WO2011149224A2 - Battery pack having compact structure - Google Patents

Battery pack having compact structure Download PDF

Info

Publication number
WO2011149224A2
WO2011149224A2 PCT/KR2011/003742 KR2011003742W WO2011149224A2 WO 2011149224 A2 WO2011149224 A2 WO 2011149224A2 KR 2011003742 W KR2011003742 W KR 2011003742W WO 2011149224 A2 WO2011149224 A2 WO 2011149224A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit module
protection circuit
battery pack
battery cell
Prior art date
Application number
PCT/KR2011/003742
Other languages
French (fr)
Korean (ko)
Other versions
WO2011149224A3 (en
Inventor
방승현
박영선
김춘연
권호상
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP11786856.2A priority Critical patent/EP2579359B1/en
Priority to JP2013512529A priority patent/JP5672515B2/en
Priority to CN201180026061.XA priority patent/CN102906903B/en
Priority to US13/699,470 priority patent/US9331313B2/en
Publication of WO2011149224A2 publication Critical patent/WO2011149224A2/en
Publication of WO2011149224A3 publication Critical patent/WO2011149224A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack having a compact structure, and more particularly, a battery cell arrangement arranged in a lateral direction by two or more numbers; A protection circuit module (PCM) connected to an upper end of the battery cell arrangement to control the operation of the battery pack; A pack case in which a battery cell array and a protection circuit module are mounted; And it relates to a battery pack including a spacer mounted between the pack case and the battery cell array so as to ensure space according to the increase in the thickness of the battery cell array during charging and discharging.
  • PCM protection circuit module
  • the secondary battery Since secondary batteries have various combustible materials, there are risks of overheating and explosion due to overcharging, overcurrent, and other physical external shocks, and thus have great disadvantages in terms of safety. Therefore, the secondary battery is equipped with a PTC (Positive Temperature Coefficient) element, a protection circuit module (PCM), etc. connected to the battery cell as a safety device that can effectively control abnormal conditions such as overcharge and overcurrent. It is.
  • PTC Physical Temperature Coefficient
  • the secondary battery generally has a tendency to increase the thickness of the battery cell compared to before the charge and discharge when the charge and discharge 300 to 500 cycles.
  • a secondary battery manufactured with a thickness of 6 mm may have a thickness of 6.42 to 6.48 mm after increasing charge and discharge of 300 to 500 cycles by 0.42 to 0.48 mm.
  • the increase in the thickness of the secondary battery leads to an increase in the thickness of the battery pack consisting of a single or a plurality of battery combinations to be mounted in an external application, and when the battery pack with increased thickness is assembled in a notebook computer or mobile phone, the assembly is There is a problem that is difficult or in some cases impossible to assemble.
  • the method can obtain some effects of preventing the thickness change of the battery pack due to the expansion of the battery cell, but since the battery case is produced by plastic injection molding, the injection of the battery case is designed to be thin locally There is a problem that a large amount of defects such as flow marks, unmolding, shrinkage, warpage, etc. occur during mass production.
  • pouch-type battery cells are used to manufacture slimmed battery packs, and at the same time, spacers are provided between the pack case and the battery cell assembly, thereby increasing the thickness of the battery cell assembly during charge and discharge. There is a great need for a technology that can secure space.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • an object of the present invention includes two or more battery cells in a specific structure to exhibit high output or large capacity characteristics, by mounting a spacer between the pack case and the battery cell arrangement, the battery cell arrangement during charge and discharge It is to provide a battery pack that can secure the space according to the increase in the thickness of the sieve.
  • Still another object of the present invention is to provide a battery pack having a large capacity, which can be manufactured by a simple and easy method and can reduce manufacturing costs by simplifying the manufacturing process.
  • PCM protection circuit module
  • the battery cells are arranged in the lateral direction according to the desired battery pack capacity, the PCM is positioned at the upper end of the battery cell assembly, and the spacer is mounted between the pack case and the battery cell assembly.
  • the spacers mounted between the pack case and the battery cell assembly allow the pack case to have a uniform thickness while ensuring space according to an increase in the thickness of the battery cell assembly during charging and discharging.
  • the increase in size can be minimized.
  • the thickness of the pack case can be made uniform, thereby minimizing defects caused by injection molding.
  • the thickness of the spacer is preferably made of a size of 5 to 10% based on the thickness of the battery cell arrangement, more preferably can be made of a size of 7 to 8%. have.
  • the pack case is made of a plastic material
  • the spacer may be made of a sheet member or a plastic material.
  • the pack case may reduce the weight of the battery pack and easily implement a product having a complicated shape, as compared with a pack case made of a metal case.
  • the sheet member may be preferably made of a nomax material.
  • Nomax is a commercial product from DuPont.
  • the spacer is attached to the upper surface or the lower surface of the spacer so that the spacer can be adhered to the outer surface of the battery cell arrangement, it is possible to effectively prevent the spacer from being released in position.
  • the spacer may be made of a double-sided adhesive tape, of course.
  • the spacer preferably, may be of a structure that is mounted on the upper and lower surfaces of the two or more corners of the four corners of the battery cell with a predetermined width, in this structure, the width of the spacer is The size may be 5-20% based on the width.
  • the width of the spacer is smaller than the size of 5% based on the width of the battery cell, the width is too narrow and there is a high possibility that the spacer is damaged. If the width is larger than 20%, the space that offsets the increase in thickness of the battery cell assembly is insufficient. It is not desirable because it is insufficient.
  • the spacer may be a strip member.
  • the spacer may be a lattice member that may be simultaneously mounted to a plurality of battery cells while the top or bottom surface of the battery cell is exposed.
  • the protection circuit module may have a structure including a connection terminal connected to electrode terminals of the battery cells by resistance welding, a metal plate electrically connecting the battery cells, and a protection circuit for controlling the operation of the battery pack.
  • a metal plate for electrically connecting the battery cells may be formed on the upper surface of the protection circuit module, which is a layer inside the protection circuit of the PCM for electrically connecting the battery cells. Compared with a structure in which metal wiring is formed in a layer, the production of PCM and the assembly of a battery pack are easy.
  • the battery cells can be selected in series or parallel connection according to the desired output and capacity of the external device on which the battery pack of the present invention is mounted. For example, when a large capacity is required for a long time use, the electrical connection of the battery cells may be a parallel connection, and when high power is required for a short time, the electrical connection of the battery cells may be a series connection.
  • the electrical connection between the positive terminal of the battery cells and the protection circuit module may be a structure in which a conductive plate attached on the connection terminal of the protection circuit module is welded so as to surround the positive terminal of the battery cells. have.
  • the battery pack of the above structure directly connects the connection terminals of the protection circuit module and the positive terminals of the battery cells with a high welding coupling force by a conductive plate of a specific structure, and electrically connects the battery cells by the metal plate included in the protection circuit module.
  • a battery pack of high capacity or high output can be easily manufactured by a simple method.
  • each battery cell is arranged in a lateral direction to form a battery cell assembly, and after mounting the battery cell assembly and the PCM in the pack case, the battery By connecting the electrode terminals of the cells and the connection terminals of the PCM by resistance welding, a desired battery pack can be manufactured.
  • connection structure of the metal plate included in the PCM is in series, and in the case of the battery pack that requires long-term use, the PCM By making the connection structure of the metal plate contained in parallel, a desired battery pack can be selectively produced according to a need and a use.
  • the conductive plate is attached in a bendable shape on the connection terminal of the protective circuit module, the battery terminal is bent in the shape of "C" with the positive terminal of the cell is located on the conductive plate, then bending of the conductive plate Since resistance welding is performed from the upper surface, physical coupling and electrical connection may be achieved between the connection terminal of the protection circuit module and the positive terminal of the battery cells.
  • the bendable shape of the conductive plate is not particularly limited as long as it is easy to bend, and may be, for example, an “L” shape in a state of being attached on the connection terminal of the protective circuit module.
  • the conductive plate includes a first connection part attached to the connection terminal of the protection circuit module and a second connection part attached to an upper surface of the positive electrode terminal of the battery cells, thereby further connecting the connection terminal of the battery terminal to the protection terminal of the protection circuit module.
  • the conductive plate is not particularly limited as long as it is a material providing a high bonding force by the welding form as described above, but may be preferably a nickel plate, and correspondingly, the positive terminal of the battery cells may be made of an aluminum terminal. have.
  • the current of the resistance electrode flows from the high resistance nickel plate to the low resistance aluminum terminal, so that resistance welding can be easily achieved between the nickel plate and the aluminum terminal.
  • the pack case includes a lower case for mounting the battery cell assembly and the protection circuit module, and an upper case for covering the lower case to fix the battery cell assembly and the protection circuit module in position.
  • the lower case is divided into a battery cell mounting portion in which the battery cells are mounted and a protection circuit module mounting portion in which the protection circuit module is mounted, and a partition wall is formed at a portion where the battery cell mounting portion and the protection circuit module mounting portion are in contact with each other.
  • an opening may be formed in a portion of the partition corresponding to the electrode terminal of the battery cells and the electrical connection portion of the protection circuit module so that the electrode terminals of the battery cells may be exposed in the direction of the protection circuit module.
  • a partition wall is formed at a portion where the battery cell mounting portion and the protection circuit module mounting portion are in contact with each other.
  • an opening is formed in a portion of the partition corresponding to the electrode terminal of the battery cells and the electrical connection portion of the protection circuit module so that the electrode terminal of the battery cells is exposed in the direction of the protection circuit module, and thus the battery cell exposed through the opening.
  • These electrode terminals can be easily welded to the connection terminals of the protection circuit module.
  • the height of the barrier rib may be a height that completely blocks the battery cell mounting portion and the protection circuit module mounting portion from each other.
  • the protective circuit module mounting portion may have a structure including a support for supporting the electrode terminal of the battery cell and the electrical connection of the protective circuit module.
