WO2011148832A1 - Objective lens for optical pickup device, optical pickup device, and optical information read and write device - Google Patents

Objective lens for optical pickup device, optical pickup device, and optical information read and write device Download PDF

Info

Publication number
WO2011148832A1
WO2011148832A1 PCT/JP2011/061366 JP2011061366W WO2011148832A1 WO 2011148832 A1 WO2011148832 A1 WO 2011148832A1 JP 2011061366 W JP2011061366 W JP 2011061366W WO 2011148832 A1 WO2011148832 A1 WO 2011148832A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
optical
path difference
optical path
difference providing
Prior art date
Application number
PCT/JP2011/061366
Other languages
French (fr)
Japanese (ja)
Inventor
井上寿志
中村健太郎
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012517225A priority Critical patent/JPWO2011148832A1/en
Priority to CN201180025822XA priority patent/CN102906815A/en
Publication of WO2011148832A1 publication Critical patent/WO2011148832A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means

Definitions

  • the present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
  • a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened.
  • a wavelength 390 such as a blue-violet semiconductor laser is used.
  • a laser light source of ⁇ 420 nm has been put into practical use.
  • these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used.
  • NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
  • BD Blu-ray Disc
  • the BD is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
  • the recording density of an optical disc that records / reproduces information between the optical system for BD and the optical system for DVD Although a method of selectively switching according to the above is conceivable, a plurality of optical systems are required, which is disadvantageous for miniaturization and increases the cost.
  • the optical pickup device can be used by sharing the optical system for BD and the optical system for DVD in a compatible optical pickup device. It is preferable to reduce the number of optical components constituting the lens as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is desirable to form a diffractive structure having a wavelength dependency of spherical aberration in the objective lens.
  • Patent Document 1 information can be recorded / reproduced to be compatible with BD and DVD using an objective lens in which a phase structure is formed in the central region and the peripheral region is aspherical.
  • An optical pickup device is described.
  • a notebook type PC is used instead of a relatively thick type called a so-called half-height mounted on a stationary recorder or the like that has been conventionally used.
  • a relatively thin optical pickup device called a so-called slim type that is mounted on the back of a thin TV or the like has been developed.
  • the slim type optical pickup device it is necessary to reduce the effective diameter and focal length of the objective lens to be compact as compared with the conventional half-height type.
  • the effective diameter of the objective lens is 3 mm
  • the working distance when using the DVD is 0.284 mm to 0.330 mm.
  • ⁇ 3 mm is an objective lens of a size often used in the above-described half-height type.
  • the effective diameter is simply reduced so that the objective lens of Patent Document 1 can be mounted on a slim type optical pickup device, the working distance when using a DVD is correspondingly shortened, and the rotating optical disc has warpage, etc. There is a risk of causing interference with the objective lens.
  • the objective lens on which the phase structure disclosed in Patent Document 1 is superimposed has a complicated optical surface shape, and there is a problem that it is difficult to manufacture particularly for a small-diameter objective lens.
  • the objective lens in which the superposition of the phase structure is stopped and only the single structure shown in Patent Document 1 is used when the objective lens is a plastic lens, the spherical aberration is good when a temperature change occurs. There is a problem that it cannot be corrected.
  • the present invention is intended to solve the above-mentioned problems, and in the case where two different optical disks, BD and DVD, are used interchangeably, a sufficient working distance can be ensured particularly for a DVD while having a small diameter.
  • the objective lens according to claim 1 includes a first light source that emits a first light beam having a first wavelength ⁇ 1 (nm) (390 ⁇ ⁇ 1 ⁇ 415), and a second wavelength ⁇ 2 (nm) (630 ⁇ ⁇ 2 ⁇ 670).
  • a second light source that emits the second light flux, and records and / or reproduces information of a BD having a protective substrate with a thickness of t1 using the first light flux, and uses the second light flux.
  • An objective lens used in an optical pickup device for recording and / or reproducing information of a DVD having a protective substrate having a thickness t2 (t1 ⁇ t2) The objective lens is a single ball,
  • the optical surface of the objective lens has a central region and a peripheral region around the central region,
  • the central region has a first optical path difference providing structure,
  • the objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region.
  • the objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area.
  • the first optical path difference providing structure makes the Nth-order diffracted light quantity of the first light beam that has passed through the first optical path difference providing structure larger than any other order diffracted light quantity, and passes through the first optical path difference providing structure.
  • the Nth-order diffracted light amount of the second light flux is larger than any other order diffracted light amount, The following formula is satisfied.
  • ⁇ 1 Effective diameter of the objective lens when using the BD (mm)
  • WD2 Working distance of the objective lens when using the DVD (mm)
  • f Focal length (mm) of the objective lens in the first light flux
  • the inventor has the diffraction order of the diffracted light of the first light flux most frequently generated in the first optical path difference providing structure, even when the effective diameter is small enough to satisfy the formula (1), By making the diffraction order of the diffracted light of the second light beam the same order, it becomes possible to give a negative paraxial power. As a result, while achieving compatibility between BD and DVD, and even when using DVD And found that working distance can be increased.
  • the working distance of the objective lens of the present invention satisfies the formula (2), and is suitable for a so-called slim type optical pickup device.
  • the first optical path difference providing structure does not have to be a structure in which a plurality of optical path difference providing structures are superimposed, that is, the objective lens can be easily manufactured with a relatively simple optical surface shape.
  • the same-order diffracted light generated in the one-optical path difference providing structure spherical aberration when the wavelength is changed to a long wavelength can be made under, and the environmental temperature is changed even if the objective lens is made of plastic. It was found that the spherical aberration that sometimes occurs can be maintained well. Further, the present inventor has also found out that the wavelength characteristic is not greatly deteriorated while the temperature characteristic is improved as described above.
  • the objective lens is suitable for a so-called slim type optical pickup device, while the value of the expression (1) is more than the lower limit.
  • the value of the expression (2) is not more than the upper limit, the pitch of the first optical path difference providing structure does not become too small, so that the objective lens can be easily manufactured, and the axial chromatic aberration can be prevented from becoming too large.
  • the value of the expression (2) is equal to or greater than the lower limit, the working distance when using the second optical disk can be secured, so that the possibility of interference between the optical disk and the objective lens can be reduced.
  • the objective lens according to claim 2 is characterized in that, in the invention according to claim 1, the first optical path difference providing structure is not a structure in which a plurality of optical path difference providing structures are superimposed. According to the present invention, it is possible to obtain an objective lens having a simple shape that is easy to manufacture.
  • the objective lens according to the second aspect wherein the first optical path difference providing structure comprises only a blaze type structure.
  • the objective lens according to claim 4 is characterized in that
  • 1 in the invention according to any one of claims 1 to 3. According to the present invention, since the height of the step of the first optical path difference providing structure can be reduced, an objective lens that is easy to manufacture can be obtained, and fluctuations in diffraction efficiency during wavelength fluctuations can be suppressed to a low level.
  • the first-order diffracted light amount of the first light beam that has passed through the first optical path difference providing structure is made larger than any other order of diffracted light amount, and the first-order diffraction of the second light beam that has passed through the first optical path difference providing structure. This is because the highest diffraction efficiency can be obtained when the amount of light is larger than any other order of the amount of diffracted light.
  • the first-order diffracted light quantity of the first light beam that has passed through the first optical path difference providing structure is made larger than any other order diffracted light quantity and passed through the first optical path difference providing structure.
  • the diffraction efficiency of the first-order diffracted light beam of the first light beam is 89.54%, and the first-order diffracted light beam of the second light beam The diffraction efficiency of the diffracted light was 78.17%.
  • the second-order diffracted light amount of the first light beam that has passed through the first optical path difference providing structure is made larger than any other order of diffracted light amount, and the second-order secondary light beam that has passed through the first optical path difference providing structure.
  • the diffraction efficiency of the second-order diffracted light of the first light flux is 76.17%.
  • the diffraction efficiency of the second-order diffracted light was 47.21%. It can be seen that the diffraction efficiency decreases as the diffraction order increases.
  • the objective lens described in claim 6 is characterized in that, in the invention described in any one of claims 1 to 5, the following expression is satisfied. 0.9 ⁇ ⁇ 1 / (n-1) ⁇ d ⁇ 2.2 ⁇ ⁇ 1 / (n-1) (3) However, d: Level difference in the optical axis direction of the first optical path difference providing structure (nm) n: Refractive index of the objective lens at the first wavelength ⁇ 1 According to the present invention, since the height of the step of the first optical path difference providing structure can be reduced, an objective lens that is easy to manufacture can be obtained and diffraction at the time of wavelength variation Variations in efficiency can be kept low.
  • the step closest to the optical axis of the first optical path difference providing structure faces a direction opposite to the optical axis. It is characterized by. According to the present invention, since the value of the paraxial power can be made negative, the working distance can be extended even when the DVD is used while achieving the two compatibility of BD and DVD.
  • An objective lens according to an eighth aspect is characterized in that, in the invention according to any one of the first to seventh aspects, the value of the paraxial power at the second wavelength ⁇ 2 of the first optical path difference providing structure is negative.
  • the objective lens described in claim 9 is characterized in that, in the invention described in claim 8, the following expression is satisfied. ⁇ 0.44 ⁇ P 0 * f ⁇ ⁇ 0.06 (4) However, P 0 : Paraxial power at the second wavelength ⁇ 2 of the first optical path difference providing structure
  • the value of the expression (4) is less than the upper limit, the pitch of the first optical path difference providing structure does not become too small, so that the objective lens can be easily manufactured, and the axial chromatic aberration can be prevented from becoming too large.
  • the value of the expression (4) is equal to or greater than the lower limit, the working distance when using the second optical disk can be secured, so that the possibility of interference between the optical disk and the objective lens can be reduced.
  • the objective lens described in claim 10 is characterized in that, in the invention described in any one of claims 1 to 9, the following expression is satisfied. 0.75 ⁇ dx / f ⁇ 1.70 (5) However, dx: axial thickness of the objective lens
  • the value of the expression (5) is less than or equal to the upper limit, spherical aberration deterioration with respect to environmental temperature changes can be suppressed, the pitch of the optical path difference providing structure does not become too small, and the objective lens is easy to manufacture. A working distance when using an optical disc can be secured.
  • the value of the expression (5) is equal to or more than the lower limit, the light source side optical surface and the optical disc side optical surface of the objective lens caused by manufacturing errors even when using a short wavelength, high NA optical disc such as BD.
  • the objective lens according to claim 11 is the objective lens according to any one of claims 1 to 10, wherein the peripheral region has a second optical path difference providing structure, and the second optical path difference providing structure is the second optical path difference structure.
  • the fifth-order diffracted light amount of the first light beam that has passed through the optical path difference providing structure is made larger than any other order of diffracted light amount, and the third-order diffracted light amount of the second light beam that has passed through the second optical path difference providing structure is changed.
  • the diffracted light quantity of any order is made larger.
  • the present inventor When the first optical path difference providing structure of the present invention is used, the present inventor generates the fifth-order diffracted light of the first light beam and the third-order diffracted light of the second light beam in the second optical path difference-providing structure, thereby generating a DVD.
  • the present inventors have found that the flare state can be improved and an aperture stop effect can be provided.
  • the objective lens according to a twelfth aspect is the invention according to any one of the first to eleventh aspects, wherein the second light flux passing through the central region and the second light flux passing through the peripheral region.
  • the distance ⁇ in the optical axis direction with respect to the light condensing position is 0.005 mm or more.
  • the optical axis direction from the condensing position of the second light beam BM1 that has passed through the central region to the closest condensing position of the second light beam BM2 that has passed through the peripheral region If ⁇ is 0.005 mm or more, the two do not cover each other, and the aperture limiting function can be effectively provided.
  • the objective lens according to claim 13 is characterized in that, in the invention according to any one of claims 1 to 12, the second optical path difference providing structure comprises only a blaze structure. Thereby, the diffraction efficiency in a reference wavelength can be maintained high.
  • An optical pickup device includes the objective lens according to any one of the first to thirteenth aspects.
