WO2011150945A1 - Système de canalisation flexible - Google Patents
Système de canalisation flexible Download PDFInfo
- Publication number
- WO2011150945A1 WO2011150945A1 PCT/DK2011/050198 DK2011050198W WO2011150945A1 WO 2011150945 A1 WO2011150945 A1 WO 2011150945A1 DK 2011050198 W DK2011050198 W DK 2011050198W WO 2011150945 A1 WO2011150945 A1 WO 2011150945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flexible
- transporting unit
- sea surface
- flexible pipe
- seabed
- Prior art date
Links
- 238000009434 installation Methods 0.000 claims abstract description 96
- 239000012530 fluid Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000007667 floating Methods 0.000 claims description 10
- 230000003373 anti-fouling effect Effects 0.000 claims description 7
- 239000002783 friction material Substances 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 238000004873 anchoring Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 238000005524 ceramic coating Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 2
- 235000013312 flour Nutrition 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000003973 paint Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000005452 bending Methods 0.000 description 5
- 239000003643 water by type Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- 102100037658 STING ER exit protein Human genes 0.000 description 2
- 101710198240 STING ER exit protein Proteins 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/01—Risers
- E21B17/015—Non-vertical risers, e.g. articulated or catenary-type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B27/00—Arrangement of ship-based loading or unloading equipment for cargo or passengers
- B63B27/24—Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B27/00—Arrangement of ship-based loading or unloading equipment for cargo or passengers
- B63B27/30—Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
Definitions
- the present invention relates to a flexible pipe system for transferring fluid between a seabed installation and a sea surface installation.
- the flexible pipe system of the invention is for example useful for transferring hydrocarbon containing fluids from a seabed installation such as a well and to a sea surface installation such as a floating platform or a vessel.
- Flexible pipe systems of the above type are well known in the art and are generally used for transporting fluids, electricity, electromagnetic waves and other media which are transferred to or from a sea surface installation, in particular a floating sea surface installation, such as a floating platform and a vessel.
- a number of configurations for flexible pipe systems have for example been described in Recommended Practice for Flexible Pipe, API 17B, third edition, 2002, section 11.4.10, for example the configurations for lifting of oil, known under the name of "LAZY S” or “LAZY WAVE” and “STEEP S” or “STEEP WAVE,” respectively.
- the hoses extend in a catenary between the sea surface installation and an intermediate positive buoyancy element capable of imparting to the hose, over a portion of its length, a curved configuration of concavity turned toward the seabed.
- the prior art shallow water systems usually are structured to arrange the flexible pipes to have a wave configuration, such as an X S' configuration or similar wave configuration e.g. as described in US 4,793,737.
- a wave configuration such as an X S' configuration or similar wave configuration e.g. as described in US 4,793,737.
- the flexible pipes are supported by a supporting unit, such as a seabed structure, for example a mid water arch or a mid water jacket, at a distance from the seabed.
- US 6,857,822 comprising a tensioning mechanism that prevents excess slack.
- the system of US 6,857,822 comprises a base located on a seabed comprising a rigid arm which can pivot in first and second, opposite directions away from an equilibrium position.
- the rigid arm comprises a tension-applying element.
- the flexible pipe arranged to transport a fluid from a seabed installation to a vessel is clamped to the arm such that the arm will pivot in response to tension in the riser for example caused by a movement of the vessel.
- the object of the invention is to provide a flexible pipe system comprising a flexible transporting unit for transferring fluid between a seabed installation where the flexible transporting unit can accommodate to forces applied to it due to weather conditions as well as due to movement of the sea surface installation and/or the seabed installation, while simultaneously providing a high degree of stability and control over movements of the flexible transporting unit such that the risk of damaging the flexible transporting unit is reduced.
- An additional object is to provide a flexible pipe system which is simple to produce and install.
- the flexible pipe system of the invention is specifically adapted for transferring fluid between a seabed installation and a sea surface installation.
- the flexible pipe system comprises a fixed subsea structure with a support section and a flexible transporting unit with an axis along its length, a sea surface end and a seabed end arranged with a horizontal distance and a vertical distance.
- the sea surface end is connected to the sea surface installation.
- the seabed end is the touchdown point of the flexible transporting unit or the point along the flexible transporting unit where it is connected to the seabed installation which ever has the shorter horizontal distance to the sea surface end.
- the touchdown point of the flexible transporting unit is the point along the touchdown point of the flexible transporting unit where it meets the seabed.
- the flexible transporting unit is supported by the support section of the fixed subsea structure at a flexible pipe supporting area defining a flexible transporting unit sea surface length, which is the length of the flexible transporting unit which extends from its sea surface end to the flexible pipe supporting area. At least a section of the flexible transporting unit is movably along its axis with respect to the support section of the fixed subsea structure such that the flexible transporting unit sea surface length can vary between a minimum flexible transporting unit sea surface length and a maximum flexible transporting unit sea surface length.
- the flexible pipe system may comprise two or more flexible transporting units, but is in the following described mainly with one flexible transporting unit.
- the flexible pipe system of the invention thereby provides a wave configuration of the flexible transporting unit which in the following is referred to as a "sliding-S", which sliding-S configuration provides the flexible transporting unit with a surplus of length while simultaneously ensuring that the risk of damaging the flexible pipe system due to this surplus of length is reduced compared to prior art systems. Simultaneously any risk of the flexible transporting unit to over-bend or touch down and drag across the seabed and/or to be unduly stretched which may result in damaging of the flexible transporting unit, has been reduced to a minimum.
- the sea surface installation may in practice be any type of installation arranged at or near the sea surface, where the term "near" is used to mean closer to the sea surface than to the seabed, preferably up to about 20 m below the sea surface.
- Examples of sea surface installations include platforms and vessels.
- the sea surface installation is a floating installation, preferably selected from a vessel and a floating platform.
- the sea surface installation is a moored floating installation.
- the flexible pipe system is most beneficial in situations where the sea surface installation is a vessel, such as a weathervaning vessel or a spread-moored vessel.
- Weathervaning vessels are often used in shallow waters.