  • the support portion is not particularly limited as long as it can easily support the electrical connection portion of the electrode terminal of the battery cell and the protection circuit module.
  • the support portion may be a structure formed on the lower case with an upward protrusion structure. have.
  • the support part has a cross-shaped protrusion structure, so that the electrode terminals of the battery cells and the protection circuit module may more stably support the electrical connection of the electrode terminal of the battery cell and the protection circuit module.
  • the battery cell arrangement may be configured by arranging a plurality of battery cells in a lateral direction according to the capacity of a desired battery pack.
  • a device such as a notebook computer may be used for a long time while being portable. Since convenience is required, it is preferable to consist of three battery cells.
  • the battery pack according to the present invention may be variously applied regardless of the type and appearance of a battery cell, and preferably a pouch type secondary battery having a substantially rectangular parallelepiped structure having a thin thickness to width, and more preferably a pouch type lithium secondary battery. It can be applied to a battery pack including a battery cell.
  • it may be a structure in which an external input / output terminal for inputting and outputting a current to the battery pack and transmitting and receiving information is mounted in the form of an indentation on the front surface of the protection circuit module.
  • the external input and output terminal has a connector structure, it can be stably connected to the external device on which the battery pack is mounted.
  • the present invention also provides a notebook computer including the battery pack as a power source.
  • the battery pack according to the present invention can be manufactured to provide a desired output and capacity by varying the number of battery cells, so that not only notebook computers, but also can be applied to a variety of devices that require a variable battery capacity Of course it can.
  • FIG. 1 is an exploded view of a battery pack according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a structure in which a spacer is mounted on an upper end of a battery cell assembly
  • FIG. 3 is an exploded view of a battery pack according to another embodiment of the present invention.
  • FIG. 4 is an enlarged schematic view of the spacer of FIG. 3;
  • FIG. 5 is an enlarged schematic view of a portion A of FIG. 2; FIG.
  • FIG. 6 is an enlarged schematic view of a portion B of FIG. 2; FIG.
  • FIG. 8 is an enlarged schematic view of a portion C of FIG. 7; FIG.
  • FIG. 9 is a schematic diagram showing a resistance welding structure of the present invention.
  • FIG. 10 is a partial perspective view of a structure for electrically connecting pouch-type battery cells according to another embodiment of the present invention.
  • FIG. 11 is an enlarged schematic plan view of the PCM of FIG. 10.
  • FIG. 1 is an exploded view schematically showing a battery pack according to an embodiment of the present invention.
  • the battery pack 100 includes a battery cell array 30 in which three battery cells 32 are arranged in a lateral direction, and a protection circuit module connected to an upper end of the battery cell array 30. 40, pack cases 10 and 20 on which the battery cell arrangement 30 and the protection circuit module 40 are mounted, and spacers 50 mounted between the pack case and the battery cell arrangement 30. 52).
  • the battery cells 32 are pouch-type secondary battery cells in which an electrode assembly having a cathode / separation membrane / cathode structure are sealed inside the battery case together with an electrolyte, and are generally formed in a plate shape having a substantially rectangular parallelepiped structure having a thin thickness to width.
  • the pack case defines a lower case 10 for mounting the battery cell array 30 and the protection circuit module 40, and covers the lower case 10 to define the battery cell array 30 and the protection circuit module 40. It consists of an upper case 20 for fixing a position.
  • the upper case 20 and the lower case 10 is made of a plastic material
  • the spacers (50, 52) is made of a double-sided adhesive tape of nomax material.
  • the spacers 50 and 52 are formed of an upper spacer 52 and a lower spacer 50 mounted on an upper surface of the battery cell array 30, and the thickness of the spacers 50 and 52 is about 8 based on the thickness of the battery cell 32. It consists of% size.
  • FIG. 2 is a perspective view schematically illustrating a structure in which a spacer is mounted on an upper end of a battery cell assembly.
  • the upper spacers 52 are about 10% wider than the first upper spacers 523 and 524 having a width w of about 20% based on the width W of the battery cell 32. It is composed of the second upper spacers (521, 522) that is the size of.
  • the thickness of the battery cell 32 that increases during charging and discharging is canceled in the space S between the first upper spacers 523 and 524 and the second upper spacers 521 and 522.
  • first upper spacers 523 and 524 and the second upper spacers 521 and 522 are mounted on an upper surface of two corners of four corners of the battery cell 32 and have a shape of an elongated strip member.
  • FIG. 3 is an exploded view schematically illustrating a battery pack according to still another embodiment of the present invention
  • FIG. 4 is an enlarged schematic view of the spacer of FIG. 3.
  • the spacers 50a and 52a are mounted on the upper and lower surfaces of four corners of the four corners of the battery cell 32, and the upper and lower surfaces of the battery cell 32 are exposed. It consists of a lattice member that can be mounted on a plurality of battery cells 32 at the same time.
  • FIG. 5 is a schematic diagram showing an enlarged portion A of FIG. 2
  • FIG. 6 is a schematic diagram showing an enlarged portion B of FIG. 2.
  • the lower case 10 is divided into a battery cell mounting part 12 in which the battery cells 32 are mounted and a protection circuit module mounting part 14 in which the protection circuit module 40 is mounted. It is.
  • a partition wall 16 for forming a partition is formed at a portion where the battery cell mounting portion 12 and the protection circuit module mounting portion 14 contact each other, and the cathode terminal 34 of the battery cell 32 is protected from the partition wall 16.
  • An opening 18 is formed in a portion corresponding to the electrical connection portion of the circuit module 40 so that the negative terminal 34 of the battery cell 32 can be exposed in the direction of the protection circuit module 40.
  • the height h of the partition wall 16 is formed to a height that completely isolates the battery cell mounting part 12 from the protection circuit module 40. In some cases, for isolation as described above, a partition wall corresponding to an upper case (not shown) may be formed.
  • the protection circuit module 40 may include a connection terminal 42 connected to the positive electrode terminal 33 of the battery cell 32 by resistance welding, a metal plate (not shown) to electrically connect the connection terminals 42 to each other, and A protection circuit (not shown) for controlling the operation of the battery pack is included.
  • the electrical connection portion B of the positive electrode terminal 33 of the battery cell 32 and the protection circuit module 40 includes a conductive plate 41 attached on the connection terminal 42 of the protection circuit module 40.
  • the anode terminal 33 of the cell is formed to wrap.
  • the conductive plate 41 which is a nickel plate, includes a first connecting portion 43 attached to the connecting terminal 42 of the protection circuit module 40 and a second connecting portion attached to the upper surface of the positive terminal of the battery cell, which is an aluminum terminal. 44).
  • the conductive plate 41 is attached to the connection terminal 42 of the protective circuit module 40 in the form of an "L" shape, and the positive electrode terminal 33 of the battery cell 32 is the conductive plate 41. After being bent in a "c" shape in a state where it is located on the first connecting portion 43 of the N-axis, resistance welding is performed from the upper portion of the second connecting portion 44, which is the bent surface of the conductive plate 41.
  • the connector 46 which is an external input / output terminal for inputting and outputting current and transmitting / receiving information to and from the battery pack, is mounted in the form of an indentation on the front surface of the protection circuit module 40.
  • FIG. 7 is a perspective view schematically illustrating the lower case
  • FIG. 8 is a schematic diagram showing an enlarged portion C of FIG. 7.
  • the protective circuit module mounting unit 14 of the lower case 10 includes an external input / output terminal 46 for inputting and outputting current and transmitting and receiving information to and from a battery pack.
  • An external input / output terminal mounting portion 15 is provided.
  • the support part 13 for supporting the electrical connection portion of the positive electrode terminal 33 and the protection circuit module 40 of the battery cell 32 is formed on the partition wall 16 on the lower case 10 in an upward cross-projection structure. It is formed in a connected state.
  • the support 13 appropriately supports a downward pressure applied by a welding tip (not shown) to be positioned on the anode terminal 33 in the resistance welding process, thereby providing a high welding force.
  • FIG. 9 is a schematic diagram showing the resistance welding structure of the present invention.
  • the current generated from the resistance electrode 440 during resistance welding of the nickel plate 430 and the aluminum terminal 420 located on the upper surface of the protection circuit board 410 is from the nickel plate 430 having high resistance.
  • heat is generated due to the resistance difference at the interface between the aluminum terminal 420 and the nickel plate 430.
  • resistance welding of the aluminum terminal 420 are easily achieved.
  • FIG. 10 is a partial perspective view schematically illustrating a structure for electrically connecting pouch-type battery cells according to another embodiment of the present invention
  • FIG. 11 is an enlarged plan view of the PCM of FIG. 10.
  • a metal plate 402 may include a cathode terminal 324 of the first battery cell 32 and an anode of the second battery cell 34. It is formed on the upper surface of the protection circuit module 40a in a structure in which the terminals 342 are connected in series.
  • the protection circuit module 40a is a battery cell for direct electrical connection to the PCM main body 401 and the battery cells 32, 34, and 36 in which a protection circuit for controlling overcharge, overdischarge, and overcurrent is formed.
  • the connection terminals 404 and 407 formed at positions corresponding to the electrode terminals of the fields 32, 34 and 36, and metal plates formed on the upper surface for electrical connection of the connection terminals 404 and 407 ( 405) and an external input / output terminal 403 mounted in the form of an indentation on the front surface to perform input and output of current and transmission and reception of information to the battery pack.
  • the battery pack according to the present invention includes two or more battery cells so as to exhibit high output or high capacity characteristics, and has a structure in which a spacer is mounted between the pack case and the battery cell arrangement.
  • a space according to an increase in thickness of the battery cell array may be secured.
  • the conductive plate attached on the connection terminal of the protection circuit module is welded in a shape that surrounds the positive terminal of the battery cells, the weldability is excellent and compact A battery pack of one structure can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Provided is a battery pack comprising: a battery cell arranging body having two or more battery cells transversely arranged thereon, each of the battery cells being obtained by sealing an electrode assembly with a cathode/separating membrane/anode structure inside a battery case along with a liquid electrolyte; a protection circuit module (PCM) connected to the upper end part of the battery cell arranging body so as to control the operation of the battery pack; a pack case having the battery cell arranging body and the protection circuit module loaded thereon; and a spacer, mounted between the pack case and the battery cell arranging body, for securing space for the increase in the width of the battery cell arranging body during charge/discharge.