  • An optical pickup device is the invention according to the fourteenth aspect, which is a slim type.
  • An optical information recording / reproducing apparatus includes the optical pickup apparatus according to the fourteenth or fifteenth aspect.
  • the optical pickup device has a first light source and a second light source. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing the first light beam on the information recording surface of the BD and condensing the second light beam on the information recording surface of the DVD.
  • the optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from an information recording surface of a BD or DVD.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness (t1) of the protective substrate is 0.05.
  • DVD means that information is recorded / reproduced by a light beam having a wavelength of about 630 to 670 nm and an objective lens having an NA of about 0.60 to 0.67, and the thickness of the protective substrate is 0.5.
  • DVD series optical discs of about 0.7 mm and includes DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like.
  • the recording density the recording density of BD is the highest, and then the order of DVD is lower.
  • the first light source and the second light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the first wavelength ⁇ 1 of the first light flux emitted from the first light source, and the second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1) of the second light flux emitted from the second light source, ⁇ 1 is 390 nm or more and 415 nm or less, ⁇ 2 is not less than 630 nm and not more than 670 nm.
  • first light source and the second light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has an objective lens.
  • the condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is preferably an objective lens composed of a single convex lens.
  • the objective lens may be a glass lens or a plastic lens, or an optical path difference providing structure is provided on the glass lens with a photo-curing resin, a UV-curing resin, or a thermosetting resin.
  • a hybrid lens may also be used.
  • the objective lens has a plurality of lenses, a glass lens and a plastic lens may be mixed and used.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
  • one of the important physical properties when molding a glass lens is the linear expansion coefficient a. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient a, cracks are likely to occur when the temperature is lowered.
  • the linear expansion coefficient a of the glass material is preferably 200 (10E-7 / K) or less, and more preferably 120 or less.
  • cycloolefin resin is preferably used, and specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, JSR manufactured by ARTON, etc. are preferable examples. Can be mentioned.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • At least one optical surface of the objective lens has a central region and a peripheral region around the central region.
  • the central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good.
  • the central region and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 2, the central region CN and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • the central region and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • a first optical path difference providing structure is provided in the central region. It is preferable that a second optical path difference providing structure is provided in the peripheral region.
  • the central area of the objective lens can be said to be a shared area used for recording / reproducing BD and DVD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. Light is collected so that information can be recorded and / or reproduced on the surface.
  • the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam.
  • the peripheral area of the objective lens is used for BD recording / reproduction and can be said to be a BD-dedicated area that is not used for DVD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD.
  • the second light flux passing through the peripheral region is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD.
  • the second light flux passing through the peripheral area of the objective lens preferably forms a flare on the information recording surface of the DVD.
  • the spot central portion having a high light amount density, and the light amount density is the spot center. It is preferable to have a spot middle part lower than the spot part and a spot peripheral part whose light intensity is higher than the spot middle part and lower than the spot center part.
  • the center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc.
  • this spot peripheral part is called flare.
  • the spot peripheral part may be called a flare.
  • the second light flux that has passed through the peripheral region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the DVD.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the peripheral region.
  • optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the exit angle from the diffractive structure and the optical path length to enter the lens differ depending on the height from the optical axis.
  • the amount will vary slightly for each zone.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape.
  • the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount d. (See Fig. 3 (a))
  • the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit).
  • V level means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the optical path difference providing structure illustrated in FIG. 3C is referred to as a five-level staircase structure
  • the optical path difference providing structure illustrated in FIG. 3D is referred to as a two-level staircase structure (also referred to as a binary structure).
  • a two-level staircase structure is described below.
  • a plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis,
  • the light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed.
  • the surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
  • the length of one staircase unit in the direction perpendicular to the optical axis is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2.
  • a large step amount B1 and a small step amount B2 exist.
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • the unit shape is periodically repeated here includes a shape in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 3 (a), the same sawtooth shape may be repeated, and as shown in FIG. 3 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center).
  • the optical path difference providing structure has a staircase structure
  • the first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. Moreover, it is preferable that the first optical path difference providing structure and the second optical path difference providing structure are provided on the surface on the light source side of the objective lens rather than the surface on the optical disc side of the objective lens. In other words, the first optical path difference providing structure and the second optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
  • the first optical path difference providing structure is preferably a blazed structure. Moreover, it is preferable that the first optical path difference providing structure is composed of only one type of blaze type structure and other structures are not superimposed. In addition, the first optical path difference providing structure makes the Nth-order diffracted light amount of the first light flux that has passed through the first optical path difference providing structure larger than any other order diffracted light amount, and passed through the first optical path difference providing structure. The Nth-order diffracted light quantity of the second light beam is made larger than any other order diffracted light quantity.
  • the order of the diffracted light generated most in the first light flux that has passed through the first optical path difference providing structure is equal to the order of the diffracted light generated most in the second light flux that has passed through the first optical path difference providing structure.
  • the absolute value of N is preferably 1 from the viewpoints of high diffraction efficiency, ease of manufacture, small diffraction efficiency fluctuation at the time of wavelength fluctuation, and the like. Further, N is more preferably +1.
  • the step amount of the first optical path difference providing structure satisfies the following conditional expression. 0.9 ⁇ ⁇ 1 / (n-1) ⁇ d ⁇ 2.2 ⁇ ⁇ 1 / (n-1) (3)
  • d is the step amount (nm) in the optical axis direction of the first optical path difference providing structure
  • n represents the refractive index of the objective lens at the first wavelength ⁇ 1.
  • the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase.
  • the reason why the upper limit is multiplied by 2.2 in the conditional expression (3) is because the increase in the level difference is taken into account. It is preferable that the conditional expression (3) is satisfied in all the steps of the first optical path difference providing structure.
  • the blazed wavelength ⁇ B of the first optical path difference providing structure (theoretically, the wavelength at which the diffraction efficiency is 100% in the first optical path difference providing structure) is preferably larger than ⁇ 1 and smaller than ⁇ 2. More preferably, it is 470 nm or more and 550 nm or less. More preferably, they are 480 nm or more and 530 nm or less.
  • the second optical path difference providing structure is preferably a blazed structure. Moreover, it is preferable that the second optical path difference providing structure is composed of only one type of blaze type structure and other structures are not superimposed. In addition, the second optical path difference providing structure makes the fifth-order diffracted light quantity of the first light flux that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity, and passed through the second optical path difference providing structure. It is preferable that the third-order diffracted light quantity of the second light beam is larger than any other order diffracted light quantity. In particular, when
  • the distance ⁇ in the optical axis direction between the condensing position of the second light beam that has passed through the central region and the condensing position of the second light beam that has passed through the peripheral region is It is preferable that it is 0.005 mm or more.
  • the first optical path difference providing structure preferably has a negative paraxial power at the second wavelength ⁇ 2. Particularly preferably, the following formula is satisfied. ⁇ 0.44 ⁇ P 0 * f ⁇ ⁇ 0.06 (4) However, P 0 : Power of the first optical path difference providing structure f: Focal length of the objective lens It is more preferable that the following expression is satisfied. ⁇ 0.44 ⁇ P 0 * f ⁇ ⁇ 0.14 (4 ′)
  • the first optical path difference providing structure has a negative paraxial power (also referred to as power in this specification) with respect to the second light flux.
  • a negative paraxial power also referred to as power in this specification
  • having paraxial power means that C 1 h 2 is not 0 when the optical path difference function of the first optical path difference providing structure is expressed by the following equation ( 2 ).
  • the paraxial power P in the diffractive structure can be generally expressed by the following equation. “Having negative paraxial power” means that this value is negative.
  • C 1 is the optical path difference function coefficient
  • m is the diffraction order
  • ⁇ 2 is the wavelength of the second light source used in the optical pickup device
  • ⁇ B is the blazed wavelength of the first optical path difference providing structure (its diffraction structure)
  • P ⁇ 2 ⁇ m ⁇ ( ⁇ 2 / ⁇ B ) ⁇ C 1 (8)
  • the step closest to the optical axis of the first optical path difference providing structure is directed in a direction opposite to the optical axis.
  • the step is directed in the direction opposite to the optical axis” means a state as shown in FIG. FIG. 23A shows a state in which the step is directed in the direction of the optical axis.
  • at least a half step in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the peripheral region and the step existing between the optical axes are directed in the opposite direction to the optical axis. It is.
  • the first optical path difference providing structure when the first optical path difference providing structure is near the optical axis, the step is opposite to the optical axis, but is switched halfway, and near the peripheral region, the first optical path difference providing structure has a step on the optical axis.
  • the shape may be suitable. However, preferably, all the steps of the first optical path difference providing structure provided in the central region are directed in a direction opposite to the optical axis.
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • the boundary between the central region and the peripheral region of the objective lens is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more, 1.15 ⁇ NA 2) when the second light flux is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
  • the objective lens preferably satisfies the following conditional expression (4). 0.75 ⁇ dx / f ⁇ 1.70 (5)
  • dx represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length (mm) of the objective lens in the first light flux.
  • the value of the expression (5) is less than or equal to the upper limit, spherical aberration deterioration with respect to environmental temperature changes can be suppressed, the pitch of the optical path difference providing structure does not become too small, and the objective lens is easy to manufacture. A working distance of the optical disc can be secured.
  • the value of the expression (5) is equal to or greater than the lower limit, the deterioration of the optical characteristics due to the optical axis decentering of the light source side optical surface and the optical disc side optical surface of the objective lens caused by the manufacturing error does not become excessive. Since the edge thickness of the optical surface of the objective lens does not become too thin, the material can be smoothly flowed in injection molding or the like, and molding becomes easy. It is more preferable to satisfy the following formula. 0.90 ⁇ dx / f ⁇ 1.41 (5 ′)
  • the objective lens is likely to generate astigmatism and decentered coma, but the conditional expression (5) occurs. By satisfying the above, it is possible to suppress the generation of astigmatism and decentration coma.
  • conditional expression (5) results in a thick objective lens with a thick on-axis objective lens, so that the working distance during DVD recording / playback tends to be short.
  • the objective lens of the present invention satisfies the following conditional expressions (1) and (2).
  • ⁇ 1 represents the effective diameter (mm) of the objective lens when using BD
  • WD2 represents the working distance (mm) of the objective lens when using DVD
  • f is the focal length of the objective lens in the first light flux.
  • Mm magn ⁇ ⁇ 2.4
  • 1.7 ⁇ ⁇ 1 ⁇ 2.4 (1 ′) 0.10 ⁇ WD2 / f ⁇ 0.32 (2 ′)
  • the first light beam and the second light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light flux and the second light flux be incident on the objective lens as parallel light or substantially parallel light.
  • all of the first light beam and the second light beam can be incident on the objective lens as parallel light or substantially parallel light, and thus the effect of the present invention is more remarkable. It becomes.
  • the imaging magnification m1 of the objective lens when the first light beam is incident on the objective lens satisfy the following formula (9). -0.01 ⁇ m1 ⁇ 0.01 (9)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following formula (10). Is preferred. -0.01 ⁇ m2 ⁇ 0.01 (10)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (10) ′. . ⁇ 0.025 ⁇ m2 ⁇ ⁇ 0.01 (10) ′
  • the WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 0.55 mm or less. Furthermore, the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical pickup device is preferably a slim type.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an objective lens for an optical pickup device, an optical pickup device, and an optical information recording / reproducing device that can suppress the occurrence of an error signal or the like when three different optical disks are used interchangeably.
  • FIG. 4 is a longitudinal spherical aberration diagram when the BD of Example 1 is used.
  • FIG. 4 is a longitudinal spherical aberration diagram when the DVD of Example 1 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when the BD of Example 2 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when the DVD of Example 2 is used.
  • FIG. 5 is a longitudinal spherical aberration diagram when the BD of Example 3 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when the DVD of Example 3 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when the BD of Example 4 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when the DVD of Example 4 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when the DVD of Example 4 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when the BD of Example 5 is used.
  • FIG. 6 is a longitudinal spherical aberration diagram when using the DVD of Example 5.
  • FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 6 is used.
  • FIG. 12 is a longitudinal spherical aberration diagram when the DVD of Example 6 is used.
  • FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 7 is used.
  • FIG. 10 is a longitudinal spherical aberration diagram when the DVD of Example 7 is used.
  • FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 8 is used.
  • FIG. 10 is a longitudinal spherical aberration diagram when using the DVD of Example 8.
  • FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 9 is used.
  • FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 10 is used. It is a figure for demonstrating the direction of an optical path difference providing structure, and the state (a) in which the level
  • FIG. 4 is a diagram schematically showing a configuration of the optical pickup apparatus PU1 of the present embodiment that can appropriately record and / or reproduce information on BD and DVD, which are different optical disks.
  • the optical pickup device PU1 is a slim type and can be mounted on an optical information recording / reproducing device.
  • the first optical disc is a BD
  • the second optical disc is a DVD
  • the third optical disc is a CD.
  • the present invention is not limited to the present embodiment.
  • the optical pickup device PU1 emits light when recording / reproducing information with respect to the objective lens OL, the ⁇ / 4 wavelength plate QWP, the rising mirror M, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD.
  • a first semiconductor laser LD1 first light source
  • a second semiconductor laser LD2 second light source
  • emitting a second light beam a second light beam
  • a sensor lens SEN a light receiving element PD as a photodetector, and the like.
  • the first optical path difference providing structure formed in the central region of the single objective lens OL is not a superposition structure, and the first-order diffracted light amount of the first light beam that has passed through the first optical path difference providing structure is of any other order.
  • the first order diffracted light amount of the second light flux that has passed through the first optical path difference providing structure is made larger than the diffracted light amount of any other order.
  • the second optical path difference providing structure formed in the peripheral region of the objective lens OL makes the fifth-order diffracted light quantity of the first light beam that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity.
  • the third-order diffracted light quantity of the second light flux that has passed through the second optical path difference providing structure is made larger than any other order diffracted light quantity, but is not limited to this combination of diffraction orders. Furthermore, the following expression is satisfied. 1.7 ⁇ ⁇ 1 ⁇ 2.9 (1) 0.10 ⁇ WD2 / f ⁇ 0.40 (2) However, ⁇ 1: Effective diameter when using BD (mm) WD2: Working distance when using DVD (mm) f: Focal length (mm) of the objective lens OL in the first light flux
  • the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1 having a thickness of 0.1 mm. .
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP. , Reflected by the collimating lens COL, reflected by the polarization beam splitter BS, and converged on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1.
  • the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
  • the light is reflected, converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, and enters the objective lens OL.
  • the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL2 having a thickness of 0.6 mm.
  • the spot is formed on the information recording surface RL2 of the DVD and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is again transmitted through the objective lens OL, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, reflected by the rising mirror M, and collimated.
  • the light beam is converged by the lens COL, reflected by the polarization beam splitter BS, and converged on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on DVD can be read using the output signal of light receiving element PD.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
  • X (h) is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conical coefficient
  • Ai is an aspherical coefficient
  • h is a height from the optical axis
  • r is a paraxial radius of curvature. It is.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  • is the wavelength of the incident light beam (also referred to as the used wavelength)
  • ⁇ B is the design wavelength (called a blazed wavelength in the case of a blazed diffraction structure)
  • dor is the diffraction order
  • C i is a coefficient of the optical path difference function.
  • Example 1 shows lens data of the objective lens of Example 1.
  • FIG. 5 shows a spherical aberration diagram of the objective lens of Example 1 when using the BD. As shown in FIG. 5, the spherical aberration is good in the BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.41.
  • FIG. 6 is a longitudinal spherical aberration diagram of the objective lens of Example 1 when using a DVD.
  • the horizontal axis is positive in the direction away from the objective lens.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more makes the fifth-order diffracted light quantity of the first light beam that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity.
  • This is a structure in which the third-order diffracted light quantity of the second light beam that has passed through the two-optical path difference providing structure is larger than any other order diffracted light quantity (hereinafter referred to as a (5/3) structure).
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 6, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • FIG. 7 shows a spherical aberration diagram of the objective lens of Example 2 when using the BD.
  • spherical aberration is good in BD.
  • the spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.39.
  • FIG. 8 is a longitudinal spherical aberration diagram of the objective lens of Example 2 when using a DVD.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure.
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 8, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • FIG. 9 shows a spherical aberration diagram of the objective lens of Example 3 when using the BD.
  • spherical aberration is good in BD.
  • the spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.25.
  • FIG. 10 is a longitudinal spherical aberration diagram of the objective lens of Example 3 when using a DVD.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure.
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 10, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • Example 4 shows lens data of the objective lens of Example 4.
  • FIG. 11 shows a spherical aberration diagram of the objective lens of Example 4 when using the BD.
  • spherical aberration is good in BD.
  • the spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.23.
  • FIG. 12 is a longitudinal spherical aberration diagram of the objective lens of Example 4 when using a DVD.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure.
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 12, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency 99 of the second light beam that has passed through the peripheral region. It can be seen that a good flare is formed because the third-order diffracted light of .49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • Table 5 shows lens data of the objective lens of Example 5.
  • FIG. 13 shows a spherical aberration diagram of the objective lens of Example 5 when using the BD. As shown in FIG. 13, spherical aberration is good in BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.17.
  • FIG. 14 is a longitudinal spherical aberration diagram of the objective lens of Example 5 when using a DVD.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure.
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure
  • the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • FIG. 15 shows a spherical aberration diagram of the objective lens of Example 6 when using the BD.
  • the spherical aberration is good in the BD.
  • the spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.18.
  • FIG. 16 is a longitudinal spherical aberration diagram of the objective lens of Example 6 when using a DVD.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure.
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 16, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • Table 7 shows lens data of the objective lens of Example 7.
  • FIG. 17 shows a spherical aberration diagram of the objective lens of Example 7 when using the BD.
  • spherical aberration is good in BD.
  • the spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.12.
  • FIG. 18 is a longitudinal spherical aberration diagram of the objective lens of Example 7 when using a DVD.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure.
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 18, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • Table 8 shows lens data of the objective lens of Example 8.
  • FIG. 19 shows a spherical aberration diagram of the objective lens of Example 8 when using the BD.
  • spherical aberration is good in BD.
  • the spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.11.
  • FIG. 20 is a longitudinal spherical aberration diagram of the objective lens of Example 8 when using a DVD.
  • the second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure.
  • the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
  • the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 20, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
  • Example 9 shows lens data of the objective lens of Example 9.
  • FIG. 21 shows a spherical aberration diagram of the objective lens of Example 9 when using the BD. As shown in FIG. 21, spherical aberration is good in BD.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.05.
  • Table 10 shows lens data of the objective lens of Example 10.
  • FIG. 22 shows a spherical aberration diagram of the objective lens of Example 10 when using the BD. As shown in FIG. 22, spherical aberration is good in BD.
  • the paraxial power when the second light flux passes through the first optical path difference providing structure is ⁇ 0.05.
  • Table 11 summarizes the numerical values that are characteristic of Examples 1 to 10. Incidentally, regarding the expression (3), in this embodiment, 0.892 ⁇ m ⁇ d ⁇ 1.508 ⁇ m is satisfied.

Abstract

Disclosed is an objective lens which is suitable for slim optical pickup devices that ensure compatibility between two types of optical discs. The objective lens has a reduced diameter, an effective diameter φ1(mm) that satisfies Equation (1) below when a first optical disc is used, and a focal length of f(mm). The objective lens can be adapted to extend a working distance WD2(mm) for use with a second optical disc to satisfy Equation (2) below by imparting negative paraxial diffraction power using diffracted beams of light of the same order produced in a first optical-path difference imparting structure. Furthermore, both the first and a second optical-path difference imparting structures have no diffraction structure superimposed thereon, thus being simplified in the shape of optical planes to facilitate manufacturing. Furthermore, using diffracted beams of light of the same order produced in the first optical-path difference imparting structure allows for maintaining in a preferred condition spherical aberration which may be caused by variations in wavelength of a light source or variations in environmental temperature. 1.7≤φ1≤2.9 (1) 0.10≤WD2/f≤0.42 (2)

Description

光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再生(記録/再生)を行える光ピックアップ装置、対物レンズ及び光情報記録再生装置に関する。 The present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
 近年、光ピックアップ装置において、光ディスクに記録された情報の再生や、光ディスクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、例えば、青紫色半導体レーザ等、波長390~420nmのレーザ光源が実用化されている。これら青紫色レーザ光源を使用すると、DVD(デジタルバーサタイルディスク)と同じ開口数(NA)の対物レンズを使用する場合で、直径12cmの光ディスクに対して、15~20GBの情報の記録が可能となり、対物光学素子のNAを0.85にまで高めた場合には、直径12cmの光ディスクに対して、23~25GBの情報の記録が可能となる。 In recent years, in an optical pickup device, a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened. For example, a wavelength 390 such as a blue-violet semiconductor laser is used. A laser light source of ˜420 nm has been put into practical use. When these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used. When the NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
 上述のようなNA0.85の対物レンズを使用する光ディスクの例として、BD(ブルーレイディスク)が挙げられる。光ディスクの傾き(スキュー)に起因して発生するコマ収差が増大するため、BDでは、DVD における場合よりも保護基板を薄く設計し(DVDの0.6mmに対して、0.1mm)、スキューによるコマ収差量を低減している。 BD (Blu-ray Disc) is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
 ところで、BDに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDが販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDとDVDの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, simply saying that information can be recorded / reproduced appropriately with respect to a BD cannot be said to be sufficient as a product of an optical disc player / recorder (optical information recording / reproducing apparatus). In light of the fact that DVDs that record a wide variety of information are currently being sold, it is not only possible to record / reproduce information with respect to BDs. For example, DVDs owned by users are equally appropriate. In addition, making it possible to record / reproduce information leads to an increase in commercial value as an optical disc player / recorder for BD. From such a background, an optical pickup device mounted on an optical disc player / recorder for BD may have a performance capable of appropriately recording / reproducing information while maintaining compatibility with both BD and DVD. desired.
 BDとDVDに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、BD用の光学系とDVD用の光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコストが増大する。 As a method for appropriately recording / reproducing information while maintaining compatibility with BD and DVD, the recording density of an optical disc that records / reproduces information between the optical system for BD and the optical system for DVD Although a method of selectively switching according to the above is conceivable, a plurality of optical systems are required, which is disadvantageous for miniaturization and increases the cost.
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置においても、BD用の光学系とDVD用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録/再生波長が互いに異なる複数種類の光ディスクに対して共通な対物レンズを得るためには、球面収差の波長依存性を有する回折構造を対物レンズに形成するのが望ましい。 Accordingly, in order to simplify the configuration of the optical pickup device and to reduce the cost, the optical pickup device can be used by sharing the optical system for BD and the optical system for DVD in a compatible optical pickup device. It is preferable to reduce the number of optical components constituting the lens as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is desirable to form a diffractive structure having a wavelength dependency of spherical aberration in the objective lens.
 ここで、特許文献1においては、中央領域に位相構造が形成され、周辺領域が非球面形状となった対物レンズを用いて、BDとDVDとに対して互換可能に情報の記録/再生を行える光ピックアップ装置が記載されている。 Here, in Patent Document 1, information can be recorded / reproduced to be compatible with BD and DVD using an objective lens in which a phase structure is formed in the central region and the peripheral region is aspherical. An optical pickup device is described.