- An example of a shallow water system comprising a weathervaning vessel which may in one embodiment be used in combination with the present invention is described in co-pending application DK PA 2009 01333.
- a hang-off system as described in co-pending application DK PA 2009 01376 comprising a weathervaning vessel is used in combination with the present invention.
- any weathervaning vessel as well as any spread-moored vessel in practice can be applied as a sea surface installation in the present invention.
- a 'floating weathervaning vessel' or merely a 'weathervaning vessel' is a vessel from which one or more flexible transporting units are leading to a subsea structure.
- Such weathervaning vessels as well as spread-moored vessels are known to the skilled person and usually comprise an external turret system or an internal turret system.
- the internal turret system leads the flexible transporting units through the hull bottom whereas the external turret system leads the flexible transporting unit from a topside hang-off structure extending beyond the hull and the rail of the vessel.
- a weathervaning vessel is usually moored to the seabed but may also in certain situations be moored by line to one or more fixed structures, and is usually moored while still having a large freedom to move to adapt to forces applied to the weathervaning vessel e.g. by wind, water current and waves.
- 'seabed' is generally used to denote the subsea floor and the seabed installation is an installation in or in contact with the seabed.
- the seabed installation may for example be a fixed installation, such as a well, an anchoring installation and/or a secondary fixed subsea structure.
- a fixed installation such as a well, an anchoring installation and/or a secondary fixed subsea structure.
- the skilled person will understand that the type of seabed installation is not important for the present invention in general and accordingly any seabed installation can be applied in the present invention.
- the seabed end is the touchdown point of the flexible transporting unit.
- the seabed end will be the point along the flexible transporting unit where it is connected to the seabed installation, namely in the situations where the flexible transporting unit is connected to the seabed installation without having any touch down point between the subsea structure and the seabed installation.
- the flexible pipe system may comprise one or more flexible transporting units.
- the flexible transporting unit(s) may be any kind of flexible transporting units which are used in offshore applications.
- the one or more flexible transporting units comprise at least one unbonded flexible offshore pipe.
- the one or more flexible transporting units comprise at least one bonded flexible offshore pipe.
- the flexible transporting unit may for example be a flexible riser or an umbilical.
- the shallow water system comprises a plurality of flexible transporting units e.g. comprising a plurality of rises, such as a plurality of risers and optionally at least one umbilical.
- Flexible transporting units - sometimes also called jumpers - such as risers and umbilicals are well known in the art.
- Risers are usually applied for transportation of petrochemical products from the seabed to a sea surface installation such as a weathervaning vessel.
- Umbilicals are often used for transporting fluids, electricity, signals and other to and/or from installations at or beyond the seabed.
- the flexible transporting unit comprises at least one flexible pipe.
- the flexible transporting unit comprises at least one umbilical.
- the flexible transporting unit comprises at least one flexible riser pipe, such as a jumper.
- the flexible transporting unit comprises two or more pipes connected to each other and in fluidic connection with each other. It is well known to the skilled person how to connect pipes to each other to obtain a fluidic connection.
- the two or more connected pipes may be of similar types or of different types, provided that at least one of the pipes is a flexible pipe.
- the flexible transporting unit comprises a rigid pipe section, which rigid pipe section is substantially rigid, e.g. provided by a substantially rigid cover layer applied to a section of a flexible pipe of the flexible transporting unit.
- the flexible transporting unit comprises a rigid pipe and a flexible pipe connected to each other and in fluidic connection with each other.
- the flexible pipe system comprises two or more flexible transporting units, preferably arranged in substantially side by side relation to each other.
- the flexible transporting units may be of similar types or of different types, of similar size or of different sizes.
- the sea surface end is the position of the flexible transporting unit where it is connected to the sea surface installation.
- the connection may provide a fluidic communication or merely be a fixation depending on the type and arrangement of sea surface installation.
- the sea surface end is fluidically connected to the sea surface installation.
- the seabed end is the touchdown point of the flexible transporting unit. In most situations where the seabed end is the touchdown point of the flexible transporting unit the horizontal distance between the sea surface end and the seabed end can vary from a minimum horizontal distance to a maximum horizontal distance.
- the difference between the minimum horizontal distance and the maximum horizontal distance is preferably about 50 m or less, such as about 40 m or less, such as about 30 m or less, such as about 25 m or less, such as about 20 m or less, such as about 15 m or less, such as about 10 m or less.
- the area along the pipe at and near the touchdown point may be covered with an extra external reinforcement such as it is generally known in the art.
- the vertical distance between the sea surface end and the seabed end is be a substantially stationary distance. In this situation this substantially stationary distance is also referred to as the vertical minimum distance.
- the vertical distance varies from a minimum vertical distance to a maximum vertical distance, where the difference between the minimum vertical distance and the maximum vertical distance preferably is about 10 m or less, such as about 5 m or less.
- the seabed end is the point along the flexible transporting unit where it is connected to the seabed installation.
- the connection may provide a fluidic communication or merely be a fixation depending on the type and arrangement of the seabed installation.
- the seabed end is fluidically connected to the seabed installation.
- the horizontal distance between the sea surface end and the seabed end is a substantially stationary distance. In this situation it is also referred to as the horizontal minimum distance.
- the vertical distance between the sea surface end and the seabed end is a substantially stationary distance and in this situation it is also referred to as the vertical minimum distance.
- the subsea structure is preferably a substantially rigid structure fixed to the seabed in a relatively rigid fixation.
- the subsea structure may be fixed to the seabed by any method, e.g. by being held to the seabed with a heavy anchoring element (a dead weight), by being partly embedded in the seabed or by being provided with one or more piles which are driven into the seabed e.g. in a substantially vertical direction.
- the subsea structure is fixed to the seabed in a position which is substantially below the sea surface installation in at least one position of the sea surface installation.
