WO2011148931A1 - Electrode for organic electronic device - Google Patents

Electrode for organic electronic device Download PDF

Info

Publication number
WO2011148931A1
WO2011148931A1 PCT/JP2011/061848 JP2011061848W WO2011148931A1 WO 2011148931 A1 WO2011148931 A1 WO 2011148931A1 JP 2011061848 W JP2011061848 W JP 2011061848W WO 2011148931 A1 WO2011148931 A1 WO 2011148931A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic electronic
conductive polymer
pattern
layer
Prior art date
Application number
PCT/JP2011/061848
Other languages
French (fr)
Japanese (ja)
Inventor
博和 小山
宏明 伊東
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012517274A priority Critical patent/JP5720680B2/en
Publication of WO2011148931A1 publication Critical patent/WO2011148931A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an electrode for an organic electronic device, and more particularly, to an electrode for an organic electronic device having improved optical performance without causing leakage between the electrodes or disturbance of the device performance around the pattern of the fine metal wire. .
  • a transparent conductive film in which a transparent conductive film is laminated on a fine metal wire pattern so as to be compatible with a device having a large area is known (see, for example, Patent Documents 1 and 2).
  • organic EL organic electroluminescence
  • an organic solar cell leakage occurs between opposing electrodes, or in the organic EL, around the metal pattern.
  • the device performance may be abnormal in the vicinity of the thin metal wire pattern, for example, the light may only shine brightly or the life of the element may be reduced from the periphery of the metal pattern.
  • the pattern of the fine metal wire has a step, so that the thickness of the conductive layer on the fine metal wire pattern becomes thin when the transparent conductive film is formed, and it is easy to leak from the grid. It seems that the step between the metal thin wire pattern and the portion not having the metal fine line pattern is large, and the organic device configuration is disturbed at the step portion, which makes it easy to leak. Furthermore, from only the functional layer at the step portion, the organic EL may shine brightly only around the metal pattern, or the lifetime of the element may decrease from around the metal pattern.
  • Patent Document 3 a technique of providing a transparent conductive layer after transferring a pattern of fine metal wires formed on a smooth surface to another support provided with an adhesive layer and forming a fine metal wire pattern without steps. This is a preferable mode because it is possible to prevent leakage due to the influence of the step as described above.
  • An object of the present invention is to provide an electrode for an organic electronic device with improved optical performance without causing leakage between the electrodes or disorder of the device performance around the pattern of the fine metal wire.
  • An electrode for an organic electronic device in which a conductive fine metal wire pattern is provided on a substrate and a conductive polymer-containing layer is further provided thereon, and the conductive polymer-containing layer film on a portion where the fine metal wire is present
  • the surface of the conductive polymer-containing layer having a thickness of 100 nm to 2000 nm and on the portion with the fine metal wire, and the conductive polymer in the portion without the fine metal wire in the region provided with the pattern of the fine metal wire
  • An electrode for an organic electronic device wherein a level difference from the surface of the containing layer is 100 nm or more and 800 nm or less.
  • the level difference between the outermost surface of the conductive polymer-containing layer above the portion with the fine metal wire and the outermost surface of the conductive polymer-containing layer at the portion without the fine metal wire pattern is 150 nm or more and 600 nm or less, 2.
  • X 1 , X 2 and X 3 each independently represents a hydrogen atom or a methyl group, and R 1 , R 2 and R 3 each independently represents an alkylene group having 5 or less carbon atoms.
  • M, and n represent the composition ratio (mol%), where 50 ⁇ l + m + n ⁇ 100, and l, m, and n are 0 to 100, respectively. 7).
  • an electrode for an organic electronic device with improved optical performance without causing leakage between the electrodes or disorder of the device performance around the pattern of the fine metal wire.
  • a conductive fine metal wire pattern is used to suppress a voltage drop at the electrode. Furthermore, a conductive polymer-containing layer is provided on at least a part of the portion without the metal fine wire pattern so that electricity flows also through the portion without the metal fine wire pattern. Thereby, it can function as a surface electrode.
  • Organic electronic devices such as organic EL and organic solar cells are usually thin films with a functional layer of several hundred nm or less. For this reason, if there is a convex portion such as a pattern of a fine metal wire, it may cause a leak. Therefore, it is conceivable to smooth the pattern portion of the fine metal wire as in Patent Document 3 described above. In addition, the fine metal wire portion is not completely smoothed, and the upper portion of the conductive polymer-containing layer on the fine metal wire pattern portion is made higher than the upper portion of the conductive polymer-containing layer in the portion without the fine metal wire pattern by 100 nm or more. .
  • the step between the upper portion of the conductive polymer-containing layer on the fine metal wire pattern portion and the upper portion of the conductive polymer-containing layer in the portion without the thin metal wire pattern is set to 800 nm or less, and further, the conductivity on the fine metal wire pattern portion is further reduced. It has been found that by setting the film thickness of the conductive polymer-containing layer to 100 nm to 2000 nm, it is possible to prevent leakage and disturbance of device performance around the pattern portion of the fine metal wire while maintaining the efficiency of the electronic device. I went to.
  • FIG. 1 the ink containing metal fine particles for inkjet is printed on an easily contacted substrate as follows using an inkjet coating apparatus. Extraction electrodes (1) and (4) of the solid metal portion, a pattern (2) of the fine metal wire in contact with the extraction electrode (1), and a fine metal wire between the pattern (2) of the fine metal wire and the extraction electrode (4) A blank part (3) having no pattern is provided. The pattern of fine metal wires is fixed by heat treatment.
  • a conductive polymer-containing layer (5) is provided on the fine metal wire pattern (2) by coating.
  • the conductive polymer-containing layer (5) which has no fine metal wire pattern, is wiped away with pure water to remove the conductive polymer-containing layer ( 5 ').
  • the conductive polymer-containing layer (5 ′) is also fixed by heat treatment to obtain an electrode for organic electronic devices (10).
  • FIG. 4 shows a cathode electrode (6) finally produced after an organic layer necessary as an organic EL element is formed on the electrode for organic electronic devices (10) of the present invention.
  • the conductive polymer according to the present invention is preferably a conductive polymer comprising a ⁇ -conjugated conductive polymer and a polyanion.
  • a conductive polymer can be easily produced by chemically oxidatively polymerizing a precursor monomer that forms a ⁇ -conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described later.
  • the ⁇ -conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, A chain conductive polymer of polyfurans, polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl compounds can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
  • the precursor monomer has a ⁇ -conjugated system in the molecule, and a ⁇ -conjugated system is formed in the main chain even when polymerized by the action of an appropriate oxidizing agent.
  • an appropriate oxidizing agent examples include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptyl
  • the polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof. It consists of a structural unit having a group and a structural unit having no anionic group.
  • This polyanion is a solubilized polymer that solubilizes a ⁇ -conjugated conductive polymer in a solvent.
  • the anion group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer, and improves the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the anion group of the polyanion may be a functional group capable of undergoing chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate group A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • it may be a polyanion having F in the compound.
  • Specific examples include Nafion containing a perfluorosulfonic acid group (manufactured by Dupont), Flemion made of perfluoro vinyl ether containing a carboxylic acid group (manufactured by Asahi Glass Co., Ltd.), and the like.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable.
  • These polyanions have high compatibility with the binder resin, and can further increase the conductivity of the obtained conductive polymer.
  • the polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • Examples of methods for producing polyanions include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and anionic group-containing polymerization. And a method of production by polymerization of a functional monomer.
  • Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
  • the oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ -conjugated conductive polymer.
  • the obtained polymer is a polyanion salt, it is preferably transformed into a polyanionic acid.
  • the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like.
  • the ultrafiltration method is preferable from the viewpoint of easy work.
  • Such a conductive polymer is preferably a commercially available material.
  • a conductive polymer (abbreviated as PEDOT-PSS) made of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is H.264. C. It is commercially available from Starck as the CLEVIOS series, from Aldrich as PEDOT-PASS 483095, 560598, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
  • a water-soluble organic compound may be contained as the second dopant.
  • the water-soluble organic compound which can be used by this invention It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and ⁇ -butyrolactone.
  • the ether group-containing compound include diethylene glycol monoethyl ether.
  • the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
  • the water-soluble polymer used in the present invention is not particularly limited as long as it is a polymer that can be dissolved or dispersed in an aqueous solvent (described later).
  • a polyester resin, an acrylic resin, a polyurethane resin, an acrylic urethane resin examples thereof include polycarbonate resins, cellulose resins, polyvinyl acetal resins, polyvinyl alcohol resins, and the like.
  • Specific examples of the compound include Vylonal MD1200, MD1400, MD1480 (manufactured by Toyobo Co., Ltd.) as polyester resins.
  • the water-soluble polymer according to the present invention a compound having a group that reacts with a crosslinking agent described later is more preferable because it forms a stronger film.
  • the group that reacts with the crosslinking agent varies depending on the crosslinking agent, and examples thereof include a hydroxy group, a carboxyl group, and an amino group. Among these, it is most preferable to have a hydroxy group in the side chain.
  • Specific compounds of the water-soluble polymer according to the present invention include polyvinyl alcohol PVA-203, PVA-224, PVA-420 (manufactured by Kureha), hydroxypropyl methylcellulose 60SH-06, 60SH-50, 60SH-4000.
  • the water-soluble polymer contains a certain amount of the polymer (A)
  • the polyanion has a sulfo group
  • the polymer (A) is used, the sulfo group effectively acts as a dehydration catalyst, and a dense cross-linked layer can be formed without using an additional agent such as a cross-linking agent. This is a more preferred embodiment because it can be formed.
  • the water-soluble polymer (A) is composed mainly of the following monomers M1, M2, and M3, and 50 mol% or more of the copolymer components are any of the monomers, or the total is 50 mol% or more. It is a copolymer.
  • the total of the monomer components is more preferably 80 mol% or more, and it may be a homopolymer formed from any single monomer, which is a preferred embodiment.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom or a methyl group, and R 1 , R 2 , and R 3 each independently represent an alkylene group having 5 or less carbon atoms.
  • polymer (A) other monomer components may be copolymerized as long as they are soluble in an aqueous solvent, but a monomer component having high hydrophilicity is more preferable.
  • the polymer (A) preferably has a content of 1000 or less in the number average molecular weight of 0 to 5%.
  • the content of 1000 or less is 0 to 5% or less, such as reprecipitation method, preparative GPC, or synthesis of monodisperse polymer by living polymerization, etc.
  • a method of removing the low molecular weight component or suppressing the generation of the low molecular weight component can be used.
  • the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers. It is a method to do.
  • preparative GPC is, for example, recycled preparative GPCLC-9100 (manufactured by Nippon Analytical Industrial Co., Ltd.), polystyrene gel column, and a polymer-dissolved solution can be separated by molecular weight to cut the desired low molecular weight. This is how you can do it.
  • Living polymerization does not change the generation of the starting species over time, and there are few side reactions such as termination reaction, and a polymer with uniform molecular weight can be obtained. Since the molecular weight can be adjusted by the addition amount of the monomer, for example, if a polymer having a molecular weight of 20,000 is synthesized, the formation of a low molecular weight body can be suppressed.
  • the reprecipitation method and living polymerization are preferable from the viewpoint of production suitability.
  • the number average molecular weight and the weight average molecular weight of the water-soluble polymer of the present invention can be measured by a generally known gel permeation chromatography (GPC).
  • the molecular weight distribution can be expressed by a ratio of (weight average molecular weight / number average molecular weight).
  • the solvent to be used is not particularly limited as long as the water-soluble binder resin dissolves, and THF, DMF, and CH 2 Cl 2 are preferable, THF and DMF are more preferable, and DMF is more preferable.
  • the measurement temperature is not particularly limited, but 40 ° C. is preferable.
  • the number average molecular weight of the polymer (A) according to the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000.
  • the number average molecular weight distribution of the polymer (A) according to the present invention is preferably 1.01 to 1.30, more preferably 1.01 to 1.25.
  • the content with a number average molecular weight of 1000 or less was converted to a ratio by integrating the area with a number average molecular weight of 1000 or less and dividing by the area of the entire distribution.
  • the living polymerization solvent is inactive under the reaction conditions and is not particularly limited as long as it can dissolve the monomer and the polymer to be formed, but a mixed solvent of an alcohol solvent and water is preferable.
  • the living polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
  • the conductive polymer-containing layer contains, for example, at least a conductive polymer containing a ⁇ -conjugated conductive polymer component and a polyanion component and a solvent, more preferably a coating solution containing a water-soluble polymer. Can be formed by coating and drying.
  • an aqueous solvent can be preferably used.
  • the aqueous solvent represents a solvent in which 50% by mass or more is water.
  • pure water containing no other solvent may be used.
  • the component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. This is advantageous for the smoothness of the film to be formed.
  • coating methods roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method
  • a letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used.
  • the pattern shape is not particularly limited, but for example, a triangle, a square, a rectangle, a rhombus, a parallelogram, a trapezoid or other quadrangle, a (regular) hexagon, a (positive) octagon It is possible to raise a mesh-like pattern composed of geometric figures combining the above.
  • a stripe shape composed of a plurality of parallel lines may be used. For example, stripes or lattices having a line width of 10 to 200 ⁇ m and a line interval of 200 to 3000 ⁇ m can be given.
  • the height of the fine metal wire pattern is not particularly limited as long as the relationship of the conductive polymer-containing layer can be satisfied. However, in order to easily satisfy the relationship of the present invention, it is preferably 200 nm or more and 2000 nm or less, and 300 nm or more. More preferably, it is 1000 nm or less.
  • the pattern of the fine metal wire does not use the conductive polymer-containing layer, and preferably has a conductivity of 30 ⁇ / ⁇ or less as a single film, more preferably 5 ⁇ / ⁇ or less, and preferably 1 ⁇ / ⁇ or less. Most preferred.
  • the metal material examples include gold, silver, copper, iron, nickel, and chromium.
  • the metal may be an alloy, and the pattern of the fine metal wire may be a single layer or multiple layers.
  • a metal layer can be formed on the entire surface of the substrate and formed by a known photolithography method.
  • a conductor layer is formed on the entire surface of the substrate using one or more physical or chemical forming methods such as vapor deposition, sputtering, and plating, or a metal foil is formed with an adhesive. After being laminated on the material, it can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
  • a method of printing an ink containing metal fine particles in a desired shape by various printing methods such as screen printing, flexographic printing, gravure printing, or an ink jet method, and various similar catalytic inks that can be plated are used.
  • a method of applying a silver salt photographic technique can be used as a method of applying a desired shape by a printing method and then performing a plating treatment, and as another method.
  • the method of printing ink containing metal fine particles in a desired shape by various printing methods can be manufactured in a simple process, so that it is possible to reduce the entrainment of foreign matters that may cause leakage at the time of manufacture. Since ink is used only at the location, there is little loss of liquid, and since there is no need for special chemical treatment such as plating, there is no concern about contamination of chemicals that cannot be removed. This is the most preferred embodiment.
  • the metal fine particle-containing ink As the metal fine particle-containing ink, known inks can be used. Examples of the metal fine particles include metal fine particles containing any one of silver, gold, copper, palladium, platinum, aluminum and nickel, or alloy fine particles containing these metals.
  • These metal fine particles are coated with a film (coating material) such as an organic substance on the surface in order to improve dispersibility.
  • an organic protective colloid In order to use metal fine particles of 0.1 ⁇ m or less, it is preferable to use the fine particles coated with an organic protective colloid.
  • this organic protective colloid one having a decomposition temperature or boiling point in the range of 70 to 250 ° C. is used. This decomposition temperature or boiling point means the lower one of the decomposition temperature and boiling point. If the decomposition temperature or boiling point of the organic protective colloid exceeds 250 ° C., the organic protective colloid cannot be decomposed or evaporated by low-temperature heat treatment, and low-temperature firing cannot be performed. If the decomposition temperature or boiling point of the organic protective colloid is less than 70 ° C., the organic protective colloid may be decomposed or evaporated during storage of the silver paste, which causes a problem in storage stability of the silver paste.
  • the organic protective colloid it is preferable to use hydrocarbons having 3 to 18 carbon atoms. If the carbon number is 19 or more, the decomposition temperature or boiling point becomes high, and the organic protective colloid may not be decomposed or evaporated by low-temperature heat treatment, and if the carbon number is 2 or less, the decomposition temperature Alternatively, the boiling point becomes too low, which may cause a problem in the storage stability of the silver paste.
  • Such a dispersion medium is not particularly limited, but myristyl alcohol (boiling point 167 ° C .; 20 hPa), lauryl alcohol (boiling point 258 to 265 ° C.), undecanol (boiling point 129 to 131 ° C .; 16 hPa), decanol ( Examples include boiling point 220 to 235 ° C., nonanol (boiling point 214 to 216 ° C.), octanol (boiling point 188 to 198 ° C.), and the like. These may be used alone or in combination of two or more. It is.
  • decanol as a dispersion medium.
  • decanol As a dispersion medium, a silver paste suitable for drawing by screen printing or the like can be obtained.
  • the amount of the dispersion medium in the silver paste varies depending on the silver paste application method, and is appropriately set so as to obtain viscosity and fluidity according to the application method.
  • the silver paste thus prepared can be applied to the surface of a substrate or the like by a conventionally known method such as screen printing, ink jet printing, dipping, applicator application, spin coat application.
  • the organic protective colloid covering the metal nanoparticles also plays a role as a binder, so that a coating film can be formed by printing a silver paste without the need for blending a binder.
  • the dispersoid concentration when the metal fine particles are dispersed in a dispersion medium is 1% by mass or more and 80% by mass or less, and can be adjusted according to a desired film thickness of the conductive film. If it exceeds 80% by mass, aggregation tends to occur and it is difficult to obtain a uniform film.
  • the precious metal colloidal particles are easily exposed on the surface of the catalyst ink pattern, and these catalyst carriers can give thixotropy to the catalyst ink, and the ink breaks at the contour of the image area. Sharpens and makes it difficult for bleeding and fatness to occur.
  • the binder resin of the catalyst ink for example, urethane resin such as two-component curable urethane resin, epoxy resin, acrylic resin, alkyd resin, polyester resin, or the like is used as one or two or more mixed resins.
  • the catalyst ink is composed of such a binder resin, an electroless plating catalyst composed of the above-mentioned noble metal, and an appropriate solvent.
  • additives such as a pigment, surfactant, and a coloring agent.
  • extender pigments for example, powders such as calcium carbonate, barium sulfate, and silica are used.
  • the catalyst ink By adding a colorant, it is possible to easily check the quality of the catalyst ink pattern printed and formed in a pattern before electroless plating.
  • a known colorant such as carbon black may be used as the colorant.
  • the catalyst ink may be any of organic solvent type, water type, emulsion type and the like.
  • a plating treatment may be performed in order to increase conductivity.
  • electroless plating is performed, or electrolytic plating is performed following electroless plating.
  • electrolytic plating and electroless plating can be carried out alone or in combination.
  • metals that can be used for plating For example, copper, nickel, cobalt, tin, silver, gold, platinum, and other various alloys can be used.
  • electrolytic copper sulfate plating can be preferably used.
  • pressurization the surface is pressed on the plate with the plate / surface pressurization, the nip roll pressurization is performed while passing the base film between the rolls, and the combined pressurization is performed on the plate with the roll.
  • the magnitude of the pressurization is arbitrarily possible in the range of 1 kPa to 100 MPa, preferably 10 kPa to 10 MPa, more preferably 50 kPa to 5 MPa.
  • the pressure is less than 1 kP, the effect of contact between the particles cannot be obtained, and when the pressure is 100 MPa or more, it is difficult to keep the surface smooth, and the haze increases.
  • heating since heating is effective when heated, it is preferable to heat in the range of 40 ° C to 300 ° C.
  • the substrate used for the electrode for organic electronic devices of the present invention is preferably a transparent substrate.
  • the transparent substrate is not particularly limited as long as it has high light transmittance.
  • a glass substrate, a resin substrate, a resin film, and the like are preferable in terms of excellent hardness as a base material and ease of formation of a conductive layer on the surface. From the viewpoint, it is preferable to use a transparent resin film.
  • the transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones.
  • polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc.
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the electrode for organic electronic devices of the present invention can be used as an electrode for organic electronic devices.
  • the organic EL element will be described.
  • the light emitting layer may be a monochromatic light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm,
  • the organic light emitting layer is prepared by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer.
  • the thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • condensed polycyclic aromatic compound for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, sarkham anthracene, bisanthene, zestrene, heptazelene, Examples thereof include compounds such as pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, and derivatives and precursors thereof.
  • polymer p-type semiconductor examples include polyacetylene, polyparaphenylene, polypyrrole, polyparaphenylene sulfide, polythiophene, polyphenylene vinylene, polycarbazole, polyisothianaphthene, polyheptadiyne, polyquinoline, polyaniline, and the like.
  • Substituted-unsubstituted alternating copolymer polythiophenes such as JP-A-2006-36755, JP-A-2007-51289, JP-A-2005-76030, J. Pat. Amer. Chem. Soc. , 2007, p4112, J.A. Amer. Chem. Soc.
  • porphyrin copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenedithiotetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex, TCNQ-iodine complex, etc.
  • At least one selected from the group consisting of condensed polycyclic aromatic compounds such as pentacene, fullerenes, condensed ring tetracarboxylic acid diimides, metal phthalocyanines, and metal porphyrins is preferable. Further, pentacenes are more preferable.
  • Such compounds include those described in J. Org. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. Acene-based compounds substituted with trialkylsilylethynyl groups described in US Pat. No. 9,2706, etc., pentacene precursors described in US Patent Application Publication No. 2003/136964, etc., and Japanese Patent Application Laid-Open No. 2007-224019 Examples include precursor type compounds (precursors) such as porphyrin precursors.
  • the p-type semiconductor material is a compound that has undergone a chemical structural change by a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • heat Preferably there is.
  • compounds that cause a chemical structural change by heat are preferred.
  • n-type semiconductor materials include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic acid
  • n-type semiconductor materials include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic acid
  • Fullerene-containing polymer compounds include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Examples thereof include a polymer compound having a skeleton.
  • a polymer compound (derivative) having fullerene C60 as a skeleton is preferable.
  • fullerene-containing polymers are roughly classified into polymers in which fullerene is pendant from a polymer main chain and polymers in which fullerene is contained in the polymer main chain. Fullerene is contained in the polymer main chain. Are preferred.
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • (1) and (4) in FIG. 1 are used as extraction electrodes with a silver solid portion of 1.2 cm ⁇ 5 mm.
  • (2) in FIG. 1 is in contact with (1) at a metal mesh pattern portion having a line width of 50 ⁇ m and a line interval of 950 ⁇ m printed in a range of 1.2 cm ⁇ 1.2 cm.
  • (3) is a 1.2 cm ⁇ 2 mm silver-free portion.
  • the formed fine metal wire pattern was heat-treated at 130 ° C. for 60 minutes.
  • the height of the metal fine wire pattern from the base material (hereinafter referred to as metal fine wire height) was 600 nm.
  • the film thickness of the conductive polymer-containing layer on the portion of the obtained organic electronic device electrode where the fine metal wire pattern is located (hereinafter referred to as the thickness of the fine metal wire portion) is 200 nm.
  • the film thickness of the conductive polymer-containing layer in the portion not present (hereinafter referred to as the film thickness of the metal-free portion) was 500 nm.
  • Conductive polymer-containing coating solution 1 PEDOT-PSS CLEVIOS PH510 (Solid content 1.89%) (manufactured by HC Starck) 1.59 g Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution) 0.35g Dimethyl sulfoxide (DMSO) 0.08g "Synthesis of initiators" Synthesis example 1 2-Bromoisobutyryl bromide (7.3 g, 35 mmol), triethylamine (2.48 g, 35 mmol) and THF (20 ml) were added to a 50 ml three-necked flask, and the internal temperature was kept at 0 ° C. with an ice bath.
  • the structure and number average molecular weight were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
  • This palladium colloidal solution was desalted by ultrafiltration, and 5 parts by mass of alumina was added to the filtered colloidal solution, and the heteroaggregated and precipitated portion was filtered and crushed to obtain alumina-supported palladium particles.
  • 8 parts by mass of ethyl cellulose resin was dissolved in 100 parts by mass of toluene, and 1 part by mass of the palladium particles prepared earlier was added to the liquid to obtain a catalyst-containing ink for electroless plating.
  • the pH was adjusted to 5.90 at 40 ° C., and finally a silver chlorobromide cubic grain emulsion containing 10 mol% of silver bromide and having an average grain size of 0.09 ⁇ m and a coefficient of variation of 10% was obtained.
  • the volume ratio of silver halide grains to gelatin was 0.625.
  • a hardening agent H-1: tetrakis (vinylsulfonylmethyl) methane
  • SU-2 sulfosuccinate disulfate
  • 2-ethylhexyl) .sodium was added to adjust the surface tension.
  • the coating solution thus obtained was applied on one side of the substrate, and then cured at 50 ° C. for 24 hours.
  • the produced adhesive substrate and the metallic silver pattern produced in the same manner as D030 were pressure-bonded so that the adhesive layer and the metallic silver pattern faced to form a laminate.
  • ultraviolet rays were irradiated from the adhesive substrate side to cure the ultraviolet curable resin, and the adhesive substrate and the metal silver pattern were joined.
  • the bonded adhesive substrate and the metal silver pattern were immersed in the following enzyme solution at 40 ° C. for 5 minutes, washed with water and dried.
  • the pH of the enzyme solution was 7.0.
  • Table 1 shows the metal wire height, the metal wire portion thickness, and the metal-free portion film thickness of the organic electronic device electrodes D002 to D022 and D030 to D032 obtained as described above.
  • the obtained organic electronic device electrodes D001 to D022 and D030 to D032 were used as electrodes of organic EL elements.
  • the obtained organic electronic device electrode D001 was formed as the organic EL element 1 by forming the following layers on the metal fine wire pattern.
  • Each of the vapor deposition crucibles in a commercially available vacuum vapor deposition apparatus was filled with the optimum amount of the constituent material of each layer for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • each light emitting layer was provided in the following procedures.
  • the compound 2, the compound 3 and the compound 5 were deposited at a deposition rate of 0.1 nm / second so that the concentration of the compound 2 was 13% by mass and the compound 3 was 3.7% by mass.
  • a green-red phosphorescent light emitting layer having a maximum emission wavelength of 622 nm and a thickness of 10 nm was formed by co-evaporation in a region having the above pattern.
  • the compound 4 and the compound 5 are co-deposited on a region having a pattern of fine metal wires at a deposition rate of 0.1 nm / second so that the compound 4 becomes 10% by mass, and a blue light having a maximum emission wavelength of 471 nm and a thickness of 15 nm.
  • a phosphorescent light emitting layer was formed.
  • the hole blocking layer was formed by depositing the compound 6 in a film thickness of 5 nm on the formed light emitting layer in a region having a pattern of fine metal wires.
  • CsF was co-evaporated with compound 6 so as to have a film thickness ratio of 10% in a region having a fine metal wire pattern, thereby forming an electron transport layer having a thickness of 45 nm.
  • the organic EL element was subjected to the subsequent evaluation under nitrogen without being exposed to the atmosphere even after vapor deposition.
  • the rectification ratio Inverts the plus or minus of the applied voltage.
  • the rectification ratio was defined as (absolute value of current during light emission) / (absolute value of current during inversion). This ratio decreases if there is an influence of foreign matter or protrusions, or if the level difference at the grid portion is too large.
  • this ratio is 1, the leakage state is complete, and the EL element is preferably 100 or more, more preferably 1000 or more.
  • the following indicators were used for evaluation.
  • Luminous (luminous efficiency) Using a KEITHLEY source measure unit 2400 type, the luminous efficiency (lumen / W) when a direct current voltage was applied and light was emitted at 300 cd was measured, and evaluated according to the following index at the level with respect to the luminous efficiency of the organic EL element 32. .
  • Improvement range 15% or more 2 Improvement range 10% or more and less than 15% 1: Improvement range 3% or more and 10% or less 0: Improvement range 3% or less
  • the organic EL element using the electrode of the present invention has improved luminous efficiency without breaking performance such as rectification ratio and uneven emission.
  • an electrode in which a step between the outermost surface of the conductive polymer-containing layer on the portion with the fine metal wire pattern and the outermost surface of the conductive polymer-containing layer on the portion without the fine metal wire pattern is 150 nm or more and 600 nm or less It can be seen that the light emission efficiency is improved without using light emission unevenness.
  • the rectification ratio can be improved without reducing the improvement in luminous efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is an electrode for an organic electronic device, which can exhibit improved optical performance without causing leakage between electrodes, the disturbance in device performance around a pattern of a metal fine wire or the like. Specifically disclosed is an electrode for an organic electronic device, which comprises a base material, a pattern of an electrically conductive metal fine wire formed on the base material, and a layer containing an electrically conductive polymer (an electrically-conductive-polymer-containing layer) formed on the pattern. The electrode is characterized in that a part of the electrically-conductive-polymer-containing layer which lies on an area having the metal fine wire has a thickness of 100 to 2000 nm and the difference in level between the surface of a part of the electrically-conductive-polymer-containing layer which lies on an area having the metal fine wire and the surface of a part of the electrically-conductive-polymer-containing layer which lies on an area having no metal fine wire in the area having the pattern of the metal fine wire is 100 to 800 nm inclusive.