特許第4404092号明細書Japanese Patent No. 4404092
 ところで、BDやDVDに対して情報の記録/再生を行える光ピックアップ装置において、従来から使用されていた据え置き型レコーダ等に搭載される、いわゆるハーフハイトと呼ばれる比較的厚めのタイプに対し、ノート型PCや薄形テレビの背面等に搭載される、いわゆるスリムタイプと呼ばれる比較的薄めの光ピックアップ装置が開発されている。スリムタイプの光ピックアップ装置では、従来のハーフハイトタイプに比べ、対物レンズの有効径及び焦点距離を縮小してコンパクト化を図る必要がある。 By the way, in an optical pickup device capable of recording / reproducing information on a BD or DVD, a notebook type PC is used instead of a relatively thick type called a so-called half-height mounted on a stationary recorder or the like that has been conventionally used. In addition, a relatively thin optical pickup device called a so-called slim type that is mounted on the back of a thin TV or the like has been developed. In the slim type optical pickup device, it is necessary to reduce the effective diameter and focal length of the objective lens to be compact as compared with the conventional half-height type.
 ここで、特許文献1に開示された3種類の実施例では、対物レンズの有効径φ3mmであり、DVD使用時のワーキングディスタンスは0.284mm~0.330mmを確保している。φ3mmというのは、上述したハーフハイトタイプに用いられることが多い大きさの対物レンズである。しかるに、特許文献1の対物レンズを、スリムタイプの光ピックアップ装置に搭載できるよう単純に有効径を縮小すると、それに応じてDVD使用時のワーキングディスタンスも短くなり、回転する光ディスクに反りなどがあると、対物レンズとの干渉を招く恐れがある。又、特許文献1に開示されている位相構造を重畳した対物レンズは、光学面形状が複雑であり、特に小径の対物レンズにおいては製造が困難という問題がある。しかし、位相構造の重畳をやめてしまい、特許文献1に示されている単一の構造のみとした対物レンズでは、対物レンズがプラスチックレンズである場合に、温度変化が起きたときに球面収差を良好に補正できないという問題がある。 Here, in the three types of embodiments disclosed in Patent Document 1, the effective diameter of the objective lens is 3 mm, and the working distance when using the DVD is 0.284 mm to 0.330 mm. φ3 mm is an objective lens of a size often used in the above-described half-height type. However, if the effective diameter is simply reduced so that the objective lens of Patent Document 1 can be mounted on a slim type optical pickup device, the working distance when using a DVD is correspondingly shortened, and the rotating optical disc has warpage, etc. There is a risk of causing interference with the objective lens. Moreover, the objective lens on which the phase structure disclosed in Patent Document 1 is superimposed has a complicated optical surface shape, and there is a problem that it is difficult to manufacture particularly for a small-diameter objective lens. However, in the objective lens in which the superposition of the phase structure is stopped and only the single structure shown in Patent Document 1 is used, when the objective lens is a plastic lens, the spherical aberration is good when a temperature change occurs. There is a problem that it cannot be corrected.
 本発明は、上述の課題を解決することを目的としたものであり、BDとDVDという2つの異なる光ディスクを互換使用する場合において、小径でありながら特にDVDに対して十分なワーキングディスタンスを確保でき、しかも製造が容易で、温度変化時においても安定した性能を有しながらも、波長特性を大きく悪化させることのない光ピックアップ装置用の対物レンズ並びに光ピックアップ装置及び光情報記録再生装置を提供することを目的とする。 The present invention is intended to solve the above-mentioned problems, and in the case where two different optical disks, BD and DVD, are used interchangeably, a sufficient working distance can be ensured particularly for a DVD while having a small diameter. An objective lens for an optical pickup device, an optical pickup device, and an optical information recording / reproducing device, which are easy to manufacture and have stable performance even when temperature changes, but do not greatly deteriorate wavelength characteristics. For the purpose.
 請求項1に記載の対物レンズは、第1波長λ1(nm)(390≦λ1≦415)の第1光束を射出する第1光源と、第2波長λ2(nm)(630≦λ2≦670)の第2光束を射出する第2光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有するBDの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有するDVDの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
 前記対物レンズは単玉であり、
 前記対物レンズの光学面は、中央領域と、前記中央領域の周りの周辺領域とを有し、
 前記中央領域は、第1光路差付与構造を有し、
  前記対物レンズは、前記中央領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、
 前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記第1光路差付与構造は、前記第1光路差付与構造を通過した第1光束のN次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1光路差付与構造を通過した第2光束のN次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 以下の式を満たすことを特徴とする。
 1.7≦φ1≦2.9   (1)
 0.10≦WD2/f≦0.42   (2)
但し、
φ1:前記BD使用時の前記対物レンズの有効径(mm)
WD2:前記DVD使用時の前記対物レンズのワーキングディスタンス(mm)
f:前記第1光束における前記対物レンズの焦点距離(mm)
The objective lens according to claim 1 includes a first light source that emits a first light beam having a first wavelength λ1 (nm) (390 ≦ λ1 ≦ 415), and a second wavelength λ2 (nm) (630 ≦ λ2 ≦ 670). A second light source that emits the second light flux, and records and / or reproduces information of a BD having a protective substrate with a thickness of t1 using the first light flux, and uses the second light flux. An objective lens used in an optical pickup device for recording and / or reproducing information of a DVD having a protective substrate having a thickness t2 (t1 <t2),
The objective lens is a single ball,
The optical surface of the objective lens has a central region and a peripheral region around the central region,
The central region has a first optical path difference providing structure,
The objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region. Are collected so that information can be recorded and / or reproduced on the information recording surface of the DVD,
The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area. Is not condensed so that information can be recorded and / or reproduced on the information recording surface of the DVD,
The first optical path difference providing structure makes the Nth-order diffracted light quantity of the first light beam that has passed through the first optical path difference providing structure larger than any other order diffracted light quantity, and passes through the first optical path difference providing structure. The Nth-order diffracted light amount of the second light flux is larger than any other order diffracted light amount,
The following formula is satisfied.
1.7 ≦ φ1 ≦ 2.9 (1)
0.10 ≦ WD2 / f ≦ 0.42 (2)
However,
φ1: Effective diameter of the objective lens when using the BD (mm)
WD2: Working distance of the objective lens when using the DVD (mm)
f: Focal length (mm) of the objective lens in the first light flux
 本発明者は、鋭意研究の結果、(1)式を満たすような小径の有効径を有する場合でも、前記第1光路差付与構造において最も多く発生する第1光束の回折光の回折次数と、第2光束の回折光の回折次数とを同じ次数にすることにより、負の近軸パワーを与えることが可能となり、ひいては、BDとDVDの2互換を達成しつつ、更に、DVD使用時においても、ワーキングディスタンスを伸ばすことができることを見出した。本発明の対物レンズのワーキングディスタンスは、(2)式を満たすものであり、いわゆるスリムタイプの光ピックアップ装置に好適である。又、本発明では、第1光路差付与構造を、複数の光路差付与構造が重畳した構造としなくても、即ち、比較的単純な光学面形状で、製造容易な対物レンズとしても、前記第1光路差付与構造において発生する同次数の回折光を用いることで、波長が長波長に変化した際の球面収差をアンダーにでき、対物レンズがプラスチック製であったとしても、環境温度が変化した時に発生する球面収差を良好に維持できることが判明した。さらに、このように温度特性を良好にしながらも、波長特性を大きく悪化させることがないという効果を有することも本発明者は見出した。 As a result of earnest research, the inventor has the diffraction order of the diffracted light of the first light flux most frequently generated in the first optical path difference providing structure, even when the effective diameter is small enough to satisfy the formula (1), By making the diffraction order of the diffracted light of the second light beam the same order, it becomes possible to give a negative paraxial power. As a result, while achieving compatibility between BD and DVD, and even when using DVD And found that working distance can be increased. The working distance of the objective lens of the present invention satisfies the formula (2), and is suitable for a so-called slim type optical pickup device. Further, in the present invention, the first optical path difference providing structure does not have to be a structure in which a plurality of optical path difference providing structures are superimposed, that is, the objective lens can be easily manufactured with a relatively simple optical surface shape. By using the same-order diffracted light generated in the one-optical path difference providing structure, spherical aberration when the wavelength is changed to a long wavelength can be made under, and the environmental temperature is changed even if the objective lens is made of plastic. It was found that the spherical aberration that sometimes occurs can be maintained well. Further, the present inventor has also found out that the wavelength characteristic is not greatly deteriorated while the temperature characteristic is improved as described above.
 条件式の上限下限の意義を説明すると、(1)式の値が上限以下であれば、いわゆるスリムタイプの光ピックアップ装置に好適な対物レンズとなり、一方、(1)式の値が下限以上であれば、第2光ディスク使用時のワーキングディスタンスが短くなりすぎることを防ぐことができる。また、(2)式の値が上限以下であれば、第1光路差付与構造のピッチが小さくなり過ぎないので製造し易い対物レンズとなり、また軸上色収差が大きくなり過ぎることを防ぐことができる。一方、(2)式の値が下限以上であれば、第2光ディスク使用時のワーキングディスタンスを確保できるので、光ディスクと対物レンズとの干渉する恐れを軽減できる。  Explaining the significance of the upper and lower limits of the conditional expression, if the value of the expression (1) is less than the upper limit, the objective lens is suitable for a so-called slim type optical pickup device, while the value of the expression (1) is more than the lower limit. Thus, it is possible to prevent the working distance when using the second optical disk from becoming too short. Further, if the value of the expression (2) is not more than the upper limit, the pitch of the first optical path difference providing structure does not become too small, so that the objective lens can be easily manufactured, and the axial chromatic aberration can be prevented from becoming too large. . On the other hand, if the value of the expression (2) is equal to or greater than the lower limit, the working distance when using the second optical disk can be secured, so that the possibility of interference between the optical disk and the objective lens can be reduced. *
 請求項2に記載の対物レンズは、請求項1に記載の発明において、前記第1光路差付与構造は、複数の光路差付与構造を重畳した構造ではないことを特徴とする。本発明により、単純な形状の製造しやすい対物レンズを得ることが可能となる。 The objective lens according to claim 2 is characterized in that, in the invention according to claim 1, the first optical path difference providing structure is not a structure in which a plurality of optical path difference providing structures are superimposed. According to the present invention, it is possible to obtain an objective lens having a simple shape that is easy to manufacture.
 請求項3に記載の対物レンズは、請求項2に記載の発明において、前記第1光路差付与構造はブレーズ型構造のみからなることを特徴とする。 According to a third aspect of the present invention, there is provided the objective lens according to the second aspect, wherein the first optical path difference providing structure comprises only a blaze type structure.
 請求項4に記載の対物レンズは、請求項1乃至3のいずれかに記載の発明において、|N|=1であることを特徴とする。本発明により、第1光路差付与構造の段差の高さを低くできるため、製造が容易な対物レンズが得られると共に、波長変動時の回折効率の変動を低く抑えることができる。 The objective lens according to claim 4 is characterized in that | N | = 1 in the invention according to any one of claims 1 to 3. According to the present invention, since the height of the step of the first optical path difference providing structure can be reduced, an objective lens that is easy to manufacture can be obtained, and fluctuations in diffraction efficiency during wavelength fluctuations can be suppressed to a low level.
 請求項5に記載の対物レンズは、請求項4に記載の発明において、N=+1であることを特徴とする。前記第1光路差付与構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくしたときが、最も高い回折効率を得られるからである。本発明者の検討結果によれば、第1光路差付与構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくしたときに、第1光束の1次の回折光の回折効率は89.54%であり、第2光束の1次の回折光の回折効率は78.17%であった。これに対し、第1光路差付与構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1光路差付与構造を通過した第2光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくした第1光路差付与構造に設計変更すると、第1光束の2次の回折光の回折効率は76.17%であり、第2光束の2次の回折光の回折効率は47.21%であった。回折効率は、回折次数が高くなるに連れて低下することがわかる。 The objective lens described in claim 5 is characterized in that, in the invention described in claim 4, N = + 1. The first-order diffracted light amount of the first light beam that has passed through the first optical path difference providing structure is made larger than any other order of diffracted light amount, and the first-order diffraction of the second light beam that has passed through the first optical path difference providing structure. This is because the highest diffraction efficiency can be obtained when the amount of light is larger than any other order of the amount of diffracted light. According to the examination result of the present inventor, the first-order diffracted light quantity of the first light beam that has passed through the first optical path difference providing structure is made larger than any other order diffracted light quantity and passed through the first optical path difference providing structure. When the first-order diffracted light amount of the second light beam is larger than any other order diffracted light amount, the diffraction efficiency of the first-order diffracted light beam of the first light beam is 89.54%, and the first-order diffracted light beam of the second light beam The diffraction efficiency of the diffracted light was 78.17%. On the other hand, the second-order diffracted light amount of the first light beam that has passed through the first optical path difference providing structure is made larger than any other order of diffracted light amount, and the second-order secondary light beam that has passed through the first optical path difference providing structure. When the design is changed to the first optical path difference providing structure in which the diffracted light quantity of the first light beam is larger than any other order diffracted light quantity, the diffraction efficiency of the second-order diffracted light of the first light flux is 76.17%. The diffraction efficiency of the second-order diffracted light was 47.21%. It can be seen that the diffraction efficiency decreases as the diffraction order increases.