Description

콤팩트한 구조의 전지팩  Compact battery pack
본 발명은 콤팩트한 구조의 전지팩에 관한 것으로, 더욱 상세하게는, 둘 또는 그 이상의 개수로 측면 방향으로 배열되어 있는 전지셀 배열체; 전지팩의 작동을 제어하기 위해 전지셀 배열체의 상단부에 연결되는 보호회로 모듈(PCM); 전지셀 배열체 및 보호회로 모듈이 탑재되는 팩 케이스; 및 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있도록, 팩 케이스와 전지셀 배열체 사이에 장착되는 스페이서를 포함하고 있는 전지팩에 관한 것이다. The present invention relates to a battery pack having a compact structure, and more particularly, a battery cell arrangement arranged in a lateral direction by two or more numbers; A protection circuit module (PCM) connected to an upper end of the battery cell arrangement to control the operation of the battery pack; A pack case in which a battery cell array and a protection circuit module are mounted; And it relates to a battery pack including a spacer mounted between the pack case and the battery cell array so as to ensure space according to the increase in the thickness of the battery cell array during charging and discharging.
이차전지에는 각종 가연성 물질들이 내장되어 있어서, 과충전, 과전류, 기타 물리적 외부 충격 등에 의해 발열, 폭발 등의 위험성이 있으므로, 안전성 측면에서 큰 단점을 가지고 있다. 따라서, 이차전지에는 과충전, 과전류 등의 비정상인 상태를 효과적으로 제어할 수 있는 안전소자로서 PTC(Positive Temperature Coefficient) 소자, 보호회로 모듈(Protection Circuit Module: PCM) 등이 전지셀에 접속된 상태로 탑재되어 있다. Since secondary batteries have various combustible materials, there are risks of overheating and explosion due to overcharging, overcurrent, and other physical external shocks, and thus have great disadvantages in terms of safety. Therefore, the secondary battery is equipped with a PTC (Positive Temperature Coefficient) element, a protection circuit module (PCM), etc. connected to the battery cell as a safety device that can effectively control abnormal conditions such as overcharge and overcurrent. It is.
한편, 이차전지는 일반적으로 충방전을 300 내지 500 사이클 수행하면 충방전 이전과 비교하여 전지셀의 두께가 증가하는 경향이 있다. 예를 들어, 두께가 6 mm로 제조된 이차전지는 300 내지 500 사이클의 충방전을 수행한 후 두께가 0.42 내지 0.48 mm 만큼 증가하여 6.42 내지 6.48 mm가 된다. On the other hand, the secondary battery generally has a tendency to increase the thickness of the battery cell compared to before the charge and discharge when the charge and discharge 300 to 500 cycles. For example, a secondary battery manufactured with a thickness of 6 mm may have a thickness of 6.42 to 6.48 mm after increasing charge and discharge of 300 to 500 cycles by 0.42 to 0.48 mm.
따라서, 이러한 이차전지의 두께 증가는 외부 어플리케이션에 장착되는 단수 또는 복수 개의 전지 조합으로 이루어진 전지팩의 두께 증가로 이어지며, 두께가 증가된 전지팩이 노트북 컴퓨터 또는 모바일 폰에 조립되는 경우, 조립이 어렵거나 경우에 따라서는 조립이 불가능하게 되는 문제점이 있다. Therefore, the increase in the thickness of the secondary battery leads to an increase in the thickness of the battery pack consisting of a single or a plurality of battery combinations to be mounted in an external application, and when the battery pack with increased thickness is assembled in a notebook computer or mobile phone, the assembly is There is a problem that is difficult or in some cases impossible to assemble.
또한, 종래에는 이러한 전지팩의 두께 증가를 보정하기 위해, 전지팩의 상부 또는 하부 케이스의 전지 두께 방향 면과 접촉되는 케이스 내측 부분의 두께를 국부적으로 얇게 설계하는 방법이 주로 사용되어 왔다. In addition, conventionally, in order to compensate for the increase in thickness of the battery pack, a method of locally thinly designing a thickness of a case inner part in contact with the battery thickness direction surface of the upper or lower case of the battery pack has been mainly used.
그러나, 상기 방법은 전지셀의 두께 팽창으로 인한 전지팩의 두께 변화를 방지하는 효과는 일부 얻을 수 있으나, 전지케이스가 플라스틱 사출성형에 의해 생산되므로, 두께가 국부적으로 얇게 설계되어 있는 전지케이스의 사출 양산시 플로우 마크(flow mark), 미성형, 수축, 휨 등의 불량이 다량 발생하는 문제점이 있다. However, the method can obtain some effects of preventing the thickness change of the battery pack due to the expansion of the battery cell, but since the battery case is produced by plastic injection molding, the injection of the battery case is designed to be thin locally There is a problem that a large amount of defects such as flow marks, unmolding, shrinkage, warpage, etc. occur during mass production.
따라서, 전지케이스의 두께를 균일하게 하면서도 전지셀의 충방전에 따른 전지팩의 두께 증가를 방지할 수 있는 특정 구조의 전지팩이 매우 필요한 실정이다. Therefore, there is a need for a battery pack having a specific structure which can prevent the increase in thickness of the battery pack due to the charging and discharging of the battery cell while making the thickness of the battery case uniform.
한편, 노트북 컴퓨터에 장착되는 전지팩은 고출력 및 대용량을 필요로 한다. 이를 위하여, 종래에는 다수의 원통형 전지셀들로 구성된 원통형 전지팩이 주로 사용되었으나, 최근에는 노트북 컴퓨터가 소형화되는 관계로 슬림화된 전지팩이 매우 필요한 실정이다. Meanwhile, battery packs mounted on notebook computers require high output and large capacity. To this end, conventionally, a cylindrical battery pack consisting of a plurality of cylindrical battery cells was mainly used, but in recent years, a notebook battery is miniaturized in a situation that requires a slim battery pack.
따라서, 슬림화된 전지팩을 제조하기 위해 파우치형 전지셀들을 사용하여 용량을 증가시킴과 동시에, 팩 케이스와 전지셀 배열체 사이에 스페이서를 장착함으로써, 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있는 기술에 대한 필요성이 매우 높은 실정이다. Therefore, pouch-type battery cells are used to manufacture slimmed battery packs, and at the same time, spacers are provided between the pack case and the battery cell assembly, thereby increasing the thickness of the battery cell assembly during charge and discharge. There is a great need for a technology that can secure space.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다. The present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
구체적으로, 본 발명의 목적은 고출력 또는 대용량의 특성을 발휘할 수 있도록 둘 또는 그 이상의 전지셀들을 특정한 구조로 포함하고, 팩 케이스와 전지셀 배열체 사이에 스페이서를 장착함으로써, 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있는 전지팩을 제공하는 것이다. Specifically, an object of the present invention includes two or more battery cells in a specific structure to exhibit high output or large capacity characteristics, by mounting a spacer between the pack case and the battery cell arrangement, the battery cell arrangement during charge and discharge It is to provide a battery pack that can secure the space according to the increase in the thickness of the sieve.
본 발명의 또 다른 목적은 간단하고 용이한 방법으로 제조되며, 제조과정을 간소화시킴으로써 제조비용을 절감할 수 있는 대용량의 전지팩을 제공하는 것이다. Still another object of the present invention is to provide a battery pack having a large capacity, which can be manufactured by a simple and easy method and can reduce manufacturing costs by simplifying the manufacturing process.
이러한 목적을 달성하기 위한 본 발명에 따른 전지팩은,  Battery pack according to the present invention for achieving this object,
(a) 양극/분리막/음극 구조의 전극조립체가 전해액과 함께 전지케이스의 내부에 밀봉되어 있는 전지셀들이 둘 또는 그 이상의 개수로 측면 방향으로 배열되어 있는 전지셀 배열체; (a) a battery cell arrangement in which an electrode assembly having a cathode / separation membrane / cathode structure is sealed in an interior of a battery case together with an electrolyte solution and is arranged in a lateral direction in a number of two or more;
(b) 전지팩의 작동을 제어하기 위해 전지셀 배열체의 상단부에 연결되는 보호회로 모듈(PCM); (b) a protection circuit module (PCM) connected to the upper end of the battery cell arrangement for controlling the operation of the battery pack;
(c) 상기 전지셀 배열체 및 보호회로 모듈이 탑재되는 팩 케이스; 및 (c) a pack case in which the battery cell arrangement and the protection circuit module are mounted; And
(d) 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있도록, 팩 케이스와 전지셀 배열체 사이에 장착되는 스페이서; (d) a spacer mounted between the pack case and the battery cell assembly so as to secure a space according to an increase in the thickness of the battery cell assembly during charge and discharge;
를 포함하고 있다.It includes.
즉, 본 발명에 따른 전지팩은, 소망하는 전지팩 용량에 따라 전지셀들을 측면 방향으로 배열하고, PCM을 전지셀 배열체의 상단부에 위치시키며, 스페이서를 팩 케이스와 전지셀 배열체 사이에 장착함으로써, 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있다. That is, in the battery pack according to the present invention, the battery cells are arranged in the lateral direction according to the desired battery pack capacity, the PCM is positioned at the upper end of the battery cell assembly, and the spacer is mounted between the pack case and the battery cell assembly. By doing so, it is possible to secure a space due to the increase in the thickness of the battery cell array during charging and discharging.
따라서, 팩 케이스와 전지셀 배열체 사이에 장착되는 스페이서에 의해, 팩 케이스의 두께를 균일하게 하면서도 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있으므로, 전지팩 전체의 중량 및 크기 증가를 최소화할 수 있다. Therefore, the spacers mounted between the pack case and the battery cell assembly allow the pack case to have a uniform thickness while ensuring space according to an increase in the thickness of the battery cell assembly during charging and discharging. The increase in size can be minimized.
더욱이, 팩 케이스의 두께를 국부적으로 얇게 성형하는 구조와 비교하여, 팩 케이스의 두께를 균일하게 할 수 있으므로, 사출성형에 따른 불량을 최소화할 수 있다. Moreover, compared to the structure of locally forming the pack case thinly, the thickness of the pack case can be made uniform, thereby minimizing defects caused by injection molding.
본 출원의 발명자들이 실험한 결과에 의하면, 이차전지는 충방전을 300 내지 500 사이클 수행하면 두께가 충방전 사이클 이전의 두께와 비교하여 5 내지 10% 증가하게 된다. 따라서, 이러한 전지의 두께 증가분을 상쇄시키기 위해, 스페이서의 두께는 전지셀 배열체의 두께를 기준으로 5 내지 10%의 크기로 이루어지는 것이 바람직하며, 더욱 바람직하게는 7 내지 8%의 크기로 이루어질 수 있다. According to the results of the experiments of the inventors of the present application, when the secondary battery performs 300 to 500 cycles of charge and discharge, the thickness increases by 5 to 10% compared to the thickness before the charge and discharge cycle. Therefore, in order to offset the increase in the thickness of the battery, the thickness of the spacer is preferably made of a size of 5 to 10% based on the thickness of the battery cell arrangement, more preferably can be made of a size of 7 to 8%. have.
하나의 바람직한 예에서, 상기 팩 케이스는 플라스틱 소재로 이루어져 있고, 상기 스페이서는 시트부재 또는 플라스틱 소재로 이루어질 수 있다. In one preferred embodiment, the pack case is made of a plastic material, the spacer may be made of a sheet member or a plastic material.
따라서, 상기 팩 케이스는 금속 케이스로 이루어진 팩 케이스와 비교하여, 전지팩의 무게를 감소시키고 복잡한 형상의 제품도 용이하게 구현할 수 있다. Therefore, the pack case may reduce the weight of the battery pack and easily implement a product having a complicated shape, as compared with a pack case made of a metal case.
상기 시트부재는 바람직하게는 노맥스(Nomex) 소재로 이루어질 수 있다. 참고로 노맥스(Nomex)는 듀퐁사의 시판 제품이다. The sheet member may be preferably made of a nomax material. Nomax is a commercial product from DuPont.