Description

有機電子デバイス用電極Electrodes for organic electronic devices
 本発明は、有機電子デバイス用電極に関し、更に詳しくは、電極間のリークや金属細線のパターン周辺部のデバイス性能の乱れなどを生じることなく、光学的な性能を改善した有機電子デバイス用電極に関する。 The present invention relates to an electrode for an organic electronic device, and more particularly, to an electrode for an organic electronic device having improved optical performance without causing leakage between the electrodes or disturbance of the device performance around the pattern of the fine metal wire. .
 大きな面積のデバイスにも対応できるよう、金属細線のパターンに透明導電膜を積層した透明導電フィルムは知られている(例えば、特許文献1、2参照)。しかしながら、こうした透明導電フィルムを有機エレクトロルミネッセンス(以下、有機ELと記す。)や有機太陽電池などの有機電子デバイスに利用した場合、対向する電極間にリークを生じたり、有機ELでは金属パターンの周りだけ明るく光ったり、金属パターン周辺から素子の寿命が低下したりするなど、金属細線のパターン周辺でデバイス性能に異常をきたしたりすることがあった。これは、金属細線のパターンが段差を有するために、透明導電膜形成時に金属細線のパターン上の導電層の膜厚が薄くなり、グリッド上からリークしやすくなったり、また、金属細線のパターン部と金属細線のパターンを有さない部分との段差が大きいために、段差部で有機デバイスの構成が乱れてしまい、リークしやすくなったりしたと思われる。さらに、段差部での機能層のみだれから、有機ELでは金属パターンの周りだけ明るく光ったり、金属パターン周辺から素子の寿命が低下したりすることもあった。 A transparent conductive film in which a transparent conductive film is laminated on a fine metal wire pattern so as to be compatible with a device having a large area is known (see, for example, Patent Documents 1 and 2). However, when such a transparent conductive film is used for an organic electronic device such as organic electroluminescence (hereinafter referred to as organic EL) or an organic solar cell, leakage occurs between opposing electrodes, or in the organic EL, around the metal pattern. In some cases, the device performance may be abnormal in the vicinity of the thin metal wire pattern, for example, the light may only shine brightly or the life of the element may be reduced from the periphery of the metal pattern. This is because the pattern of the fine metal wire has a step, so that the thickness of the conductive layer on the fine metal wire pattern becomes thin when the transparent conductive film is formed, and it is easy to leak from the grid. It seems that the step between the metal thin wire pattern and the portion not having the metal fine line pattern is large, and the organic device configuration is disturbed at the step portion, which makes it easy to leak. Furthermore, from only the functional layer at the step portion, the organic EL may shine brightly only around the metal pattern, or the lifetime of the element may decrease from around the metal pattern.
 これに対して、平滑面に形成した金属細線のパターンを、接着層を設けた別の支持体に転写して、段差のない金属細線のパターンを形成した後に透明導電層を設ける技術(例えば、特許文献3参照)が知られている。これは、前述のような段差の影響によるリークなどを防止でき、好ましい形態である。 On the other hand, a technique of providing a transparent conductive layer after transferring a pattern of fine metal wires formed on a smooth surface to another support provided with an adhesive layer and forming a fine metal wire pattern without steps (for example, Patent Document 3) is known. This is a preferable mode because it is possible to prevent leakage due to the influence of the step as described above.
 一方、屈折率の異なる高平滑な層が多数積層された有機ELや有機太陽電池などの有機電子デバイスにおいては、例えば有機ELにおいては界面反射の影響で発光した光が取り出せない、太陽電池においては光が取り込めない等の問題がある。平滑化することでリークを防止した特許文献3の技術では、こうした問題には不利であると考えられる。 On the other hand, in organic electronic devices such as organic EL and organic solar cells in which a large number of highly smooth layers having different refractive indexes are stacked, for example, in organic EL, light emitted by the influence of interface reflection cannot be extracted. There is a problem that light cannot be taken in. The technique of Patent Document 3 in which leakage is prevented by smoothing is considered disadvantageous for such a problem.
特開2005-302508号公報JP 2005-302508 A 特開2009-87843号公報JP 2009-87843 A 特開2009-146640号公報JP 2009-146640 A
 本発明の目的は、電極間のリークや金属細線のパターン周辺部のデバイス性能の乱れなどを生じることなく、光学的な性能を改善した有機電子デバイス用電極を提供することにある。 An object of the present invention is to provide an electrode for an organic electronic device with improved optical performance without causing leakage between the electrodes or disorder of the device performance around the pattern of the fine metal wire.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.基材上に導電性の金属細線のパターンを設け、更にその上に導電性ポリマー含有層を設けた有機電子デバイス用電極において、該金属細線のある部分の上の該導電性ポリマー含有層の膜厚が100nm~2000nmであり、かつ、該金属細線のある部分の上の該導電性ポリマー含有層の表面と、該金属細線のパターンを設けた領域で該金属細線のない部分の該導電性ポリマー含有層の表面との段差が100nm以上800nm以下であることを特徴とする有機電子デバイス用電極。 1. An electrode for an organic electronic device in which a conductive fine metal wire pattern is provided on a substrate and a conductive polymer-containing layer is further provided thereon, and the conductive polymer-containing layer film on a portion where the fine metal wire is present The surface of the conductive polymer-containing layer having a thickness of 100 nm to 2000 nm and on the portion with the fine metal wire, and the conductive polymer in the portion without the fine metal wire in the region provided with the pattern of the fine metal wire An electrode for an organic electronic device, wherein a level difference from the surface of the containing layer is 100 nm or more and 800 nm or less.
 2.前記金属細線のある部分の上の導電性ポリマー含有層の最表面と、前記金属細線のパターンのない部分の導電性ポリマー含有層の最表面との段差が150nm以上600nm以下であることを特徴とする前記1記載の有機電子デバイス用電極。 2. The level difference between the outermost surface of the conductive polymer-containing layer above the portion with the fine metal wire and the outermost surface of the conductive polymer-containing layer at the portion without the fine metal wire pattern is 150 nm or more and 600 nm or less, 2. The electrode for an organic electronic device according to 1 above.
 3.前記金属細線のない部分の導電性ポリマー含有層の膜厚が200nm以上1500nm以下であることを特徴とする前記1または2記載の有機電子デバイス用電極。 3. 3. The electrode for an organic electronic device according to 1 or 2 above, wherein the conductive polymer-containing layer in a portion without the thin metal wire has a thickness of 200 nm to 1500 nm.
 4.前記金属細線の最表面の基材面からの高さが、200nm以上2000nm以下であることを特徴とする前記1~3のいずれか1項記載の有機電子デバイス用電極。 4. 4. The organic electronic device electrode according to any one of 1 to 3, wherein a height of the outermost surface of the fine metal wire from the base material surface is 200 nm or more and 2000 nm or less.
 5.前記導電性ポリマー含有層が、さらに水溶性ポリマーを含有することを特徴とする前記1~4のいずれか1項記載の有機電子デバイス用電極。 5. 5. The electrode for an organic electronic device according to any one of 1 to 4, wherein the conductive polymer-containing layer further contains a water-soluble polymer.
 6.前記水溶性ポリマーが下記ポリマー(A)であることを特徴とする前記5記載の有機電子デバイス用電極。 6. 6. The electrode for an organic electronic device as described in 5 above, wherein the water-soluble polymer is the following polymer (A).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、X、X、Xは、それぞれ独立に、水素原子またはメチル基を表し、R、R、Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。l、m、nは構成率(mol%)を示し、50≦l+m+n≦100であり、l、m、nはそれぞれ0~100である。)
 7.前記金属細線のパターンおよび前記導電性ポリマー含有層がウエット製膜法により形成されていることを特徴とする前記1~6のいずれか1項記載の有機電子デバイス用電極。
(Wherein X 1 , X 2 and X 3 each independently represents a hydrogen atom or a methyl group, and R 1 , R 2 and R 3 each independently represents an alkylene group having 5 or less carbon atoms. , M, and n represent the composition ratio (mol%), where 50 ≦ l + m + n ≦ 100, and l, m, and n are 0 to 100, respectively.
7). 7. The electrode for an organic electronic device according to any one of 1 to 6, wherein the pattern of the fine metal wire and the conductive polymer-containing layer are formed by a wet film forming method.
 本発明によれば、電極間のリークや金属細線のパターン周辺部のデバイス性能の乱れなどを生じることなく、光学的な性能を改善した有機電子デバイス用電極を提供することができる。 According to the present invention, it is possible to provide an electrode for an organic electronic device with improved optical performance without causing leakage between the electrodes or disorder of the device performance around the pattern of the fine metal wire.
本発明の有機電子デバイス用電極製造の際の第1工程を示す図である。It is a figure which shows the 1st process in the case of manufacture of the electrode for organic electronic devices of this invention. 本発明の有機電子デバイス用電極製造の際の第2工程を示す図である。It is a figure which shows the 2nd process in the case of manufacture of the electrode for organic electronic devices of this invention. 本発明の有機電子デバイス用電極製造の際の第3工程を示す図である。It is a figure which shows the 3rd process in the case of electrode manufacture for organic electronic devices of this invention. 本発明の有機電子デバイス用電極を用いた有機EL素子のカソード電極を示す図である。It is a figure which shows the cathode electrode of the organic EL element using the electrode for organic electronic devices of this invention.
 本発明において、面積の大きなデバイスにも対応するために、電極での電圧降下を抑制するために導電性の金属細線のパターンを用いる。さらに、金属細線のパターンのない部分にも電気が流れるようにするために、金属細線のパターンのない部分の少なくとも一部に導電性ポリマー含有層を設けている。これにより、面電極として機能させることができる。 In the present invention, in order to cope with a device having a large area, a conductive fine metal wire pattern is used to suppress a voltage drop at the electrode. Furthermore, a conductive polymer-containing layer is provided on at least a part of the portion without the metal fine wire pattern so that electricity flows also through the portion without the metal fine wire pattern. Thereby, it can function as a surface electrode.
 有機ELや有機太陽電池のような有機電子デバイスは、通常、その機能層が数百nm以下の薄膜である。そのため、金属細線のパターンのような凸部があるとリークの原因となるために、前述の特許文献3のように、金属細線のパターン部を平滑にすることが考えられるが、本発明においては、あえて、金属細線部を完全には平滑にせず、金属細線のパターン部上の導電性ポリマー含有層の上部が金属細線のパターンのない部分の導電性ポリマー含有層の上部よりも100nm以上高くする。これにより、有機ELや有機太陽電池のような有機電子デバイスの別な課題である金属細線のパターンの光取り出し、光取り込みなど、光学特性に有効であることを見出した。これは、例えば有機ELにおいては、高屈折率を有する発光層表裏面で全反射を繰り返し、閉じ込められた光が、金属細線のパターン部周辺で表裏面への入射角が大きく変わることや、金属表面の散乱の効果により、光取り出し性能が発現していると考えている。さらに、金属細線のパターン部上の導電性ポリマー含有層の上部と金属細線のパターンのない部分の導電性ポリマー含有層の上部との段差を800nm以下とし、さらに、金属細線のパターン部上の導電性ポリマー含有層の膜厚を100nm~2000nmとすることで、電子デバイスの効率を保ちながら、リーク防止や金属細線のパターン部周辺でのデバイス性能の乱れを防止可能となることを見出し、本発明にいたった。 Organic electronic devices such as organic EL and organic solar cells are usually thin films with a functional layer of several hundred nm or less. For this reason, if there is a convex portion such as a pattern of a fine metal wire, it may cause a leak. Therefore, it is conceivable to smooth the pattern portion of the fine metal wire as in Patent Document 3 described above. In addition, the fine metal wire portion is not completely smoothed, and the upper portion of the conductive polymer-containing layer on the fine metal wire pattern portion is made higher than the upper portion of the conductive polymer-containing layer in the portion without the fine metal wire pattern by 100 nm or more. . Thereby, it discovered that it was effective in optical characteristics, such as light extraction of the pattern of the metal fine wire which is another subject of organic electronic devices, such as organic EL and an organic solar cell, and light uptake | capture. This is because, for example, in organic EL, the total reflection between the front and back surfaces of the light emitting layer having a high refractive index is repeated, and the incident angle of the confined light on the front and back surfaces changes greatly around the pattern portion of the thin metal wire. It is thought that light extraction performance is manifested by the effect of surface scattering. Further, the step between the upper portion of the conductive polymer-containing layer on the fine metal wire pattern portion and the upper portion of the conductive polymer-containing layer in the portion without the thin metal wire pattern is set to 800 nm or less, and further, the conductivity on the fine metal wire pattern portion is further reduced. It has been found that by setting the film thickness of the conductive polymer-containing layer to 100 nm to 2000 nm, it is possible to prevent leakage and disturbance of device performance around the pattern portion of the fine metal wire while maintaining the efficiency of the electronic device. I went to.
 《本発明の有機電子デバイス用電極の製造方法》
 本発明の有機電子デバイス用電極の製造方法を、図を用いて説明する。図1において、インクジェット用金属微粒子含有インキを、インクジェット塗布装置を用いて、易接済み基材の上に以下のようにプリントする。金属ベタ部の取り出し電極(1)及び(4)と、該取り出し電極(1)に接する金属細線のパターン(2)及び、金属細線のパターン(2)と取り出し電極(4)間に金属細線のパターンのないブランク部(3)を設ける。金属細線のパターンは、加熱処理をして固定化する。
<< Method for Producing Electrode for Organic Electronic Device of the Present Invention >>
The manufacturing method of the electrode for organic electronic devices of this invention is demonstrated using figures. In FIG. 1, the ink containing metal fine particles for inkjet is printed on an easily contacted substrate as follows using an inkjet coating apparatus. Extraction electrodes (1) and (4) of the solid metal portion, a pattern (2) of the fine metal wire in contact with the extraction electrode (1), and a fine metal wire between the pattern (2) of the fine metal wire and the extraction electrode (4) A blank part (3) having no pattern is provided. The pattern of fine metal wires is fixed by heat treatment.
 次に、図2に示すように、金属細線のパターン(2)の上に、導電性ポリマー含有層(5)を塗布により設ける。 Next, as shown in FIG. 2, a conductive polymer-containing layer (5) is provided on the fine metal wire pattern (2) by coating.
 次いで、図3に示すように、導電性ポリマー含有層(5)であって、金属細線のパターンのない領域を、純水により、導電性ポリマー含有層を拭き取り除去して導電性ポリマー含有層(5′)とする。導電性ポリマー含有層(5′)も加熱処理をして固定化して、有機電子デバイス用電極(10)とする。 Next, as shown in FIG. 3, the conductive polymer-containing layer (5), which has no fine metal wire pattern, is wiped away with pure water to remove the conductive polymer-containing layer ( 5 '). The conductive polymer-containing layer (5 ′) is also fixed by heat treatment to obtain an electrode for organic electronic devices (10).
 尚、図4は、本発明の有機電子デバイス用電極(10)の上に有機EL素子として必要な有機層を形成した後の最後に作製するカソード電極(6)を示す。 FIG. 4 shows a cathode electrode (6) finally produced after an organic layer necessary as an organic EL element is formed on the electrode for organic electronic devices (10) of the present invention.
 以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
 《導電性ポリマー》
 本発明に係る導電性ポリマーはπ共役系導電性高分子とポリアニオンとを含んで成る導電性ポリマーであることが好ましい。こうした導電性ポリマーは、後述するπ共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリアニオンの存在下で化学酸化重合することによって容易に製造できる。
<< Conductive polymer >>
The conductive polymer according to the present invention is preferably a conductive polymer comprising a π-conjugated conductive polymer and a polyanion. Such a conductive polymer can be easily produced by chemically oxidatively polymerizing a precursor monomer that forms a π-conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described later.
 《π共役系導電性高分子》
 本発明に用いられるπ共役系導電性高分子としては、特に限定されず、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類やポリアニリン類が好ましい。ポリエチレンジオキシチオフェンであることが最も好ましい。
《Π-conjugated conductive polymer》
The π-conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, A chain conductive polymer of polyfurans, polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl compounds can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
 〔π共役系導電性高分子前駆体モノマー〕
 前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
[Π-conjugated conductive polymer precursor monomer]
The precursor monomer has a π-conjugated system in the molecule, and a π-conjugated system is formed in the main chain even when polymerized by the action of an appropriate oxidizing agent. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。 Specific examples of the precursor monomer include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenyl Thiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3- Octyloxythiophene, 3-decyloxythiophene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythio , 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyl Oxythiophene, 3,4-didodecyloxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, 3,4-butenedioxythiophene, 3-methyl-4-methoxythiophene, 3- Methyl-4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4-carboxythiophene, 3-methyl-4-carboxyethylthiophene, 3-methyl-4-carboxybutylthiophene, aniline, 2-methylaniline, 3- Isobutylaniline, 2-anilinesulfonic acid, 3-anili Sulfonic acid and the like.
 《ポリアニオン》
 ポリアニオンは、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。
《Polyanion》
The polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof. It consists of a structural unit having a group and a structural unit having no anionic group.
 このポリアニオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。 This polyanion is a solubilized polymer that solubilizes a π-conjugated conductive polymer in a solvent. The anion group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
 ポリアニオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。 The anion group of the polyanion may be a functional group capable of undergoing chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a monosubstituted sulfate group, A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。 Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
 また、化合物内にFを有するポリアニオンであっても良い。具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)などをあげることができる。 Further, it may be a polyanion having F in the compound. Specific examples include Nafion containing a perfluorosulfonic acid group (manufactured by Dupont), Flemion made of perfluoro vinyl ether containing a carboxylic acid group (manufactured by Asahi Glass Co., Ltd.), and the like.
 これらのうち、スルホン酸を有する化合物であると、導電性ポリマー含有層を塗布、乾燥することによって形成した後に、100℃以上200℃以下の温度で5分以上の加熱処理を施した場合、この塗布膜の洗浄耐性や溶媒耐性が著しく向上することから、より好ましい。 Among these, when a compound having a sulfonic acid is formed by applying and drying a conductive polymer-containing layer, when subjected to a heat treatment at a temperature of 100 ° C. or more and 200 ° C. or less for 5 minutes or more, It is more preferable because the cleaning resistance and solvent resistance of the coating film are remarkably improved.
 さらに、これらの中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、バインダー樹脂との相溶性が高く、また、得られる導電性ポリマーの導電性をより高くできる。 Further, among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable. These polyanions have high compatibility with the binder resin, and can further increase the conductivity of the obtained conductive polymer.
 ポリアニオンの重合度は、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10000個の範囲がより好ましい。 The polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
 ポリアニオンの製造方法としては、例えば、酸を用いてアニオン基を有さないポリマーにアニオン基を直接導入する方法、アニオン基を有さないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法が挙げられる。 Examples of methods for producing polyanions include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and anionic group-containing polymerization. And a method of production by polymerization of a functional monomer.
 アニオン基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。 Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
 アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。 The oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the π-conjugated conductive polymer.
 得られたポリマーがポリアニオン塩である場合には、ポリアニオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。 When the obtained polymer is a polyanion salt, it is preferably transformed into a polyanionic acid. Examples of the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like. Among these, the ultrafiltration method is preferable from the viewpoint of easy work.
 こうした導電性ポリマーは市販の材料も好ましく利用できる。 Such a conductive polymer is preferably a commercially available material.
 例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT-PSSと略す)が、H.C.Starck社からCLEVIOSシリーズとして、Aldrich社からPEDOT-PASS483095、560598として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることが出来る。 For example, a conductive polymer (abbreviated as PEDOT-PSS) made of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is H.264. C. It is commercially available from Starck as the CLEVIOS series, from Aldrich as PEDOT-PASS 483095, 560598, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
 前記ポリアニオンを第一のドーパントとするとき、第二のドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。 When the polyanion is used as the first dopant, a water-soluble organic compound may be contained as the second dopant. There is no restriction | limiting in particular in the water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably.
 前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、ヒドロキシ基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物などが挙げられる。前記ヒドロキシ基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリンなどが挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトンなどが挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、などが挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが好ましい。 The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable. Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and γ-butyrolactone. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
 《水溶性ポリマー》
 本発明においては、導電性ポリマー含有層に水溶性ポリマーを併用することで、透過率を低下させずに膜厚をアップすることが可能となり、表面に付着した異物等を埋め込むこと電極間の短絡を抑制可能となり、好ましい実施形態である。本発明に用いる水溶性ポリマーとは、水系溶媒(後述)に溶解、あるいは、分散できるポリマーでれば特に制限はなく、例えば、ポリエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、アクリルウレタン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアセタール系樹脂、ポリビニルアルコール系樹脂等をあげることができる。具体的な化合物としては、例えば、ポリエステル系樹脂としてバイロナールMD1200、MD1400、MD1480(以上、東洋紡社製)をあげることができる。
《Water-soluble polymer》
In the present invention, by using a water-soluble polymer in combination with the conductive polymer-containing layer, it becomes possible to increase the film thickness without reducing the transmittance, and to embed foreign matter attached to the surface, etc. This is a preferred embodiment. The water-soluble polymer used in the present invention is not particularly limited as long as it is a polymer that can be dissolved or dispersed in an aqueous solvent (described later). For example, a polyester resin, an acrylic resin, a polyurethane resin, an acrylic urethane resin, Examples thereof include polycarbonate resins, cellulose resins, polyvinyl acetal resins, polyvinyl alcohol resins, and the like. Specific examples of the compound include Vylonal MD1200, MD1400, MD1480 (manufactured by Toyobo Co., Ltd.) as polyester resins.
 本発明に係る水溶性ポリマーとしては、後述する架橋剤と反応する基を有する化合物であれば、より強固な膜を形成することから、より好ましい。こうした水溶性ポリマーとしては、架橋剤と反応する基としては架橋剤によって異なるが、例えば、ヒドロキシ基、カルボキシル基、アミノ基などをあげることができる。中でも、側鎖にヒドロキシ基を有することが最も好ましい。 As the water-soluble polymer according to the present invention, a compound having a group that reacts with a crosslinking agent described later is more preferable because it forms a stronger film. As such a water-soluble polymer, the group that reacts with the crosslinking agent varies depending on the crosslinking agent, and examples thereof include a hydroxy group, a carboxyl group, and an amino group. Among these, it is most preferable to have a hydroxy group in the side chain.
