOH / g
  • Example 1 [Production of polymer polyol (I-1)]
  • Two tanks of a continuous polymerization apparatus SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) are prepared, and the first overflow line is connected to the inlet of the second polymerization tank in series.
  • L-1) 2,000 parts were charged and the temperature was raised to 130 ° C.
  • Examples 2 to 26 [Production of polymer polyols (I-2) to (I-26)]
  • the polymer polyol (I--) was used in the same manner as in Example 1 except that in the first step, the second step, and the dilution step, the initial charge and the raw material mixture shown in Tables 3 and 4 were used. 2) to (I-26) were obtained. (I-2) to (I-26) were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 5 and 6.
  • Comparative Example 1 [Production of polymer polyol (R-1)] A continuous polymerization apparatus (SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) was prepared, and an initial charge liquid (L-1) in which polyol (PL1-1) and xylene were previously mixed in the number of parts shown in Table 4 was prepared. 2,000 parts were charged and the temperature was raised to 130 ° C. Polyol (PL1-1), dispersant (d-1), ACN, St, allyl alcohol PO 2.2 mol adduct, divinylbenzene, radical polymerization initiator (c-1) and xylene are mixed in the parts shown in Table 4.
  • SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line was prepared, and an initial charge liquid (L-1) in which polyol (PL1-1) and xylene were previously mixed in the number of parts shown in Table 4 was prepared. 2,000 parts were charged and the temperature was raised to 130 ° C. Polyol (PL1-1
  • the raw material mixture liquid (G1-1) was line-blended using a static mixer and then continuously fed to the polymerization tank at the liquid feed speed shown in Table 2 to overflow from the polymerization tank and polymer polyol intermediate (RB1- 1) was obtained.
  • (RB1-1) is added with super-steam (amount of water contained in the vapor is 4% by weight with respect to the polymer polyol over 2 hours) from another port while adding unreacted monomer and xylene. , 666-3,999 Pa (20-30 torr) for 2 hours at 130-140 ° C. under reduced pressure to obtain a polymer polyol intermediate (RB2-2).
  • Polyol (PL1-1), dispersant (d-1), ACN, St, allyl alcohol PO 2.2 mol adduct, divinylbenzene, radical polymerization initiator (c-1) and xylene are mixed in the parts shown in Table 4.
  • the raw material mixture (G1-3) was line blended using a static mixer, then continuously fed to the first polymerization tank at the first tank feeding speed shown in Table 4, and overflowed from the polymerization tank.
  • a polymer polyol intermediate (RB2-1) Overflow from the first polymerization tank (RB2-1) was continuously fed to the second polymerization tank at the first tank feeding speed shown in Table 4.
  • Comparative Examples 3 to 5 [Production of polymer polyols (R-3) to (R-5)]
  • Comparative Example 2 in the same manner as in Comparative Example 2, except that the initial charge and the raw material mixture shown in Table 4 were used in the first step, the second step and the dilution step, the polymer polyol (R-3) to (R-5) was obtained. (R-3) to (R-5) were measured and evaluated in the same manner as in Comparative Example 2. The results are shown in Table 6.
  • Example 27 [Production of polymer polyol (I-27)]
  • Two tanks of a continuous polymerization apparatus SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) are prepared, and the first overflow line is connected to the inlet of the second polymerization tank in series.
  • Raw material mixture (G1-5) in which polyol (PL1-3), polyol (PL1-4), (d-2), ACN, St and radical polymerization initiator (c-1) were mixed in the number of parts shown in Table 7 was line-blended using a static mixer, and then continuously fed to the first polymerization tank at the liquid feeding speed of the first tank shown in Table 7, and overflowed from the polymerization tank to cause a polymer polyol intermediate (IB27-1). ) Overflowing from the first polymerization tank (IB27-1) was continuously fed to the second polymerization tank at the first tank feeding speed shown in Table 7.
  • Examples 28 to 47 [Production of polymer polyols (I-28) to (I-47)]
  • Example 27 the polymer polyol (I-- 28) to (I-47) were obtained.
  • (I-28) to (I-47) were measured and evaluated in the same manner as in Example 1. The results are shown in Table 9.
  • Raw material mixture (G1-7) in which polyol (PL1-3), polyol (PL1-4), (d-2), ACN, St and radical polymerization initiator (c-1) were mixed in the number of parts shown in Table 8 was line-blended using a static mixer, and then continuously fed to the first polymerization tank at the liquid feeding speed of the first tank shown in Table 8, and overflowed from the polymerization tank to cause the polymer polyol intermediate (RB6-1).
  • the polymer polyol intermediate (RB6-1) overflowed from the first polymerization tank was continuously fed to the second polymerization tank at the first tank feeding speed shown in Table 8.
  • Comparative Example 7 [Production of polymer polyol (R-7)]
  • the polymer polyol (R-7) was prepared in the same manner as in Comparative Example 6 except that the initial charge and the raw material mixture shown in Table 8 were used in the first step, the second step, and the dilution step. Obtained. (R-7) was measured and evaluated in the same manner as in Comparative Example 6. The results are shown in Table 9.
  • Examples 48 to 73, Comparative Examples 8 to 12 [Production of polyurethane foam]
  • the polymer polyols (I-1) to (I-26) obtained in Examples 1 to 26 and the comparative polymer polyols (R-1) to (R-5) obtained in Comparative Examples 1 to 5 were used.
  • Polyurethane foams were produced by the foaming formulation shown below at the blending ratios shown in Table 10 and Table 11. The physical properties of these foams were evaluated by the following methods. The results are shown in Table 10 and Table 11. ⁇ Foaming prescription> [1] The temperature of each polymer polyol and polyisocyanate was adjusted to 25 ⁇ 2 ° C.
  • polyurethane foam In general, the physical properties of polyurethane foam indicate that 25% ILD, tensile strength, tear strength, cutting elongation and air permeability are better as the numerical value is larger, and compression set is smaller as the numerical value is smaller.
  • Examples 74 to 94, Comparative Examples 13 and 14 [Production of polyurethane foam]
  • the polymer polyols (I-27) to (I-47) obtained in Examples 27 to 47 and the polymer polyols (R-6) and (R-7) obtained in Comparative Examples 6 and 7 were used. 12, each raw material is stirred and mixed at 25 ⁇ 2 ° C., the mold temperature is 60 ⁇ 5 ° C., the mold size is 40 ⁇ 40 ⁇ 10 (H) cm, and the curing time is 6 minutes.
  • a polyurethane foam was produced. The physical properties of these foams were evaluated by the following methods. The results are shown in Table 12.
  • polyurethane foam In general, the physical properties of polyurethane foam indicate that 25% ILD, tensile strength, tear strength, and elongation at break are better as the numerical value is larger, and compression set is smaller as the numerical value is smaller.
  • the polymer polyol of the present invention improves the mechanical properties of polyurethane, it can be used widely in a wide range of polyurethanes such as foams (soft, rigid, semi-rigid foams), elastomers, RIM molded products and the like.
  • polyurethanes such as foams (soft, rigid, semi-rigid foams), elastomers, RIM molded products and the like.
  • foams soft, rigid, semi-rigid foams
  • elastomers elastomers
  • RIM molded products and the like the physical properties of the polyurethane foam can be adjusted with good balance, which is preferable.
  • Polyurethanes formed from the polyurethane-forming composition of the present invention are used in a wide variety of applications. Particularly, they are suitably used as polyurethane foams for automobile interior parts, indoor furniture for furniture, and the like.

Abstract

Provided are a polymer polyol from which polyurethane having a high tensile strength can be produced, and a method for producing polyurethane using a polyol component which comprises said polymer polyol. A polymer polyol (I) comprising polymer microparticles (JR) contained in a polyol (PL), said (JR) comprising an ethylenically unsaturated compound (E) as a constituting unit, wherein (PL) contains a strength-improving agent (b) as will be described hereinbelow and the volume-average particle diameter (R) of (JR) is 0.1-1.5 μm. Strength-improving agent (b): at least one kind of a compound which is selected from the group consisting of an ester compound, a thioester compound, a phosphate compound and an amide compound and comprises, as an essential component, a divalent or higher-valent aromatic polyvalent carboxylic acid.

Description

ポリマーポリオール及びポリウレタンの製造方法Method for producing polymer polyol and polyurethane
 本発明はポリマーポリオール及びこのポリマーポリオールを用いたポリウレタンの製造方法に関する。さらに詳しくは、ポリウレタンフォーム及びポリウレタンエラストマー等のポリウレタン原料として好適であり、優れた機械物性をポリウレタンに付与するポリマーポリオールに関する。 The present invention relates to a polymer polyol and a method for producing polyurethane using the polymer polyol. More specifically, the present invention relates to a polymer polyol that is suitable as a polyurethane raw material such as polyurethane foam and polyurethane elastomer and imparts excellent mechanical properties to polyurethane.
 従来、アクリロニトリルを含むエチレン性不飽和化合物をポリオール中で重合させてなるポリマーポリオールとしては、このポリマーポリオールを原料とするポリウレタンフォームの耐スコーチ性を向上させる目的で、エチレン性不飽和化合物中のアクリロニトリル比率を低く(67モル%以下)することが求められている。重合体中のアクリロニトリル比率を下げてスチレン比率を高めたポリマーポリオールとしては、粒度分布を規定したポリマーポリオール(例えば特許文献1参照)が知られている。また、溶存酸素濃度を5~120ppmに管理した連続重合の製造方法により得られる、直径100μm以上の粗大粒子濃度が5~120ppmであるポリマーポリオール(例えば特許文献2参照)が知られている。
 一方、近年コスト低減要求が強く、軽量化のためのポリマーポリオールを用いた軟質ポリウレタンフォームの低密度化が求められている。例えば、車両用途では燃費規制に対応する軽量化のための軟質ポリウレタンフォームの低密度化が求められている。
 低密度化の要望に応えるため、発泡剤としての水の使用量は更に増加の傾向にある。水の使用量を増加させる(非特許文献1等)ことは、フォーム製造時の発生炭酸ガス量を増加させることができ、軟質ポリウレタンフォームの密度を低下させるには有効であるが、フォームの密度が低下するとフォーム硬度が低下する。軟質ポリウレタンフォームの硬度を向上させる具体的技術としては、使用する架橋剤の使用量を上げる方法(非特許文献1)等があるが、このような方法では、軟質ポリウレタンフォームの伸びや引張強度のような機械物性が不十分である等の課題が残されており、硬度が向上し機械物性が維持される軟質ポリウレタンフォームが望まれている。
Conventionally, as a polymer polyol obtained by polymerizing an ethylenically unsaturated compound containing acrylonitrile in a polyol, acrylonitrile in the ethylenically unsaturated compound is used for the purpose of improving the scorch resistance of a polyurethane foam using the polymer polyol as a raw material. It is required to reduce the ratio (67 mol% or less). As a polymer polyol in which the acrylonitrile ratio in the polymer is lowered to increase the styrene ratio, a polymer polyol having a prescribed particle size distribution (see, for example, Patent Document 1) is known. Also known is a polymer polyol (see, for example, Patent Document 2) having a coarse particle concentration of 5 to 120 ppm having a diameter of 100 μm or more obtained by a continuous polymerization production method in which the dissolved oxygen concentration is controlled to 5 to 120 ppm.
On the other hand, there is a strong demand for cost reduction in recent years, and there is a demand for lowering the density of flexible polyurethane foam using a polymer polyol for weight reduction. For example, in a vehicle application, it is required to reduce the density of a flexible polyurethane foam for weight reduction corresponding to fuel consumption regulations.
In order to meet the demand for lower density, the amount of water used as a foaming agent tends to increase further. Increasing the amount of water used (Non-Patent Document 1, etc.) can increase the amount of carbon dioxide generated during foam production and is effective in reducing the density of flexible polyurethane foam. As the hardness decreases, the foam hardness decreases. As a specific technique for improving the hardness of the flexible polyurethane foam, there is a method of increasing the amount of the crosslinking agent to be used (Non-Patent Document 1), etc., but in such a method, the elongation and tensile strength of the flexible polyurethane foam are reduced. There remains a problem such as insufficient mechanical properties, and a flexible polyurethane foam is desired in which the hardness is improved and the mechanical properties are maintained.
特開平11-236499号公報Japanese Patent Laid-Open No. 11-236499 特開2005-162791号公報JP 2005-162791 A
 本発明の目的は、高い引張強度を有するポリウレタンが製造できるポリマーポリオール、このポリマーポリオールを含有するポリオール成分を用いたポリウレタンの製造方法を提供することである。 An object of the present invention is to provide a polymer polyol capable of producing a polyurethane having a high tensile strength, and a method for producing a polyurethane using a polyol component containing the polymer polyol.
 すなわち、本発明のポリマーポリオール(I)は、エチレン性不飽和化合物(E)を構成単位とする重合体微粒子(JR)がポリオール(PL)中に含有されてなるポリマーポリオールにおいて、(PL)が下記強度向上剤(b)を含有してなり、(JR)の体積平均粒子径(R)が0.1~1.5μmであることを要旨とする。
 強度向上剤(b):エステル化合物、チオエステル化合物、リン酸エステル化合物及びアミド化合物からなる郡から選ばれる少なくとも1種の化合物であって、2価以上の芳香族多価カルボン酸を必須構成成分とする化合物
 また、本発明のポリウレタンの製造方法は、ポリオール成分とイソシアネート成分とを反応させてポリウレタンを製造する方法において、ポリオール成分が上記のポリマーポリオール(I)をポリオール成分の重量を基準として10~100重量%含有することを要旨とする。
That is, the polymer polyol (I) of the present invention is a polymer polyol in which polymer fine particles (JR) having an ethylenically unsaturated compound (E) as a structural unit are contained in a polyol (PL), wherein (PL) is The gist is that it contains the following strength improver (b), and the volume average particle diameter (R) of (JR) is 0.1 to 1.5 μm.
Strength improver (b): at least one compound selected from the group consisting of an ester compound, a thioester compound, a phosphate ester compound, and an amide compound, wherein a divalent or higher aromatic polyvalent carboxylic acid is an essential constituent Further, the method for producing a polyurethane according to the present invention is a method for producing a polyurethane by reacting a polyol component and an isocyanate component, wherein the polyol component is based on the above-mentioned polymer polyol (I) based on the weight of the polyol component. The gist is to contain 100% by weight.
 本発明のポリマーポリオール(I)及び(I)を用いて得られたポリウレタンは以下の効果を奏する。
(1)ポリマーポリオール(I)を用いて製造されたポリウレタンフォームは硬さが良好となる等、ポリウレタンの機械物性が向上する。
The polyurethane obtained using the polymer polyols (I) and (I) of the present invention has the following effects.
(1) The polyurethane foam produced using the polymer polyol (I) has improved mechanical properties such as improved hardness.
 本発明のポリマーポリオールとは、エチレン性不飽和化合物(E)を構成単位とし、これを重合させて得られる重合体粒子(JR)がポリオール(PL)中に含有されてなるものである。エチレン性不飽和化合物(E)としては、スチレン(以下Stと略記)、アクリロニトリル(以下、ACNと略記)、その他のエチレン性不飽和モノマー(e)等が使用できる。エチレン性不飽和化合物(E)としては、St及び/又はACNを必須成分とすることが好ましい。 The polymer polyol of the present invention is a polymer (JR) obtained by polymerizing an ethylenically unsaturated compound (E) as a constituent unit and contained in the polyol (PL). As the ethylenically unsaturated compound (E), styrene (hereinafter abbreviated as St), acrylonitrile (hereinafter abbreviated as ACN), other ethylenically unsaturated monomers (e), and the like can be used. As an ethylenically unsaturated compound (E), it is preferable to make St and / or ACN into an essential component.
 重合体微粒子(JR)を構成するエチレン性不飽和化合物(E)の合計重量に基づくStの割合(重量%)は、ポリウレタン樹脂の変色及び粗大粒子の含有量の観点から、60~100が好ましく、さらに好ましくは62~95、次にさらに好ましくは64~84、最も好ましくは66~80である。 The proportion (% by weight) of St based on the total weight of the ethylenically unsaturated compound (E) constituting the polymer fine particles (JR) is preferably 60 to 100 from the viewpoint of discoloration of the polyurethane resin and the content of coarse particles. More preferably, it is 62 to 95, next more preferably 64 to 84, and most preferably 66 to 80.
 重合体微粒子(JR)を構成するエチレン性不飽和化合物(E)の合計重量に基づくACNの割合(重量%)は、粗大粒子の含有量及びポリウレタン樹脂の変色の観点から、0~40が好ましく、さらに好ましくは5~38、次にさらに好ましくは16~36、最も好ましくは20~34である。 The proportion (% by weight) of ACN based on the total weight of the ethylenically unsaturated compound (E) constituting the polymer fine particles (JR) is preferably 0 to 40 from the viewpoint of the content of coarse particles and discoloration of the polyurethane resin. More preferably, it is 5-38, then more preferably 16-36, most preferably 20-34.
 StとACNとの重量比(St:ACN)は、上記のエチレン性不飽和化合物(E)中のSt及びACNの割合と同様の観点から、100:0~60:40が好ましく、さらに好ましくは95:5~62:38、次にさらに好ましくは84:16~64:36、最も好ましくは80:20~66:34である。 The weight ratio of St to ACN (St: ACN) is preferably 100: 0 to 60:40, more preferably from the same viewpoint as the ratio of St and ACN in the ethylenically unsaturated compound (E). 95: 5 to 62:38, more preferably 84:16 to 64:36, and most preferably 80:20 to 66:34.
 その他のエチレン性不飽和モノマー(e)としては、炭素数(以下Cと略記)2以上かつ数平均分子量(以下Mnと略記)[測定はゲルパーミエーションクロマトグラフィー(GPC)法による。]1,000未満のもので、St及び/又はACNと共重合可能であれば特に制限はなく、下記に示す1官能のもの[不飽和ニトリル(e1)、芳香環含有モノマー(e2)、(メタ)アクリル酸エステル(e3)、α-アルケニル基含有化合物の(ポリ)オキシアルキレンエーテル、及び水酸基を有する不飽和エステルのアルキレンオキサイド付加物(e4)、その他のエチレン性不飽和モノマー(e5)]及び多官能(2又はそれ以上)モノマー(e6)等が使用できる。これらは単独で使用してもよいし、2種以上を併用してもよい。 Other ethylenically unsaturated monomers (e) have 2 or more carbon atoms (hereinafter abbreviated as C) and a number average molecular weight (hereinafter abbreviated as Mn) [measurement is based on gel permeation chromatography (GPC) method. There is no particular limitation as long as it is less than 1,000 and can be copolymerized with St and / or ACN, and the following monofunctional ones [unsaturated nitrile (e1), aromatic ring-containing monomer (e2), ( (Meth) acrylic acid ester (e3), (poly) oxyalkylene ether of an α-alkenyl group-containing compound, and an alkylene oxide adduct (e4) of an unsaturated ester having a hydroxyl group, other ethylenically unsaturated monomers (e5)] And polyfunctional (2 or more) monomers (e6) and the like can be used. These may be used alone or in combination of two or more.
 (e1)としてはメタクリロニトリル等が挙げられる。
 (e2)としてはα-メチルスチレン、ヒドロキシスチレン、クロルスチレン等が挙げられる。
 (e3)としては、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル(アルキル基がC1~24);ヒドロキシポリオキシアルキレン(アルキレン基がC2~8)モノ(メタ)アクリレート等が挙げられる。
 なお、(メタ)アクリレートとは、メタクリレート及び/又はアクリレートを意味し、(メタ)アクリル酸エステルとは、アクリル酸エステル及び/又はメタアクリル酸エステルを意味し、以下における(メタ)アクリル酸、(メタ)アリル等も同様であり、以下同様の表記法を用いる。
Examples of (e1) include methacrylonitrile.
Examples of (e2) include α-methylstyrene, hydroxystyrene, chlorostyrene and the like.
As (e3), methyl (meth) acrylate, butyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl ( (Meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, eicosyl (meth) acrylate, docosyl (meth) acrylate, etc. (meth) acrylic acid alkyl esters (alkyl group is C1-24) Hydroxypolyoxyalkylene (alkylene group is C2-8) mono (meth) acrylate and the like.
In addition, (meth) acrylate means methacrylate and / or acrylate, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, (meth) acrylic acid in the following, ( The same applies to (meth) allyl and the like, and the same notation is used hereinafter.
 (e4)としては、α-アルケニル基含有化合物の(ポリ)オキシアルキレンエーテル、及び水酸基を有する不飽和エステルのアルキレンオキサイド付加物が含まれる。
 α-アルケニル基含有化合物の(ポリ)オキシアルキレンエーテルとしては、C3~24の不飽和アルコールのアルキレンオキサイド(以下AOと略記)付加物が挙げられ、不飽和アルコールとしては、末端不飽和アルコールが好ましく用いられる。末端不飽和アルコールとしては、アリルアルコール、2-ブテン-1-オール、3-ブテン-2-オール、3-ブテン-1-オール、1-ヘキセン-3-オールなどが挙げられる。
 なお、(ポリ)オキシアルキレンエーテルとは、モノオキシアルキレンエーテル又はポリオキシアルキレンエーテルを意味する。
(E4) includes (poly) oxyalkylene ethers of α-alkenyl group-containing compounds and alkylene oxide adducts of unsaturated esters having a hydroxyl group.
The (poly) oxyalkylene ether of the α-alkenyl group-containing compound includes an alkylene oxide (hereinafter abbreviated as AO) adduct of a C3-24 unsaturated alcohol, and the unsaturated alcohol is preferably a terminal unsaturated alcohol. Used. Examples of the terminal unsaturated alcohol include allyl alcohol, 2-buten-1-ol, 3-buten-2-ol, 3-buten-1-ol, 1-hexen-3-ol and the like.
In addition, (poly) oxyalkylene ether means monooxyalkylene ether or polyoxyalkylene ether.
 水酸基を有する不飽和エステルのAO付加物としては、C3~24の水酸基を有する不飽和エステルのAO付加物が挙げられ、水酸基を有する不飽和化合物エステルとしては、ヒドロキシアルキル(C2~12)(メタ)アクリレートが含まれ、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレートなどが挙げられる。 Examples of the AO adduct of an unsaturated ester having a hydroxyl group include an AO adduct of an unsaturated ester having a C3-24 hydroxyl group, and examples of the unsaturated compound ester having a hydroxyl group include hydroxyalkyl (C2-12) (meta ) Acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate and the like.
 これらのうち、分散安定性及び粘度の観点から、α-アルケニル基含有化合物の(ポリ)オキシアルキレンエーテルが好ましく、さらに好ましくはアリルアルコールのAO付加物である。AOの付加モル数は、ポリウレタン樹脂の物性の観点から、1~9が好ましく、さらに好ましくは1~6、特に好ましくは1~3である。
 上記AOとしては、C2~12又はそれ以上のものが含まれ、例えばエチレンオキサイド(以下、EOと略記する)、1,2-プロピレンオキサイド(以下、POと略記する)、1,2-、2,3-若しくは1,3-ブチレンオキサイド(以下、BOと略記する)、テトラヒドロフラン(以下、THFと略記する)及び3-メチル-テトラヒドロフラン(以下、MTHFと略記する )、1,3-プロピレンオキサイド、イソブチレンオキサイド、C5~12のα-オレフィンオキサイド、置換AO(スチレンオキサイド、エピハロヒドリン等)、並びにこれらの2種以上の併用(ランダム付加及び/又はブロック付加)が挙げられる。
Among these, from the viewpoint of dispersion stability and viscosity, (poly) oxyalkylene ethers of α-alkenyl group-containing compounds are preferred, and AO adducts of allyl alcohol are more preferred. The number of moles of AO added is preferably 1 to 9, more preferably 1 to 6, particularly preferably 1 to 3, from the viewpoint of the physical properties of the polyurethane resin.
Examples of the AO include those having C2 to 12 or more, such as ethylene oxide (hereinafter abbreviated as EO), 1,2-propylene oxide (hereinafter abbreviated as PO), 1,2-, 2 , 3- or 1,3-butylene oxide (hereinafter abbreviated as BO), tetrahydrofuran (hereinafter abbreviated as THF) and 3-methyl-tetrahydrofuran (hereinafter abbreviated as MTHF), 1,3-propylene oxide, Examples include isobutylene oxide, C5-12 α-olefin oxide, substituted AO (styrene oxide, epihalohydrin, etc.), and combinations of two or more thereof (random addition and / or block addition).
 AOとしては、分散安定性及び粘度の観点から、C2~8が好ましく、さらに好ましくはC2~4、特に好ましくはC2~3,最も好ましくはPO及び/又はEOである。
 また、AOとしては、分散安定性及び粘度の観点から、単独の使用及び2種以上のAOの併用が好ましく、さらに好ましくはPO又はEOの単独並びにPO及びEOの併用である。
AO is preferably C2 to 8 from the viewpoint of dispersion stability and viscosity, more preferably C2 to 4, particularly preferably C2 to 3, and most preferably PO and / or EO.
Moreover, as AO, from a viewpoint of dispersion stability and a viscosity, single use and combined use of 2 or more types of AO are preferable, More preferably, PO or EO is single and PO and EO are combined.
 (e4)のMnは、ポリマーポリオールが低粘度となること、ポリマーポリオールの取り扱い性及び得られるポリウレタン樹脂の硬度の観点から、110~490が好ましく、さらに好ましくは112~480、次にさらに好ましくは116~450、特に好ましくは170~420、最も好ましくは180~300である。 Mn of (e4) is preferably 110 to 490, more preferably 112 to 480, and still more preferably from the viewpoint of the low viscosity of the polymer polyol, the handleability of the polymer polyol and the hardness of the resulting polyurethane resin. 116 to 450, particularly preferably 170 to 420, and most preferably 180 to 300.
 (e4)の不飽和基(α-アルケニル基又は不飽和エステル基)の数は、平均1個以上であり、ポリマーポリオールの粘度及び後述するポリウレタン樹脂の物性の観点から、1~10個が好ましく、さらに好ましくは1~2個、特に好ましくは1個である。 The number of unsaturated groups (α-alkenyl group or unsaturated ester group) in (e4) is 1 or more on average, and preferably 1 to 10 from the viewpoint of the viscosity of the polymer polyol and the physical properties of the polyurethane resin described later. More preferably, the number is 1 to 2, particularly preferably 1.
 また、(e4)の溶解度パラメーター(以下SP値と略記)は、ポリマーポリオールの粘度及び後述するポリウレタン樹脂の圧縮硬さの観点から、9.5~13が好ましく、さらに好ましくは9.8~12.5、特に好ましくは10~12.2である。
 なお、SP値とは、下記に示すとおり凝集エネルギー密度と分子容の比の平方根で表されるものである。
 
  SP値=(△E/V)1/2
 
 ここで△Eは凝集エネルギー密度、Vは分子容を表し、その値は、Robert F.Fedorsらの計算によるもので、例えばポリマー エンジニアリング アンド サイエンス(Polymer engineering and science)第14巻、147~154頁に記載されている。
The solubility parameter (hereinafter referred to as SP value) of (e4) is preferably 9.5 to 13, more preferably 9.8 to 12, from the viewpoint of the viscosity of the polymer polyol and the compression hardness of the polyurethane resin described later. .5, particularly preferably 10 to 12.2.
The SP value is represented by the square root of the ratio between the cohesive energy density and the molecular volume as shown below.