- the minimum horizontal distance between the sea surface end and the seabed end is relatively short, such as about 30 m or less, such as about 20 m or less, such as about 15 m or less, such as about 10 m or less. If the minimum horizontal distance between the sea surface end and the seabed end is too short, the risk of over bending of the flexible transporting unit may be increased. In such situations the flexible transporting unit may be arranged in a structure to extend in a detour to and from a minimum horizontal distance to the sea surface installation and the seabed installation which is longer than the minimum horizontal distance between the sea surface end and the seabed end.
- the sea surface installation is a weathervaning vessel with a hull
- the subsea structure is arranged at the seabed such that it at least in one position of the weathervaning vessel will be under the hull of the weathervaning vessel.
- the subsea structure is fixed to the seabed in a position having a minimum distance to a flexible pipe vertical plane through the sea surface end and the seabed end of the flexible transporting unit which is up to about 100 %, such as up to about 75 %, such as 50 %, such as up to about 40 %, such as up to about 30 %, such as up to about 20 %, such as up to about 10 %, such as up to about 5 % of the minimum horizontal distance between the sea surface end and the seabed end of the flexible transporting unit, preferably the subsea structure is fixed to the seabed in a position substantially lying in the flexible pipe vertical plane.
- the minimum distance from the subsea structure to the flexible pipe vertical plane is determined substantially perpendicular to the flexible pipe vertical plane.
- the flexible pipe vertical plane is an imaginary plane used merely for describing the positions of elements of the flexible pipe system in relation to each other.
- the flexible transporting unit can be applied with a substantially straight minimum horizontal direction between the sea surface end and the seabed end.
- the subsea structure is a pile structure, comprising one or more piles, such as a mono pile.
- Monopiles are preferred because they are simple and cost effective to install.
- Multipile structures may however be stronger and more stable, and may in certain applications be the preferred choice.
- the subsea structure is a dead weight structure, comprising a deadweight which is substantially large to fix the subsea structure to the seabed.
- the support section of the fixed subsea structure is the part of the subsea structure adapted to support the flexible transporting unit in a sliding fashion. In most situations the support section is the uppermost part of the subsea structure since such an arrangement provides the simplest installation of the flexible transporting unit onto the support section. However, it should be observed that the support section need not be the uppermost part of the subsea structure and that parts of the subsea structure may protrude vertically above the support section.
- the support section of the subsea structure is arranged at a distance D-sea surface from the sea surface and at a distance D-seabed from the seabed, preferably D-sea surface is substantially larger than D- seabed. All distances to the sea surface are determined at still water at ebb tide unless otherwise specified.
- the minimum horizontal distance between the sea surface end and the seabed end of the flexible transporting unit is determined as the minimal distance possible without damaging the flexible pipe system and with intact mooring of the sea surface installation, if any.
- the minimum vertical distance between the sea surface end and the seabed end of the flexible transporting unit is determined at still water at flood tide.
- D-seabed is at least about 1 m, such as at least about 2 m, such as at least about 3 m, such as at least about 4 m, such as at least about 5 m, such as at least about 6 m, such as at least about 7 m, such as at least about 8 m, such as at least 10 m, such as at least 25 m, such as at least 50 m, such as at least 50 m, such as at least 100 m.
- D-seabed is at least about 0.1 %, such as at least about 1 %, such as at least about 2 %, such as at least about 3 %, such as at least about 4 %, such as at least about 5 %, such as at least about 10 % m, such as at least about 15 %, such as at least about 20 %, such as at least 30 %, such as at least 40 %, such as at least 50 %, such as at least 60 %, such as at least 70 %, such as up to about 100 %, such as up to about 90 %, such as up to about 80 % of the distance between the sea surface and the seabed.
- the flexible pipe system of the present invention is highly beneficial to apply at shallow waters, such as at water depths up to about 200 m, such as preferably with a depth of up to about 100 m, such as with a depth of up to about 80 m, such as with a depth of up to about 80 m, such as with a depth of up to about 70 m, such as with a depth of up to about 60 m, such as with a depth of up to about 55 m, such as with a depth of up to about 50 m, such as with a depth of up to about 45 m, such as with a depth of up to about 40 m, such as with a depth of up to about 35 m, such as with a depth of up to about 30 m, such as with a depth of up to about 25 m, such as with a depth of up to about 20 m, such as with a depth of up to about 15 m, such as with a depth of up to about 10 m.
- the support section of the subsea structure should preferably be shaped to provide a good sliding surface for allowing the flexible transporting unit to slide relative to it.
- the support section of the subsea structure comprises a curved surface, preferably comprising an arch shape for supporting the flexible transporting unit.
- the subsea structure has a width and a length perpendicular to the width.
- the width may preferably be substantially parallel to the flexible pipe vertical plane defined above.
- the support section may preferably have an arched shape which is substantially uniform along at least a part of its length.
- the length of the support section should preferably be at least as long as the outer diameter of at least a sliding section of the flexible transporting unit where the sliding section is the length section of the flexible transporting unit which comprises a flexible pipe supporting area as the flexible transporting unit slides relative to the support section from a position where the flexible transporting unit sea surface length is at a maximum to a position where it is at a minimum.
- the length of the support section is sufficiently long to support two or more flexible transporting units in a side by side relation.
- a separating fence may be arranged between the flexible transporting units.
- the support section of the subsea structure has a gutter structure, preferably comprising a channel with a channel bottom support surface and a pair of side fences, the flexible transporting unit is supported in the channel.
- the gutter structure may be a multi channel gutter structure comprising a channel for each flexible transporting unit.
- the side fences may have equal or different sizes and shape.
- the fences have, independently of each other, a height - preferably a minimum height - from the channel bottom support surface which is at least about 10 %, such as at least about 20 %, such as at least about 30 %, such as at least about 40 %, such as at least about 50 %, such as at least about 60 %, such as at least about 75 %, such as at least about 100%, such as at least about 500 %, such up to about 1000 % of the outer diameter of the flexible transporting unit at its flexible pipe supporting area.
- the length of the channel is not important provided that it is sufficiently long to provide a stable support.
- the channel has a length, and the channel bottom support surface is arch curved along the channel length and the distance of the fences is substantially constant along the channel length.