 本発明に係る水溶性ポリマーの具体的な化合物としては、ポリビニルアルコールPVA-203、PVA-224、PVA-420(以上、クレハ社製)、ヒドロキシプロピルメチルセルロース60SH-06、60SH-50、60SH-4000、90SH-100(以上、信越化学工業社製)、メチルセルロースSM-100(信越化学工業社製)、酢酸セルロースL-20、L-40、L-70(以上、ダイセル化学工業社製)、カルボキシメチルセルロースCMC-1160(ダイセル化学工業社製)、ヒドロキシエチルセルロースSP-200、SP-600(以上、ダイセル化学工業社製)、アクリル酸アルキル共重合体ジュリマーAT-210、AT-510(以上、東亞合成社製)、ポリヒドロキシエチルアクリレート、ポリヒドロキシエチルメタクリレートなどをあげることができる。 Specific compounds of the water-soluble polymer according to the present invention include polyvinyl alcohol PVA-203, PVA-224, PVA-420 (manufactured by Kureha), hydroxypropyl methylcellulose 60SH-06, 60SH-50, 60SH-4000. , 90SH-100 (above, manufactured by Shin-Etsu Chemical Co., Ltd.), methylcellulose SM-100 (produced by Shin-Etsu Chemical Co., Ltd.), cellulose acetate L-20, L-40, L-70 (above, manufactured by Daicel Chemical Industries, Ltd.), carboxy Methylcellulose CMC-1160 (manufactured by Daicel Chemical Industries), hydroxyethylcellulose SP-200, SP-600 (above, manufactured by Daicel Chemical Industries), alkyl acrylate copolymer Jurimer AT-210, AT-510 (above, Toagosei Co., Ltd.) , Polyhydroxyethyl acrylate Polyhydroxyethyl methacrylate, and the like.
 中でも、水溶性ポリマーが前記ポリマー(A)を一定量含む場合、第二ドーパントを利用しなくても、この化合物を利用することで導電性ポリマー含有層の導電性を向上させることが可能で、さらに、導電性ポリマーとの相溶性も良好で高い透明性と平滑性が達成できる。さらに、ポリアニオンがスルホ基を有する場合は、前記ポリマー(A)であれば、スルホ基が効果的に脱水触媒として働き、架橋剤などの追加の剤を利用しなくても、緻密な架橋層を形成できることからより好ましい実施形態である。 Among them, when the water-soluble polymer contains a certain amount of the polymer (A), it is possible to improve the conductivity of the conductive polymer-containing layer by using this compound without using the second dopant. Furthermore, compatibility with a conductive polymer is also good, and high transparency and smoothness can be achieved. Further, when the polyanion has a sulfo group, if the polymer (A) is used, the sulfo group effectively acts as a dehydration catalyst, and a dense cross-linked layer can be formed without using an additional agent such as a cross-linking agent. This is a more preferred embodiment because it can be formed.
 本発明における水溶性ポリマー(A)とは、主たる共重合成分が下記モノマーM1、M2、M3からなり、共重合成分の50mol%以上の成分が該モノマーのいずれか、あるいは、合計が50mol%以上ある共重合ポリマーである。該モノマー成分の合計が80mol%以上であることがより好ましく、さらに、いずれか単独のモノマーから形成されたホモポリマーであっても良く、また、好ましい実施形態である。 In the present invention, the water-soluble polymer (A) is composed mainly of the following monomers M1, M2, and M3, and 50 mol% or more of the copolymer components are any of the monomers, or the total is 50 mol% or more. It is a copolymer. The total of the monomer components is more preferably 80 mol% or more, and it may be a homopolymer formed from any single monomer, which is a preferred embodiment.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、X、X、Xは、それぞれ独立に、水素原子またはメチル基を表し、R、R、Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。 In the formula, X 1 , X 2 , and X 3 each independently represent a hydrogen atom or a methyl group, and R 1 , R 2 , and R 3 each independently represent an alkylene group having 5 or less carbon atoms.
 ポリマー(A)においては、水系溶媒に可溶である範囲において、他のモノマー成分が共重合されていてもかまわないが、親水性の高いモノマー成分であることがより好ましい。 In the polymer (A), other monomer components may be copolymerized as long as they are soluble in an aqueous solvent, but a monomer component having high hydrophilicity is more preferable.
 また、ポリマー(A)は数平均分子量において、1000以下の含有量が0~5%以下であることが好ましい。 The polymer (A) preferably has a content of 1000 or less in the number average molecular weight of 0 to 5%.
 このポリマー(A)の数平均分子量において、1000以下の含有量が0~5%以下とする方法としては、再沈殿法や分取GPCにより、或いはリビング重合による単分散のポリマーを合成等により、低分子量成分を除去する、または低分子量成分の生成を抑制する方法を用いることができる。 In the number average molecular weight of the polymer (A), the content of 1000 or less is 0 to 5% or less, such as reprecipitation method, preparative GPC, or synthesis of monodisperse polymer by living polymerization, etc. A method of removing the low molecular weight component or suppressing the generation of the low molecular weight component can be used.
 再沈殿法は、ポリマーが溶解可能な溶媒へ溶解し、ポリマーを溶解した溶媒より溶解性の低い溶媒中へ滴下することにより、ポリマーを析出させ、モノマー、触媒、オリゴマー等の低分子量成分を除去する方法である。 In the reprecipitation method, the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers. It is a method to do.
 また、分取GPCは例えばリサイクル分取GPCLC-9100(日本分析工業社製)、ポリスチレンゲルカラムで、ポリマーを溶解した溶液をカラムに通すことにより分子量で分けることができ、所望の低分子量をカットすることができる方法である。 In addition, preparative GPC is, for example, recycled preparative GPCLC-9100 (manufactured by Nippon Analytical Industrial Co., Ltd.), polystyrene gel column, and a polymer-dissolved solution can be separated by molecular weight to cut the desired low molecular weight. This is how you can do it.
 リビング重合は、開始種の生成が経時で変化せず、また停止反応等の副反応が少なく、分子量の揃ったポリマーが得られる。分子量はモノマーの添加量により調整できるため、例えば分子量を2万のポリマーを合成すれば、低分子量体の生成を抑制することができる。生産適正から、再沈殿法、リビング重合が好ましい。 Living polymerization does not change the generation of the starting species over time, and there are few side reactions such as termination reaction, and a polymer with uniform molecular weight can be obtained. Since the molecular weight can be adjusted by the addition amount of the monomer, for example, if a polymer having a molecular weight of 20,000 is synthesized, the formation of a low molecular weight body can be suppressed. The reprecipitation method and living polymerization are preferable from the viewpoint of production suitability.
 本発明の水溶性ポリマーの数平均分子量、重量平均分子量の測定は、一般的に知られているゲルパーミエーションクロマトグラフィー(GPC)により行うことができる。分子量分布は(重量平均分子量/数平均分子量)の比で表すことができる。使用する溶媒は、水溶性バインダー樹脂が溶解すれば特に制限はなく、THF、DMF、CHClが好ましく、より好ましくはTHF、DMFであり、更に好ましくはDMFである。また、測定温度も特に制限はないが40℃が好ましい。 The number average molecular weight and the weight average molecular weight of the water-soluble polymer of the present invention can be measured by a generally known gel permeation chromatography (GPC). The molecular weight distribution can be expressed by a ratio of (weight average molecular weight / number average molecular weight). The solvent to be used is not particularly limited as long as the water-soluble binder resin dissolves, and THF, DMF, and CH 2 Cl 2 are preferable, THF and DMF are more preferable, and DMF is more preferable. The measurement temperature is not particularly limited, but 40 ° C. is preferable.
 本発明に係るポリマー(A)の数平均分子量は3,000~2,000,000の範囲が好ましく、より好ましくは4,000~500,000、更に好ましくは5000~100000の範囲内である。 The number average molecular weight of the polymer (A) according to the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000.
 本発明に係るポリマー(A)の数平均分子量分布は1.01~1.30が好ましく、より好ましくは1.01~1.25である。 The number average molecular weight distribution of the polymer (A) according to the present invention is preferably 1.01 to 1.30, more preferably 1.01 to 1.25.
 数平均分子量1000以下の含有量はGPCにより得られた分布において、数平均分子量1000以下の面積を積算し、分布全体の面積で割ることで割合を換算した。 In the distribution obtained by GPC, the content with a number average molecular weight of 1000 or less was converted to a ratio by integrating the area with a number average molecular weight of 1000 or less and dividing by the area of the entire distribution.
 リビング重合溶剤は、反応条件下で不活性であり、モノマー、生成するポリマーを溶解できれば特に制限はないが、アルコール系溶媒と水の混合溶媒が好ましい。リビング重合温度は、使用する開始剤によって異なるが、一般に-10~250℃、好ましくは0~200℃、より好ましくは10~100℃で実施される。 The living polymerization solvent is inactive under the reaction conditions and is not particularly limited as long as it can dissolve the monomer and the polymer to be formed, but a mixed solvent of an alcohol solvent and water is preferable. The living polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
 〔導電性ポリマー含有層の形成〕
 導電性ポリマー含有層は、例えば、π共役系導電性高分子成分とポリアニオン成分とを含んで成る導電性ポリマーと溶媒とを少なくとも含んでなる、更に好ましくは、水溶性ポリマーを含有する、塗布液を塗布、乾燥することで形成することができる。
[Formation of conductive polymer-containing layer]
The conductive polymer-containing layer contains, for example, at least a conductive polymer containing a π-conjugated conductive polymer component and a polyanion component and a solvent, more preferably a coating solution containing a water-soluble polymer. Can be formed by coating and drying.
 溶媒としては、水系溶媒を好ましく用いることが出来る。ここで、水系溶媒とは、50質量%以上が水である溶媒を表す。もちろん、他の溶媒を含有しない純水であっても良い。水系溶媒の水以外の成分は、水に相溶する溶剤であれば特に制限はないが、アルコール系の溶媒を好ましく用いることができ、中でも、沸点が比較的水に近いイソプロピルアルコールを用いることが形成する膜の平滑性などには有利である。 As the solvent, an aqueous solvent can be preferably used. Here, the aqueous solvent represents a solvent in which 50% by mass or more is water. Of course, pure water containing no other solvent may be used. The component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. This is advantageous for the smoothness of the film to be formed.
 塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法等を用いることができる。 As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method A letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used.
 導電性ポリマー含有層の乾燥膜厚は、金属細線のある部分の上では、金属細線と対向電極間のリークを防止するために100nm以上必要である。また、金属細線のない部分の導電性ポリマー含有層の膜厚が200nm以上1500nm以下であることが好ましい。200nm以上とすることで異物などに起因するリークを防ぐことができる。また、1500nmを超えると導電性ポリマーの着色の影響や金属細線のパターンの散乱効果が小さくなり、本発明の光学的な効果が小さくなってくる。より高い効果のためには300nm以上1000nm以下であることがより好ましい。 The dry film thickness of the conductive polymer-containing layer needs to be 100 nm or more on the portion where the fine metal wire is present in order to prevent leakage between the fine metal wire and the counter electrode. Moreover, it is preferable that the film thickness of the conductive polymer content layer of a part without a metal fine wire is 200 nm or more and 1500 nm or less. By setting the thickness to 200 nm or more, it is possible to prevent leakage due to foreign matter or the like. On the other hand, if the thickness exceeds 1500 nm, the influence of coloring of the conductive polymer and the scattering effect of the fine metal wire pattern become small, and the optical effect of the present invention becomes small. For higher effects, the thickness is more preferably 300 nm or more and 1000 nm or less.
 金属細線のある部分の上の導電性ポリマー含有層の最表面が金属細線のない部分の導電性ポリマー含有層の最表面よりも100nm以上高く、より好ましくは150nm以上高い。これにより、有機ELや有機太陽電池のような有機電子デバイスの光取り出し、光取り込みなどの光学特性を改善できる。また、上限としては800nm以下であり、好ましくは600nm以下である。こうすることにより、段差部での機能層の乱れを最小限に抑え、リークや金属細線のパターン部周辺の異常発光や寿命の低下を抑えることができる。 The outermost surface of the conductive polymer-containing layer on the portion with the fine metal wire is 100 nm or more higher than the outermost surface of the conductive polymer-containing layer on the portion without the fine metal wire, more preferably 150 nm or more. Thereby, optical characteristics such as light extraction and light capture of organic electronic devices such as organic EL and organic solar cells can be improved. Moreover, as an upper limit, it is 800 nm or less, Preferably it is 600 nm or less. By doing so, it is possible to minimize the disturbance of the functional layer at the stepped portion, and to suppress leakage and abnormal light emission around the pattern portion of the fine metal wire and a decrease in the lifetime.
 金属細線のない部分の導電性ポリマー含有層は、塗布液の固形分、付き量で調整できる。さらに、塗布液の粘度を調整することで、金属細線のある部分の上の導電性ポリマー含有層の膜厚、および、金属細線のある部分の上の導電性ポリマー含有層の最表面と、前記金属細線のない部分の上の導電性ポリマー含有層の最表面との段差を調整できる。粘度をあげると金属細線のある部分の上の導電性ポリマー含有層の膜厚が厚く、また、段差が大きくなる。逆に、粘度を低下させると金属細線のある部分の上の導電性ポリマー含有層の膜厚が薄く、また、段差が小さくなる。塗布液の粘度は、固形分を上げる、水溶性ポリマーを併用する、併用する水溶性ポリマーの数平均分子量を高くする、水酸基を有する水に可溶な溶媒、例えば、アルコールを添加することなどで高くすることができ、低下させるにはその逆である。さらに、後述の乾燥条件によっても調整可能で、乾燥を強くすると金属細線のある部分の上の導電性ポリマー含有層の上部の膜厚が厚く、また、段差が大きくなる方向で、弱くするとその逆である。 The conductive polymer-containing layer where there is no fine metal wire can be adjusted by the solid content and amount of coating solution. Furthermore, by adjusting the viscosity of the coating solution, the film thickness of the conductive polymer-containing layer on the portion with the thin metal wire, and the outermost surface of the conductive polymer-containing layer on the portion with the thin metal wire, The level | step difference with the outermost surface of the conductive polymer content layer on the part without a metal fine wire can be adjusted. When the viscosity is increased, the thickness of the conductive polymer-containing layer on the portion where the fine metal wire is present is increased, and the level difference is increased. On the contrary, when the viscosity is lowered, the film thickness of the conductive polymer-containing layer on the portion where the fine metal wire is present is thin, and the step is reduced. The viscosity of the coating solution is increased by increasing the solid content, using a water-soluble polymer together, increasing the number average molecular weight of the water-soluble polymer used together, adding a water-soluble solvent having a hydroxyl group, such as an alcohol, etc. It can be raised and vice versa. Furthermore, it can be adjusted according to the drying conditions described later. When drying is strengthened, the upper part of the conductive polymer-containing layer on the portion with the fine metal wires is thickened. It is.
 塗布した後、溶媒を揮発させるために、適宜乾燥処理を施す。乾燥処理の条件として特に制限はないが、基板や導電性ポリマー含有層が損傷しない範囲の温度で乾燥処理することが好ましい。例えば、80から150℃で10秒から10分の乾燥処理をすることができる。 After coating, a drying process is appropriately performed to volatilize the solvent. Although there is no restriction | limiting in particular as conditions of a drying process, It is preferable to dry-process at the temperature of the range which does not damage a board | substrate and a conductive polymer content layer. For example, a drying process can be performed at 80 to 150 ° C. for 10 seconds to 10 minutes.
 (金属細線のパターン)
 本発明の金属細線のパターンにおいては、パターン形状としては特に制限はないが、例えば、三角形、正方形、長方形、菱形、平行四辺形、台形等の四角形、(正)六角形、(正)八角形等を組み合わせた幾何学図形からなるメッシュ状のパターンを上げることができる。また、複数の平行なラインからなるストライプ状あっても良い。例えば、線幅10~200μm、線間隔が200から3000μmのストライプや格子状をあげることができる。金属細線のパターンの高さは、導電性ポリマー含有層の関係を満たすことができれば特に制限はないが、本発明の関係を容易に満足するには200nm以上2000nm以下であることが好ましく、300nm以上1000nm以下であることがより好ましい。
(Metallic thin wire pattern)
In the pattern of fine metal wires of the present invention, the pattern shape is not particularly limited, but for example, a triangle, a square, a rectangle, a rhombus, a parallelogram, a trapezoid or other quadrangle, a (regular) hexagon, a (positive) octagon It is possible to raise a mesh-like pattern composed of geometric figures combining the above. Alternatively, a stripe shape composed of a plurality of parallel lines may be used. For example, stripes or lattices having a line width of 10 to 200 μm and a line interval of 200 to 3000 μm can be given. The height of the fine metal wire pattern is not particularly limited as long as the relationship of the conductive polymer-containing layer can be satisfied. However, in order to easily satisfy the relationship of the present invention, it is preferably 200 nm or more and 2000 nm or less, and 300 nm or more. More preferably, it is 1000 nm or less.
 金属細線のパターンは導電性ポリマー含有層を併用しない、単独のフィルムで30Ω/□以下の導電性を有することが好ましく、さらに5Ω/□以下であることが好ましく、1Ω/□以下であることが最も好ましい。 The pattern of the fine metal wire does not use the conductive polymer-containing layer, and preferably has a conductivity of 30Ω / □ or less as a single film, more preferably 5Ω / □ or less, and preferably 1Ω / □ or less. Most preferred.
 金属材料としては、例えば、金、銀、銅、鉄、ニッケル、クロム等が挙げられる。またあ、金属は合金でも良く、金属細線のパターンは単層でも多層でも良い。 Examples of the metal material include gold, silver, copper, iron, nickel, and chromium. Moreover, the metal may be an alloy, and the pattern of the fine metal wire may be a single layer or multiple layers.
 導電部がストライプ状、あるいはメッシュ状の補助電極を形成する方法としては、特に、制限はなく、従来公知な方法が利用できる。例えば、基材全面に金属層を形成し、公知のフォトリソ法によって形成できる。具体的には、基材上に全面に、蒸着、スパッタ、めっき等の1或いは2以上の物理的或いは化学的形成手法を用いて導電体層を形成する、あるいは、金属箔を接着剤で基材に積層した後、公知のフォトリソ法を用いて、エッチングすることにより、所望のストライプ状、あるいはメッシュ状に加工できる。 There is no particular limitation on the method for forming the auxiliary electrode having a conductive portion having a stripe shape or a mesh shape, and a conventionally known method can be used. For example, a metal layer can be formed on the entire surface of the substrate and formed by a known photolithography method. Specifically, a conductor layer is formed on the entire surface of the substrate using one or more physical or chemical forming methods such as vapor deposition, sputtering, and plating, or a metal foil is formed with an adhesive. After being laminated on the material, it can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
 別な方法としては、金属微粒子を含有するインクをスクリーン印刷、フレキソ印刷、グラビア印刷、あるいは、インクジェット方式などの各種印刷法により所望の形状に印刷する方法や、めっき可能な触媒インクを同様な各種印刷法で所望の形状に塗布した後、めっき処理する方法、さらに別な方法としては、銀塩写真技術を応用した方法も利用できる。こうした方法の中でも、金属微粒子を含有するインクを各種印刷法により所望の形状に印刷する方法は簡便な工程で製造できることから製造時にリークの原因となるような異物の巻き込みを低減でき、また、必要個所にしかインクを使用しないので液のロスが少なく、さらに、めっきのような特殊な化学的な処理を必要としないため、除去しきれない薬品のコンタミの懸念もないことから、本発明においては最も好ましい実施形態である。 As another method, a method of printing an ink containing metal fine particles in a desired shape by various printing methods such as screen printing, flexographic printing, gravure printing, or an ink jet method, and various similar catalytic inks that can be plated are used. A method of applying a silver salt photographic technique can be used as a method of applying a desired shape by a printing method and then performing a plating treatment, and as another method. Among these methods, the method of printing ink containing metal fine particles in a desired shape by various printing methods can be manufactured in a simple process, so that it is possible to reduce the entrainment of foreign matters that may cause leakage at the time of manufacture. Since ink is used only at the location, there is little loss of liquid, and since there is no need for special chemical treatment such as plating, there is no concern about contamination of chemicals that cannot be removed. This is the most preferred embodiment.
 (金属微粒子含有インキ)
 金属微粒子含有インキは公知のものを利用できる。金属微粒子としては、例えば、銀、金、銅、パラジウム、白金、アルミニウム及びニッケルなどのいずれかを含有する金属微粒子、または、これらの金属を含む合金の微粒子を挙げることができる。
(Ink containing fine metal particles)
As the metal fine particle-containing ink, known inks can be used. Examples of the metal fine particles include metal fine particles containing any one of silver, gold, copper, palladium, platinum, aluminum and nickel, or alloy fine particles containing these metals.
 これらの金属微粒子には、分散性を向上させるために表面に有機物などの被膜(コーティング材)がコーティングされている。 These metal fine particles are coated with a film (coating material) such as an organic substance on the surface in order to improve dispersibility.
 金属微粒子の粒径は1nm以上1μm以下であることが好ましく、0.1μm以下であることがより好ましい。1μmをこえると金属細線のパターン部の凹凸が大きく、リークに不利になる。0.1μm以下とすることで低温の焼成でも粒子間の融着が進み、高い導電性が得られる。また、特開2008-091250号公報に記載のような0.1μm以下の粒子と0.1μm以上の粒子を併用することも好ましい。 The particle diameter of the metal fine particles is preferably 1 nm or more and 1 μm or less, and more preferably 0.1 μm or less. When the thickness exceeds 1 μm, the unevenness of the pattern portion of the fine metal wire is large, which is disadvantageous for leakage. When the thickness is 0.1 μm or less, fusion between particles proceeds even at low temperature firing, and high conductivity is obtained. It is also preferable to use particles having a size of 0.1 μm or less and particles having a size of 0.1 μm or more as described in JP-A-2008-091250.
 0.1μm以下の金属微粒子を用いるには、有機保護コロイドで被覆した状態で使用することが好ましい。この有機保護コロイドとしては、分解温度あるいは沸点が70~250℃の範囲のものを用いるものである。この分解温度あるいは沸点とは、分解温度と沸点のうち低いほうの温度をいうものである。そして有機保護コロイドの分解温度あるいは沸点が250℃を超えるものであると、低温の熱処理で有機保護コロイドを分解あるいは蒸発させることができず、低温焼成をおこなうことができない。また有機保護コロイドの分解温度あるいは沸点が70℃未満のものであると、銀ペーストを保存する間に有機保護コロイドが分解あるいは蒸発するおそれがあり、銀ペーストの保存安定性に問題が生じる。 In order to use metal fine particles of 0.1 μm or less, it is preferable to use the fine particles coated with an organic protective colloid. As this organic protective colloid, one having a decomposition temperature or boiling point in the range of 70 to 250 ° C. is used. This decomposition temperature or boiling point means the lower one of the decomposition temperature and boiling point. If the decomposition temperature or boiling point of the organic protective colloid exceeds 250 ° C., the organic protective colloid cannot be decomposed or evaporated by low-temperature heat treatment, and low-temperature firing cannot be performed. If the decomposition temperature or boiling point of the organic protective colloid is less than 70 ° C., the organic protective colloid may be decomposed or evaporated during storage of the silver paste, which causes a problem in storage stability of the silver paste.
 また有機保護コロイドとしては、炭素数3~18の炭化水素類を用いるのが好ましい。炭素数が19以上であると、分解温度あるいは沸点が高くなって、低温の熱処理で有機保護コロイドを分解あるいは蒸発させることができなくなるおそれがあり、また炭素数が2以下であると、分解温度あるいは沸点が低くなり過ぎて、銀ペーストの保存安定性に問題が生じるおそれがある。 Further, as the organic protective colloid, it is preferable to use hydrocarbons having 3 to 18 carbon atoms. If the carbon number is 19 or more, the decomposition temperature or boiling point becomes high, and the organic protective colloid may not be decomposed or evaporated by low-temperature heat treatment, and if the carbon number is 2 or less, the decomposition temperature Alternatively, the boiling point becomes too low, which may cause a problem in the storage stability of the silver paste.
 上記のような条件満たす有機保護コロイドとしては、特に限定されるものではないが、オクチルアミン(沸点178~179℃)、6-メチル-2-ヘプチルアミン(沸点154~156℃)、ジブチルアミン(沸点160~162℃)、ヘキシルアミン(沸点130~132℃)、ジプロピルアミン(沸点105℃)、ジイソプロピルアミン(沸点83~84℃)、ブチルアミン(沸点76~78℃)、ステアリン酸(沸点232℃;19.95hPa)、パルミチン酸(沸点271.4℃;133hPa)、ミリスチン酸(沸点250℃;133hPa)、ラウリン酸(沸点131℃;1.3hPa)、オクタン酸(沸点238℃)、ヘキサン酸(沸点206℃)、酪酸(沸点162~165℃)、オクタデカジエン酸(229~230℃)などを例示することができ、これらを一種単独で用いる他、二種以上を併用することもできるものである。 The organic protective colloid satisfying the above conditions is not particularly limited, but includes octylamine (boiling point 178 to 179 ° C.), 6-methyl-2-heptylamine (boiling point 154 to 156 ° C.), dibutylamine ( Boiling point 160-162 ° C), hexylamine (boiling point 130-132 ° C), dipropylamine (boiling point 105 ° C), diisopropylamine (boiling point 83-84 ° C), butylamine (boiling point 76-78 ° C), stearic acid (boiling point 232) 19.95 hPa), palmitic acid (boiling point 271.4 ° C; 133 hPa), myristic acid (boiling point 250 ° C; 133 hPa), lauric acid (boiling point 131 ° C; 1.3 hPa), octanoic acid (boiling point 238 ° C), hexane Acid (boiling point 206 ° C), butyric acid (boiling point 162-165 ° C), octadecadienoic acid (229-23) ° C.) can be exemplified a, except for using these alone, but can also be used in combination of two or more.