 請求項6に記載の対物レンズは、請求項1乃至5のいずれかに記載の発明において、以下の式を満たすことを特徴とする。
 0.9・λ1/(n-1)≦d≦2.2・λ1/(n-1)   (3)
但し、
d:前記第1光路差付与構造の光軸方向の段差量 (nm)
n:前記第1波長λ1における前記対物レンズの屈折率
 本発明により、第1光路差付与構造の段差の高さを低くできるため、製造が容易な対物レンズが得られると共に、波長変動時の回折効率の変動を低く抑えることができる。
The objective lens described in claim 6 is characterized in that, in the invention described in any one of claims 1 to 5, the following expression is satisfied.
0.9 · λ1 / (n-1) ≦ d ≦ 2.2 · λ1 / (n-1) (3)
However,
d: Level difference in the optical axis direction of the first optical path difference providing structure (nm)
n: Refractive index of the objective lens at the first wavelength λ1 According to the present invention, since the height of the step of the first optical path difference providing structure can be reduced, an objective lens that is easy to manufacture can be obtained and diffraction at the time of wavelength variation Variations in efficiency can be kept low.
 請求項7に記載の対物レンズは、請求項1乃至6のいずれかに記載の発明において、前記第1光路差付与構造の、少なくとも光軸に最も近い段差が光軸とは逆の方向を向いていることを特徴とする。本発明によって、近軸パワーの値を負にすることができるため、BDとDVDの2互換を達成しつつ、DVD使用時においても、ワーキングディスタンスを伸ばすことができる。 According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the step closest to the optical axis of the first optical path difference providing structure faces a direction opposite to the optical axis. It is characterized by. According to the present invention, since the value of the paraxial power can be made negative, the working distance can be extended even when the DVD is used while achieving the two compatibility of BD and DVD.
 請求項8に記載の対物レンズは、請求項1乃至7のいずれかに記載の発明において、前記第1光路差付与構造の前記第2波長λ2における近軸パワーの値が負であることを特徴とする。 An objective lens according to an eighth aspect is characterized in that, in the invention according to any one of the first to seventh aspects, the value of the paraxial power at the second wavelength λ2 of the first optical path difference providing structure is negative. And
 請求項9に記載の対物レンズは、請求項8に記載の発明において、以下の式を満たすことを特徴とする。
 -0.44≦P0*f≦-0.06   (4)
但し、
0:前記第1光路差付与構造の前記第2波長λ2における近軸パワー
The objective lens described in claim 9 is characterized in that, in the invention described in claim 8, the following expression is satisfied.
−0.44 ≦ P 0 * f ≦ −0.06 (4)
However,
P 0 : Paraxial power at the second wavelength λ2 of the first optical path difference providing structure
 (4)式の値が上限以下であれば、第1光路差付与構造のピッチが小さくなり過ぎないので製造し易い対物レンズとなり、また軸上色収差が大きくなり過ぎることを防止できる。一方、(4)式の値が下限以上であれば、第2光ディスク使用時のワーキングディスタンスを確保できるので、光ディスクと対物レンズとの干渉する恐れを軽減できる。 If the value of the expression (4) is less than the upper limit, the pitch of the first optical path difference providing structure does not become too small, so that the objective lens can be easily manufactured, and the axial chromatic aberration can be prevented from becoming too large. On the other hand, if the value of the expression (4) is equal to or greater than the lower limit, the working distance when using the second optical disk can be secured, so that the possibility of interference between the optical disk and the objective lens can be reduced.
 請求項10に記載の対物レンズは、請求項1乃至9のいずれかに記載の発明において、以下の式を満たすことを特徴とする。
 0.75≦dx/f≦1.70   (5)
但し、
dx:前記対物レンズの軸上厚
The objective lens described in claim 10 is characterized in that, in the invention described in any one of claims 1 to 9, the following expression is satisfied.
0.75 ≦ dx / f ≦ 1.70 (5)
However,
dx: axial thickness of the objective lens
 (5)式の値が上限以下であれば、環境温度変化に対する球面収差劣化を抑えることができ、又、光路差付与構造のピッチが小さくなりすぎず、製造し易い対物レンズとなり、更に第2光ディスク使用時のワーキングディスタンスを確保できる。一方、(5)式の値が下限以上であれば、BDのような短波長、高NAの光ディスク使用時においても、製造誤差に起因して生じる対物レンズの光源側光学面と光ディスク側光学面の光軸偏心に対する光学特性の劣化が大きくなりすぎず、また、非点収差が大きくなることも防止でき、更には対物レンズの光学面の縁厚が薄くなり過ぎないから、射出成形などでは素材の流動を円滑に行うことが出来、成形が容易になる。 If the value of the expression (5) is less than or equal to the upper limit, spherical aberration deterioration with respect to environmental temperature changes can be suppressed, the pitch of the optical path difference providing structure does not become too small, and the objective lens is easy to manufacture. A working distance when using an optical disc can be secured. On the other hand, if the value of the expression (5) is equal to or more than the lower limit, the light source side optical surface and the optical disc side optical surface of the objective lens caused by manufacturing errors even when using a short wavelength, high NA optical disc such as BD. It is possible to prevent deterioration of the optical characteristics due to the optical axis decentration of the lens, and to prevent the astigmatism from increasing, and furthermore, the edge thickness of the optical surface of the objective lens does not become too thin. Can flow smoothly and molding becomes easy.
 請求項11に記載の対物レンズは、請求項1乃至10のいずれかに記載の発明において、前記周辺領域は第2光路差付与構造を有し、前記第2光路差付与構造は、前記第2光路差付与構造を通過した第1光束の5次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2光路差付与構造を通過した第2光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする。本発明者は、本発明の前記第1光路差付与構造を用いた場合、前記第2光路差付与構造において第1光束の5次回折光と第2光束の3次回折光と発生させることで、DVDのフレア状態を良好なものとし、開口絞りの効果を与えることができることを見出した。 The objective lens according to claim 11 is the objective lens according to any one of claims 1 to 10, wherein the peripheral region has a second optical path difference providing structure, and the second optical path difference providing structure is the second optical path difference structure. The fifth-order diffracted light amount of the first light beam that has passed through the optical path difference providing structure is made larger than any other order of diffracted light amount, and the third-order diffracted light amount of the second light beam that has passed through the second optical path difference providing structure is changed. The diffracted light quantity of any order is made larger. When the first optical path difference providing structure of the present invention is used, the present inventor generates the fifth-order diffracted light of the first light beam and the third-order diffracted light of the second light beam in the second optical path difference-providing structure, thereby generating a DVD. The present inventors have found that the flare state can be improved and an aperture stop effect can be provided.
 請求項12に記載の対物レンズは、請求項1乃至11のいずれかに記載の発明において、前記中央領域を通過した前記第2光束の集光位置と、前記周辺領域を通過した前記第2光束の集光位置との光軸方向の距離Δが0.005mm以上であることを特徴とする。 The objective lens according to a twelfth aspect is the invention according to any one of the first to eleventh aspects, wherein the second light flux passing through the central region and the second light flux passing through the peripheral region. The distance Δ in the optical axis direction with respect to the light condensing position is 0.005 mm or more.
 図1の縦球面収差図を例に取ると、中央領域を通過した第2光束BM1の集光位置を基点とし、周辺領域を通過した第2光束BM2の最も近い集光位置までの光軸方向の距離をΔとすると、Δが0.005mm以上であれば、両者がかぶることがなく、開口制限の機能を有効に持たせることが出来る。 Taking the longitudinal spherical aberration diagram of FIG. 1 as an example, the optical axis direction from the condensing position of the second light beam BM1 that has passed through the central region to the closest condensing position of the second light beam BM2 that has passed through the peripheral region If Δ is 0.005 mm or more, the two do not cover each other, and the aperture limiting function can be effectively provided.
 請求項13に記載の対物レンズは、請求項1乃至12のいずれかに記載の発明において、前記第2光路差付与構造はブレーズ構造のみからなることを特徴とする。これにより、基準波長における回折効率を高く維持できる。 The objective lens according to claim 13 is characterized in that, in the invention according to any one of claims 1 to 12, the second optical path difference providing structure comprises only a blaze structure. Thereby, the diffraction efficiency in a reference wavelength can be maintained high.
 請求項14に記載の光ピックアップ装置は、請求項1乃至13のいずれかに記載の対物レンズを有することを特徴とする。 An optical pickup device according to a fourteenth aspect includes the objective lens according to any one of the first to thirteenth aspects.
 請求項15に記載の光ピックアップ装置は、請求項14に記載の発明であって、スリムタイプであることを特徴とする。 An optical pickup device according to a fifteenth aspect is the invention according to the fourteenth aspect, which is a slim type.
 請求項16に記載の光情報記録再生装置は、請求項14又は15に記載の光ピックアップ装置を有することを特徴とする。 An optical information recording / reproducing apparatus according to a sixteenth aspect includes the optical pickup apparatus according to the fourteenth or fifteenth aspect.
 本発明に係る光ピックアップ装置は、第1光源と第2光源を有する。さらに、本発明の光ピックアップ装置は、第1光束をBDの情報記録面上に集光させ、第2光束をDVDの情報記録面上に集光させるための集光光学系を有する。また、本発明の光ピックアップ装置は、BD又はDVDの情報記録面からの反射光束を受光する受光素子を有する。 The optical pickup device according to the present invention has a first light source and a second light source. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing the first light beam on the information recording surface of the BD and condensing the second light beam on the information recording surface of the DVD. The optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from an information recording surface of a BD or DVD.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さ(t1)が0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、波長630~670nm程度の光束、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.5~0.7mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVDの順に低い。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness (t1) of the protective substrate is 0.05. It is a generic name for BD series optical discs of about 0.125 mm and includes BD having only a single information recording layer, BD having two or more information recording layers, and the like. Further, in the present specification, DVD means that information is recorded / reproduced by a light beam having a wavelength of about 630 to 670 nm and an objective lens having an NA of about 0.60 to 0.67, and the thickness of the protective substrate is 0.5. It is a generic term for DVD series optical discs of about 0.7 mm and includes DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. As for the recording density, the recording density of BD is the highest, and then the order of DVD is lower.
 本明細書において、第1光源、第2光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)は、λ1は、390nm以上、415nm以下であって、λ2は、630nm以上、670nm以下である。 In the present specification, the first light source and the second light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light flux emitted from the first light source, and the second wavelength λ2 (λ2> λ1) of the second light flux emitted from the second light source, λ1 is 390 nm or more and 415 nm or less, λ2 is not less than 630 nm and not more than 670 nm.