SP value = (ΔE / V) 1/2

Here, ΔE represents the cohesive energy density, V represents the molecular volume, and its value is Robert F. Fedors et al., For example, described in Polymer Engineering and Science, Vol. 14, pages 147-154.
 その他のエチレン性不飽和モノマー(e5) としては、C2~24のエチレン性不飽和モノマーが好ましく、例えば(メタ)アクリル酸等のビニル基含有カルボン酸;エチレン、プロピレン等の脂肪族炭化水素モノマー;パーフルオロオクチルエチルメタクリレート、パーフルオロオクチルエチルアクリレート等のフッ素含有ビニルモノマー;ジアミノエチルメタクリレート、モルホリノエチルメタクリレート等の不飽和ニトリル以外の窒素含有ビニルモノマー;ビニル変性シリコーン;ノルボルネン、シクロペンタジエン、ノルボルナジエン等の環状-オレフィン又はジエン化合物;等が挙げられる。 The other ethylenically unsaturated monomer (e5) is preferably a C2-24 ethylenically unsaturated monomer, for example, a vinyl group-containing carboxylic acid such as (meth) acrylic acid; an aliphatic hydrocarbon monomer such as ethylene or propylene; Fluorine-containing vinyl monomers such as perfluorooctylethyl methacrylate and perfluorooctylethyl acrylate; Nitrogen-containing vinyl monomers other than unsaturated nitriles such as diaminoethyl methacrylate and morpholinoethyl methacrylate; Vinyl-modified silicones; Cyclic rings such as norbornene, cyclopentadiene and norbornadiene An olefin or a diene compound;
 多官能モノマー(e6)としては、C8~40の多官能モノマーが好ましく、例えば、ジビニルベンゼン、エチレンジ(メタ)アクリレート、ポリアルキレンオキサイドグリコールジ(メタ)アクリレート、ペンタエリスリトールトリアリルエーテル、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。 The polyfunctional monomer (e6) is preferably a C8-40 polyfunctional monomer such as divinylbenzene, ethylene di (meth) acrylate, polyalkylene oxide glycol di (meth) acrylate, pentaerythritol triallyl ether, trimethylolpropane tri. (Meth) acrylate etc. are mentioned.
 (e1)~(e6)のうち、ポリマーポリオールの粘度及びポリウレタン樹脂の物性の観点から、(e3)及び(e6)が好ましく、さらに好ましくは(e6)、特に好ましくは2官能モノマー、最も好ましくはジビニルベンゼンである。 Of (e1) to (e6), from the viewpoint of the viscosity of the polymer polyol and the physical properties of the polyurethane resin, (e3) and (e6) are preferable, more preferably (e6), particularly preferably a bifunctional monomer, most preferably Divinylbenzene.
 重合体微粒子(JR)を構成するエチレン性不飽和化合物(E)中の前記その他のエチレン性不飽和モノマー(e)の割合(モル%)は、40以下が好ましく、ポリマーポリオールの粘度、分散安定性及びポリウレタン樹脂の物性の観点から、さらに好ましくは0.01~30、次にさらに好ましくは0.05~20、特に好ましくは0.1~15、最も好ましくは0.2~10である。
 特に(e4)の使用量(重量%)は、可溶性ポリマーの含有量を低くする観点及びポリウレタン樹脂の物性の観点から、(E)の重量を基準として、0~0.1が好ましく、さらに好ましくは0~0.05、次にさらに好ましくは0~0.01である。
The proportion (mol%) of the other ethylenically unsaturated monomer (e) in the ethylenically unsaturated compound (E) constituting the polymer fine particles (JR) is preferably 40 or less, and the viscosity and dispersion stability of the polymer polyol From the viewpoint of the properties and physical properties of the polyurethane resin, it is more preferably 0.01 to 30, then more preferably 0.05 to 20, particularly preferably 0.1 to 15, and most preferably 0.2 to 10.
In particular, the use amount (% by weight) of (e4) is preferably 0 to 0.1, more preferably, based on the weight of (E), from the viewpoint of lowering the content of the soluble polymer and the physical properties of the polyurethane resin. Is from 0 to 0.05, more preferably from 0 to 0.01.
 ポリオール(PL)は、ポリマーポリオールの製造に用いられる公知(特開2007-191682号公報、特開2004-002800号公報(対応米国特許出願:US2005/245724A1)等)のポリオールが使用できる。例えば、少なくとも2個(ポリウレタン樹脂の物性の観点から、好ましくは2~8個)の活性水素を含有する化合物(多価アルコール、多価フェノール、アミン等)にアルキレンオキサイドを付加した構造の化合物(a)及びこれらの混合物が挙げられる。ポリウレタン製造時の生産性の観点から、これらのうちで好ましいものは、多価アルコールにアルキレンオキサイドが付加された構造の化合物である。 As the polyol (PL), known polyols used in the production of polymer polyols (Japanese Patent Application Laid-Open No. 2007-191682, Japanese Patent Application Laid-Open No. 2004-002800 (corresponding US Patent Application: US2005 / 245724A1), etc.) can be used. For example, a compound having a structure in which alkylene oxide is added to a compound (polyhydric alcohol, polyhydric phenol, amine, etc.) containing at least two (preferably 2 to 8 from the viewpoint of physical properties of the polyurethane resin) active hydrogen ( and a) and mixtures thereof. From the viewpoint of productivity at the time of polyurethane production, a compound having a structure in which an alkylene oxide is added to a polyhydric alcohol is preferable among these.
 上記多価アルコールとしては、炭素数2~20の2価アルコール(脂肪族ジオール、例えば、エチレングリコール、プロピレングリコール、1,3-及び1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等のアルキレングリコール;及び脂環式ジオール、例えば、シクロヘキサンジオール、シクロヘキサンジメタノール等のシクロアルキレングリコール)、炭素数3~20の3価アルコール(脂肪族トリオール、例えば、グリセリン、トリメチロールプロパン、トリメチロールエタン、ヘキサントリオール等のアルカントリオール);炭素数5~20の4~8価又はそれ以上の多価アルコール(脂肪族ポリオール、例えば、ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトール等のアルカンポリオール及びそれらもしくはアルカントリオールの分子内もしくは分子間脱水物;ならびにショ糖、グルコース、マンノース、フルクトース、メチルグルコシド等の糖類及びその誘導体)が挙げられる。 Examples of the polyhydric alcohol include dihydric alcohols having 2 to 20 carbon atoms (aliphatic diols such as ethylene glycol, propylene glycol, 1,3- and 1,4-butanediol, 1,6-hexanediol, and neopentyl. Alkylene glycols such as glycols; and alicyclic diols such as cycloalkylene glycols such as cyclohexanediol and cyclohexanedimethanol; trivalent alcohols having 3 to 20 carbon atoms (aliphatic triols such as glycerin, trimethylolpropane, Alkanetriols such as methylolethane and hexanetriol); 4 to 8 or more polyhydric alcohols having 5 to 20 carbon atoms (aliphatic polyols such as pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, Intramolecular or intermolecular dehydration products of alkane polyols such as pentaerythritol and their or alkane triol; and sucrose, glucose, mannose, fructose, sugars and their derivatives such as methyl glucoside) and the like.
 アミンとしては、アルカノールアミン、ポリアミン、及びモノアミン等が含まれる。
 アルカノールアミンとしては、炭素数2~20のモノ-、ジ-及びトリ-アルカノールアミン(例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及びイソプロパノールアミン)等が挙げられる。
 ポリアミン(1,2級アミノ基の数:2~8個又はそれ以上)としては、脂肪族アミンとして、炭素数2~6のアルキレンジアミン(例えば、エチレンジアミン、プロピレンジアミン及びヘキサメチレンジアミン)、炭素数4~20のポリアルキレンポリアミン(アルキレン基の炭素数が2~6のジアルキレントリアミン、トリアルキレンテトラミン、テトラアルキレンペンタミン、ペンタアルキレンヘキサミン及びヘキサアルキレンヘプタミン)等が挙げられる。
 また、炭素数6~20の芳香族ポリアミン(例えば、フェニレンジアミン、トリレンジアミン、キシリレンジアミン、ジエチルトルエンジアミン、メチレンジアニリン及びジフェニルエーテルジアミン);炭素数4~20の脂環式ポリアミン(例えば、イソホロンジアミン、シクロヘキシレンジアミン及びジシクロヘキシルメタンジアミン);炭素数4~20の複素環式ポリアミン(例えば、ピペラジン及びアミノエチルピペラジン)等が挙げられる。
 モノアミンとしては、アンモニア;脂肪族アミンとして、炭素数1~20のアルキルアミン(例えば、n-ブチルアミン及びオクチルアミン);炭素数6~20の芳香族モノアミン(例えば、アニリン及びトルイジン);炭素数4~20の脂環式モノアミン(例えば、シクロヘキシルアミン);炭素数4~20の複素環式モノアミン(例えば、ピペリジン)等が挙げられる。
Examples of amines include alkanolamines, polyamines, and monoamines.
Examples of the alkanolamine include mono-, di- and tri-alkanolamines having 2 to 20 carbon atoms (for example, monoethanolamine, diethanolamine, triethanolamine and isopropanolamine).
Polyamines (number of primary, secondary amino groups: 2 to 8 or more) include aliphatic amines, alkylene diamines having 2 to 6 carbon atoms (for example, ethylene diamine, propylene diamine and hexamethylene diamine), carbon numbers 4-20 polyalkylene polyamines (dialkylene triamine, trialkylene tetramine, tetraalkylene pentamine, pentaalkylene hexamine and hexaalkylene heptamine whose alkylene group has 2 to 6 carbon atoms) and the like.
Also, aromatic polyamines having 6 to 20 carbon atoms (for example, phenylenediamine, tolylenediamine, xylylenediamine, diethyltoluenediamine, methylenedianiline and diphenyletherdiamine); alicyclic polyamines having 4 to 20 carbon atoms (for example, Isophoronediamine, cyclohexylenediamine and dicyclohexylmethanediamine); heterocyclic polyamines having 4 to 20 carbon atoms (for example, piperazine and aminoethylpiperazine) and the like.
Monoamine as ammonia; aliphatic amine as alkylamine having 1 to 20 carbon atoms (for example, n-butylamine and octylamine); aromatic monoamine having 6 to 20 carbon atoms (for example, aniline and toluidine); -20 cycloaliphatic monoamines (eg, cyclohexylamine); C4-C20 heterocyclic monoamines (eg, piperidine), and the like.
 多価(2~8価又はそれ以上)フェノールとしては、ピロガロール、ハイドロキノン及びフロログルシン等の単環多価フェノール;ビスフェノールA、ビスフェノールF、及びビスフェノールスルホン等のビスフェノール類;フェノールとホルムアルデヒドの縮合物(ノボラック);たとえば米国特許第3265641号明細書に記載のポリフェノール等が挙げられる。
 これらの活性水素化合物の中で、得られるポリウレタン樹脂の機械物性の観点から、好ましいのは多価アルコールである。
Polyhydric (2 to 8 or higher) phenols include monocyclic polyhydric phenols such as pyrogallol, hydroquinone and phloroglucin; bisphenols such as bisphenol A, bisphenol F and bisphenol sulfone; condensates of phenol and formaldehyde (novolac) For example, polyphenols described in US Pat. No. 3,265,641.
Among these active hydrogen compounds, polyhydric alcohols are preferred from the viewpoint of mechanical properties of the resulting polyurethane resin.
 活性水素を含有する化合物に付加させるアルキレンオキサイドとしては、ポリウレタン樹脂の物性の観点から炭素数2~8のものが好ましく、EO、PO、1,2-、1,3-、1,4-及び2,3-BO、スチレンオキサイド(以下、SOと略記する。)等及びこれらの2種以上の併用(ブロック及び/又はランダム付加)が挙げられる。ポリウレタン樹脂の物性の観点から、好ましくは、PO又はPOとEOとの併用(EO含量が25%以下)である。なお、上記及び以下において、%は特に断りのない限り、重量%を意味する。 The alkylene oxide to be added to the compound containing active hydrogen is preferably one having 2 to 8 carbon atoms from the viewpoint of the physical properties of the polyurethane resin, and includes EO, PO, 1,2-, 1,3-, 1,4- and Examples thereof include 2,3-BO, styrene oxide (hereinafter abbreviated as SO), and combinations of two or more thereof (block and / or random addition). From the viewpoint of the physical properties of the polyurethane resin, PO or a combination of PO and EO (EO content of 25% or less) is preferable. In the above and below, “%” means “% by weight” unless otherwise specified.
 上記ポリオ-ルの具体例としては、公知(特開2007-191682号公報等)のものが挙げられ、上記活性水素含有化合物にPOを付加したもの及びPOと他のAO、好ましくはEOを下記の様式で付加したものが挙げられる。
(1)PO-AOの順序でブロック付加したもの
(2)PO-AO-PO-AOの順序でブロック付加したもの
(3)AO-PO-AOの順序でブロック付加したもの
(4)PO-AO-POの順序でブロック付加したもの
(5)PO及びAOを混合付加したランダム付加物
(6)米国特許第4226756号明細書記載の順序でランダム又はブロック付加したもの
 また、(a)の水酸基当量は、ポリウレタン樹脂の物性の観点から、好ましくは200~4,000、さらに好ましくは400~3,000である。2種以上の(a)を併用して水酸基当量がこの範囲内としたものも好ましい。
Specific examples of the polyol include known ones (Japanese Patent Laid-Open No. 2007-191682, etc.), and those obtained by adding PO to the active hydrogen-containing compound and PO and other AO, preferably EO The one added in the form of.
(1) Block added in the order of PO-AO (2) Block added in the order of PO-AO-PO-AO (3) Block added in the order of AO-PO-AO (4) PO- Block addition in the order of AO-PO (5) Random addition product in which PO and AO are mixed and added (6) Random or block addition in the order described in US Pat. No. 4,226,756 The hydroxyl group in (a) The equivalent is preferably 200 to 4,000, more preferably 400 to 3,000, from the viewpoint of the physical properties of the polyurethane resin. It is also preferable to use two or more types of (a) in combination so that the hydroxyl equivalent is within this range.
 強度向上剤(b)は、エステル化合物、チオエステル化合物、リン酸エステル化合物及びアミド化合物からなる郡から選ばれる少なくとも1種の化合物であって、2価以上の芳香族多価カルボン酸を必須構成成分とする化合物であり、下記一般式(I)で表される構造を有するものが好ましい。 The strength improver (b) is at least one compound selected from the group consisting of an ester compound, a thioester compound, a phosphate ester compound, and an amide compound, and a divalent or higher aromatic polyvalent carboxylic acid is an essential constituent component. A compound having a structure represented by the following general formula (I) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、R1は活性水素含有化合物から1個の活性水素を除いた残基を表す。活性水素含有化合物としては、水酸基含有化合物、アミノ基含有化合物、カルボキシル基含有化合物、チオール基含有化合物及びリン酸化合物;分子内に2種以上の活性水素含有官能基を有する化合物が含まれる。これら活性水素含有化合物は、1種類でも複数種類でも使用することができる。すなわち、複数のR1は、それぞれ同一でも異なっていてもよい。Yは3価以上の芳香族ポリカルボン酸からカルボキシル基を除いた残基を表す。aは2≦a≦芳香環置換基数-2を満たす整数である。Zはm価以上の活性水素含有化合物からm個の活性水素を除いた残基を表す。mは1~10の整数を表す。 In general formula (I), R1 represents a residue obtained by removing one active hydrogen from an active hydrogen-containing compound. Examples of the active hydrogen-containing compound include a hydroxyl group-containing compound, an amino group-containing compound, a carboxyl group-containing compound, a thiol group-containing compound, and a phosphate compound; a compound having two or more active hydrogen-containing functional groups in the molecule. These active hydrogen-containing compounds can be used either alone or in combination. That is, the plurality of R1s may be the same or different. Y represents a residue obtained by removing a carboxyl group from a trivalent or higher aromatic polycarboxylic acid. a is an integer satisfying 2 ≦ a ≦ the number of aromatic ring substituents−2. Z represents a residue obtained by removing m active hydrogens from an active hydrogen-containing compound having a valence of at least m. m represents an integer of 1 to 10.
 水酸基含有化合物としては、1価のアルコール、2~8価の多価アルコール、フェノール及び多価フェノール等が含まれる。具体的にはメタノール、エタノール、ブタノール、オクタノール、ベンジルアルコール、ナフチルエタノール等の1価のアルコール;エチレングリコール、プロピレングリコール、1,3及び1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、ジエチレングリコール、ネオペンチルグリコール、シクロヘキサンジオール、シクロヘキサンジメタノール、1,4-ビス(ヒドロキシメチル)シクロヘキサン及び1,4-ビス(ヒドロキシエチル)ベンゼン等の2価アルコール;グリセリン及びトリメチロールプロパン等の3価アルコール;ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトール等、ショ糖、グルコース、マンノース、フルクトース、メチルグルコシド及びその誘導体等の4~8価のアルコ―ル;フェノール、フロログルシン、クレゾール、ピロガロ―ル、カテコール、ヒドロキノン、ビスフェノ―ルA、ビスフェノールF、ビスフェノールS、1-ヒドロキシナフタレン、1,3,6,8-テトラヒドロキシナフタレン、アントロール、1,4,5,8-テトラヒドロキシアントラセン及び1-ヒドロキシピレン等のフェノ―ル;ポリブタジエンポリオール;ひまし油系ポリオール;ヒドロキシアルキル(メタ)アクリレートの(共)重合体及びポリビニルアルコール等の多官能(例えば官能基数2~100)ポリオール、フェノールとホルムアルデヒドとの縮合物(ノボラック)並びに米国特許3265641号明細書に記載のポリフェノール等が挙げられる。
 なお、(メタ)アクリレートとは、メタクリレート及び/又はアクリレートを意味し、以下において同様である。
Examples of the hydroxyl group-containing compound include monohydric alcohols, dihydric to octahydric polyhydric alcohols, phenols and polyhydric phenols. Specifically, monohydric alcohols such as methanol, ethanol, butanol, octanol, benzyl alcohol, naphthylethanol; ethylene glycol, propylene glycol, 1,3 and 1,4-butanediol, 1,6-hexanediol, 1, Dihydric alcohols such as 10-decanediol, diethylene glycol, neopentyl glycol, cyclohexanediol, cyclohexanedimethanol, 1,4-bis (hydroxymethyl) cyclohexane and 1,4-bis (hydroxyethyl) benzene; glycerin and trimethylolpropane Trivalent alcohols such as pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol, sucrose, glucose, mannose, fructose, methyl 4- to 8-valent alcohols such as lucoside and derivatives thereof: phenol, phloroglucin, cresol, pyrogallol, catechol, hydroquinone, bisphenol A, bisphenol F, bisphenol S, 1-hydroxynaphthalene, 1, 3, 6 Phenol, such as 1,8-tetrahydroxynaphthalene, anthrol, 1,4,5,8-tetrahydroxyanthracene and 1-hydroxypyrene; polybutadiene polyol; castor oil-based polyol; (co) heavy of hydroxyalkyl (meth) acrylate Examples thereof include polyfunctional polyols such as coalesced and polyvinyl alcohol (for example, 2 to 100 functional groups), condensates of phenol and formaldehyde (novolak), and polyphenols described in US Pat. No. 3,265,641.
(Meth) acrylate means methacrylate and / or acrylate, and the same applies hereinafter.
 アミノ基含有化合物としては、アミン、ポリアミン及びアミノアルコール等が含まれる。具体的には、アンモニア;炭素数1~20のアルキルアミン(ブチルアミン等)及びアニリン等のモノアミン;エチレンジアミン、ヘキサメチレンジアミン及びジエチレントリアミン等の脂肪族ポリアミン;ピペラジン及びN-アミノエチルピペラジン等の複素環式ポリアミン;ジシクロヘキシルメタンジアミン及びイソホロンジアミン等の脂環式ポリアミン;フェニレンジアミン、トリレンジアミン及びジフェニルメタンジアミン等の芳香族ポリアミン;モノエタノ―ルアミン、ジエタノ―ルアミン及びトリエタノ―ルアミン等のアルカノ―ルアミン;ジカルボン酸と過剰のポリアミンとの縮合により得られるポリアミドポリアミン;ポリエーテルポリアミン;ヒドラジン(ヒドラジン及びモノアルキルヒドラジン等)、ジヒドラジッド(コハク酸ジヒドラジッド及びテレフタル酸ジヒドラジッド等)、グアニジン(ブチルグアニジン及び1-シアノグアニジン等);ジシアンジアミド等;が挙げられる。 Examples of amino group-containing compounds include amines, polyamines and amino alcohols. Specific examples include ammonia; monoamines such as alkylamines having 1 to 20 carbon atoms (such as butylamine) and anilines; aliphatic polyamines such as ethylenediamine, hexamethylenediamine and diethylenetriamine; and heterocyclic groups such as piperazine and N-aminoethylpiperazine. Polyamines; cycloaliphatic polyamines such as dicyclohexylmethanediamine and isophoronediamine; aromatic polyamines such as phenylenediamine, tolylenediamine and diphenylmethanediamine; alkanolamines such as monoethanolamine, diethanolamine and triethanolamine; and dicarboxylic acids Polyamide polyamine obtained by condensation with excess polyamine; polyether polyamine; hydrazine (such as hydrazine and monoalkylhydrazine), dihydrazide ( Etc. Haq acid dihydrazide and dihydrazide terephthalate), guanidine (butyl guanidine and 1-cyanoguanidine, etc.); dicyandiamide; and the like.
 カルボキシル基含有化合物としては、酢酸及びプロピオン酸等の脂肪族モノカルボン酸;安息香酸等の芳香族モノカルボン酸;コハク酸、フマル酸、セバシン酸及びアジピン酸等の脂肪族ポリカルボン酸;フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ナフタレン-1,4ジカルボン酸、ナフタレン-2,3,6トリカルボン酸、ピロメリット酸、ジフェン酸、2,3-アントラセンジカルボン酸、2,3,6-アントラセントリカルボン酸、及びピレンジカルボン酸等の芳香族ポリカルボン酸;アクリル酸の(共)重合物等のポリカルボン酸重合体(官能基数2~100)等が挙げられる。 Examples of the carboxyl group-containing compound include aliphatic monocarboxylic acids such as acetic acid and propionic acid; aromatic monocarboxylic acids such as benzoic acid; aliphatic polycarboxylic acids such as succinic acid, fumaric acid, sebacic acid and adipic acid; phthalic acid , Isophthalic acid, terephthalic acid, trimellitic acid, naphthalene-1,4 dicarboxylic acid, naphthalene-2,3,6 tricarboxylic acid, pyromellitic acid, diphenic acid, 2,3-anthracene dicarboxylic acid, 2,3,6- Examples thereof include aromatic polycarboxylic acids such as anthracentricarboxylic acid and pyrene dicarboxylic acid; polycarboxylic acid polymers (functional number 2 to 100) such as (co) polymers of acrylic acid, and the like.
 チオール基含有化合物としては、1官能のフェニルチオール、アルキルチオール及びポリチオール化合物が含まれる。ポリチオールとしては、2~8価の多価チオールが挙げられる。具体的にはエチレンジチオール及び1、6-ヘキサンジチオール等が挙げられる。 Examples of the thiol group-containing compound include monofunctional phenylthiol, alkylthiol and polythiol compounds. Examples of the polythiol include divalent to octavalent polyvalent thiols. Specific examples include ethylenedithiol and 1,6-hexanedithiol.
 リン酸化合物としては燐酸、亜燐酸及びホスホン酸等が挙げられる。 Examples of phosphoric acid compounds include phosphoric acid, phosphorous acid, and phosphonic acid.
 活性水素含有化合物としては、分子内に2種以上の活性水素含有官能基(水酸基、アミノ基、カルボキシル基、チオール基及びリン酸基等)を有する化合物も使用できる。 As the active hydrogen-containing compound, a compound having two or more active hydrogen-containing functional groups (hydroxyl group, amino group, carboxyl group, thiol group, phosphate group, etc.) in the molecule can also be used.
 また、活性水素含有化合物としては、上記活性水素含有化合物のアルキレンオキサイド付加物を使用することもできる。 Also, as the active hydrogen-containing compound, an alkylene oxide adduct of the active hydrogen-containing compound can also be used.
 活性水素含有化合物に付加させるアルキレンオキサイド(以下、AOと略す)としては、炭素数2~6のAO、例えば、エチレンオキサイド(以下、EOと略す)、1,2-プロピレンオキサイド(以下、POと略す)、1,3-プロピレオキサイド、1,2ブチレンオキサイド及び1,4-ブチレンオキサイド等が挙げられる。これらのうち、性状や反応性の観点から、PO、EO及び1,2-ブチレンオキサイドが好ましい。AOを2種以上使用する場合(例えば、PO及びEO)の付加方法としては、ブロック付加であってもランダム付加であってもよく、これらの併用であってもよい。 The alkylene oxide (hereinafter abbreviated as AO) to be added to the active hydrogen-containing compound includes AO having 2 to 6 carbon atoms, such as ethylene oxide (hereinafter abbreviated as EO), 1,2-propylene oxide (hereinafter abbreviated as PO). Abbreviation), 1,3-propyloxide, 1,2-butylene oxide, 1,4-butylene oxide and the like. Of these, PO, EO, and 1,2-butylene oxide are preferable from the viewpoints of properties and reactivity. When two or more types of AO are used (for example, PO and EO), block addition or random addition may be used, or a combination thereof may be used.
 さらに、活性水素含有化合物としては、上記活性水素含有化合物とポリカルボン酸(脂肪族ポリカルボン酸や芳香族ポリカルボン酸)との縮合反応で得られる活性水素含有化合物(ポリエステル化合物)を使用することができる。縮合反応においては活性水素含有化合物、ポリカルボン酸共に1種類を使用してもよく、2種以上を併用してもよい。 Further, as the active hydrogen-containing compound, an active hydrogen-containing compound (polyester compound) obtained by a condensation reaction between the active hydrogen-containing compound and a polycarboxylic acid (aliphatic polycarboxylic acid or aromatic polycarboxylic acid) is used. Can do. In the condensation reaction, one type of active hydrogen-containing compound and polycarboxylic acid may be used, or two or more types may be used in combination.
 脂肪族ポリカルボン酸とは、以下(1)、(2)を満たす化合物を意味する。
(1)1分子が有するカルボキシル基が2個以上である。
(2)カルボキシル基が芳香環に直接結合していない。
The aliphatic polycarboxylic acid means a compound that satisfies the following (1) and (2).
(1) One molecule has two or more carboxyl groups.
(2) The carboxyl group is not directly bonded to the aromatic ring.
 脂肪族ポリカルボン酸には、コハク酸、アジピン酸、セバシン酸、マレイン酸及びフマル酸等が挙げられる。 Examples of the aliphatic polycarboxylic acid include succinic acid, adipic acid, sebacic acid, maleic acid and fumaric acid.
 芳香族ポリカルボン酸とは以下(1)~(3)を満たす化合物を意味する。
(1)1分子が有する芳香環の数が1個以上である。
(2)1分子が有するカルボキシル基の数が2個以上である。
(3)カルボキシル基が芳香環に直接結合している。
The aromatic polycarboxylic acid means a compound satisfying the following (1) to (3).
(1) One molecule has one or more aromatic rings.
(2) The number of carboxyl groups in one molecule is 2 or more.
(3) The carboxyl group is directly bonded to the aromatic ring.
 芳香族ポリカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、2,2’-ビベンジルジカルボン酸、トリメリット酸、ヘミリット酸、トリメシン酸、ピロメリット酸及びナフタレン-1,4ジカルボン酸、ナフタレン-2,3,6トリカルボン酸、ジフェン酸、2,3-アントラセンジカルボン酸、2,3,6-アントラセントリカルボン酸及びピレンジカルボン酸等の炭素数8~18の芳香族ポリカルボン酸が挙げられる。 Aromatic polycarboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, 2,2'-bibenzyldicarboxylic acid, trimellitic acid, hemilitic acid, trimesic acid, pyromellitic acid and naphthalene-1,4 dicarboxylic acid, naphthalene And aromatic polycarboxylic acids having 8 to 18 carbon atoms such as -2,3,6 tricarboxylic acid, diphenic acid, 2,3-anthracene dicarboxylic acid, 2,3,6-anthracentricarboxylic acid and pyrene dicarboxylic acid.
 また、ポリカルボン酸と活性水素含有化合物との縮合反応を実施する際に、ポリカルボン酸の無水物や低級アルキルエステルを使用することもできる。 Also, when carrying out the condensation reaction between the polycarboxylic acid and the active hydrogen-containing compound, polycarboxylic acid anhydrides and lower alkyl esters can also be used.
 強度向上剤のハンドリング及びポリウレタンフォームの機械物性(伸び、引っ張り強度、圧縮硬さ)向上の観点から、R1とする活性水素含有化合物としては、水酸基含有化合物、アミノ基含有化合物、これらのAO付加物及び活性水素含有化合物とポリカルボン酸との縮合反応で得られるポリエステル化合物が好ましく、さらに好ましくはメタノール、エタノール、ブタノール、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、ソルビトール、ショ糖、ベンジルアルコール、フェノール、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、ブチルアミン、ジブチルアミン、フェニルアミン、ジフェニルアミン、これらのEO及び/又はPO付加物並びにこれら活性水素化合物とフタル酸及び/又はイソフタル酸との縮合物が好ましい。 From the viewpoint of handling the strength improver and improving the mechanical properties (elongation, tensile strength, compression hardness) of the polyurethane foam, the active hydrogen-containing compound R1 includes a hydroxyl group-containing compound, an amino group-containing compound, and these AO adducts. And a polyester compound obtained by a condensation reaction of an active hydrogen-containing compound and a polycarboxylic acid, more preferably methanol, ethanol, butanol, ethylene glycol, propylene glycol, glycerin, pentaerythritol, sorbitol, sucrose, benzyl alcohol, phenol , Methylamine, dimethylamine, ethylamine, diethylamine, butylamine, dibutylamine, phenylamine, diphenylamine, their EO and / or PO adducts and their active hydrogen compounds and phthalic acid Beauty / or condensate of isophthalic acid is preferred.
 一般式(I)中、Yは3価以上の芳香族ポリカルボン酸(C)からカルボキシル基を除いた残基を表す。Yの芳香環は炭素原子から構成される。芳香環の置換基は水素原子でも他の置換基でもよいが、少なくとも1つの置換基が水素原子である。すなわち、Yの芳香環は、その芳香環を構成する炭素原子に結合した少なくとも一つの水素原子を有する。 In general formula (I), Y represents a residue obtained by removing a carboxyl group from a trivalent or higher aromatic polycarboxylic acid (C). The aromatic ring of Y is composed of carbon atoms. The substituent of the aromatic ring may be a hydrogen atom or another substituent, but at least one substituent is a hydrogen atom. That is, the aromatic ring of Y has at least one hydrogen atom bonded to the carbon atom constituting the aromatic ring.
 他の置換基とは、アルキル基、ビニル基、アリル基、シクロアルキル基、ハロゲン原子、アミノ基、カルボニル基、カルボキシル基、ヒドロキシル基、ヒドロキシアミノ基、ニトロ基、ホスフィノ基、チオ基、チオール基、アルデヒド基、エーテル基、アリール基、アミド基、シアノ基、ウレア基、ウレタン基、スルホン基、エステル基及びアゾ基等が挙げられる。機械物性向上(伸び、引っ張り強度、圧縮硬さ)及びコストの観点から、他の置換基としては、アルキル基、ビニル基、アリル基、アミノ基、アミド基、ウレタン基及びウレア基が好ましい。 Other substituents are alkyl group, vinyl group, allyl group, cycloalkyl group, halogen atom, amino group, carbonyl group, carboxyl group, hydroxyl group, hydroxyamino group, nitro group, phosphino group, thio group, thiol group Aldehyde group, ether group, aryl group, amide group, cyano group, urea group, urethane group, sulfone group, ester group and azo group. From the viewpoint of improving mechanical properties (elongation, tensile strength, compression hardness) and cost, the other substituents are preferably an alkyl group, a vinyl group, an allyl group, an amino group, an amide group, a urethane group and a urea group.
 Y上の置換基の配置としては、機械物性向上の観点から、2個のカルボニル基が隣接し、3個目のカルボニル基と1又は2個目のカルボニル基の間に置換基として水素が配置された構造が好ましい。 As the arrangement of substituents on Y, from the viewpoint of improving mechanical properties, two carbonyl groups are adjacent to each other, and hydrogen is arranged as a substituent between the third carbonyl group and the first or second carbonyl group. The structure is preferred.
 Yを構成する3価以上の芳香族ポリカルボン酸(C)としては、トリメリット酸、ヘミリット酸、トリメシン酸、ピロメリット酸、ナフタレン-2,3,6トリカルボン酸及び2,3,6-アントラセントリカルボン酸等の炭素数8~18の芳香族ポリカルボン酸が挙げられる。 Examples of trivalent or higher aromatic polycarboxylic acids (C) constituting Y include trimellitic acid, hemilitic acid, trimesic acid, pyromellitic acid, naphthalene-2,3,6 tricarboxylic acid and 2,3,6-anthracene. Examples thereof include aromatic polycarboxylic acids having 8 to 18 carbon atoms such as tricarboxylic acid.
 強度向上剤のハンドリング及びポリウレタンフォームの機械物性(引っ張り強度、引き裂き強度、圧縮硬さ)向上の観点から、Yに使用する(C)は単環式化合物が好ましく、さらに好ましくはトリメリット酸及びピロメリット酸である。 From the viewpoint of handling the strength improver and improving the mechanical properties (tensile strength, tear strength, compression hardness) of the polyurethane foam, (C) used for Y is preferably a monocyclic compound, more preferably trimellitic acid and pyromellitic acid. It is merit acid.
 一般式(I)中のaは2≦a≦芳香環置換基数-2を満たす整数である。芳香環置換基数とは、芳香環を構成する炭素原子に結合する置換基の数である。例えば、炭素6個から構成される単環の芳香環では、芳香環置換基数が6であり、aとして2~4を取りうる。芳香環が単環の芳香環の場合、機械物性(引っ張り強度、引き裂き強度、圧縮硬さ)向上の観点から、aは2又は3が好ましい。 A in the general formula (I) is an integer satisfying 2 ≦ a ≦ the number of aromatic ring substituents−2. The number of aromatic ring substituents is the number of substituents bonded to the carbon atoms constituting the aromatic ring. For example, a monocyclic aromatic ring composed of 6 carbons has 6 aromatic ring substituents, and a can take 2 to 4. When the aromatic ring is a monocyclic aromatic ring, a is preferably 2 or 3 from the viewpoint of improving mechanical properties (tensile strength, tear strength, compression hardness).
 一般式(I)中のZはm価以上の活性水素含有化合物からm個の活性水素を除いた残基を表す。ここで言う活性水素含有化合物としては、上述のR1で示した活性水素含有化合物が含まれる。但しZで表される活性水素含有化合物はR1の一部と同一であっても構わないが、少なくとも1つのR1とZは異なる基であることが必要である。
 一般式(I)において、mは1~10の整数を表す。
 強度向上剤のハンドリング及びポリウレタンフォームの機械物性(引っ張り強度、引き裂き強度、圧縮硬さ)向上の観点から、Zには、水酸基含有化合物、アミノ基含有化合物、これらのAO付加物及びこれらとポリカルボン酸との縮合物を用いることが好ましく、mは1~8が好ましい。
Z in the general formula (I) represents a residue obtained by removing m active hydrogens from an active hydrogen-containing compound having a valence of at least m. The active hydrogen-containing compound referred to here includes the active hydrogen-containing compound represented by R1 described above. However, the active hydrogen-containing compound represented by Z may be the same as a part of R1, but at least one R1 and Z must be different groups.
In the general formula (I), m represents an integer of 1 to 10.
From the viewpoint of handling the strength improver and improving the physical properties of the polyurethane foam (tensile strength, tear strength, compression hardness), Z includes a hydroxyl group-containing compound, an amino group-containing compound, an AO adduct thereof, and a polycarboxylic acid. A condensate with an acid is preferably used, and m is preferably 1-8.
 強度向上剤(b)の水酸基価(mgKOH/g)は、成形時のハンドリング(粘度)及び引っ張り強度の観点から、0~700が好ましく、さらに好ましくは0~650、次にさらに好ましくは0~600である。
 また、(b)の水酸基価が0であることは、一般式(I)中、いずれのR1もYもZも水酸基を有しないことを意味する。
The hydroxyl value (mgKOH / g) of the strength improver (b) is preferably from 0 to 700, more preferably from 0 to 650, and still more preferably from 0 to 700, from the viewpoint of handling (viscosity) and tensile strength during molding. 600.
Moreover, that the hydroxyl value of (b) is 0 means that none of R1, Y, and Z has a hydroxyl group in general formula (I).
 ポリオール(PL)の重量を基準とする強度向上剤(b)の含有量は、引張強度及び伸び物性の観点から、0.1~100重量%が好ましく、さらに好ましくは0.2~80重量%、特に好ましくは0.5~60%重量である。 The content of the strength improver (b) based on the weight of the polyol (PL) is preferably from 0.1 to 100% by weight, more preferably from 0.2 to 80% by weight, from the viewpoint of tensile strength and elongation properties. Particularly preferred is 0.5 to 60% by weight.
 ポリオール(PL)は、強度向上剤(b)を含有していればよく、(b)以外の強度向上剤を使用する場合の(PL)の製造方法としては(b)以外の強度向上剤と(b)とを混合する方法等が挙げられる。 The polyol (PL) only needs to contain the strength improver (b), and when a strength improver other than (b) is used, the production method of (PL) is a strength improver other than (b). And a method of mixing (b).
 本発明のポリマーポリオール(I)は、エチレン性不飽和化合物(E)を構成単位とする重合体微粒子(JR)がポリオール(PL)中に含有されてなるポリマーポリオールである。 The polymer polyol (I) of the present invention is a polymer polyol in which polymer fine particles (JR) having an ethylenically unsaturated compound (E) as a structural unit are contained in the polyol (PL).
 重合体微粒子(JR)の形状は特に限定なく、球状、回転楕円体状、平板状等いずれの形状でもよいが、ポリウレタン樹脂の機械物性の観点から、球状が好ましい。 The shape of the polymer fine particles (JR) is not particularly limited, and may be any shape such as a spherical shape, a spheroid shape, and a flat plate shape, but a spherical shape is preferable from the viewpoint of mechanical properties of the polyurethane resin.
 重合体微粒子(JR)の体積平均粒子径(R)(μm)は、ポリマーポリオールの粘度及びポリウレタン樹脂物性の観点から、0.1~1.5であり、0.1~0.9が好ましく、さらに好ましくは0.25~0.8、次にさらに好ましくは0.3~0.7、特に好ましくは0.4~0.6である。重合体微粒子(JR)の体積平均粒子径(R)が0.1未満では粘度が大きくなり、ハンドリングが悪化する。重合体微粒子(JR)の体積平均粒子径(R)が1.5を超えるとポリウレタンの硬度及び切断伸度が低下する。
 なお、体積平均粒子径は、後述する方法により測定される。
The volume average particle diameter (R) (μm) of the polymer fine particles (JR) is 0.1 to 1.5, preferably 0.1 to 0.9, from the viewpoint of the viscosity of the polymer polyol and the physical properties of the polyurethane resin. More preferably, it is 0.25 to 0.8, then more preferably 0.3 to 0.7, and particularly preferably 0.4 to 0.6. When the volume average particle diameter (R) of the polymer fine particles (JR) is less than 0.1, the viscosity increases and handling is deteriorated. When the volume average particle diameter (R) of the polymer fine particles (JR) exceeds 1.5, the hardness and cutting elongation of the polyurethane are lowered.
The volume average particle diameter is measured by the method described later.
 ポリマーポリオール(I)中の重合体微粒子含有量(重量%)は、後述するポリウレタン樹脂の機械物性及びポリマーポリオール中の重合体微粒子(JR)の凝集防止の観点から、10~50が好ましく、さらに好ましくは10~45、特に好ましくは12~40、最も好ましくは15~35である。
 なお、重合体微粒子含有量(重量%)は、後述する方法で測定される。
The polymer fine particle content (% by weight) in the polymer polyol (I) is preferably 10 to 50 from the viewpoint of mechanical properties of the polyurethane resin described later and prevention of aggregation of the polymer fine particles (JR) in the polymer polyol. Preferably it is 10 to 45, particularly preferably 12 to 40, most preferably 15 to 35.
In addition, polymer fine particle content (weight%) is measured by the method mentioned later.
 ポリマーポリオール(I)中のポリオール(PL)の含有量(重量%)は、重合体微粒子(JR)の凝集防止及び得られるポリウレタン樹脂の機械物性の観点から、50~90が好ましく、さらに好ましくは55~90、特に好ましくは60~88、最も好ましくは65~85である。 The content (% by weight) of the polyol (PL) in the polymer polyol (I) is preferably 50 to 90, more preferably from the viewpoint of preventing aggregation of the polymer fine particles (JR) and mechanical properties of the resulting polyurethane resin. 55 to 90, particularly preferably 60 to 88, and most preferably 65 to 85.
 ポリマーポリオール(I)中の、可溶性ポリマー含有量(重量%)と重合体微粒子含有量(重量%)との比(可溶性ポリマー含有量/重合体微粒子含有量)は、ポリマーポリオール中の重合体微粒子の粒子径を小さくすること、得られるポリウレタン樹脂の機械物性及びポリマーポリオールの粘度の観点から、1/10以下が好ましく、さらに好ましくは2.5/30以下、次にさらに好ましくは2/30以下、特に好ましくは1.5/30以下である。なお、可溶性ポリマー含有量は、下記の方法で測定される。 The ratio (soluble polymer content / polymer fine particle content) of the soluble polymer content (% by weight) and the polymer fine particle content (% by weight) in the polymer polyol (I) is the polymer fine particles in the polymer polyol. Is preferably 1/10 or less, more preferably 2.5 / 30 or less, and even more preferably 2/30 or less, from the viewpoint of reducing the particle size of the polyurethane resin, the mechanical properties of the resulting polyurethane resin, and the viscosity of the polymer polyol. Especially preferably, it is 1.5 / 30 or less. The soluble polymer content is measured by the following method.
<可溶性ポリマー含有量(重量%)測定方法>
(メタノール沈殿物含有量の測定)
 遠心分離用50ml遠沈管に、ポリマーポリオール約5gを精秤し、ポリマーポリオール重量(W1)とする。メタノール50gを加えて混合する。冷却遠心分離機[型番:H-9R、コクサン(株)製]を用いて、18,000rpm×60分間、20℃にて遠心分離する。上澄み液をガラス製ピペットを用いて除去する。残留沈降物にメタノール50gを加えて混合し、上記と同様に遠心分離して上澄み液を除去する操作を、さらに3回繰り返す。遠沈管内の残留沈降物を、2,666~3,999Pa(20~30torr)で60℃×60分間減圧乾燥し、乾燥した沈降物を重量測定し、該重量を(W2)とする。次式で算出した値を、メタノール沈殿物含有量(重量%)とする。
 
 メタノール沈殿物含有量(重量%)=(W2)×100/(W1)
<Method for measuring soluble polymer content (% by weight)>
(Measurement of methanol precipitate content)
In a 50 ml centrifuge tube for centrifugation, about 5 g of polymer polyol is precisely weighed to obtain the polymer polyol weight (W1). Add 50 g of methanol and mix. Using a cooling centrifuge [model number: H-9R, manufactured by Kokusan Co., Ltd.], centrifuge at 18,000 rpm for 60 minutes at 20 ° C. The supernatant is removed using a glass pipette. The operation of adding 50 g of methanol to the residual sediment, mixing, and centrifuging in the same manner as above to remove the supernatant is repeated three more times. The residual sediment in the centrifuge tube is dried under reduced pressure at 2,666 to 3,999 Pa (20 to 30 torr) at 60 ° C. for 60 minutes, and the dried sediment is weighed to obtain (W2). The value calculated by the following formula is defined as the methanol precipitate content (% by weight).