- the channel has a length
- the channel bottom support surface is arch curved along the channel length
- the distance of the fences is substantially larger at a first and a third channel sections closer to one of the sea surface end and the seabed end than along a second channel section between the first and third channel sections.
- the support section of the subsea structure comprises a coating of a low friction material, having a sufficiently low friction to provide that the friction between the support section and the supporting area of the flexible transporting unit is lower than it would have been without the low friction coating.
- the low friction material may be any low friction material with a sufficient strength and a sufficient durability in sea water.
- the low friction material is selected from polymers, e.g. a flour polymer such as PTFE (poly tetra fluro ethylene), ceramic coatings e.g. comprising chrome oxide and/or alumina oxide, tungsten carbide coating, metal coatings e.g. comprising zinc, aluminium, stainless steel and/or nickel.
- the support section may comprise a mechanical anti friction structure optionally comprising elements which will move or rotate as a result of the relative movement between the support section and the flexible transporting unit.
- the support section of the subsea structure comprises one or more rotatable bars for reducing friction between the flexible pipe supporting area of the flexible transporting unit and the support section of the subsea structure.
- the support section of the subsea structure comprises a rotatable wheel or a rotatable muff for reducing friction between the flexible pipe supporting area of the flexible transporting unit and the support section of the subsea structure.
- the flexible pipe system may be applied both at shallow waters as well as at deep waters.
- the minimum horizontal distance between the sea surface end and the seabed end of the flexible transporting unit is at least about 2 m, such as at least about 4 m, such as at least about 6 m, such as at least about 8 m, such as at least about 10 m, such as at least about 15 m, such as at least about 20 m, such as at least about 30 m, such as at least about 40 m, such as at least about 50 m, such as at least about 75 m, such as at least about 100 m, such as at least about 200 m, such as at least about 500 m, such as up to about 3000 m, such as up to about 2000 m, such as up to about 1000 m.
- the minimum vertical distance between the sea surface end and the seabed end of the flexible transporting unit is about 3000 m or less, such as about 2000 m or less, such as 1000 m or less, such as about 500 m or less, such as about 400 m or less, such as about 300 m or less, such as about 200 m or less, such as about 100 m or less, such as about 60 m or less, such as about 50 m or less, such as about 40 m or less, such as about 30 m or less, such as about 20 m or less, such as about 10 m or less.
- the sliding section of the flexible transporting unit may in principle have any length provided that sufficient arrangement is provided to prevent the flexible transporting unit from coming into undesired contact with the seabed.
- the sliding section of the flexible transporting unit is as defined above.
- one or more buoyancy elements may be arranged along the flexible transporting unit sea surface length to provide a w-waved configuration of the flexible transporting unit whereby the risk of undesired contact between the flexible transporting unit and the seabed can be reduced or eliminated.
- the sliding section of the flexible transporting unit is at least about 1 m, such as at least about 2 m, such as at least about 3 m, such as at least about 4 m, such as at least about 5 m, such as at least about 6 m, such as at least about 7 m, such as at least about 8 m, such as at least about 9 m, such as at least about 10 m, such as at least about 11 m, such as at least about 12 m, such as at least about 13 m, such as at least about 14 m, such as at least about 15 m, such as up to about 50 m, such as up to about 40 m, such as up to about 35 m, such as up to about 30 m, such as up to about 25 m, such as up to about 20 m.
- the maximum flexible transporting unit sea surface length is up to about twice the sum of the minimum horizontal and the minimum vertical distance between the sea surface end and the seabed end of the flexible transporting unit, preferably from about the sum of the minimum horizontal distance plus 10% of the minimum vertical distance to about the minimum horizontal distance plus 300% of the minimum vertical distance, such as from about the sum of the minimum horizontal distance plus 20% of the minimum vertical distance to about the minimum horizontal distance plus 200% of the minimum vertical distance, such as from about the sum of the minimum horizontal distance plus 50% of the minimum vertical distance to about the minimum horizontal distance plus 150% of the minimum vertical distance, such as from about the sum of the minimum horizontal distance plus 75% of the minimum vertical distance to about the minimum horizontal distance plus 100% of the minimum vertical distance.
- the minimum flexible transporting unit sea surface length is up to about X m shorter than the maximum flexible transporting unit sea surface length, wherein X is at least about 0.5 m, such as at least about 1 m, such as at least about 2 m, such as at least about 3 m, such as at least about 4 m, such as at least about 5 m, such as at least about 6 m, such as at least about 8 m, such as at least about 10 m, such as at least about 15 m, such as at least about 20 m, such as at least about 25 m, such as at least about 30 m, such as at least about 40 m, such as at least about 50 m, such as at least about 60 m, such as up to about 100 m.
- X is at least about 0.5 m, such as at least about 1 m, such as at least about 2 m, such as at least about 3 m, such as at least about 4 m, such as at least about 5 m, such as at least about 6 m, such
- the minimum flexible transporting unit sea surface length is at least about the straight line distance between the sea surface end and the seabed end of the flexible transporting unit, such as at least about the sum of the minimum horizontal and the minimum vertical distance between the sea surface end and the seabed end of the flexible transporting unit, such as from about the sum of the minimum horizontal distance plus 50% of the minimum vertical distance to about the minimum horizontal distance plus 400% of the minimum vertical distance, such as from about the sum of the minimum horizontal distance plus 125% of the minimum vertical distance to about the minimum horizontal distance plus 200% of the minimum vertical distance.
- the flexible transporting unit is not clamped to the support section of the fixed subsea structure in such a way that it cannot slide.
- the flexible transporting unit is not clamped to the support section of the fixed subsea structure.
- the flexible transporting unit can slide relative to the support section of the fixed subsea structure to thereby provide change of the flexible transporting unit sea surface length so that the flexible transporting unit can accommodate to variations in forces applied to it as well as to optional movements of the sea surface installation.
- the flexible transporting unit upon an increase in tension in the flexible transporting unit from the sea surface installation beyond a maximum acceptable tension point, is arranged to slide in relation to the support section of the fixed subsea structure to lengthen the flexible transporting unit sea surface length to a position when there is substantially no tension beyond the maximum acceptable tension point in flexible transporting unit from the sea surface installation.