 また、第1光源、第2光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source and the second light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、対物レンズを有する。集光光学系は、対物レンズの他にコリメータ等のカップリングレンズを有していることが好ましい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、好ましくは単玉の凸レンズからなる対物レンズである。また、対物レンズは、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂、UV硬化性樹脂、又は熱硬化性樹脂などで光路差付与構造を設けたハイブリッドレンズであってもよい。対物レンズが複数のレンズを有する場合は、ガラスレンズとプラスチックレンズを混合して用いてもよい。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 The condensing optical system has an objective lens. The condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens. The coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light. In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens is preferably an objective lens composed of a single convex lens. The objective lens may be a glass lens or a plastic lens, or an optical path difference providing structure is provided on the glass lens with a photo-curing resin, a UV-curing resin, or a thermosetting resin. A hybrid lens may also be used. When the objective lens has a plurality of lenses, a glass lens and a plastic lens may be mixed and used. The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名)がある。 When the objective lens is a glass lens, it is preferable to use a glass material having a glass transition point Tg of 500 ° C. or lower, more preferably 400 ° C. or lower. By using a glass material having a glass transition point Tg of 500 ° C. or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended. Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
 ところで、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、重量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。 By the way, since the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
 加えて、ガラスレンズを成形して製作する際に重要となる物性値の一つが線膨脹係数aである。仮にTgが400℃以下の材料を選んだとしても、プラスチック材料と比較して室温との温度差は依然大きい。線膨脹係数aが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨脹係数aは、200(10E-7/K)以下にあることが好ましく、さらに好ましくは120以下であることである。 In addition, one of the important physical properties when molding a glass lens is the linear expansion coefficient a. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient a, cracks are likely to occur when the temperature is lowered. The linear expansion coefficient a of the glass material is preferably 200 (10E-7 / K) or less, and more preferably 120 or less.
 プラスチックとしては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As the plastic, cycloolefin resin is preferably used, and specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, JSR manufactured by ARTON, etc. are preferable examples. Can be mentioned.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 対物レンズについて、以下に記載する。対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの周辺領域とを有する。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中心領域(中央領域ともいう)としてもよい。中央領域及び周辺領域は同一の光学面上に設けられていることが好ましい。図2に示されるように、中央領域CN、周辺領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。中央領域、周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。中央領域には第1光路差付与構造が設けられている。周辺領域には第2光路差付与構造が設けられていることが好ましい。 The objective lens is described below. At least one optical surface of the objective lens has a central region and a peripheral region around the central region. The central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good. The central region and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 2, the central region CN and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface. The central region and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them. A first optical path difference providing structure is provided in the central region. It is preferable that a second optical path difference providing structure is provided in the peripheral region.
 対物レンズの中央領域は、BD及びDVDの記録/再生に用いられる共用領域と言える。即ち、対物レンズは、中央領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中央領域を通過する第2光束を、DVDの情報記録面上に情報の記録及び/又は再生ができるように集光する。また、中央領域に設けられた第1光路差付与構造は、第1光路差付与構造を通過する第1光束及び第2光束に対して、BDの保護基板の厚さt1とDVDの保護基板の厚さt2の違いにより発生する球面収差/第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。 The central area of the objective lens can be said to be a shared area used for recording / reproducing BD and DVD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. Light is collected so that information can be recorded and / or reproduced on the surface. In addition, the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam.
 対物レンズの周辺領域は、BDの記録/再生に用いられ、DVDの記録/再生に用いられないBD専用領域と言える。即ち、対物レンズは、周辺領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、周辺領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの周辺領域を通過する第2光束は、DVDの情報記録面上でフレアを形成することが好ましい。対物レンズを通過した第2光束がDVDの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部、光量密度がスポット中心部より低いスポット中間部、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部を有することが好ましい。スポット中心部が、光ディスクの情報の記録/再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録/再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼んでもよい。つまり、対物レンズの周辺領域を通過した第2光束は、DVDの情報記録面上でスポット周辺部を形成することが好ましいとも言える。 The peripheral area of the objective lens is used for BD recording / reproduction and can be said to be a BD-dedicated area that is not used for DVD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD. On the other hand, the second light flux passing through the peripheral region is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD. The second light flux passing through the peripheral area of the objective lens preferably forms a flare on the information recording surface of the DVD. In the spot formed on the information recording surface of the DVD by the second light flux that has passed through the objective lens, in the order from the optical axis side (or spot central portion) to the outside, the spot central portion having a high light amount density, and the light amount density is the spot center. It is preferable to have a spot middle part lower than the spot part and a spot peripheral part whose light intensity is higher than the spot middle part and lower than the spot center part. The center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare. However, there is no spot middle part around the center part of the spot and there is a spot peripheral part, that is, even when a light spot is formed thinly around the condensing spot, the spot peripheral part may be called a flare. Good. That is, it can be said that the second light flux that has passed through the peripheral region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the DVD.
 第1光路差付与構造は、対物レンズの中央領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第1光路差付与構造が、中央領域の全面に設けられていることである。第2光路差付与構造は、対物レンズの周辺領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第2光路差付与構造が、周辺領域の全面に設けられていることである。 The first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region. The second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the peripheral region.
 なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam. The optical path difference providing structure also includes a phase difference providing structure for providing a phase difference. The phase difference providing structure includes a diffractive structure. The optical path difference providing structure of the present invention is preferably a diffractive structure. The optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. When the objective lens provided with the optical path difference providing structure is a single aspherical lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis. Each will be slightly different. For example, when the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光源側レンズ面に回折構造を設けた単玉非球面レンズの場合、光軸からの高さによって回折構造からの出射角とレンズに入射するまでの光路長が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, in the case of a single aspherical lens having a diffractive structure on the light source side lens surface, the exit angle from the diffractive structure and the optical path length to enter the lens differ depending on the height from the optical axis. The amount will vary slightly for each zone. For example, when the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造は、一般に、様々な断面形状(光軸を含む面での断面形状)をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 Incidentally, it is preferable that the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center. In addition, the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
 ブレーズ型構造とは、図3(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。尚、図3の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図3(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量dという。(図3(a)参照) As shown in FIGS. 3A and 3B, the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape. In the example of FIG. 3, it is assumed that the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface. In the blazed structure, the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P. (See FIGS. 3A and 3B) The length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount d. (See Fig. 3 (a))
 また、階段型構造とは、図3(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Vレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有することになる。 In addition, as shown in FIGS. 3 (c) and 3 (d), the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ). In the present specification, “V level” means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones. Particularly, a three-level or higher staircase structure has a small step and a large step.
 例えば、図3(c)に示す光路差付与構造を、5レベルの階段型構造といい、図3(d)に示す光路差付与構造を、2レベルの階段型構造(バイナリ構造ともいう)という。2レベルの階段型構造について、以下に説明する。光軸を中心とした同心円状の複数の輪帯を含み、対物レンズの光軸を含む複数の輪帯の断面の形状は、光軸に平行に延在する複数の段差面Pa、Pbと、隣接する段差面Pa、Pbの光源側端同士を連結する光源側テラス面Pcと、隣接する段差面Pa、Pbの光ディスク側端同士を連結する光ディスク側テラス面Pdとから形成され、光源側テラス面Pcと光ディスク側テラス面Pdとは、光軸に交差する方向に沿って交互に配置される。 For example, the optical path difference providing structure illustrated in FIG. 3C is referred to as a five-level staircase structure, and the optical path difference providing structure illustrated in FIG. 3D is referred to as a two-level staircase structure (also referred to as a binary structure). . A two-level staircase structure is described below. A plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis, The light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed. The surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
 また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという。(図3(c)、(d)参照)また、階段の光軸に平行方向の段差の長さを段差量B1,B2という。3レベル以上の階段型構造の場合、大段差量B1と小段差量B2とが存在することになる。(図3(c)参照) Also, in the staircase structure, the length of one staircase unit in the direction perpendicular to the optical axis is called a pitch P. (See FIGS. 3C and 3D) The length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2. In the case of a three-level or higher staircase structure, a large step amount B1 and a small step amount B2 exist. (See Fig. 3 (c))
 尚、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 The optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated. 「“ The unit shape is periodically repeated ”here includes a shape in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図3(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図3(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げることが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。 When the optical path difference providing structure has a blazed structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 3 (a), the same sawtooth shape may be repeated, and as shown in FIG. 3 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used. In addition, in some areas, the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area | region required in order to switch the direction of the level | step difference of a blaze | braze type | mold structure is provided in the meantime. In addition, when it is set as the structure which switches the direction of the level | step difference of a blaze | braze type | mold in this way, it becomes possible to widen an annular zone pitch and it can suppress the transmittance | permeability fall by the manufacturing error of an optical path difference providing structure.
 光路差付与構造が、階段型構造を有する場合、図3(c)で示されるような5レベルの階段単位が、繰り返されるような形状等があり得る。さらに、光軸から離れる方向に進むに従って、徐々に階段単位のピッチが長くなっていく形状や、徐々に階段単位のピッチが短くなっていく形状であってもよい。 When the optical path difference providing structure has a staircase structure, there may be a shape in which a 5-level stair unit as shown in FIG. Furthermore, it may be a shape in which the pitch of the staircase unit gradually increases as it moves away from the optical axis, or a shape in which the pitch of the staircase unit gradually decreases.
 また、第1光路差付与構造及び第2光路差付与構造は、それぞれ対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、第1光路差付与構造、及び第2光路差付与構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。別の言い方では、第1光路差付与構造、及び第2光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。 The first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. Moreover, it is preferable that the first optical path difference providing structure and the second optical path difference providing structure are provided on the surface on the light source side of the objective lens rather than the surface on the optical disc side of the objective lens. In other words, the first optical path difference providing structure and the second optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
 第1光路差付与構造は、ブレーズ型構造であると好ましい。また、第1光路差付与構造は、一種類のブレーズ型構造のみからなり、他の構造を重畳されていないことが好ましい。また、第1光路差付与構造は、第1光路差付与構造を通過した第1光束のN次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1光路差付与構造を通過した第2光束のN次の回折光量を他のいかなる次数の回折光量よりも大きくする。即ち、第1光路差付与構造を通過した第1光束において最も多く発生する回折光の次数と、第1光路差付与構造を通過した第2光束において最も多く発生する回折光の次数とが、等しい。回折効率の高さ、製造の容易さ、波長変動時の回折効率変動の小ささ等の観点から、Nの絶対値は1であると好ましい。また、Nは+1であることがより好ましい。 The first optical path difference providing structure is preferably a blazed structure. Moreover, it is preferable that the first optical path difference providing structure is composed of only one type of blaze type structure and other structures are not superimposed. In addition, the first optical path difference providing structure makes the Nth-order diffracted light amount of the first light flux that has passed through the first optical path difference providing structure larger than any other order diffracted light amount, and passed through the first optical path difference providing structure. The Nth-order diffracted light quantity of the second light beam is made larger than any other order diffracted light quantity. That is, the order of the diffracted light generated most in the first light flux that has passed through the first optical path difference providing structure is equal to the order of the diffracted light generated most in the second light flux that has passed through the first optical path difference providing structure. . The absolute value of N is preferably 1 from the viewpoints of high diffraction efficiency, ease of manufacture, small diffraction efficiency fluctuation at the time of wavelength fluctuation, and the like. Further, N is more preferably +1.
 |N|=1である場合、第1光路差付与構造の段差量は以下の条件式を満たすことが好ましい。
  0.9・λ1/(n-1)≦d≦2.2・λ1/(n-1)   (3)
但し、dは、第1光路差付与構造の光軸方向の段差量(nm)であり、nは、第1波長λ1における対物レンズの屈折率を表す。尚、光路差付与構造を設けた対物レンズが単玉非球面の凸レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。条件式(3)において上限に2.2を乗じているのは、当該段差量の増加を加味した故である。第1光路差付与構造の全ての段差において条件式(3)を満たすことが好ましい。
When | N | = 1, it is preferable that the step amount of the first optical path difference providing structure satisfies the following conditional expression.
0.9 · λ1 / (n-1) ≦ d ≦ 2.2 · λ1 / (n-1) (3)
Here, d is the step amount (nm) in the optical axis direction of the first optical path difference providing structure, and n represents the refractive index of the objective lens at the first wavelength λ1. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. The reason why the upper limit is multiplied by 2.2 in the conditional expression (3) is because the increase in the level difference is taken into account. It is preferable that the conditional expression (3) is satisfied in all the steps of the first optical path difference providing structure.