Methanol precipitate content (% by weight) = (W2) × 100 / (W1)
(キシレン沈殿物含有量の測定)
 次に遠心分離用50ml遠沈管に、ポリマーポリオール約5gを精秤し、ポリマーポリオール重量(W3)とする。キシレン50gを加えて混合する。冷却遠心分離機[型番:H-9R、コクサン(株)製]を用いて、18,000rpm×60分間、20℃にて遠心分離する。上澄み液をガラス製ピペットを用いて除去する。残留沈降物にキシレン50gを加えて混合し、上記と同様に遠心分離して上澄み液を除去する操作を、さらに3回繰り返す。遠沈管内の残留沈降物を、2,666~3,999Pa(20~30torr)で60℃×60分間減圧乾燥し、乾燥した沈降物を重量測定し、該重量を(W4)とする。次式で算出した値を、キシレン沈殿物含有量(重量%)とする。
 
 キシレン沈殿物含有量(重量%)=(W4)×100/(W3)
(Measurement of xylene precipitate content)
Next, about 5 g of polymer polyol is precisely weighed in a 50 ml centrifuge tube for centrifugal separation to obtain the weight of polymer polyol (W3). Add 50 g of xylene and mix. Using a cooling centrifuge [model number: H-9R, manufactured by Kokusan Co., Ltd.], centrifuge at 18,000 rpm for 60 minutes at 20 ° C. The supernatant is removed using a glass pipette. The operation of adding 50 g of xylene to the remaining sediment, mixing, and centrifuging in the same manner as above to remove the supernatant is repeated three more times. The residual sediment in the centrifuge tube is dried under reduced pressure at 2,666-3,999 Pa (20-30 torr) at 60 ° C. for 60 minutes, the dried sediment is weighed, and the weight is defined as (W4). The value calculated by the following formula is the xylene precipitate content (% by weight).

Xylene precipitate content (% by weight) = (W4) × 100 / (W3)
(可溶性ポリマー含有量の算出)
 次式で算出した値を、可溶性ポリマー含有量(重量%)とする。
 
可溶性ポリマー含有量(重量%)=メタノール沈殿物含有量(重量%)―キシレン沈殿粒物含有量(重量%)
(Calculation of soluble polymer content)
The value calculated by the following formula is defined as the soluble polymer content (% by weight).

Soluble polymer content (wt%) = methanol precipitate content (wt%)-xylene precipitated granule content (wt%)
 重合体微粒子含有量(重量%)は下記の方法で測定される。 Polymer fine particle content (% by weight) is measured by the following method.
<重合体微粒子含有量(重量%)>
 遠心分離用50ml遠沈管に、ポリマーポリオール約5gを精秤し、ポリマーポリオール重量(W5)とする。メタノール50gを加えて混合する。冷却遠心分離機[型番:H-9R、コクサン(株)製]を用いて、18,000rpm×60分間、20℃にて遠心分離する。上澄み液をガラス製ピペットを用いて除去する。残留沈降物にメタノール50gを加えて混合し、上記と同様に遠心分離して上澄み液を除去する操作を、さらに3回繰り返す。遠沈管内の残留沈降物を、2,666~3,999Pa(20~30torr)で60℃×60分間減圧乾燥し、乾燥した沈降物を重量測定し、該重量を(W6)とする。次式で算出した値を、重合体微粒子含有量(重量%)とする。
 
 重合体微粒子含有量(重量%)=(W6)×100/(W5)
<Polymer fine particle content (% by weight)>
In a 50 ml centrifuge tube for centrifugation, about 5 g of polymer polyol is precisely weighed to obtain the polymer polyol weight (W5). Add 50 g of methanol and mix. Using a cooling centrifuge [model number: H-9R, manufactured by Kokusan Co., Ltd.], centrifuge at 18,000 rpm for 60 minutes at 20 ° C. The supernatant is removed using a glass pipette. The operation of adding 50 g of methanol to the residual sediment, mixing, and centrifuging in the same manner as above to remove the supernatant is repeated three more times. The residual sediment in the centrifuge tube is dried under reduced pressure at 2,666-3,999 Pa (20-30 torr) at 60 ° C. for 60 minutes. The value calculated by the following formula is defined as the polymer fine particle content (% by weight).

