WO2011149122A1 - Broadband light source using a fabry-perot filter - Google Patents

Broadband light source using a fabry-perot filter Download PDF

Info

Publication number
WO2011149122A1
WO2011149122A1 PCT/KR2010/003315 KR2010003315W WO2011149122A1 WO 2011149122 A1 WO2011149122 A1 WO 2011149122A1 KR 2010003315 W KR2010003315 W KR 2010003315W WO 2011149122 A1 WO2011149122 A1 WO 2011149122A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabry
erbium
light source
perot filter
light
Prior art date
Application number
PCT/KR2010/003315
Other languages
French (fr)
Korean (ko)
Inventor
김경민
Original Assignee
주식회사 럭스퍼트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 럭스퍼트 filed Critical 주식회사 럭스퍼트
Publication of WO2011149122A1 publication Critical patent/WO2011149122A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • H04B10/43Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission

Definitions

  • the present invention relates to a broadband light source using a Fabry-Perot filter used in a wavelength division multiplex passive optical network.
  • Broadband light sources are widely used in various fields, such as wavelength division multiplexed passive optical networks (WDM-PON), optical measurement, optical sensing, or gyroscopes.
  • WDM-PON wavelength division multiplexed passive optical networks
  • optical measurement optical measurement
  • optical sensing optical sensing
  • gyroscopes gyroscopes
  • the wavelength division multiplexing passive optical network which is a main field of use, will be briefly described.
  • the network provides a high speed broadband communication service using a unique wavelength assigned to each subscriber. Therefore, since only the corresponding subscriber receives signals of different wavelengths, security is excellent, separate communication services can be provided for each subscriber, and the expansion of communication capacity can be easily accommodated.
  • Such a broadband light source may be configured in various forms.
  • a broadband light source having a compact size can be configured by using a super luminescent LED or a reflective semiconductor optical amplifier (RSOA), but the output may be reduced due to coupling loss.
  • RSOA reflective semiconductor optical amplifier
  • the disadvantage is that it is difficult to increase.
  • EDF Erbium Doped Fiber
  • a high power broadband light source is required because the power of non-coherent light injected into the FP-LD needs to be increased.
  • One embodiment of the present invention by using the Fabry-Perot filter is to separate the input light for each wavelength used in the actual optical communication of the entire wavelength and to amplify the light for the wavelengths, it is possible to efficiently use the power of the pump laser diode
  • the object is to provide a broadband light source using a Fabry-Perot filter.
  • an embodiment of the present invention is to provide a broadband light source using a high-power Fabry-Perot filter of low cost, simple structure, and smaller size using a Fabry-Perot filter. There is this.
  • a broadband light source using a Fabry-Perot filter is Erbium Doped Fiber (Aribium Doped Fiber) to amplify the input light, Erbium-added first pump light
  • a first optical coupler coupled to the optical fiber and the signal light connected to the erbium-doped optical fiber are separated for each specific wavelength, and the Fabry-Perot unit reflects the separated signal light to a erbium-doped optical fiber.
  • the Fabry-Perot unit includes a Fabry-Perot filter that separates the optical signal for each specific wavelength and a mirror that reflects the separated optical signal of the specific wavelength and transmits the optical signal to the erbium-doped optical fiber.
  • the apparatus further includes an isolator for outputting light amplified through the erbium-doped optical fiber.
  • a second optical coupler for coupling the second pump light to the erbium-doped optical fiber.
  • the broadband light source using the Fabry-Perot filter according to the second aspect of the present invention is Erbium Doped Fiber (Aribium Doped Fiber) to amplify the input light, the first optical coupler to couple the first pump light to the Erbium-added Fiber, Erbium
  • the circulator includes a circulator for transmitting the signal light inputted to the additive optical fiber to the Fabry-Perot filter and a Fabry-Perot filter for separating the optical signal received from the circulator by specific wavelengths and delivering the signal to the circulator. An optical signal of a specific wavelength separated from the Fabry-Perot filter is transmitted to the erbium-doped optical fiber.
  • the first terminal of the circulator is connected to the erbium-doped optical fiber
  • the second terminal of the circulator is connected to the input terminal of the Fabry-Perot filter
  • the third terminal of the circulator is connected to the output terminal of the Fabry-Perot filter
  • the apparatus further includes an isolator for outputting light amplified through the erbium-doped optical fiber.
  • the apparatus further includes a second optical coupler for coupling the second pump light to the erbium-doped optical fiber.
  • the power of the pump laser diode Provided is a broadband light source using a Fabry-Perot filter that can be efficiently used.
  • the above-described problem solving means of the present invention provides a broadband light source using a Fabry-Perot filter which is inexpensive, simple in structure, and smaller in size by using a Fabry-Perot filter.
  • 1 is a diagram illustrating bidirectional communication in a wavelength division multiplex passive optical network to which the present invention is applied.
  • FIG. 2 shows a configuration of a broadband light source that is commonly used.
  • FIG 3 illustrates a configuration of a broadband light source using a Febri-Perot filter according to an embodiment of the present invention.
  • FIG. 4 illustrates a configuration of a broadband light source using a Febri-Perot filter in which a traveling direction of the pump light matches a traveling direction or an output direction of the isolator according to an embodiment of the present invention.
  • FIG. 5 illustrates a broadband light source using a Fabry-Perot filter having a structure combining the broadband light sources of FIGS. 3 and 4 according to an embodiment of the present invention.
  • FIG. 6 illustrates a configuration of a broadband light source using a Febri-Perot filter according to another embodiment of the present invention.
  • 1 is a diagram illustrating bidirectional communication in a wavelength division multiplex passive optical network to which the present invention is applied.
  • the wavelength division multiplexing passive optical network 100 includes a central base station 110 and a subscriber device 130, a remote node 120 and an optical cable 140 connecting the central base station 110 and each subscriber device 130. It includes.
  • the central base station 110 includes the A band light source 111 (BLS: Broadband Light Source), the B band light source 112 (BLS), the light source distributor 113, the first 1 ⁇ N optical multiplexer / demultiplexer 114 and Receiver 115.
  • BSS Broadband Light Source
  • BSS Broadband Light Source
  • the light source distributor 113 the first 1 ⁇ N optical multiplexer / demultiplexer 114 and Receiver 115.
  • the remote node 120 includes a second 1 ⁇ N optical multiplexer / demultiplexer 121, and the optical subscriber device 130 includes a transmitter / receiver 131.
  • the A-band light source 111 provides an A-band optical signal used as a downlink optical signal, and mainly an incoherent light source is used.
  • the A band light source 111 generates an A band optical signal and provides it to the light source distributor 113.
  • the B band light source 112 provides a B band optical signal used as an uplink optical signal, and like the A band light source 111, mainly an incoherent light source is used.
  • the B band light source 112 generates a B band optical signal and transmits the generated B band light signal to the light source distributor 113.
  • the light source distributor 113 receives the A band optical signal from the A band light source 111 and transmits the A band optical signal to the first 1 ⁇ N optical multiplexer / demultiplexer 114 of the central base station 110.
  • the wavelength-locked A-band optical signal is received from the first 1 ⁇ N optical multiplexer / demultiplexer 114 of the central base station 110 and transmitted to the optical cable 140 connected to the remote node 120.
  • the light source distributor 113 receives the B band optical signal from the B band light source 112 and transmits the B band optical signal to the second 1 ⁇ N optical multiplexer / demultiplexer 121 of the remote node 120 through the optical cable 140.
  • the first 1 ⁇ N optical multiplexer / demultiplexer 114 of the central base station 110 receives the wavelength-locked B-band optical signal from the second 1 ⁇ N optical multiplexer / demultiplexer 121 of the remote node 120. To pass).
  • the first 1 ⁇ N optical multiplexer / demultiplexer 114 separates the A-band optical signal received from the light source distributor 113 for each wavelength and injects it into the transmitter of the transmitter / receiver 115 of the central base station 110.
  • the transmitter of the transmitter / receiver 115 is, for example, a Fabry Perot Laser Diode (FP-LD) or a reflective semiconductor optical amplifier, and generates a downlink optical signal for transmission to each subscriber. do.
  • FP-LD Fabry Perot Laser Diode
  • a reflective semiconductor optical amplifier a Fabry Perot Laser Diode
  • the A-band optical signal separated for each wavelength is injected into the transmitter of the transmitter / receiver 115, the wavelength and other frequency components of the injected optical signal are suppressed, and the same wavelength as the injected optical signal is fixed (locked). As a result, the A-band downlink optical signal whose wavelength is locked is output.
  • the receiver of the transmitter / receiver 115 receives a wavelength-locked B-band uplink optical signal received from the subscriber device 130 and converts the signal into an electrical signal.
  • a photo diode (PD) may be used. have.