 また、第1光路差付与構造のブレーズ化波長λB(理論上、当該第1光路差付与構造において回折効率が100%になる波長)は、λ1より大きく、λ2より小さい波長であることが好ましい。より好ましくは、470nm以上、550nm以下である。さらに好ましくは、480nm以上、530nm以下である。 The blazed wavelength λB of the first optical path difference providing structure (theoretically, the wavelength at which the diffraction efficiency is 100% in the first optical path difference providing structure) is preferably larger than λ1 and smaller than λ2. More preferably, it is 470 nm or more and 550 nm or less. More preferably, they are 480 nm or more and 530 nm or less.
 第2光路差付与構造は、ブレーズ型構造であると好ましい。また、第2光路差付与構造は、一種類のブレーズ型構造のみからなり、他の構造を重畳されていないことが好ましい。また、第2光路差付与構造は、第2光路差付与構造を通過した第1光束の5次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第2光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。特に、第1光路差付与構造の|N|が1である場合に、このような第2光路差付与構造を採用すると、DVD使用時に適切なフレア出しができるため好ましい。 The second optical path difference providing structure is preferably a blazed structure. Moreover, it is preferable that the second optical path difference providing structure is composed of only one type of blaze type structure and other structures are not superimposed. In addition, the second optical path difference providing structure makes the fifth-order diffracted light quantity of the first light flux that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity, and passed through the second optical path difference providing structure. It is preferable that the third-order diffracted light quantity of the second light beam is larger than any other order diffracted light quantity. In particular, when | N | of the first optical path difference providing structure is 1, it is preferable to employ such a second optical path difference providing structure because proper flare can be produced when using a DVD.
 尚、DVD使用時に良好なフレア出しを行うためには、中央領域を通過した第2光束の集光位置と、周辺領域を通過した第2光束の集光位置との光軸方向の距離Δが0.005mm以上であることが好ましい。 In order to perform good flare out when using a DVD, the distance Δ in the optical axis direction between the condensing position of the second light beam that has passed through the central region and the condensing position of the second light beam that has passed through the peripheral region is It is preferable that it is 0.005 mm or more.
 また、第1光路差付与構造は、第2波長λ2において負の近軸パワーを持つことが好ましい。特に好ましくは、以下の式を満たすことである。
 -0.44≦P0*f≦-0.06   (4)
但し、
0:前記第1光路差付与構造のパワー
f:対物レンズの焦点距離
 尚、以下の式を満たすとより好ましい。
 -0.44≦P0*f≦-0.14   (4’)
The first optical path difference providing structure preferably has a negative paraxial power at the second wavelength λ2. Particularly preferably, the following formula is satisfied.
−0.44 ≦ P 0 * f ≦ −0.06 (4)
However,
P 0 : Power of the first optical path difference providing structure f: Focal length of the objective lens It is more preferable that the following expression is satisfied.
−0.44 ≦ P 0 * f ≦ −0.14 (4 ′)
 基板厚さが厚めのDVD使用時におけるワーキングディスタンスを伸ばすため、第1光路差付与構造が第2光束に対して負の近軸パワーを持つ(本明細書ではパワーを持つともいう)ことが好ましい。ここで、「近軸パワーを持つ」とは、第1光路差付与構造の光路差関数を後述する数2式で表した場合、C12が0でないことを意味する。回折構造における近軸パワーPは、一般的に以下の式で表せる。「負の近軸パワーを持つ」とは、この値が負の値であることを意味する。但し、C1は光路差関数係数であり、mは回折次数、λ2は光ピックアップ装置で使用されている第2光源の波長、λBは第1光路差付与構造のブレーズ化波長(その回折構造において回折効率が100%となる波長)である。
 P=-2×m×(λ2/λB)×C1   (8)
In order to increase the working distance when using a DVD with a thick substrate, it is preferable that the first optical path difference providing structure has a negative paraxial power (also referred to as power in this specification) with respect to the second light flux. . Here, “having paraxial power” means that C 1 h 2 is not 0 when the optical path difference function of the first optical path difference providing structure is expressed by the following equation ( 2 ). The paraxial power P in the diffractive structure can be generally expressed by the following equation. “Having negative paraxial power” means that this value is negative. Where C 1 is the optical path difference function coefficient, m is the diffraction order, λ 2 is the wavelength of the second light source used in the optical pickup device, and λ B is the blazed wavelength of the first optical path difference providing structure (its diffraction structure) The wavelength at which the diffraction efficiency is 100% in FIG.
P = −2 × m × (λ2 / λ B ) × C 1 (8)
 第1光路差付与構造が第2光束に対して負の近軸パワーを有する場合、第1光路差付与構造の、少なくとも光軸に最も近い段差が光軸とは逆の方向を向いていることが好ましい。「段差が光軸とは逆の方向を向いている」とは、図23(b)のような状態を言う。なお、図23(a)は、段差が光軸の方向を向いている状態を示している。好ましくは、少なくとも、光軸から中央領域と周辺領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差が、光軸とは逆の方向を向いていることである。 When the first optical path difference providing structure has a negative paraxial power with respect to the second light flux, at least the step closest to the optical axis of the first optical path difference providing structure is directed in a direction opposite to the optical axis. Is preferred. “The step is directed in the direction opposite to the optical axis” means a state as shown in FIG. FIG. 23A shows a state in which the step is directed in the direction of the optical axis. Preferably, at least a half step in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the peripheral region and the step existing between the optical axes are directed in the opposite direction to the optical axis. It is.
 例えば、第1光路差付与構造が光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、周辺領域付近では第1光路差付与構造の段差が光軸の方を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第1光路差付与構造の全ての段差が光軸とは逆の方向を向いていることである。 For example, when the first optical path difference providing structure is near the optical axis, the step is opposite to the optical axis, but is switched halfway, and near the peripheral region, the first optical path difference providing structure has a step on the optical axis. The shape may be suitable. However, preferably, all the steps of the first optical path difference providing structure provided in the central region are directed in a direction opposite to the optical axis.
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65.
 対物レンズの中央領域と周辺領域の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中央領域と周辺領域の境界が、NA2に相当する部分に形成されていることである。 The boundary between the central region and the peripheral region of the objective lens is 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more, 1.15 · NA 2) when the second light flux is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
 また、対物レンズは、以下の条件式(4)を満たすことが好ましい。
0.75≦dx/f≦1.70           (5)
 但し、dxは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離(mm)を表す。
The objective lens preferably satisfies the following conditional expression (4).
0.75 ≦ dx / f ≦ 1.70 (5)
Here, dx represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length (mm) of the objective lens in the first light flux.
 (5)式の値が上限以下であれば、環境温度変化に対する球面収差劣化を抑えることができ、又、光路差付与構造のピッチが小さくなりすぎず、製造し易い対物レンズとなり、更に第2光ディスクのワーキングディスタンスを確保できる。一方、(5)式の値が下限以上であれば、製造誤差に起因して生じる対物レンズの光源側光学面と光ディスク側光学面の光軸偏心に対する光学特性の劣化が大きくなりすぎず、更には対物レンズの光学面の縁厚が薄くなり過ぎないから、射出成形などでは素材の流動を円滑に行うことが出来、成形が容易になる。
 尚、以下の式を満たすとより好ましい。
 0.90≦dx/f≦1.41   (5’)
If the value of the expression (5) is less than or equal to the upper limit, spherical aberration deterioration with respect to environmental temperature changes can be suppressed, the pitch of the optical path difference providing structure does not become too small, and the objective lens is easy to manufacture. A working distance of the optical disc can be secured. On the other hand, if the value of the expression (5) is equal to or greater than the lower limit, the deterioration of the optical characteristics due to the optical axis decentering of the light source side optical surface and the optical disc side optical surface of the objective lens caused by the manufacturing error does not become excessive. Since the edge thickness of the optical surface of the objective lens does not become too thin, the material can be smoothly flowed in injection molding or the like, and molding becomes easy.
It is more preferable to satisfy the following formula.
0.90 ≦ dx / f ≦ 1.41 (5 ′)
 更に、BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、条件式(5)を満たすことにより非点収差や偏心コマ収差の発生を抑制することが可能となる。 Furthermore, when the optical disk having a short wavelength and a high NA such as BD is used, the objective lens is likely to generate astigmatism and decentered coma, but the conditional expression (5) occurs. By satisfying the above, it is possible to suppress the generation of astigmatism and decentration coma.
 また、条件式(5)を満たすことにより、対物レンズの軸上厚が厚めの厚肉対物レンズになるため、DVDの記録/再生時におけるワーキングディスタンスが短くなりがちになるにも拘わらず、本発明の第1光路差付与構造を対物レンズに設けることにより、DVDの記録/再生におけるワーキングディスタンスも十分に確保できるため、本発明の効果がより顕著なものとなる。 In addition, satisfying conditional expression (5) results in a thick objective lens with a thick on-axis objective lens, so that the working distance during DVD recording / playback tends to be short. By providing the objective lens with the first optical path difference providing structure of the invention, the working distance in DVD recording / reproduction can be sufficiently ensured, so that the effect of the present invention becomes more remarkable.
 本発明の対物レンズは、以下の条件式(1)及び(2)を満たす。
  1.7≦φ1≦2.9   (1)
  0.10≦WD2/f≦0.42   (2)
但し、φ1は、BD使用時の対物レンズの有効径(mm)を表し、WD2は、DVD使用時の対物レンズのワーキングディスタンス(mm)を表し、fは、第1光束における対物レンズの焦点距離(mm)を表す。さらに、以下の式を満たすとより好ましい。
  1.7≦φ1≦2.4   (1’)
  0.10≦WD2/f≦0.32   (2’)
The objective lens of the present invention satisfies the following conditional expressions (1) and (2).
1.7 ≦ φ1 ≦ 2.9 (1)
0.10 ≦ WD2 / f ≦ 0.42 (2)
Where φ1 represents the effective diameter (mm) of the objective lens when using BD, WD2 represents the working distance (mm) of the objective lens when using DVD, and f is the focal length of the objective lens in the first light flux. (Mm) Furthermore, it is more preferable when the following formula is satisfied.
1.7 ≦ φ1 ≦ 2.4 (1 ′)
0.10 ≦ WD2 / f ≦ 0.32 (2 ′)
 特に、第1光束及び第2光束が共に、略平行光(対物レンズの結像倍率が、-0.01~0.01程度)又は平行光として対物レンズに入射する場合、上記条件式(2’)を満たすことが好ましい。より好ましくは、以下の式を満たすことである。
 0.18≦WD2/f≦0.24   (2’’)
In particular, when both the first light beam and the second light beam are incident on the objective lens as substantially parallel light (the imaging magnification of the objective lens is about −0.01 to 0.01) or parallel light, the above conditional expression (2 It is preferable to satisfy '). More preferably, the following expression is satisfied.
0.18 ≦ WD2 / f ≦ 0.24 (2 ″)
 第1光束及び第2光束は、平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよい。トラッキング時においても、コマ収差が発生することを防止するためには、第1光束及び第2光束を全て平行光又は略平行光として対物レンズに入射させることが好ましい。本発明の第1光路差付与構造を用いることによって、第1光束及び第2光束の全てを平行光又は略平行光として対物レンズに入射させることが可能となるため、本発明の効果がより顕著となる。第1光束が平行光又は略平行光になる場合、第1光束が対物レンズに入射する時の対物レンズの結像倍率m1が、下記の式(9)を満たすことが好ましい。
-0.01<m1<0.01     (9)
The first light beam and the second light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light flux and the second light flux be incident on the objective lens as parallel light or substantially parallel light. By using the first optical path difference providing structure of the present invention, all of the first light beam and the second light beam can be incident on the objective lens as parallel light or substantially parallel light, and thus the effect of the present invention is more remarkable. It becomes. When the first light beam becomes parallel light or substantially parallel light, it is preferable that the imaging magnification m1 of the objective lens when the first light beam is incident on the objective lens satisfy the following formula (9).
-0.01 <m1 <0.01 (9)
 また、第2光束を平行光又は略平行光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(10)を満たすことが好ましい。
-0.01<m2<0.01     (10)
In addition, when the second light beam is incident on the objective lens as parallel light or substantially parallel light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following formula (10). Is preferred.