Polymer fine particle content (% by weight) = (W6) × 100 / (W5)
 可溶性ポリマーとは、上記の測定法において、メタノールには溶解しないが、キシレンには溶解するポリマーを意味する。この可溶性ポリマーの含有量が大きいと、ポリマーポリオールの粘度が大きくなり、ハンドリングが悪化する傾向にある。またフォーム硬さに寄与する粒子状重合体微粒子含有量(=重合体微粒子含有量-可溶性ポリマー含有量)が低下するためフォーム物性悪化にも繋がる傾向がある。
 可溶性ポリマー含有量(重量%)と重合体微粒子含有量(重量%)との比(可溶性ポリマー含有量/重合体微粒子含有量)は、この可溶性ポリマーと重合体微粒子の重量比を意味し、この重量比が大きいと、ポリマーポリオールの粘度が大きくなり、ハンドリングが悪化する傾向がある。またフォーム硬さに寄与する粒子状重合体微粒子含有量(=重合体微粒子含有量-可溶性ポリマー含有量)が低下するためフォーム物性悪化にも繋がる傾向がある。
The soluble polymer means a polymer that does not dissolve in methanol but dissolves in xylene in the above measurement method. When the content of the soluble polymer is large, the viscosity of the polymer polyol is increased and the handling tends to be deteriorated. Further, since the content of particulate polymer fine particles (= polymer fine particle content−soluble polymer content) that contributes to foam hardness is reduced, the physical properties of the foam tend to be deteriorated.
The ratio of soluble polymer content (% by weight) to polymer fine particle content (% by weight) (soluble polymer content / polymer fine particle content) means the weight ratio of this soluble polymer to polymer fine particles. When the weight ratio is large, the viscosity of the polymer polyol increases, and the handling tends to deteriorate. Further, since the content of particulate polymer fine particles (= polymer fine particle content−soluble polymer content) that contributes to foam hardness is reduced, the physical properties of the foam tend to be deteriorated.
 本発明において、重合体微粒子(JR)の粒子径の算術標準偏差は、ポリマーポリオールの製造のし易さ並びにポリウレタン樹脂の機械物性及びポリウレタン樹脂製造装置の目詰まり低減の観点から、0.6以下が好ましく、さらに好ましくは0.1~0.6、次にさらに好ましくは0.12~0.6、特に好ましくは0.15~0.6、最も好ましくは0.20~0.58である。なお、上記算術標準偏差は、体積基準による算術標準偏差であり、後述する方法により測定される。 In the present invention, the arithmetic standard deviation of the particle diameter of the polymer fine particles (JR) is 0.6 or less from the viewpoint of ease of production of the polymer polyol, mechanical properties of the polyurethane resin and reduction of clogging of the polyurethane resin production apparatus. More preferably, it is 0.1 to 0.6, next more preferably 0.12 to 0.6, particularly preferably 0.15 to 0.6, and most preferably 0.20 to 0.58. . The arithmetic standard deviation is an arithmetic standard deviation based on volume and is measured by a method described later.
 上記体積基準による算術標準偏差とは、Mie散乱理論(Light Scattering by Small Particles, Dover Publ., 1981)により体積基準の粒度分布から、下記の式で算出された算術標準偏差を指す。なお、測定及び算出における体積基準の粒度分布は、0.040~262μmの範囲を65分割(0.040~0.044μm、0.044~0.050μm、0.051~0.057μm、0.058~0.066μm、0.067~0.075μm、0.076~0.086μm、0.087~0.099μm、0.100~0.114μm、0.115~0.130μm、0.131~0.149μm、0.150~0.171μm、0.172~0.196μm、0.197~0.225μm、0.226~0.258μm、0.259~0.295μm、0.296~0.338μm、0.339~0.388μm、0.389~0.449μm、0.450~0.509μm、0.510~0.583μm、0.584~0.668μm、0.669~0.765μm、0.766~0.876μm、0.877~1.004μm、1.005~1.150μm、1.151~1.317μm、1.318~1.509μm、1,510~1.728μm、1.729~1.980μm、1.981~2.268μm、2.269~2.598μm、2.599~2.975μm、2.976~3.408μm、3.409~3.904μm、3.905~4.471μm、4.472~5.121μm、5.122~5.866μm、5.867~6.719μm、6.720~7.696μm、7.697~8.815μm、8.816~10.096μm、10.097~11.564μm、11.565~13.245μm、13.246~15.171μm、15.172~17.376μm、17.377~19.903μm、19.904~22.796μm、22.797~26.110μm、26.111~29.906μm、29.907~34.254μm、34.255~39.233μm、39.234~44.937μm、44.938~51.470μm、51.471~58.952μm、58.953~67.522μm、67.523~77.338μm、77.339~88.582μm、88.583~101.459μm、101.460~116.209μm、116.210~133.102μm、133.103~152.452μm、152.453~174.615μm、174.616~199.999μm、200.000~229.074μm、229.075~262.375μmの65分割。なお、例えば「0.040~0.044μm」の記載は、「0.040μmより大きく、0.044μm以下」であることを示す。)して求める。 The above-mentioned arithmetic standard deviation based on the volume refers to the arithmetic standard deviation calculated by the following formula from the particle size distribution based on the volume based on the Mie scattering theory (Light Scattering by Small Particles, Dover Publ., 1981). Note that the volume-based particle size distribution in the measurement and calculation is a range of 0.040 to 262 μm divided into 65 (0.040 to 0.044 μm, 0.044 to 0.050 μm, 0.051 to 0.057 μm,. 058-0.066μm, 0.067-0.075μm, 0.076-0.086μm, 0.087-0.099μm, 0.100-0.114μm, 0.115-0.130μm, 0.131- 0.149 μm, 0.150 to 0.171 μm, 0.172 to 0.196 μm, 0.197 to 0.225 μm, 0.226 to 0.258 μm, 0.259 to 0.295 μm, 0.296 to 0. 338 μm, 0.339 to 0.388 μm, 0.389 to 0.449 μm, 0.450 to 0.509 μm, 0.510 to 0.583 μm, 0.584 to 0.668 μm, 69 to 0.765 μm, 0.766 to 0.876 μm, 0.877 to 1.004 μm, 1.005 to 1.150 μm, 1.151 to 1.317 μm, 1.318 to 1.509 μm, 1,510 to 1.728 μm, 1.729 to 1.980 μm, 1.981 to 2.268 μm, 2.269 to 2.598 μm, 2.599 to 2.975 μm, 2.976 to 3.408 μm, 3.409 to 3. 904 μm, 3.905 to 4.471 μm, 4.472 to 5.121 μm, 5.122 to 5.866 μm, 5.867 to 6.719 μm, 6.720 to 7.696 μm, 7.697 to 8.815 μm, 8.816 to 10.096 μm, 10.097 to 11.564 μm, 11.565 to 13.245 μm, 13.246 to 15.171 μm, 15.172 to 17.376 μm 17.377-19.903 μm, 19.904-22.796 μm, 22.797-26.110 μm, 26.111-29.906 μm, 29.907-34.254 μm, 34.255-39.233 μm, 39 .234 to 44.937 μm, 44.938 to 51.470 μm, 51.471 to 58.952 μm, 58.953 to 67.522 μm, 67.523 to 77.338 μm, 77.339 to 88.582 μm, 88.583 ˜101.594 μm, 101.460 to 116.209 μm, 116.210 to 133.102 μm, 133.103 to 152.452 μm, 152.453 to 174.615 μm, 174.616 to 199.999 μm, 200.000 to 229 074 μm, 229.075 to 262.375 μm, 65 divisions . For example, the description “0.040 to 0.044 μm” indicates “greater than 0.040 μm and 0.044 μm or less”. )
 算術標準偏差=[Σ{(X(J)-算術平均粒子径(μm)}×q(J)/100]1/2 Arithmetic standard deviation = [Σ {(X (J) −arithmetic mean particle diameter (μm)} 2 × q (J) / 100] 1/2
 算術平均粒子径(μm)= Σ{q(J)×X(J)}/Σ{q(J)} Arithmetic mean particle diameter (μm) = Σ {q (J) × X (J)} / Σ {q (J)}
 式中、Jは粒子径範囲の分割番号(1~65)、すなわち、上記65分割した粒子径範囲の値の小さいものから順に連番を付した粒子径範囲の番号;X(J)は、該分割番号J番目の粒子径範囲の中心値;q(J)は、該分割番号J番目の粒子径範囲の粒子の頻度(体積%)である。 In the formula, J is a particle size range division number (1 to 65), that is, a particle size range number sequentially numbered from the smallest value of the 65 divided particle size range; X (J) is The center value of the particle number range of the division number Jth; q (J) is the frequency (volume%) of particles in the particle number range of the division number Jth.
 ポリマーポリオール(I)中の0.10mm以上の粒子径を有する重合体微粒子含有量(重量%)(以下、粗大粒子含有量と略記)は、ポリウレタン樹脂の製造装置での目詰まり低減の観点から、ポリマーポリオール(I)の重量を基準として、0~30×10-4が好ましく、さらに好ましくは0~20×10-4、次にさらに好ましくは0~10×10-4、特に好ましくは0~3×10-4である。 The content (% by weight) of polymer fine particles having a particle diameter of 0.10 mm or more in the polymer polyol (I) (hereinafter abbreviated as coarse particle content) is from the viewpoint of reducing clogging in a polyurethane resin production apparatus. Based on the weight of the polymer polyol (I), 0 to 30 × 10 −4 is preferable, more preferably 0 to 20 × 10 −4 , next more preferably 0 to 10 × 10 −4 , particularly preferably 0. ~ 3 × 10 -4 .
 本発明のポリマーポリオール(I)は、ポリオール(PL)中でエチレン性不飽和化合物(E)を重合させて製造する方法により得られる。 The polymer polyol (I) of the present invention can be obtained by a method of producing by polymerizing an ethylenically unsaturated compound (E) in a polyol (PL).
 この製造方法は、ポリオール(PL)を含んでなる分散媒中で、エチレン性不飽和化合物(E)を重合させる方法である。
 重合方法としては、ラジカル重合、配位アニオン重合、メタセシス重合及びディールス・アルダー重合等が挙げられるが、工業的な観点から好ましいのはラジカル重合である。
This production method is a method of polymerizing the ethylenically unsaturated compound (E) in a dispersion medium containing a polyol (PL).
Examples of the polymerization method include radical polymerization, coordination anion polymerization, metathesis polymerization, Diels-Alder polymerization, and the like. From an industrial viewpoint, radical polymerization is preferable.
 ラジカル重合は、種々の方法、例えば分散剤(d)を含むポリオール(PL)中で、エチレン性不飽和化合物(E)をラジカル重合開始剤(c)の存在下に重合させる方法(米国特許第3383351号等に記載の方法)等が使用できる。 Radical polymerization can be performed by various methods, for example, a method of polymerizing an ethylenically unsaturated compound (E) in the presence of a radical polymerization initiator (c) in a polyol (PL) containing a dispersant (d) (US Pat. The method described in Japanese Patent No. 3383351 etc. can be used.
 ラジカル重合開始剤(c)としては、遊離基を生成して重合を開始させる化合物が使用でき、アゾ化合物及び過酸化物等{特開2005-162791号公報、特開2004-002800号公報(対応米国特許出願:US2005/245724 A1)等に記載のもの}が使用できる。また、(c)の10時間半減期温度は、(E)の重合率及び重合時間とポリマーポリオールの生産性の観点から、30~150℃が好ましく、さらに好ましくは40~140℃、特に好ましくは50~130℃である。 As the radical polymerization initiator (c), a compound that generates a free radical to initiate polymerization can be used, such as an azo compound and a peroxide {Japanese Patent Laid-Open No. 2005-162791, Japanese Patent Laid-Open No. 2004-002800 (corresponding to US patent application: US2005 / 245724 A1) etc.} can be used. The 10-hour half-life temperature of (c) is preferably from 30 to 150 ° C., more preferably from 40 to 140 ° C., particularly preferably from the viewpoint of the polymerization rate and polymerization time of (E) and the productivity of the polymer polyol. 50-130 ° C.
 (c)の使用量(重量%)は、(E)の合計重量に基づいて、(E)の重合度及び得られるポリウレタン樹脂の機械物性の観点から好ましくは0.05~20、さらに好ましくは0.1~5、特に好ましくは0.2~2である。 The amount (% by weight) used of (c) is preferably 0.05 to 20, more preferably from the viewpoint of the degree of polymerization of (E) and the mechanical properties of the resulting polyurethane resin, based on the total weight of (E). It is 0.1 to 5, particularly preferably 0.2 to 2.
 分散剤(d)としては、Mnが1,000以上(好ましくは1,000~10,000)の種々のもの、例えばポリマーポリオールの製造で使用されている公知の分散剤{特開2005-162791号公報、特開2004-002800号公報(対応米国特許出願:US2005/245724 A1)等に記載のもの}等を使用することができ、(d)には、St又はACNと共重合し得るエチレン性不飽和基を有する反応性分散剤、及びSt又はACNとは共重合しない非反応性分散剤が含まれる。
 なお本発明において、エチレン性不飽和基を含有する反応性分散剤はMn1,000以上であり、Mnが1,000未満のエチレン性不飽和化合物(E)とは区別される。
As the dispersant (d), various dispersants having an Mn of 1,000 or more (preferably 1,000 to 10,000), for example, known dispersants used in the production of polymer polyols {Japanese Patent Laid-Open No. 2005-162791 And the like described in JP 2004-002800 A (corresponding US Patent Application: US 2005/245724 A1), etc., and (d) is ethylene that can be copolymerized with St or ACN. Reactive dispersants having ionic unsaturated groups, and non-reactive dispersants that do not copolymerize with St or ACN.
In the present invention, the reactive dispersant containing an ethylenically unsaturated group has a Mn of 1,000 or more, and is distinguished from an ethylenically unsaturated compound (E) having a Mn of less than 1,000.
 分散剤(d)の具体例としては、〔1〕ポリオールの水酸基の少なくとも一部を、メチレンジハライド及び/又はエチレンジハライドと反応させて高分子量化し、該反応物にさらにエチレン性不飽和基含有化合物を反応させてなるエチレン性不飽和基含有変性ポリオール{特開平08-333508号公報、特開2004-002800号公報(対応米国特許出願:US2005/245724 A1)等に記載のもの}等のマクロマータイプの分散剤;〔2〕ポリオールとの溶解度パラメーターの差が1.0以下のポリオール親和性セグメント2個以上を側鎖とし、エチレン性不飽和化合物の重合体との溶解度パラメーターの差が2.0以下の重合体微粒子(JR)親和性セグメントを主鎖とするグラフト型重合体(特開平05-059134号公報等に記載のもの)等の、ポリオールとオリゴマーを結合させたグラフトタイプの分散剤;〔3〕ポリオールの水酸基の少なくとも一部をメチレンジハライド及び/又はエチレンジハライドと反応させて高分子量化した変性ポリオール(特開平07-196749号公報等に記載のもの)等の高分子量ポリオールタイプの分散剤;〔4〕Mnが1,000~1,000,000であり、その少なくとも一部がポリオールに可溶性であるビニル系オリゴマー、及びこのオリゴマーと上記〔1〕のエチレン性不飽和基含有変性ポリエーテルポリオールを併用する分散剤{例えば特開平09-77968号公報)等のオリゴマータイプの分散剤。後述する(d1)を含む};〔5〕ポリオールと、少なくとも1個のエチレン性不飽和基を有する単官能活性水素化合物がポリイソシアネートを介して結合されてなる含窒素結合含有不飽和ポリオールからなる分散剤(特開2002-308920号公報(対応米国特許第6756414号)等に記載のもの)等の反応性分散剤{後述する(d2)を含む}等が挙げられる。
 これらの中で重合体微粒子(JR)の粒子径の観点から、〔1〕、〔4〕及び〔5〕が好ましく、さらに好ましくは、〔5〕である。
Specific examples of the dispersant (d) include: [1] At least a part of the hydroxyl group of the polyol is reacted with methylene dihalide and / or ethylene dihalide to obtain a high molecular weight, and the reaction product is further mixed with an ethylenically unsaturated group. Ethylenically unsaturated group-containing modified polyol obtained by reacting a compound containing compound (such as those described in JP 08-333508 A, JP 2004-002800 A (corresponding US patent application: US 2005/245724 A1), etc.) Macromer type dispersant; [2] The difference in solubility parameter from the polymer of the ethylenically unsaturated compound is 2 with two or more polyol affinity segments having a solubility parameter difference of 1.0 or less as a side chain. 0.0 or less polymer fine particle (JR) graft polymer having an affinity segment as a main chain (Japanese Patent Laid-Open No. 05-05913) A graft type dispersant in which a polyol and an oligomer are bonded, such as those described in Japanese Patent No. 4); and [3] at least a part of the hydroxyl group of the polyol is reacted with methylene dihalide and / or ethylene dihalide. High molecular weight polyol type dispersants such as molecular weight modified polyols (as described in JP-A-07-196749 etc.); [4] Mn is 1,000 to 1,000,000, at least a part thereof Oligomeric type dispersions such as vinyl oligomers, which are soluble in polyols, and dispersants (for example, JP-A-09-77968) that use the oligomers together with the above-mentioned [1] modified polyether polyols containing ethylenically unsaturated groups Agent. Including (d1) described later}; [5] A nitrogen-containing unsaturated polyol containing a polyol and a monofunctional active hydrogen compound having at least one ethylenically unsaturated group bonded via a polyisocyanate. Reactive dispersants {including (d2) to be described later} such as a dispersant (described in JP-A-2002-308920 (corresponding to US Pat. No. 6,756,414)) and the like.
Among these, [1], [4] and [5] are preferable, and [5] is more preferable from the viewpoint of the particle diameter of the polymer fine particles (JR).
 また、これらの中で重合体微粒子(JR)の粒子径の観点から、下記の(d1)及び/又は(d2)が特に好ましい。
(d1)Mnが1,000~1,000,000のビニルオリゴマー。
(d2)飽和のポリオール(p)と、少なくとも1個のエチレン性不飽和基を有する単官能活性水素含有化合物(q)が、ポリイソシアネート(r)を介して結合されてなり、1分子中のNCO基に由来する含窒素結合の数に対する不飽和基数の比の平均値が0.1~0.4である含窒素結合含有不飽和ポリオール。
Of these, the following (d1) and / or (d2) are particularly preferred from the viewpoint of the particle diameter of the polymer fine particles (JR).
(D1) Vinyl oligomer having Mn of 1,000 to 1,000,000.
(D2) A saturated polyol (p) and a monofunctional active hydrogen-containing compound (q) having at least one ethylenically unsaturated group are bonded via a polyisocyanate (r), A nitrogen-containing bond-containing unsaturated polyol having an average ratio of the number of unsaturated groups to the number of nitrogen-containing bonds derived from NCO groups of 0.1 to 0.4.
 分散剤(d1)はエチレン性不飽和化合物を重合して得られるビニルオリゴマーである。分散剤(d1)を構成するエチレン性不飽和化合物は、前述したエチレン性不飽和化合物(E)と同様のものが使用できる。
 これらの内で、重合体微粒子(JR)の粒子径の観点から分散剤(d1)を構成するエチレン性不飽和化合物の少なくとも一部が、重合体微粒子を構成しているエチレン性不飽和化合物(E)と同じであることが好ましく、さらに好ましくは(d1)を構成するエチレン性不飽和化合物の30重量%以上が(E)と同じであり、次にさらに好ましくは70重量%以上、特に好ましくは80重量%以上である。
The dispersant (d1) is a vinyl oligomer obtained by polymerizing an ethylenically unsaturated compound. As the ethylenically unsaturated compound constituting the dispersant (d1), the same ethylenically unsaturated compound (E) as described above can be used.
Among these, at least a part of the ethylenically unsaturated compound constituting the dispersant (d1) from the viewpoint of the particle diameter of the polymer fine particles (JR) is an ethylenically unsaturated compound ( It is preferred that it is the same as E), more preferably 30% by weight or more of the ethylenically unsaturated compound constituting (d1) is the same as (E), then more preferably 70% by weight or more, particularly preferably Is 80% by weight or more.
 (d1)のMnは、ポリマー粒子の粒子径の観点から、1,000~1,000,000であり、好ましくは100,000~950,000であり、さらに好ましくは150,000~900,000、特に好ましくは200,000~250,000である。また分散剤(d1)は、重合体微粒子の粒子径の観点から、ポリオール(PL)に可溶性[(d1)と(PL)の合計重量に基づき5重量%の(d1)を(PL)に均一混合した混合物のレーザー光の透過率が10%以上]であることが望ましい。
 なお分散剤(d1)のMnは、以下の方法で測定される。
 遠心分離用50ml遠沈管に、ポリマーポリオール約5gを精秤し、メタノール50gを加えて希釈する。冷却遠心分離機[型番:H-9R、コクサン(株)製]を用いて、18,000rpm×60分間、20℃にて遠心分離する。上澄み液をガラス製ピペットを用いて除去する。残留沈降物にメタノール50gを加えて希釈し、上記と同様に遠心分離して上澄み液を除去する操作を、さらに3回繰り返す。遠沈管内の残留沈降物を、2,666~3,999Pa(20~30torr)で60℃×60分間減圧乾燥し、乾燥した沈降物を得る。この沈降物のゲルパーミエーションクロマトグラフィー(GPC)測定によるポリスチレン基準で数平均分子量を測定し、(d1)のMnとする。
Mn in (d1) is 1,000 to 1,000,000, preferably 100,000 to 950,000, more preferably 150,000 to 900,000, from the viewpoint of the particle size of the polymer particles. Particularly preferred is 200,000 to 250,000. Further, the dispersant (d1) is soluble in the polyol (PL) from the viewpoint of the particle size of the polymer fine particles [5% by weight of (d1) and (PL) are uniformly converted to (PL) based on the total weight of (d1) and (PL). It is desirable that the laser transmittance of the mixed mixture is 10% or more.
In addition, Mn of a dispersing agent (d1) is measured with the following method.
About 5 g of polymer polyol is precisely weighed in a 50 ml centrifuge tube for centrifugation, and diluted by adding 50 g of methanol. Using a cooling centrifuge [model number: H-9R, manufactured by Kokusan Co., Ltd.], centrifuge at 18,000 rpm for 60 minutes at 20 ° C. The supernatant is removed using a glass pipette. The operation of adding 50 g of methanol to the residual sediment, diluting, and centrifuging in the same manner as above to remove the supernatant is repeated three more times. The residual sediment in the centrifuge tube is dried under reduced pressure at 2,666-3,999 Pa (20-30 torr) at 60 ° C. for 60 minutes to obtain a dried sediment. The number average molecular weight is measured on the basis of polystyrene by gel permeation chromatography (GPC) measurement of this sediment, and is defined as Mn of (d1).
 分散剤(d1)の製造は、Mnが1,000~1,000,000となるよう重合度を調節する点を除いて、通常のエチレン性不飽和化合物の重合方法で行うことができる。例えば必要により溶媒中で、エチレン性不飽和化合物(E)を後述のラジカル重合開始剤(c)の存在下に重合させる方法である。また、分散剤(d1)はポリオール(PL)中で(E)を重合させて得られるものでもよく、この場合の重合濃度は1~40重量%が好ましく、さらに好ましくは5~20重量%である。重合で得られたものを精製処理することなくそのままポリマーポリオールの製造に使用してもよい。ラジカル重合開始剤は比較的多量に使用され、例えば全エチレン性不飽和化合物の重量に基づいて好ましくは2~30重量%、さらに好ましくは5~20重量%である。 The dispersant (d1) can be produced by a normal polymerization method of an ethylenically unsaturated compound, except that the degree of polymerization is adjusted so that Mn is 1,000 to 1,000,000. For example, it is a method in which the ethylenically unsaturated compound (E) is polymerized in the presence of a radical polymerization initiator (c) described later, if necessary, in a solvent. The dispersant (d1) may be obtained by polymerizing (E) in the polyol (PL). In this case, the polymerization concentration is preferably 1 to 40% by weight, more preferably 5 to 20% by weight. is there. You may use for the production of a polymer polyol as it is, without refine | purifying what was obtained by superposition | polymerization. The radical polymerization initiator is used in a relatively large amount, for example, preferably 2 to 30% by weight, more preferably 5 to 20% by weight, based on the weight of the total ethylenically unsaturated compound.
 上記重合反応に必要により用いる溶媒としては、ベンゼン、トルエン、キシレン、アセトニトリル、酢酸エチル、ヘキサン、ヘプタン、ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、イソプロピルアルコール、n-ブタノール等が挙げられる。
 これらの溶媒のうちで、粘度及び製造されるポリウレタン樹脂の機械強度の観点から、好ましいのはトルエン、キシレン、イソプロピルアルコール、n-ブタノールである。
Solvents used as necessary for the polymerization reaction include benzene, toluene, xylene, acetonitrile, ethyl acetate, hexane, heptane, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, isopropyl alcohol, n-butanol and the like. Can be mentioned.
Of these solvents, toluene, xylene, isopropyl alcohol and n-butanol are preferred from the viewpoint of viscosity and mechanical strength of the polyurethane resin to be produced.
 また、必要により連鎖移動剤、例えば、アルキルメルカプタン(ドデシルメルカプタン、メルカプトエタノール等)、アルコール(イソプロピルアルコール、メタノール、2-ブタノール等)、ハロゲン化炭化水素(四塩化炭素、四臭化炭素、クロロホルム等)及び特開昭55-31880号公報記載のエノールエーテルの存在下に重合を行うことができる。重合はバッチ式でも連続式でも行うことができる。重合反応は、ラジカル重合開始剤の分解温度以上(通常50~250℃、好ましくは80~200℃、特に好ましくは100~180℃)で行うことができ、大気圧下又は加圧下においても行うことができる。 If necessary, chain transfer agents such as alkyl mercaptans (dodecyl mercaptan, mercaptoethanol, etc.), alcohols (isopropyl alcohol, methanol, 2-butanol, etc.), halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, chloroform, etc.) And polymerization in the presence of an enol ether described in JP-A-55-31880. The polymerization can be carried out either batchwise or continuously. The polymerization reaction can be performed at a temperature equal to or higher than the decomposition temperature of the radical polymerization initiator (usually 50 to 250 ° C., preferably 80 to 200 ° C., particularly preferably 100 to 180 ° C.), and can be performed under atmospheric pressure or under pressure. Can do.
 (d2)は、飽和のポリオール(p)と、少なくとも1個のエチレン性不飽和基を有する単官能活性水素化合物(q)が、ポリイソシアネート(r)を介して結合されてなり、1分子中のNCO基に由来する含窒素結合の数に対する不飽和基数の比の平均値が0.1~0.4である含窒素結合含有不飽和ポリオールである。 (D2) is formed by bonding a saturated polyol (p) and a monofunctional active hydrogen compound (q) having at least one ethylenically unsaturated group via a polyisocyanate (r). The nitrogen-containing bond-containing unsaturated polyol has an average ratio of the number of unsaturated groups to the number of nitrogen-containing bonds derived from NCO groups of 0.1 to 0.4.
 (d2)を構成する(p)としては、前記(PL)として例示したものと同様のものが使用できる。(p)と(PL)とは同一であっても異なっていてもよい。
 (p)の1分子中の水酸基の数は、少なくとも2個が好ましく、重合体微粒子(JR)の(PL)中での分散安定性の観点から、さらに好ましくは2~8個、次にさらに好ましくは3~4個であり、(p)の水酸基当量は、分散安定性の観点から、1,000~3,000が好ましく、さらに好ましくは1,500~2,500である。
As (p) constituting (d2), the same as those exemplified as the (PL) can be used. (P) and (PL) may be the same or different.
The number of hydroxyl groups in one molecule of (p) is preferably at least 2, from the viewpoint of dispersion stability of the polymer fine particles (JR) in (PL), more preferably 2-8, and further The number of hydroxyl groups in (p) is preferably from 1,000 to 3,000, more preferably from 1,500 to 2,500, from the viewpoint of dispersion stability.
 (d2)を得るのに用いる(q)は、1個の活性水素含有基と少なくとも1個の重合性不飽和基を有する化合物である。活性水素含有基としては、水酸基、アミノ基、イミノ基、カルボキシル基、SH基などがあるが、ポリマー粒子安定性の観点から、特に水酸基が好ましい。 (Q) used to obtain (d2) is a compound having one active hydrogen-containing group and at least one polymerizable unsaturated group. Examples of the active hydrogen-containing group include a hydroxyl group, an amino group, an imino group, a carboxyl group, and an SH group, and a hydroxyl group is particularly preferable from the viewpoint of polymer particle stability.
 (q)のエチレン性不飽和基は重合体微粒子を形成する重合体に組み込まれやすい観点から、重合性二重結合が好ましく、また1分子中のエチレン性不飽和基の数は1~3個、特に1個が好ましい。即ち、(q)として好ましいものは、重合性二重結合を1個有する不飽和モノヒドロキシ化合物である。
 上記不飽和モノヒドロキシ化合物としては、例えば、モノヒドロキシ置換不飽和炭化水素、不飽和モノカルボン酸と2価アルコールとのモノエステル、不飽和2価アルコールとモノカルボン酸とのモノエステル、アルケニル側鎖基を有するフェノール、不飽和ポリエーテルモノオールなどが挙げられる。
The ethylenically unsaturated group of (q) is preferably a polymerizable double bond from the viewpoint of being easily incorporated into the polymer forming the polymer fine particles, and the number of ethylenically unsaturated groups in one molecule is 1 to 3. In particular, one is preferable. That is, preferred as (q) is an unsaturated monohydroxy compound having one polymerizable double bond.
Examples of the unsaturated monohydroxy compound include monohydroxy substituted unsaturated hydrocarbon, monoester of unsaturated monocarboxylic acid and dihydric alcohol, monoester of unsaturated dihydric alcohol and monocarboxylic acid, alkenyl side chain Examples thereof include phenol having a group and unsaturated polyether monool.
 モノヒドロキシ置換不飽和炭化水素としては、C3~6のアルケノール、例えば(メタ)アリルアルコール、2-ブテン-1-オール、3-ブテン-2-オール、3-ブテン-1-オールなど;アルキノール、例えばプロパギルアルコールなどが挙げられる。
 不飽和モノカルボン酸と2価アルコールとのモノエステルとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸等のC3~8の不飽和モノカルボン酸と、前記2価アルコール(エチレングリコール、プロピレングリコール、ブチレングリコール等のC2~12の2価アルコール)とのモノエステルが挙げられ、その具体例としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレートなどが挙げられる。
Monohydroxy substituted unsaturated hydrocarbons include C3-6 alkenols such as (meth) allyl alcohol, 2-buten-1-ol, 3-buten-2-ol, 3-buten-1-ol and the like; alkynol, An example is propargyl alcohol.
Examples of monoesters of unsaturated monocarboxylic acids and dihydric alcohols include C3-8 unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and itaconic acid, and dihydric alcohols (ethylene glycol, Monoesters with C2-12 dihydric alcohols such as propylene glycol and butylene glycol), and specific examples thereof include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxy Examples thereof include propyl methacrylate, 2-hydroxybutyl acrylate and 4-hydroxybutyl acrylate.
 不飽和2価アルコールとモノカルボン酸のモノエステルとしては、例えば、ブテンジオールの酢酸モノエステルなどの、C3~8の不飽和2価アルコールとC2~12モノカルボン酸とのモノエステルが挙げられる。
 アルケニル側鎖基を有するフェノールとしては、例えばオキシスチレン、ヒドロキシα-メチルスチレンなどのアルケニル基のCが2~8のアルケニル側鎖基を有するフェノールが挙げられる。
 不飽和ポリエーテルモノオールとしては、前記モノヒドロキシ置換不飽和炭化水素もしくは前記アルケニル側鎖基を有するフェノールのアルキレンオキサイド(C2~8)1~50モル付加物〔例えばポリオキシエチレン(重合度2~10)モノアリルエーテル〕などが挙げられる。
Examples of the monoester of unsaturated dihydric alcohol and monocarboxylic acid include monoesters of C3-8 unsaturated dihydric alcohol and C2-12 monocarboxylic acid, such as acetic acid monoester of butenediol.
Examples of the phenol having an alkenyl side chain group include phenols having an alkenyl side chain group in which C of the alkenyl group is 2 to 8, such as oxystyrene and hydroxy α-methylstyrene.
Examples of the unsaturated polyether monool include adducts of 1 to 50 moles of the above monohydroxy-substituted unsaturated hydrocarbon or alkylene oxide (C2 to 8) of phenol having an alkenyl side group [for example, polyoxyethylene (degree of polymerization 2 to 2). 10) monoallyl ether] and the like.
 不飽和モノヒドロキシ化合物以外の(q)の例としては、以下のものが挙げられる。
 アミノ基、イミノ基を有する(q)としては、モノ-及びジ-(メタ)アリルアミン、アミノアルキル(C2~4)(メタ)アクリレート〔アミノエチル(メタ)アクリレートなど〕、モノアルキル(C1~12)アミノアルキル(C2~4)(メタ)アクリレート〔モノメチルアミノエチル-メタクリレートなど〕;カルボキシル基を有する(q)としては、前記不飽和モノカルボン酸;SH基を有する(q)としては、前記不飽和モノヒドロキシ化合物に相当する(OHがSHに置き換わった)化合物が挙げられる。重合性不飽和基を2個以上有する(q)の例としては、前記3価、4~8価又はそれ以上の多価アルコールのポリ(メタ)アリルエーテル又は前記不飽和カルボン酸とのポリエステル〔例えばトリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、グリセリンジ(メタ)アクリレートなど〕が挙げられる。
Examples of (q) other than the unsaturated monohydroxy compound include the following.
Examples of (q) having an amino group or imino group include mono- and di- (meth) allylamine, aminoalkyl (C2-4) (meth) acrylate [aminoethyl (meth) acrylate, etc.], monoalkyl (C1-12) ) Aminoalkyl (C2-4) (meth) acrylate [monomethylaminoethyl-methacrylate and the like]; (q) having a carboxyl group is the above unsaturated monocarboxylic acid; (q) having an SH group is And compounds corresponding to saturated monohydroxy compounds (OH is replaced by SH). Examples of (q) having two or more polymerizable unsaturated groups include poly (meth) allyl ethers of trihydric, tetrahydric, octahydric or higher polyhydric alcohols or polyesters with unsaturated carboxylic acids [ Examples thereof include trimethylolpropane diallyl ether, pentaerythritol triallyl ether, glycerin di (meth) acrylate, and the like.
 分散安定性の観点から、これらのうち好ましい化合物は、C3~6のアルケノール、C3~8の不飽和モノカルボン酸とC2~12の2価アルコールとのモノエステル及びアルケニル側鎖基を有するフェノールであり、さらに好ましくは(メタ)アクリル酸と、エチレングリコール、プロピレングリコールもしくはブチレングリコールとのモノエステル;アリルアルコール;及びヒドロキシα-メチルスチレンであり、特に好ましくは2-ヒドロキシエチル(メタ)アクリレートである。
 また、(q)の分子量は特に限定されないが、ポリマーポリオールの粘度の観点から、1,000以下が好ましく、特に好ましくは500以下である。
From the viewpoint of dispersion stability, preferred compounds among these include C3-6 alkenols, monoesters of C3-8 unsaturated monocarboxylic acids and C2-12 dihydric alcohols, and phenols having alkenyl side groups. More preferably, monoesters of (meth) acrylic acid with ethylene glycol, propylene glycol or butylene glycol; allyl alcohol; and hydroxy α-methylstyrene, particularly preferably 2-hydroxyethyl (meth) acrylate. .
Further, the molecular weight of (q) is not particularly limited, but is preferably 1,000 or less, and particularly preferably 500 or less, from the viewpoint of the viscosity of the polymer polyol.
 ポリイソシアネート(r)は、少なくとも2個のイソシアネート基を有する化合物であり、芳香族ポリイソシアネート(r1)、脂肪族ポリイソシアネート(r2)、脂環式ポリイソシアネート(r3)、芳香脂肪族ポリイソシアネート(r4)、これらのポリイソシアネートの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、イソシアヌレート基又はオキサゾリドン基含有変性物など)(r5)、及びこれらの2種以上の混合物が挙げられる。 The polyisocyanate (r) is a compound having at least two isocyanate groups. The aromatic polyisocyanate (r1), the aliphatic polyisocyanate (r2), the alicyclic polyisocyanate (r3), the araliphatic polyisocyanate ( r4), modified products of these polyisocyanates (urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, isocyanurate groups or oxazolidone group-containing modified products) (r5), and mixtures of two or more thereof Is mentioned.
 (r1)としては、C(NCO基中の炭素を除く;以下のポリイソシアネートも同様)6~16の芳香族ジイソシアネート、C6~20の芳香族トリイソシアネート及びこれらのイソシアネートの粗製物などが挙げられる。具体例としては、1,3-及び1,4-フェニレンジイソシアネート、2,4-及び/又は2,6-トリレンジイソシアネート(TDI)、粗製TDI、2,4’-及び/又は4,4’-ジフェニルメタンジイソシアネート(MDI)、粗製MDI[粗製ジアミノジフェニルメタン{ホルムアルデヒドと芳香族アミン(アニリン)との縮合生成物;主生成物のジアミノジフェニルメタンと副生成物である少量(たとえば5~20重量%)の3官能以上のポリアミンとの混合物}のホスゲン化物:例えばポリアリルポリイソシアネート(PAPI)など]、ナフチレン-1,5-ジイソシアネート、トリフェニルメタン-4,4’,4’’-トリイソシアネートなどが挙げられる。
 (r2)としては、C2~18の脂肪族ジイソシアネートなどが挙げられる。具体例としては、1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネートなどが挙げられる。
Examples of (r1) include C (excluding carbon in the NCO group; the same applies to the following polyisocyanates) 6 to 16 aromatic diisocyanates, C6 to 20 aromatic triisocyanates, and crude products of these isocyanates. . Specific examples include 1,3- and 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4′- and / or 4,4 ′. Diphenylmethane diisocyanate (MDI), crude MDI [crude diaminodiphenylmethane {condensation product of formaldehyde and aromatic amine (aniline); small amount of diaminodiphenylmethane as main product and a small amount of by-product (eg 5 to 20% by weight) Phosgenates of mixtures of polyamines with three or more functional groups: for example, polyallyl polyisocyanate (PAPI), etc.], naphthylene-1,5-diisocyanate, triphenylmethane-4,4 ′, 4 ″ -triisocyanate, etc. It is done.
Examples of (r2) include C2-18 aliphatic diisocyanates. Specific examples include 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and the like.
 (r3)としては、C4~16の脂環式ジイソシアネートなどが挙げられる。具体例としては、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、ノルボルナンジイソシアネートなどが挙げられる。
 (r4)としては、C8~15の芳香脂肪族ジイソシアネートなどが挙げられる。具体例としては、キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネートなどが挙げられる。
 (r5)としては、ウレタン変性MDI、カルボジイミド変性MDI、ショ糖変性TDI及びひまし油変性MDIなどが挙げられる。
 ポリウレタン樹脂の物性の観点から、これらのうちで好ましいものは芳香族ジイソシアネートであり、さらに好ましくは2,4-及び/又は2,6-TDIである。
Examples of (r3) include C4-16 alicyclic diisocyanates. Specific examples include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, norbornane diisocyanate, and the like.
Examples of (r4) include C8-15 araliphatic diisocyanates. Specific examples include xylylene diisocyanate, α, α, α ′, α′-tetramethylxylylene diisocyanate, and the like.
Examples of (r5) include urethane-modified MDI, carbodiimide-modified MDI, sucrose-modified TDI, and castor oil-modified MDI.
From the viewpoint of the physical properties of the polyurethane resin, aromatic diisocyanates are preferable among these, and 2,4- and / or 2,6-TDI are more preferable.
 (d2)の含窒素結合は、イソシアネート基と活性水素含有基との反応によって生じるものであり、活性水素含有基が水酸基である場合、主にウレタン結合が生成し、アミノ基である場合、主に尿素結合が生成する。カルボキシル基の場合はアミド結合、SH基の場合はチオウレタン結合が生成する。これらの基以外に、他の結合、例えば、ビューレット結合、アロファネート結合などが生成していてもよい。
 この含窒素結合は飽和のポリオール(p)の水酸基とポリイソシアネート(r)のイソシアネート基との反応で生じるものと、不飽和単官能活性水素化合物(q)の活性水素含有基と(r)のイソシアネート基との反応で生じるものとがある。
The nitrogen-containing bond of (d2) is generated by a reaction between an isocyanate group and an active hydrogen-containing group. When the active hydrogen-containing group is a hydroxyl group, a urethane bond is mainly generated, and when it is an amino group, A urea bond is formed in In the case of a carboxyl group, an amide bond is formed, and in the case of an SH group, a thiourethane bond is formed. In addition to these groups, other bonds such as a burette bond and an allophanate bond may be formed.
This nitrogen-containing bond is generated by the reaction between the hydroxyl group of the saturated polyol (p) and the isocyanate group of the polyisocyanate (r), the active hydrogen-containing group of the unsaturated monofunctional active hydrogen compound (q), and (r). Some are produced by reaction with isocyanate groups.
 (d2)は、下記式によって求められる、1分子中の(r)のNCO基に由来する含窒素結合に対する不飽和基数の比の平均値が0.1~0.4となるような割合で、(p)、(q)及び(r)を反応させたものである。
1分子中の(r)のNCO基に由来する含窒素結合に対する不飽和基数の比の平均値=
[(q)のモル数×(q)の不飽和基数]/[(r)のモル数×(r)のNCO基数]
 1分子中の(r)のNCO基に由来する含窒素結合に対する不飽和基数の比の平均値の値は、さらに好ましくは0.1~0.3であり、とくに好ましくは0.2~0.3である。不飽和基数の比の平均値の値が上記範囲内であると、ポリマーポリオールの分散安定性がとくに良好となる。
(D2) is a ratio obtained by the following formula so that the average ratio of the number of unsaturated groups to nitrogen-containing bonds derived from the NCO group of (r) in one molecule is 0.1 to 0.4. , (P), (q) and (r) are reacted.
Average value of the ratio of the number of unsaturated groups to nitrogen-containing bonds derived from the (r) NCO group in one molecule =
[Number of moles of (q) × number of unsaturated groups of (q)] / [number of moles of (r) × number of NCO groups of (r)]
The average value of the ratio of the number of unsaturated groups to nitrogen-containing bonds derived from the (r) NCO group in one molecule is more preferably 0.1 to 0.3, particularly preferably 0.2 to 0. .3. When the average value of the ratio of the number of unsaturated groups is within the above range, the dispersion stability of the polymer polyol is particularly good.
 分散剤(d)の含有量は、(E)の重量に基づいて、重合体微粒子(JR)の粒子径の観点及び得られるポリマーポリオールの粘度の観点から、50重量%以下が好ましくは、さらに好ましくは1~40重量%、次にさらに好ましくは1~30重量%、特に好ましくは3~25重量%、最も好ましくは5~20重量%である。 The content of the dispersant (d) is preferably 50% by weight or less based on the weight of (E), from the viewpoint of the particle diameter of the polymer fine particles (JR) and the viscosity of the resulting polymer polyol, Preferably it is 1 to 40% by weight, then more preferably 1 to 30% by weight, particularly preferably 3 to 25% by weight, most preferably 5 to 20% by weight.
 ラジカル重合においては、必要により希釈溶媒(f)を使用してもよい。(f)としては、芳香族炭化水素(C6~10、例えばトルエン、キシレン);飽和脂肪族炭化水素(C5~15、例えばヘキサン、ヘプタン、ノルマルデカン);不飽和脂肪族炭化水素(C5~30、例えばオクテン、ノネン、デセン);及びその他公知の溶剤(例えば特開2005-162791号公報等に記載のもの)等が使用できる。これらのうちポリマーポリオールの粘度の観点から好ましいのは芳香族炭化水素溶剤である。
 希釈溶媒(f)の使用量(重量%)は、エチレン性不飽和化合物(E)の合計重量に基づいて、ポリマーポリオールの粘度及びポリウレタン樹脂の機械物性の観点から、0.1~50が好ましく、さらに好ましくは1~40である。(f)は重合反応終了後にポリマーポリオール中に残存してもよいが、ポリウレタン樹脂の機械物性の観点から重合反応後に減圧ストリッピング等により除去するのが望ましい。
In radical polymerization, a diluting solvent (f) may be used if necessary. (F) includes aromatic hydrocarbons (C6-10, such as toluene, xylene); saturated aliphatic hydrocarbons (C5-15, such as hexane, heptane, normal decane); unsaturated aliphatic hydrocarbons (C5-30). For example, octene, nonene, decene); and other known solvents (for example, those described in JP-A-2005-162791, etc.) can be used. Of these, aromatic hydrocarbon solvents are preferred from the viewpoint of the viscosity of the polymer polyol.
The use amount (% by weight) of the diluting solvent (f) is preferably 0.1 to 50 based on the total weight of the ethylenically unsaturated compound (E) from the viewpoint of the viscosity of the polymer polyol and the mechanical properties of the polyurethane resin. More preferably, it is 1 to 40. Although (f) may remain in the polymer polyol after the completion of the polymerization reaction, it is desirable to remove by vacuum stripping after the polymerization reaction from the viewpoint of the mechanical properties of the polyurethane resin.
 また、ラジカル重合においては必要により連鎖移動剤(g)を使用してもよい。(g)としては脂肪族チオール(C1~20、例えばn-ドデカンチオール、メルカプトエタノール)等種々の連鎖移動剤{特開2005-162791号公報、特開2004-002800号公報(対応米国特許出願:US2005/245724 A1)等に記載のもの}が使用できる。
 連鎖移動剤(g)の使用量(重量%)は、エチレン性不飽和化合物(E)の合計重量に基づいて、ポリマーポリオールの粘度及び得られるポリウレタン樹脂の機械物性の観点から好ましくは0.01~2、さらに好ましくは0.1~1である。
In radical polymerization, a chain transfer agent (g) may be used if necessary. Examples of (g) include various chain transfer agents such as aliphatic thiols (C1-20, such as n-dodecanethiol, mercaptoethanol) (Japanese Patent Laid-Open No. 2005-162791, Japanese Patent Laid-Open No. 2004-002800 (corresponding US patent application: US2005 / 245724 A1) etc.} can be used.
The amount (% by weight) of the chain transfer agent (g) is preferably 0.01 from the viewpoint of the viscosity of the polymer polyol and the mechanical properties of the resulting polyurethane resin, based on the total weight of the ethylenically unsaturated compound (E). ˜2, more preferably 0.1˜1.
 本発明のポリマーポリオール(I)を得るための製造方法としては、ポリマーポリオールの粘度及び重合体微粒子の体積平均粒子径の観点から、下記の工程(1)及び工程(n)を含んでなる製造方法が好ましい。
工程(1):(PL)中で、微粒子(P1)及びラジカル重合開始剤(c)の存在下、必要により分散剤(d)及び/又は希釈溶媒(f)の存在下、エチレン性不飽和化合物(E)を重合させてポリマーポリオール中間体(B1)を得る工程
工程(n):ポリマーポリオール中間体(B(n-1))中で、(c)の存在下、必要により(d)及び/又は(f)の存在下、(E)を重合させてポリマーポリオール中間体(B(n))、又はポリマーポリオール(I)を得る工程(n は2~6の整数を表す。)
The production method for obtaining the polymer polyol (I) of the present invention includes the following steps (1) and (n) from the viewpoint of the viscosity of the polymer polyol and the volume average particle diameter of the polymer fine particles. The method is preferred.
Step (1): Ethylenic unsaturation in (PL) in the presence of fine particles (P1) and a radical polymerization initiator (c), and optionally in the presence of a dispersant (d) and / or a diluting solvent (f). Step (n) for polymerizing compound (E) to obtain polymer polyol intermediate (B1): In polymer polyol intermediate (B (n-1)), in the presence of (c), if necessary (d) And / or (f) is polymerized to obtain a polymer polyol intermediate (B (n)) or polymer polyol (I) by polymerizing (E) (n represents an integer of 2 to 6).
 nは、ポリマーの粒子径の観点から、2~6の整数であり、好ましくは2~4の整数、さらに好ましくは2~3の整数である。nが7以上であると、(I)の粘度が増加する。nが1以下の場合は、すなわち工程(n)を含まない意味となるが、この場合、重合体微粒子の体積平均粒子径(R)が大きくなり製造したポリウレタン樹脂の物性が悪くなる。 N is an integer of 2 to 6, preferably an integer of 2 to 4, more preferably an integer of 2 to 3, from the viewpoint of the particle diameter of the polymer. When n is 7 or more, the viscosity of (I) increases. When n is 1 or less, it means that the step (n) is not included, but in this case, the volume average particle diameter (R) of the polymer fine particles is increased, and the properties of the produced polyurethane resin are deteriorated.
 工程(1)において、(PL)、(P1)、(E)、(c)、(d)及び(f)の合計重量を基準とするエチレン性不飽和モノマー(E)の濃度(重量%)は、ポリウレタン樹脂の物性及びポリマーの粒子径の観点から、7~40が好ましく、さらに好ましくは10~35、次にさらに好ましくは15~30である。 In the step (1), the concentration (% by weight) of the ethylenically unsaturated monomer (E) based on the total weight of (PL), (P1), (E), (c), (d) and (f) Is preferably from 7 to 40, more preferably from 10 to 35, and even more preferably from 15 to 30 from the viewpoint of the physical properties of the polyurethane resin and the particle diameter of the polymer.
 工程(1)における、(PL)、(P1)、(E)、(c)、(d)及び(f)の合計重量を基準とする(P1)の含有量(重量%)と工程(1)の(E)の濃度の比としては、ポリウレタン樹脂の物性及びポリマーの粒子径の観点から、好ましくは工程(1)の(P1)含有量:工程(1)の(E)濃度=30:7~7:40、さらに好ましくは25:10~10:35、特に好ましくは20:30~12:15である。 In step (1), the content (% by weight) of (P1) based on the total weight of (PL), (P1), (E), (c), (d) and (f) and the step (1) )) (E) concentration ratio, from the viewpoint of the physical properties of the polyurethane resin and the particle diameter of the polymer, the (P1) content in step (1): (E) concentration in step (1) = 30: 7 to 7:40, more preferably 25:10 to 10:35, and particularly preferably 20:30 to 12:15.
 工程(1)における(E)の重合体への転化率(重量%)は、生産性の観点より、下限は好ましくは75%以上、さらに好ましくは80%以上、特に好ましくは85%以上であり、ポリマーの粒子径の観点より、上限は好ましくは99.5%以下、さらに好ましくは99.2%以下、特に好ましくは99%以下である。 From the viewpoint of productivity, the lower limit of the conversion rate (% by weight) of the polymer (E) in the step (1) is preferably 75% or more, more preferably 80% or more, and particularly preferably 85% or more. From the viewpoint of the particle diameter of the polymer, the upper limit is preferably 99.5% or less, more preferably 99.2% or less, and particularly preferably 99% or less.
 工程(n)において、ポリマーポリオール中間体(B(n-1))、(E)、(c)、(d)及び(f)の合計重量を基準とするエチレン性不飽和モノマー(E)の濃度は、ポリウレタン樹脂の物性及び得られるポリマーポリオールの粘度の観点から、7~40が好ましく、さらに好ましくは10~35、特に好ましくは15~30である。
 なお、工程(n)の(E)の濃度は、(B(n-1))に(E)が含まれる場合には、(B(n-1))に含まれる(E)も合わせて濃度を算出するものとする。
 また、工程(n)において、さらにポリオール(PL)を添加してもよく、その場合には、添加した(PL)も合わせて濃度を算出するものとする。
In step (n), the ethylenically unsaturated monomer (E) based on the total weight of the polymer polyol intermediates (B (n-1)), (E), (c), (d) and (f) The concentration is preferably from 7 to 40, more preferably from 10 to 35, and particularly preferably from 15 to 30 from the viewpoint of the physical properties of the polyurethane resin and the viscosity of the resulting polymer polyol.
Note that the concentration of (E) in step (n) is the same as that of (E) included in (B (n-1)) when (E) is included in (B (n-1)). The concentration is to be calculated.
Further, in step (n), polyol (PL) may be further added. In that case, the concentration is calculated by adding the added (PL).
 工程(n)における(E)の重合体への転化率(重量%)は、生産性の観点より、下限は好ましくは80%以上、さらに好ましくは85%以上、特に好ましくは90%以上であり、ポリマーの粒子径の観点より、上限は好ましくは99.5%以下、さらに好ましくは99.2%以下、特に好ましくは99%以下である。 From the viewpoint of productivity, the lower limit of the conversion rate (% by weight) of the polymer (E) in the step (n) is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more. From the viewpoint of the particle diameter of the polymer, the upper limit is preferably 99.5% or less, more preferably 99.2% or less, and particularly preferably 99% or less.
 重合温度(℃)は、生産性及びポリオールの分解防止の観点から、100~180が好ましく、さらに好ましくは110~160、特に好ましくは120~140である。 The polymerization temperature (° C.) is preferably from 100 to 180, more preferably from 110 to 160, particularly preferably from 120 to 140, from the viewpoint of productivity and prevention of polyol decomposition.
 工程(1)、工程(n)において、重合方式は、連続重合、バッチ重合(滴下重合、一括重合等)等、いずれの方式であってもよい。生産性の観点から、連続重合方式又はバッチ一括重合方式が好ましい。
 また、工程(1)、工程(n)の重合方式は、それぞれ同一でも異なっていてもよい。
In step (1) and step (n), the polymerization method may be any method such as continuous polymerization, batch polymerization (drop polymerization, batch polymerization, etc.). From the viewpoint of productivity, the continuous polymerization method or batch batch polymerization method is preferable.
Moreover, the polymerization methods in the step (1) and the step (n) may be the same or different.
 工程(n)で得られるポリマーポリオール中間体(B(n))は、そのままポリマーポリオール(I)としてもよく、必要により脱モノマー・脱溶剤処理を行ってポリマーポリオール(I)を得てもよい。ポリウレタン樹脂の臭気の観点から、脱モノマー処理・脱溶剤処理を行うことが好ましい。 The polymer polyol intermediate (B (n)) obtained in the step (n) may be used as it is as the polymer polyol (I), or the polymer polyol (I) may be obtained by carrying out a monomer removal / solvent removal treatment if necessary. . From the viewpoint of the odor of the polyurethane resin, it is preferable to perform a monomer removal treatment and a solvent removal treatment.
 微粒子(P1)としては、無機あるいは有機の粒子状物質であれば特に限定されず、目的に応じて単独で用いても2種以上を使用してもよい。すなわち、無機微粒子(PA1)、有機微粒子(PA2)、(PA1)と(PA2)の組合せのいずれでもよい。 The fine particles (P1) are not particularly limited as long as they are inorganic or organic particulate substances, and may be used alone or in combination of two or more depending on the purpose. That is, any of inorganic fine particles (PA1), organic fine particles (PA2), and combinations of (PA1) and (PA2) may be used.
 無機微粒子(PA1)としては、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、チタニア、ジルコニア、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化銅、酸化スズ、酸化クロム、酸化アンチモン、酸化イットリウム、酸化セリウム、酸化サマリウム、酸化ランタン、化タンタル、酸化テルビウム、酸化ユーロピウム、酸化ネオジウム、フェライト等の金属酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、ハイドロタルサイト等の金属水酸化物、重質炭酸カルシウム、軽質炭酸カルシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト等の金属炭酸塩、硫酸カルシウム、硫酸バリウム、石膏繊維等の金属硫酸塩、珪酸カルシウム(ウォラスナイト、ゾノトライト)、カオリン、クレー、タルク、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、ガラスフレーク等の金属珪酸塩、窒化アルミニウム、窒化ホウ素、窒化珪素等の金属窒化物、チタン酸カリウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸バリウム、チタン酸ジルコン酸鉛アルミニウムボレート等の金属チタン酸塩、ホウ酸亜鉛、ホウ酸アルミニウム等の金属ホウ酸塩、リン酸三カルシウム等の金属燐酸塩、硫化モリブデン等の金属硫化物、炭化珪素等の金属炭化物、カーボンブラック、グラファイト、炭素繊維等の炭素、金、銀等の金属等の無機粒子が挙げられる。(PA1)は、目的に応じて単独で用いても2種以上を使用してもよい。
 (PA1)としては、金属酸化物、金属水酸化物、金属炭酸塩、金属硫酸塩、金属珪酸塩、金属窒化物、金属チタン酸塩、金属ホウ酸塩、金属燐酸塩、金属硫化物、炭素が好ましい。
Examples of the inorganic fine particles (PA1) include silica, diatomaceous earth, alumina, zinc oxide, titania, zirconia, calcium oxide, magnesium oxide, iron oxide, copper oxide, tin oxide, chromium oxide, antimony oxide, yttrium oxide, cerium oxide, Metal oxides such as samarium oxide, lanthanum oxide, tantalum oxide, terbium oxide, europium oxide, neodymium oxide, ferrite, metal hydroxide such as calcium hydroxide, magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, hydrotalcite , Heavy calcium carbonate, light calcium carbonate, metal carbonate such as zinc carbonate, barium carbonate, dawsonite, metal sulfate such as calcium sulfate, barium sulfate, gypsum fiber, calcium silicate (wollastonite, zonotlite), kaolin, clay , Ta , Mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, glass flakes and other metal silicates, aluminum nitride, boron nitride, silicon nitride and other metal nitrides, potassium titanate, Metal titanates such as calcium titanate, magnesium titanate, barium titanate, lead zirconate titanate aluminum borate, metal borates such as zinc borate and aluminum borate, metal phosphates such as tricalcium phosphate, Inorganic particles such as metal sulfides such as molybdenum sulfide, metal carbides such as silicon carbide, carbon such as carbon black, graphite and carbon fiber, metals such as gold and silver, and the like. (PA1) may be used alone or in combination of two or more depending on the purpose.
(PA1) includes metal oxide, metal hydroxide, metal carbonate, metal sulfate, metal silicate, metal nitride, metal titanate, metal borate, metal phosphate, metal sulfide, carbon Is preferred.
 有機微粒子(PA2)としては、例えば、ビニル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド、ポリイミド、シリコーン樹脂、フッ素樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート、セルロース及びこれらの混合物等の公知の有機樹脂微粒子(PA21)が挙げられる。またエステルワックス(カルナバワックス、モンタンワックス、ライスワックス等)、ポリオレフィンワックス(ポリエチレン、ポリプロピレン等)、パラフィンワックス、ケトンワックス、エーテルワックス、長鎖脂肪族アルコール、長鎖脂肪酸及びこれらの混合物等の有機ワックス微粒子(PA22)、長鎖脂肪酸の金属塩微粒子(PA23)等が挙げられる。また一般的に着色剤として使用されるアゾ化合物、フタロシアニン、縮合多環化合物、染色レーキ等の各種有機染料あるいは有機顔料の微粒子を使用することができる。(PA2)は、目的に応じて単独で用いても2種以上を使用してもよい。
 (PA2)としては、ビニル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、シリコーン樹脂、メラミン樹脂、ベンゾグアナミン樹脂が好ましい。
Examples of the organic fine particles (PA2) include vinyl resins, urethane resins, epoxy resins, polyester resins, polyamides, polyimides, silicone resins, fluorine resins, phenol resins, melamine resins, benzoguanamine resins, urea resins, aniline resins, ionomer resins, Well-known organic resin microparticles | fine-particles (PA21), such as a polycarbonate, a cellulose, and these mixtures, are mentioned. Organic waxes such as ester wax (carnauba wax, montan wax, rice wax, etc.), polyolefin wax (polyethylene, polypropylene, etc.), paraffin wax, ketone wax, ether wax, long-chain aliphatic alcohol, long-chain fatty acid and mixtures thereof Fine particle (PA22), metal salt fine particle of long chain fatty acid (PA23) and the like. Moreover, fine particles of various organic dyes or organic pigments such as azo compounds, phthalocyanines, condensed polycyclic compounds and dye lakes generally used as colorants can be used. (PA2) may be used alone or in combination of two or more depending on the purpose.
(PA2) is preferably a vinyl resin, a urethane resin, an epoxy resin, a polyester resin, a fluororesin, a silicone resin, a melamine resin, or a benzoguanamine resin.
 微粒子(P1)はそのまま用いても良く、また重合体の吸着性を持たせるために、例えばシラン、チタネート、アルミネート等のカップリング剤による表面処理(特開平11-130979号公報に記載の方法等)、各種界面活性剤による表面処理(特開平8-54752号公報に記載の方法等)、ワックスやポリマーによるコーティング処理(特開2006-328261号公報に記載の方法等)等により表面改質されていてもよい。 The fine particles (P1) may be used as they are, and surface treatment with a coupling agent such as silane, titanate, aluminate or the like (for example, a method described in JP-A-11-130979) in order to impart the adsorptivity of the polymer. Etc.), surface modification with various surfactants (methods described in JP-A-8-54752), coating treatment with wax or polymer (methods described in JP-A-2006-328261, etc.), etc. May be.
 微粒子(P1)は、(PA1)、(PA21)、(PA23)、並びにこれら2種以上の混合物であることが好ましい。
 さらに好ましくは、金属酸化物、金属炭酸塩、金属珪酸塩及び(PA21)であり、次にさらに好ましくはシリカ、珪藻土、重質炭酸カルシウム、軽質炭酸カルシウム、カオリン、クレー、タルク、マイカ、ベントナイト、活性白土、ウレタン樹脂、ビニル樹脂及びポリエステル樹脂であり、特に好ましくは、シリカ、重質炭酸カルシウム、軽質炭酸カルシウム、珪藻土、タルク、クレー、活性白土、ビニル樹脂であり、最も好ましくは、エチレン性不飽和化合物(E)を重合させてなる重合体である。
The fine particles (P1) are preferably (PA1), (PA21), (PA23), and a mixture of two or more thereof.
More preferred are metal oxides, metal carbonates, metal silicates and (PA21), and still more preferably silica, diatomaceous earth, heavy calcium carbonate, light calcium carbonate, kaolin, clay, talc, mica, bentonite, Activated clay, urethane resin, vinyl resin and polyester resin, particularly preferably silica, heavy calcium carbonate, light calcium carbonate, diatomaceous earth, talc, clay, activated clay, vinyl resin, most preferably ethylenic It is a polymer obtained by polymerizing the saturated compound (E).
 微粒子(P1)の体積平均粒子径(R1)は、ポリマーポリオールを低粘度とする観点及びウレタンフォームの切断伸度の観点から、0.01μm~1.0μmが好ましく、下限はさらに好ましくは0.05μm、特に好ましくは0.1μm、また、上限はさらに好ましくは0.7μm、特に好ましくは0.5μmである。 The volume average particle diameter (R1) of the fine particles (P1) is preferably 0.01 μm to 1.0 μm from the viewpoint of reducing the viscosity of the polymer polyol and the cut elongation of the urethane foam, and the lower limit is more preferably 0.8. 05 μm, particularly preferably 0.1 μm, and the upper limit is more preferably 0.7 μm, particularly preferably 0.5 μm.
 微粒子(P1)の体積平均粒子径(R1)は、所望の体積平均粒子径(R)の重合体微粒子(JR)を得るのに適した粒子径になるように、上記粒子径の範囲で適宜調整することができる。例えば、体積平均粒子径1μmの重合体微粒子を得たい場合には、使用する(P1)の体積平均粒子径(R1)は0.05~0.7μmが好ましく、特に好ましくは0.1~0.5μmである。また、体積平均粒子径0.5μmの重合体微粒子を得たい場合には、使用する(P1)の(R1)は、0.01~0.4μmが好ましく、特に好ましくは0.05~0.3μmである。なお、体積平均粒子径(R)は、重合体微粒子(JR)の体積平均粒子径を意味する。 The volume average particle diameter (R1) of the fine particles (P1) is suitably within the above particle diameter range so as to be a particle diameter suitable for obtaining polymer fine particles (JR) having a desired volume average particle diameter (R). Can be adjusted. For example, when polymer fine particles having a volume average particle diameter of 1 μm are desired, the volume average particle diameter (R1) of (P1) used is preferably 0.05 to 0.7 μm, particularly preferably 0.1 to 0. .5 μm. When it is desired to obtain polymer fine particles having a volume average particle size of 0.5 μm, (R1) of (P1) to be used is preferably 0.01 to 0.4 μm, particularly preferably 0.05 to 0.00. 3 μm. The volume average particle diameter (R) means the volume average particle diameter of the polymer fine particles (JR).
 なお、得られるポリウレタン樹脂の物性の観点から、(P1)の体積平均粒子径(R1)、重合体微粒子(JR)の体積平均粒子径(R)は、下記関係式(1)及び(2)を満たすことが好ましい。下記関係式(1)については、下記関係式(1’)を満たすことがさらに好ましく、下記関係式(1’’)特に好ましい。下記関係式(2)については、下記関係式(2’)を満たすことがさらに好ましく、下記関係式(2’’)特に好ましい。 From the viewpoint of physical properties of the obtained polyurethane resin, the volume average particle diameter (R1) of (P1) and the volume average particle diameter (R) of the polymer fine particles (JR) are expressed by the following relational expressions (1) and (2). It is preferable to satisfy. Regarding the following relational expression (1), it is more preferable to satisfy the following relational expression (1 ′), and the following relational expression (1 ″) is particularly preferable. Regarding the following relational expression (2), it is more preferable to satisfy the following relational expression (2 ′), and the following relational expression (2 ″) is particularly preferable.
(R) ≦ (2.0)×(R1)×√[(V)/(Q)] (1)
(R) ≧ (R1)                  (2)
(R) ≦ (1.8)×(R1)×√[(V)/(Q)] (1’)
(R) ≦ (1.6)×(R1)×√[(V)/(Q)] (1’’)
(R) ≧ (1.1)×(R1)           (2’)
(R) ≧ (1.2)×(R1)           (2’’)
(R) ≦ (2.0) × (R1) × 3 √ [(V) / (Q)] (1)
(R) ≧ (R1) (2)
(R) ≦ (1.8) × (R1) × 3 √ [(V) / (Q)] (1 ')
(R) ≦ (1.6) × (R1) × 3 √ [(V) / (Q)] (1 '')
(R) ≧ (1.1) × (R1) (2 ′)
(R) ≧ (1.2) × (R1) (2 ″)
 式中、(R)は(JR)の体積平均粒子径、R1は(P1)の体積平均粒子径、Vはポリマーポリオールの重合体微粒子含有量(vol%)、Qは、[[(P1)の重量×(P1)の比重]/[ポリマーポリオールの重量×ポリマーポリオールの比重}]を示す。
 なお、体積平均粒子径は、レーザー回折/散乱光式粒度分布測定装置(例えば LA-750:堀場製作所製)で測定できる。
In the formula, (R) is the volume average particle diameter of (JR), R1 is the volume average particle diameter of (P1), V is the polymer fine particle content (vol%) of polymer polyol, Q is [[((P1) Weight × (specific gravity of (P1)] / [weight of polymer polyol × specific gravity of polymer polyol}].
The volume average particle diameter can be measured with a laser diffraction / scattered light particle size distribution analyzer (for example, LA-750, manufactured by Horiba, Ltd.).
 式(2)を満たすことは、(R)よりも小さい(R1)を有する(P1)を使用することを示し、式(2)を満たすためには、この関係を満足する(P1)を選定すればよい。
 式(1)を満たすことは、重合体微粒子(JR)中の微粒子(P1)に由来する部分が特定の比率を有することを示し、すなわち微粒子(P1)の使用量に対して重合工程で使用するエチレン性不飽和化合物(E)の使用量が特定の関係を有することを示す。この関係を満たすことで、粒子径が十分小さいポリマーポリオールが得られやすく、これを使用したポリウレタン樹脂は、スコーチが生じる等の問題が無く、切断伸度等の機械強度に優れる。
Satisfying equation (2) indicates that (P1) having (R1) smaller than (R) is used, and in order to satisfy equation (2), (P1) satisfying this relationship is selected. do it.
Satisfying the formula (1) indicates that the part derived from the fine particles (P1) in the polymer fine particles (JR) has a specific ratio, that is, used in the polymerization step with respect to the amount of the fine particles (P1) used. It shows that the amount of the ethylenically unsaturated compound (E) used has a specific relationship. By satisfying this relationship, it is easy to obtain a polymer polyol having a sufficiently small particle size, and a polyurethane resin using the polymer polyol has no problem such as scorching and is excellent in mechanical strength such as cutting elongation.
 式(1)を満足するためには、微粒子(P1)の使用量とエチレン性不飽和化合物(E)の使用量との比率を調整すればよい。すなわち、式(1)を満足しない場合、微粒子(P1)の使用量を増やすか、エチレン性不飽和化合物(E)の使用量を減らすことで調整できる。 In order to satisfy the formula (1), the ratio between the amount of the fine particles (P1) used and the amount of the ethylenically unsaturated compound (E) used may be adjusted. That is, when the formula (1) is not satisfied, it can be adjusted by increasing the amount of the fine particles (P1) used or decreasing the amount of the ethylenically unsaturated compound (E).
 上記において、微粒子含有量(vol%){なお、V1は(B1)の微粒子(P1)含有量(vol%)を、Vnは(B(n))の重合体微粒子含有量(vol%)を、(V)はポリマーポリオールの重合体微粒子(JR)含有量(vol%)を示す。}は、以下の方法により求める。
<微粒子含有量(vol%)測定方法>
 遠心分離用50ml遠沈管に、ポリマーポリオール中間体(B1、B(n))又はポリマーポリオール約5gを精秤し、ポリマーポリオール重量(W7)とする。メタノール50gを加えて希釈する。冷却遠心分離機[型番:H-9R、コクサン(株)製]を用いて、18,000rpm×60分間、20℃にて遠心分離する。上澄み液をガラス製ピペットを用いて除去する。残留沈降物にメタノール50gを加えて希釈し、上記と同様に遠心分離して上澄み液を除去する操作を、さらに3回繰り返す。遠沈管内の残留沈降物を、2,666~3,999Pa(20~30torr)で60℃×60分間減圧乾燥し、乾燥した沈降物を重量測定し、該重量を(W8)とする。次式で算出した値を、微粒子含有量(vol%)とする。
 