  • the second 1 ⁇ N optical multiplexer / demultiplexer 121 of the remote node 120 separates the B-band optical signal received from the light source distributor 113 for each wavelength to the transmitter / receiver 131 of the subscriber device 130. Inject.
  • an arrayed waveguide grating AMG may be used, similarly to the first 1 ⁇ N optical multiplexer / demultiplexer 114.
  • the transmitter of the transmitter / receiver 131 is, for example, a Fabry-Perot laser diode (FP-LD) or a reflective semiconductor optical amplifier, and generates an uplink optical signal to be transmitted to the central base station 110.
  • FP-LD Fabry-Perot laser diode
  • a reflective semiconductor optical amplifier a reflective semiconductor optical amplifier
  • the B-band optical signal separated for each wavelength is injected into the transmitter of the transmitter / receiver 131, the wavelength and other frequency components of the injected optical signal are suppressed, and the same wavelength as the injected optical signal is fixed (locked). As a result, the B-band upward optical signal whose wavelength is locked is output.
  • the receiver of the transmitter / receiver 131 receives a wavelength-locked B-band uplink optical signal received from the central base station and converts the received optical signal into an electrical signal, and may be configured as a photo diode (PD).
  • PD photo diode
  • a broadband light source commonly used through FIG. 2 will be described later.
  • FIG. 2 shows a configuration of a broadband light source that is commonly used.
  • the broadband light source 200 combines an erbium-doped optical fiber 220 for amplifying input light and a pump coupler output from the pump laser diode Pump LD to the erbium-doped optical fiber 220.
  • a gold mirror 230 reflecting light and an isolator 240 fixing the flow direction of light.
  • pump light having a wavelength of 980 nm or pump light having a wavelength of 1480 nm may be used as the pump light.
  • the pump light is amplified while passing through the erbium-doped optical fiber 220, an amplified spontaneous emission light (ASE) can be obtained.
  • ASE amplified spontaneous emission light
  • the conventional broadband light source 200 all the ASE spectra generated by the erbium-doped optical fiber 220 are reflected through the gold mirror 230.
  • the spectrum is generated in addition to the wavelength corresponding to the channel used in the actual WDM-PON, the wavelength corresponding to the frequency band not actually used, there is an inefficient aspect.
  • the present invention uses the configuration to increase the efficiency by generating or amplifying only the wavelength actually required.
  • FIG 3 illustrates a configuration of a broadband light source using a Febri-Perot filter according to an embodiment of the present invention.
  • the broadband light source 300 includes an erbium-doped optical fiber 320 for amplifying the input light, an optical coupler 310 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, Fabry-Perot unit 330 for reflecting light, and isolator 340 for fixing the direction of the flow of light.
  • amplification may be performed only for a specific wavelength corresponding to a channel used in an actual WDM-PON.
  • the Fabry-Perot unit 330 may reflect only a specific wavelength corresponding to a predetermined number of channels.
  • the Fabry-Perot unit 330 separates the input light by a specific wavelength and reflects the input light to the erbium-doped optical fiber 320. To this end, it includes a Fabry-Perot Filter 332 and a mirror 334 connected to the output terminal of the Fabry-Perot Filter 332. In this case, the mirror 334 may be formed by performing gold coating on the output terminal of the Fabry-Perot filter 332.
  • the Fabry-Perot filter 332 is a Fabry-Perot resonator such as a solid etalon filter or a narrow pass filter.
  • the Fabry-Perot filter 332 has a characteristic of changing wavelength and reflectance with periodic wavelength dependence. It has the same characteristics with respect to the incident angle of the incident light.
  • the Fabry-Perot filter 332 in the case of the solid etalon filter coated on both sides of the fused silica to have the same reflectance (free spectral range) in the transmission characteristics for incident light (free
  • the magnitude of the spectral range and peak full width half maximum (FWHM) depends on the thickness of the etalon, the refractive index, the size of the coating reflectivity, the wavelength of the light and the angle of incidence.
  • the transmittance and reflectance of the incident light at a specific wavelength change according to the incident angle, and at a specific incident angle, depending on the wavelength.
  • the Fabry-Perot filter 332 of the present invention using such a feature may separate the input light by a specific wavelength using, for example, a refractive index.
  • the natural emission light is separated by 32 specific wavelengths used for actual optical communication among the entire wavelengths, and the mirror 334 reflects the original path to the filtered light through the Fabry-Perot filter 332.
  • the mirror 334 may be connected to or integrally formed with the output terminal of the Fabry Perot filter 330 by a continuous process.
  • the signal light of the reflected wavelength is amplified again through the erbium-doped optical fiber 320. Therefore, the signal light of the wavelength actually used is amplified, and the power consumption of the pump laser diode for amplifying a relatively unnecessary wavelength can be prevented.
  • the Fabry-Perot filter 332 can be used to provide a high power broadband light source of low cost, simple structure, and smaller size.
  • 4 and 5 show an example in which the basic configuration of the broadband light source 300 is applied.
  • FIG. 4 illustrates a configuration of a broadband light source using a Febri-Perot filter in which a traveling direction of the pump light matches a traveling direction or an output direction of the isolator according to an embodiment of the present invention.
  • the broadband light source 300 may be configured such that the advancing direction of the pump light coincides with the advancing direction or output direction of the isolator.
  • the advancing direction of the pump light is different from the output direction and is referred to as a counter-pumping structure, and the broadband light source 300 of FIG. 4 is co-pumping. It is called structure.
  • the broadband light source 300 of FIG. 4 includes an erbium-doped optical fiber 320 for amplifying the input light, an optical coupler 312 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, and a light reflecting light.
  • the Fabry-Perot unit 330 separates the input light by a specific wavelength and reflects the input light to the erbium-doped optical fiber 320.
  • FIG. 5 illustrates a broadband light source using a Fabry-Perot filter having a structure combining the broadband light sources of FIGS. 3 and 4 according to an embodiment of the present invention.
  • the broadband light source 300 may be configured to combine the broadband light sources of FIGS. 3 and 4, which is referred to as a bidirectional pumping structure.
  • the broadband light source 300 includes an erbium-doped optical fiber 320 for amplifying the input light, first and second optical couplers 312 and 314 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, Fabry-Perot unit 330 for reflecting light, and isolator 340 for fixing the direction of the flow of light.
  • the Fabry-Perot unit 330 separates the input light by a specific wavelength and reflects the input light to the erbium-doped optical fiber 320.
  • the configuration of the broadband light source 300 using the Fabry-Perot filter 332 and the circulator 336 will be described below with reference to FIG. 6.
  • FIG. 6 illustrates a configuration of a broadband light source using a Febri-Perot filter according to another embodiment of the present invention.
  • the broadband light source 300 includes an erbium-doped optical fiber 320 for amplifying the input light, an optical coupler 310 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, The Fabry-Perot filter 332 which separates the light by a specific wavelength, and receives the input light amplified from the erbium-doped optical fiber 320 to be transmitted to the Fabry-Perot filter 332, the Fabry-Perot filter 332 And a circulator 336 for transmitting a specific wavelength received from the erbium-doped optical fiber 320 and an isolator 340 for fixing the direction of light flow.
  • the Fabry-Perot filter 332 which separates the light by a specific wavelength, and receives the input light amplified from the erbium-doped optical fiber 320 to be transmitted to the Fabry-Perot filter 332, the Fabry-Perot filter 332 And a
  • the first terminal of the circulator 336 is connected to the erbium-doped optical fiber 320
  • the second terminal of the circulator 336 is connected to the input terminal of the Fabry-Perot filter 332, and the circulator 336 Terminal 3) is connected to the output terminal of the Fabry-Perot filter 332.
  • the first terminal of the circulator 336 receives the input light amplified from the erbium-doped optical fiber 320, and the second terminal of the circulator 336 is received to the input terminal of the Fabry-Perot filter 332.
  • the input light is transmitted, and the third terminal of the circulator 336 receives the light separated by the specific wavelength from the output terminal of the Fabry-Perot filter 332 and transmits the light to the erbium-doped optical fiber 320.
  • the Fabry-Perot filter 332 and the circulator 336 as described above may be used in a nasal pumping structure and a bidirectional pumping structure, as described above with reference to FIGS. 4 and 5. See 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

A broadband light source using a Fabry-Perot filter comprises: an eribium doped fibre (eribium doped optical fibre); a first optical coupler for coupling a first pump beam to the eribium doped fibre; and Fabry-Perot unit which is connected to the eribium doped fibre and splits input signal light into specific wavelengths, and reflects the split signal light of specific wavelengths and transmits the same to the eribium doped fibre.