- the maximum acceptable tension point is preferably a tension point which is sufficiently low to ensure that neither the flexible transporting unit, nor the subsea structure is damaged due to such tension.
- the flexible pipe system may comprise one or more ballasts attached directly or indirectly to the flexible transporting unit at the flexible transporting unit sea surface length and/or at the flexible transporting unit subsea length to increase control of the sliding of the flexible transporting unit relative to the support section.
- the flexible transporting unit comprises one or more ballasts to provide a pulling force to slide the flexible transporting unit relative to the support section of the fixed subsea structure to shorten the flexible transporting unit sea surface length to a position when there is substantially no tension beyond the maximum acceptable tension point in the flexible transporting unit from the sea surface installation.
- the resulting force of the one or more ballast(s) may preferably be arranged and selected such that they provide substantially no resulting pulling force to the flexible transporting unit when the flexible transporting unit has reached its minimum flexible transporting unit sea surface length position.
- the flexible transporting unit and/or the subsea structure with sliding stop e.g. in the form of physical blocking barrier.
- the flexible transporting unit comprises a sliding stop arranged to stop the flexible transporting unit from sliding beyond the slide stop, the slide stop preferably being provided by a physical barrier.
- the sliding stop may for example be provided by a clamp attached to the flexible transporting unit and arranged to slide in a clamp house fixed in relation to the subsea structure, the clamp house preferably has a sliding length of at least about 1 m, such as at least about 2 m, such as at least about 3 m, such as at least about 4 m, such as at least about 5 m, such as at least about 6 m, such as at least about 8 m, such as at least about 10 m, such as at least about 15 m, such as at least about 20 m, such as at least about 25 m, such as at least about 30 m, such as at least about 40 m, such as up to about 50 m.
- a sliding length of at least about 1 m, such as at least about 2 m, such as at least about 3 m, such as at least about 4 m, such as at least about 5 m, such as at least about 6 m, such as at least about 8 m, such as at least about 10 m, such as
- the subsea installation is a secondary fixed subsea structure, the seabed end is clamped to the secondary fixed subsea structure, and is in fluidic communication with a flexible pipe arranged as an extension of the flexible transporting unit.
- the secondary fixed subsea structure preferably has a height from seabed which is at least about 0.1 %, such as at least about 1 %, such as at least about 2 %, such as at least about 3 %, such as at least about 4 %, such as at least about 5 %, such as at least about 10 % m, such as at least about 15 %, such as at least about 20 %, such as at least 30 %, such as at least 40 %, such as at least 50 %, such as at least 60 %, such as at least 70 %, such as up to about 100 %, such as up to about 90 %, such as up to about 80 % of the distance between the sea surface and the seabed.
- the secondary fixed subsea structure may have a similar or different height than the subsea structure. In most situations it is desired that the secondary fixed subsea structure has a height which is at least 50 % of the height of the support section position of the subsea structure.
- the secondary fixed subsea structure may preferably have a height and be arranged such that the section of the flexible transporting unit between the subsea structure and the secondary fixed subsea structure is substantially longer than the distance between the subsea structure and the secondary fixed subsea structure when the flexible transporting unit sea surface length has its maximum flexible transporting unit sea surface length, and is sufficiently short not to have a touchdown point between the subsea structure and the secondary fixed subsea structure and thereby it will not lie on the seabed when the flexible transporting unit sea surface length has its minimum flexible transporting unit sea surface length.
- the flexible pipe system may comprise one or more buoyancy elements arranged to support the flexible transporting unit.
- buoyancy elements are well known in the art, and the skilled person will be able to select a suitable size and shape of a buoyancy element in dependence of which type and weight of pipe it should be adapted to support.
- the flexible pipe system comprises at least one buoyancy element arranged to support the flexible transporting unit at its flexible transporting unit sea surface length. As indicated above such buoyancy elements may be used to decrease or eliminate any risk of the flexible transporting unit coming into damaging contact with the seabed.
- the flexible transporting unit extends in a catenary configuration, preferably selected from a last-s lazy-s configuration and a steep-s configuration.
- a flexible pipe system has been provided wherein the flexible transporting unit is arranged to slide relative to the support section of the subsea structure such that the flexible transporting unit sea surface length of the flexible transporting unit at any time is sufficiently long to avoid damage due to pull from the weathervaning vessel and simultaneously is sufficiently short to not come into contact with the seabed.
- a flexible pipe system wherein the flexible transporting unit is arranged to slide relative to the support section of the subsea structure as a function of the minimum horizontal and minimum vertical distance between the sea surface end and the seabed end of the flexible transporting unit.
- One or more parts of the flexible pipe system may be coated with an anti fouling coating to prevent or reduce marine growth; such anti fouling coating optionally comprises an epoxy or an anti fouling paint.
- anti fouling coatings are well known.
- FIG. 1 is a schematically drawing of a flexible pipe system of the invention.
- FIG. la is a drawing of the same flexible pipe system as in FIG. 1, but where the minimum horizontal and minimum vertical distances have been shown.
- FIG. 2 is a schematically drawing of a flexible pipe system of the invention which is a variation of the flexible pipe system shown in FIG. 1.
- FIG. 3 is a schematically drawing of a flexible pipe system of the invention which is another variation of the flexible pipe system shown in FIG. 1.
- FIG. 4 is a side view of a sectional cut through another flexible pipe system.
- FIGs. 5 and 6 show a part of the flexible pipe system of FIG. 4 in two different positions.
- FIG. 7 shows a closer view of a section of FIG. 6.
- the figures are schematic and may be simplified for clarity. Throughout, the same reference numerals are used for identical or corresponding parts.
- the flexible pipe system shown in FIG. 1 and FIG la comprises a fixed subsea structure 2 with a support section 3 and a flexible transporting unit 1 with a sea surface end 4 and a seabed end 5 arranged with a horizontal distance HD and a vertical distance VD.
- the sea surface end 4 is connected to a sea surface installation 6, here a hang-off turret system 6a of a vessel which preferably is a spread-moored vessel or a weathervaning vessel.