 微粒子含有量(vol%)=(W8)×100/(W7)/(粒子の比重)×(ポリマーポリオール中間体(B1、B(n))又はポリマーポリオールの比重)
In the above, fine particle content (vol%) {where V1 is the fine particle (P1) content (vol%) of (B1), and Vn is the polymer fine particle content (vol%) of (B (n)). , (V) represents the polymer fine particle (JR) content (vol%) of the polymer polyol. } Is obtained by the following method.
<Method for measuring fine particle content (vol%)>
In a 50 ml centrifuge tube for centrifugation, about 5 g of the polymer polyol intermediate (B1, B (n)) or polymer polyol is precisely weighed to obtain the polymer polyol weight (W7). Add 50 g of methanol to dilute. Using a cooling centrifuge [model number: H-9R, manufactured by Kokusan Co., Ltd.], centrifuge at 18,000 rpm for 60 minutes at 20 ° C. The supernatant is removed using a glass pipette. The operation of adding 50 g of methanol to the residual sediment, diluting, and centrifuging in the same manner as above to remove the supernatant is repeated three more times. The residual sediment in the centrifuge tube is dried under reduced pressure at 2,666-3,999 Pa (20-30 torr) at 60 ° C. for 60 minutes, and the dried sediment is weighed to obtain (W8). The value calculated by the following equation is defined as the fine particle content (vol%).