Description

페브리-페롯 필터를 이용한 광대역 광원Broadband Light Source with Fabry-Perot Filter
본 발명은 파장 분할 다중 방식 수동형 광 네트워크에 사용되는 페브리-페롯 필터를 이용한 광대역 광원에 관한 것이다.The present invention relates to a broadband light source using a Fabry-Perot filter used in a wavelength division multiplex passive optical network.
광대역 광원은 파장 분할 다중 방식 수동형 광 네트워크(WDM-PON, Wavelength Division Multiplexed Passive Optical Network), 광 측정(optical measurement), 광 센싱 또는 자이로스코프(gyroscope) 등 다양한 분야에서 폭 넓게 사용되고 있다.Broadband light sources are widely used in various fields, such as wavelength division multiplexed passive optical networks (WDM-PON), optical measurement, optical sensing, or gyroscopes.
주요 이용 분야인 파장 분할 다중 방식 수동형 광 네트워크에 대하여 간략히 설명하면, 해당 네트워크는 각 가입자에게 부여된 고유의 파장을 이용하여 초고속 광대역 통신 서비스를 제공한다. 따라서, 서로 다른 파장의 신호를 해당 가입자만 수신하기 때문에 보안성이 우수하고, 각 가입자 별로 별도의 통신 서비스를 제공할 수 있으며, 통신 용량의 확대를 쉽게 수용할 수 있다.The wavelength division multiplexing passive optical network, which is a main field of use, will be briefly described. The network provides a high speed broadband communication service using a unique wavelength assigned to each subscriber. Therefore, since only the corresponding subscriber receives signals of different wavelengths, security is excellent, separate communication services can be provided for each subscriber, and the expansion of communication capacity can be easily accommodated.
종래에는, DFB-LD(Distributed Feedback-Laser Diode) 소자를 사용하여 중앙 기지국(CO, Central Office)과 가입자 장치(subscriber terminal)들이 서로 다른 파장의 광원을 각각 구비함으로써, WDM-PON을 구현하는 방법이 제안되었다. 하지만, 이러한 방식은 DFB-LD 소자가 고가이기 때문에 비용적인 측면에서 상용화에 많은 어려움이 따를 뿐만 아니라 복잡한 온도 제어 기술이 필요한 문제점이 있었다. 따라서, 저가의 페브리-페롯 레이저 다이오드(FP-LD)에 비간섭성 광대역 광원(BLS, Broadband Light Source)을 주입하여 파장 잠김을 유도하고, 그것에 의해 WDM 광 신호를 구현하는 파장 잠김된 광 신호를 이용하는 기술이 널리 사용되고 있다.Conventionally, a method of implementing a WDM-PON by using a DFB-LD (Distributed Feedback-Laser Diode) device, wherein a central office (CO) and a subscriber terminal (subscriber terminal) each have a light source having a different wavelength. This has been proposed. However, this method has a problem in that it is difficult to commercialize in terms of cost because the DFB-LD device is expensive, and also requires a complicated temperature control technology. Accordingly, a wavelength-locked optical signal that induces wavelength locking by injecting an incoherent broadband light source (BLS) into a low-cost Fabry-Perot laser diode (FP-LD), thereby realizing a WDM optical signal. The technique using is widely used.
이러한 광대역 광원은 여러 가지 형태로 구성될 수 있다. 반도체를 이용한 구성으로는 초 발광 LED(super luminescent LED)나 반사형 반도체 광 증폭기(RSOA, Reflective Semiconductor Optical Amplifier)를 사용하여 컴팩트한 사이즈의 광대역 광원을 구성할 수 있으나, 커플링 손실등에 의해 출력을 증가시키기 어렵다는 단점이 있다.Such a broadband light source may be configured in various forms. In the case of using a semiconductor, a broadband light source having a compact size can be configured by using a super luminescent LED or a reflective semiconductor optical amplifier (RSOA), but the output may be reduced due to coupling loss. The disadvantage is that it is difficult to increase.
이에 비하여, 어븀 첨가 광섬유(EDF, Eribium Doped Fiber)를 이용한 구성에서는 어븀의 특성상 광통신에서 사용되는 두 가지 중요 대역(예를 들면, C-대역, L-대역)을 증폭 자발 방출(ASE, Amplified Spontaneous Emission)을 이용하여 손쉽게 얻을 수 있다. 그에 따라, 기지국과 가입자 장치 사이의 쌍방향 통신을 구현할 수 있다.On the other hand, in the configuration using Erbium Doped Fiber (EDF), two important bands (eg, C-band and L-band) used in optical communication are amplified spontaneous due to the characteristics of erbium. Emission can be obtained easily. Accordingly, two-way communication between the base station and the subscriber device can be implemented.
한편, 기가(giga)급 데이터 전송 특성을 갖는 WDM-PON을 개발하기 위해서는 FP-LD 로 주입되는 비간섭성광의 파워가 증가되어야 하므로 고출력 광대역 광원이 필요하다.Meanwhile, in order to develop a WDM-PON having a giga-class data transmission characteristic, a high power broadband light source is required because the power of non-coherent light injected into the FP-LD needs to be increased.
이를 위해, 전체 파장 중 실제 광통신에 사용되는 파장별로 입력광을 분리시키고 해당 파장들에 대해서 광을 증폭시킴으로써, 펌프 레이저 다이오드의 전력을 효율적으로 사용할 필요성이 제기된다.To this end, there is a need to efficiently use the power of the pump laser diode by separating the input light for each wavelength used in the actual optical communication and amplifying the light for the corresponding wavelengths.
본 발명의 일 실시예는 페브리-페롯 필터를 이용하여 전체 파장 중 실제 광통신에 사용되는 파장별로 입력광을 분리시키고 해당 파장들에 대해서 광을 증폭시킴으로써, 펌프 레이저 다이오드의 전력을 효율적으로 사용할 수 있도록 하는 페브리-페롯 필터를 이용한 광대역 광원을 제공하는 데에 그 목적이 있다.One embodiment of the present invention by using the Fabry-Perot filter is to separate the input light for each wavelength used in the actual optical communication of the entire wavelength and to amplify the light for the wavelengths, it is possible to efficiently use the power of the pump laser diode The object is to provide a broadband light source using a Fabry-Perot filter.
또한, 본 발명의 일 실시예는 페브리-페롯 필터를 이용하여 비용이 저렴하고, 구조가 간단하며, 크기가 보다 소형화되는 고출력의 페브리-페롯 필터를 이용한 광대역 광원을 제공하는 데에 그 목적이 있다.In addition, an embodiment of the present invention is to provide a broadband light source using a high-power Fabry-Perot filter of low cost, simple structure, and smaller size using a Fabry-Perot filter. There is this.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면에 따른 페브리-페롯 필터를 이용한 광대역 광원은 입력광을 증폭시키는 어븀 첨가 광섬유(Eribium Doped Fiber), 제 1 펌프광을 어븀 첨가 광섬유에 결합시키는 제 1 광결합기 및 어븀 첨가 광섬유에 접속되어 입력되는 신호광을 특정 파장별로 분리하고, 분리된 특정 파장의 신호광을 반사시켜 어븀 첨가 광섬유로 전달하는 페브리-페롯 유닛을 포함한다.As a technical means for achieving the above-described technical problem, a broadband light source using a Fabry-Perot filter according to the first aspect of the present invention is Erbium Doped Fiber (Aribium Doped Fiber) to amplify the input light, Erbium-added first pump light A first optical coupler coupled to the optical fiber and the signal light connected to the erbium-doped optical fiber are separated for each specific wavelength, and the Fabry-Perot unit reflects the separated signal light to a erbium-doped optical fiber.
여기서, 페브리-페롯 유닛은 특정 파장별로 광신호를 분리하는 페브리-페롯 필터 및 분리된 특정 파장의 광신호를 반사시켜 어븀 첨가 광섬유로 전달하는 미러를 포함한다.Here, the Fabry-Perot unit includes a Fabry-Perot filter that separates the optical signal for each specific wavelength and a mirror that reflects the separated optical signal of the specific wavelength and transmits the optical signal to the erbium-doped optical fiber.
또한, 어븀 첨가 광섬유를 통해 증폭된 광을 출력하는 아이솔레이터를 더 포함한다.The apparatus further includes an isolator for outputting light amplified through the erbium-doped optical fiber.
그리고, 제 2 펌프광을 어븀 첨가 광섬유에 결합시키는 제 2 광결합기를 더 포함한다.And a second optical coupler for coupling the second pump light to the erbium-doped optical fiber.
또한, 본 발명의 제 2 측면에 따른 페브리-페롯 필터를 이용한 광대역 광원은 입력광을 증폭시키는 어븀 첨가 광섬유(Eribium Doped Fiber), 제 1 펌프광을 어븀 첨가 광섬유에 결합시키는 제 1 광결합기, 어븀 첨가 광섬유에 접속되어 입력되는 신호광을 페브리-페롯 필터로 전달하는 서큘레이터 및 서큘레이터로부터 전달받은 광신호를 특정 파장별로 분리하여 서큘레이터로 전달하는 페브리-페롯 필터를 포함하되, 서큘레이터는 페브리-페롯 필터로부터 수신한 분리된 특정 파장의 광신호를 어븀 첨가 광섬유로 전달한다.In addition, the broadband light source using the Fabry-Perot filter according to the second aspect of the present invention is Erbium Doped Fiber (Aribium Doped Fiber) to amplify the input light, the first optical coupler to couple the first pump light to the Erbium-added Fiber, Erbium The circulator includes a circulator for transmitting the signal light inputted to the additive optical fiber to the Fabry-Perot filter and a Fabry-Perot filter for separating the optical signal received from the circulator by specific wavelengths and delivering the signal to the circulator. An optical signal of a specific wavelength separated from the Fabry-Perot filter is transmitted to the erbium-doped optical fiber.