 これらのなかでも、有機保護コロイドとしては、アミン(アミノ基)を含むものが特に好ましい。アミン類を含むことによって、有機保護コロイドで金属ナノ粒子を保護する効果を高く得ることができるものであり、また焼成の際に有機保護コロイドが残留することがなくなり、有機物残渣で比抵抗に悪影響を及ぼすことを防ぐことができるものである。 Among these, as the organic protective colloid, those containing an amine (amino group) are particularly preferable. By including amines, it is possible to obtain a high effect of protecting metal nanoparticles with an organic protective colloid, and the organic protective colloid does not remain during firing, and the organic residue has an adverse effect on the specific resistance. It is possible to prevent the effect.
 有機保護コロイドで金属ナノ粒子の表面を被覆する方法は、任意の方法を採用することができるが、例えば、金属ナノ粒子を調製する際に有機保護コロイドを共存させることによって、金属ナノ粒子の表面を有機保護コロイドで容易に被覆することができるものである。また有機保護コロイドによる金属ナノ粒子の被覆量は、特に限定されるものではないが、金属ナノ粒子100質量部に対して1~40質量部の範囲に設定するのが望ましい。 The method of coating the surface of the metal nanoparticles with the organic protective colloid can adopt any method. For example, the surface of the metal nanoparticles can be prepared by making the organic protective colloid coexist when preparing the metal nanoparticles. Can be easily coated with an organic protective colloid. The coating amount of the metal nanoparticles with the organic protective colloid is not particularly limited, but is preferably set in the range of 1 to 40 parts by mass with respect to 100 parts by mass of the metal nanoparticles.
 分散媒についても、分解温度あるいは沸点が70~250℃の範囲のものを用いるものであり、この分解温度あるいは沸点とは、分解温度と沸点のうち低いほうの温度をいうものである。そして分散媒の分解温度あるいは沸点が250℃を超えるものであると、低温の熱処理で分散媒を分解あるいは蒸発させることができず、低温焼成をおこなうことができない。また分散媒の分解温度あるいは沸点が70℃未満のものであると、銀ペーストを保存する間に分散媒が分解あるいは蒸発するおそれがあり、銀ペーストの保存安定性に問題が生じる。 As the dispersion medium, one having a decomposition temperature or boiling point in the range of 70 to 250 ° C. is used, and the decomposition temperature or boiling point is a lower one of the decomposition temperature and the boiling point. If the decomposition temperature or boiling point of the dispersion medium exceeds 250 ° C., the dispersion medium cannot be decomposed or evaporated by low-temperature heat treatment, and low-temperature firing cannot be performed. If the decomposition temperature or boiling point of the dispersion medium is less than 70 ° C., the dispersion medium may decompose or evaporate during storage of the silver paste, which causes a problem in storage stability of the silver paste.
 また分散媒としては、炭素数3~18の炭化水素類を用いるのが好ましい。炭素数が19以上であると、分解温度あるいは沸点が高くなって、低温の熱処理で分散媒を分解あるいは蒸発させることができなくなるおそれがあり、また炭素数が2以下であると、分解温度あるいは沸点が低くなり過ぎて、銀ペーストの保存安定性に問題が生じるおそれがある。 Further, as the dispersion medium, hydrocarbons having 3 to 18 carbon atoms are preferably used. If the carbon number is 19 or more, the decomposition temperature or boiling point becomes high, and there is a possibility that the dispersion medium cannot be decomposed or evaporated by low-temperature heat treatment, and if the carbon number is 2 or less, the decomposition temperature or The boiling point becomes too low, which may cause a problem in the storage stability of the silver paste.
 このような分散媒としては、特に限定されるものではないが、ミリスチルアルコール(沸点167℃;20hPa)、ラウリルアルコール(沸点258~265℃)、ウンデカノール(沸点129~131℃;16hPa)、デカノール(沸点220~235℃)、ノナノール(沸点214~216℃)、オクタノール(沸点188~198℃)などを例示することができ、これらを一種単独で用いる他、二種以上を併用することもできるものである。 Such a dispersion medium is not particularly limited, but myristyl alcohol (boiling point 167 ° C .; 20 hPa), lauryl alcohol (boiling point 258 to 265 ° C.), undecanol (boiling point 129 to 131 ° C .; 16 hPa), decanol ( Examples include boiling point 220 to 235 ° C., nonanol (boiling point 214 to 216 ° C.), octanol (boiling point 188 to 198 ° C.), and the like. These may be used alone or in combination of two or more. It is.
 これらの中でも、分散媒としてデカノールを用いることが特に好ましい。分散媒としてデカノールを用いることによって、スクリーン印刷等で描画するのに適した銀ペーストを得ることができるものである。 Among these, it is particularly preferable to use decanol as a dispersion medium. By using decanol as a dispersion medium, a silver paste suitable for drawing by screen printing or the like can be obtained.
 上記の有機保護コロイドで覆われた金属ナノ粒子、銀フィラー、分散媒を配合して混合することによって、本発明に係る銀ペーストを調製することができるものである。金属ナノ粒子を被覆する有機保護コロイドはバインダーとしての役割も果たすので、バインダーを配合することは不要であり、従って、金属ナノ粒子、銀フィラー、分散媒の3成分のみで銀ペーストを調製することができるものである。 The silver paste according to the present invention can be prepared by mixing and mixing the metal nanoparticles covered with the organic protective colloid, the silver filler, and the dispersion medium. Since the organic protective colloid covering the metal nanoparticles also serves as a binder, it is not necessary to add a binder. Therefore, a silver paste is prepared with only the three components of the metal nanoparticles, the silver filler, and the dispersion medium. It is something that can be done.
 銀ペースト中の分散媒の量は、銀ペーストの塗布方法によって異なるものであり、塗布方法に応じた粘度や流動性を得ることができるように、適宜設定されるものである。 The amount of the dispersion medium in the silver paste varies depending on the silver paste application method, and is appropriately set so as to obtain viscosity and fluidity according to the application method.
 そしてこのようにして調製した銀ペーストは、スクリーン印刷、インクジェット印刷、ディッピング、アプリケータ塗布、スピンコート塗布など従来公知の方法で基板等の表面に塗布することができる。上記のように金属ナノ粒子を被覆する有機保護コロイドがバインダーとしての役割も果たすので、バインダーを配合する必要なく、銀ペーストの印刷によって塗布膜を形成することができるものである。 The silver paste thus prepared can be applied to the surface of a substrate or the like by a conventionally known method such as screen printing, ink jet printing, dipping, applicator application, spin coat application. As described above, the organic protective colloid covering the metal nanoparticles also plays a role as a binder, so that a coating film can be formed by printing a silver paste without the need for blending a binder.
 前記金属微粒子を分散媒に分散する場合の分散質濃度は1質量%以上80質量%以下であり、所望の導電膜の膜厚に応じて調整することができる。80質量%を超えると凝集をおこしやすくなり、均一な膜が得にくい。 The dispersoid concentration when the metal fine particles are dispersed in a dispersion medium is 1% by mass or more and 80% by mass or less, and can be adjusted according to a desired film thickness of the conductive film. If it exceeds 80% by mass, aggregation tends to occur and it is difficult to obtain a uniform film.
 (触媒インキ)
 触媒インキについては、バインダー樹脂と無電解めっき触媒を含む触媒インキを用いる。無電解めっき触媒としては、無電解めっきで金属を成長させることが出来るものであれば特に制限はないが、貴金属コロイド粒子を用いるのが好ましい。貴金属コロイド粒子としては、無電解めっきに用いる公知の触媒粒子、例えば、パラジウム、金、銀、白金等の貴金属のコロイド状の微粒子を用いることができる。なかでも、貴金属としてはパラジウムが代表的である。なお、貴金属コロイド粒子を用いる場合は、該粒子と反対の表面電荷を有する粒子として微細アルミナゲル、シリカゲル等の触媒担持体に、貴金属コロイド粒子を担持させて用いることが望ましい。触媒担持体の利用により、貴金属コロイド粒子は、触媒インキパターンの表面に露出し易くなる上、これら触媒担持体は、触媒インキにチキソトロピー性を与える事が出来、画線部の輪郭におけるインキの切れをシャープにし、滲みや太りを起こし難くする。
(Catalyst ink)
For the catalyst ink, a catalyst ink containing a binder resin and an electroless plating catalyst is used. The electroless plating catalyst is not particularly limited as long as the metal can be grown by electroless plating, but precious metal colloidal particles are preferably used. As the noble metal colloidal particles, known catalyst particles used for electroless plating, for example, colloidal fine particles of noble metals such as palladium, gold, silver, and platinum can be used. Of these, palladium is a typical noble metal. When noble metal colloidal particles are used, it is desirable to use the noble metal colloidal particles supported on a catalyst carrier such as fine alumina gel or silica gel as particles having a surface charge opposite to that of the particles. By using the catalyst carrier, the precious metal colloidal particles are easily exposed on the surface of the catalyst ink pattern, and these catalyst carriers can give thixotropy to the catalyst ink, and the ink breaks at the contour of the image area. Sharpens and makes it difficult for bleeding and fatness to occur.
 なお、触媒インキのバインダー樹脂としては、例えば、2液硬化型ウレタン樹脂等のウレタン樹脂、エポキシ樹脂、アクリル樹脂、アルキド樹脂、ポリエステル樹脂等を一種又は二種以上の混合樹脂として用いる。また、触媒インキは、この様なバインダー樹脂と、前記貴金属からなる無電解めっき触媒、及び適宜な溶剤等からなるが、この他、印刷適性を調整する等の為に、必要に応じ更に、体質顔料、界面活性剤、着色剤等の添加剤を含有させても良い。体質顔料としては、例えば、炭酸カルシウム、硫酸バリウム、シリカ等の粉末を用いる。なお、着色剤を含有させることで、無電解めっき前の段階で、パターン状に印刷形成された触媒インキパターンの出来具合の品質確認を行い易く出来る。着色剤には、カーボンブラック等の公知の着色剤を用いれば良い。また、触媒インキは、有機溶剤系、水系、エマルション系等いずれでも良い。 In addition, as the binder resin of the catalyst ink, for example, urethane resin such as two-component curable urethane resin, epoxy resin, acrylic resin, alkyd resin, polyester resin, or the like is used as one or two or more mixed resins. Further, the catalyst ink is composed of such a binder resin, an electroless plating catalyst composed of the above-mentioned noble metal, and an appropriate solvent. In addition to this, for the purpose of adjusting printability, etc. You may contain additives, such as a pigment, surfactant, and a coloring agent. As extender pigments, for example, powders such as calcium carbonate, barium sulfate, and silica are used. By adding a colorant, it is possible to easily check the quality of the catalyst ink pattern printed and formed in a pattern before electroless plating. A known colorant such as carbon black may be used as the colorant. Further, the catalyst ink may be any of organic solvent type, water type, emulsion type and the like.
 〔めっき処理〕
 本発明においては、導電性を高めるためにめっき処理を行っても良い。前述のめっき触媒を静電インクジェット法や印刷法で塗布する場合は無電解めっき施す、あるいは無電解めっきに続けて電界めっき処理を施す。
[Plating treatment]
In the present invention, a plating treatment may be performed in order to increase conductivity. When the above-described plating catalyst is applied by an electrostatic ink jet method or a printing method, electroless plating is performed, or electrolytic plating is performed following electroless plating.
 本発明において、めっき処理には従来公知の種々のめっき方法を用いることができ、例えば電解めっき及び無電解めっきを単独、あるいは組み合わせて実施することができ、めっきに用いることができる金属としては、例えば銅、ニッケル、コバルト、すず、銀、金、白金、その他各種合金を用いることができるが、例えば、電解硫酸銅めっき処理を好ましく利用できる。 In the present invention, conventionally known various plating methods can be used for the plating treatment. For example, electrolytic plating and electroless plating can be carried out alone or in combination. As metals that can be used for plating, For example, copper, nickel, cobalt, tin, silver, gold, platinum, and other various alloys can be used. For example, electrolytic copper sulfate plating can be preferably used.
 (加圧または加圧加熱処理)
 本発明においては、さらに高い平滑性が求められる場合やメッシュ部の導電性向上の目的で加圧または加圧加熱処理を施すことも好ましく用いられ、少なくとも透明導電膜設置前に実施するのが好ましい。この処理により、導電性金属パターン上部や透光窓部の樹脂表面を平滑化することが可能であり、また、導電性金属パターンと透光窓部の樹脂との段差をさらに低減することが可能となる。さらに、導電性金属パターン部の金属粒子密度が高くなり、粒子界面密着も向上することから導電性も向上さえることができる。
(Pressure or pressure heat treatment)
In the present invention, when higher smoothness is required or for the purpose of improving the conductivity of the mesh portion, it is also preferable to apply pressure or pressure heat treatment, and it is preferable to carry out at least before setting the transparent conductive film. . By this treatment, it is possible to smooth the resin surface of the upper part of the conductive metal pattern and the transparent window part, and further reduce the step between the conductive metal pattern and the resin of the transparent window part. It becomes. Furthermore, since the metal particle density of the conductive metal pattern portion is increased and the particle interface adhesion is improved, the conductivity can be improved.
 加圧に際しては、プレート上でプレートで加圧する面/面加圧やロールとロールの間に基材フィルムを通過させながら加圧させるニップロール加圧や、プレート上をロールで加圧する組み合わせた加圧を採用することができる。加圧の大きさは1kPから100MPaの範囲で任意に可能であるが、好ましくは10kPa~10Mpaの範囲、より好ましくは、50kPa~5MPaである。加圧が1kPより少ないと粒子同士の接触の効果が得られないし、100MPa以上では、面を平滑に保つことができにくくヘイズが上昇するので好ましくない。また、加圧に際して加熱すると効果的になるので、40℃~300℃の範囲で加熱することが好ましい。特に透光窓部の樹脂表面平滑および金属パターンとの段差低減には樹脂のTg以上に加熱することが好ましい。加熱の時間は温度との関係で調節されて、高い温度では、短く、低温では長くというようにすることができる。加熱の方法は、ニップロールの場合には、ロールを予め所定の温度に加熱しておく方法やオートクレーブ室のような加熱室内で過熱する方法がある。所定の大きさの試料を複数枚枚葉積層して一度に加熱する方法は、生産性が高いので好適である。 In pressurization, the surface is pressed on the plate with the plate / surface pressurization, the nip roll pressurization is performed while passing the base film between the rolls, and the combined pressurization is performed on the plate with the roll. Can be adopted. The magnitude of the pressurization is arbitrarily possible in the range of 1 kPa to 100 MPa, preferably 10 kPa to 10 MPa, more preferably 50 kPa to 5 MPa. When the pressure is less than 1 kP, the effect of contact between the particles cannot be obtained, and when the pressure is 100 MPa or more, it is difficult to keep the surface smooth, and the haze increases. Further, since heating is effective when heated, it is preferable to heat in the range of 40 ° C to 300 ° C. In particular, for the smoothness of the resin surface of the translucent window portion and the reduction in the level difference with the metal pattern, it is preferable to heat to a temperature equal to or higher than the Tg of the resin. The heating time is adjusted in relation to the temperature and can be short at a high temperature and long at a low temperature. In the case of a nip roll, the heating method includes a method in which the roll is heated to a predetermined temperature in advance and a method in which heating is performed in a heating chamber such as an autoclave chamber. A method of laminating a plurality of samples of a predetermined size and heating them at a time is preferable because of high productivity.
 〔基材〕
 本発明の有機電子デバイス用電極に用いられる基材は透明基材が好ましい。透明基材としては、高い光透過性を有していればそれ以外に特に制限はない。例えば、基材としての硬度に優れ、またその表面への導電層の形成のし易さ等の点で、ガラス基板、樹脂基板、樹脂フィルムなどが好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが好ましい。
〔Base material〕
The substrate used for the electrode for organic electronic devices of the present invention is preferably a transparent substrate. The transparent substrate is not particularly limited as long as it has high light transmittance. For example, a glass substrate, a resin substrate, a resin film, and the like are preferable in terms of excellent hardness as a base material and ease of formation of a conductive layer on the surface. From the viewpoint, it is preferable to use a transparent resin film.
 本発明で透明基材として好ましく用いることができる透明樹脂フィルムには特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 The transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones. For example, polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc. Resin films, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 0 ~ 780 nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明に用いられる透明基材には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Also, examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 本発明の有機電子デバイス用電極は有機電子デバイスの電極として用いることができる。以下、有機EL素子について、説明する。 The electrode for organic electronic devices of the present invention can be used as an electrode for organic electronic devices. Hereinafter, the organic EL element will be described.
 〔有機EL素子〕
 本発明の有機EL素子は、有機発光層に加えて、ホール注入層、ホール輸送層、電子輸送層、電子注入層、ホールブロック層、電子ブロック層などの有機発光層と併用して発光を制御する層を有しても良い。本発明の導電性ポリマー含有層はホール注入層として働くことも可能であるので、ホール注入層を兼ねることも可能だが、独立にホール注入層を設けても良い。
[Organic EL device]
In addition to the organic light emitting layer, the organic EL device of the present invention controls light emission in combination with an organic light emitting layer such as a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole block layer, and an electron block layer. You may have a layer to do. Since the conductive polymer-containing layer of the present invention can also function as a hole injection layer, it can also serve as a hole injection layer, but a hole injection layer may be provided independently.
 構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)(第一電極部)/発光層/電子輸送層/(第二電極部)
(ii)(第一電極部)/正孔輸送層/発光層/電子輸送層/(第二電極部)
(iii)(第一電極部)/正孔輸送層/発光層/正孔ブロック層/電子輸送層/(第二電極部)
(iv)(第一電極部)/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/(第二電極部)
(v)(第一電極部)/陽極バッファー層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/(第二電極部)
 ここで、発光層は、発光極大波長が各々430~480nm、510~550nm、600~640nmの範囲にある単色発光層であってもよく、また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよく、さらに発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては、白色発光層であることが好ましい。
Although the preferable specific example of a structure is shown below, this invention is not limited to these.
(I) (first electrode part) / light emitting layer / electron transport layer / (second electrode part)
(Ii) (first electrode part) / hole transport layer / light emitting layer / electron transport layer / (second electrode part)
(Iii) (first electrode part) / hole transport layer / light emitting layer / hole block layer / electron transport layer / (second electrode part)
(Iv) (first electrode part) / hole transporting layer / light emitting layer / hole blocking layer / electron transporting layer / cathode buffer layer / (second electrode part)
(V) (first electrode part) / anode buffer layer / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode buffer layer / (second electrode part)
Here, the light emitting layer may be a monochromatic light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively, or by laminating at least three of these light emitting layers. A white light emitting layer may be used, and a non-light emitting intermediate layer may be provided between the light emitting layers. The organic EL device of the present invention is preferably a white light emitting layer.
 また、本発明において有機発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン誘導体、及び各種蛍光色素及び希土類金属錯体、燐光発光材料等があるが、これらに限定されるものではない。またこれらの化合物のうちから選択される発光材料を90~99.5質量部、ドーピング材料を0.5~10質量部含むようにすることも好ましい。有機発光層は上記の材料等を用いて公知の方法によって作製されるものであり、蒸着、塗布、転写などの方法が挙げられる。この有機発光層の厚みは0.5~500nmが好ましく、特に、0.5~200nmが好ましい。 In addition, as the light emitting material or doping material that can be used in the organic light emitting layer in the present invention, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzo Xazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, Aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinaclide , Rubrene, distyrylbenzene derivatives, di still arylene derivatives, and various fluorescent dyes and rare earth metal complex, there are phosphorescent materials, but is not limited thereto. It is also preferable to include 90 to 99.5 parts by mass of a light emitting material selected from these compounds and 0.5 to 10 parts by mass of a doping material. The organic light emitting layer is prepared by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer. The thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
 〔第二電極部〕
 第二電極は有機EL素子においては陰極となる。第二電極部は導電材単独層であっても良いが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。第二電極部の導電材としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
(Second electrode part)
The second electrode serves as a cathode in the organic EL element. The second electrode portion may be a single conductive material layer, but in addition to a conductive material, a resin that holds these may be used in combination. As the conductive material of the second electrode portion, a material having a small work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 〔有機光電変換素子〕
 有機光電変換素子は、第1電極部、バルクヘテロジャンクション構造(p型半導体層およびn型半導体層)を有する光電変換層(以下、バルクヘテロジャンクション層とも呼ぶ)、第二電極部が積層された構造を有する。
[Organic photoelectric conversion element]
The organic photoelectric conversion element has a structure in which a first electrode part, a photoelectric conversion layer (hereinafter also referred to as a bulk heterojunction layer) having a bulk heterojunction structure (p-type semiconductor layer and n-type semiconductor layer), and a second electrode part are stacked. Have.
 光電変換層と第二電極部との間に電子輸送層などの中間層を有しても良い。 An intermediate layer such as an electron transport layer may be provided between the photoelectric conversion layer and the second electrode part.
 〔光電変換層〕
 光電変換層は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を構成している。
[Photoelectric conversion layer]
The photoelectric conversion layer is a layer that converts light energy into electric energy, and constitutes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
 p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。 The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
 ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。 Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
 p型半導体材料としては、種々の縮合多環芳香族化合物や共役系化合物が挙げられる。 Examples of p-type semiconductor materials include various condensed polycyclic aromatic compounds and conjugated compounds.
 縮合多環芳香族化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、及びこれらの誘導体や前駆体が挙げられる。 As the condensed polycyclic aromatic compound, for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, sarkham anthracene, bisanthene, zestrene, heptazelene, Examples thereof include compounds such as pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, and derivatives and precursors thereof.
 共役系化合物としては、例えば、ポリチオフェン及びそのオリゴマー、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、テトラチアフルバレン化合物、キノン化合物、テトラシアノキノジメタン等のシアノ化合物、フラーレン及びこれらの誘導体あるいは混合物を挙げることができる。 Examples of the conjugated compound include polythiophene and its oligomer, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, tetrathiafulvalene compound, quinone Compounds, cyano compounds such as tetracyanoquinodimethane, fullerenes and derivatives or mixtures thereof.
 また、特にポリチオフェン及びそのオリゴマーのうち、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。 In particular, among polythiophene and oligomers thereof, thiophene hexamer α-seccithiophene α, ω-dihexyl-α-sexualthiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3- An oligomer such as butoxypropyl) -α-sexithiophene can be preferably used.
 その他、高分子p型半導体の例としては、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリパラフェニレンスルフィド、ポリチオフェン、ポリフェニレンビニレン、ポリカルバゾール、ポリイソチアナフテン、ポリヘプタジイン、ポリキノリン、ポリアニリンなどが挙げられ、更には特開2006-36755号公報などの置換-無置換交互共重合ポリチオフェン、特開2007-51289号公報、特開2005-76030号公報、J.Amer.Chem.Soc.,2007,p4112、J.Amer.Chem.Soc.,2007,p7246などの縮環チオフェン構造を有するポリマー、WO2008/000664、Adv.Mater.,2007,p4160、Macromolecules,2007,Vol.40,p1981などのチオフェン共重合体などを挙げることができる。 Other examples of the polymer p-type semiconductor include polyacetylene, polyparaphenylene, polypyrrole, polyparaphenylene sulfide, polythiophene, polyphenylene vinylene, polycarbazole, polyisothianaphthene, polyheptadiyne, polyquinoline, polyaniline, and the like. Substituted-unsubstituted alternating copolymer polythiophenes such as JP-A-2006-36755, JP-A-2007-51289, JP-A-2005-76030, J. Pat. Amer. Chem. Soc. , 2007, p4112, J.A. Amer. Chem. Soc. , 2007, p7246, etc., polymers having a condensed ring thiophene structure, WO2008 / 000664, Adv. Mater. , 2007, p4160, Macromolecules, 2007, Vol. Examples thereof include thiophene copolymers such as 40 and p1981.