Fine particle content (vol%) = (W8) × 100 / (W7) / (particle specific gravity) × (polymer polyol intermediate (B1, B (n)) or polymer polyol specific gravity)
 粒子の比重は、化学工学便覧[改定3版](基礎編IIp.3~29)等、又はJIS-Z8807の方法により求めることができる。粒子の比重については、多孔質粒子や球状粒子のように内部に密閉された空隙が存在しない場合は、真比重を用いる。また中空粒子のように内部に密閉された空隙が存在する場合は、嵩比重を用いる。 The specific gravity of the particles can be determined by the Chemical Engineering Handbook [Revised 3rd Edition] (Basics II, p. 3 to 29) or the like, or by the method of JIS-Z8807. As for the specific gravity of the particles, the true specific gravity is used when there are no voids sealed inside such as porous particles or spherical particles. Further, when there is a sealed void such as a hollow particle, the bulk specific gravity is used.
 ポリマーポリオール中間体(B1、B(n))又はポリマーポリオールの比重は、JIS-B7525「比重浮ひょう」の方法により求めることができる。 The specific gravity of the polymer polyol intermediate (B1, B (n)) or polymer polyol can be determined by the method of JIS-B7525 “Specific gravity floating”.
 微粒子(P1)をポリオール(PL)に分散させる場合には、分散装置を用いることができる。
 分散装置は、一般に乳化機、分散機であれば特に限定されず、例えば、ホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー(特殊機化工業社製)等のバッチ式乳化機、エバラマイルダー(荏原製作所社製)、TKフィルミックス、TKパイプラインホモミキサー(特殊機化工業社製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機社製)、キャピトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)等の連続式乳化機、マイクロフルイダイザー(みずほ工業社製)、ナノマイザー(ナノマイザー社製)、APVガウリン(ガウリン社製)等の高圧乳化機、膜乳化機(冷化工業社製)等の膜乳化機、バイブロミキサー(冷化工業社製)等の振動式乳化機、超音波ホモジナイザー(ブランソン社製)等の超音波乳化機等が挙げられる。このうち粒子径の均一化の観点で好ましいものは、APVガウリン、ホモジナイザー、TKオートホモミキサー、エバラマイルダー、TKフィルミックス、TKパイプラインホモミキサーである。
When the fine particles (P1) are dispersed in the polyol (PL), a dispersing device can be used.
Generally, the dispersion apparatus is not particularly limited as long as it is an emulsifier or a disperser. For example, a batch type such as a homogenizer (manufactured by IKA), polytron (manufactured by Kinematica), TK auto homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) or the like. Emulsifier, Ebara Milder (manufactured by Ebara Manufacturing Co., Ltd.), TK Fillmix, TK Pipeline Homomixer (manufactured by Koki Kogyo Kogyo Co., Ltd.), colloid mill (manufactured by Shinko Pantech Co., Ltd.), thrasher, trigonal wet milling machine (Mitsui Continuous emulsifiers such as Miike Kako Co., Ltd., Captron (Eurotech Co., Ltd.), Fine Flow Mill (Pacific Kiko Co., Ltd.), Microfluidizer (Mizuho Kogyo Co., Ltd.), Nanomizer (Nanomizer Co., Ltd.), APV Gaurin High-pressure emulsifiers (made by Gaurin), membrane emulsifiers such as membrane emulsifiers (made by Chilling Industries Co., Ltd.), Vibro mixer (Chilling Industries Co., Ltd.) ) Vibrating emulsifier such as, ultrasonic emulsifier such as an ultrasonic homogenizer (manufactured by Branson Co., Ltd.). Among these, APV Gaurin, homogenizer, TK auto homomixer, Ebara milder, TK fill mix, and TK pipeline homomixer are preferable from the viewpoint of uniform particle size.
 微粒子(P1)は、希釈溶媒(f)や、非水性有機溶剤(塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、四塩化炭素、トリクロロエチレン、パークロロエチレンなどのハロゲン化炭化水素;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテートなどのエステル又はエステルエーテル;ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテルなどのエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノンなどのケトン;2-エチルヘキシルアルコール、ベンジルアルコールなどのアルコール;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド;ジメチルスルホキシドなどのスルホキシド、N-メチルピロリドンなどの複素環式化合物)及び水性溶媒(水、メタノール、エタノール、イソプロパノール、ブタノールなど)にあらかじめ分散させておいてもよい。
 また、微粒子(P1)は、あらかじめポリオール(PL)に分散されていることが好ましい。
 すなわち、工程(1)においては、(E)を重合させる際に(PL)中で(P1)及び(c)の存在下で行えばよく、あらかじめ(PL)中に(P1)を分散させてから重合反応器に仕込んでもよいし、ポリオール(PL)と微粒子(P1)(又は(P1)を希釈溶媒(f)にあらかじめ分散した分散液)を各々別々に重合反応器に仕込んでもよい。
Fine particles (P1) are diluted with a diluting solvent (f) or a non-aqueous organic solvent (methyl chloride, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene, perchloroethylene, etc .; ethyl acetate Ester, ester ether such as butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate; ether such as diethyl ether, tetrahydrofuran, dioxane, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, methyl isobutyl ketone, Ketones such as di-n-butyl ketone and cyclohexanone; alcohols such as 2-ethylhexyl alcohol and benzyl alcohol; dimethylformamide and dimethyl It may be dispersed in advance in an amide such as acetoamide; a sulfoxide such as dimethyl sulfoxide; a heterocyclic compound such as N-methylpyrrolidone) and an aqueous solvent (water, methanol, ethanol, isopropanol, butanol, etc.).
The fine particles (P1) are preferably dispersed in the polyol (PL) in advance.
That is, in the step (1), when (E) is polymerized, it may be carried out in (PL) in the presence of (P1) and (c), and (P1) is dispersed in (PL) in advance. To the polymerization reactor, or the polyol (PL) and the fine particles (P1) (or a dispersion in which (P1) is previously dispersed in the diluting solvent (f)) may be separately charged into the polymerization reactor.
 微粒子(P1)をあらかじめポリオール(PL)に分散する場合、ポリウレタン樹脂の物性及びポリマーの粒子径の観点から、(P1)及び(PL)の重量を基準として、微粒子含有量(重量%)が7~30が好ましく、さらに好ましくは10~25、特に好ましくは12~20である。 When the fine particles (P1) are dispersed in the polyol (PL) in advance, the fine particle content (% by weight) is 7 on the basis of the weight of (P1) and (PL) from the viewpoint of the physical properties of the polyurethane resin and the particle size of the polymer. Is preferably 30, more preferably 10 to 25, and particularly preferably 12 to 20.
 微粒子(P1)を分散させる際、ポリオール(PL)は液体であることが好ましい。ポリオール(PL)が常温で固体である場合には、融点以上の高温下で液体の状態で分散させたり、(PL)の溶剤溶液を用いてもよい。
 (P1)を分散させる際のポリオール(PL)もしくはその溶剤溶液の粘度は、粒子径均一性の観点から通常10~50,000mPa・s(B型粘度計で測定)、好ましくは100~10,000mPa・sである。
 分散時の温度としては、通常、0~150℃(加圧下)、好ましくは5~98℃である。分散体の粘度が高い場合は、高温にしてポリオール(PL)もしくはその溶剤溶液の粘度を上記の好ましい範囲に調整し、分散を行うのが好ましい。
 ポリオール(PL)の溶剤溶液に用いる溶剤は、重合時に使用する希釈溶媒(f)と同様のものが使用できる。
When the fine particles (P1) are dispersed, the polyol (PL) is preferably a liquid. When the polyol (PL) is solid at room temperature, it may be dispersed in a liquid state at a high temperature above the melting point, or a solvent solution of (PL) may be used.
The viscosity of the polyol (PL) or its solvent solution when dispersing (P1) is usually 10 to 50,000 mPa · s (measured with a B-type viscometer), preferably 100 to 10, from the viewpoint of particle size uniformity. 000 mPa · s.
The temperature during dispersion is usually 0 to 150 ° C. (under pressure), preferably 5 to 98 ° C. When the viscosity of the dispersion is high, it is preferable to perform dispersion by adjusting the viscosity of the polyol (PL) or its solvent solution to the above-mentioned preferable range at a high temperature.
As the solvent used in the solvent solution of the polyol (PL), the same solvent as the diluting solvent (f) used at the time of polymerization can be used.
 微粒子(P1)をポリオール(PL)に分散させる場合には、公知(特開2003-12706号公報等)の乳化剤やポリマーポリオールの製造の際に使用される公知(特許第2006-241198号)の分散剤(d)を使用することもできる。 When the fine particles (P1) are dispersed in the polyol (PL), a known (Japanese Patent Laid-Open No. 2003-12706, etc.) emulsifier or a known (patent No. 2006-241198) used in the production of a polymer polyol is used. A dispersant (d) can also be used.
 また、(P1)はポリオール(PL)中で、ラジカル重合開始剤(c)及び必要により分散剤(d)の存在下で、エチレン性不飽和化合物(E)を重合させることによっても得ることができる。重合方法は後述する公知の重合方法を使用することができる。 (P1) can also be obtained by polymerizing the ethylenically unsaturated compound (E) in the polyol (PL) in the presence of the radical polymerization initiator (c) and, if necessary, the dispersant (d). it can. As the polymerization method, a known polymerization method described later can be used.
 (P1)としては、ポリマーポリオールの貯蔵安定性の観点から、ポリオール(PL)中で、ラジカル重合開始剤(c)及び必要により分散剤(d)の存在下で、エチレン性不飽和化合物(E)を重合させることによっても得たものが好ましい。さらに、製造したポリウレタン樹脂のスコーチ防止の観点から、エチレン性不飽和化合物(E)はACN及び/又はStを用いることが好ましい。 (P1) is an ethylenically unsaturated compound (E) in the presence of a radical polymerization initiator (c) and, if necessary, a dispersant (d) in the polyol (PL) from the viewpoint of the storage stability of the polymer polyol. ) Is preferably obtained by polymerizing. Furthermore, it is preferable to use ACN and / or St as the ethylenically unsaturated compound (E) from the viewpoint of preventing scorch of the produced polyurethane resin.
 本発明のポリマーポリオール(I)は、必要により芳香環を有する活性水素含有化合物(h)を含有してもよく、上記の製造方法において、工程(1)及び/又は工程(2)で、この(h)の存在下で重合してもよい。芳香環を有する活性水素含有化合物(h)のMnは、ポリマーポリオール中の重合体微粒子の粒子径の観点から、150~2,000であり、好ましくは300~1,700、さらに好ましくは500~1,600である。Mnが150未満または、2,000を超えると重合体微粒子の体積平均粒子径が大きくなる。 The polymer polyol (I) of the present invention may contain an active hydrogen-containing compound (h) having an aromatic ring if necessary. In the production method described above, in step (1) and / or step (2), Polymerization may be carried out in the presence of (h). The Mn of the active hydrogen-containing compound (h) having an aromatic ring is 150 to 2,000, preferably 300 to 1,700, more preferably 500 to 500 from the viewpoint of the particle size of the polymer fine particles in the polymer polyol. 1,600. When Mn is less than 150 or exceeds 2,000, the volume average particle diameter of the polymer fine particles becomes large.
 ここで芳香環とは、炭素のみが環を形成した芳香環(ベンゼン環、ナフタレン環等)、炭素と窒素が環を形成した芳香環(ピリジン環等)等が含まれる。 Here, the aromatic ring includes an aromatic ring in which only carbon forms a ring (benzene ring, naphthalene ring, etc.), an aromatic ring in which carbon and nitrogen form a ring (pyridine ring, etc.), and the like.
 (h)中の芳香環の含有量(重量%)は、重合体微粒子の体積平均粒子径の観点から、4~90が好ましく、好ましくは8~70、さらに好ましくは10~50である。なお、芳香環の含有量とは、環構造を形成する元素の合計原子量を分子量で割ったものを意味する。 The content (% by weight) of the aromatic ring in (h) is preferably 4 to 90, preferably 8 to 70, more preferably 10 to 50, from the viewpoint of the volume average particle diameter of the polymer fine particles. The content of the aromatic ring means a value obtained by dividing the total atomic weight of the elements forming the ring structure by the molecular weight.
 (h)の活性水素は、重合体微粒子の体積平均粒子径の観点から、(h)の1分子当たり1~3個が好ましく、さらに好ましくは1~2個である。
 また、(h)の活性水素当量(すなわち、(h)の活性水素当たりの分子量)は、重合体微粒子の体積平均粒子径の観点から、100~2,000が好ましく、さらに好ましくは150~1,700、次にさらに好ましくは250~1,600である。
The active hydrogen in (h) is preferably 1 to 3 and more preferably 1 to 2 per molecule of (h) from the viewpoint of the volume average particle diameter of the polymer fine particles.
The active hydrogen equivalent of (h) (that is, the molecular weight per active hydrogen of (h)) is preferably from 100 to 2,000, more preferably from 150 to 1, from the viewpoint of the volume average particle diameter of the polymer fine particles. 700, and more preferably 250 to 1,600.
 (h)としては、芳香環含有エーテル(h1)、芳香環含有エステル(h2)、芳香環含有ウレタン(h3)等が含まれる。
 (h1)としては、ビスフェノール等のフェノールにアルキレンオキサイドを付加した化合物が挙げられる。フェノールとしては、1価のフェノール(クレゾール、ナフトール、モノスチレン化フェノール等)、2価のフェノール(カテコール、レゾシノール、ビスフェノール等)、3価以上のフェノール(ピロガロール等)等が挙げられる。
 (h2)としては、フタル酸等の芳香環含有カルボン酸にアルキレンオキサイドを付加した化合物が挙げられる。芳香環含有カルボン酸としては、1価のカルボン酸(安息香酸、サリチル酸等)、2価のカルボン酸(フタル酸、テレフタル酸等)、3価以上のカルボン酸(メリト酸等)等が挙げられる。
 (h3)としては、TDIなどの芳香族系イソシアネートとポリオールを重縮合した化合物が挙げられる。芳香族イソシアネートとしては、1価のイソシアネート(フェニルイソシアネート等)、2価のイソシアネート(トリレンジイソシアネート、4,4‘-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等)、3価以上のイソシアネート(トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニール)チオフォスフェート、ポリメリックMDI等)等が挙げられる。
 これらの中で、(h)の粘度の観点から、(h1)が好ましい。
(H) includes aromatic ring-containing ether (h1), aromatic ring-containing ester (h2), aromatic ring-containing urethane (h3), and the like.
Examples of (h1) include compounds obtained by adding alkylene oxide to phenol such as bisphenol. Examples of phenol include monovalent phenols (cresol, naphthol, monostyrenated phenol, etc.), divalent phenols (catechol, resorcinol, bisphenol, etc.), trivalent or higher phenols (pyrogallol, etc.), and the like.
Examples of (h2) include compounds obtained by adding alkylene oxide to an aromatic ring-containing carboxylic acid such as phthalic acid. Examples of the aromatic ring-containing carboxylic acid include monovalent carboxylic acids (benzoic acid, salicylic acid, etc.), divalent carboxylic acids (phthalic acid, terephthalic acid, etc.), and trivalent or higher carboxylic acids (mellitic acid, etc.). .
Examples of (h3) include compounds obtained by polycondensation of an aromatic isocyanate such as TDI and a polyol. As aromatic isocyanate, monovalent isocyanate (phenyl isocyanate, etc.), divalent isocyanate (tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, etc.), trivalent or higher isocyanate (triphenylmethane triisocyanate) , Tris (isocyanate phenyl) thiophosphate, polymeric MDI, etc.).
Among these, (h1) is preferable from the viewpoint of the viscosity of (h).
 また、(h)は、1個以上の活性水素を有し、水酸基当量及びSP値が式(3)及び式(4)を満たす、活性水素含有化合物(i)のアルキレンオキサイド付加物(h-1)であることが好ましい。
90≦X≦360                    (3)
-0.012×X+14.0≦S≦-0.012×X+16.0 (4)
 式中、Xは活性水素含有化合物(i)の水酸基当量、Sは活性水素含有化合物(i)のSP値を表す。
In addition, (h) is an alkylene oxide adduct (h- 1) is preferred.
90 ≦ X ≦ 360 (3)
−0.012 × X + 14.0 ≦ S ≦ −0.012 × X + 16.0 (4)
In the formula, X represents the hydroxyl equivalent of the active hydrogen-containing compound (i), and S represents the SP value of the active hydrogen-containing compound (i).
95≦X≦340                    (3’)
-0.012×X+14.1≦S≦-0.012×X+15.8 (4’)
110≦X≦310                   (3’’)
-0.012×X+14.4≦S≦-0.012×X+15.7 (4’’)
 活性水素含有化合物(i)の水酸基当量(X)は、(i)の粘度及びポリマーポリオール中の重合体微粒子の粒子径の観点から式(3)を満たすことが好ましく、さらに好ましくは式(3’)を満たすことであり、特に好ましくは式(3’’)を満たすことである。
 また、ポリマーポリオール中の重合体微粒子の粒子径及びポリウレタン樹脂の機械物性の観点から、活性水素含有化合物(i)のSP値と水酸基当量の関係が式(4)を満たすことが好ましく、さらに好ましくは式(4’)を満たすことであり、特に好ましくは式(4’’)を満たすことである。
95 ≦ X ≦ 340 (3 ′)
−0.012 × X + 14.1 ≦ S ≦ −0.012 × X + 15.8 (4 ′)
110 ≦ X ≦ 310 (3 ″)
−0.012 × X + 14.4 ≦ S ≦ −0.012 × X + 15.7 (4 ″)
The hydroxyl equivalent (X) of the active hydrogen-containing compound (i) preferably satisfies the formula (3) from the viewpoint of the viscosity of (i) and the particle size of the polymer fine particles in the polymer polyol, and more preferably the formula (3) ') Is satisfied, and particularly preferably, the expression (3'') is satisfied.
Further, from the viewpoint of the particle size of the polymer fine particles in the polymer polyol and the mechanical properties of the polyurethane resin, the relationship between the SP value of the active hydrogen-containing compound (i) and the hydroxyl group equivalent preferably satisfies the formula (4). Satisfies the formula (4 ′), and particularly preferably satisfies the formula (4 ″).
 水酸基当量(X)は、活性水素含有化合物(i)が有する水酸基の個数と、(i)の分子量により変化する値であり、上記式(3)を満たすように、特定の水酸基の個数と分子量を有する活性水素含有化合物(i)を選択すればよい。
 XとSが上記式(4)を満足するためには、(i)が有する水酸基以外のSP値が大きくなる構造又は官能基の数と、SP値が小さくなる構造又は官能基の数を調整すればよい。例えば、Sが(4)式の下限よりも小さい場合には、SP値が10よりも大きな構造又は官能基の数を増やす、あるいは、SP値が10よりも小さな構造又は官能基の数を減らすことで(4)式を満たすように調整できる。また、Sが(4)式の上限よりも大きくなる場合には、SP値が12よりも大きな構造又は官能基の数を減らす、あるいは、SP値が12よりも小さな構造又は官能基の数を増やすことで調整できる。
The hydroxyl equivalent (X) is a value that varies depending on the number of hydroxyl groups of the active hydrogen-containing compound (i) and the molecular weight of (i). The active hydrogen-containing compound (i) having the following may be selected.
In order for X and S to satisfy the above formula (4), the number of structures or functional groups in which the SP value other than the hydroxyl group of (i) is large and the number of structures or functional groups in which the SP value is small are adjusted. do it. For example, when S is smaller than the lower limit of the formula (4), the number of structures or functional groups having an SP value larger than 10 is increased, or the number of structures or functional groups having an SP value smaller than 10 is decreased. Therefore, it can be adjusted to satisfy the equation (4). When S is larger than the upper limit of the formula (4), the number of structures or functional groups having an SP value larger than 12 is reduced, or the number of structures or functional groups having an SP value smaller than 12 is decreased. It can be adjusted by increasing.
 水酸基当量(X)が式(3)を満たすと、(i)が水酸基、すなわち、アルキレンオキサイドが付加できる官能基を適量含有することを意味し、この水酸基にアルキレンオキサイドが付加された構造を有する(h-1)が適度なポリオール(PL)との親和性を持つことを意味する。
 また、水酸基当量(X)と(i)のSP値(S)が式(4)を満たすと、(i)が、有する水酸基(すなわち、アルキレンオキサイドが付加できる官能基)の量に応じて、適度なSP値を有することを意味する。すなわち、この関係を満たす(i)にアルキレンオキサイドが付加された構造を有する(h-1)がポリオール(PL)との親和性に応じて、適度な重合体微粒子(JR)への親和性を有することを意味する。
 よって、これら式(3)及び(4)を満たす(i)にアルキレンオキサイドが付加された構造を有する(h-1)は、適切なポリオール(PL)との親和性と適切な重合体微粒子(JR)との親和性を有し、そのバランスが適切であり、極めて良好な重合体微粒子の分散性を有することを意味する。
When the hydroxyl equivalent (X) satisfies the formula (3), it means that (i) contains an appropriate amount of a hydroxyl group, that is, a functional group to which an alkylene oxide can be added, and has a structure in which an alkylene oxide is added to this hydroxyl group. This means that (h-1) has an appropriate affinity for polyol (PL).
Further, when the SP value (S) of the hydroxyl group equivalent (X) and (i) satisfies the formula (4), depending on the amount of the hydroxyl group (i.e., the functional group to which alkylene oxide can be added) that (i) has, It means having an appropriate SP value. That is, (h) having a structure in which an alkylene oxide is added to (i) satisfying this relationship has an appropriate affinity for polymer fine particles (JR) according to the affinity with polyol (PL). It means having.
Therefore, (h-1) having a structure in which alkylene oxide is added to (i) satisfying these formulas (3) and (4) has an affinity for an appropriate polyol (PL) and an appropriate polymer fine particle ( JR) means that it has an appropriate balance and has a very good dispersibility of polymer fine particles.
 (i)の活性水素は、粒子径の観点から、(i)の1分子当たり1~3個が好ましく、さらに好ましくは1~2個である。
 また、(i)の活性水素当量(すなわち、(i)の活性水素当たりの分子量)は、粒子径の観点から、60~500が好ましく、さらに好ましくは80~450、次にさらに好ましくは100~400である。
From the viewpoint of particle diameter, the active hydrogen of (i) is preferably 1 to 3 per molecule of (i), more preferably 1 to 2.
In addition, the active hydrogen equivalent of (i) (that is, the molecular weight per active hydrogen of (i)) is preferably 60 to 500, more preferably 80 to 450, and still more preferably 100 to 500, from the viewpoint of particle diameter. 400.
 (i)としては、ビスフェノール(i1)、スチレン化フェノール(i2)等が含まれ上述の(h1)のところで記載した、フェノールと同様のものが挙げられる。
 (i1)としては、ビスフェノール等、(i2)としては、モノスチレン化フェノール及びジスチレン化フェノール等が挙げられる。
 これらの中で、(h)の粘度及びポリマーポリオール中の重合体微粒子の粒子径の観点から、(i1)が好ましい。
Examples of (i) include bisphenol (i1), styrenated phenol (i2), and the like, and the same as phenol described above in (h1).
Examples of (i1) include bisphenol, and examples of (i2) include monostyrenated phenol and distyrenated phenol.
Among these, (i1) is preferable from the viewpoint of the viscosity of (h) and the particle diameter of the polymer fine particles in the polymer polyol.
 アルキレンオキサイドは、前述したものと同様のものであり、好ましいものも同様である。 Alkylene oxide is the same as described above, and preferred ones are also the same.
 1個以上の活性水素を有し、水酸基当量及びSP値が式(3)及び式(4)を満たす、活性水素含有化合物(i)のアルキレンオキサイド付加物(h-1)としては、具体的には、(h-1-1)ビスフェノールアルキレンオキサイド付加物、(h-1-2)スチレン化フェノールアルキレンオキサイド付加物等が挙げられる。
 (h-1-1)としては、ビスフェノールにアルキレンオキサイドを付加した化合物等、(h-1-2)としては、モノスチレン化フェノールにアルキレンオキサイドを付加した化合物等が挙げられる。
 これらの中で、(h)の粘度及びポリマーポリオール中の重合体微粒子の粒子径の観点から、(h-1-1)が好ましい。
The alkylene oxide adduct (h-1) of the active hydrogen-containing compound (i) having at least one active hydrogen and having a hydroxyl group equivalent and an SP value satisfying the formulas (3) and (4) is specifically (H-1-1) bisphenol alkylene oxide adduct, (h-1-2) styrenated phenol alkylene oxide adduct, and the like.
Examples of (h-1-1) include compounds obtained by adding alkylene oxide to bisphenol, and examples of (h-1-2) include compounds obtained by adding alkylene oxide to monostyrenated phenol.
Among these, (h-1-1) is preferable from the viewpoint of the viscosity of (h) and the particle diameter of the polymer fine particles in the polymer polyol.
 (h)の含有量(重量%)は、重合体微粒子(JR)の重量を基準として、重合体微粒子の体積平均粒子径及びポリウレタン樹脂の機械物性の観点から、1~20が好ましく、さらに好ましくは1~15、次にさらに好ましくは1~10、特にさらに好ましくは2~10、最も好ましくは3~10である。 The content (% by weight) of (h) is preferably from 1 to 20, more preferably from the viewpoint of the volume average particle diameter of the polymer fine particles and the mechanical properties of the polyurethane resin, based on the weight of the polymer fine particles (JR). Is 1 to 15, then more preferably 1 to 10, particularly preferably 2 to 10, and most preferably 3 to 10.
 分散剤(d)中の(h)の使用量(重量%)は、ポリマーポリオール中の重合体微粒子の粒子径の観点から5~100が好ましく、さらに好ましくは10~100、特に好ましくは20~100である。 The use amount (% by weight) of (h) in the dispersant (d) is preferably 5 to 100, more preferably 10 to 100, and particularly preferably 20 to 20 from the viewpoint of the particle size of the polymer fine particles in the polymer polyol. 100.
 重合により得られたポリマーポリオールを必要により、脱モノマー・脱溶剤処理を行ってもよい。脱モノマー・脱溶剤処理としては、公知(特開2004-002800号公報等)の方法が適用でき、ポリウレタン樹脂の白色度の観点から、減圧下で残存モノマー(すなわちエチレン性不飽和化合物)及び/又は希釈溶媒(f)をストリッピングする方法、又は水を連続的に添加しながら減圧下で蒸留する方法(特公昭62-36052号公報等)が好ましい。 If necessary, the polymer polyol obtained by polymerization may be subjected to monomer removal / solvent removal treatment. As the demonomer / desolvent treatment, a known method (Japanese Patent Application Laid-Open No. 2004-002800) can be applied. From the viewpoint of the whiteness of the polyurethane resin, the residual monomer (ie, ethylenically unsaturated compound) and / or Alternatively, a method of stripping the diluting solvent (f) or a method of distilling under reduced pressure while continuously adding water (JP-B-62-36052, etc.) is preferable.
 本発明のポリマーポリオール(I)には、必要により溶剤及び難燃剤を添加してもよい。溶剤としては、前述した希釈溶媒(f)と同様の溶剤が使用でき、ポリマーポリオールの粘度等の観点から、不飽和脂肪族炭化水素及び芳香族炭化水素が好ましい。
 難燃剤としては、種々の難燃剤(特開2005-162791号公報等に記載のものや、リン酸エステル、ハロゲン化リン酸エステル、メラミン、ホスファゼン等)が使用でき、ポリマーポリオールの粘度の観点から、低粘度(100mPa・s以下/25℃)の難燃剤が好ましく、さらに好ましいのはハロゲン化リン酸エステルの内、トリス(クロロエチル)ホスフェート及びトリス(クロロプロピル)ホスフェートである。
 ポリマーポリオール(I)中の溶剤及び難燃剤の使用量(重量%)は、重合体微粒子(JR)及びポリオール(PL)の合計重量に基づいて、それぞれ10以下が好ましく、ポリマーポリオールの粘度、ポリウレタン樹脂の難燃性、及び得られるポリウレタン樹脂の機械物性の観点から、さらに好ましくはそれぞれ0.01~5、さらに好ましくは0.05~3である。
If necessary, a solvent and a flame retardant may be added to the polymer polyol (I) of the present invention. As the solvent, the same solvent as the diluting solvent (f) described above can be used, and unsaturated aliphatic hydrocarbons and aromatic hydrocarbons are preferable from the viewpoint of the viscosity of the polymer polyol.
As the flame retardant, various flame retardants (such as those described in JP-A No. 2005-162791, etc., phosphate esters, halogenated phosphate esters, melamine, phosphazenes, etc.) can be used, from the viewpoint of the viscosity of the polymer polyol. A flame retardant having a low viscosity (100 mPa · s or less / 25 ° C.) is preferable, and among the halogenated phosphate esters, tris (chloroethyl) phosphate and tris (chloropropyl) phosphate are more preferable.
The amount (% by weight) of the solvent and the flame retardant used in the polymer polyol (I) is preferably 10 or less based on the total weight of the polymer fine particles (JR) and the polyol (PL). From the viewpoint of the flame retardancy of the resin and the mechanical properties of the resulting polyurethane resin, it is more preferably 0.01 to 5, more preferably 0.05 to 3, respectively.
 本発明のポリマーポリオール(I)は、ポリウレタン樹脂の(ポリウレタンエラストマー、ポリウレタンフォーム等)製造に使用するポリオールとして用いることができる。すなわち、(I)又は(I)を含むポリオール成分(Po)及びポリイソシアネートからなるイソシアネート成分(Is)[以下において(Po)と(Is)からなる組成物をポリウレタン樹脂形成性組成物と称することがある。]を、公知の方法{特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等に記載の方法}等で反応させてポリウレタン樹脂を得ることができる。 The polymer polyol (I) of the present invention can be used as a polyol used for producing a polyurethane resin (polyurethane elastomer, polyurethane foam, etc.). That is, (I) or an isocyanate component (Is) comprising a polyol component (Po) containing (I) and a polyisocyanate [hereinafter, a composition comprising (Po) and (Is) is referred to as a polyurethane resin-forming composition. There is. ] Can be reacted by a known method {method described in JP-A-2004-263192 (corresponding US Patent Application: US2003 / 4217 A1)}, etc. to obtain a polyurethane resin.
 ポリウレタン樹脂を製造するのに用いられるポリオール成分(Po)としては、本発明のポリマーポリオール(I)以外に、ポリウレタン樹脂を製造する際の原料として、本発明の効果を阻害しない範囲で必要によりポリオール及び(I)以外の公知のポリマーポリオールを使用してもよい。
 ポリオールとしては、前述したポリオール(PL)等が使用でき、公知のポリマーポリオールとしては、特開2005-162791号公報、特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等記載のポリマーポリオールが使用できる。
 ポリオールの使用量(重量%)は、得られるポリウレタン樹脂の機械物性の観点から適宜調整することができるが、ポリマーポリオール(I)の重量に基づいて、1~1,000が好ましい。
 ポリマーポリオール(I)以外の公知のポリマーポリオールの使用量(重量%)は、(I)の重量に基づいて、ポリウレタン樹脂の機械物性及びポリウレタン樹脂の機械物性、ストレーナや製造装置の吐出口の目詰まり低減の観点から、1~100が好ましい。
As a polyol component (Po) used for producing a polyurethane resin, in addition to the polymer polyol (I) of the present invention, as a raw material for producing a polyurethane resin, a polyol is necessary as long as the effects of the present invention are not impaired. And known polymer polyols other than (I) may be used.
As the polyol, the above-described polyol (PL) or the like can be used, and as the known polymer polyol, JP 2005-162791 A, JP 2004-263192 A (corresponding US patent application: US 2003/4217 A1) and the like are described. These polymer polyols can be used.
The amount (% by weight) of the polyol used can be appropriately adjusted from the viewpoint of the mechanical properties of the resulting polyurethane resin, but is preferably 1 to 1,000 based on the weight of the polymer polyol (I).
Based on the weight of (I), the used amount (% by weight) of a known polymer polyol other than the polymer polyol (I) is based on the mechanical properties of the polyurethane resin, the mechanical properties of the polyurethane resin, the eyes of the discharge ports of the strainer and the manufacturing apparatus. From the viewpoint of reducing clogging, 1 to 100 is preferable.
 ポリオール成分(Po)中のポリマーポリオール(I)の使用量(重量%)は、得られるポリウレタン樹脂の機械物性及びポリオール成分の粘度の観点から、10~100が好ましく、さらに好ましくは15~90、特に好ましくは20~80、最も好ましくは25~70である。 The amount (% by weight) of the polymer polyol (I) used in the polyol component (Po) is preferably 10 to 100, more preferably 15 to 90, from the viewpoint of the mechanical properties of the resulting polyurethane resin and the viscosity of the polyol component. Particularly preferred is 20 to 80, and most preferred is 25 to 70.
 イソシアネート成分(Is)としては、従来からポリウレタン樹脂の製造に使用されている公知のポリイソシアネート{特開2005-162791号公報、特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等に記載のもの}等が使用できる。
 これらのうちでポリウレタン樹脂の機械物性の観点から、2,4-及び2,6-トリレンジイソシアネート(TDI)、これらの異性体の混合物、粗製TDI(TDIを精製した際の残留物);4,4'-及び2,4'-ジフェニルメタンジイソシアネート(MDI)、これらの異性体の混合物、粗製MDI(MDIを精製した際の残留物);及びこれらのポリイソシアネートより誘導される、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基又はイソシアヌレート基等を含有する変性ポリイソシアネートが好ましい。
As the isocyanate component (Is), known polyisocyanates conventionally used in the production of polyurethane resins {JP 2005-162791 A, JP 2004-263192 A (corresponding US patent application: US 2003/4217 A1)] Etc.} can be used.
Among these, from the viewpoint of mechanical properties of the polyurethane resin, 2,4- and 2,6-tolylene diisocyanate (TDI), a mixture of these isomers, crude TDI (residue when TDI is purified); 4 , 4'- and 2,4'-diphenylmethane diisocyanate (MDI), mixtures of these isomers, crude MDI (residue when MDI is purified); and urethane groups, carbodiimides derived from these polyisocyanates A modified polyisocyanate containing a group, allophanate group, urea group, burette group or isocyanurate group is preferred.
 ポリウレタン樹脂の製造におけるNCO指数[NCO基と活性水素原子との当量比(NCO基/活性水素原子)×100]は、ポリウレタン樹脂の機械物性の観点から適宜調整することができるが、80~140が好ましく、さらに好ましくは85~120、特に好ましくは95~115である。 The NCO index [equivalent ratio of NCO group and active hydrogen atom (NCO group / active hydrogen atom) × 100] in the production of the polyurethane resin can be appropriately adjusted from the viewpoint of the mechanical properties of the polyurethane resin. Is more preferable, 85 to 120 is more preferable, and 95 to 115 is particularly preferable.
 ポリウレタン樹脂の製造に際しては反応を促進させるため、ウレタン化反応に使用される種々の触媒{特開2005-162791号公報、特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等に記載のもの}を使用することができる。触媒の使用量(重量%)は、ポリウレタン樹脂形成性組成物の全重量に基づいて10以下が好ましく、さらに好ましくは0.001~5である。 Various catalysts used in the urethanization reaction (JP 2005-162791 A, JP 2004-263192 A (corresponding US patent application: US 2003/4217 A1), etc.) to promote the reaction in the production of the polyurethane resin Can be used. The amount (% by weight) of the catalyst used is preferably 10 or less, more preferably 0.001 to 5 based on the total weight of the polyurethane resin-forming composition.
 また、ポリウレタン樹脂の製造に際し、種々の発泡剤{特開2006-152188号公報、特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等に記載のもの}[水、HFC(ハイドロフルオロカーボン)、HCFC(ハイドロクロロフルオロカーボン)、メチレンクロライド等]を使用して、ポリウレタンフォームとすることができる。発泡剤の使用量(重量%)はポリウレタンフォームの所望の密度により変えることができ、特に限定はされないが、ポリウレタン樹脂形成性組成物の全重量に基づいて、20以下が好ましい。
 ポリウレタンフォームを製造する場合、さらに必要により整泡剤を使用することができる。整泡剤としては種々の整泡剤{特開2005-162791号公報、特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等に記載のもの}が使用でき、ポリウレタンフォーム中のセル径の均一性の観点から、シリコーン界面活性剤(例えばポリシロキサン-ポリオキシアルキレン共重合体)が好ましい。
 整泡剤の使用量(重量%)は、ポリウレタン樹脂形成性組成物の全重量に基づいて、5以下が好ましく、さらに好ましくは0.01~2である。
In the production of polyurethane resin, various foaming agents {described in JP-A-2006-152188, JP-A-2004-263192 (corresponding US patent application: US2003 / 4217 A1), etc.} [water, HFC ( Hydrofluorocarbon), HCFC (hydrochlorofluorocarbon), methylene chloride, etc.] can be used to form a polyurethane foam. The amount (% by weight) of the foaming agent can be changed depending on the desired density of the polyurethane foam, and is not particularly limited, but is preferably 20 or less based on the total weight of the polyurethane resin-forming composition.
When producing a polyurethane foam, a foam stabilizer can be used if necessary. As the foam stabilizer, various foam stabilizers (as described in JP-A-2005-162791, JP-A-2004-263192 (corresponding US patent application: US2003 / 4217 A1), etc.) can be used, and in polyurethane foam From the viewpoint of uniformity of cell diameter, a silicone surfactant (for example, polysiloxane-polyoxyalkylene copolymer) is preferable.
The amount (% by weight) of the foam stabilizer used is preferably 5 or less, more preferably 0.01 to 2, based on the total weight of the polyurethane resin-forming composition.
 ポリウレタン樹脂の製造において、さらに必要により難燃剤を使用することができる。難燃剤としては種々のもの{特開2005-162791号公報、特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等に記載のもの}、例えばメラミン、リン酸エステル、ハロゲン化リン酸エステル、ホスファゼンが挙げられる。
 難燃剤の使用量(重量%)は、ポリウレタン樹脂形成性組成物の全重量に基づいて、30以下が好ましく、さらに好ましくは0.01~10である。
In the production of the polyurethane resin, a flame retardant can be used if necessary. Various flame retardants {as described in JP 2005-162791 A, JP 2004-263192 A (corresponding US Patent Application: US 2003/4217 A1)}, for example, melamine, phosphate ester, halogenated Examples thereof include phosphate esters and phosphazenes.
The amount (% by weight) of the flame retardant used is preferably 30 or less, more preferably 0.01 to 10, based on the total weight of the polyurethane resin-forming composition.
 ポリウレタン樹脂の製造においては、さらに必要により反応遅延剤、着色剤、内部離型剤、老化防止剤、抗酸化剤、可塑剤、殺菌剤及び充填剤(カーボンブラックを含む)からなる群から選ばれる少なくとも1種のその他の添加剤を使用することができる。 In the production of the polyurethane resin, if necessary, it is selected from the group consisting of reaction retarders, colorants, internal mold release agents, anti-aging agents, antioxidants, plasticizers, bactericides, and fillers (including carbon black). At least one other additive can be used.
 ポリウレタン樹脂の製造は種々の方法{特開2005-162791号公報、特開2004-263192号公報(対応米国特許出願:US2003/4217 A1)等に記載の方法}で行うことができ、ワンショット法、セミプレポリマー法及びプレポリマー法等が挙げられる。
 ポリウレタン樹脂の製造には従来から用いられている製造装置(低圧あるいは高圧の機械装置等)を用いることができる。無溶媒の場合は、ニーダーやエクストルーダー等の装置を用いることができる。また、非発泡又は発泡ポリウレタン樹脂を製造する際には、閉鎖モールド又は開放モールドを用いることができる。
 本発明のポリマーポリオール(I)を使用した場合、ポリウレタン樹脂の製造に用いる製造装置の小さい開口部の目詰まりが低減し、メンテナンスが容易になり生産性が向上できる。特に、ポリウレタンフォームの発泡機では、吐出ヘッドの目詰まりが極めて低減し生産性の向上が顕著である。
The polyurethane resin can be produced by various methods {methods described in JP-A-2005-162791, JP-A-2004-263192 (corresponding US patent application: US2003 / 4217 A1)}, and the one-shot method. And semi-prepolymer method and prepolymer method.
For the production of the polyurethane resin, a conventionally used production apparatus (such as a low-pressure or high-pressure machine) can be used. In the case of no solvent, an apparatus such as a kneader or an extruder can be used. Moreover, when manufacturing non-foaming or foaming polyurethane resin, a closed mold or an open mold can be used.
When the polymer polyol (I) of the present invention is used, clogging of a small opening of a production apparatus used for producing a polyurethane resin is reduced, maintenance is facilitated, and productivity can be improved. Particularly in a polyurethane foam foaming machine, clogging of the discharge head is extremely reduced and the productivity is remarkably improved.
 以下、実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.
 実施例及び比較例に使用した原料の組成、記号等は次のとおりである。
(1)ポリオール
 ポリオール(PL1-1):グリセリンにPO-EO-POの順にブロック付加させた、水酸基価=56、内部EO単位含量=5.5%のポリオール。末端1級化率=2モル%。〔商品名「サンニックス(登録商標)GP-3030」、三洋化成工業(株)製〕
 ポリオール(PL1-2):ペンタエリスリトールにPO-EOの順にブロック付加させた、水酸基価=32、末端EO単位含量=14%のポリオール。末端1級化率=74モル%。〔商品名「サンニックスKC-757」、三洋化成工業(株)製〕
 ポリオール(PL1-3):グリセリンにPO-EOの順に付加させた、水酸基価=37.5、末端EO単位含量=14%のポリオール。
 ポリオール(PL1-4):ペンタエリスリトールにPO-EOの順に付加させた、水酸基価=37、末端EO単位含量=17.5%のポリオール。
 ポリオール(PL1-5):ビスフェノールAにPOを付加させた、水酸基価=216、末端PO単位含量=56%のポリオール。末端1級化率=1モル%。
 ポリオール(PL1-6):グリセリンにPOをトリス(ペンタフルオロフェニル)ボラン触媒を用いて付加させた、水酸基価=56、内部EO単位含量=0%のポリオール。末端1級化率=70モル%。
 ポリオール(PL1-7):グリセリンにPO-EOの順序にブロック付加させた、水酸基価=33.7、末端EO単位含量=14%のポリオール。末端1級比率=75モル%。
ポリオール(PL1-8):グリセリン。水酸基価=1829。
ポリオール(PL1-9):ソルビトールのPO付加物。水酸基価=490。
(2)ラジカル重合開始剤
 c-1:1,1’-アゾビス(2-メチルブチロニトリル)〔商品名「V-59」、和光純薬工業(株)製〕
(3)分散剤
 d-1 :ポリオール(PL1-2)0.14モルと2-ヒドロキシメタクリレート0.07モルをTDI0.16モルでジョイントして得られる水酸基価=20、不飽和基数/含窒素基数=0.22の反応性分散剤〔特開2002-308920号公報参照〕
 d-2 :ACNとStとの重量比がACN:St=70:30であるMnが247,710のACN-St共重合オリゴマー型非反応性分散剤{このオリゴマー型分散剤を含有量が10重量%となるようにポリオール(PL1-7)に混合して使用した。この混合物の水酸基価=20.0}
(4)ポリイソシアネート
 TDI-80:商品名「コロネートT-80」〔日本ポリウレタン工業(株)製〕
 CE-729:TDI/ポリメリックMDI=80/20(重量比)、商品名「CE-729」〔日本ポリウレタン工業(株)製〕
(5)触媒
 触媒A:商品名「DABCO」(トリエチレンジアミン)〔日本乳化剤(株)製〕
 触媒B:商品名「ネオスタンU-28」(オクチル酸第1スズ)〔日東化成(株)製〕
 触媒C:商品名「TEDAL-33」(トリエチレンジアミン/ジプロピレングリコール=33%/67%溶液)〔東ソー(株)社製〕
 触媒D:商品名「TOYOCAT ET」(ビス-2-ジメチルアミノエチルエーテル/ジプロピレングリコール=70%/30%溶液)〔東ソー(株)社製〕
(6)整泡剤
 商品名「SRX-280A」(ポリエーテルシロキサン重合体)〔東レダウコーニングシリコーン(株)製〕
 商品名「TEGSTAB B4900」(ポリエーテルシロキサン重合体)〔エボニックデグサジャパン(株)製〕
 商品名「SZ-1346」(ポリエーテルシロキサン重合体)〔日本ユニカー(株)社製〕
The composition and symbols of the raw materials used in Examples and Comparative Examples are as follows.
(1) Polyol Polyol (PL1-1): A polyol having a hydroxyl value of 56 and an internal EO unit content of 5.5%, in which glycerin is block-added in the order of PO-EO-PO. Terminal primary ratio = 2 mol%. [Product name "Sanniks (registered trademark) GP-3030", manufactured by Sanyo Chemical Industries, Ltd.]
Polyol (PL1-2): A polyol having a hydroxyl value of 32 and a terminal EO unit content of 14%, which is obtained by block addition of pentaerythritol in the order of PO-EO. Terminal primary conversion rate = 74 mol%. [Product name "Sanniks KC-757", manufactured by Sanyo Chemical Industries, Ltd.]
Polyol (PL1-3): A polyol having a hydroxyl value of 37.5 and a terminal EO unit content of 14%, added in the order of PO-EO to glycerin.
Polyol (PL1-4): Polyol added to pentaerythritol in the order of PO-EO, having a hydroxyl value of 37 and a terminal EO unit content of 17.5%.
Polyol (PL1-5): Polyol obtained by adding PO to bisphenol A and having a hydroxyl value of 216 and a terminal PO unit content of 56%. Terminal primary ratio = 1 mol%.
Polyol (PL1-6): Polyol obtained by adding PO to glycerol using a tris (pentafluorophenyl) borane catalyst and having a hydroxyl value of 56 and an internal EO unit content of 0%. Terminal primary ratio = 70 mol%.
Polyol (PL1-7): A polyol having a hydroxyl value of 33.7 and a terminal EO unit content of 14%, which is block-added to glycerin in the order of PO-EO. Terminal primary ratio = 75 mol%.
Polyol (PL1-8): glycerin. Hydroxyl value = 1829.
Polyol (PL1-9): PO adduct of sorbitol. Hydroxyl value = 490.
(2) Radical polymerization initiator c-1: 1,1′-azobis (2-methylbutyronitrile) [trade name “V-59”, manufactured by Wako Pure Chemical Industries, Ltd.]
(3) Dispersant d-1: hydroxyl value = 20 obtained by jointing 0.14 mol of polyol (PL1-2) and 0.07 mol of 2-hydroxymethacrylate with 0.16 mol of TDI, number of unsaturated groups / nitrogen-containing Reactive dispersant having a base = 0.22 (see JP 2002-308920 A)
d-2: ACN-St copolymerized oligomer type non-reactive dispersant having a weight ratio of ACN to St of ACN: St = 70: 30 and Mn of 247,710 {content of this oligomer type dispersant is 10 It was used by mixing with polyol (PL1-7) so as to be in weight percent. Hydroxyl value of this mixture = 20.0}
(4) Polyisocyanate TDI-80: Trade name “Coronate T-80” (manufactured by Nippon Polyurethane Industry Co., Ltd.)
CE-729: TDI / polymeric MDI = 80/20 (weight ratio), trade name “CE-729” (manufactured by Nippon Polyurethane Industry Co., Ltd.)
(5) Catalyst Catalyst A: Trade name “DABCO” (triethylenediamine) [manufactured by Nippon Emulsifier Co., Ltd.]
Catalyst B: Trade name “Neostan U-28” (stannous octylate) [manufactured by Nitto Kasei Co., Ltd.]
Catalyst C: Trade name “TEDAL-33” (triethylenediamine / dipropylene glycol = 33% / 67% solution) [manufactured by Tosoh Corporation]
Catalyst D: Trade name “TOYOCAT ET” (bis-2-dimethylaminoethyl ether / dipropylene glycol = 70% / 30% solution) [manufactured by Tosoh Corporation]
(6) Foam stabilizer Product name “SRX-280A” (polyether siloxane polymer) [manufactured by Toray Dow Corning Silicone Co., Ltd.]
Product name “TEGSTAB B4900” (polyethersiloxane polymer) [Evonik Degussa Japan Co., Ltd.]
Product name “SZ-1346” (polyether siloxane polymer) [manufactured by Nippon Unicar Co., Ltd.]
 実施例における測定、評価方法は次のとおりである。
<体積平均粒子径>
 得られたポリマーポリオール中間体又はポリマーポリオールを、レーザー光の透過率が70~90%となるように、その製造に用いたポリオールで希釈し、下記の粒度分布測定装置にて体積平均粒子径(μm)を測定した。
 
  装置   :堀場製作所製 LA-750
  測定原理 :Mie散乱理論
  測定範囲 :0.04μm~262μm
  溶液注入量:He-Neレーザー
  測定時間 :20秒
The measurement and evaluation methods in the examples are as follows.
<Volume average particle diameter>
The obtained polymer polyol intermediate or polymer polyol is diluted with the polyol used for the production so that the laser light transmittance is 70 to 90%, and the volume average particle size ( μm).