- the seabed end 5 is the touchdown point of the flexible transporting unit 1, i.e. the point along the flexible transporting unit 1 that touches down to the seabed.
- this touchdown point 5 is the seabed end of the flexible transporting unit 1
- the flexible transporting units 1 exceed beyond the seabed end 5 in a flexible transport section 5a which is connected to a seabed installation 7, e.g. a well installation.
- the flexible transporting unit 1 is supported by the support section 3 of the fixed subsea structure 2 at a flexible pipe supporting area la, which defines a flexible transporting unit sea surface length lb extending along the flexible transporting unit from its sea surface end 4 to the flexible pipe supporting area la.
- At least a section of the flexible transporting unit is movable along its axis with respect to the support section 3 of the fixed subsea structure 2 such that the flexible transporting unit sea surface length lb can vary between a minimum flexible transporting unit sea surface length and a maximum flexible transporting unit sea surface length.
- the sea surface installation 6 may provide an increase in tension in the flexible transporting unit 1 beyond a maximum acceptable tensioning point, which results in that the subsea section lc of the flexible transporting unit between the seabed end 5 and the flexible pipe supporting area la is drawn partly upon the support section 3 to a position where there is substantially no tension in the flexible transporting unit 1 from the sea surface installation 6 beyond the maximum acceptable tensioning point, such that the length of the subsea section lc is decreasing, whereas the length of the flexible transporting unit sea surface length lb is increasing.
- the line 8 indicates the sea surface line.
- the support section 3 has a curved shape provided by having a shape with a substantially circular cross-section.
- the support section 3 may for example comprises one or more rotatable bars arranged in the part of it where it is in contact with the flexible pipe supporting area la of the flexible transporting unit 1.
- the support section 3 of the subsea structure 2 may be in the form of a rotatable wheel or it may be provided with a rotatable muff for reducing friction between the flexible pipe supporting area la of the flexible transporting unit 1 and the support section 3 of the subsea structure.
- the flexible pipe system shown in FIG. 2 comprises a fixed subsea structure 12 with a support section 13 and a flexible transporting unit 11 with a sea surface end 14 connected to a sea surface installation 16 and a seabed end 15, which is the touchdown point of the flexible transporting unit 11, i.e. the point along the flexible transporting unit 11 that touch down to the seabed.
- the flexible transporting units 11 exceed slightly beyond the seabed end 15 in a flexible transport section which is connected to a seabed installation 17.
- the flexible transporting unit 11 has flexible transporting unit sea surface length lib and a subsea section 11c.
- the flexible transporting unit 11 comprises a sliding stop 19, for example provided by a clamp or similar mounted to the flexible transporting unit 11 to ensure that the flexible transporting unit 11 does not slide over the support section 13 beyond a desired point of the pipe.
- the flexible transporting unit 11 can slide over the support section 13 with a length SL, so that the flexible transporting unit sea surface length lib can vary between a minimum flexible transporting unit sea surface length and a maximum flexible transporting unit sea surface length.
- the touchdown point 15 of the flexible transporting unit 11 is closer to the sea surface end 14 of the flexible support unit 11 than in any other position and the horizontal distance between the sea surface end 14 and the seabed end 15 of the flexible transporting 11 is the minimum horizontal distance between the sea surface end 14 and the seabed end 15 of the flexible transporting unit 11.
- the flexible pipe system shown in FIG. 3 comprises a fixed subsea structure 22 with a support section 23 and a flexible transporting unit 21 with a sea surface end 24 connected to a sea surface installation 26 and a seabed end 25 connected to a seabed installation 27 which here is a secondary fixed subsea structure.
- the seabed end 25 is clamped to the secondary fixed subsea structure 27, and is in fluidic communication with a flexible pipe 2 Id which may be an extension of the flexible transporting unit 21.
- the secondary fixed subsea structure 27 has a height which is substantially similar to the height of the subsea structure 22.
- the flexible transporting unit 21 has flexible transporting unit sea surface length 21b and a subsea section 21c.
- the subsea section 21c is provided with ballast 29 to ensure that the sliding of the flexible transporting unit 21 does not result in that the flexible transporting unit sea surface length 21b becomes too long.
- the flexible transporting unit 21 can slide over the support section 23, so that the flexible transporting unit sea surface length 21b can vary between a minimum flexible transporting unit sea surface length and a maximum flexible transporting unit sea surface length.
- the secondary fixed subsea structure 27 ensure that the subsea section 21c can have sufficient length for the sliding of the flexible transporting unit 21 to occur without undesired tension is provided in the subsea section 21c. Simultaneously the secondary fixed subsea structure 27 ensures that the subsea section 21c does not come into contact with the seabed.
- the line 28 indicates the sea surface line.
- the flexible pipe system shown in FIGs. 4-7 comprises a fixed subsea structure 32 with a support section 33 and a flexible transporting unit 31 with a sea surface end 34 connected to a sea surface installation 36 and a seabed end 35, which is the touchdown point of the flexible transporting unit 31..
- the flexible transporting unit 31 exceed beyond the seabed end 35 in a flexible transport section 39 which is connected to a not shown seabed installation.
- the sea surface installation 36 is here a hang-off turret system of a vessel which preferably is a spread-moored vessel or a weathervaning vessel.
- the flexible transporting unit 31 has flexible transporting unit sea surface length 31b and a subsea section 31c.
- the subsea section 31c is provided with ballast 39a, in the form of weight modules to control that the sliding of the flexible transporting unit 31 keeps the flexible transporting unit sea surface length 31b on a desired level.
- the subsea section 31c of the flexible transporting unit 31 is provided with a sliding stop provided by a clamp 41 attached to the subsea section 31c of the flexible transporting unit and arranged to slide in a clamp house 42, 43, 44 provided by a lower clamp stopper 42, an upper clamp stopper 43 and a rigid connecting member 44 providing the distance where the clamp 41 can travel from the lower clamp stopper 42 to the upper clamp stopper 43.