여기서, 서큘레이터의 1번 단자는 어븀 첨가 광섬유와 연결되고, 서큘레이터의 2번 단자는 페브리-페롯 필터의 입력단과 연결되고, 서큘레이터의 3번 단자는 페브리-페롯 필터의 출력단과 연결된 것이다.Here, the first terminal of the circulator is connected to the erbium-doped optical fiber, the second terminal of the circulator is connected to the input terminal of the Fabry-Perot filter, and the third terminal of the circulator is connected to the output terminal of the Fabry-Perot filter will be.
그리고, 어븀 첨가 광섬유를 통해 증폭된 광을 출력하는 아이솔레이터를 더 포함한다.The apparatus further includes an isolator for outputting light amplified through the erbium-doped optical fiber.
또한, 제 2 펌프광을 어븀 첨가 광섬유에 결합시키는 제 2 광결합기를 더 포함한다.The apparatus further includes a second optical coupler for coupling the second pump light to the erbium-doped optical fiber.
전술한 본 발명의 과제 해결 수단에 의하면, 페브리-페롯 필터를 이용하여 전체 파장 중 실제 광통신에 사용되는 파장별로 입력광을 분리시키고 해당 파장들에 대해서 광을 증폭시킴으로써, 펌프 레이저 다이오드의 전력을 효율적으로 사용할 수 있는 페브리-페롯 필터를 이용한 광대역 광원을 제공한다.According to the above-described problem solving means of the present invention, by using the Fabry-Perot filter to separate the input light for each wavelength used for the actual optical communication and amplify the light for the wavelengths, the power of the pump laser diode Provided is a broadband light source using a Fabry-Perot filter that can be efficiently used.
또한, 전술한 본 발명의 과제 해결 수단에 의하면, 페브리-페롯 필터를 이용하여 비용이 저렴하고, 구조가 간단하며, 크기가 보다 소형화되는 페브리-페롯 필터를 이용한 광대역 광원을 제공한다.In addition, the above-described problem solving means of the present invention provides a broadband light source using a Fabry-Perot filter which is inexpensive, simple in structure, and smaller in size by using a Fabry-Perot filter.
도 1은 본 발명이 적용되는 파장 분할 다중 방식 수동 광 네트워크에서의 양방향 통신을 설명하기 위한 도면이다.1 is a diagram illustrating bidirectional communication in a wavelength division multiplex passive optical network to which the present invention is applied.
도 2는 통상적으로 사용되는 광대역 광원의 구성을 도시한다.2 shows a configuration of a broadband light source that is commonly used.
도 3은 본 발명의 일 실시예에 따른 페브리-페롯 필터를 이용한 광대역 광원의 구성을 도시한다.3 illustrates a configuration of a broadband light source using a Febri-Perot filter according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 펌프광의 진행 방향이 아이솔레이터의 진행 방향 또는 출력 방향과 일치하는 페브리-페롯 필터를 이용한 광대역 광원의 구성을 도시한다.FIG. 4 illustrates a configuration of a broadband light source using a Febri-Perot filter in which a traveling direction of the pump light matches a traveling direction or an output direction of the isolator according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 상기 도 3과 도 4의 광대역 광원을 결합한 구조의 페브리-페롯 필터를 이용한 광대역 광원을 도시한다.FIG. 5 illustrates a broadband light source using a Fabry-Perot filter having a structure combining the broadband light sources of FIGS. 3 and 4 according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 페브리-페롯 필터를 이용한 광대역 광원의 구성을 도시한다.6 illustrates a configuration of a broadband light source using a Febri-Perot filter according to another embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless otherwise stated.
도 1은 본 발명이 적용되는 파장 분할 다중 방식 수동 광 네트워크에서의 양방향 통신을 설명하기 위한 도면이다.1 is a diagram illustrating bidirectional communication in a wavelength division multiplex passive optical network to which the present invention is applied.
파장 분할 다중 방식 수동 광 네트워크(100)는 중앙 기지국(110)과 가입자 장치(130), 중앙 기지국(110)과 각각의 가입자 장치(130)를 연결하는 원격 노드(120) 및 광 케이블(140)을 포함한다.The wavelength division multiplexing passive optical network 100 includes a central base station 110 and a subscriber device 130, a remote node 120 and an optical cable 140 connecting the central base station 110 and each subscriber device 130. It includes.
중앙 기지국(110)은 A 대역 광원(111, BLS: Broadband Light Source), B 대역 광원(112, BLS), 광원 분배기(113), 제 1 1×N 광 다중/역다중화기(114) 및 송/수신기(115)를 포함한다.The central base station 110 includes the A band light source 111 (BLS: Broadband Light Source), the B band light source 112 (BLS), the light source distributor 113, the first 1 × N optical multiplexer / demultiplexer 114 and Receiver 115.
원격 노드(120)는 제 2 1×N 광 다중/역다중화기(121)를 포함하고, 광 가입자 장치(130)는 송/수신기(131)를 포함한다.The remote node 120 includes a second 1 × N optical multiplexer / demultiplexer 121, and the optical subscriber device 130 includes a transmitter / receiver 131.
A 대역 광원(111)은 하향 광신호로 사용되는 A 대역 광신호를 제공하며, 주로 비간섭성(incoherent) 광원이 사용된다. A 대역 광원(111)은 A 대역 광신호를 생성하여 광원 분배기(113)로 제공한다.The A-band light source 111 provides an A-band optical signal used as a downlink optical signal, and mainly an incoherent light source is used. The A band light source 111 generates an A band optical signal and provides it to the light source distributor 113.
B 대역 광원(112)은 상향 광신호로 사용되는 B 대역 광신호를 제공하며, A 대역 광원(111)과 마찬가지로 주로 비간섭성 광원이 사용된다. B 대역 광원(112)은 B 대역 광신호를 생성하여 광원 분배기(113)로 전달한다.The B band light source 112 provides a B band optical signal used as an uplink optical signal, and like the A band light source 111, mainly an incoherent light source is used. The B band light source 112 generates a B band optical signal and transmits the generated B band light signal to the light source distributor 113.
광원 분배기(113)는 A 대역 광원(111)으로부터 A 대역 광신호를 수신하여 중앙 기지국(110)의 제 1 1×N 광 다중/역다중화기(114)로 전송한다. 또한, 중앙 기지국(110)의 제 1 1×N 광 다중/역다중화기(114)로부터 파장 잠김된 A 대역 광신호를 전달받아 원격 노드(120)와 연결된 광 케이블(140)로 전송한다.The light source distributor 113 receives the A band optical signal from the A band light source 111 and transmits the A band optical signal to the first 1 × N optical multiplexer / demultiplexer 114 of the central base station 110. In addition, the wavelength-locked A-band optical signal is received from the first 1 × N optical multiplexer / demultiplexer 114 of the central base station 110 and transmitted to the optical cable 140 connected to the remote node 120.
광원 분배기(113)는 B 대역 광원(112)으로부터 B 대역 광신호를 수신하여 광 케이블(140)을 통해 원격 노드(120)의 제 2 1×N 광 다중/역다중화기(121)로 전송한다. 또한, 원격 노드(120)의 제 2 1×N 광 다중/역다중화기(121)로부터 파장 잠김된 B 대역 광신호를 전달받아 중앙 기지국(110)의 제 1 1×N 광 다중/역다중화기(114)로 전달한다.The light source distributor 113 receives the B band optical signal from the B band light source 112 and transmits the B band optical signal to the second 1 × N optical multiplexer / demultiplexer 121 of the remote node 120 through the optical cable 140. In addition, the first 1 × N optical multiplexer / demultiplexer 114 of the central base station 110 receives the wavelength-locked B-band optical signal from the second 1 × N optical multiplexer / demultiplexer 121 of the remote node 120. To pass).
제 1 1×N 광 다중/역다중화기(114)는 광원 분배기(113)로부터 수신한 A 대역 광신호를 파장 별로 분리하여 중앙 기지국(110)의 송/수신기(115)의 송신기에 주입시킨다.The first 1 × N optical multiplexer / demultiplexer 114 separates the A-band optical signal received from the light source distributor 113 for each wavelength and injects it into the transmitter of the transmitter / receiver 115 of the central base station 110.
송/수신기(115)의 송신기는, 예를 들어, 페브리-페롯 레이저 다이오드(FP-LD: Fabry Perot Laser Diode) 혹은 반사형 반도체 광증폭기가 사용되며, 각 가입자들에게 전송할 하향 광신호를 생성한다.The transmitter of the transmitter / receiver 115 is, for example, a Fabry Perot Laser Diode (FP-LD) or a reflective semiconductor optical amplifier, and generates a downlink optical signal for transmission to each subscriber. do.
구체적으로, 송/수신기(115)의 송신기에 파장 별로 분리된 A 대역 광신호를 주입하면, 주입된 광신호의 파장과 다른 주파수 성분들은 억제되고, 주입된 광신호와 동일한 파장은 고정(잠김)됨으로써, 파장 잠김된 A 대역 하향 광신호가 출력된다.Specifically, when the A-band optical signal separated for each wavelength is injected into the transmitter of the transmitter / receiver 115, the wavelength and other frequency components of the injected optical signal are suppressed, and the same wavelength as the injected optical signal is fixed (locked). As a result, the A-band downlink optical signal whose wavelength is locked is output.