Equipment: LA-750, manufactured by HORIBA, Ltd.
Measurement principle: Mie scattering theory Measurement range: 0.04 μm to 262 μm
Solution injection amount: He-Ne laser Measurement time: 20 seconds
<体積平均粒子径>
 以下の式による。
体積平均粒子径(μm) = Σ〔q(J)×X(J)〕/Σ〔q(J)〕
    J  :粒子径分割番号(1~85)
   q(J):頻度分布値(%)
   X(J):粒子径分割番号J番目の粒子径(μm)
<Volume average particle diameter>
According to the following formula.
Volume average particle diameter (μm) = Σ [q (J) × X (J)] / Σ [q (J)]
J: Particle size division number (1 to 85)
q (J): Frequency distribution value (%)
X (J): Particle size division number Jth particle size (μm)
<可溶性ポリマー含有量(重量%)測定方法> 前記参照
<重合体微粒子含有量(重量%)> 前記参照
<Measurement method of soluble polymer content (% by weight)> Reference <polymer fine particle content (% by weight)> Reference
<ポリマーポリオールの粘度>
 ポリマーポリオールを、BL型粘度計〔東京計器(株)製〕を用いて、3号ローター、12rpm又は6rpm、25℃の条件にて測定する。
<Viscosity of polymer polyol>
The polymer polyol is measured using a BL type viscometer [manufactured by Tokyo Keiki Co., Ltd.] under the conditions of No. 3 rotor, 12 rpm or 6 rpm, and 25 ° C.
製造例1 [ポリマーポリオール中間体(H-1)の製造]
 温度調節器、バキューム攪拌翼、滴下ポンプ、減圧装置、ジムロート冷却管、窒素流入口及び流出口を備えた4口フラスコに、ポリオール(PL1-1)、(PL1-5)、分散剤(d-1)及びキシレンを表1の初期仕込に示す部数で投入し、撹拌下130℃に昇温した。ついで、ポリオール(PL1-1)、分散剤(d-1)、ACN、St、ジビニルベンゼン、ラジカル重合開始剤(c-1)及びキシレンを表1のモノマー液に示す部数で予め混合したモノマー含有混合液(Z1)を滴下ポンプを用いて25部/分の速度で連続的に滴下し、滴下終了後さらに130℃で30分重合させた。さらに、25℃に冷却し、ポリマーポリオール中間体(H-1)を得た。(H-1)の体積平均粒子径及び重合体微粒子含有量(重量%)を測定し、表1に示した。
Production Example 1 [Production of Polymer Polyol Intermediate (H-1)]
A four-necked flask equipped with a temperature controller, a vacuum stirring blade, a dripping pump, a pressure reducing device, a Dimroth condenser, a nitrogen inlet and an outlet, was charged with polyols (PL1-1), (PL1-5), a dispersant (d- 1) and xylene were added in the number of parts shown in the initial charge of Table 1, and the temperature was raised to 130 ° C. with stirring. Subsequently, a monomer containing a polyol (PL1-1), a dispersant (d-1), ACN, St, divinylbenzene, a radical polymerization initiator (c-1) and xylene previously mixed in the number of parts shown in the monomer liquid of Table 1 The mixed solution (Z1) was continuously dropped at a rate of 25 parts / minute using a dropping pump, and after completion of the dropping, the mixture was further polymerized at 130 ° C. for 30 minutes. Further, the mixture was cooled to 25 ° C. to obtain a polymer polyol intermediate (H-1). The volume average particle diameter and polymer fine particle content (% by weight) of (H-1) were measured and shown in Table 1.
製造例2~6 [ポリマーポリオール中間体(H-2)~(H-6)の製造]
 製造例1において、表1に示す部数で混合した初期仕込、モノマー液を使用する以外は製造例1と同様にして、ポリマーポリオール中間体(H-2)~(H-6)を得た。(H-2)~(H-6)の体積平均粒子径及び重合体微粒子含有量(重量%)を測定し、表1に示した。
Production Examples 2 to 6 [Production of polymer polyol intermediates (H-2) to (H-6)]
In Production Example 1, polymer polyol intermediates (H-2) to (H-6) were obtained in the same manner as in Production Example 1, except that the initial charge and monomer solution mixed in the number of parts shown in Table 1 were used. The volume average particle diameter and polymer fine particle content (% by weight) of (H-2) to (H-6) were measured and shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
製造例7 [強度向上剤b-1の製造]
 攪拌装置、温度制御装置のステンレス製オートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGP-1500;Mn:1500、水酸基価112.0)1モル、無水フタル酸6モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後PO6モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-1)を得た。(b-1)の測定値は次の通り。水酸基価(mgKOH/g)=61.5。
Production Example 7 [Production of Strength Improvement Agent b-1]
In a stainless steel autoclave of a stirrer and a temperature controller, 1 mol of glycerin PO adduct (Sannix GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0), 6 mol of phthalic anhydride and an alkali catalyst Half esterification was performed by charging 0.020 mol of (N-ethylmorpholine) and reacting at 0.20 MPa and 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, PO6 mol was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of the aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-1). The measured values of (b-1) are as follows. Hydroxyl value (mgKOH / g) = 61.5.
製造例8 [強度向上剤b-2の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGP-1500;Mn:1500、水酸基価112.0)1モル、無水フタル酸6モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO6モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-2)を得た。(b-2)の測定値は次の通り。水酸基価(mgKOH/g)=63.5。
Production Example 8 [Production of Strength Improvement Agent b-2]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0), 6 mol of phthalic anhydride and an alkali catalyst (N— Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 6 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of the aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-2). The measured values of (b-2) are as follows. Hydroxyl value (mgKOH / g) = 63.5.
製造例9 [強度向上剤b-3の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGP-3000;Mn:3000、水酸基価56.0)1モル、無水フタル酸3モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO3モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-3)を得た。(b-3)の測定値は次の通り。水酸基価(mgKOH/g)=47.1。
Production Example 9 [Production of Strength Improvement Agent b-3]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox GP-3000 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 3000, hydroxyl value 56.0), 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-3). The measured values of (b-3) are as follows. Hydroxyl value (mgKOH / g) = 47.1.
製造例10 [強度向上剤b-4の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGL-3000NS;Mn:3000、水酸基価56.0)1モル、無水フタル酸3モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO3モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-4)を得た。(b-4)の測定値は次の通り。水酸基価(mgKOH/g)=47.1。
Production Example 10 [Production of Strength Improvement Agent b-4]
In an autoclave similar to Production Example 7, 1 mol of glycerin PO adduct (Sanix GL-3000NS; Mn: 3000, hydroxyl value 56.0, manufactured by Sanyo Chemical Industries, Ltd.), 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-4). The measured values of (b-4) are as follows. Hydroxyl value (mgKOH / g) = 47.1.
製造例11 [強度向上剤b-5の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(a-1)1モル、無水フタル酸3モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO3モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-5)を得た。(b-5)の測定値は次の通り。水酸基価(mgKOH/g)=47.1。
Production Example 11 [Production of Strength Improvement Agent b-5]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (a-1), 3 mol of phthalic anhydride and 0.020 mol of alkali catalyst (N-ethylmorpholine) were charged, and 0.20 MPa in a nitrogen atmosphere. The reaction was carried out at 120 ± 10 ° C. for 1 hour for half esterification. Thereafter, 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-5). The measured values of (b-5) are as follows. Hydroxyl value (mgKOH / g) = 47.1.
製造例12 [強度向上剤b-6の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスKC-725;Mn:5000、水酸基価34.0)1モル、無水フタル酸3モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO3モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-6)を得た。(b-6)の測定値は次の通り。水酸基価(mgKOH/g)=30.2。
Production Example 12 [Production of Strength Improvement Agent b-6]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox KC-725 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 5000, hydroxyl value 34.0), 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of the aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-6). The measured values of (b-6) are as follows. Hydroxyl value (mgKOH / g) = 30.2.
製造例13 [強度向上剤b-7の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスFA-921NS;Mn:6000、水酸基価28.0)1モル、無水フタル酸3モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO3モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-7)を得た。(b-7)の測定値は次の通り。水酸基価(mgKOH/g)=25.6。
Production Example 13 [Production of Strength Improvement Agent b-7]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox FA-921NS; Mn: 6000, hydroxyl value 28.0) manufactured by Sanyo Chemical Industries, Ltd., 3 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-7). The measured values of (b-7) are as follows. Hydroxyl value (mgKOH / g) = 25.6.
製造例14 [強度向上剤b-8の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスFA-921NS;Mn:6000、水酸基価28.0)1モル、無水フタル酸9モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO9モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-8)を得た。(b-8)の測定値は次の通り。水酸基価(mgKOH/g)=21.8。
Production Example 14 [Production of Strength Improvement Agent b-8]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanix FA-921NS; Mn: 6000, hydroxyl value 28.0) manufactured by Sanyo Chemical Industries, Ltd., 9 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 9 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-8). The measured values of (b-8) are as follows. Hydroxyl value (mgKOH / g) = 21.8.
製造例15 [強度向上剤b-9の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGP-1500;Mn:1500、水酸基価112.0)1モル、無水フタル酸6モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO6モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。室温まで冷却し、無水トリメリット酸1モルを仕込み、0.20MPa、120±10℃にて、1時間エステル化を行った後、EO2モルを120±10℃、圧力0.5MPa以下となるよう制御しながら、2時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-9)を得た。(b-9)の測定値は次の通り。水酸基価(mgKOH/g)=74.4。
Production Example 15 [Production of Strength Improvement Agent b-9]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0), 6 mol of phthalic anhydride and an alkali catalyst (N— Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 6 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After cooling to room temperature, charging 1 mol of trimellitic anhydride and esterifying at 0.20 MPa and 120 ± 10 ° C. for 1 hour, 2 mol of EO is 120 ± 10 ° C. and the pressure is 0.5 MPa or less. While being controlled, the solution was dropped over 2 hours and then aged at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-9). The measured values of (b-9) are as follows. Hydroxyl value (mgKOH / g) = 74.4.
製造例16 [強度向上剤b-10の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGP-1500;Mn:1500、水酸基価112.0)1モル、無水フタル酸6モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO6モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。室温まで冷却し、無水トリメリット酸3モルを仕込み、0.20MPa、120±10℃にて、1時間エステル化を行った後、EO6モルを120±10℃、圧力0.5MPa以下となるよう制御しながら、2時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-10)を得た。(b-10)の測定値は次の通り。水酸基価(mgKOH/g)=94.1。
Production Example 16 [Production of Strength Improvement Agent b-10]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0), 6 mol of phthalic anhydride and an alkali catalyst (N— Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 6 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After cooling to room temperature, charging with 3 mol of trimellitic anhydride and esterifying at 0.20 MPa and 120 ± 10 ° C. for 1 hour, 6 mol of EO is 120 ± 10 ° C. and the pressure is 0.5 MPa or less. While being controlled, the solution was dropped over 2 hours and then aged at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-10). The measured values of (b-10) are as follows. Hydroxyl value (mgKOH / g) = 94.1.
製造例17 [強度向上剤b-11の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(a-1)1モル、無水フタル酸3モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO3モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。室温まで冷却し、無水トリメリット酸1モルを仕込み、0.20MPa、120±10℃にて、1時間エステル化を行った後、EO5モルを120±10℃、圧力0.5MPa以下となるよう制御しながら、2時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(b-11)を得た。(b-11)の測定値は次の通り。水酸基価(mgKOH/g)=58.2。
Production Example 17 [Production of Strength Improvement Agent b-11]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (a-1), 3 mol of phthalic anhydride and 0.020 mol of alkali catalyst (N-ethylmorpholine) were charged, and 0.20 MPa in a nitrogen atmosphere. The reaction was carried out at 120 ± 10 ° C. for 1 hour for half esterification. Thereafter, 3 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. Cool to room temperature, charge 1 mol of trimellitic anhydride, esterify at 0.20 MPa, 120 ± 10 ° C. for 1 hour, then 5 mol of EO at 120 ± 10 ° C., pressure 0.5 MPa or less The solution was dropped over 2 hours under control, and then aged at 120 ± 10 ° C. for 1 hour. After completion of the aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (b-11). The measured values of (b-11) are as follows. Hydroxyl value (mgKOH / g) = 58.2.
製造例18[強度向上剤b-12の製造]
 製造例7と同様のオートクレーブに、エチレングリコールを1モル、無水トリメリット酸2モル、触媒としてトリエチルアミン2.2モル、溶媒としてTHF(テトラヒドロフラン)を2モル仕込み、窒素雰囲気下80±10℃で2時間ハーフエステル化を行った。この後、R1構成原料としてEO4モルを80±10℃、0.5MPaで1時間かけて滴下した後、1時間熟成した。熟成終了後、触媒を0.1MPaにて1時間減圧除去し、強度向上剤(b-12)を得た。(b-1)の測定値は次の通り。水酸基価(mgKOH/g)=371.5。
Production Example 18 [Production of Strength Improvement Agent b-12]
In the same autoclave as in Production Example 7, 1 mol of ethylene glycol, 2 mol of trimellitic anhydride, 2.2 mol of triethylamine as a catalyst, and 2 mol of THF (tetrahydrofuran) as a solvent were charged at 80 ± 10 ° C. in a nitrogen atmosphere. Half-esterification was performed for a time. Thereafter, 4 mol of EO was dropped as an R1 constituent raw material at 80 ± 10 ° C. and 0.5 MPa over 1 hour, followed by aging for 1 hour. After completion of aging, the catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a strength improver (b-12). The measured values of (b-1) are as follows. Hydroxyl value (mgKOH / g) = 371.5.
製造例19 [強度向上剤b-13の製造]
 製造例7と同様のオートクレーブにポリエチレングリコール(三洋化成工業株式会社製 PEG-200;Mn:200、水酸基価560)を1モル、無水トリメリット酸1モル、触媒としてN-エチルモルフォリン0.02モル、溶媒としてTHFを2モル仕込み、窒素雰囲気下80±10℃で2時間ハーフエステル化を行った。この後、R1構成原料としてEO2モルを80±10℃、0.5MPa以下となるよう制御しながら2時間掛けて滴下し、3時間熟成した。熟成後、80±10℃、10kPaで触媒及び溶媒の留去を行い強度向上剤(b-2)を得た。(b-13)の測定値は次の通り。水酸基価(mgKOH/g)=350.6。
Production Example 19 [Production of Strength Improvement Agent b-13]
In the same autoclave as in Production Example 7, 1 mol of polyethylene glycol (PEG-200 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 200, hydroxyl value 560), 1 mol of trimellitic anhydride, and N-ethylmorpholine 0.02 as a catalyst 2 mol of THF was added as a solvent and a solvent, and half esterification was performed at 80 ± 10 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, 2 mol of EO as the R1 constituent raw material was added dropwise over 2 hours while controlling to 80 ± 10 ° C. and 0.5 MPa or less, and aged for 3 hours. After aging, the catalyst and the solvent were distilled off at 80 ± 10 ° C. and 10 kPa to obtain a strength improver (b-2). The measured values of (b-13) are as follows. Hydroxyl value (mgKOH / g) = 350.6.
製造例20 [強度向上剤b-14の製造]
 無水トリメリット酸1モル及びEO2モルの代わりに、無水トリメリット酸2モル及びEO4モルを用いること以外は製造例19と同様の方法で強度向上剤b-3を得た。(b-14)の測定値は次の通り。水酸基価(mgKOH/g)=295.3。
Production Example 20 [Production of Strength Improvement Agent b-14]
A strength improver b-3 was obtained in the same manner as in Production Example 19 except that 2 mol of trimellitic anhydride and 4 mol of EO were used instead of 1 mol of trimellitic anhydride and 2 mol of EO. The measured values of (b-14) are as follows. Hydroxyl value (mgKOH / g) = 295.3.
製造例21 [強度向上剤b-15の製造]
 無水トリメリット酸の代わりに、無水ピロメリット酸を用い、EO4モルの代わりにEO6モル用いること以外は製造例19と同様の方法で強度向上剤b-4を得た。(b-15)の測定値は次の通り。水酸基価(mgKOH/g)=374.0。
Production Example 21 [Production of Strength Improvement Agent b-15]
A strength improver b-4 was obtained in the same manner as in Production Example 19 except that pyromellitic anhydride was used instead of trimellitic anhydride and 6 mol of EO was used instead of 4 mol of EO. The measured values of (b-15) are as follows. Hydroxyl value (mgKOH / g) = 374.0.
製造例22 [強度向上剤b-16の製造]
 ポリエチレングリコールの代わりに、プロピレングリコールPOEO付加物(三洋化成工業株式会社製 PL-910;Mn:900、水酸基価124)を用いること以外は製造例19と同様の方法で強度向上剤b-5を得た。(b-16)の測定値は次の通り。水酸基価(mgKOH/g)=152.8。
Production Example 22 [Production of Strength Improvement Agent b-16]
The strength improver b-5 was prepared in the same manner as in Production Example 19 except that propylene glycol POEO adduct (PL-910; Mn: 900, hydroxyl value 124) manufactured by Sanyo Chemical Industries, Ltd. was used instead of polyethylene glycol. Obtained. The measured values of (b-16) are as follows. Hydroxyl value (mgKOH / g) = 152.8.
製造例23 [強度向上剤b-17の製造]
  撹拌装置、温度制御装置、圧力制御装置、冷却器、トラップ、液循環ポンプを備えた反応器にポリテトラメチレングリコール(三菱化学株式会社製 PTMG-1000;Mn:1000、水酸基価112)を1モル、無水トリメリット酸2モル、触媒としてN-エチルモルフォリン0.02モル、溶媒としてトルエンを5モル仕込み、窒素雰囲気下80±10℃、0.1MPaで2時間ハーフエステル化を行った。この後、R1構成原料としてベンジルクロリドを4モル加え95±5℃、0.06MPaとなるよう制御しながら6時間反応した。反応中は揮発するトルエンと水を冷却器で凝縮し、トラップで分離したトルエンを再度反応器に戻すことを連続して行った。反応後、80±10℃、10kPaで触媒及び溶媒の留去を行い、強度向上剤b-17を得た。(b-17)の測定値は次の通り。水酸基価(mgKOH/g)=0。
Production Example 23 [Production of Strength Improvement Agent b-17]
1 mole of polytetramethylene glycol (PTMG-1000 manufactured by Mitsubishi Chemical Corporation; Mn: 1000, hydroxyl value 112) is added to a reactor equipped with a stirrer, temperature controller, pressure controller, cooler, trap, and liquid circulation pump. Then, 2 mol of trimellitic anhydride, 0.02 mol of N-ethylmorpholine as a catalyst, and 5 mol of toluene as a solvent were charged, and half esterification was performed at 80 ± 10 ° C. and 0.1 MPa for 2 hours in a nitrogen atmosphere. Thereafter, 4 mol of benzyl chloride was added as an R1 constituent raw material and reacted for 6 hours while controlling to 95 ± 5 ° C. and 0.06 MPa. During the reaction, volatile toluene and water were condensed with a cooler, and toluene separated by the trap was returned to the reactor again. After the reaction, the catalyst and the solvent were distilled off at 80 ± 10 ° C. and 10 kPa to obtain a strength improver b-17. The measured values of (b-17) are as follows. Hydroxyl value (mgKOH / g) = 0.
製造例24 [強度向上剤b-18の製造]
 ポリテトラメチレングリコールの代わりに、ポリエチレングリコール(三洋化成工業株式会社製 PEG-200;Mn:200、水酸基価560)を1モル、無水トリメリット酸1モル、触媒としてN-エチルモルフォリン0.02モル用いること以外は製造例23と同様の方法で強度向上剤b-5を得た。(b-18)の測定値は次の通り。水酸基価(mgKOH/g)=98.4。
Production Example 24 [Production of Strength Improvement Agent b-18]
Instead of polytetramethylene glycol, 1 mol of polyethylene glycol (PEG-200 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 200, hydroxyl value 560), 1 mol of trimellitic anhydride, 0.02 N-ethylmorpholine as a catalyst A strength improver b-5 was obtained in the same manner as in Production Example 23 except that the molar amount was used. The measured values of (b-18) are as follows. Hydroxyl value (mgKOH / g) = 98.4.
製造例25 [強度向上剤b-19の製造]
製造例7と同様なオートクレーブにPEG-200を2モル、無水ピロメリット酸1モル、触媒としてトリエチルアミン2.2モル、溶媒としてTHFを2モル仕込み、窒素雰囲気下80±10℃で2時間ハーフエステル化を行った。この後、R1構成原料としてエチレンブロミド2モルを加え、80±10℃で6時間反応した。反応後、析出した塩を濾別し、有機層を水で洗浄し目的物をトルエンで抽出分離した。有機層を無水硫酸マグネシウムで乾燥後、80±10℃、10kPaで溶媒留去を行い強度向上剤b-19を得た。(b-19)の測定値は次の通り。水酸基価(mgKOH/g)=332.9。
Production Example 25 [Production of Strength Improvement Agent b-19]
The same autoclave as in Production Example 7 was charged with 2 mol of PEG-200, 1 mol of pyromellitic anhydride, 2.2 mol of triethylamine as a catalyst, and 2 mol of THF as a solvent, and half ester at 80 ± 10 ° C. for 2 hours in a nitrogen atmosphere. Made. Thereafter, 2 moles of ethylene bromide was added as an R1 constituent raw material and reacted at 80 ± 10 ° C. for 6 hours. After the reaction, the precipitated salt was filtered off, the organic layer was washed with water, and the target product was extracted and separated with toluene. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off at 80 ± 10 ° C. and 10 kPa to obtain a strength improver b-19. The measured values of (b-19) are as follows. Hydroxyl value (mgKOH / g) = 332.9.
製造例26 [強度向上剤b-20の製造]
 エチレンブロミドをベンジルクロリドに変更した以外は製造例25と同様な操作を行い強度向上剤b-20を得た。(b-20)の測定値は次の通り。水酸基価(mgKOH/g)=70.3。
Production Example 26 [Production of Strength Improvement Agent b-20]
A strength improver b-20 was obtained in the same manner as in Production Example 25 except that ethylene bromide was changed to benzyl chloride. The measured values of (b-20) are as follows. Hydroxyl value (mgKOH / g) = 70.3.
製造例27 [強度向上剤b-21の製造]
 エチレンブロミドをフェニルクロリドに変更した以外は製造例25と同様な操作を行い強度向上剤b-21を得た。(b-21)の測定値は次の通り。水酸基価(mgKOH/g)=72.9。
Production Example 27 [Production of Strength Improvement Agent b-21]
A strength improver b-21 was obtained in the same manner as in Production Example 25 except that ethylene bromide was changed to phenyl chloride. The measured values of (b-21) are as follows. Hydroxyl value (mgKOH / g) = 72.9.
製造例28 [強度向上剤b-22の製造]
 ポリテトラメチレングリコールをPEG-200に、無水トリメリット酸2モルの代わりに無水トリメリット酸1モル、ベンジルクロライド4モルの代わりにPP-200を2モルに変更した以外は製造例23と同様な操作を行い強度向上剤b-23を得た。(b-23)の測定値は次の通り。水酸基価(mgKOH/g)=224.3。
Production Example 28 [Production of Strength Improvement Agent b-22]
Similar to Production Example 23 except that polytetramethylene glycol was changed to PEG-200, 1 mol of trimellitic anhydride instead of 2 mol of trimellitic anhydride, and 2 mol of PP-200 instead of 4 mol of benzyl chloride. Operation was performed to obtain a strength improver b-23. The measured values of (b-23) are as follows. Hydroxyl value (mgKOH / g) = 224.3.
製造例29 [強度向上剤b-23の製造]
 ポリテトラメチレングリコールの代わりにPEG-200、無水トリメリット酸2モルの代わりに無水トリメリット酸1モル、ベンジルクロライド4モルの代わりにベンジルアミンを2モルに変更した以外は製造例23と同様な操作を行い強度向上剤b-23を得た。(b-23)の測定値は次の通り。水酸基価(mgKOH/g)=98.4。
Production Example 29 [Production of Strength Improvement Agent b-23]
PEG-200 instead of polytetramethylene glycol, 1 mol of trimellitic anhydride instead of 2 mol of trimellitic anhydride, and 2 mol of benzylamine instead of 4 mol of benzyl chloride Operation was performed to obtain a strength improver b-23. The measured values of (b-23) are as follows. Hydroxyl value (mgKOH / g) = 98.4.
製造例30 [強度向上剤b-24の製造]
 ポリテトラメチレングリコールの代わりにPEG-200、無水トリメリット酸2モルの代わりに無水トリメリット酸1モル、ベンジルクロライド4モルの代わりにジフェニルアミンを2モルに変更した以外は製造例23と同様な操作を行い強度向上剤b-24を得た。(b-24)の測定値は次の通り。水酸基価(mgKOH/g)=80.8
Production Example 30 [Production of Strength Improvement Agent b-24]
The same procedure as in Production Example 23, except that PEG-200 was substituted for polytetramethylene glycol, 1 mol of trimellitic anhydride was substituted for 2 mol of trimellitic anhydride, and 2 mol of diphenylamine was substituted for 4 mol of benzyl chloride. To obtain a strength improver b-24. The measured values of (b-24) are as follows. Hydroxyl value (mgKOH / g) = 80.8
製造例31 [強度向上剤b-25の製造]
 ポリテトラメチレングリコールの代わりにPEG-200、無水トリメリット酸2モルの代わりに無水トリメリット酸1モル、ベンジルクロライド4モルの代わりにベンジルチオールを2モルに変更した以外は製造例23と同様な操作を行い強度向上剤b-25を得た。(b-25)の測定値は次の通り。水酸基価(mgKOH/g)=92.9。
Production Example 31 [Production of Strength Improvement Agent b-25]
PEG-200 instead of polytetramethylene glycol, 1 mol of trimellitic anhydride instead of 2 mol of trimellitic anhydride, and benzylthiol instead of 2 mol of benzyl chloride changed to 2 mol. Operation was performed to obtain a strength improver b-25. The measured values of (b-25) are as follows. Hydroxyl value (mgKOH / g) = 92.9.
製造例32 [強度向上剤b-26の製造]
 ポリテトラメチレングリコールの代わりにPEG-200、無水トリメリット酸2モルの代わりに無水トリメリット酸1モル、ベンジルクロライド4モルの代わりにエチレングリコールを1モルおよびベンジルアミン1モルに変更した以外は製造例23と同様な操作を行い強度向上剤b-26を得た。(b-26)の測定値は次の通り。水酸基価(mgKOH/g)=221.3。
Production Example 32 [Production of Strength Improvement Agent b-26]
Manufactured except PEG-200 instead of polytetramethylene glycol, 1 mole of trimellitic anhydride instead of 2 moles of trimellitic anhydride, 1 mole of ethylene glycol and 1 mole of benzylamine instead of 4 moles of benzyl chloride The same operation as in Example 23 was performed to obtain a strength improver b-26. The measured values of (b-26) are as follows. Hydroxyl value (mgKOH / g) = 221.3.
製造例33 [強度向上剤b-27の製造]
 ポリテトラメチレングリコールの代わりにPEG-200、無水トリメリット酸2モルの代わりに無水トリメリット酸1モル、ベンジルクロライド4モルの代わりにベンジンアルコール1モルおよびベンジルアミン1モルに変更した以外は製造例23と同様な操作を行い強度向上剤b-27を得た。(b-27)の測定値は次の通り。水酸基価(mgKOH/g)=98.2。
Production Example 33 [Production of Strength Improvement Agent b-27]
Production examples except that PEG-200 was substituted for polytetramethylene glycol, 1 mol of trimellitic anhydride was substituted for 2 mol of trimellitic anhydride, 1 mol of benzine alcohol and 1 mol of benzylamine were substituted for 4 mol of benzyl chloride In the same manner as in Example 23, a strength improver b-27 was obtained. The measured values of (b-27) are as follows. Hydroxyl value (mgKOH / g) = 98.2.
製造例34 [強度向上剤b-28の製造]
 ポリテトラメチレングリコールの代わりにPEG-200、無水トリメリット酸2モルの代わりに無水トリメリット酸1モル、ベンジルクロライド4モルの代わりにPEG-200を1モルおよびベンジルアミン1モルに変更した以外は製造例23と同様な操作を行い強度向上剤b-28を得た。(b-28)の測定値は次の通り。水酸基価(mgKOH/g)=169.7。
Production Example 34 [Production of Strength Improvement Agent b-28]
PEG-200 instead of polytetramethylene glycol, 1 mol of trimellitic anhydride instead of 2 mol of trimellitic anhydride, 1 mol of PEG-200 instead of 1 mol of benzyl chloride and 1 mol of benzylamine instead of 4 mol of benzyl chloride The same operation as in Production Example 23 was performed to obtain strength improver b-28. The measured values of (b-28) are as follows. Hydroxyl value (mgKOH / g) = 169.7.
製造例35 [強度向上剤m-1の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGP-3000;Mn:3000、水酸基価56.0)1モル、無水フタル酸1モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後PO1モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(m-1)を得た。(m-1)の測定値は次の通り。水酸基価(mgKOH/g)=52.7。
Production Example 35 [Production of Strength Improvement Agent m-1]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox GP-3000 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 3000, hydroxyl value 56.0), 1 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 1 mol of PO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, and then aged at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (m-1). The measured values of (m-1) are as follows. Hydroxyl value (mgKOH / g) = 52.7.
製造例36 [強度向上剤m-2の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスGP-1500;Mn:1500、水酸基価112.0)1モル、無水フタル酸9モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO9モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。室温まで冷却し、無水トリメリット酸3モルを仕込み、0.20MPa、120±10℃にて、1時間エステル化を行った後、EO6モルを120±10℃、圧力0.5MPa以下となるよう制御しながら、2時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(m-2)を得た。(m-2)の測定値は次の通り。水酸基価(mgKOH/g)=80.3。
Production Example 36 [Production of Strength Improvement Agent m-2]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox GP-1500 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 1500, hydroxyl value 112.0), 9 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa and 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 9 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After cooling to room temperature, charging with 3 mol of trimellitic anhydride and esterifying at 0.20 MPa and 120 ± 10 ° C. for 1 hour, 6 mol of EO is 120 ± 10 ° C. and the pressure is 0.5 MPa or less. While being controlled, the solution was dropped over 2 hours and then aged at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (m-2). The measured values of (m-2) are as follows. Hydroxyl value (mgKOH / g) = 80.3.
製造例37 [強度向上剤m-3の製造]
 製造例7と同様のオートクレーブに、グリセリンPO付加物(三洋化成工業株式会社製 サンニックスFA-921;Mn:6000、水酸基価28.0)1モル、無水フタル酸1モル及びアルカリ触媒(N-エチルモルフォリン)0.020モルを仕込み、窒素雰囲気下、0.20MPa、120±10℃で1時間反応させハーフエステル化を行った。その後EO1モルを120±10℃、圧力0.50MPa以下となるよう制御しながら、5時間かけて滴下した後、120±10℃で1時間熟成した。熟成終了後、アルカリ触媒を0.1MPaにて1時間減圧除去して、ポリオール(m-3)を得た。(m-3)の測定値は次の通り。水酸基価(mgKOH/g)=27.2。
Production Example 37 [Production of Strength Improvement Agent m-3]
In the same autoclave as in Production Example 7, 1 mol of glycerin PO adduct (Sanyox FA-921 manufactured by Sanyo Chemical Industries, Ltd .; Mn: 6000, hydroxyl value 28.0), 1 mol of phthalic anhydride and an alkali catalyst (N- Ethylmorpholine) (0.020 mol) was charged, and half esterification was performed by reacting at 0.20 MPa at 120 ± 10 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 1 mol of EO was added dropwise over 5 hours while controlling the pressure to be 120 ± 10 ° C. and a pressure of 0.50 MPa or less, followed by aging at 120 ± 10 ° C. for 1 hour. After completion of aging, the alkali catalyst was removed under reduced pressure at 0.1 MPa for 1 hour to obtain a polyol (m-3). The measured values of (m-3) are as follows. Hydroxyl value (mgKOH / g) = 27.2.
 製造した強度向上剤の水酸基価の測定方法並びにこれらの単位を以下に示す。
 水酸基価:JIS K1557 に準拠、単位はmgKOH/g
The measurement method of the hydroxyl value of the manufactured strength improver and these units are shown below.
Hydroxyl value: Conforms to JIS K1557, unit is mgKOH / g
 製造例7~37の強度向上剤の分析結果を表2に示した。 The analysis results of the strength improvers of Production Examples 7 to 37 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の中で水酸基当量とは、下数式(5)で定義されるものであり、具体的には、水酸基価xを測定し、56100/水酸基価xにより求めたものである。
(水酸基当量)=(数平均分子量)/(平均水酸基数)     (5)
In Table 2, the hydroxyl equivalent is defined by the following mathematical formula (5). Specifically, the hydroxyl value x is measured and determined by 56100 / hydroxyl value x.
(Hydroxyl equivalent) = (Number average molecular weight) / (Average number of hydroxyl groups) (5)
実施例1 [ポリマーポリオール(I-1)の製造]
〔第1工程〕 連続重合装置(送液ライン、オーバーフローラインを接続したSUS製耐圧反応容器)を2槽用意し、1槽目のオーバーフローラインを2槽目の重合槽の入口と接続し直列に配置する。1槽目及び2槽目の重合槽にそれぞれ、あらかじめポリオール(PL1-1)、ポリオール(PL1-6)、ポリオール(b-2)、およびキシレンを表3に示す部数で混合した初期仕込液(L-1)2,000部を充液し、130℃に昇温した。ポリマーポリオール中間体(H-1)、(PL1-1)、(PL1-5)、分散剤(d-1)、ACN、St、アリルアルコールPO2.2モル付加物、ジビニルベンゼン、ラジカル重合開始剤(c-1)及びキシレンを表3に示す部数で混合した原料混合液(G1-1)をスタティックミキサーを用いてラインブレンドした後、表3に示す1槽目の送液速度で1槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせポリマーポリオール中間体(IB1-1)を得た。1槽目の重合槽からオーバーフローさせた(IB1-1)は表3に示す1槽目の送液速度で2槽目の重合槽へ連続的に送液した。
〔第2工程〕 1槽目から表3に示す1槽目の送液速度の速度でオーバーフローさせた(IB1-1)とポリオール(PL1-1)、ポリオール(PL1-6)、ポリオール(b-2)、ACN、St、ラジカル重合開始剤(c-1)及びキシレンを表3に示す部数で混合した原料混合液(G1-2)をスタティックミキサーを用いてラインブレンドした後、表3に示す2槽目の送液速度の速度で2槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせた反応液をSUS製の受け槽にストックして、ポリマーポリオール中間体(IB1-2)を得た。(IB1-2)から過水蒸気(蒸気中に含まれる水分量として、ポリマーポリオールに対し4重量%となる量を2時間かけて投入)を別の口から添加しながら未反応モノマーとキシレンを2,666~3,999Pa(20~30torr)で2時間、130~140℃減圧下でストリッピングして、ポリマーポリオール中間体(IB1-3)を得た。
〔希釈工程〕(IB1-3)に対してポリオール(PL1-1)、ポリオール(b-1)~(b-16)を表3に示す部数で混合し、ポリマーポリオール(I-1)を得た。前記の測定、評価方法で(I-1)を評価した。結果を表5に示す。
Example 1 [Production of polymer polyol (I-1)]
[First step] Two tanks of a continuous polymerization apparatus (SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) are prepared, and the first overflow line is connected to the inlet of the second polymerization tank in series. Deploy. An initial charge liquid in which polyol (PL1-1), polyol (PL1-6), polyol (b-2), and xylene were mixed in the parts shown in Table 3 in advance in the first tank and the second polymerization tank respectively. L-1) 2,000 parts were charged and the temperature was raised to 130 ° C. Polymer polyol intermediate (H-1), (PL1-1), (PL1-5), dispersant (d-1), ACN, St, allyl alcohol PO 2.2 mol adduct, divinylbenzene, radical polymerization initiator The raw material mixture (G1-1) in which (c-1) and xylene were mixed in the number of parts shown in Table 3 was line-blended using a static mixer, and then the first tank at the liquid feeding speed in the first tank shown in Table 3 Was continuously fed to the polymerization tank and overflowed from the polymerization tank to obtain a polymer polyol intermediate (IB1-1). Overflowing from the first polymerization tank (IB1-1) was continuously fed to the second polymerization tank at the first tank feeding speed shown in Table 3.
[Second Step] From the first tank, overflow (IB1-1), polyol (PL1-1), polyol (PL1-6), polyol (b- 2) A raw material mixture (G1-2) obtained by mixing ACN, St, radical polymerization initiator (c-1) and xylene in the number of parts shown in Table 3 was line-blended using a static mixer, and then shown in Table 3. The liquid was continuously fed to the second polymerization tank at the second liquid feeding speed, and the reaction liquid overflowed from the polymerization tank was stocked in a SUS receiving tank, and the polymer polyol intermediate (IB1- 2) was obtained. (IB1-2) was added with 2% of unreacted monomer and xylene while adding over-steam (amount of water contained in the steam was 4% by weight with respect to the polymer polyol over 2 hours) from another port. , 666-3,999 Pa (20-30 torr) for 2 hours at 130-140 ° C. under reduced pressure to obtain a polymer polyol intermediate (IB1-3).
[Dilution step] Polyol (PL1-1) and polyols (b-1) to (b-16) are mixed in the parts shown in Table 3 to (IB1-3) to obtain polymer polyol (I-1). It was. (I-1) was evaluated by the measurement and evaluation methods described above. The results are shown in Table 5.
実施例2~26 [ポリマーポリオール(I-2)~(I-26)の製造]
 実施例1において、第1工程、第2工程及び希釈工程で、表3及び表4に示す部数の初期仕込み及び原料混合液を使用する以外は実施例1と同様にして、ポリマーポリオール(I-2)~(I-26)を得た。(I-2)~(I-26)について、実施例1と同様に測定、評価した。結果を表5及び表6に示す。
Examples 2 to 26 [Production of polymer polyols (I-2) to (I-26)]
In Example 1, the polymer polyol (I--) was used in the same manner as in Example 1 except that in the first step, the second step, and the dilution step, the initial charge and the raw material mixture shown in Tables 3 and 4 were used. 2) to (I-26) were obtained. (I-2) to (I-26) were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 5 and 6.
比較例1 [ポリマーポリオール(R-1)の製造]
 連続重合装置(送液ライン、オーバーフローラインを接続したSUS製耐圧反応容器)を用意し、あらかじめポリオール(PL1-1)、キシレンを表4に示す部数で混合した初期仕込液(L-1)を2,000部を充液し、130℃に昇温した。ポリオール(PL1-1)、分散剤(d-1)、ACN、St、アリルアルコールPO2.2モル付加物、ジビニルベンゼン、ラジカル重合開始剤(c-1)及びキシレンを表4に示す部数で混合した原料混合液(G1-1)をスタティックミキサーを用いてラインブレンドした後、表2に示す送液速度で重合槽へ連続的に送液し、重合槽からオーバーフローさせポリマーポリオール中間体(RB1-1)を得た。(RB1-1)から過水蒸気(蒸気中に含まれる水分量として、ポリマーポリオールに対し4重量%となる量を2時間かけて投入)を別の口から添加しながら未反応モノマーとキシレンを2,666~3,999Pa(20~30torr)で2時間、130~140℃減圧下でストリッピングして、ポリマーポリオール中間体(RB2-2)を得た。
〔希釈工程〕(RB2-2)に対してポリオール(b-1)を表4に示す部数で混合し、ポリマーポリオール(R-1)を得た。前記の測定、評価方法で(R-1)を評価した。結果を表6に示す。
(R-1)について、実施例1と同様に測定、評価した。結果を表6に示す。
Comparative Example 1 [Production of polymer polyol (R-1)]
A continuous polymerization apparatus (SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) was prepared, and an initial charge liquid (L-1) in which polyol (PL1-1) and xylene were previously mixed in the number of parts shown in Table 4 was prepared. 2,000 parts were charged and the temperature was raised to 130 ° C. Polyol (PL1-1), dispersant (d-1), ACN, St, allyl alcohol PO 2.2 mol adduct, divinylbenzene, radical polymerization initiator (c-1) and xylene are mixed in the parts shown in Table 4. The raw material mixture liquid (G1-1) was line-blended using a static mixer and then continuously fed to the polymerization tank at the liquid feed speed shown in Table 2 to overflow from the polymerization tank and polymer polyol intermediate (RB1- 1) was obtained. (RB1-1) is added with super-steam (amount of water contained in the vapor is 4% by weight with respect to the polymer polyol over 2 hours) from another port while adding unreacted monomer and xylene. , 666-3,999 Pa (20-30 torr) for 2 hours at 130-140 ° C. under reduced pressure to obtain a polymer polyol intermediate (RB2-2).
[Dilution Step] Polyol (b-1) was mixed with (RB2-2) in the number of parts shown in Table 4 to obtain polymer polyol (R-1). (R-1) was evaluated by the measurement and evaluation methods described above. The results are shown in Table 6.
(R-1) was measured and evaluated in the same manner as in Example 1. The results are shown in Table 6.
比較例2 [ポリマーポリオール(R-2)の製造]
〔第1工程〕 連続重合装置(送液ライン、オーバーフローラインを接続したSUS製耐圧反応容器)を2槽用意し、1槽目のオーバーフローラインを2槽目の重合槽の入口と接続し直列に配置する。1槽目及び2槽目の重合槽にそれぞれ、あらかじめポリオール(PL1-1)、キシレンを表4に示す部数で混合した初期仕込液(L-1)2,000部を充液し、130℃に昇温した。ポリオール(PL1-1)、分散剤(d-1)、ACN、St、アリルアルコールPO2.2モル付加物、ジビニルベンゼン、ラジカル重合開始剤(c-1)及びキシレンを表4に示す部数で混合した原料混合液(G1-3)をスタティックミキサーを用いてラインブレンドした後、表4に示す1槽目の送液速度で1槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせポリマーポリオール中間体(RB2-1)を得た。1槽目の重合槽からオーバーフローさせた(RB2-1)は表4に示す1槽目の送液速度で2槽目の重合槽へ連続的に送液した。
〔第2工程〕 1槽目から表4に示す1槽目の送液速度の速度でオーバーフローさせた(IB2-1)とポリオール(PL1-1)、ACN、St、ラジカル重合開始剤(c-1)及びキシレンを表4に示す部数で混合した原料混合液(G1-4)をスタティックミキサーを用いてラインブレンドした後、表4に示す2槽目の送液速度の速度で2槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせた反応液をSUS製の受け槽にストックして、ポリマーポリオール中間体(RB2-3)を得た。(RB2-3)から過水蒸気(蒸気中に含まれる水分量として、ポリマーポリオールに対し4重量%となる量を2時間かけて投入)を別の口から添加しながら未反応モノマーとキシレンを2,666~3,999Pa(20~30torr)で2時間、130~140℃減圧下でストリッピングして、ポリマーポリオール中間体(RB2-4)を得た。
〔希釈工程〕(RB2-4)に対してポリオール(PL1-1)、ポリオール(b-1)、ポリオール(m-1)、ポリオール(m-2)を表4に示す部数で混合し、ポリマーポリオール(R-2)を得た。(R-2)について、実施例1と同様に測定、評価した。結果を表6に示す。
Comparative Example 2 [Production of polymer polyol (R-2)]
[First step] Two tanks of a continuous polymerization apparatus (SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) are prepared, and the first overflow line is connected to the inlet of the second polymerization tank in series. Deploy. Each of the first and second polymerization tanks was charged with 2,000 parts of an initial charge liquid (L-1) in which polyol (PL1-1) and xylene were previously mixed in the number of parts shown in Table 4, and the temperature was 130 ° C. The temperature was raised to. Polyol (PL1-1), dispersant (d-1), ACN, St, allyl alcohol PO 2.2 mol adduct, divinylbenzene, radical polymerization initiator (c-1) and xylene are mixed in the parts shown in Table 4. The raw material mixture (G1-3) was line blended using a static mixer, then continuously fed to the first polymerization tank at the first tank feeding speed shown in Table 4, and overflowed from the polymerization tank. To obtain a polymer polyol intermediate (RB2-1). Overflow from the first polymerization tank (RB2-1) was continuously fed to the second polymerization tank at the first tank feeding speed shown in Table 4.
[Second Step] (IB2-1) and polyol (PL1-1), ACN, St, radical polymerization initiator (c-) overflowed from the first tank to the first liquid feeding speed shown in Table 4 1) and the raw material mixture (G1-4) in which xylene was mixed in the number of parts shown in Table 4 were line-blended using a static mixer, and then the second tank was fed at the speed of the second tank shown in Table 4. The solution was continuously fed to the polymerization tank, and the reaction liquid overflowed from the polymerization tank was stocked in a SUS receiving tank to obtain a polymer polyol intermediate (RB2-3). (RB2-3) was added with super-steam (amount of water contained in the steam was 4% by weight with respect to the polymer polyol over 2 hours) from another port while adding unreacted monomer and xylene. , 666-3,999 Pa (20-30 torr) for 2 hours at 130-140 ° C. under reduced pressure to obtain a polymer polyol intermediate (RB2-4).
[Dilution step] Polyol (PL1-1), polyol (b-1), polyol (m-1), and polyol (m-2) in (RB2-4) are mixed in the number of parts shown in Table 4 to obtain a polymer. A polyol (R-2) was obtained. (R-2) was measured and evaluated in the same manner as in Example 1. The results are shown in Table 6.
比較例3~5[ポリマーポリオール(R-3)~(R-5)の製造]
 比較例2において、第1工程、第2工程及び希釈工程で、表4に示す部数の初期仕込み及び原料混合液を使用する以外は比較例2と同様にして、ポリマーポリオール(R-3)~(R-5)を得た。(R-3)~(R-5)について、比較例2と同様に測定、評価した。結果を表6に示す。
Comparative Examples 3 to 5 [Production of polymer polyols (R-3) to (R-5)]
In Comparative Example 2, in the same manner as in Comparative Example 2, except that the initial charge and the raw material mixture shown in Table 4 were used in the first step, the second step and the dilution step, the polymer polyol (R-3) to (R-5) was obtained. (R-3) to (R-5) were measured and evaluated in the same manner as in Comparative Example 2. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び表6の結果から、下記のことがわかった。
(1)全ての実施例1~26は、比較例1及び2に比べて、可溶性ポリマー含有量/重合体微粒子含有量の値が小さい。
(2)全ての実施例1~26は、比較例1及び2に比べて、重合体微粒子の体積平均粒子径が小さい。
From the results of Tables 5 and 6, the following was found.
(1) In all of Examples 1 to 26, the value of soluble polymer content / polymer fine particle content is smaller than in Comparative Examples 1 and 2.
(2) In all of Examples 1 to 26, the volume average particle size of the polymer fine particles is smaller than that of Comparative Examples 1 and 2.
実施例27 [ポリマーポリオール(I-27)の製造]
〔第1工程〕 連続重合装置(送液ライン、オーバーフローラインを接続したSUS製耐圧反応容器)を2槽用意し、1槽目のオーバーフローラインを2槽目の重合槽の入口と接続し直列に配置する。1槽目及び2槽目の重合槽にそれぞれ、あらかじめポリオール(PL1-3)、ポリオール(PL1-4)、ポリオール(b-2)、キシレンを表7に示す部数で混合した初期仕込液(L-2)2,000部を充液し、130℃に昇温した。ポリオール(PL1-3)、ポリオール(PL1-4)、(d-2)、ACN、St及びラジカル重合開始剤(c-1)を表7に示す部数で混合した原料混合液(G1-5)をスタティックミキサーを用いてラインブレンドした後、表7に示す1槽目の送液速度で1槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせポリマーポリオール中間体(IB27-1)を得た。1槽目の重合槽からオーバーフローさせた(IB27-1)は表7に示す1槽目の送液速度で2槽目の重合槽へ連続的に送液した。
〔第2工程〕 1槽目から表7に示す1槽目の送液速度の速度でオーバーフローさせた(IB1-27)とポリオール(PL1-3)、ポリオール(PL1-4)、ポリオール(b-2)、ACN、St及びラジカル重合開始剤(c-1)を表7に示す部数で混合した原料混合液(G1-6)をスタティックミキサーを用いてラインブレンドした後、表7に示す2槽目の送液速度の速度で2槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせた反応液をSUS製の受け槽にストックして、ポリマーポリオール中間体(IB27-2)を得た。ポリマーポリオール中間体(IB27-2)から過水蒸気(蒸気中に含まれる水分量として、ポリマーポリオールに対し4重量%となる量を2時間かけて投入)を別の口から添加しながら未反応モノマーとキシレンを2,666~3,999Pa(20~30torr)で2時間、130~140℃減圧下でストリッピングして、ポリマーポリオール中間体(IB27-3)を得た。
〔希釈工程〕ポリマーポリオール中間体(IB27-3)に対してポリオール(b-2)、(b-6)~(b-8)、(b-16)~(b-29)を表7に示す部数で混合し、ポリマーポリオール(I-27)を得た。前記の測定、評価方法で(I-27)を評価した。結果を表9に示す。
Example 27 [Production of polymer polyol (I-27)]
[First step] Two tanks of a continuous polymerization apparatus (SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) are prepared, and the first overflow line is connected to the inlet of the second polymerization tank in series. Deploy. An initial charge liquid (L) in which polyol (PL1-3), polyol (PL1-4), polyol (b-2), and xylene were previously mixed in the first and second polymerization tanks in the number of parts shown in Table 7, respectively. -2) 2,000 parts were charged and the temperature was raised to 130 ° C. Raw material mixture (G1-5) in which polyol (PL1-3), polyol (PL1-4), (d-2), ACN, St and radical polymerization initiator (c-1) were mixed in the number of parts shown in Table 7 Was line-blended using a static mixer, and then continuously fed to the first polymerization tank at the liquid feeding speed of the first tank shown in Table 7, and overflowed from the polymerization tank to cause a polymer polyol intermediate (IB27-1). ) Overflowing from the first polymerization tank (IB27-1) was continuously fed to the second polymerization tank at the first tank feeding speed shown in Table 7.
[Second Step] From the first tank, overflow (IB1-27), polyol (PL1-3), polyol (PL1-4), polyol (b- 2) The raw material mixture (G1-6) in which ACN, St and radical polymerization initiator (c-1) were mixed in the number of parts shown in Table 7 was line-blended using a static mixer, and then the two tanks shown in Table 7 The polymer polyol intermediate (IB27-2) was continuously fed to the second polymerization tank at the rate of the first liquid feed, and the reaction liquid overflowed from the polymerization tank was stocked in a SUS receiving tank. Got. Unreacted monomer while adding pervapor (from the polymer polyol intermediate (IB27-2), the amount of water contained in the steam is 4% by weight with respect to the polymer polyol over a period of 2 hours) from another port. And xylene were stripped at 2,666-3,999 Pa (20-30 torr) for 2 hours at 130-140 ° C. under reduced pressure to obtain a polymer polyol intermediate (IB27-3).
[Dilution Step] Table 7 shows polyols (b-2), (b-6) to (b-8), and (b-16) to (b-29) with respect to the polymer polyol intermediate (IB27-3). Polymer polyol (I-27) was obtained by mixing in the indicated number of parts. (I-27) was evaluated by the measurement and evaluation methods described above. The results are shown in Table 9.
実施例28~47 [ポリマーポリオール(I-28)~(I-47)の製造]
 実施例27において、第1工程、第2工程及び希釈工程で、表7及び表8に示す部数の初期仕込み及び原料混合液を使用する以外は実施例27と同様にして、ポリマーポリオール(I-28)~(I-47)を得た。(I-28)~(I-47)について、実施例1と同様に測定、評価した。結果を表9に示す。
Examples 28 to 47 [Production of polymer polyols (I-28) to (I-47)]
In Example 27, the polymer polyol (I-- 28) to (I-47) were obtained. (I-28) to (I-47) were measured and evaluated in the same manner as in Example 1. The results are shown in Table 9.
比較例6 [ポリマーポリオール(R-6)の製造]
〔第1工程〕 連続重合装置(送液ライン、オーバーフローラインを接続したSUS製耐圧反応容器)を2槽用意し、1槽目のオーバーフローラインを2槽目の重合槽の入口と接続し直列に配置する。1槽目及び2槽目の重合槽にそれぞれ、あらかじめポリオール(PL1-3)、ポリオール(PL1-4)及びキシレンを表8に示す部数で混合した初期仕込液(L-1)2,000部を充液し、130℃に昇温した。ポリオール(PL1-3)、ポリオール(PL1-4)、(d-2)、ACN、St及びラジカル重合開始剤(c-1)を表8に示す部数で混合した原料混合液(G1-7)をスタティックミキサーを用いてラインブレンドした後、表8に示す1槽目の送液速度で1槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせポリマーポリオール中間体(RB6-1)を得た。1槽目の重合槽からオーバーフローさせたポリマーポリオール中間体(RB6-1)は表8に示す1槽目の送液速度で2槽目の重合槽へ連続的に送液した。
〔第2工程〕 1槽目から表8に示す1槽目の送液速度の速度でオーバーフローさせたポリマーポリオール中間体(RB6-1)とポリオール(PL1-3)、ポリオール(PL1-4)、ACN、St及びラジカル重合開始剤(c-1)を表8に示す部数で混合した原料混合液(G1-8)をスタティックミキサーを用いてラインブレンドした後、表8に示す2槽目の送液速度の速度で2槽目の重合槽へ連続的に送液し、重合槽からオーバーフローさせた反応液をSUS製の受け槽にストックして、ポリマーポリオール中間体(RB6-2)を得た。(RB6-2)から過水蒸気(蒸気中に含まれる水分量として、ポリマーポリオールに対し4重量%となる量を2時間かけて投入)を別の口から添加しながら未反応モノマーとキシレンを2,666~3,999Pa(20~30torr)で2時間、130~140℃減圧下でストリッピングして、ポリマーポリオール中間体(RB6-3)を得た。
〔希釈工程〕ポリマーポリオール中間体(RB6-3)に対してポリオール(PL1-3)および(PL1-4)、ポリオール(m-3)を表8に示す部数で混合し、ポリマーポリオール(R-6)を得た。ポリマーポリオール(R-6)について、実施例27と同様に測定、評価した。結果を表9に示す。
Comparative Example 6 [Production of polymer polyol (R-6)]
[First step] Two tanks of a continuous polymerization apparatus (SUS pressure-resistant reaction vessel connected with a liquid feed line and an overflow line) are prepared, and the first overflow line is connected to the inlet of the second polymerization tank in series. Deploy. 2,000 parts of initial charge liquid (L-1) in which polyol (PL1-3), polyol (PL1-4) and xylene were mixed in advance in the number of parts shown in Table 8 respectively in the first and second polymerization tanks. Was charged and the temperature was raised to 130 ° C. Raw material mixture (G1-7) in which polyol (PL1-3), polyol (PL1-4), (d-2), ACN, St and radical polymerization initiator (c-1) were mixed in the number of parts shown in Table 8 Was line-blended using a static mixer, and then continuously fed to the first polymerization tank at the liquid feeding speed of the first tank shown in Table 8, and overflowed from the polymerization tank to cause the polymer polyol intermediate (RB6-1). ) The polymer polyol intermediate (RB6-1) overflowed from the first polymerization tank was continuously fed to the second polymerization tank at the first tank feeding speed shown in Table 8.
[Second Step] The polymer polyol intermediate (RB6-1) and polyol (PL1-3), polyol (PL1-4) overflowed from the first tank to the liquid feeding speed of the first tank shown in Table 8; A raw material mixture (G1-8) in which ACN, St and radical polymerization initiator (c-1) were mixed in the number of parts shown in Table 8 was line blended using a static mixer, and then the second tank shown in Table 8 was fed. The polymer polyol intermediate (RB6-2) was obtained by continuously sending the solution to the second polymerization tank at a liquid speed and stocking the reaction liquid overflowed from the polymerization tank in a SUS receiving tank. . (RB6-2) was added with 2% of unreacted monomer and xylene while adding over-steam (amount of water contained in the steam was 4% by weight with respect to the polymer polyol over 2 hours) from another port. , 666-3,999 Pa (20-30 torr) for 2 hours at 130-140 ° C. under reduced pressure to obtain a polymer polyol intermediate (RB6-3).
[Dilution step] Polyol (PL1-3) and (PL1-4) and polyol (m-3) were mixed in the parts shown in Table 8 with respect to polymer polyol intermediate (RB6-3), and polymer polyol (R- 6) was obtained. The polymer polyol (R-6) was measured and evaluated in the same manner as in Example 27. The results are shown in Table 9.
比較例7[ポリマーポリオール(R-7)の製造]
 比較例6において、第1工程、第2工程及び希釈工程で、表8に示す部数の初期仕込み及び原料混合液を使用する以外は比較例6と同様にして、ポリマーポリオール(R-7)を得た。(R-7)について、比較例6と同様に測定、評価した。結果を表9に示す。
Comparative Example 7 [Production of polymer polyol (R-7)]
In Comparative Example 6, the polymer polyol (R-7) was prepared in the same manner as in Comparative Example 6 except that the initial charge and the raw material mixture shown in Table 8 were used in the first step, the second step, and the dilution step. Obtained. (R-7) was measured and evaluated in the same manner as in Comparative Example 6. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9の結果から、下記のことがわかった。
(1)全ての実施例27~47は、比較例6に比べて、可溶性ポリマー含有量/重合体微粒子含有量の値が小さい。
(2)全ての実施例27~47は、比較例6に比べて、重合体微粒子の体積平均粒子径が小さい。
From the results in Table 9, the following was found.
(1) In all of Examples 27 to 47, the value of soluble polymer content / polymer fine particle content is smaller than that of Comparative Example 6.
(2) In all of Examples 27 to 47, the volume average particle diameter of the polymer fine particles is smaller than that of Comparative Example 6.
実施例48~73、比較例8~12 [ポリウレタンフォームの製造]
 実施例1~26で得られたポリマーポリオール(I-1)~(I-26)及び比較例1~5で得られた比較のポリマーポリオール(R-1)~(R-5)を使用し、表10及び表11記載の配合比で、以下に示す発泡処方によりポリウレタンフォームを製造した。これらのフォームの物性を下記の方法により評価した。結果を表10及び表11に示す。
<発泡処方>
〔1〕ポリマーポリオール及びポリイソシアネートをそれぞれ25±2℃に温度調整した。
〔2〕ポリマーポリオール、整泡剤、水、触媒の順でステンレス製ビーカーに仕込み、25℃±2℃で撹拌混合し、直ちにポリイソシアネートを加え、撹拌機〔ホモディスパー、特殊機化(株)製〕を用いて撹拌した(撹拌条件:2,000rpm×8秒間)。
〔3〕撹拌停止後、25×25×10cmの木箱(25℃±2℃)に混合したビーカー内容物を投入して発泡させ、ポリウレタンフォームを得た。
Examples 48 to 73, Comparative Examples 8 to 12 [Production of polyurethane foam]
The polymer polyols (I-1) to (I-26) obtained in Examples 1 to 26 and the comparative polymer polyols (R-1) to (R-5) obtained in Comparative Examples 1 to 5 were used. Polyurethane foams were produced by the foaming formulation shown below at the blending ratios shown in Table 10 and Table 11. The physical properties of these foams were evaluated by the following methods. The results are shown in Table 10 and Table 11.
<Foaming prescription>
[1] The temperature of each polymer polyol and polyisocyanate was adjusted to 25 ± 2 ° C.
[2] Polymer polyol, foam stabilizer, water, catalyst are charged in a stainless steel beaker and stirred and mixed at 25 ° C ± 2 ° C. (Mixing conditions: 2,000 rpm × 8 seconds).
[3] After the stirring was stopped, the contents of the beaker mixed in a wooden box (25 ° C. ± 2 ° C.) of 25 × 25 × 10 cm were added and foamed to obtain a polyurethane foam.
<表10及び表11の実施例48~73及び比較例8~12のフォーム物性の評価方法>
(1)密度(kg/m):JIS K6400-1997〔項目5〕に準拠
(2)25%ILD(硬度)(kgf/314cm):JIS K6401-1997に準拠
(3)引張強度(kgf/cm):JIS K6301-1995〔項目3〕に準拠
(4)引裂強度(kgf/cm):JIS K6301-1995〔項目9〕に準拠
(5)切断伸度(%):JIS K6301-1995〔項目3〕に準拠
(6)圧縮永久歪(%):JIS K6382-1995〔項目5.5〕に準拠
(7)通気性(ml/cm/s):JIS K6400-7-2004〔項目4〕に準拠
<Methods for evaluating foam physical properties of Examples 48 to 73 and Comparative Examples 8 to 12 in Table 10 and Table 11>
(1) Density (kg / m 3 ): compliant with JIS K6400-1997 [Item 5] (2) 25% ILD (hardness) (kgf / 314 cm 2 ): compliant with JIS K6401-1997 (3) Tensile strength (kgf / Cm 2 ): compliant with JIS K6301-1995 [item 3] (4) Tear strength (kgf / cm): compliant with JIS K6301-1995 [item 9] (5) Cut elongation (%): JIS K6301-1995 [Item 3] compliant (6) Compression set (%): JIS K6382-1995 [Item 5.5] compliant (7) Air permeability (ml / cm 2 / s): JIS K6400-7-2004 [Item 4]
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表10及び表11の結果から、下記のことがわかった。
(1)実施例48~73に比べて、比較例8~10及び12は、25%ILD、引張強度、引裂強度が劣る。
(2)実施例48~73に比べて、比較例8及び9は、切断伸度が劣る。
(3)よって、本発明の実施例48~73は比較例8~10及び12に対して、25%ILD、引張強度、引裂強度において、満足する結果が得られ、機械物性に優れたポリウレタンフォームが得られる。
From the results of Table 10 and Table 11, the following was found.
(1) Compared with Examples 48 to 73, Comparative Examples 8 to 10 and 12 are inferior in 25% ILD, tensile strength, and tear strength.
(2) Compared with Examples 48 to 73, Comparative Examples 8 and 9 have inferior cutting elongation.
(3) Therefore, Examples 48 to 73 of the present invention have a satisfactory result in 25% ILD, tensile strength, and tear strength compared to Comparative Examples 8 to 10 and 12, and are excellent in mechanical properties. Is obtained.
 なお、通常ポリウレタンフォームの物性としては、25%ILD、引張強度、引裂強度、切断伸度及び通気性は数値が大きいほど、また、圧縮永久歪は数値が小さいほど良好であることを表す。 In general, the physical properties of polyurethane foam indicate that 25% ILD, tensile strength, tear strength, cutting elongation and air permeability are better as the numerical value is larger, and compression set is smaller as the numerical value is smaller.
実施例74~94、比較例13及び14 [ポリウレタンフォームの製造]
 実施例27~47で得られたポリマーポリオール(I-27)~(I-47)及び比較例6、7で得られたポリマーポリオール(R-6)及び(R-7)を使用し、表12に記載の配合比により、各原料を25±2℃で撹拌混合し、金型温度は60±5℃、金型サイズ:40×40×10(H)cm、キュアー時間は6分にてポリウレタンフォームを製造した。これらのフォームの物性を下記の方法により評価した。結果を表12に示す。
Examples 74 to 94, Comparative Examples 13 and 14 [Production of polyurethane foam]
The polymer polyols (I-27) to (I-47) obtained in Examples 27 to 47 and the polymer polyols (R-6) and (R-7) obtained in Comparative Examples 6 and 7 were used. 12, each raw material is stirred and mixed at 25 ± 2 ° C., the mold temperature is 60 ± 5 ° C., the mold size is 40 × 40 × 10 (H) cm, and the curing time is 6 minutes. A polyurethane foam was produced. The physical properties of these foams were evaluated by the following methods. The results are shown in Table 12.
<表12の実施例74~94及び比較例13及び14のフォーム物性の評価方法>
(1)密度(kg/m):JIS K6400-1997〔項目5〕に準拠
(2)25%ILD(硬度)(kgf/314cm):JIS K6401-1997に準拠
(3)引張強度(kgf/cm):JIS K6301-1995〔項目3〕に準拠
(4)引裂強度(kgf/cm):JIS K6301-1995〔項目9〕に準拠
(5)切断伸度(%):JIS K6301-1995〔項目3〕に準拠
(6)圧縮永久歪(%):JIS K6382-1995〔項目5.5〕に準拠
<Methods for evaluating foam physical properties of Examples 74 to 94 and Comparative Examples 13 and 14 in Table 12>
(1) Density (kg / m 3 ): compliant with JIS K6400-1997 [Item 5] (2) 25% ILD (hardness) (kgf / 314 cm 2 ): compliant with JIS K6401-1997 (3) Tensile strength (kgf / Cm 2 ): compliant with JIS K6301-1995 [item 3] (4) Tear strength (kgf / cm): compliant with JIS K6301-1995 [item 9] (5) Cut elongation (%): JIS K6301-1995 [Item 3] compliant (6) Compression set (%): JIS K6382-1995 [Item 5.5] compliant
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12の結果から、下記のことがわかった。
(1)実施例74~94に比べて、比較例13及び14は、25%ILD、引張強度、引裂強度、切断伸度が劣る。
(2)よって、本発明の実施例74~94は比較例13及び14に対して、25%ILD、引張強度、引裂強度、切断伸度において、満足する結果が得られ、機械物性に優れたポリウレタンフォームが得られる。
From the results in Table 12, the following was found.
(1) Compared with Examples 74 to 94, Comparative Examples 13 and 14 are inferior in 25% ILD, tensile strength, tear strength, and cut elongation.
(2) Therefore, in Examples 74 to 94 of the present invention, satisfactory results were obtained in terms of 25% ILD, tensile strength, tear strength, and cut elongation compared to Comparative Examples 13 and 14, and the mechanical properties were excellent. A polyurethane foam is obtained.
 なお、通常ポリウレタンフォームの物性としては、25%ILD、引張強度、引裂強度、切断伸度は数値が大きいほど、また、圧縮永久歪は数値が小さいほど良好であることを表す。 In general, the physical properties of polyurethane foam indicate that 25% ILD, tensile strength, tear strength, and elongation at break are better as the numerical value is larger, and compression set is smaller as the numerical value is smaller.
 本発明のポリマーポリオールは、ポリウレタンの機械物性を向上させることから、フォーム(軟質、硬質、半硬質フォーム等)、エラストマー、RIM成形品等ポリウレタン全般に幅広く好適に使用できる。特に、ポリウレタンフォームの製造に用いる場合には、ポリウレタンフォームの各物性をバランス良く調整でき、好適である。
 本発明のポリウレタン形成性組成物から形成されるポリウレタンは、各種の幅広い用途に使用されるが、特にポリウレタンフォームとして自動車内装部品や家具の室内調度品等に好適に用いられる。
 