- the clamp house 42, 43, 44 is connected to the subsea structure 32 so that it extend from the support section 33 to a secondary support element 45 connected to the subsea structure 32 via a rigid sidebar 46. Both the support section 33 and the support element 45 are provided with a not shown gutter structure for providing a good support of the flexible transporting unit 31.
- the clamp 41 is in its low position and the flexible transporting unit 31 is in a position such that the flexible transporting unit sea surface length 31b has a minimum length and in FIG. 6 the clamp 41 is in its high position and the flexible transporting unit 31 is in a position such that the flexible transporting unit sea surface length 31b has a maximum.
- the weight modules 39a are lying on the seabed.
- the flexible transporting unit 31 will start sliding over the support section 33.
- the weight modules 39a are lifted from the seabed, thereby moving the touchdown point of the flexible transporting unit 31 away from the subsea structure 32.
- the weight modules 39a will result in a sliding back force until a point where the tension provided from the sea surface installation 36 increases the tension provided by the weight modules 39 or until the weight modules 39a again are lying on the seabed.
- the touchdown point 35 of the flexible transporting unit 31 is closer to the sea surface end 34 of the flexible support unit 31 than in any other position and the horizontal distance between the sea surface end 34 and the seabed end 35 of the flexible transporting 31 is the minimum horizontal distance between the sea surface end 34 and the seabed end 35 of the flexible transporting unit 31.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ocean & Marine Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
- Earth Drilling (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11789284.4A EP2576333B1 (fr) | 2010-06-04 | 2011-06-06 | Système de canalisation flexible |
CN201180038371.3A CN103052562B (zh) | 2010-06-04 | 2011-06-06 | 软管系统 |
AU2011260714A AU2011260714B2 (en) | 2010-06-04 | 2011-06-06 | A flexible pipe system |
BR112012030701-0A BR112012030701B1 (pt) | 2010-06-04 | 2011-06-06 | sistema de tubo flexível |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA201000478 | 2010-06-04 | ||
DKPA201000478 | 2010-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011150945A1 true WO2011150945A1 (fr) | 2011-12-08 |
Family
ID=45066195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2011/050198 WO2011150945A1 (fr) | 2010-06-04 | 2011-06-06 | Système de canalisation flexible |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2576333B1 (fr) |
CN (1) | CN103052562B (fr) |
AU (1) | AU2011260714B2 (fr) |
BR (1) | BR112012030701B1 (fr) |
MY (1) | MY163286A (fr) |
WO (1) | WO2011150945A1 (fr) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9625070B2 (en) | 2008-06-09 | 2017-04-18 | Trinity Bay Equipment Holdings, LLC | Flexible pipe joint |
CA2954887C (fr) | 2011-10-04 | 2020-07-14 | Flexsteel Pipeline Technologies, Inc. | Raccord d'extremite de tuyau equipe d'aeration |
CN110630839B (zh) | 2014-09-30 | 2021-07-13 | 柔性钢管道技术公司 | 管连接器和组装管连接器的方法 |
CA3004049C (fr) | 2015-11-02 | 2021-06-01 | Flexsteel Pipeline Technologies, Inc. | Surveillance d'integrite en temps reel de canalisations a terre |
US10981765B2 (en) | 2016-06-28 | 2021-04-20 | Trinity Bay Equipment Holdings, LLC | Half-moon lifting device |
US11208257B2 (en) | 2016-06-29 | 2021-12-28 | Trinity Bay Equipment Holdings, LLC | Pipe coil skid with side rails and method of use |
SG10202009903RA (en) | 2016-10-10 | 2020-11-27 | Trinity Bay Equipment Holdings Llc | Expandable drum assembly for deploying coiled pipe and method of using same |
MX2019004060A (es) | 2016-10-10 | 2019-09-19 | Trinity Bay Equipment Holdings Llc | Remolque de instalacion para tuberia flexible enrollada y metodo para utilizar el mismo. |
US10526164B2 (en) | 2017-08-21 | 2020-01-07 | Trinity Bay Equipment Holdings, LLC | System and method for a flexible pipe containment sled |
CA3081635A1 (fr) | 2017-11-01 | 2019-05-09 | Trinity Bay Equipment Holdings, LLC | Systeme et procede de manipulation d'un touret de tuyau |
CN111902312B (zh) | 2018-02-01 | 2023-07-18 | 圣三一海湾设备控股有限公司 | 具有侧轨的管道卷垫块及使用方法 |
AU2019224091A1 (en) | 2018-02-22 | 2020-09-17 | Trinity Bay Equipment Holdings, LLC | System and method for deploying coils of spoolable pipe |
CN113165825A (zh) | 2018-10-12 | 2021-07-23 | 圣三一海湾设备控股有限公司 | 用于盘绕的柔性管材的安装拖车及其使用方法 |
AR118122A1 (es) | 2019-02-15 | 2021-09-22 | Trinity Bay Equipment Holdings Llc | Sistema de manejo de tubo flexible y método para usar el mismo |
US10753512B1 (en) | 2019-03-28 | 2020-08-25 | Trinity Bay Equipment Holdings, LLC | System and method for securing fittings to flexible pipe |
US10926972B1 (en) | 2019-11-01 | 2021-02-23 | Trinity Bay Equipment Holdings, LLC | Mobile cradle frame for pipe reel |
WO2021102329A1 (fr) | 2019-11-22 | 2021-05-27 | Trinity Bay Equipment Holdings, LLC | Systèmes et procédés pour raccord de tuyau en pot |
WO2021102306A1 (fr) | 2019-11-22 | 2021-05-27 | Trinity Bay Equipment Holdings, LLC | Systèmes et procédés de raccord de tuyau embouti |
US11204114B2 (en) | 2019-11-22 | 2021-12-21 | Trinity Bay Equipment Holdings, LLC | Reusable pipe fitting systems and methods |
US10822194B1 (en) | 2019-12-19 | 2020-11-03 | Trinity Bay Equipment Holdings, LLC | Expandable coil deployment system for drum assembly and method of using same |