송/수신기(115)의 수신기는 가입자 장치(130)로부터 수신한 파장 잠김된 B 대역 상향 광신호를 전달 받아 전기 신호로 변환하는 역할을 하며, 포토 다이오드(PD: Photo Diode) 등이 이용될 수 있다.The receiver of the transmitter / receiver 115 receives a wavelength-locked B-band uplink optical signal received from the subscriber device 130 and converts the signal into an electrical signal. A photo diode (PD) may be used. have.
원격 노드(120)의 제 2 1×N 광 다중/역다중화기(121)는 광원 분배기(113)로부터 수신한 B 대역 광신호를 파장 별로 분리하여 가입자 장치(130)의 송/수신기(131)로 주입시킨다. 제 2 1×N 광 다중/역다중화기(121)는, 제 1 1×N 광 다중/역다중화기(114)와 마찬가지로 예를 들어, 배열 도파로 격자(AWG)가 사용될 수 있다.The second 1 × N optical multiplexer / demultiplexer 121 of the remote node 120 separates the B-band optical signal received from the light source distributor 113 for each wavelength to the transmitter / receiver 131 of the subscriber device 130. Inject. As the first 1 × N optical multiplexer / demultiplexer 121, an arrayed waveguide grating (AWG) may be used, similarly to the first 1 × N optical multiplexer / demultiplexer 114.
송/수신기(131)의 송신기는, 예를 들어, 페브리-페롯 레이저 다이오드(FP-LD) 혹은 반사형 반도체 광증폭기가 사용되며, 중앙 기지국(110)으로 전송할 상향 광신호를 생성한다.The transmitter of the transmitter / receiver 131 is, for example, a Fabry-Perot laser diode (FP-LD) or a reflective semiconductor optical amplifier, and generates an uplink optical signal to be transmitted to the central base station 110.
자세하게는, 송/수신기(131)의 송신기에 파장 별로 분리된 B 대역 광신호를 주입하면, 주입된 광신호의 파장과 다른 주파수 성분들은 억제되고, 주입된 광신호와 동일한 파장은 고정(잠김)됨으로써, 파장 잠김된 B 대역 상향 광신호가 출력된다.In detail, when the B-band optical signal separated for each wavelength is injected into the transmitter of the transmitter / receiver 131, the wavelength and other frequency components of the injected optical signal are suppressed, and the same wavelength as the injected optical signal is fixed (locked). As a result, the B-band upward optical signal whose wavelength is locked is output.
송/수신기(131)의 수신기는 중앙 기지국으로부터 수신한 파장 잠김된 B 대역 상향 광신호를 수신하여 전기 신호로 변환하는 역할을 하며, 포토 다이오드(PD) 등으로 구성할 수 있다. 이하, 도 2를 통해 통상적으로 사용되는 광대역 광원에 대해서 후술하기로 한다.The receiver of the transmitter / receiver 131 receives a wavelength-locked B-band uplink optical signal received from the central base station and converts the received optical signal into an electrical signal, and may be configured as a photo diode (PD). Hereinafter, a broadband light source commonly used through FIG. 2 will be described later.
도 2는 통상적으로 사용되는 광대역 광원의 구성을 도시한다.2 shows a configuration of a broadband light source that is commonly used.
도 2에 도시된 바와 같이, 광대역 광원(200)은 입력광을 증폭시키기 위한 어븀 첨가 광섬유(220), 펌프 레이저 다이오드(Pump LD)에서 출력되는 펌프광을 어븀 첨가 광섬유(220)에 결합시키는 광결합기(210), 광을 반사시키는 골드 미러(230), 광의 흐름 방향을 고정시키는 아이솔레이터(240)를 포함한다.As shown in FIG. 2, the broadband light source 200 combines an erbium-doped optical fiber 220 for amplifying input light and a pump coupler output from the pump laser diode Pump LD to the erbium-doped optical fiber 220. 210, a gold mirror 230 reflecting light, and an isolator 240 fixing the flow direction of light.
이때, 펌프광으로는 파장이 980nm인 펌프광 또는 파장이 1480nm인 펌프광이 사용될 수 있다. 또한, 펌프광이 어븀 첨가 광섬유(220)를 통과하며 증폭이 되기 때문에 증폭 자발 방출광(ASE)을 얻을 수 있다.At this time, pump light having a wavelength of 980 nm or pump light having a wavelength of 1480 nm may be used as the pump light. In addition, since the pump light is amplified while passing through the erbium-doped optical fiber 220, an amplified spontaneous emission light (ASE) can be obtained.
종래의 광대역 광원(200)에서는 어븀 첨가 광섬유(220)에 의하여 생성된 ASE 스펙트럼을 골드미러(230)를 통해 모두 반사시키고 있다. 즉, 실제 WDM-PON에서 사용되는 채널에 해당하는 파장 외에, 실제 사용되지 않는 주파수 대역에 해당하는 파장에 대해서도 스펙트럼이 생성되기 때문에, 비효율적인 측면이 있다.In the conventional broadband light source 200, all the ASE spectra generated by the erbium-doped optical fiber 220 are reflected through the gold mirror 230. In other words, the spectrum is generated in addition to the wavelength corresponding to the channel used in the actual WDM-PON, the wavelength corresponding to the frequency band not actually used, there is an inefficient aspect.
따라서 본 발명에서는 실제 필요로 하는 파장만을 생성 또는 증폭시켜 효율을 높이는 구성을 사용한다.Therefore, the present invention uses the configuration to increase the efficiency by generating or amplifying only the wavelength actually required.
도 3은 본 발명의 일 실시예에 따른 페브리-페롯 필터를 이용한 광대역 광원의 구성을 도시한다.3 illustrates a configuration of a broadband light source using a Febri-Perot filter according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 광대역 광원(300)은 입력광을 증폭시키기 위한 어븀 첨가 광섬유(320), 펌프 레이저 다이오드에서 출력되는 펌프광을 어븀 첨가 광섬유(320)에 결합시키는 광결합기(310), 광을 반사시키는 페브리-페롯 유닛(330), 광의 흐름 방향을 고정시키는 아이솔레이터(340)를 포함한다.As shown in FIG. 3, the broadband light source 300 includes an erbium-doped optical fiber 320 for amplifying the input light, an optical coupler 310 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, Fabry-Perot unit 330 for reflecting light, and isolator 340 for fixing the direction of the flow of light.
본 발명의 실시예를 통해 실제 WDM-PON에서 사용되는 채널에 해당하는 특정 파장에 대해서만 증폭이 수행될 수 있다. 이를 위해 본 발명에서는 페브리-페롯 유닛(330)를 이용하여 미리 설정된 개수의 채널에 해당하는 특정 파장만을 반사시킬 수 있다.According to an embodiment of the present invention, amplification may be performed only for a specific wavelength corresponding to a channel used in an actual WDM-PON. To this end, in the present invention, the Fabry-Perot unit 330 may reflect only a specific wavelength corresponding to a predetermined number of channels.
페브리-페롯 유닛(330)은 입력광을 특정 파장별로 분리하고 이를 반사시켜 어븀 첨가 광섬유(320)로 전달한다. 이를 위해, 페브리-페롯 필터(Fabry-Perot Filter)(332)와, 페브리-페롯 필터(332)의 출력단에 접속된 미러(334)를 포함한다. 이때, 페브리-페롯 필터(332)의 출력단에 골드 코팅을 수행하여 미러(334)를 형성할 수 있다.The Fabry-Perot unit 330 separates the input light by a specific wavelength and reflects the input light to the erbium-doped optical fiber 320. To this end, it includes a Fabry-Perot Filter 332 and a mirror 334 connected to the output terminal of the Fabry-Perot Filter 332. In this case, the mirror 334 may be formed by performing gold coating on the output terminal of the Fabry-Perot filter 332.
페브리-페롯 필터(332)는 고체 에탈론 필터(solid etalon filter)나 협대역 통과 필터 등과 같은 패브리-페롯 공진기(Fabry-Perot resonator)로서, 주기적인 파장 의존성을 가지고 투과율과 반사율이 변화하는 특성을 가지며 입사광의 입사각에 대해서도 같은 특성을 가진다.The Fabry-Perot filter 332 is a Fabry-Perot resonator such as a solid etalon filter or a narrow pass filter. The Fabry-Perot filter 332 has a characteristic of changing wavelength and reflectance with periodic wavelength dependence. It has the same characteristics with respect to the incident angle of the incident light.
그리고 페브리-페롯 필터(332)의 예로서, 용융 실리카(fused silica)의 양면을 동일 반사율을 가지도록 코팅(coating)한 고체 에탈론 필터의 경우에는 입사광에 대한 투과특성에서 자유 스펙트럼 범위(free spectral range)와 피크(peak)의 FWHM(Full Width Half Maximum)의 크기가 에탈론의 두께, 굴절률, 코팅반사율의 크기, 광의 파장 및 입사각에 의존한다.And, as an example of the Fabry-Perot filter 332, in the case of the solid etalon filter coated on both sides of the fused silica to have the same reflectance (free spectral range) in the transmission characteristics for incident light (free The magnitude of the spectral range and peak full width half maximum (FWHM) depends on the thickness of the etalon, the refractive index, the size of the coating reflectivity, the wavelength of the light and the angle of incidence.
따라서, 에탈론의 두께, 굴절률, 코팅반사율의 크기가 결정된 경우에 특정파장에서 입사광의 투과율 및 반사율은 입사각에 따라 변하고, 특정 입사각에서는 파장에 따라 변한다.Therefore, when the thickness of the etalon, the refractive index, and the size of the coating reflectance are determined, the transmittance and reflectance of the incident light at a specific wavelength change according to the incident angle, and at a specific incident angle, depending on the wavelength.