한편, 상기 스페이서가 전지셀 배열체의 외면에 접착될 수 있도록, 스페이서의 상면 또는 하면에는 접착제가 부가되어 있는 구조로 이루어져 있어서, 스페이서가 정위치 이탈하는 것을 효과적으로 방지할 수 있다. 이와는 달리, 스페이서가 양면 접착 테이프로 이루어질 수 있음은 물론이다. On the other hand, since the spacer is attached to the upper surface or the lower surface of the spacer so that the spacer can be adhered to the outer surface of the battery cell arrangement, it is possible to effectively prevent the spacer from being released in position. Alternatively, the spacer may be made of a double-sided adhesive tape, of course.
상기 스페이서는, 바람직하게는, 전지셀의 4개의 모서리 중 2개 또는 그 이상의 모서리들의 상면과 하면에 소정의 폭으로 장착되어 있는 구조로 이루어질 수 있으며, 이러한 구조에서, 스페이서의 폭은 전지셀의 폭을 기준으로 5 내지 20%의 크기일 수 있다. The spacer, preferably, may be of a structure that is mounted on the upper and lower surfaces of the two or more corners of the four corners of the battery cell with a predetermined width, in this structure, the width of the spacer is The size may be 5-20% based on the width.
스페이서의 폭이 전지셀의 폭을 기준으로 5%의 크기보다 작으면 폭이 지나치게 좁아 스페이서가 파손될 가능성이 높은 문제점이 있고, 20%의 크기보다 크면 전지셀 배열체의 두께 증가를 상쇄하는 공간이 부족하게 되므로 바람직하지 않다. If the width of the spacer is smaller than the size of 5% based on the width of the battery cell, the width is too narrow and there is a high possibility that the spacer is damaged. If the width is larger than 20%, the space that offsets the increase in thickness of the battery cell assembly is insufficient. It is not desirable because it is insufficient.
하나의 바람직한 예로서, 상기 스페이서는 스트립 부재일 수 있다. As one preferred example, the spacer may be a strip member.
또 다른 하나의 바람직한 예로서, 상기 스페이서는 전지셀의 상면 또는 하면이 노출된 상태로 다수의 전지셀들에 동시에 장착될 수 있는 격자형 부재일 수 있다. As another preferred example, the spacer may be a lattice member that may be simultaneously mounted to a plurality of battery cells while the top or bottom surface of the battery cell is exposed.
한편, 상기 보호회로 모듈은 전지셀들의 전극단자들과 저항용접에 의해 연결되는 접속단자, 전지셀들을 전기적 연결하는 금속 플레이트, 및 전지팩의 작동을 제어하는 보호회로를 포함하는 구조일 수 있다. The protection circuit module may have a structure including a connection terminal connected to electrode terminals of the battery cells by resistance welding, a metal plate electrically connecting the battery cells, and a protection circuit for controlling the operation of the battery pack.
상기 구조의 하나의 바람직한 예로서, 전지셀들을 전기적 연결하기 위한 금속 플레이트가 보호회로 모듈의 상면에 형성되어 있는 구조일 수 있으며, 이러한 구조는 전지셀들을 전기적 연결하기 위해 PCM의 보호회로 내부의 레이어(layer)에 금속 배선을 형성한 구조와 비교하여, PCM의 제조 및 전지팩의 조립이 용이하다. As one preferred example of the structure, a metal plate for electrically connecting the battery cells may be formed on the upper surface of the protection circuit module, which is a layer inside the protection circuit of the PCM for electrically connecting the battery cells. Compared with a structure in which metal wiring is formed in a layer, the production of PCM and the assembly of a battery pack are easy.
상기 전지셀들은 본 발명의 전지팩을 장착하는 외부 디바이스의 소망하는 출력과 용량에 따라 직렬 또는 병렬 연결을 선택할 수 있다. 예를 들어, 장시간 사용을 위해 대용량이 요구되는 경우에 상기 전지셀들의 전기적 연결은 병렬 연결일 수 있고, 단시간에 고출력이 요구되는 경우에 상기 전지셀들의 전기적 연결은 직렬 연결일 수 있다. The battery cells can be selected in series or parallel connection according to the desired output and capacity of the external device on which the battery pack of the present invention is mounted. For example, when a large capacity is required for a long time use, the electrical connection of the battery cells may be a parallel connection, and when high power is required for a short time, the electrical connection of the battery cells may be a series connection.
상기 구조의 또 다른 예로서, 전지셀들의 양극단자와 보호회로 모듈의 전기적 접속부위는, 보호회로 모듈의 접속단자 상에 부착된 도전성 플레이트가 전지셀들의 양극단자를 감싸는 형태로 용접되어 있는 구조일 수 있다. As another example of the structure, the electrical connection between the positive terminal of the battery cells and the protection circuit module may be a structure in which a conductive plate attached on the connection terminal of the protection circuit module is welded so as to surround the positive terminal of the battery cells. have.
따라서, 상기 구조의 전지팩은 특정한 구조의 도전성 플레이트에 의해 보호회로 모듈의 접속단자와 전지셀들의 양극단자들을 높은 용접 결합력으로 직접 연결하며, 보호회로 모듈에 포함된 금속 플레이트에 의해 전지셀들을 전기적 직렬 및/또는 병렬 연결함으로써, 대용량 또는 고출력의 전지팩을 간단한 방법으로 용이하게 제조할 수 있다. Therefore, the battery pack of the above structure directly connects the connection terminals of the protection circuit module and the positive terminals of the battery cells with a high welding coupling force by a conductive plate of a specific structure, and electrically connects the battery cells by the metal plate included in the protection circuit module. By connecting in series and / or parallel, a battery pack of high capacity or high output can be easily manufactured by a simple method.
예를 들어, 3 개의 전지셀들로 전지팩을 구성하는 경우, 각각의 전지셀들을 측면 방향으로 배열하여 전지셀 배열체를 구성하고, 전지셀 배열체와 PCM을 팩 케이스에 탑재한 후, 전지셀들의 전극단자와 PCM의 접속단자를 저항용접에 의해 연결함으로써, 소망하는 전지팩을 제조할 수 있다. For example, in the case of configuring a battery pack with three battery cells, each battery cell is arranged in a lateral direction to form a battery cell assembly, and after mounting the battery cell assembly and the PCM in the pack case, the battery By connecting the electrode terminals of the cells and the connection terminals of the PCM by resistance welding, a desired battery pack can be manufactured.
또한, 전지셀 배열체의 전극단자들이 PCM의 접속단자와 용접된 상태에서, 고출력이 필요한 전지팩의 경우 PCM에 포함된 금속 플레이트의 연결 구조를 직렬로 하고, 장시간 사용이 필요한 전지팩의 경우 PCM에 포함된 금속 플레이트의 연결 구조를 병렬로 함으로써, 소망하는 전지팩을 필요와 용도에 따라 선택적으로 제작할 수 있다. In addition, in the state where the electrode terminals of the battery cell assembly are welded with the connection terminals of the PCM, in the case of a battery pack that requires high power, the connection structure of the metal plate included in the PCM is in series, and in the case of the battery pack that requires long-term use, the PCM By making the connection structure of the metal plate contained in parallel, a desired battery pack can be selectively produced according to a need and a use.
구체적으로는, 상기 도전성 플레이트는 보호회로 모듈의 접속단자 상에 절곡 가능한 형상으로 부착되어 있고, 전지셀들의 양극단자가 도전성 플레이트 상에 위치한 상태에서 "ㄷ"자 형상으로 절곡된 후, 도전성 플레이트의 절곡면 상부로부터 저항 용접이 수행됨으로써, 보호회로 모듈의 접속단자와 전지셀들의 양극단자 사이에 물리적 결합 및 전기적 연결이 달성되는 구조일 수 있다. Specifically, the conductive plate is attached in a bendable shape on the connection terminal of the protective circuit module, the battery terminal is bent in the shape of "C" with the positive terminal of the cell is located on the conductive plate, then bending of the conductive plate Since resistance welding is performed from the upper surface, physical coupling and electrical connection may be achieved between the connection terminal of the protection circuit module and the positive terminal of the battery cells.
상기 도전성 플레이트의 절곡 가능한 형상은 절곡이 용이한 형상이면 특별히 제한되는 것은 아니며, 예를 들어, 보호회로 모듈의 접속단자 상에 부착된 상태에서 "L"자 형상일 수 있다. The bendable shape of the conductive plate is not particularly limited as long as it is easy to bend, and may be, for example, an “L” shape in a state of being attached on the connection terminal of the protective circuit module.
상기 도전성 플레이트는 보호회로모듈의 접속단자 상에 부착된 제 1 접속부와 전지셀들의 양극단자 상면에 부착된 제 2 접속부로 이루어져 있어서, 전지셀들의 양극단자와 보호회로 모듈의 접속단자의 접속을 더욱 견고히 할 수 있고, 외력이 인가되는 경우 전지셀들의 양극단자와 보호회로 모듈의 전기적 접속부위가 변형되는 것을 방지할 수 있다. The conductive plate includes a first connection part attached to the connection terminal of the protection circuit module and a second connection part attached to an upper surface of the positive electrode terminal of the battery cells, thereby further connecting the connection terminal of the battery terminal to the protection terminal of the protection circuit module. When the external force is applied, the positive connection of the battery cells and the protection circuit module can be prevented from being deformed.
상기 도전성 플레이트는 상기와 같은 용접 형태에 의해 높은 결합력을 제공하는 소재라면 그것의 종류가 특별히 제한되는 것은 아니지만, 바람직하게는 니켈 플레이트일 수 있고, 이에 대응하여 전지셀들의 양극단자는 알루미늄 단자로 이루어질 수 있다. The conductive plate is not particularly limited as long as it is a material providing a high bonding force by the welding form as described above, but may be preferably a nickel plate, and correspondingly, the positive terminal of the battery cells may be made of an aluminum terminal. have.
따라서, 니켈 플레이트와 알루미늄 단자의 저항 용접시 저항 용접봉의 전류가 저항이 높은 니켈 플레이트로부터 저항이 낮은 알루미늄 단자로 흐르게 되므로, 니켈 플레이트와 알루미늄 단자 사이에서 저항 용접이 용이하게 달성될 수 있다. Therefore, in the resistance welding of the nickel plate and the aluminum terminal, the current of the resistance electrode flows from the high resistance nickel plate to the low resistance aluminum terminal, so that resistance welding can be easily achieved between the nickel plate and the aluminum terminal.
상기 팩 케이스는, 바람직하게는, 상기 전지셀 배열체와 보호회로 모듈을 탑재하는 하부 케이스와, 상기 하부 케이스를 덮어 전지셀 배열체와 보호회로 모듈을 정위치 고정하기 위한 상부 케이스로 구성되어 있을 수 있다. Preferably, the pack case includes a lower case for mounting the battery cell assembly and the protection circuit module, and an upper case for covering the lower case to fix the battery cell assembly and the protection circuit module in position. Can be.
상기 하부 케이스는 전지셀들이 탑재되는 전지셀 장착부와 보호회로 모듈이 탑재되는 보호회로 모듈 장착부로 구획되어 있으며, 상기 전지셀 장착부와 보호회로 모듈 장착부가 접하는 부위에는 구획을 형성하기 위한 격벽이 형성되어 있고, 격벽 중 전지셀들의 전극단자와 보호회로 모듈의 전기적 접속부위에 대응하는 부위에는 전지셀들의 전극단자가 보호회로 모듈 방향으로 노출될 수 있도록 개구가 형성되어 있는 구조로 이루어질 수 있다. The lower case is divided into a battery cell mounting portion in which the battery cells are mounted and a protection circuit module mounting portion in which the protection circuit module is mounted, and a partition wall is formed at a portion where the battery cell mounting portion and the protection circuit module mounting portion are in contact with each other. In addition, an opening may be formed in a portion of the partition corresponding to the electrode terminal of the battery cells and the electrical connection portion of the protection circuit module so that the electrode terminals of the battery cells may be exposed in the direction of the protection circuit module.