US10844976B1 (en) | 2020-02-17 | 2020-11-24 | Trinity Bay Equipment Holdings, LLC | Methods and apparatus for pulling flexible pipe |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0251488A2 (fr) | 1986-06-05 | 1988-01-07 | Bechtel Limited | Dispositif de colonnes montantes souples et son procédé d'utilisation |
US4892495A (en) | 1986-03-24 | 1990-01-09 | Svensen Niels Alf | Subsurface buoy mooring and transfer system for offshore oil and gas production |
WO1998030438A1 (fr) | 1997-01-07 | 1998-07-16 | Lmg Marin As | Dispositif pour navire de forage et d'exploitation |
US20030161690A1 (en) | 2000-07-20 | 2003-08-28 | Breivik Kare G. | Offshore loading or production system for dynamically positioned ships |
US20040028477A1 (en) * | 2002-01-30 | 2004-02-12 | Kelm Ron L. | Shallow water riser support |
WO2007045850A1 (fr) | 2005-10-18 | 2007-04-26 | Foster Wheeler Energy Limited | Support flottant amarre et procede pour son installation |
WO2009124334A1 (fr) * | 2008-04-09 | 2009-10-15 | Amog Technologies Pty Ltd | Support de colonne montante |
US7669660B1 (en) * | 2008-11-26 | 2010-03-02 | Floatec, Llc | Riser disconnect and support mechanism |
WO2010030160A1 (fr) * | 2008-09-09 | 2010-03-18 | Misc Berhad | Système de transfert de conduite fond marin-surface en mer |
EP2236737A2 (fr) * | 2009-03-27 | 2010-10-06 | Bumi Armada Berhad | Système de support pour colonne montante |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2627542A1 (fr) * | 1988-02-24 | 1989-08-25 | Coflexip | Dispositif de transfert de fluide entre le fond sous-marin et la surface |
US7434624B2 (en) * | 2002-10-03 | 2008-10-14 | Exxonmobil Upstream Research Company | Hybrid tension-leg riser |
-
2011
- 2011-06-06 CN CN201180038371.3A patent/CN103052562B/zh not_active Expired - Fee Related
- 2011-06-06 WO PCT/DK2011/050198 patent/WO2011150945A1/fr active Application Filing
- 2011-06-06 AU AU2011260714A patent/AU2011260714B2/en not_active Ceased
- 2011-06-06 MY MYPI2012005198A patent/MY163286A/en unknown
- 2011-06-06 BR BR112012030701-0A patent/BR112012030701B1/pt not_active IP Right Cessation
- 2011-06-06 EP EP11789284.4A patent/EP2576333B1/fr active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4892495A (en) | 1986-03-24 | 1990-01-09 | Svensen Niels Alf | Subsurface buoy mooring and transfer system for offshore oil and gas production |
EP0251488A2 (fr) | 1986-06-05 | 1988-01-07 | Bechtel Limited | Dispositif de colonnes montantes souples et son procédé d'utilisation |
WO1998030438A1 (fr) | 1997-01-07 | 1998-07-16 | Lmg Marin As | Dispositif pour navire de forage et d'exploitation |
US20030161690A1 (en) | 2000-07-20 | 2003-08-28 | Breivik Kare G. | Offshore loading or production system for dynamically positioned ships |
US20040028477A1 (en) * | 2002-01-30 | 2004-02-12 | Kelm Ron L. | Shallow water riser support |
WO2007045850A1 (fr) | 2005-10-18 | 2007-04-26 | Foster Wheeler Energy Limited | Support flottant amarre et procede pour son installation |
WO2009124334A1 (fr) * | 2008-04-09 | 2009-10-15 | Amog Technologies Pty Ltd | Support de colonne montante |
WO2010030160A1 (fr) * | 2008-09-09 | 2010-03-18 | Misc Berhad | Système de transfert de conduite fond marin-surface en mer |
US7669660B1 (en) * | 2008-11-26 | 2010-03-02 | Floatec, Llc | Riser disconnect and support mechanism |
EP2236737A2 (fr) * | 2009-03-27 | 2010-10-06 | Bumi Armada Berhad | Système de support pour colonne montante |
Also Published As
Publication number | Publication date |
---|---|
AU2011260714B2 (en) | 2014-08-14 |
AU2011260714A1 (en) | 2012-12-20 |
BR112012030701A2 (pt) | 2016-09-13 |
CN103052562B (zh) | 2016-03-09 |
EP2576333B1 (fr) | 2019-08-07 |
CN103052562A (zh) | 2013-04-17 |
EP2576333A4 (fr) | 2017-05-03 |
EP2576333A1 (fr) | 2013-04-10 |
MY163286A (en) | 2017-08-30 |
BR112012030701B1 (pt) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011260714B2 (en) | A flexible pipe system | |
US6595725B1 (en) | Tethered buoyant support for risers to a floating production vessel | |
EP2156004B1 (fr) | Système de colonne montante-ancrage déconnectable | |
US8123437B2 (en) | Pipeline assembly comprising an anchoring device | |
US20070081862A1 (en) | Pipeline assembly comprising an anchoring device and method for installing a pipeline assembly comprising an anchoring device | |
US7819608B2 (en) | Distributed buoyancy pipeline installation method | |
US8562256B2 (en) | Floating system connected to an underwater line structure and methods of use | |
US9896888B2 (en) | Riser support | |
WO2015033115A2 (fr) | Ensemble colonne montante et procédé | |
US9315245B2 (en) | Offshore system | |
WO2006006852A1 (fr) | Procede et dispositif permettant de relier une colonne montante a une structure cible | |
EP2149669B1 (fr) | Agencement de guide pour une colonne montante sous-marine | |
AU2010101544A4 (en) | External Turret With Above Water Connection Point | |
US8596913B2 (en) | Free standing steel catenary risers | |
AU2006303827A1 (en) | Stabilising of submarine elongate structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180038371.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11789284 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10415/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011789284 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011260714 Country of ref document: AU Date of ref document: 20110606 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012030701 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012030701 Country of ref document: BR Kind code of ref document: A2 Effective date: 20121130 |