이와 같은 특징을 이용한 본 발명의 페브리-페롯 필터(332)는 예를 들어 굴절률을 이용하여 입력광을 특정 파장별로 분리할 수 있다. 예컨대 자연방출광이 전체 파장 중 실제 광통신에 사용되는 32개의 특정 파장별로 분리되고, 미러(334)는 페브리-페롯 필터(332)를 통하여 필터링된 광에 대해서 원래의 경로로 반사한다. 여기서 미러(334)는 연속공정에 의해서 페브리 페롯 필터(330)의 출력단에 연결 또는 일체로 형성될 수 있다.The Fabry-Perot filter 332 of the present invention using such a feature may separate the input light by a specific wavelength using, for example, a refractive index. For example, the natural emission light is separated by 32 specific wavelengths used for actual optical communication among the entire wavelengths, and the mirror 334 reflects the original path to the filtered light through the Fabry-Perot filter 332. The mirror 334 may be connected to or integrally formed with the output terminal of the Fabry Perot filter 330 by a continuous process.
이렇게 반사된 파장의 신호광은 다시 어븀 첨가 광섬유(320)를 통해 증폭된다. 따라서, 실제로 사용되는 파장의 신호광이 증폭되고, 상대적으로 불필요한 파장의 증폭을 위한 펌프 레이저 다이오드의 전력 소모를 방지할 수 있다.The signal light of the reflected wavelength is amplified again through the erbium-doped optical fiber 320. Therefore, the signal light of the wavelength actually used is amplified, and the power consumption of the pump laser diode for amplifying a relatively unnecessary wavelength can be prevented.
또한, 페브리-페롯 필터(332)를 이용하여 비용이 저렴하고, 구조가 간단하며, 크기가 보다 소형화되는 고출력의 광대역 광원을 제공될 수 있다. 이하, 도 4 및 도 5는 광대역 광원(300)의 기본 구성을 응용한 예를 도시한다.In addition, the Fabry-Perot filter 332 can be used to provide a high power broadband light source of low cost, simple structure, and smaller size. 4 and 5 show an example in which the basic configuration of the broadband light source 300 is applied.
도 4는 본 발명의 일 실시예에 따른 펌프광의 진행 방향이 아이솔레이터의 진행 방향 또는 출력 방향과 일치하는 페브리-페롯 필터를 이용한 광대역 광원의 구성을 도시한다.FIG. 4 illustrates a configuration of a broadband light source using a Febri-Perot filter in which a traveling direction of the pump light matches a traveling direction or an output direction of the isolator according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 펌프광의 진행 방향이 아이솔레이터의 진행 방향 또는 출력(output) 방향과 일치하도록 광대역 광원(300)이 구성될 수 있다. 여기서, 상술된 도 3의 광대역 광원(300)의 경우 펌프광의 진행 방향이 출력 방향과 상이하여 카운터 펌핑(counter-pumping)구조라고 하며, 도 4의 광대역 광원(300)은 코 펌핑(co-pumping) 구조라고 한다.As shown in FIG. 4, the broadband light source 300 may be configured such that the advancing direction of the pump light coincides with the advancing direction or output direction of the isolator. Here, in the case of the broadband light source 300 of FIG. 3 described above, the advancing direction of the pump light is different from the output direction and is referred to as a counter-pumping structure, and the broadband light source 300 of FIG. 4 is co-pumping. It is called structure.
도 4의 광대역 광원(300)은 입력광을 증폭시키기 위한 어븀 첨가 광섬유(320), 펌프 레이저 다이오드에서 출력되는 펌프광을 어븀 첨가 광섬유(320)에 결합시키는 광결합기(312), 광을 반사시키는 페브리-페롯 유닛(330), 광의 흐름 방향을 고정시키는 아이솔레이터(340)를 포함한다. 본 실시예에서도, 페브리-페롯 유닛(330)은 입력광을 특정 파장별로 분리하고 이를 반사시켜 어븀 첨가 광섬유(320)로 전달한다.The broadband light source 300 of FIG. 4 includes an erbium-doped optical fiber 320 for amplifying the input light, an optical coupler 312 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, and a light reflecting light. Bree-Perot unit 330, isolator 340 for fixing the direction of the flow of light. In this embodiment, the Fabry-Perot unit 330 separates the input light by a specific wavelength and reflects the input light to the erbium-doped optical fiber 320.
도 5는 본 발명의 일 실시예에 따른 상기 도 3과 도 4의 광대역 광원을 결합한 구조의 페브리-페롯 필터를 이용한 광대역 광원을 도시한다.FIG. 5 illustrates a broadband light source using a Fabry-Perot filter having a structure combining the broadband light sources of FIGS. 3 and 4 according to an embodiment of the present invention.
도 5에 도시된 바와 같이, 광대역 광원(300)은 도 3과 도 4의 광대역 광원을 결합한 구조로 이루어질 수 있으며, 이를 양방향 펌핑 구조라고 한다.As shown in FIG. 5, the broadband light source 300 may be configured to combine the broadband light sources of FIGS. 3 and 4, which is referred to as a bidirectional pumping structure.
여기서 광대역 광원(300)은 입력광을 증폭시키기 위한 어븀 첨가 광섬유(320), 펌프 레이저 다이오드에서 출력되는 펌프광을 어븀 첨가 광섬유(320)에 결합시키는 제 1 및 제2 광결합기(312, 314), 광을 반사시키는 페브리-페롯 유닛(330), 광의 흐름 방향을 고정시키는 아이솔레이터(340)를 포함한다. 본 실시예에서도, 페브리-페롯 유닛(330)은 입력광을 특정 파장별로 분리하고 이를 반사시켜 어븀 첨가 광섬유(320)로 전달한다. 한편, 이하 도 6를 통해 페브리-페롯 필터(332) 및 서큘레이터(336)를 이용한 광대역 광원(300)의 구성에 대해서 후술하기로 한다.Here, the broadband light source 300 includes an erbium-doped optical fiber 320 for amplifying the input light, first and second optical couplers 312 and 314 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, Fabry-Perot unit 330 for reflecting light, and isolator 340 for fixing the direction of the flow of light. In this embodiment, the Fabry-Perot unit 330 separates the input light by a specific wavelength and reflects the input light to the erbium-doped optical fiber 320. Meanwhile, the configuration of the broadband light source 300 using the Fabry-Perot filter 332 and the circulator 336 will be described below with reference to FIG. 6.
도 6은 본 발명의 다른 실시예에 따른 페브리-페롯 필터를 이용한 광대역 광원의 구성을 도시한다.6 illustrates a configuration of a broadband light source using a Febri-Perot filter according to another embodiment of the present invention.
도 6에 도시된 바와 같이, 광대역 광원(300)은 입력광을 증폭시키기 위한 어븀 첨가 광섬유(320), 펌프 레이저 다이오드에서 출력되는 펌프광을 어븀 첨가 광섬유(320)에 결합시키는 광결합기(310), 광을 특정 파장별로 분리하는 페브리-페롯 필터(332), 어븀 첨가 광섬유(320)로부터 증폭된 입력광을 수신하여 페브리-페롯 필터(332)로 전달하고, 페브리-페롯 필터(332)으로부터 수신된 특정 파장을 어븀 첨가 광섬유(320)로 전송하는 서큘레이터(336) 및 광의 흐름 방향을 고정시키는 아이솔레이터(340)를 포함한다.As shown in FIG. 6, the broadband light source 300 includes an erbium-doped optical fiber 320 for amplifying the input light, an optical coupler 310 for coupling the pump light output from the pump laser diode to the erbium-doped optical fiber 320, The Fabry-Perot filter 332 which separates the light by a specific wavelength, and receives the input light amplified from the erbium-doped optical fiber 320 to be transmitted to the Fabry-Perot filter 332, the Fabry-Perot filter 332 And a circulator 336 for transmitting a specific wavelength received from the erbium-doped optical fiber 320 and an isolator 340 for fixing the direction of light flow.
여기서, 서큘레이터(336)의 1번 단자는 어븀 첨가 광섬유(320)와 연결되고, 서큘레이터(336)의 2번 단자는 페브리-페롯 필터(332)의 입력단과 연결되고, 서큘레이터(336)의 3번 단자는 페브리-페롯 필터(332)의 출력단과 연결된다.Here, the first terminal of the circulator 336 is connected to the erbium-doped optical fiber 320, the second terminal of the circulator 336 is connected to the input terminal of the Fabry-Perot filter 332, and the circulator 336 Terminal 3) is connected to the output terminal of the Fabry-Perot filter 332.
따라서, 서큘레이터(336)의 1번 단자는 어븀 첨가 광섬유(320)으로부터 증폭된 입력광을 수신하고, 서큘레이터(336)의 2번 단자는 페브리-페롯 필터(332)의 입력단으로 수신된 입력광을 전달하고, 서큘레이터(336)의 3번 단자는 특정 파장별로 분리된 광을 페브리-페롯 필터(332)의 출력단으로부터 수신하여 어븀 첨가 광섬유(320)로 전달하게 된다.Accordingly, the first terminal of the circulator 336 receives the input light amplified from the erbium-doped optical fiber 320, and the second terminal of the circulator 336 is received to the input terminal of the Fabry-Perot filter 332. The input light is transmitted, and the third terminal of the circulator 336 receives the light separated by the specific wavelength from the output terminal of the Fabry-Perot filter 332 and transmits the light to the erbium-doped optical fiber 320.
이와 같은 페브리-페롯 필터(332) 및 서큘레이터(336)는 상술된 도 4 및 도 5와 같이, 코 펌핑 구조, 양방향 펌핑 구조에 사용될 수 있음은 물론이며, 관련된 구체적인 설명은 도 4 및 도 5를 참조하기 바란다.The Fabry-Perot filter 332 and the circulator 336 as described above may be used in a nasal pumping structure and a bidirectional pumping structure, as described above with reference to FIGS. 4 and 5. See 5.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (8)