이러한 팩 케이스 구조는 전지셀 장착부와 보호회로 모듈 장착부가 접하는 부위에 구획을 형성하기 위한 격벽이 형성되어 있으므로, 전지셀들의 전극단자와 보호회로 모듈의 부품들이 접촉되는 것을 억제하고, 전지셀로부터 전해액이 누출되는 경우에도 보호회로 모듈 쪽으로 이동하는 것을 억제하여, 결과적으로 단락이 초래되는 것을 방지할 수 있다. In the pack case structure, a partition wall is formed at a portion where the battery cell mounting portion and the protection circuit module mounting portion are in contact with each other. Thus, the electrode terminal of the battery cells and the components of the protection circuit module are prevented from contacting each other, and the electrolyte solution from the battery cell. Even when this leakage occurs, it is possible to suppress the movement toward the protection circuit module, thereby preventing short circuits from occurring.
또한, 격벽 중 전지셀들의 전극단자와 보호회로 모듈의 전기적 접속부위에 대응하는 부위에는 전지셀들의 전극단자가 보호회로 모듈 방향으로 노출될 수 있도록 개구가 형성되어 있으므로, 개구를 통해 노출된 전지셀들의 전극단자를 보호회로 모듈의 접속단자에 용이하게 용접할 수 있다. In addition, an opening is formed in a portion of the partition corresponding to the electrode terminal of the battery cells and the electrical connection portion of the protection circuit module so that the electrode terminal of the battery cells is exposed in the direction of the protection circuit module, and thus the battery cell exposed through the opening. These electrode terminals can be easily welded to the connection terminals of the protection circuit module.
상기 격벽의 높이는, 바람직하게는, 전지셀 장착부와 보호회로 모듈 장착부를 상호 간에 완전히 차단하는 높이일 수 있다. The height of the barrier rib may be a height that completely blocks the battery cell mounting portion and the protection circuit module mounting portion from each other.
바람직하게는, 상기 보호회로 모듈 장착부는 전지셀의 전극단자와 보호회로 모듈의 전기적 접속부위를 지지하기 위한 지지부를 포함하는 구조일 수 있다. Preferably, the protective circuit module mounting portion may have a structure including a support for supporting the electrode terminal of the battery cell and the electrical connection of the protective circuit module.
상기 지지부는 전지셀의 전극단자와 보호회로 모듈의 전기적 접속부위를 용이하게 지지할 수 있는 구조이면 특별히 제한되는 것은 아니며, 하나의 예로서, 상향 돌기 구조로 하부 케이스 상에 형성되어 있는 구조일 수 있다. The support portion is not particularly limited as long as it can easily support the electrical connection portion of the electrode terminal of the battery cell and the protection circuit module. As an example, the support portion may be a structure formed on the lower case with an upward protrusion structure. have.
상기 지지부는 바람직하게는 십자형 돌기 구조로 이루어져 있어서, 전지셀들의 전극단자와 보호회로 모듈의 저항용접시 전지셀의 전극단자와 보호회로 모듈의 전기적 접속부위를 보다 안정적으로 지지할 수 있다. Preferably, the support part has a cross-shaped protrusion structure, so that the electrode terminals of the battery cells and the protection circuit module may more stably support the electrical connection of the electrode terminal of the battery cell and the protection circuit module.
상기 전지셀 배열체는, 앞서 언급한 바와 같이 소망하는 전지팩의 용량에 따라 다수의 전지셀들을 측면 방향으로 배열하여 구성될 수 있으며, 일 예로, 노트북 컴퓨터와 같은 디바이스는 장시간 사용이 가능하면서 휴대 편의성이 요구되므로 3 개의 전지셀들로 이루어지는 것이 바람직하다. As described above, the battery cell arrangement may be configured by arranging a plurality of battery cells in a lateral direction according to the capacity of a desired battery pack. For example, a device such as a notebook computer may be used for a long time while being portable. Since convenience is required, it is preferable to consist of three battery cells.
본 발명에 따른 전지팩은, 전지셀의 종류 및 외형에 관계없이 다양하게 적용가능하며, 바람직하게는 폭 대비 두께가 얇은 대략 직육면체 구조로 이루어진 파우치형 이차전지, 더욱 바람직하게는 파우치형 리튬 이차전지를 전지셀로서 포함하는 전지팩에 적용될 수 있다. The battery pack according to the present invention may be variously applied regardless of the type and appearance of a battery cell, and preferably a pouch type secondary battery having a substantially rectangular parallelepiped structure having a thin thickness to width, and more preferably a pouch type lithium secondary battery. It can be applied to a battery pack including a battery cell.
경우에 따라서는, 전지팩에 대한 전류의 입력 및 출력과 정보의 송수신을 행하는 외부 입출력 단자가 보호회로 모듈의 전면에 만입된 형태로 장착되어 있는 구조일 수 있다. In some cases, it may be a structure in which an external input / output terminal for inputting and outputting a current to the battery pack and transmitting and receiving information is mounted in the form of an indentation on the front surface of the protection circuit module.
이러한 구조에서, 상기 외부 입출력 단자는 커넥터 구조로 이루어져 있어서, 전지팩이 장착되는 외부 디바이스와 안정적으로 연결될 수 있다. In this structure, the external input and output terminal has a connector structure, it can be stably connected to the external device on which the battery pack is mounted.
본 발명은 또한, 상기 전지팩을 전원으로 포함하고 있는 노트북 컴퓨터를 제공한다. The present invention also provides a notebook computer including the battery pack as a power source.
그러나, 본 발명에 따른 전지팩은 전지셀의 개수를 가변적으로 조절하여 디바이스가 소망하는 출력과 용량을 제공하도록 제조될 수 있으므로, 노트북 컴퓨터뿐만 아니라, 가변적인 전지 용량을 필요로 하는 다양한 디바이스에 적용될 수 있음은 물론이다. However, the battery pack according to the present invention can be manufactured to provide a desired output and capacity by varying the number of battery cells, so that not only notebook computers, but also can be applied to a variety of devices that require a variable battery capacity Of course it can.
도 1은 본 발명의 하나의 실시예에 따른 전지팩의 분해도이다; 1 is an exploded view of a battery pack according to an embodiment of the present invention;
도 2는 전지셀 배열체의 상단에 스페이서를 장착한 구조의 사시도이다; 2 is a perspective view of a structure in which a spacer is mounted on an upper end of a battery cell assembly;
도 3은 본 발명의 또 다른 실시예에 따른 전지팩의 분해도이다; 3 is an exploded view of a battery pack according to another embodiment of the present invention;
도 4는 도 3의 스페이서를 확대한 모식도이다; 4 is an enlarged schematic view of the spacer of FIG. 3;
도 5는 도 2의 A 부위를 확대한 모식도이다; FIG. 5 is an enlarged schematic view of a portion A of FIG. 2; FIG.
도 6은 도 2의 B 부위를 확대한 모식도이다; FIG. 6 is an enlarged schematic view of a portion B of FIG. 2; FIG.
도 7은 하부 케이스의 사시도이다; 7 is a perspective view of the lower case;
도 8은 도 7의 C 부위를 확대한 모식도이다; FIG. 8 is an enlarged schematic view of a portion C of FIG. 7; FIG.
도 9는 본 발명의 저항용접 구조를 나타내는 모식도이다; 9 is a schematic diagram showing a resistance welding structure of the present invention;
도 10은 본 발명의 또 다른 실시예에 따른 파우치형 전지셀들을 전기적 연결하는 구조의 부분 사시도이다; 10 is a partial perspective view of a structure for electrically connecting pouch-type battery cells according to another embodiment of the present invention;
도 11은 도 10의 PCM을 확대한 평면 모식도이다. FIG. 11 is an enlarged schematic plan view of the PCM of FIG. 10.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다. Hereinafter, although described with reference to the drawings according to an embodiment of the present invention, this is for easier understanding of the present invention, the scope of the present invention is not limited thereto.
도 1에는 본 발명의 하나의 실시예에 따른 전지팩의 분해도가 모식적으로 도시되어 있다. 1 is an exploded view schematically showing a battery pack according to an embodiment of the present invention.
도 1을 참조하면, 전지팩(100)은 3개의 전지셀들(32)이 측면 방향으로 배열되어 있는 전지셀 배열체(30), 전지셀 배열체(30)의 상단부에 연결되는 보호회로 모듈(40), 전지셀 배열체(30)와 보호회로 모듈(40)이 탑재되는 팩 케이스(10, 20), 및 팩 케이스와 전지셀 배열체(30) 사이에 장착되어 있는 스페이서들(50, 52)로 구성되어 있다. Referring to FIG. 1, the battery pack 100 includes a battery cell array 30 in which three battery cells 32 are arranged in a lateral direction, and a protection circuit module connected to an upper end of the battery cell array 30. 40, pack cases 10 and 20 on which the battery cell arrangement 30 and the protection circuit module 40 are mounted, and spacers 50 mounted between the pack case and the battery cell arrangement 30. 52).
전지셀들(32)은 양극/분리막/음극 구조의 전극조립체가 전해액과 함께 전지케이스의 내부에 밀봉되어 있는 파우치형 이차전지셀로서, 전체적으로 폭 대비 두께가 얇은 대략 직육면체 구조인 판상형으로 이루어져 있다. The battery cells 32 are pouch-type secondary battery cells in which an electrode assembly having a cathode / separation membrane / cathode structure are sealed inside the battery case together with an electrolyte, and are generally formed in a plate shape having a substantially rectangular parallelepiped structure having a thin thickness to width.
팩 케이스는 전지셀 배열체(30)와 보호회로 모듈(40)을 탑재하는 하부 케이스(10)와, 하부 케이스(10)를 덮어 전지셀 배열체(30)와 보호회로 모듈(40)을 정위치 고정하기 위한 상부 케이스(20)로 구성되어 있다. The pack case defines a lower case 10 for mounting the battery cell array 30 and the protection circuit module 40, and covers the lower case 10 to define the battery cell array 30 and the protection circuit module 40. It consists of an upper case 20 for fixing a position.
또한, 상부 케이스(20)와 하부 케이스(10)는 플라스틱 소재로 이루어져 있고, 스페이서들(50, 52)은 노맥스 소재의 양면 접착테이프로 이루어져 있다. In addition, the upper case 20 and the lower case 10 is made of a plastic material, the spacers (50, 52) is made of a double-sided adhesive tape of nomax material.
스페이서들(50, 52)은 전지셀 배열체(30)의 상면에 장착되는 상부 스페이서(52)와 하부 스페이서(50)로 구성되어 있고, 두께가 전지셀(32)의 두께를 기준으로 약 8%의 크기로 이루어져 있다. The spacers 50 and 52 are formed of an upper spacer 52 and a lower spacer 50 mounted on an upper surface of the battery cell array 30, and the thickness of the spacers 50 and 52 is about 8 based on the thickness of the battery cell 32. It consists of% size.
도 2에는 전지셀 배열체의 상단에 스페이서를 장착한 구조의 사시도가 모식적으로 도시되어 있다. 2 is a perspective view schematically illustrating a structure in which a spacer is mounted on an upper end of a battery cell assembly.
도 2를 참조하면, 상부 스페이서(52)는 폭(w)이 전지셀(32)의 폭(W)을 기준으로 약 20%의 크기인 제 1 상부 스페이서들(523, 524)과 약 10%의 크기인 제 2 상부 스페이서들(521, 522)로 구성되어 있다. Referring to FIG. 2, the upper spacers 52 are about 10% wider than the first upper spacers 523 and 524 having a width w of about 20% based on the width W of the battery cell 32. It is composed of the second upper spacers (521, 522) that is the size of.
따라서, 충방전시 증가하는 전지셀(32)의 두께는 제 1 상부 스페이서들(523, 524)과 제 2 상부 스페이서들(521, 522) 사이의 공간(S)에서 상쇄된다. Therefore, the thickness of the battery cell 32 that increases during charging and discharging is canceled in the space S between the first upper spacers 523 and 524 and the second upper spacers 521 and 522.
또한, 제 1 상부 스페이서들(523, 524)과 제 2 상부 스페이서들(521, 522)은 전지셀(32)의 4개의 모서리 중 2개 모서리들의 상면에 장착되어 있고, 가늘고 긴 스트립 부재의 형상을 가지고 있다. In addition, the first upper spacers 523 and 524 and the second upper spacers 521 and 522 are mounted on an upper surface of two corners of four corners of the battery cell 32 and have a shape of an elongated strip member. Have
도 3에는 본 발명의 또 다른 실시예에 따른 전지팩의 분해도가 모식적으로 도시되어 있고, 도 4에는 도 3의 스페이서를 확대한 모식도가 도시되어 있다. 3 is an exploded view schematically illustrating a battery pack according to still another embodiment of the present invention, and FIG. 4 is an enlarged schematic view of the spacer of FIG. 3.