 さらに、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチオテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、BEDTTTF-ヨウ素錯体、TCNQ-ヨウ素錯体、等の有機分子錯体、C60、C70、C76、C78、C84等のフラーレン類、SWNT等のカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類等の色素等、さらにポリシラン、ポリゲルマン等のσ共役系ポリマーや特開2000-260999号に記載の有機・無機混成材料も用いることができる。 Further, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenedithiotetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex, TCNQ-iodine complex, etc. Organic molecular complexes of C60, C70, C76, C78, C84, fullerenes such as SWNT, carbon nanotubes such as SWNT, merocyanine dyes, dyes such as hemicyanine dyes, and σ-conjugated polymers such as polysilane and polygermane Organic / inorganic hybrid materials described in Kai 2000-260999 can also be used.
 これらのπ共役系材料のうちでも、ペンタセン等の縮合多環芳香族化合物、フラーレン類、縮合環テトラカルボン酸ジイミド類、金属フタロシアニン、金属ポルフィリンよりなる群から選ばれた少なくとも1種が好ましい。また、ペンタセン類がより好ましい。 Among these π-conjugated materials, at least one selected from the group consisting of condensed polycyclic aromatic compounds such as pentacene, fullerenes, condensed ring tetracarboxylic acid diimides, metal phthalocyanines, and metal porphyrins is preferable. Further, pentacenes are more preferable.
 ペンタセン類の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986等に記載の置換アセン類及びその誘導体等が挙げられる。 Examples of pentacenes include substituents described in International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, JP-A-2004-107216, etc. A pentacene derivative described in U.S. Patent Application Publication No. 2003/136964 and the like; Amer. Chem. Soc. , Vol127. Examples thereof include substituted acenes described in No. 14.4986 and the like and derivatives thereof.
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。そのような化合物としては、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物、及び米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、特開2007-224019号公報等に記載のポルフィリンプレカーサー等のような、プレカーサータイプの化合物(前駆体)が挙げられる。 Among these compounds, compounds that are highly soluble in an organic solvent to the extent that a solution process can be performed, can form a crystalline thin film after drying, and can achieve high mobility are preferable. Such compounds include those described in J. Org. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. Acene-based compounds substituted with trialkylsilylethynyl groups described in US Pat. No. 9,2706, etc., pentacene precursors described in US Patent Application Publication No. 2003/136964, etc., and Japanese Patent Application Laid-Open No. 2007-224019 Examples include precursor type compounds (precursors) such as porphyrin precursors.
 これらの中でも、後者のプリカーサータイプの方が好ましく用いることができる。 Among these, the latter precursor type can be preferably used.
 これは、プリカーサータイプの方が、変換後に不溶化するため、バルクヘテロジャンクション層の上に正孔輸送層・電子輸送層・正孔ブロック層・電子ブロック層等を溶液プロセスで形成する際に、バルクヘテロジャンクション層が溶解してしまうことがなくなるため、前記の層を構成する材料とバルクヘテロジャンクション層を形成する材料とが混合することがなくなり、一層の効率向上・寿命向上を達成することができるためである。 This is because the precursor type is insolubilized after conversion, so when forming the hole transport layer, electron transport layer, hole block layer, electron block layer, etc. on the bulk hetero junction layer by solution process, bulk hetero junction This is because the layer does not dissolve and the material constituting the layer and the material forming the bulk heterojunction layer are not mixed, and further improvement in efficiency and life can be achieved. .
 p型半導体材料としては、p型半導体材料前駆体に熱・光・放射線・化学反応を引き起こす化合物の蒸気に晒す、等の方法によって化学構造変化を起こし、p型半導体材料に変換された化合物であることが好ましい。中でも熱によって化学構造変化を起こす化合物が好ましい。 The p-type semiconductor material is a compound that has undergone a chemical structural change by a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material. Preferably there is. Of these, compounds that cause a chemical structural change by heat are preferred.
 n型半導体材料の例としては、フラーレン、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む、高分子化合物が挙げられる。 Examples of n-type semiconductor materials include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic acid Examples thereof include polymer compounds containing an anhydride, an aromatic carboxylic acid anhydride such as perylenetetracarboxylic acid diimide, or an imidized product thereof as a skeleton.
 中でも、フラーレン含有高分子化合物が好ましい。フラーレン含有高分子化合物としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等を骨格に持つ高分子化合物が挙げられる。フラーレン含有高分子化合物では、フラーレンC60を骨格に持つ高分子化合物(誘導体)が好ましい。 Of these, fullerene-containing polymer compounds are preferred. Fullerene-containing polymer compounds include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Examples thereof include a polymer compound having a skeleton. As the fullerene-containing polymer compound, a polymer compound (derivative) having fullerene C60 as a skeleton is preferable.
 フラーレン含有ポリマーとしては、大別してフラーレンが高分子主鎖からペンダントされたポリマーと、フラーレンが高分子主鎖に含有されるポリマーとに大別されるが、フラーレンがポリマーの主鎖に含有されている化合物が好ましい。 The fullerene-containing polymers are roughly classified into polymers in which fullerene is pendant from a polymer main chain and polymers in which fullerene is contained in the polymer main chain. Fullerene is contained in the polymer main chain. Are preferred.
 これは、フラーレンが主鎖に含有されているポリマーは、ポリマーが分岐構造を有さないため、固体化した際に高密度なパッキングができ、結果として高い移動度を得ることができるためではないかと推定される。 This is not because fullerene is contained in the main chain because the polymer does not have a branched structure, so that it can be packed with high density when solidified, resulting in high mobility. It is estimated that.
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。 Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
 本発明の光電変換素子を、太陽電池などの光電変換材料として用いる形態としては、光電変換素子を単層で利用してもよいし、積層して(タンデム型)利用してもよい。 As a form in which the photoelectric conversion element of the present invention is used as a photoelectric conversion material such as a solar cell, the photoelectric conversion element may be used in a single layer or may be used by being laminated (tandem type).
 また、光電変換材料は、環境中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。 In addition, the photoelectric conversion material is preferably sealed by a known method so as not to be deteriorated by oxygen, moisture, etc. in the environment.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 (有機電子デバイス用電極D001の作製)
 膜厚125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、極低熱収PEN Q83)を4cm×4cmに切り出した。易接着層として下記<易接着層塗布液-1>をスピンコーターにより、乾燥膜厚が50nmとなるように回転数を調整して塗設し、110℃-3分の熱処理を施し、易接済み基材とした。
(Production of organic electronic device electrode D001)
A polyethylene naphthalate film having a film thickness of 125 μm (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PEN Q83) was cut into 4 cm × 4 cm. The following <Easily Adhesive Layer Coating Solution-1> is applied as an easy-adhesion layer by a spin coater with the rotational speed adjusted to a dry film thickness of 50 nm, and subjected to a heat treatment at 110 ° C. for 3 minutes. A finished substrate was obtained.
 <易接着層塗布液-1>
 バイロナールMD1200(東洋紡社製)        0.6g
 HO                         4.7g
 イソプロピルアルコール                4.7g
 インクジェット用銀ナノペースト NPS-JL(ハリマ化成社製)を、インクジェット記録ヘッドとして、圧力印加手段と電界印加手段とを有し、ノズル口径25μm、駆動周波数12kHz、ノズル数128、ノズル密度180dpi(dpiとは1インチ、即ち2.54cm当たりのドット数を表す)のピエゾ型ヘッドを搭載したインクジェットプリント装置に装填し、前記易接済み基材に図1のように印刷した。
<Easily adhesive layer coating solution-1>
Bironal MD1200 (Toyobo Co., Ltd.) 0.6g
4.7 g of H 2 O
Isopropyl alcohol 4.7g
Inkjet silver nanopaste NPS-JL (manufactured by Harima Kasei Co., Ltd.) has a pressure applying means and an electric field applying means as an ink jet recording head. 1 represents the number of dots per inch, that is, 2.54 cm), and loaded on an ink jet printing apparatus equipped with a piezo-type head, and printed on the easily contacted substrate as shown in FIG.
 図1の(1)、(4)は1.2cm×5mmの銀ベタ部で取り出し電極として利用する。図1の(2)は1.2cm×1.2cmの範囲に印画した線幅50μm、線間隔950μmの金属メッシュパターン部で(1)に接している。(3)は1.2cm×2mmの銀のない部分である。形成した、金属細線のパターンは、130℃で60分加熱処理をした。金属細線のパターンの基材からの高さ(以後、金属細線高さとする)は、600nmであった。 (1) and (4) in FIG. 1 are used as extraction electrodes with a silver solid portion of 1.2 cm × 5 mm. (2) in FIG. 1 is in contact with (1) at a metal mesh pattern portion having a line width of 50 μm and a line interval of 950 μm printed in a range of 1.2 cm × 1.2 cm. (3) is a 1.2 cm × 2 mm silver-free portion. The formed fine metal wire pattern was heat-treated at 130 ° C. for 60 minutes. The height of the metal fine wire pattern from the base material (hereinafter referred to as metal fine wire height) was 600 nm.
 次に、塗布幅1.2cm、ギャップ間隔100μmのアプリケータを用いて110cm/分の速度で、図1の(2)の金属細線のパターンの上を通るように、図2の(5)の領域に下記の導電性ポリマー含有塗布液1を塗布した。80℃の温風で1分乾燥し、塗布済みの試料の、金属細線のパターンのない領域((2)以外の領域)は、純水で導電性ポリマー含有層を拭き取り除去して(2)の領域に導電性ポリマー含有層を設けた(図3の(5′))。さらに、130℃のオーブンで30分の熱処理を施し、有機電子デバイス用電極D001とした。 Next, using an applicator having a coating width of 1.2 cm and a gap interval of 100 μm, passing over the metal fine line pattern of FIG. 1 (2) at a speed of 110 cm / min, the (5) of FIG. The following conductive polymer containing coating liquid 1 was apply | coated to the area | region. Dry the coated polymer sample for 1 minute with hot air at 80 ° C, and remove the conductive polymer-containing layer by wiping and removing the area without the fine metal wire pattern (area other than (2)) with pure water (2) A conductive polymer-containing layer was provided in the region ((5 ′) in FIG. 3). Further, heat treatment was performed for 30 minutes in an oven at 130 ° C. to obtain an organic electronic device electrode D001.
 得られた、有機電子デバイス用電極の、金属細線のパターンのある部分の上の導電性ポリマー含有層の膜厚(以後、金属細線部の膜厚とする)は200nmで、金属細線のパターンのない部分の導電性ポリマー含有層の膜厚(以後、金属なし部の膜厚とする)は500nmであった。 The film thickness of the conductive polymer-containing layer on the portion of the obtained organic electronic device electrode where the fine metal wire pattern is located (hereinafter referred to as the thickness of the fine metal wire portion) is 200 nm. The film thickness of the conductive polymer-containing layer in the portion not present (hereinafter referred to as the film thickness of the metal-free portion) was 500 nm.
 導電性ポリマー含有塗布液1
 PEDOT-PSS CLEVIOS PH510
  (固形分1.89%)(H.C.Starck社製) 1.59g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.35g
 ジメチルスルホキシド(DMSO)          0.08g
 「開始剤の合成」
 合成例1
 50ml三口フラスコに2-ブロモイソブチリルブロミド(7.3g、35mmol)とトリエチルアミン(2.48g、35mmol)及びTHF(20ml)を加え、アイスバスにより内温を0℃に保持した。この溶液内にオリゴエチレングリコール(10g、23mmol、エチレングリコールユニット7~8、Laporte Specialties社製)の33%THF溶液30mlを滴下した。30分攪拌後、溶液を室温にし、更に4時間攪拌した。THFをロータリーエバポレーターにより減圧除去後、残渣をジエチルエーテルに溶解し、分駅ロートに移した。水を加えエーテル層を3回洗浄後、エーテル層をMgSOにより乾燥させた。エーテルをロータリーエバポレーターにより減圧留去し、開始剤1を8.2g(収率73%)得た。
Conductive polymer-containing coating solution 1
PEDOT-PSS CLEVIOS PH510
(Solid content 1.89%) (manufactured by HC Starck) 1.59 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.35g
Dimethyl sulfoxide (DMSO) 0.08g
"Synthesis of initiators"
Synthesis example 1
2-Bromoisobutyryl bromide (7.3 g, 35 mmol), triethylamine (2.48 g, 35 mmol) and THF (20 ml) were added to a 50 ml three-necked flask, and the internal temperature was kept at 0 ° C. with an ice bath. In this solution, 30 ml of a 33% THF solution of oligoethylene glycol (10 g, 23 mmol, ethylene glycol units 7-8, manufactured by Laporte Specialties) was added dropwise. After stirring for 30 minutes, the solution was brought to room temperature and further stirred for 4 hours. After THF was removed under reduced pressure by a rotary evaporator, the residue was dissolved in diethyl ether and transferred to a minute funnel. Water was added and the ether layer was washed three times, and then the ether layer was dried with MgSO 4 . The ether was distilled off under reduced pressure using a rotary evaporator to obtain 8.2 g (yield 73%) of initiator 1.
 「リビング重合(ATRP)による水溶性ポリマー樹脂の合成」
 合成例2(ポリ(2-ヒドロキシエチルアクリレート)の合成)
 開始剤1(500mg、1.02mmol)、2-ヒドロキシエチルアクリレート(4.64g、40mmol、東京化成社製)、50:50v/v% メタノール/水混合溶媒を5mlをシュレンク管に投入し、減圧下液体窒素に10分間シュレンク管を浸した。シュレンク管を液体窒素から出し、5分後に窒素置換を行った。この操作を3回行った後、窒素下で、ビピリジン(400mg、2.56mmol)、CuBr(147mg、1.02mmol)を加え、20℃で攪拌した。30分後、ろ紙とシリカを敷いた4cm桐山ロート上に反応溶液を滴下し、減圧で反応溶液を回収した。ロータリーエバポレーターにより溶媒を減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量13100、分子量分布1.17、数平均分子量<1000の含量0%、の水溶性ポリマー樹脂1を2.60g(収率84%)得た。
"Synthesis of water-soluble polymer resin by living polymerization (ATRP)"
Synthesis Example 2 (Synthesis of poly (2-hydroxyethyl acrylate))
5 ml of initiator 1 (500 mg, 1.02 mmol), 2-hydroxyethyl acrylate (4.64 g, 40 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.), 50:50 v / v% methanol / water mixed solvent was put into a Schlenk tube, and the pressure was reduced. The Schlenk tube was immersed in the lower liquid nitrogen for 10 minutes. The Schlenk tube was taken out of liquid nitrogen and replaced with nitrogen after 5 minutes. After performing this operation three times, bipyridine (400 mg, 2.56 mmol) and CuBr (147 mg, 1.02 mmol) were added under nitrogen, and the mixture was stirred at 20 ° C. After 30 minutes, the reaction solution was dropped onto a 4 cm Kiriyama funnel with filter paper and silica, and the reaction solution was recovered under reduced pressure. The solvent was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours. As a result, 2.60 g (yield 84%) of water-soluble polymer resin 1 having a number average molecular weight of 13100, a molecular weight distribution of 1.17, and a content of number average molecular weight <1000 of 0% was obtained.
 構造、数平均分子量は各々H-NMR(400MHz、日本電子社製)、GPC(Waters2695、Waters社製)で測定した。 The structure and number average molecular weight were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
 <GPC測定条件>
装置:Wagers2695(Separations Module)
検出器:Waters 2414(Refractive Index Detector)
カラム:Shodex Asahipak GF-7M HQ
溶離液:ジメチルホルムアミド(20mM LiBr)
流速:1.0ml/min
温度:40℃
 (有機電子デバイス用電極D002の作製)
 有機電子デバイス用電極D001作製の際、アプリケータの速度を125cm/分に変えて、導電性ポリマー含有塗布液1の付き量を増加した以外は同様にして有機電子デバイス用電極D002を作製した。
<GPC measurement conditions>
Apparatus: Wagers 2695 (Separations Module)
Detector: Waters 2414 (Refractive Index Detector)
Column: Shodex Asahipak GF-7M HQ
Eluent: Dimethylformamide (20 mM LiBr)
Flow rate: 1.0 ml / min
Temperature: 40 ° C
(Production of organic electronic device electrode D002)
An organic electronic device electrode D002 was prepared in the same manner except that when the organic electronic device electrode D001 was produced, the applicator speed was changed to 125 cm / min and the amount of the conductive polymer-containing coating solution 1 was increased.
 (有機電子デバイス用電極D003~D005の作製)
 有機電子デバイス用電極D002作製の際、導電性ポリマー含有塗布液1に純水を加えて固形分を1割、2割、3割それぞれ低下させることにより、塗布液の粘度を低下させて、それぞれアプリケータの速度を増加させて金属なし部の膜厚は変わらないように調整した以外は同様にして、金属なし部の膜厚は一定で金属細線部の膜厚の異なる有機電子デバイス用電極D003、D004、D005を作製した。
(Preparation of electrodes D003 to D005 for organic electronic devices)
During the production of the organic electronic device electrode D002, pure water is added to the conductive polymer-containing coating solution 1 to reduce the solid content by 10%, 20%, 30%, respectively, thereby reducing the viscosity of the coating solution, In the same manner, except that the film thickness of the metal-free portion is not changed by increasing the speed of the applicator, the thickness of the metal-free portion is the same, and the electrode D003 for organic electronic devices having a different thickness of the metal thin wire portion is different. , D004 and D005 were produced.
 (有機電子デバイス用電極D006~D008の作製)
 有機電子デバイス用電極D001作製の際、ポリヒドロキシエチルアクリレートを固形分40質量%で数平均分子量が約10万のポリヒドロキシエチルアクリレートに変更することで塗布液粘度を増加させた導電性ポリマー含有塗布液2を用いて、さらに、アプリケータの速度をそれぞれ120cm/分、130cm/分、140cm/分と変えることにより、金属なし部の膜厚、金属細線部の膜厚をともにアップさせた以外は同様にして、有機電子デバイス用電極D006~D008を作製した。
(Preparation of electrodes D006 to D008 for organic electronic devices)
Conductive polymer-containing coating in which the viscosity of the coating solution is increased by changing polyhydroxyethyl acrylate to polyhydroxyethyl acrylate with a solid content of 40% by weight and a number average molecular weight of about 100,000 when producing electrode D001 for organic electronic devices Except for using liquid 2 and changing the applicator speeds to 120 cm / min, 130 cm / min, and 140 cm / min, respectively, to increase both the thickness of the metal-free portion and the thickness of the thin metal wire portion. Similarly, electrodes D006 to D008 for organic electronic devices were produced.
 (有機電子デバイス用電極D009~D011の作製)
 導電性ポリマー含有塗布液を導電性ポリマー含有塗布液1において、PH510(H.C.Starck社製)を真空下に置くことで固形分を2.64質量%まで高濃度化したPEDOT-PSSを用いて、さらにポリヒドロキシエチルアクリレートを除いた、電性ポリマー含有塗布液3を用いて、アプリケータ速度を140cm/分、120cm/分、115cm/分に変えることにより、それ以外は有機電子デバイス用電極D001と同様にして有機電子デバイス用電極D009~D011を作製した。
(Preparation of organic electronic device electrodes D009 to D011)
PEDOT-PSS in which the solid content is increased to 2.64 mass% by placing PH510 (manufactured by HC Starck) under vacuum in the conductive polymer-containing coating liquid 1 in the conductive polymer-containing coating liquid 1. In addition, by using the electropolymer-containing coating solution 3 excluding polyhydroxyethyl acrylate, and changing the applicator speed to 140 cm / min, 120 cm / min, and 115 cm / min, otherwise, for organic electronic devices Organic electronic device electrodes D009 to D011 were fabricated in the same manner as the electrode D001.
 (有機電子デバイス用電極D012の作製)
 D011から、インクジェットのインク吐出量を増加させて、金属細線のパターンの高さを800nmと厚くし、さらに、アプリケータ速度を105cm/分に変えることにより、導電性ポリマー含有塗布液の付き量を低下させた以外は同様にして、有機電子デバイス用電極D012を作製した。
(Preparation of electrode D012 for organic electronic devices)
From D011, the ink discharge amount of the ink jet is increased, the height of the fine metal wire pattern is increased to 800 nm, and the applicator speed is changed to 105 cm / min. An organic electronic device electrode D012 was produced in the same manner except that the amount was lowered.
 (有機電子デバイス用電極D013の作製)
 D012において、導電性ポリマー含有塗布液2に変更し、アプリケータ速度を80cm/分に変えることにより、有機電子デバイス用電極D013を作製した。
(Preparation of electrode D013 for organic electronic devices)
In D012, the electrode D013 for organic electronic devices was produced by changing to the coating liquid 2 containing a conductive polymer and changing the applicator speed to 80 cm / min.
 (有機電子デバイス用電極D014の作製)
 D013において、導電性ポリマー含有塗布液2に純水を3割加えることで固形分を低下させ、アプリケータの速度を増加させて金属なし部の膜厚は変わらないように調整した以外は同様にして有機電子デバイス用電極D014を作製した。
(Preparation of electrode D014 for organic electronic devices)
In D013, except that the solid content was reduced by adding 30% of pure water to the conductive polymer-containing coating solution 2 and the speed of the applicator was increased so that the film thickness of the metal-free portion was not changed. Thus, an organic electronic device electrode D014 was produced.
 (有機電子デバイス用電極D015~D017の作製)
 有機電子デバイス用電極D013作製の際、インクジェットのインク吐出量を増加させることで金属細線のパターンの高さを変え、導電性ポリマー含有塗布液2に純水を3割加えることで固形分を低下させ、さらに、アプリケータの速度を増加させて金属なし部の膜厚は変わらないように調整した以外は同様にして、有機電子デバイス用電極D015を作製した。
(Preparation of organic electronic device electrodes D015 to D017)
When producing the electrode D013 for organic electronic devices, the height of the metal fine wire pattern is changed by increasing the ink ejection amount of the ink jet, and the solid content is reduced by adding 30% of pure water to the conductive polymer-containing coating solution 2 Further, an organic electronic device electrode D015 was produced in the same manner except that the applicator speed was increased so that the film thickness of the metal-free portion was not changed.
 さらに、インクジェットのインク吐出量を増加させて金属細線のパターンの高さを変えた以外はD015と同様にしてD016を作製した。さらに有機電子デバイス用電極D016作製の際、金属なし部の膜厚が表1記載の値になるようにアプリケータの速度を増加させてD017を作製した。 Further, D016 was produced in the same manner as D015 except that the height of the metal fine line pattern was changed by increasing the ink discharge amount of the inkjet. Further, when the organic electronic device electrode D016 was manufactured, the speed of the applicator was increased so that the film thickness of the metal-free portion became the value shown in Table 1, and D017 was manufactured.
 (有機電子デバイス用電極D018、D019の作製)
 有機電子デバイス用電極D001作製の際、インクジェットのインク吐出量をそれぞれ減少させて金属細線のパターンの高さを変え、アプリケータの速度を90cm/分に変更して、導電性ポリマー含有塗布液1の付き量を減少させた以外は同様にして有機電子デバイス用電極D018、D019を作製した。
(Production of organic electronic device electrodes D018 and D019)
When producing the organic electronic device electrode D001, the ink discharge amount of the ink jet is decreased to change the height of the fine metal wire pattern, and the speed of the applicator is changed to 90 cm / min. Organic electronic device electrodes D018 and D019 were produced in the same manner except that the attached amount of was reduced.
 (有機電子デバイス用電極D020の作製)
 有機電子デバイス用電極D001作製の際、金属細線のパターンを三ツ星ベルト社製銀ナノ粒子ペーストMDot-SLPを松尾産業株式会社製K303マルチコーターを用いてグラビア印刷した以外は、有機電子デバイス用電極D001と同様にして有機電子デバイス用電極D020を作製した。
(Preparation of electrode D020 for organic electronic devices)
An organic electronic device electrode D001 was prepared except that a silver fine particle paste MDot-SLP manufactured by Mitsuboshi Belting Co., Ltd. was gravure printed using a K303 multicoater manufactured by Matsuo Sangyo Co., Ltd. In the same manner, an electrode D020 for organic electronic devices was produced.
 (有機電子デバイス用電極D021の作製)
 有機電子デバイス用電極D001作製の際、金属細線のパターンを下記<無電解めっき用触媒含有インク>をグラビア印刷し、引き続いて下記<無電解めっき液>を用いて45℃で無電解銅めっき処理を行ってめっきした以外は、有機電子デバイス用電極D001と同様にして有機電子デバイス用電極D021を作製した。
(Preparation of organic electronic device electrode D021)
Upon production of the electrode D001 for an organic electronic device, the pattern of the fine metal wire was gravure-printed with the following <electroless plating catalyst-containing ink>, and subsequently subjected to electroless copper plating at 45 ° C. using the following <electroless plating solution> An organic electronic device electrode D021 was produced in the same manner as the organic electronic device electrode D001 except that the plating was performed.
 <無電解めっき用触媒含有インク>
 水100質量部に対し塩化カリウム0.03質量部を攪拌しながら溶解させ、この中にさらに塩化パラジウム0.015質量部を溶解させる。得られたパラジウムイオン含有水溶液にクエン酸三ナトリウム0.06質量部を加えて溶解させた後、ここへさらに水10質量部に対して0.003質量部の水素化ホウ素ナトリウムを溶解させた水溶液を加えることでパラジウムコロイド分散液を得た。このパラジウムコロイド液を限外ろ過により脱塩し、ろ過済みのコロイド液にアルミナ5質量部を加えてヘテロ凝集、沈殿したところをろ過、解砕することでアルミナ担持パラジウム粒子を得た。次に、トルエン100質量部に対してエチルセルロース樹脂を8質量部溶解させ、この液中に先ほど作製したパラジウム粒子を1質量部加えることで無電解めっき用触媒含有インクを得た。
<Catalyst-containing ink for electroless plating>