  1. 페브리-페롯 필터를 이용한 광대역 광원에 있어서,In a broadband light source using a Fabry-Perot filter,
    입력광을 증폭시키는 어븀 첨가 광섬유(Eribium Doped Fiber),Erbium Doped Fiber, which amplifies the input light,
    제 1 펌프광을 상기 어븀 첨가 광섬유에 결합시키는 제 1 광결합기 및A first optical coupler for coupling a first pump light to the erbium-doped optical fiber, and
    상기 어븀 첨가 광섬유에 접속되어 입력되는 신호광을 특정 파장별로 분리하고, 상기 분리된 특정 파장의 신호광을 반사시켜 상기 어븀 첨가 광섬유로 전달하는 페브리-페롯 유닛A Febri-Perot unit, which is connected to the erbium-doped optical fiber and separates the signal light input by a specific wavelength, reflects the separated signal light of the specific wavelength, and transmits the signal light to the erbium-doped optical fiber.
    을 포함하는 페브리-페롯 필터를 이용한 광대역 광원.Broadband light source using a Fabry-Perot filter comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 페브리-페롯 유닛은The Fabry-Perot unit
    상기 특정 파장별로 신호광을 분리하는 페브리-페롯 필터 및A Febri-Perot filter for separating the signal light by the specific wavelength and
    상기 분리된 특정 파장의 신호광을 반사시켜 상기 어븀 첨가 광섬유로 전달하는 미러를 포함하는 페브리-페롯 필터를 이용한 광대역 광원.Broadband light source using a Fabry-Perot filter including a mirror for reflecting the separated signal light of the particular wavelength and transmitting to the erbium-doped optical fiber.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 어븀 첨가 광섬유를 통해 증폭된 광을 출력하는 아이솔레이터를 더 포함하는 페브리-페롯 필터를 이용한 광대역 광원.A broadband light source using a Febri-Perot filter further comprises an isolator for outputting the light amplified through the erbium-doped optical fiber.
  4. 제 1 항에 있어서,The method of claim 1,
    제 2 펌프광을 상기 어븀 첨가 광섬유에 결합시키는 제 2 광결합기를 더 포함하는 페브리-페롯 필터를 이용한 광대역 광원.And a second optical coupler for coupling a second pump light to the erbium-doped optical fiber.
  5. 페브리-페롯 필터를 이용한 광대역 광원에 있어서,In a broadband light source using a Fabry-Perot filter,
    입력광을 증폭시키는 어븀 첨가 광섬유(Eribium Doped Fiber),Erbium Doped Fiber, which amplifies the input light,
    제 1 펌프광을 상기 어븀 첨가 광섬유에 결합시키는 제 1 광결합기,A first optical coupler for coupling a first pump light to the erbium-doped optical fiber,
    상기 어븀 첨가 광섬유에 접속되어 입력되는 신호광을 페브리-페롯 필터로 전달하는 서큘레이터 및A circulator for transmitting the signal light connected to the erbium-doped optical fiber to a Febri-Perot filter;
    상기 서큘레이터로부터 전달받은 신호광을 특정 파장별로 분리하여 상기 서큘레이터로 전달하는 페브리-페롯 필터를 포함하되,It includes a Fabry-Perot filter that separates the signal light received from the circulator for each specific wavelength and delivers it to the circulator,
    상기 서큘레이터는The circulator is
    상기 페브리-페롯 필터로부터 수신한 상기 분리된 특정 파장의 신호광을 상기 어븀 첨가 광섬유로 전달하는 것인 페브리-페롯 필터를 이용한 광대역 광원.The wideband light source using the Fabry-Perot filter is to transmit the signal light of the separated specific wavelength received from the Fabry-Perot filter to the erbium-doped optical fiber.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 서큘레이터의 1번 단자는 상기 어븀 첨가 광섬유와 연결되고, 상기 서큘레이터의 2번 단자는 상기 페브리-페롯 필터의 입력단과 연결되고, 상기 서큘레이터의 3번 단자는 페브리-페롯 필터의 출력단과 연결된 것인 페브리-페롯 필터를 이용한 광대역 광원.Terminal 1 of the circulator is connected to the erbium-doped optical fiber, terminal 2 of the circulator is connected to an input terminal of the Febri-Perot filter, and terminal 3 of the circulator is Broadband light source using a Fabry-Perot filter connected to the output.
  7. 제 5 항 또는 제 6 항에 있어서,The method according to claim 5 or 6,
    상기 어븀 첨가 광섬유를 통해 증폭된 광을 출력하는 아이솔레이터를 더 포함하는 페브리-페롯 필터를 이용한 광대역 광원.A broadband light source using a Febri-Perot filter further comprises an isolator for outputting the light amplified through the erbium-doped optical fiber.
  8. 제 5 항에 있어서,The method of claim 5,
    제 2 펌프광을 상기 어븀 첨가 광섬유에 결합시키는 제 2 광결합기를 더 포함하는 페브리-페롯 필터를 이용한 광대역 광원.And a second optical coupler for coupling a second pump light to the erbium-doped optical fiber.
PCT/KR2010/003315 2010-05-25 2010-05-26 Broadband light source using a fabry-perot filter WO2011149122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100048513A KR20110129080A (en) 2010-05-25 2010-05-25 Broadband light source using fabry perot filter
KR10-2010-0048513 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011149122A1 true WO2011149122A1 (en) 2011-12-01