Since the polymer polyol of the present invention improves the mechanical properties of polyurethane, it can be used widely in a wide range of polyurethanes such as foams (soft, rigid, semi-rigid foams), elastomers, RIM molded products and the like. In particular, when used for the production of polyurethane foam, the physical properties of the polyurethane foam can be adjusted with good balance, which is preferable.
Polyurethanes formed from the polyurethane-forming composition of the present invention are used in a wide variety of applications. Particularly, they are suitably used as polyurethane foams for automobile interior parts, indoor furniture for furniture, and the like.

Claims (7)

  1. エチレン性不飽和化合物(E)を構成単位とする重合体微粒子(JR)がポリオール(PL)中に含有されてなるポリマーポリオールにおいて、(PL)が下記強度向上剤(b)を含有してなり、(JR)の体積平均粒子径(R)が0.1~1.5μmであるポリマーポリオール(I)。
     強度向上剤(b):エステル化合物、チオエステル化合物、リン酸エステル化合物及びアミド化合物からなる郡から選ばれる少なくとも1種の化合物であって、2価以上の芳香族多価カルボン酸を必須構成成分とする化合物
    In a polymer polyol in which polymer fine particles (JR) containing an ethylenically unsaturated compound (E) as a structural unit are contained in a polyol (PL), (PL) contains the following strength improver (b). , (JR) polymer polyol (I) having a volume average particle diameter (R) of 0.1 to 1.5 μm.
    Strength improver (b): at least one compound selected from the group consisting of an ester compound, a thioester compound, a phosphate ester compound and an amide compound, wherein a divalent or higher aromatic polyvalent carboxylic acid is an essential constituent Compound
  2. 強度向上剤(b)が下記一般式(I)で表される化合物である請求項1に記載のポリマーポリオール。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(I)中、R1は活性水素含有化合物から1個の活性水素を除いた残基を表す。活性水素含有化合物としては、水酸基含有化合物、アミノ基含有化合物、カルボキシル基含有化合物、チオール基含有化合物及びリン酸化合物;分子内に2種以上の活性水素含有官能基を有する化合物が含まれる。これら活性水素含有化合物は、1種類でも複数種類でも使用することができる。すなわち、複数のR1は、それぞれ同一でも異なっていてもよい。Yは3価以上の芳香族ポリカルボン酸からカルボキシル基を除いた残基を表す。aは2≦a≦芳香環置換基数-2を満たす整数である。Zはm価以上の活性水素含有化合物からm個の活性水素を除いた残基を表す。mは1~10の整数を表す。]
    The polymer polyol according to claim 1, wherein the strength improver (b) is a compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (I), R1 represents a residue obtained by removing one active hydrogen from an active hydrogen-containing compound. Examples of the active hydrogen-containing compound include a hydroxyl group-containing compound, an amino group-containing compound, a carboxyl group-containing compound, a thiol group-containing compound, and a phosphate compound; a compound having two or more active hydrogen-containing functional groups in the molecule. These active hydrogen-containing compounds can be used either alone or in combination. That is, the plurality of R1s may be the same or different. Y represents a residue obtained by removing a carboxyl group from a trivalent or higher aromatic polycarboxylic acid. a is an integer satisfying 2 ≦ a ≦ the number of aromatic ring substituents−2. Z represents a residue obtained by removing m active hydrogens from an active hydrogen-containing compound having a valence of at least m. m represents an integer of 1 to 10. ]
  3. 強度向上剤(b)の含有量が、ポリオール(PL)の重量を基準として、10~100重量%である請求項1又は2に記載のポリマーポリオール。 The polymer polyol according to claim 1 or 2, wherein the content of the strength improver (b) is 10 to 100% by weight based on the weight of the polyol (PL).
  4. 重合体微粒子(JR)の体積平均粒子径(R)が0.1~0.9μmである請求項1~3のいずれかに記載のポリマーポリオール。 4. The polymer polyol according to claim 1, wherein the volume average particle diameter (R) of the polymer fine particles (JR) is 0.1 to 0.9 μm.
  5. 重合体微粒子(JR)の含有量が、ポリマーポリオール(I)の重量を基準として、10~50重量%である請求項1~4のいずれかに記載のポリマーポリオール。 The polymer polyol according to any one of claims 1 to 4, wherein the content of the polymer fine particles (JR) is 10 to 50% by weight based on the weight of the polymer polyol (I).
  6. 可溶性ポリマー含有量(重量%)と重合体微粒子含有量(重量%)との比(可溶性ポリマー含有量/重合体微粒子含有量)が、1/10以下である請求項1~5のいずれかに記載のポリマーポリオール。 6. The ratio (soluble polymer content / polymer fine particle content) between the soluble polymer content (% by weight) and the polymer fine particle content (% by weight) is 1/10 or less. The polymer polyol described.
  7. ポリオール成分とイソシアネート成分とを反応させてポリウレタンを製造する方法において、ポリオール成分が請求項1~6のいずれかに記載のポリマーポリオール(I)をポリオール成分の重量を基準として10~100重量%含有するポリウレタンの製造方法。
     
    In the method for producing a polyurethane by reacting a polyol component and an isocyanate component, the polyol component contains 10 to 100% by weight of the polymer polyol (I) according to any one of claims 1 to 6 based on the weight of the polyol component. A method for producing polyurethane.
PCT/JP2011/003041 2010-05-31 2011-05-31 Polymer polyol and method for producing polyurethane WO2011152036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518247A JPWO2011152036A1 (en) 2010-05-31 2011-05-31 Method for producing polymer polyol and polyurethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-125066 2010-05-31
JP2010125066 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152036A1 true WO2011152036A1 (en) 2011-12-08

Family

ID=45066427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003041 WO2011152036A1 (en) 2010-05-31 2011-05-31 Polymer polyol and method for producing polyurethane

Country Status (2)

Country Link
JP (1) JPWO2011152036A1 (en)
WO (1) WO2011152036A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008593A1 (en) * 2011-07-08 2013-01-17 三洋化成工業株式会社 Polyurethane resin for moisture-permeable water-proof materials, and polyurethane resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797557A (en) * 1993-09-28 1995-04-11 Dainippon Ink & Chem Inc Adhesive composition for solventless composite laminate and lamination method using the composition
JPH09307991A (en) * 1996-05-09 1997-11-28 Inoac Corp Polyurethane foam for speaker edge
JP2002308920A (en) * 2000-08-31 2002-10-23 Sanyo Chem Ind Ltd Polymer polyol composition, method for producing the same, and method for producing polyurethane resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797557A (en) * 1993-09-28 1995-04-11 Dainippon Ink & Chem Inc Adhesive composition for solventless composite laminate and lamination method using the composition
JPH09307991A (en) * 1996-05-09 1997-11-28 Inoac Corp Polyurethane foam for speaker edge
JP2002308920A (en) * 2000-08-31 2002-10-23 Sanyo Chem Ind Ltd Polymer polyol composition, method for producing the same, and method for producing polyurethane resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008593A1 (en) * 2011-07-08 2013-01-17 三洋化成工業株式会社 Polyurethane resin for moisture-permeable water-proof materials, and polyurethane resin composition
US9212249B2 (en) 2011-07-08 2015-12-15 Sanyo Chemical Industries, Ltd. Polyurethane resin for moisture-permeable water-proof materials, and polyurethane resin composition
US9499655B2 (en) 2011-07-08 2016-11-22 Sanyo Chemical Industries, Ltd. Polyurethane resin for moisture-permeable water-proof materials, and polyurethane resin composition

Also Published As

Publication number Publication date
JPWO2011152036A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5368523B2 (en) Method for producing fine particle dispersed polyol and method for producing polyurethane resin
JP4862028B2 (en) POLYMER POLYOL, PROCESS FOR PRODUCING THE SAME AND METHOD FOR PRODUCING POLYURETHANE RESIN
JP4861972B2 (en) Polymer polyol, method for producing the same, and method for producing polyurethane
WO2009153933A1 (en) Polymer polyol and method for producing polyurethane
JP5177614B2 (en) Fine particle dispersed polyol composition and process for producing polyurethane resin
JP2010084013A (en) Polymer polyol and method for producing polyurethane resin
JP2009007555A (en) Process for producing polymer-polyol
JP2018162355A (en) Composition for hard polyurethane foam and manufacturing method of hard polyurethane foam
WO2011152036A1 (en) Polymer polyol and method for producing polyurethane
JP4869276B2 (en) Method for producing polymer polyol and polyurethane
JP5697963B2 (en) Polymer polyol and method for producing polyurethane using the same
JP2010132738A (en) Polymer polyol, method for producing the same and method for producing polyurethane resin
JP2009040946A (en) Method for manufacturing polymer polyol
JP5415098B2 (en) POLYMER POLYOL, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING POLYURETHANE RESIN
JP5913195B2 (en) Polymer polyol and method for producing polyurethane foam using the same
JP4921324B2 (en) Method for producing fine particle dispersed polyol
JP2010235903A (en) Method of producing polymer polyol
JPH11236499A (en) Polymer polyol composition and production of polyurethane
JP2008138178A (en) Polymer polyol
JP6232351B2 (en) Polyol composition and process for producing polyurethane foam using the same
JP5415121B2 (en) Method for producing polymer polyol and polyurethane resin
JP2010031202A (en) Polymer polyol and method for producing polyurethane resin
JP2009007506A (en) Method for producing polymer polyol
JP4887318B2 (en) Polymer polyol
JP2018165362A (en) Composition for producing polyurethane foam and soft polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518247

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789450

Country of ref document: EP

Kind code of ref document: A1