이들 도면을 참조하면, 스페이서들(50a, 52a)은 전지셀(32)의 4개의 모서리 중 4개 모서리들의 상면과 하면에 장착되어 있고, 전지셀(32)의 상면 또는 하면이 노출된 상태로 다수의 전지셀들(32)에 동시에 장착될 수 있는 격자형 부재로 이루어져 있다. Referring to these drawings, the spacers 50a and 52a are mounted on the upper and lower surfaces of four corners of the four corners of the battery cell 32, and the upper and lower surfaces of the battery cell 32 are exposed. It consists of a lattice member that can be mounted on a plurality of battery cells 32 at the same time.
도 5에는 도 2의 A 부위를 확대한 모식도가 도시되어 있고, 도 6에는 도 2의 B 부위를 확대한 모식도가 도시되어 있다. FIG. 5 is a schematic diagram showing an enlarged portion A of FIG. 2, and FIG. 6 is a schematic diagram showing an enlarged portion B of FIG. 2.
이들 도면을 도 2와 함께 참조하면, 하부 케이스(10)는 전지셀들(32)이 탑재되는 전지셀 장착부(12)와 보호회로 모듈(40)이 탑재되는 보호회로 모듈 장착부(14)로 구획되어 있다. 2, the lower case 10 is divided into a battery cell mounting part 12 in which the battery cells 32 are mounted and a protection circuit module mounting part 14 in which the protection circuit module 40 is mounted. It is.
전지셀 장착부(12)와 보호회로 모듈 장착부(14)가 접하는 부위에는 구획을 형성하기 위한 격벽(16)이 형성되어 있고, 격벽(16) 중 전지셀(32)의 음극단자(34)와 보호회로 모듈(40)의 전기적 접속부위에 대응하는 부위에는 전지셀(32)의 음극단자(34)가 보호회로 모듈(40) 방향으로 노출될 수 있도록 개구(18)가 형성되어 있다. A partition wall 16 for forming a partition is formed at a portion where the battery cell mounting portion 12 and the protection circuit module mounting portion 14 contact each other, and the cathode terminal 34 of the battery cell 32 is protected from the partition wall 16. An opening 18 is formed in a portion corresponding to the electrical connection portion of the circuit module 40 so that the negative terminal 34 of the battery cell 32 can be exposed in the direction of the protection circuit module 40.
격벽(16)의 높이(h)는 전지셀 장착부(12)와 보호회로 모듈(40) 상호간을 완전히 격리하는 높이로 형성되어 있다. 경우에 따라서는, 상기와 같은 격리를 위해, 상부 케이스(도시하지 않음)에 대응하는 격벽이 형성되어 있는 구조일 수도 있다. The height h of the partition wall 16 is formed to a height that completely isolates the battery cell mounting part 12 from the protection circuit module 40. In some cases, for isolation as described above, a partition wall corresponding to an upper case (not shown) may be formed.
보호회로 모듈(40)은 전지셀(32)의 양극단자(33)와 저항용접에 의해 연결되는 접속단자(42), 접속단자(42) 상호간을 전기적 연결하는 금속 플레이트 (도시하지 않음), 및 전지팩의 작동을 제어하는 보호회로(도시하지 않음)를 포함하고 있다. The protection circuit module 40 may include a connection terminal 42 connected to the positive electrode terminal 33 of the battery cell 32 by resistance welding, a metal plate (not shown) to electrically connect the connection terminals 42 to each other, and A protection circuit (not shown) for controlling the operation of the battery pack is included.
전지셀(32)의 양극단자(33)와 보호회로 모듈(40)의 전기적 접속부위(B)는, 보호회로 모듈(40)의 접속단자(42) 상에 부착된 도전성 플레이트(41)가 전지셀의 양극단자(33)를 감싸는 형태로 이루어져 있다. The electrical connection portion B of the positive electrode terminal 33 of the battery cell 32 and the protection circuit module 40 includes a conductive plate 41 attached on the connection terminal 42 of the protection circuit module 40. The anode terminal 33 of the cell is formed to wrap.
또한, 니켈 플레이트인 도전성 플레이트(41)는 보호회로 모듈(40)의 접속단자(42) 상에 부착된 제 1 접속부(43)와 알루미늄 단자인 전지셀의 양극단자 상면에 부착되는 제 2 접속부(44)로 이루어져 있다. In addition, the conductive plate 41, which is a nickel plate, includes a first connecting portion 43 attached to the connecting terminal 42 of the protection circuit module 40 and a second connecting portion attached to the upper surface of the positive terminal of the battery cell, which is an aluminum terminal. 44).
구체적으로는, 도전성 플레이트(41)는 보호회로 모듈(40)의 접속단자(42) 상에 "L"자 형상으로 부착되어 있고, 전지셀(32)의 양극단자(33)가 도전성 플레이트(41)의 제 1 접속부(43) 상에 위치한 상태에서 "ㄷ"자 형상으로 절곡된 후, 도전성 플레이트(41)의 절곡면인 제 2 접속부(44)의 상부로부터 저항 용접이 수행된다. Specifically, the conductive plate 41 is attached to the connection terminal 42 of the protective circuit module 40 in the form of an "L" shape, and the positive electrode terminal 33 of the battery cell 32 is the conductive plate 41. After being bent in a "c" shape in a state where it is located on the first connecting portion 43 of the N-axis, resistance welding is performed from the upper portion of the second connecting portion 44, which is the bent surface of the conductive plate 41.
한편, 전지팩에 대한 전류의 입력 및 출력과 정보의 송수신을 행하는 외부 입출력 단자인 커넥터(46)는 보호회로 모듈(40)의 전면에 만입된 형태로 장착되어 있다. On the other hand, the connector 46, which is an external input / output terminal for inputting and outputting current and transmitting / receiving information to and from the battery pack, is mounted in the form of an indentation on the front surface of the protection circuit module 40.
도 7에는 하부 케이스의 사시도가 모식적으로 도시되어 있고, 도 8에는 도 7의 C 부위를 확대한 모식도가 도시되어 있다. FIG. 7 is a perspective view schematically illustrating the lower case, and FIG. 8 is a schematic diagram showing an enlarged portion C of FIG. 7.
이들 도면을 도 2 및 도 6과 함께 참조하면, 하부 케이스(10)의 보호회로 모듈 장착부(14)에는 전지팩에 대한 전류의 입력 및 출력과 정보의 송수신을 행하는 외부 입출력 단자(46)를 탑재하기 위한 외부 입출력 단자 장착부(15)가 형성되어 있다. 2 and 6, the protective circuit module mounting unit 14 of the lower case 10 includes an external input / output terminal 46 for inputting and outputting current and transmitting and receiving information to and from a battery pack. An external input / output terminal mounting portion 15 is provided.
또한, 전지셀(32)의 양극단자(33)와 보호회로 모듈(40)의 전기적 접속부위를 지지하기 위한 지지부(13)가 상향 십자형 돌기 구조로 하부 케이스(10) 상에 격벽(16)에 연결된 상태로 형성되어 있다. 이러한 지지부(13)는 저항 용접 과정에서 양극단자(33) 상에 위치하게 될 용접용 팁(도시하지 않음)에 의해 가해지는 하향 압력을 적절히 지지하여 높은 용접력을 제공한다. In addition, the support part 13 for supporting the electrical connection portion of the positive electrode terminal 33 and the protection circuit module 40 of the battery cell 32 is formed on the partition wall 16 on the lower case 10 in an upward cross-projection structure. It is formed in a connected state. The support 13 appropriately supports a downward pressure applied by a welding tip (not shown) to be positioned on the anode terminal 33 in the resistance welding process, thereby providing a high welding force.
도 9에는 본 발명의 저항용접 구조를 나타내는 모식도가 도시되어 있다. 9 is a schematic diagram showing the resistance welding structure of the present invention.
도 9를 참조하면, 보호회로 기판(410)의 상면에 위치한 니켈 플레이트(430)와 알루미늄 단자(420)의 저항 용접시 저항 용접봉(440)으로부터 발생한 전류가, 저항이 높은 니켈 플레이트(430)로부터 저항이 낮은 알루미늄 단자(420)로 흐른 후 다시 니켈 플레이트(430)로 흐르는 과정에서, 알루미늄 단자(420)와 니켈 플레이트(430) 사이의 계면에서 저항차로 인한 열이 발생하여, 니켈 플레이트(430)와 알루미늄 단자(420)의 저항 용접이 용이하게 달성된다. Referring to FIG. 9, the current generated from the resistance electrode 440 during resistance welding of the nickel plate 430 and the aluminum terminal 420 located on the upper surface of the protection circuit board 410 is from the nickel plate 430 having high resistance. In the process of flowing to the aluminum terminal 420 having a low resistance and then to the nickel plate 430, heat is generated due to the resistance difference at the interface between the aluminum terminal 420 and the nickel plate 430. And resistance welding of the aluminum terminal 420 are easily achieved.
도 10에는 본 발명의 또 다른 실시예에 따른 파우치형 전지셀들을 전기적 연결하는 구조의 부분 사시도가 모식적으로 도시되어 있고, 도 11에는 도 10의 PCM을 확대한 평면 모식도가 도시되어 있다. FIG. 10 is a partial perspective view schematically illustrating a structure for electrically connecting pouch-type battery cells according to another embodiment of the present invention, and FIG. 11 is an enlarged plan view of the PCM of FIG. 10.
이들 도면을 참조하면, 전지셀들(32, 34, 36)을 전기적 연결하기 위해 금속 플레이트(402)가 제 1 전지셀(32)의 음극단자(324)와 제 2 전지셀(34)의 양극단자(342)를 직렬 연결하는 구조로 보호회로 모듈(40a)의 상면에 형성되어 있다. Referring to these drawings, in order to electrically connect the battery cells 32, 34, and 36, a metal plate 402 may include a cathode terminal 324 of the first battery cell 32 and an anode of the second battery cell 34. It is formed on the upper surface of the protection circuit module 40a in a structure in which the terminals 342 are connected in series.
또한, 보호회로모듈(40a)은 과충전, 과방전, 과전류를 제어하는 보호회로가 형성되어 있는 PCM 본체(401), 전지셀들(32, 34, 36)에 대한 직접적인 전기적 연결을 위해, 전지셀들(32, 34, 36)의 전극단자에 대응하는 위치에 형성되어 있는 접속단자들(404, 407), 접속단자들(404, 407)의 전기적 연결을 위해 상면에 형성되어 있는 금속 플레이트들(405), 및 전지팩에 대한 전류의 입력 및 출력과 정보의 송수신을 수행하기 위해 전면에 만입된 형태로 장착되어 있는 외부 입출력 단자(403)로 구성되어 있다. In addition, the protection circuit module 40a is a battery cell for direct electrical connection to the PCM main body 401 and the battery cells 32, 34, and 36 in which a protection circuit for controlling overcharge, overdischarge, and overcurrent is formed. The connection terminals 404 and 407 formed at positions corresponding to the electrode terminals of the fields 32, 34 and 36, and metal plates formed on the upper surface for electrical connection of the connection terminals 404 and 407 ( 405) and an external input / output terminal 403 mounted in the form of an indentation on the front surface to perform input and output of current and transmission and reception of information to the battery pack.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the scope of the present invention based on the above contents.
이상에서 설명한 바와 같이, 본 발명에 따른 전지팩은, 고출력 또는 대용량의 특성을 발휘할 수 있도록 둘 또는 그 이상의 전지셀들을 포함하고, 팩 케이스와 전지셀 배열체 사이에 스페이서를 장착한 구조로 이루어져 있으므로, 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있다. As described above, the battery pack according to the present invention includes two or more battery cells so as to exhibit high output or high capacity characteristics, and has a structure in which a spacer is mounted between the pack case and the battery cell arrangement. When charging and discharging, a space according to an increase in thickness of the battery cell array may be secured.
또한, 전지셀들의 양극단자와 보호회로 모듈의 전기적 접속부위가, 보호회로 모듈의 접속단자 상에 부착된 도전성 플레이트가 전지셀들의 양극단자를 감싸는 형태로 용접되는 구조로 이루어져 있으므로, 용접성이 우수하고 콤팩트한 구조의 전지팩을 제조할 수 있다. In addition, since the electrical connection between the positive terminal of the battery cells and the protection circuit module, the conductive plate attached on the connection terminal of the protection circuit module is welded in a shape that surrounds the positive terminal of the battery cells, the weldability is excellent and compact A battery pack of one structure can be manufactured.