Family

ID=45004102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003315 WO2011149122A1 (en) 2010-05-25 2010-05-26 Broadband light source using a fabry-perot filter

Country Status (2)

Country Link
KR (1) KR20110129080A (en)
WO (1) WO2011149122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185131A1 (en) * 2012-12-28 2014-07-03 Huawei Technologies Co., Ltd. Multi-Wavelength Light Source Apparatus
EP2816746A4 (en) * 2012-12-28 2015-05-06 Huawei Tech Co Ltd Multi-wavelength light source device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050014104A (en) * 2003-07-30 2005-02-07 한국생산기술연구원 The source of optical fiber for L-band
KR20050047705A (en) * 2003-11-18 2005-05-23 삼성전자주식회사 Reflective semiconductor optical amplifier light source
KR20050070566A (en) * 2003-12-30 2005-07-07 삼성전자주식회사 Multi-wavelength light source and wavelength-division multiplexing system using the same
KR20070097671A (en) * 2006-03-28 2007-10-05 한국과학기술연구원 A microwave generator using optical fiber laser incorporating a ultra-narrow bandpass filter
KR20100128837A (en) * 2009-05-29 2010-12-08 주식회사 럭스퍼트 Broadband light source for use in wavelength division multiplexed-passive optical network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050014104A (en) * 2003-07-30 2005-02-07 한국생산기술연구원 The source of optical fiber for L-band
KR20050047705A (en) * 2003-11-18 2005-05-23 삼성전자주식회사 Reflective semiconductor optical amplifier light source
KR20050070566A (en) * 2003-12-30 2005-07-07 삼성전자주식회사 Multi-wavelength light source and wavelength-division multiplexing system using the same
KR20070097671A (en) * 2006-03-28 2007-10-05 한국과학기술연구원 A microwave generator using optical fiber laser incorporating a ultra-narrow bandpass filter
KR20100128837A (en) * 2009-05-29 2010-12-08 주식회사 럭스퍼트 Broadband light source for use in wavelength division multiplexed-passive optical network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185131A1 (en) * 2012-12-28 2014-07-03 Huawei Technologies Co., Ltd. Multi-Wavelength Light Source Apparatus
EP2816746A4 (en) * 2012-12-28 2015-05-06 Huawei Tech Co Ltd Multi-wavelength light source device

Also Published As

Publication number Publication date
KR20110129080A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
KR100480246B1 (en) Passive optical network using loop back of multi-wavelength light generated at central office
KR100325687B1 (en) A low-cost WDM source with an incoherent light injected Fabry-Perot semiconductor laser diode
KR100480540B1 (en) Wavelength division multiplexing passive optical network system
KR101087263B1 (en) A Device and Method for Controlling Lasing Wavelengths of Tunable Laser Source, and A Wavelength Division Multiplexed-Passive Optical Network Having the Same
JP5805126B2 (en) Method and apparatus for using distributed Raman amplification and remote pumping in a bidirectional optical communication network
KR20060034938A (en) Wdm-pon by using self-injection locked fabry-perot laser diode
WO2010093195A2 (en) Low-noise optical signal transmitter with low-noise multi-wavelength light source, broadcast signal transmitter using low-noise multi-wavelength light source, and optical network with the same
JP2005073257A (en) Multi-wavelength optical transmitter and two-way wavelength division multiplexing system using the same
US20100129077A1 (en) Techniques for implementing a dual array waveguide filter for a wavelength division multiplexed passive optical network
WO2006116519A1 (en) Methods and apparatuses to increase wavelength channels in a wavelength-division-multiplexing passive-optical-network
US7486890B2 (en) Optical transmission apparatus and method
EP0506753B1 (en) Lossless optical component
KR100701158B1 (en) Monolithic integrated transceiver with pump source and transceiver module using the same
WO2011149122A1 (en) Broadband light source using a fabry-perot filter
KR100901508B1 (en) Light source distributor for use in wavelength division multiplexed-passive optical network
KR100752858B1 (en) WDM-PON system using light emitting diode and optical transceiver for the same
WO2010126258A2 (en) Light source for a wavelength division multiplexed optical communications capable of the high-speed transmission of an optical signal using an unpolarized light source, and wavelength division multiplexing passive optical network comprising same
KR101038219B1 (en) Broadband light source for use in wavelength division multiplexed-passive optical network
JP2006060769A (en) Passive optical network
US20050025484A1 (en) Wavelength-division-multiplexed passive optical network using multi-wavelength lasing source and reflective optical amplification means
KR100547721B1 (en) Optical amplifier module and optical transmission system using same
KR100955132B1 (en) Wavelength division multiplexed optical communication system controlling intensity of injection light according to distance from central office to subscribers
KR100830016B1 (en) Bidirectional WDM-PON using 2xN AWG
WO2011149123A1 (en) Self-locking passive optical communication system using a fabry-perot filter
KR20010077690A (en) Wavelength interleaved bidirectional add/drop amplifier module with an arrayed-waveguide grating multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852208

Country of ref document: EP

Kind code of ref document: A1