0.03 parts by mass of potassium chloride is dissolved in 100 parts by mass of water with stirring, and 0.015 parts by mass of palladium chloride is further dissolved therein. After adding 0.06 part by mass of trisodium citrate to the obtained palladium ion-containing aqueous solution and dissolving it, an aqueous solution in which 0.003 part by mass of sodium borohydride was further dissolved with respect to 10 parts by mass of water. Was added to obtain a palladium colloid dispersion. This palladium colloidal solution was desalted by ultrafiltration, and 5 parts by mass of alumina was added to the filtered colloidal solution, and the heteroaggregated and precipitated portion was filtered and crushed to obtain alumina-supported palladium particles. Next, 8 parts by mass of ethyl cellulose resin was dissolved in 100 parts by mass of toluene, and 1 part by mass of the palladium particles prepared earlier was added to the liquid to obtain a catalyst-containing ink for electroless plating.
 <無電解めっき液>
 硫酸銅                      0.04モル
 ホルムアルデヒド(37%)            0.08モル
 水酸化ナトリウム                 0.10モル
 トリエタノールアミン               0.05モル
 ポリエチレングリコール              100ppm
 水を加えて全量を1リットルとする。
<Electroless plating solution>
Copper sulfate 0.04 mol Formaldehyde (37%) 0.08 mol Sodium hydroxide 0.10 mol Triethanolamine 0.05 mol Polyethylene glycol 100 ppm
Add water to bring the total volume to 1 liter.
 (有機電子デバイス用電極D022の作製)
 有機電子デバイス用電極D001作製の際、金属細線のパターンを、線幅50μm、線間隔950μmのラインとした以外は、有機電子デバイス用電極D001と同様にして有機電子デバイス用電極D022を作製した。
(Preparation of electrode D022 for organic electronic devices)
An organic electronic device electrode D022 was prepared in the same manner as the organic electronic device electrode D001, except that when the organic electronic device electrode D001 was produced, the fine metal wire pattern was a line having a line width of 50 μm and a line interval of 950 μm.
 (有機電子デバイス用電極D030の作製)
 反応容器内で下記溶液Aを34℃に保ち、特開昭62-160128号公報記載の混合撹拌装置を用いて高速に撹拌しながら、硝酸(濃度6%)を用いてpHを2.95に調整した。引き続き、ダブルジェット法を用いて下記溶液Bと下記溶液Cを一定の流量で8分6秒間かけて添加した。添加終了後に、炭酸ナトリウム(濃度5%)を用いてpHを5.90に調整し、続いて下記溶液Dと溶液Eを添加した。
(Preparation of electrode D030 for organic electronic devices)
The following solution A was kept at 34 ° C. in a reaction vessel, and the pH was adjusted to 2.95 using nitric acid (concentration 6%) while stirring at high speed using a mixing and stirring apparatus described in JP-A-62-160128. It was adjusted. Subsequently, the following solution B and the following solution C were added at a constant flow rate over 8 minutes and 6 seconds using the double jet method. After completion of the addition, the pH was adjusted to 5.90 using sodium carbonate (concentration 5%), and then the following solution D and solution E were added.
 (溶液A)
 アルカリ処理不活性ゼラチン(平均分子量10万)   18.7g
 塩化ナトリウム                   0.31g
 溶液I(下記)                  1.59ml
 純水                       1246ml
 (溶液B)
 硝酸銀                      169.9g
 硝酸(濃度6%)                 5.89ml
 純水にて317.1mlに仕上げる。
(Solution A)
Alkali-treated inert gelatin (average molecular weight 100,000) 18.7g
Sodium chloride 0.31g
Solution I (below) 1.59ml
Pure water 1246ml
(Solution B)
169.9g of silver nitrate
Nitric acid (concentration 6%) 5.89ml
Finish to 317.1 ml with pure water.
 (溶液C)
 アルカリ処理不活性ゼラチン(平均分子量10万)   5.66g
 塩化ナトリウム                   58.8g
 臭化カリウム                    13.3g
 溶液I(下記)                  0.85ml
 溶液II(下記)                  2.72ml
 純水にて317.1mlに仕上げる。
(Solution C)
Alkali-treated inert gelatin (average molecular weight 100,000) 5.66 g
Sodium chloride 58.8g
13.3 g of potassium bromide
Solution I (below) 0.85ml
Solution II (below) 2.72 ml
Finish to 317.1 ml with pure water.
 (溶液D)
 2-メチル-4-ヒドロキシ-1,3,3a,7-テトラアザインデン
                           0.56g
 純水                      112.1ml
 (溶液E)
 アルカリ処理不活性ゼラチン(平均分子量10万)   3.96g
 溶液I(下記)                  0.40ml
 純水                      128.5ml
 (溶液I)
 界面活性剤:ポリイソプロピレンポリエチレンオキシジコハク酸エステルナトリウム塩の10質量%メタノール溶液
 (溶液II)
 六塩化ロジウム錯体の10質量%水溶液
 上記操作終了後に、常法に従い40℃にてフロキュレーション法を用いて脱塩及び水洗処理を施し、溶液Fと防バイ剤を加えて60℃でよく分散し、40℃にてpHを5.90に調整して、最終的に臭化銀を10モル%含む平均粒子径0.09μm、変動係数10%の塩臭化銀立方体粒子乳剤を得た。
(Solution D)
2-Methyl-4-hydroxy-1,3,3a, 7-tetraazaindene 0.56 g
112.1 ml of pure water
(Solution E)
Alkali-treated inert gelatin (average molecular weight 100,000) 3.96 g
Solution I (below) 0.40ml
128.5 ml of pure water
(Solution I)
Surfactant: 10% by weight methanol solution of polyisopropylene polyethylene oxydisuccinate sodium salt (Solution II)
10% by weight aqueous solution of rhodium hexachloride complex After the above operation is completed, desalting and water washing are performed using a flocculation method at 40 ° C. according to a conventional method. The pH was adjusted to 5.90 at 40 ° C., and finally a silver chlorobromide cubic grain emulsion containing 10 mol% of silver bromide and having an average grain size of 0.09 μm and a coefficient of variation of 10% was obtained.
 (溶液F)
 アルカリ処理不活性ゼラチン(平均分子量10万)   16.5g
 純水                      139.8ml
 上記ハロゲン化銀乳剤に対し、チオ硫酸ナトリウムをハロゲン化銀1モル当たり20mg用い、40℃にて80分間化学増感を行い、化学増感終了後に4-ヒドロキシ-6-メチル-1,3,3a,7-テトラザインデン(TAI)をハロゲン化銀1モル当たり500mg、1-フェニル-5-メルカプトテトラゾールをハロゲン化銀1モル当たり150mg添加して、ハロゲン化銀乳剤EM-1を得た。このハロゲン化銀乳剤EM-1のハロゲン化銀粒子とゼラチンの体積比(ハロゲン化銀粒子/ゼラチン)は0.625であった。さらに硬膜剤(H-1:テトラキス(ビニルスルホニルメチル)メタン)をゼラチン1g当たり200mgの比率となるようにして添加し、また塗布助剤として、界面活性剤(SU-2:スルホ琥珀酸ジ(2-エチルヘキシル)・ナトリウム)を添加し、表面張力を調整した。こうして得られた塗布液を、基材の片方の面上に塗布した後、50℃、24時間のキュア処理を実施した。
(Solution F)
Alkali-treated inert gelatin (average molecular weight 100,000) 16.5g
Pure water 139.8ml
The silver halide emulsion was chemically sensitized with 20 mg of sodium thiosulfate per mole of silver halide at 40 ° C. for 80 minutes, and 4-hydroxy-6-methyl-1,3, after completion of chemical sensitization. 500 mg of 3a, 7-tetrazaindene (TAI) per mol of silver halide and 150 mg of 1-phenyl-5-mercaptotetrazole per mol of silver halide were added to obtain a silver halide emulsion EM-1. In this silver halide emulsion EM-1, the volume ratio of silver halide grains to gelatin (silver halide grains / gelatin) was 0.625. Further, a hardening agent (H-1: tetrakis (vinylsulfonylmethyl) methane) was added at a ratio of 200 mg per 1 g of gelatin, and a surfactant (SU-2: sulfosuccinate disulfate) was applied as a coating aid. (2-ethylhexyl) .sodium) was added to adjust the surface tension. The coating solution thus obtained was applied on one side of the substrate, and then cured at 50 ° C. for 24 hours.
 上述のようにして作製した基材に対して、ライン幅が6μm、ライン同士の間隔が244μmの1cm四方の格子状のフォトマスクを介して、紫外線ランプを用いて露光を行い、下記現像液(DEV-1)を用いて25℃で60秒間現像処理を行った後、下記定着液(FIX-1)を用いて25℃で120秒間の定着処理を行った。さらに、下記物理現像液(PDEV-1)を用いて25℃で10分間物理現像を行った後、水洗、乾燥処理を行い、金属細線のパターンとした。以降は有機電子デバイス用電極D012と同様に作製して、有機電子デバイス用電極D030を作製した。 The substrate prepared as described above is exposed using an ultraviolet lamp through a 1 cm square grid photomask having a line width of 6 μm and a distance between lines of 244 μm, and the following developer ( After developing for 60 seconds at 25 ° C. using DEV-1), the fixing treatment for 120 seconds was performed at 25 ° C. using the following fixer (FIX-1). Further, physical development was performed at 25 ° C. for 10 minutes using the following physical developer (PDEV-1), followed by washing with water and drying treatment to form a fine metal wire pattern. Thereafter, an electrode D030 was prepared in the same manner as the electrode D012 for an organic electronic device.
 (DEV-1)
 純水                        500ml
 メトール                         2g
 無水亜硫酸ナトリウム                  80g
 ハイドロキノン                      4g
 ホウ砂                          4g
 チオ硫酸ナトリウム                   10g
 臭化カリウム                     0.5g
 水を加えて全量を1リットルとする。
(DEV-1)
500 ml of pure water
Metol 2g
80 g of anhydrous sodium sulfite
Hydroquinone 4g
4g borax
Sodium thiosulfate 10g
Potassium bromide 0.5g
Add water to bring the total volume to 1 liter.
 (FIX-1)
 純水                        750ml
 チオ硫酸ナトリウム                  250g
 無水亜硫酸ナトリウム                  15g
 氷酢酸                        15ml
 カリミョウバン                     15g
 水を加えて全量を1リットルとする。
(FIX-1)
750 ml of pure water
Sodium thiosulfate 250g
Anhydrous sodium sulfite 15g
Glacial acetic acid 15ml
Potash alum 15g
Add water to bring the total volume to 1 liter.
 (PDEV-1)
 下記A液、B液を処理の直前に混合する。
(PDEV-1)
The following A liquid and B liquid are mixed immediately before a process.
 (A液)
 純水                        400ml
 クエン酸                        10g
 リン酸水素2ナトリウム                  1g
 アンモニア水(28%水溶液)            1.2ml
 ハイドロキノン                      3g
 (B液)
 純水                         10ml
 硝酸銀                        0.4g
 (有機電子デバイス用電極D031の作製)
 基材上に真空蒸着法によりアルミニウムを図1の金属細線のパターン2の領域に幅5ミクロン、高さ2.5μmでD001と同様のパターンになるようにアルミニウム細線のパターンを蒸着した。さらに、図1の取り出し電極1及び4の領域の全面に高さ2.5μmとなるようにアルミニウムを均一に蒸着した。次に、導電ポリマー含有層の替わりに、透明導電膜層としてITO層をスパッタにより上記アルミニウム細線のパターンを蒸着した領域の全面に40nmの厚さに均一に付着させて、有機電子デバイス用電極D031を作製した。
(Liquid A)
400ml of pure water
Citric acid 10g
Disodium hydrogen phosphate 1g
Ammonia water (28% aqueous solution) 1.2ml
Hydroquinone 3g
(Liquid B)
10ml of pure water
0.4 g of silver nitrate
(Preparation of electrode D031 for organic electronic devices)
The aluminum fine wire pattern was vapor-deposited on the substrate by vacuum vapor deposition in the region of the fine metal wire pattern 2 in FIG. 1 so as to have the same pattern as D001 with a width of 5 microns and a height of 2.5 μm. Further, aluminum was uniformly deposited on the entire surface of the extraction electrodes 1 and 4 in FIG. 1 so as to have a height of 2.5 μm. Next, instead of the conductive polymer-containing layer, an ITO layer as a transparent conductive film layer is deposited uniformly on the entire surface of the area where the pattern of the aluminum thin wire is deposited by sputtering to a thickness of 40 nm, thereby forming an electrode D031 for organic electronic devices. Was made.
 なおD031において、導電ポリマー含有層の膜厚、段差は、ITO層を導電ポリマー含有層に置き換えて、同様に求めた。 In D031, the film thickness and level difference of the conductive polymer-containing layer were obtained in the same manner by replacing the ITO layer with the conductive polymer-containing layer.
 (有機電子デバイス用電極D032の作製)
 両面に膜厚50nmの窒化シリコン膜が形成された厚さ100μmのポリエチレンテレフタレートフィルム支持体の片面側に、接着層として紫外線硬化性樹脂(UVPOTミディアム0、帝国インキ(株)製)を30μmの厚みに塗布して、接着基板を作製した。
(Preparation of electrode D032 for organic electronic devices)
On one side of a 100 μm thick polyethylene terephthalate film support with a 50 nm thick silicon nitride film formed on both sides, a 30 μm thick UV curable resin (UVPOT Medium 0, manufactured by Teikoku Inc.) is used as an adhesive layer. Then, an adhesive substrate was produced.
 作製した接着基板とD030と同様に作製した金属銀パターンとを、接着層と金属銀パターンとが対面するように圧着し、積層体を形成した。次いで接着基板の側から紫外線を照射して紫外線硬化性樹脂を硬化させ、接着基板と金属銀パターンとを接合した。 The produced adhesive substrate and the metallic silver pattern produced in the same manner as D030 were pressure-bonded so that the adhesive layer and the metallic silver pattern faced to form a laminate. Next, ultraviolet rays were irradiated from the adhesive substrate side to cure the ultraviolet curable resin, and the adhesive substrate and the metal silver pattern were joined.
 接合した接着基板と金属銀パターンとを、下記の酵素液に40℃で5分間浸せきし、水洗乾燥させた。酵素液のpHは7.0であった。 The bonded adhesive substrate and the metal silver pattern were immersed in the following enzyme solution at 40 ° C. for 5 minutes, washed with water and dried. The pH of the enzyme solution was 7.0.
 (酵素液)
 水                         900ml
 85%オルトリン酸                  7.4g
 トリエタノールアミン                  20g
 タンパク質分解酵素*                   2g
 水を加えて総量を1000mlに仕上げる。
(Enzyme solution)
900ml water
7.4 g of 85% orthophosphoric acid
20g triethanolamine
Proteolytic enzyme * 2g
Add water to bring the total volume to 1000 ml.
 *細菌プロティナーゼ:長瀬産業(株)製、ビオプラーゼAL15
 酵素液処理を行った後、金属銀パターン側のポリエチレンテレフタレートフィルム支持体を剥離して、金属銀パターンを作製した。金属銀パターンは接着基板に埋め込まれており平滑であった。以降は有機電子デバイス用電極D012と同様に作製して、有機電子デバイス用電極D032を作製した。
* Bacterial proteinase: Nagase Sangyo Co., Ltd. Biolase AL15
After the enzyme solution treatment, the polyethylene terephthalate film support on the metal silver pattern side was peeled off to produce a metal silver pattern. The metallic silver pattern was embedded in the adhesive substrate and was smooth. Thereafter, an electrode D032 for organic electronic device was manufactured in the same manner as the electrode D012 for organic electronic device.
 以上のようにして得られた有機電子デバイス用電極D002~D022及びD030~D032の金属細線高さ、金属細線部の膜厚、及び、金属なし部の膜厚は、それぞれ、表1に示す。導電性ポリマー含有塗布液1を塗布した際、塗布液の粘度が低いので、高さの高い金属細線部から、高さの低い金属なし部に塗布液は流れ込み、それぞれの高さは、表1の数値となった。 Table 1 shows the metal wire height, the metal wire portion thickness, and the metal-free portion film thickness of the organic electronic device electrodes D002 to D022 and D030 to D032 obtained as described above. When the conductive polymer-containing coating solution 1 is applied, since the viscosity of the coating solution is low, the coating solution flows from the metal thin wire portion having a high height to the portion having no metal having a low height. It became the number of.
 得られた、有機電子デバイス用電極D001~D022及びD030~D032を有機EL素子の電極とした。 The obtained organic electronic device electrodes D001 to D022 and D030 to D032 were used as electrodes of organic EL elements.
 (有機EL素子1の作製)
 得られた有機電子デバイス用電極D001を、金属細線のパターンの上に以下の各層を形成して有機EL素子1とした。
(Preparation of organic EL element 1)
The obtained organic electronic device electrode D001 was formed as the organic EL element 1 by forming the following layers on the metal fine wire pattern.
 〈正孔注入層の形成〉
 PEDOT-PSS CLEVIOS P AI 4083(固形分1.5%)(H.C.Starck社製)をギャップ間隙40μmのバーコーターを用いて、導電性ポリマー含有塗布液と同様の領域にし、乾燥膜厚が30nmとなるように塗布し、導電性ポリマー含有塗布液と同様に不要領域の拭き取りを行った。さらに、ホットプレートで130℃、30分の熱処理を施して正孔注入層とした。
<Formation of hole injection layer>
PEDOT-PSS CLEVIOS P AI 4083 (solid content 1.5%) (manufactured by HC Starck) was made into the same region as the conductive polymer-containing coating solution using a bar coater with a gap gap of 40 μm, and the dry film thickness Was applied to a thickness of 30 nm, and unnecessary areas were wiped off in the same manner as the conductive polymer-containing coating solution. Further, heat treatment was performed at 130 ° C. for 30 minutes on a hot plate to form a hole injection layer.
 〈正孔輸送層の形成〉
 市販の真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
<Formation of hole transport layer>
Each of the vapor deposition crucibles in a commercially available vacuum vapor deposition apparatus was filled with the optimum amount of the constituent material of each layer for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 真空度1×10-4Paまで減圧した後、化合物1の入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で金属細線のパターンのある領域に蒸着し、30nmの正孔輸送層を設けた。 After depressurizing to a vacuum of 1 × 10 −4 Pa, the deposition crucible containing compound 1 was energized and heated, and deposited at a deposition rate of 0.1 nm / second on a region with a pattern of fine metal wires. A hole transport layer was provided.
 〈発光層の形成〉
 次に、以下の手順で各発光層を設けた。
<Formation of light emitting layer>
Next, each light emitting layer was provided in the following procedures.
 形成した正孔輸送層上に、化合物2が13質量%、化合物3が3.7質量%の濃度になるように、化合物2、化合物3及び化合物5を蒸着速度0.1nm/秒で金属細線のパターンのある領域に共蒸着し、発光極大波長が622nm、厚さ10nmの緑赤色燐光発光層を形成した。 On the formed hole transport layer, the compound 2, the compound 3 and the compound 5 were deposited at a deposition rate of 0.1 nm / second so that the concentration of the compound 2 was 13% by mass and the compound 3 was 3.7% by mass. A green-red phosphorescent light emitting layer having a maximum emission wavelength of 622 nm and a thickness of 10 nm was formed by co-evaporation in a region having the above pattern.
 次いで、化合物4が10質量%になるように、化合物4及び化合物5を蒸着速度0.1nm/秒で金属細線のパターンのある領域に共蒸着し、発光極大波長が471nm、厚さ15nmの青色燐光発光層を形成した。 Next, the compound 4 and the compound 5 are co-deposited on a region having a pattern of fine metal wires at a deposition rate of 0.1 nm / second so that the compound 4 becomes 10% by mass, and a blue light having a maximum emission wavelength of 471 nm and a thickness of 15 nm. A phosphorescent light emitting layer was formed.
 〈正孔ブロック層の形成〉
 さらに、形成した発光層上、金属細線のパターンのある領域に、化合物6を膜厚5nmに蒸着して正孔阻止層を形成した。
<Formation of hole blocking layer>
Further, the hole blocking layer was formed by depositing the compound 6 in a film thickness of 5 nm on the formed light emitting layer in a region having a pattern of fine metal wires.
 〈電子輸送層の形成〉
 引き続き、形成した正孔阻止層上、金属細線のパターンのある領域に、CsFを膜厚比で10%になるように化合物6と共蒸着し、厚さ45nmの電子輸送層を形成した。
<Formation of electron transport layer>
Subsequently, on the formed hole blocking layer, CsF was co-evaporated with compound 6 so as to have a film thickness ratio of 10% in a region having a fine metal wire pattern, thereby forming an electron transport layer having a thickness of 45 nm.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〈カソード電極の形成〉
 形成した電子輸送層の上に、Alを5×10-4Paの真空下にて、図4の6の領域(1.0×1.4cm)に蒸着し、厚さ100nmのカソード電極を形成し、有機EL素子1を作製した。
<Formation of cathode electrode>
On the formed electron transport layer, Al was evaporated in a region of 6 (1.0 × 1.4 cm) in FIG. 4 under a vacuum of 5 × 10 −4 Pa to form a cathode electrode having a thickness of 100 nm. Thus, an organic EL element 1 was produced.
 なお、有機EL素子は、蒸着後も大気下には出さずに窒素下で以降の評価を行った。 In addition, the organic EL element was subjected to the subsequent evaluation under nitrogen without being exposed to the atmosphere even after vapor deposition.
 (有機EL素子2~32の作製)
 有機EL素子1と同様にして、有機電子デバイス用電極1を有機電子デバイス用電極D002~D022及びD030~D032に変えて、有機EL素子2~22及び30~32を作製した。
(Preparation of organic EL elements 2 to 32)
In the same manner as in the organic EL element 1, the organic electronic device electrodes 1 were changed to the organic electronic device electrodes D002 to D022 and D030 to D032, and organic EL elements 2 to 22 and 30 to 32 were produced.
 (EL素子評価)
 得られた、各有機EL素子について、KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を印加して1000cd/mで発光させた。
(EL element evaluation)
About each obtained organic EL element, DC voltage was applied and light-emitted at 1000 cd / m < 2 > using the source measure unit 2400 type made from KEITHLEY.
 (整流比)
 印加電圧のプラスマイナスを反転させる。(発光時の電流の絶対値)/(反転時の電流の絶対値)を整流比とした。異物や突起の影響がある、あるいは、グリッド部での段差が大きすぎるとこの比率が小さくなる。この比率が1だと完全にリーク状態、EL素子としては、100以上であることが好ましく、1000以上であることがより好ましい。以下の指標で評価した。
(Rectification ratio)
Inverts the plus or minus of the applied voltage. The rectification ratio was defined as (absolute value of current during light emission) / (absolute value of current during inversion). This ratio decreases if there is an influence of foreign matter or protrusions, or if the level difference at the grid portion is too large. When this ratio is 1, the leakage state is complete, and the EL element is preferably 100 or more, more preferably 1000 or more. The following indicators were used for evaluation.
 4:1000以上
 3:500以上1000未満
 2:100以上500未満
 1:100未満
 (発光ムラ)
 発光状態を目視、および50倍の光学顕微鏡で観察し、以下の指標で評価した。レベル2が最低限必要で、3以上が好ましい。
4: 1000 or more 3: 500 or more and less than 1000 2: 100 or more and less than 500 1: 100 or less (light emission unevenness)
The light emission state was observed visually and with a 50 × optical microscope, and evaluated with the following indices. Level 2 is the minimum and 3 or more is preferable.
 4:光学顕微鏡でも全面均一発光に見える
 3:光学顕微鏡では金属細線のパターン部周辺部が他よりも高輝度であることが分かるが、目視では全面均一発光に見える
 2:面全体が発光しているが、金属細線のパターン部周辺部が高輝度になっているのが目視でも分かる
 1:金属細線のパターン部周辺部しか発光していない
 0:全く発光しない、あるいは、一部のみ輝点状に発光
 (発光効率)
 KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を印加し300cdで発光させたときの発光効率(ルーメン/W)を測定し、有機EL素子32の発光効率に対するレベルで以下の指標で評価した。
4: Even the optical microscope appears to emit light uniformly over the entire surface 3: The optical microscope shows that the periphery of the pattern part of the fine metal wire is brighter than the others, but the whole surface appears to emit light uniformly 2: The entire surface emits light However, it can be seen by visual observation that the peripheral part of the pattern part of the fine metal wire is high in luminance. 1: Only the peripheral part of the pattern part of the fine metal wire emits light. Luminous (luminous efficiency)
Using a KEITHLEY source measure unit 2400 type, the luminous efficiency (lumen / W) when a direct current voltage was applied and light was emitted at 300 cd was measured, and evaluated according to the following index at the level with respect to the luminous efficiency of the organic EL element 32. .
 3:改善幅15%以上
 2:改善幅10%以上15%未満
 1:改善幅3%以上10%以下
 0:改善幅3%未満
3: Improvement range 15% or more 2: Improvement range 10% or more and less than 15% 1: Improvement range 3% or more and 10% or less 0: Improvement range 3% or less
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の電極を用いた有機EL素子は整流比や発光ムラなどの性能破たんすることなく発光効率が改善されていることが分かる。 It can be seen that the organic EL element using the electrode of the present invention has improved luminous efficiency without breaking performance such as rectification ratio and uneven emission.
 特に、金属細線のパターンのある部分の上の導電性ポリマー含有層の最表面と、前記金属細線のパターンのない部分の導電性ポリマー含有層の最表面との段差が150nm以上600nm以下である電極を用いた場合、発光ムラの劣化を生じることなく発光効率が改善されていることが分かる。 In particular, an electrode in which a step between the outermost surface of the conductive polymer-containing layer on the portion with the fine metal wire pattern and the outermost surface of the conductive polymer-containing layer on the portion without the fine metal wire pattern is 150 nm or more and 600 nm or less It can be seen that the light emission efficiency is improved without using light emission unevenness.
 また、金属細線のパターンのない部分の導電性ポリマー含有層の膜厚が1500nmを超えると発光効率の改善幅が若干低下してくることが分かり、また、200nmを下回ると整流比が低下してくることが分かる。 In addition, it can be seen that when the film thickness of the conductive polymer-containing layer in the portion without the metal fine line pattern exceeds 1500 nm, the improvement width of the light emission efficiency slightly decreases, and when the thickness is less than 200 nm, the rectification ratio decreases. I can see it coming.
 導電性ポリマー含有層が、さらに水溶性ポリマーを含有すると発光効率の改善幅を低下させずに整流比を良くできることが分かる。 It can be seen that when the conductive polymer-containing layer further contains a water-soluble polymer, the rectification ratio can be improved without reducing the improvement in luminous efficiency.
 1、4 取り出し電極
 2 金属細線のパターン
 3 ブランク部
 5、5′ 導電性ポリマー含有層
 6 カソード電極
 10 有機電子デバイス用電極
DESCRIPTION OF SYMBOLS 1, 4 Extraction electrode 2 Metal fine wire pattern 3 Blank part 5, 5 'Conductive polymer content layer 6 Cathode electrode 10 Electrode for organic electronic devices