Claims (21)

  1. (a) 양극/분리막/음극 구조의 전극조립체가 전해액과 함께 전지케이스의 내부에 밀봉되어 있는 전지셀들이 둘 또는 그 이상의 개수로 측면 방향으로 배열되어 있는 전지셀 배열체; (a) a battery cell arrangement in which an electrode assembly having a cathode / separation membrane / cathode structure is sealed in an interior of a battery case together with an electrolyte solution and is arranged in a lateral direction in a number of two or more;
    (b) 전지팩의 작동을 제어하기 위해 전지셀 배열체의 상단부에 연결되는 보호회로 모듈(PCM); (b) a protection circuit module (PCM) connected to the upper end of the battery cell arrangement for controlling the operation of the battery pack;
    (c) 상기 전지셀 배열체 및 보호회로 모듈이 탑재되는 팩 케이스; 및 (c) a pack case in which the battery cell arrangement and the protection circuit module are mounted; And
    (d) 충방전시 전지셀 배열체의 두께 증가에 따른 공간을 확보할 수 있도록, 팩 케이스와 전지셀 배열체 사이에 장착되는 스페이서; (d) a spacer mounted between the pack case and the battery cell assembly so as to secure a space according to an increase in the thickness of the battery cell assembly during charge and discharge;
    를 포함하고 있는 것을 특징으로 하는 전지팩.A battery pack comprising a.
  2. 제 1 항에 있어서, 상기 스페이서의 두께는 전지셀 배열체의 두께를 기준으로 5 내지 10%의 크기인 것을 특징으로 하는 전지팩. The battery pack as claimed in claim 1, wherein the spacer has a thickness of 5 to 10% based on the thickness of the battery cell arrangement.
  3. 제 1 항에 있어서, 상기 팩 케이스는 플라스틱 소재로 이루어져 있고, 상기 스페이서는 시트부재 또는 플라스틱 소재로 이루어진 것을 특징으로 하는 전지팩. The battery pack as claimed in claim 1, wherein the pack case is made of a plastic material, and the spacer is made of a sheet member or a plastic material.
  4. 제 3 항에 있어서, 상기 시트부재는 노맥스(Nomex) 소재로 이루어진 것을 특징으로 하는 전지팩. The battery pack as claimed in claim 3, wherein the sheet member is made of a no-max material.
  5. 제 1 항에 있어서, 상기 스페이서는 전지셀 배열체의 외면에 접착될 수 있도록, 스페이서의 상면 또는 하면에는 접착제가 부가되어 있는 것을 특징으로 하는 전지팩.  The battery pack as claimed in claim 1, wherein an adhesive is added to an upper surface or a lower surface of the spacer so that the spacer may be adhered to an outer surface of the battery cell assembly.
  6. 제 1 항에 있어서, 상기 스페이서는 전지셀의 4개의 모서리 중 2개 또는 그 이상의 모서리들의 상면과 하면에 소정의 폭으로 장착되어 있는 것을 특징으로 하는 전지팩. The battery pack as claimed in claim 1, wherein the spacer is mounted on the upper and lower surfaces of two or more corners of four corners of the battery cell with a predetermined width.
  7. 제 6 항에 있어서, 상기 스페이서의 폭은 전지셀의 폭을 기준으로 5내지 20%의 크기인 것을 특징으로 하는 전지팩. The battery pack as claimed in claim 6, wherein the spacer has a width of 5 to 20% based on the width of the battery cell.
  8. 제 1 항에 있어서, 상기 스페이서는 스트립 부재인 것을 특징으로 하는 전지팩.  The battery pack as claimed in claim 1, wherein the spacer is a strip member.
  9. 제 1 항에 있어서, 상기 스페이서는 전지셀의 상면 또는 하면이 노출된 상태로 다수의 전지셀들에 동시에 장착될 수 있는 격자형 부재인 것을 특징으로 하는 전지팩.  The battery pack as claimed in claim 1, wherein the spacer is a lattice member that can be simultaneously mounted to a plurality of battery cells while the top or bottom surface of the battery cell is exposed.
  10. 제 1 항에 있어서, 상기 보호회로 모듈은 전지셀들의 전극단자들과 저항용접에 의해 연결되는 접속단자, 전지셀들을 전기적 연결하는 금속 플레이트, 및 전지팩의 작동을 제어하는 보호회로를 포함하고 있는 것을 특징으로 하는 전지팩. The protection circuit module of claim 1, wherein the protection circuit module includes a connection terminal connected to the electrode terminals of the battery cells by resistance welding, a metal plate electrically connecting the battery cells, and a protection circuit for controlling the operation of the battery pack. A battery pack, characterized in that.
  11. 제 10 항에 있어서, 상기 전지셀들을 전기적으로 연결하기 위한 금속 플레이트가 보호회로 모듈의 상면에 형성되어 있는 것을 특징으로 하는 전지팩. The battery pack as claimed in claim 10, wherein a metal plate for electrically connecting the battery cells is formed on an upper surface of the protection circuit module.
  12. 제 10 항에 있어서, 상기 전지셀들의 양극단자와 보호회로 모듈의 전기적 접속부위는, 보호회로 모듈의 접속단자 상에 부착된 도전성 플레이트가 전지셀들의 양극단자를 감싸는 형태로 용접되어 있는 것을 특징으로 하는 전지팩 The method of claim 10, wherein the positive terminal of the battery cells and the electrical connection of the protective circuit module, the conductive plate attached on the connection terminal of the protective circuit module is welded in a form surrounding the positive terminal of the battery cells. Battery pack
  13. 제 12 항에 있어서, 상기 도전성 플레이트는 보호회로 모듈의 접속단자 상에 부착된 제 1 접속부와 전지셀들의 양극단자 상면에 부착된 제 2 접속부로 이루어진 것을 특징으로 하는 전지팩.  The battery pack as claimed in claim 12, wherein the conductive plate comprises a first connection part attached to the connection terminal of the protection circuit module and a second connection part attached to the upper surface of the positive electrode terminal of the battery cells.
  14. 제 12 항에 있어서, 상기 도전성 플레이트는 니켈 플레이트이고 전지셀들의 양극단자는 알루미늄 단자인 것을 특징으로 하는 전지팩.  13. The battery pack as claimed in claim 12, wherein the conductive plate is a nickel plate and the positive terminal of the battery cells is an aluminum terminal.
  15. 제 1 항에 있어서, 상기 팩 케이스는 전지셀 배열체와 보호회로 모듈을 탑재하는 하부 케이스와, 상기 하부 케이스를 덮어 전지셀 배열체와 보호회로 모듈을 정위치 고정하기 위한 상부 케이스로 구성되어 있는 것을 특징으로 하는 전지팩. The battery pack assembly of claim 1, wherein the pack case comprises a lower case for mounting the battery cell assembly and the protection circuit module, and an upper case for covering the lower case to fix the battery cell assembly and the protection circuit module in position. A battery pack, characterized in that.
  16. 제 15 항에 있어서, 상기 하부 케이스는 전지셀들이 탑재되는 전지셀 장착부와 보호회로 모듈이 탑재되는 보호회로 모듈 장착부로 구획되어 있으며, The method of claim 15, wherein the lower case is divided into a battery cell mounting portion on which the battery cells are mounted and a protection circuit module mounting portion on which the protection circuit module is mounted,
    상기 전지셀 장착부와 보호회로 모듈 장착부가 접하는 부위에는 구획을 형성하기 위한 격벽이 형성되어 있고, 격벽 중 전지셀들의 전극단자와 보호회로 모듈의 전기적 접속부위에 대응하는 부위에는 전지셀들의 전극단자가 보호회로 모듈 방향으로 노출될 수 있도록 개구가 형성되어 있는 것을 특징으로 하는 전지팩. A partition wall is formed at a portion where the battery cell mounting portion and the protection circuit module mounting portion are in contact with each other, and an electrode terminal of the battery cells is formed at a portion of the partition corresponding to the electrode terminal of the battery cells and the electrical connection portion of the protection circuit module. A battery pack, characterized in that the opening is formed so as to be exposed in the protective circuit module direction.
  17. 제 16 항에 있어서, 상기 보호회로 모듈 장착부는 전지셀의 전극단자와 보호회로 모듈의 전기적 접속부위를 지지하기 위한 지지부를 포함하고 있는 것을 특징으로 하는 전지팩. 17. The battery pack as claimed in claim 16, wherein the protection circuit module mounting part includes a support part for supporting an electrode terminal of the battery cell and an electrical connection part of the protection circuit module.
  18. 제 1 항에 있어서, 상기 전지셀 배열체는 3개의 전지셀들로 이루어진 것을 특징으로 하는 전지팩.  The battery pack as claimed in claim 1, wherein the battery cell arrangement is composed of three battery cells.
  19. 제 1 항에 있어서, 상기 전지셀은 파우치형 이차전지인 것을 특징으로 하는 전지팩.  The battery pack as claimed in claim 1, wherein the battery cell is a pouch type secondary battery.
  20. 제 1 항에 있어서, 전지팩에 대한 전류의 입력 및 출력과 정보의 송수신을 행하는 외부 입출력 단자가 보호회로 모듈의 전면에 만입된 형태로 장착되어 있는 것을 특징으로 하는 전지팩. The battery pack according to claim 1, wherein an external input / output terminal for inputting and outputting a current to the battery pack and transmitting / receiving information is mounted on the front surface of the protection circuit module.
  21. 제 1 항에 따른 전지팩을 전원으로 포함하고 있는 노트북 컴퓨터. A notebook computer comprising the battery pack according to claim 1 as a power source.
PCT/KR2011/003742 2010-05-28 2011-05-21 Battery pack having compact structure WO2011149224A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11786856.2A EP2579359B1 (en) 2010-05-28 2011-05-21 Battery pack of compact structure
JP2013512529A JP5672515B2 (en) 2010-05-28 2011-05-21 Battery pack having a compact structure
CN201180026061.XA CN102906903B (en) 2010-05-28 2011-05-21 Battery pack having compact structure
US13/699,470 US9331313B2 (en) 2010-05-28 2011-05-21 Battery pack of compact structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100050401A KR101289282B1 (en) 2010-05-28 2010-05-28 Battery Pack of Compact Structure
KR10-2010-0050401 2010-05-28