Claims (7)

  1.  基材上に導電性の金属細線のパターンを設け、更にその上に導電性ポリマー含有層を設けた有機電子デバイス用電極において、該金属細線のある部分の上の該導電性ポリマー含有層の膜厚が100nm~2000nmであり、かつ、該金属細線のある部分の上の該導電性ポリマー含有層の表面と、該金属細線のパターンを設けた領域で該金属細線のない部分の該導電性ポリマー含有層の表面との段差が100nm以上800nm以下であることを特徴とする有機電子デバイス用電極。 An electrode for an organic electronic device in which a pattern of a conductive fine metal wire is provided on a substrate and a conductive polymer-containing layer is further provided thereon, and a film of the conductive polymer-containing layer on the portion where the fine metal wire is provided The surface of the conductive polymer-containing layer having a thickness of 100 nm to 2000 nm and on the portion with the fine metal wire, and the conductive polymer in the portion without the fine metal wire in the region provided with the pattern of the fine metal wire An electrode for an organic electronic device, wherein a step with respect to the surface of the containing layer is 100 nm or more and 800 nm or less.
  2.  前記金属細線のある部分の上の導電性ポリマー含有層の最表面と、前記金属細線のパターンのない部分の導電性ポリマー含有層の最表面との段差が150nm以上600nm以下であることを特徴とする請求項1記載の有機電子デバイス用電極。 The level difference between the outermost surface of the conductive polymer-containing layer above the portion with the fine metal wire and the outermost surface of the conductive polymer-containing layer at the portion without the metal fine wire pattern is 150 nm or more and 600 nm or less, The electrode for organic electronic devices according to claim 1.
  3.  前記金属細線のない部分の導電性ポリマー含有層の膜厚が200nm以上1500nm以下であることを特徴とする請求項1または2記載の有機電子デバイス用電極。 The electrode for an organic electronic device according to claim 1 or 2, wherein a film thickness of the conductive polymer-containing layer in a portion without the thin metal wire is 200 nm or more and 1500 nm or less.
  4.  前記金属細線の最表面の基材面からの高さが、200nm以上2000nm以下であることを特徴とする請求項1~3のいずれか1項記載の有機電子デバイス用電極。 The electrode for organic electronic devices according to any one of claims 1 to 3, wherein the height from the base material surface of the outermost surface of the fine metal wire is 200 nm or more and 2000 nm or less.
  5.  前記導電性ポリマー含有層が、さらに水溶性ポリマーを含有することを特徴とする請求項1~4のいずれか1項記載の有機電子デバイス用電極。 The electrode for organic electronic devices according to any one of claims 1 to 4, wherein the conductive polymer-containing layer further contains a water-soluble polymer.
  6.  前記水溶性ポリマーが下記ポリマー(A)であることを特徴とする請求項5記載の有機電子デバイス用電極。
    Figure JPOXMLDOC01-appb-C000001