Publications (2)

Publication Number Publication Date
WO2011149224A2 true WO2011149224A2 (en) 2011-12-01
WO2011149224A3 WO2011149224A3 (en) 2012-01-12

Family

ID=45004527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003742 WO2011149224A2 (en) 2010-05-28 2011-05-21 Battery pack having compact structure

Country Status (6)

Country Link
US (1) US9331313B2 (en)
EP (1) EP2579359B1 (en)
JP (1) JP5672515B2 (en)
KR (1) KR101289282B1 (en)
CN (1) CN102906903B (en)
WO (1) WO2011149224A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186677A1 (en) * 2013-01-03 2014-07-03 Robert Bosch Gmbh Battery pack
US20150017484A1 (en) * 2013-07-09 2015-01-15 Samsung Sdi Co., Ltd. Battery pack

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293943B1 (en) * 2009-12-22 2013-08-07 주식회사 엘지화학 Battery Pack Having Improved Strength
TWM453251U (en) * 2012-10-03 2013-05-11 Uer Technology Corp Thin-type battery
KR101430621B1 (en) 2013-02-05 2014-08-14 삼성에스디아이 주식회사 Battery Pack
CN104282870B (en) * 2013-07-09 2019-11-12 三星Sdi株式会社 Battery pack
KR101619925B1 (en) 2013-09-27 2016-05-12 주식회사 엘지화학 Battery Pack Having PCM Fixing Tape
KR101684358B1 (en) * 2013-09-30 2016-12-20 주식회사 엘지화학 Battery Pack Having Electric Insulating Pack Case
US10218027B2 (en) 2013-11-11 2019-02-26 A123 Systems, LLC Vehicle starter battery
US10700317B2 (en) 2015-04-13 2020-06-30 Cps Technology Holdings, Llc Cell to heat sink thermal adhesive
JP2018521447A (en) * 2015-05-06 2018-08-02 エー123 システムズ エルエルシーA123 Systems LLC Battery crush protection system
KR102183995B1 (en) 2016-10-31 2020-11-27 삼성에스디아이 주식회사 Battery pack
KR102152885B1 (en) * 2017-12-11 2020-09-07 삼성에스디아이 주식회사 Battery pack
KR102505609B1 (en) * 2018-02-09 2023-03-03 삼성에스디아이 주식회사 Battery pack
CN110071243A (en) * 2019-04-28 2019-07-30 深圳市富程威科技有限公司 A kind of battery modules
KR20210091556A (en) * 2020-01-14 2021-07-22 주식회사 엘지화학 Battery packs with Battery Management Unit component damage prevention structure
CN112838297B (en) * 2020-12-29 2023-03-28 宁德新能源科技有限公司 Battery cell and electronic equipment
CN114639904B (en) * 2022-03-31 2024-03-15 东莞新能德科技有限公司 Battery cell, battery and electronic equipment

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145689A (en) 1997-07-28 1999-02-16 Denso Corp Packaged battery device
JP4637305B2 (en) * 1999-01-04 2011-02-23 三菱電機株式会社 Battery pack
JP3507398B2 (en) * 2000-03-14 2004-03-15 松下電器産業株式会社 Battery pack
JP3507397B2 (en) * 2000-03-14 2004-03-15 松下電器産業株式会社 Battery pack
KR100689574B1 (en) * 2000-03-14 2007-03-02 마츠시타 덴끼 산교 가부시키가이샤 Secondary cell and method for bonding lead thereof, and battery power supply
JP2001256937A (en) * 2000-03-14 2001-09-21 Matsushita Electric Ind Co Ltd Compound battery and battery pack
JP2001266820A (en) * 2000-03-24 2001-09-28 Sanyo Electric Co Ltd Battery pack
JP4852784B2 (en) * 2000-11-01 2012-01-11 ソニー株式会社 Battery and manufacturing method thereof
KR100890715B1 (en) 2000-11-01 2009-03-27 소니 가부시끼 가이샤 Cell, cell production method, welded article production method and pedestal
JP2002216722A (en) * 2001-01-17 2002-08-02 Gs-Melcotec Co Ltd Battery pack and manufacturing method of battery pack
JP4934934B2 (en) * 2001-09-14 2012-05-23 ソニー株式会社 battery pack
JP3846243B2 (en) * 2001-09-14 2006-11-15 ソニー株式会社 battery pack
JP3932934B2 (en) * 2002-03-05 2007-06-20 ソニー株式会社 Secondary battery storage case
JP4214450B2 (en) * 2002-06-03 2009-01-28 日本電気株式会社 module
JP4123517B2 (en) * 2003-12-26 2008-07-23 ソニー株式会社 Battery device
KR100880389B1 (en) * 2004-12-24 2009-01-23 주식회사 엘지화학 Process for Preparation of Secondary Battery Module
KR100635743B1 (en) 2005-07-07 2006-10-17 삼성에스디아이 주식회사 Secondary battery
JP5057706B2 (en) 2006-06-16 2012-10-24 株式会社東芝 Battery pack
JP5638183B2 (en) * 2006-07-13 2014-12-10 株式会社Gsユアサ An assembled battery in which a plurality of flat batteries are stacked
JP4165586B2 (en) * 2006-08-02 2008-10-15 ソニー株式会社 Battery pack
KR100905390B1 (en) * 2006-08-28 2009-06-30 주식회사 엘지화학 Pouch-type Secondary Battery Having Improved Safety by Preventing Internal Moving of Electrode Assembly
JP5183074B2 (en) * 2007-02-05 2013-04-17 三洋電機株式会社 Pack battery
JP2008270350A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Device for storing laminated electrical power
KR100983012B1 (en) * 2007-10-13 2010-09-17 주식회사 엘지화학 Secondary Battery Pack Based on Mechanical Connection Manner
US9673540B2 (en) 2007-07-16 2017-06-06 Lg Chem, Ltd. Secondary battery pack based on mechanical connection manner
JP5405196B2 (en) * 2009-05-26 2014-02-05 三洋電機株式会社 Pack battery and pack battery intermediate
KR101293943B1 (en) * 2009-12-22 2013-08-07 주식회사 엘지화학 Battery Pack Having Improved Strength
KR101230495B1 (en) * 2010-02-01 2013-02-06 주식회사 엘지화학 Battery Pack of High Capacity
JP5646297B2 (en) * 2010-11-25 2014-12-24 三洋電機株式会社 Pack battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2579359A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186677A1 (en) * 2013-01-03 2014-07-03 Robert Bosch Gmbh Battery pack
US9806386B2 (en) * 2013-01-03 2017-10-31 Samsung Sdi Co., Ltd. Battery pack
US20150017484A1 (en) * 2013-07-09 2015-01-15 Samsung Sdi Co., Ltd. Battery pack
US20150017514A1 (en) * 2013-07-09 2015-01-15 Samsung Sdi Co., Ltd. Battery pack
US9385362B2 (en) 2013-07-09 2016-07-05 Samsung Sdi Co., Ltd. Battery pack with protection circuit module for unit batteries
US9825276B2 (en) * 2013-07-09 2017-11-21 Samsung Sdi Co., Ltd. Battery pack including a protection circuit module for unit batteries

Also Published As

Publication number Publication date
EP2579359A4 (en) 2014-07-23
CN102906903B (en) 2015-01-14
KR101289282B1 (en) 2013-07-24
US9331313B2 (en) 2016-05-03
JP5672515B2 (en) 2015-02-18
JP2013530498A (en) 2013-07-25
US20130157084A1 (en) 2013-06-20
CN102906903A (en) 2013-01-30
WO2011149224A3 (en) 2012-01-12
EP2579359B1 (en) 2020-01-08
EP2579359A2 (en) 2013-04-10
KR20110130863A (en) 2011-12-06

Similar Documents

Publication Publication Date Title
WO2011149224A2 (en) Battery pack having compact structure
WO2011078536A2 (en) Battery pack having improved strength
WO2011149223A2 (en) Battery pack having novel structure
WO2011093639A2 (en) Battery cell binding body having a novel structure and a battery pack comprising the same
WO2013019067A2 (en) Secondary battery pack
WO2013024989A2 (en) Secondary battery pack
WO2010128812A2 (en) Secondary battery pack having a novel structure
WO2011093638A2 (en) Large capacity battery pack
WO2013022211A2 (en) Secondary battery pack
WO2013024990A2 (en) Secondary battery pack
WO2013019066A2 (en) Secondary battery pack
WO2010079938A2 (en) Spacer for battery pack and a battery pack comprising the same
WO2015046745A1 (en) Secondary battery pack comprising protection circuit module
WO2013022210A2 (en) Secondary battery pack
WO2013119003A1 (en) Secondary battery pack having novel structure
WO2015046723A1 (en) Battery pack comprising protection circuit module fixing tape
WO2013022208A2 (en) Secondary battery pack
WO2010098571A2 (en) Rechargeable battery pack having a novel structure
WO2012008745A2 (en) Pack case having a novel structure
WO2019235724A1 (en) Battery module having improved cooling structure
WO2015046725A1 (en) Battery pack comprising electrically insulating member
WO2014189299A1 (en) Secondary battery pack containing connector with non-projecting structure
WO2015167046A1 (en) Circuit board for secondary battery and battery pack comprising same
WO2012074220A1 (en) Secondary battery pack having a novel structure
WO2015046821A1 (en) Secondary battery pack comprising battery cells mounted on cartridge frame

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026061.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786856

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011786856

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013512529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13699470

Country of ref document: US