    (式中、X、X、Xは、それぞれ独立に、水素原子またはメチル基を表し、R、R、Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。l、m、nは構成率(mol%)を示し、50≦l+m+n≦100であり、l、m、nはそれぞれ0~100である。)
    The said water-soluble polymer is the following polymer (A), The electrode for organic electronic devices of Claim 5 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001

    (Wherein X 1 , X 2 and X 3 each independently represents a hydrogen atom or a methyl group, and R 1 , R 2 and R 3 each independently represents an alkylene group having 5 or less carbon atoms. , M, and n represent the composition ratio (mol%), where 50 ≦ l + m + n ≦ 100, and l, m, and n are 0 to 100, respectively.
  7.  前記金属細線のパターンおよび前記導電性ポリマー含有層がウエット製膜法により形成されていることを特徴とする請求項1~6のいずれか1項記載の有機電子デバイス用電極。 The organic electronic device electrode according to any one of claims 1 to 6, wherein the pattern of the fine metal wires and the conductive polymer-containing layer are formed by a wet film forming method.
PCT/JP2011/061848 2010-05-28 2011-05-24 Electrode for organic electronic device WO2011148931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012517274A JP5720680B2 (en) 2010-05-28 2011-05-24 Electrodes for organic electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-122673 2010-05-28
JP2010122673 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148931A1 true WO2011148931A1 (en) 2011-12-01

Family

ID=45003921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061848 WO2011148931A1 (en) 2010-05-28 2011-05-24 Electrode for organic electronic device

Country Status (2)

Country Link
JP (1) JP5720680B2 (en)
WO (1) WO2011148931A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124647A1 (en) * 2011-03-14 2012-09-20 コニカミノルタホールディングス株式会社 Method for producing planar electrode for organic electronic device
JP2015508218A (en) * 2012-02-10 2015-03-16 サン−ゴバン グラス フランス Transparent support electrode for OLED
JP2017507368A (en) * 2013-12-23 2017-03-16 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Display device
CN110024138A (en) * 2016-12-08 2019-07-16 株式会社钟化 Solar cell module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067531A1 (en) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
JP2004504693A (en) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Materials and methods for making conductive patterns
JP2006089554A (en) * 2004-09-22 2006-04-06 Shin Etsu Polymer Co Ltd Electroconductive composition and method for producing the same
JP2006093123A (en) * 2004-09-21 2006-04-06 Samsung Sdi Co Ltd Substrate for light emitting element, its manufacturing method, electrode for light emitting element and light emitting element with the same
JP2008288102A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Transparent conductive film, manufacturing method of transparent conductive film, transparent electrode film, dye-sensitized solar cell, electroluminescent element, and electronic paper
WO2009084851A2 (en) * 2007-12-27 2009-07-09 Dongjin Semichem Co., Ltd. Conductive glass for dye sensitive solar cell and method of preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038764A1 (en) * 2006-09-28 2008-04-03 Fujifilm Corporation Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067531A1 (en) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
JP2004504693A (en) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Materials and methods for making conductive patterns
JP2006093123A (en) * 2004-09-21 2006-04-06 Samsung Sdi Co Ltd Substrate for light emitting element, its manufacturing method, electrode for light emitting element and light emitting element with the same
JP2006089554A (en) * 2004-09-22 2006-04-06 Shin Etsu Polymer Co Ltd Electroconductive composition and method for producing the same
JP2008288102A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Transparent conductive film, manufacturing method of transparent conductive film, transparent electrode film, dye-sensitized solar cell, electroluminescent element, and electronic paper
WO2009084851A2 (en) * 2007-12-27 2009-07-09 Dongjin Semichem Co., Ltd. Conductive glass for dye sensitive solar cell and method of preparing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124647A1 (en) * 2011-03-14 2012-09-20 コニカミノルタホールディングス株式会社 Method for producing planar electrode for organic electronic device
JP2015508218A (en) * 2012-02-10 2015-03-16 サン−ゴバン グラス フランス Transparent support electrode for OLED
JP2017507368A (en) * 2013-12-23 2017-03-16 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Display device
CN110024138A (en) * 2016-12-08 2019-07-16 株式会社钟化 Solar cell module

Also Published As

Publication number Publication date
JP5720680B2 (en) 2015-05-20
JPWO2011148931A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5673674B2 (en) Transparent electrode and organic electronic device using the same
JP5673549B2 (en) Organic electronic devices
JP5515789B2 (en) Transparent pattern electrode, method for producing the electrode, organic electronic device using the electrode, and method for producing the same
JP5609307B2 (en) Transparent conductive support
JP2012009240A (en) Transparent electrode and method of manufacturing the same, and organic electronic element using the transparent electrode
JPWO2012002113A1 (en) Transparent conductor, organic EL element, and organic photoelectric conversion element
WO2014034920A1 (en) Transparent electrode, method for producing same and organic electronic device
JP5673675B2 (en) Method for producing transparent electrode, transparent electrode and organic electronic device
JP5720680B2 (en) Electrodes for organic electronic devices
JP6073681B2 (en) Organic electroluminescence device
JP2011171214A (en) Organic electronic device
WO2011055663A1 (en) Transparent electrode and organic electronic device
JP5245128B2 (en) Organic electronic device and manufacturing method thereof
JP5402447B2 (en) Method for manufacturing organic electronic device
JP5600964B2 (en) Transparent conductive film
JP2011243529A (en) Transparent conducting substrate
JP6032271B2 (en) Method for producing transparent electrode and method for producing organic electronic device
JP2012022959A (en) Method of manufacturing transparent electrode
JP5741366B2 (en) Manufacturing method of transparent electrode
JP5245127B2 (en) Organic electronic device
JP2012099340A (en) Method for manufacturing electrode, electrode and organic electronic element
JP2011228113A (en) Electrode for organic electronic device
JP2012064379A (en) Planar electrode for organic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786630

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517274

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786630

Country of ref document: EP

Kind code of ref document: A1