-0.01 <m2 <0.01 (10)
 一方で、第2光束を発散光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(10)´を満たすことが好ましい。
-0.025<m2≦-0.01     (10)´
On the other hand, when the second light beam is incident on the objective lens as diverging light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (10) ′. .
−0.025 <m2 ≦ −0.01 (10) ′
 第2光ディスクを用いる際の対物光学素子のWDは、0.2mm以上、0.55mm以下であることが好ましい。さらに、第1光ディスクを用いる際の対物光学素子のWDは、0.25mm以上、1.0mm以下であることが好ましい。 WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 0.55 mm or less. Furthermore, the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。光ピックアップ装置はスリムタイプであると好ましい。スリムタイプとは、高さH=8mm以下の光ピックアップ装置(図4に点線で外形を概略的に示す)をいう。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus. The optical pickup device is preferably a slim type. The slim type refers to an optical pickup device having a height H = 8 mm or less (the outline is schematically shown by a dotted line in FIG. 4).
 尚、テレビでは映像を観賞することが主目的であるため、多くの場合映像を記録しているBDやDVDの使用頻度は高いことが予測される一方で、多くの場合音声のみを記録しているCDの使用頻度は高くないと考えられる。そこで、テレビに内蔵される光ディスクドライブに含まれる光ピックアップ装置においては、CDを除外し、用途をBDとDVDの2互換に限定し得る。基板の厚さが最も厚いCDの互換を考慮する必要がなくなることにより、ワーキングディスタンスの問題が減少し、より小径の対物レンズを用いることが可能となるため、特に液晶テレビ、プラズマテレビ、FED(電界放出ディスプレイ)テレビ、LEDテレビ又は有機ELテレビ等のような薄型のテレビに内蔵される光ディスクドライブ用の薄型の光ピックアップ装置に好適である。 In addition, since the main purpose of watching video is on television, in many cases it is expected that the frequency of use of BD or DVD recording video is high, but in many cases only audio is recorded. The frequency of using existing CDs is not considered high. Therefore, in an optical pickup device included in an optical disk drive built in a television, a CD can be excluded and the application can be limited to two compatibility of BD and DVD. Since it is not necessary to consider the compatibility of the CD with the thickest substrate, the problem of working distance is reduced, and it becomes possible to use a smaller-diameter objective lens. In particular, liquid crystal televisions, plasma televisions, FED ( Field emission display) This is suitable for a thin optical pickup device for an optical disk drive incorporated in a thin television such as a television, LED television or organic EL television.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、3つの異なる光ディスクを互換使用する場合において、エラー信号等の発生を抑制できる光ピックアップ装置用の対物レンズ並びに光ピックアップ装置及び光情報記録再生装置を提供することが可能となる。 According to the present invention, it is possible to provide an objective lens for an optical pickup device, an optical pickup device, and an optical information recording / reproducing device that can suppress the occurrence of an error signal or the like when three different optical disks are used interchangeably. .
縦球面収差図の一例を示す図である。It is a figure which shows an example of a longitudinal spherical aberration figure. 本実施の形態にかかる単玉の対物レンズOLを光軸方向に見た図である。It is the figure which looked at the single objective lens OL concerning this Embodiment in the optical axis direction. 光路差付与構造の例を説明するための軸線方向断面図であり、(a)、(b)はブレーズ型構造を示し、(c)、(d)は階段型構造を示す。It is an axial direction sectional drawing for demonstrating the example of an optical path difference providing structure, (a), (b) shows a blaze | braze type | mold structure, (c), (d) shows a staircase type | mold structure. 異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record and / or reproduce | regenerate information appropriately with respect to BD, DVD, and CD which are different optical disks. 実施例1のBD使用時における縦球面収差図である。FIG. 4 is a longitudinal spherical aberration diagram when the BD of Example 1 is used. 実施例1のDVD使用時における縦球面収差図である。FIG. 4 is a longitudinal spherical aberration diagram when the DVD of Example 1 is used. 実施例2のBD使用時における縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the BD of Example 2 is used. 実施例2のDVD使用時における縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the DVD of Example 2 is used. 実施例3のBD使用時における縦球面収差図である。FIG. 5 is a longitudinal spherical aberration diagram when the BD of Example 3 is used. 実施例3のDVD使用時における縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the DVD of Example 3 is used. 実施例4のBD使用時における縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the BD of Example 4 is used. 実施例4のDVD使用時における縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the DVD of Example 4 is used. 実施例5のBD使用時における縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the BD of Example 5 is used. 実施例5のDVD使用時における縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when using the DVD of Example 5. 実施例6のBD使用時における縦球面収差図である。FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 6 is used. 実施例6のDVD使用時における縦球面収差図である。FIG. 12 is a longitudinal spherical aberration diagram when the DVD of Example 6 is used. 実施例7のBD使用時における縦球面収差図である。FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 7 is used. 実施例7のDVD使用時における縦球面収差図である。FIG. 10 is a longitudinal spherical aberration diagram when the DVD of Example 7 is used. 実施例8のBD使用時における縦球面収差図である。FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 8 is used. 実施例8のDVD使用時における縦球面収差図である。FIG. 10 is a longitudinal spherical aberration diagram when using the DVD of Example 8. 実施例9のBD使用時における縦球面収差図である。FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 9 is used. 実施例10のBD使用時における縦球面収差図である。FIG. 12 is a longitudinal spherical aberration diagram when the BD of Example 10 is used. 光路差付与構造の向きを説明するための図であり、段差が光軸の方向を向いている状態(a)および逆の方向を向いている状態(b)を示す。It is a figure for demonstrating the direction of an optical path difference providing structure, and the state (a) in which the level | step difference has faced the direction of the optical axis, and the state (b) which has faced the opposite direction are shown.
 以下、本発明の実施の形態を、図面を参照して説明する。図4は、異なる光ディスクであるBDとDVDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、スリムタイプであって、光情報記録再生装置に搭載できる。ここでは、第1光ディスクをBDとし、第2光ディスクをDVDとし、第3光ディスクをCDとする。なお、本発明は、本実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 4 is a diagram schematically showing a configuration of the optical pickup apparatus PU1 of the present embodiment that can appropriately record and / or reproduce information on BD and DVD, which are different optical disks. The optical pickup device PU1 is a slim type and can be mounted on an optical information recording / reproducing device. Here, the first optical disc is a BD, the second optical disc is a DVD, and the third optical disc is a CD. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物レンズOL、λ/4波長板QWP、立ち上げミラーM、コリメートレンズCOL、偏光ビームスプリッタBS、ダイクロイックプリズムDP,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザ光束(第2光束)を射出する第2半導体レーザLD2(第2光源)、センサレンズSEN、光検出器としての受光素子PD等を有する。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the objective lens OL, the λ / 4 wavelength plate QWP, the rising mirror M, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) having a wavelength λ1 = 405 nm, and a laser beam (wavelength λ2 = 660 nm) that is emitted when information is recorded / reproduced on / from a DVD. A second semiconductor laser LD2 (second light source) emitting a second light beam), a sensor lens SEN, a light receiving element PD as a photodetector, and the like.
 単玉の対物レンズOLの中央領域に形成された第1光路差付与構造は、重畳構造ではなく、第1光路差付与構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。又、対物レンズOLの周辺領域に形成された第2光路差付与構造は、第2光路差付与構造を通過した第1光束の5次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第2光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくするが、この回折次数の組み合わせに限られない。更に、以下の式を満たす。
  1.7≦φ1≦2.9   (1)
  0.10≦WD2/f≦0.40   (2)
但し、
φ1:BD使用時の有効径(mm)
WD2:DVD使用時のワーキングディスタンス(mm)
f:第1光束における対物レンズOLの焦点距離(mm)
The first optical path difference providing structure formed in the central region of the single objective lens OL is not a superposition structure, and the first-order diffracted light amount of the first light beam that has passed through the first optical path difference providing structure is of any other order. The first order diffracted light amount of the second light flux that has passed through the first optical path difference providing structure is made larger than the diffracted light amount of any other order. Further, the second optical path difference providing structure formed in the peripheral region of the objective lens OL makes the fifth-order diffracted light quantity of the first light beam that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity. The third-order diffracted light quantity of the second light flux that has passed through the second optical path difference providing structure is made larger than any other order diffracted light quantity, but is not limited to this combination of diffraction orders. Furthermore, the following expression is satisfied.
1.7 ≦ φ1 ≦ 2.9 (1)
0.10 ≦ WD2 / f ≦ 0.40 (2)
However,
φ1: Effective diameter when using BD (mm)
WD2: Working distance when using DVD (mm)
f: Focal length (mm) of the objective lens OL in the first light flux
 青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、実線で示すように、ダイクロイックプリズムDPを通過し、偏光ビームスプリッタBSを通過した後、コリメートレンズCOLを通過して平行光となり、立ち上げミラーMで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、不図示の絞りによりその光束径が規制され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域と周辺領域により集光された光束は、厚さ0.1mmの保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。 The divergent light beam of the first light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP, passes through the polarization beam splitter BS, and then passes through the collimating lens COL as shown by the solid line. It becomes parallel light, is reflected by the rising mirror M, is converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and is incident on the objective lens OL. Here, the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1 having a thickness of 0.1 mm. .
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOL、不図示の絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMで反射され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、2軸アクチュエータAC1により対物レンズOLをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。ここで、第1光束に波長変動が生じた場合や、複数の情報記録層を有するBDの記録/再生を行う場合、波長変動や異なる情報記録層に起因して発生する球面収差を、倍率変更手段としてのコリメートレンズCOLを光軸方向に変化させて、対物光学素子OLに入射する光束の発散角又は収束角を変更することで補正できるようになっている。 The reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. , Reflected by the collimating lens COL, reflected by the polarization beam splitter BS, and converged on the light receiving surface of the light receiving element PD via the sensor lens SEN. The information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1. Here, when the wavelength fluctuation occurs in the first light flux or when recording / reproducing of a BD having a plurality of information recording layers, the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
 半導体レーザLD2から射出された第2光束(λ2=660nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、立ち上げミラーMで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域により集光された(周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ0.6mmの保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。 The divergent light beam of the second light beam (λ2 = 660 nm) emitted from the semiconductor laser LD2 is reflected by the dichroic prism DP, passes through the polarization beam splitter BS and the collimator lens COL, and is raised by the rising mirror M as shown by the dotted line. The light is reflected, converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, and enters the objective lens OL. Here, the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL2 having a thickness of 0.6 mm. Thus, the spot is formed on the information recording surface RL2 of the DVD and forms the center of the spot.
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMで反射され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL2 is again transmitted through the objective lens OL, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, reflected by the rising mirror M, and collimated. The light beam is converged by the lens COL, reflected by the polarization beam splitter BS, and converged on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
(実施例)
 以下、上述した実施の形態に用いることができる実施例について説明する。尚、表(レンズデータ含む)などにおいて、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
(Example)
Examples that can be used in the above-described embodiment will be described below. In a table (including lens data), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). The optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (the light traveling direction is positive), κ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 尚、λは入射光束の波長(使用波長ともいう)、λBは設計波長(ブレーズ型回折構造の場合ブレーズ化波長という)、dorは回折次数、Ciは光路差関数の係数である。 Here, λ is the wavelength of the incident light beam (also referred to as the used wavelength), λ B is the design wavelength (called a blazed wavelength in the case of a blazed diffraction structure), dor is the diffraction order, and C i is a coefficient of the optical path difference function.
(実施例1)
 実施例1の対物レンズのレンズデータを表1に示す。又、実施例1の対物レンズのBD使用時の球面収差図を図5に示す。図5に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.41である。
Example 1
Table 1 shows lens data of the objective lens of Example 1. FIG. 5 shows a spherical aberration diagram of the objective lens of Example 1 when using the BD. As shown in FIG. 5, the spherical aberration is good in the BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.41.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図6は、実施例1の対物レンズにおけるDVD使用時の縦球面収差図である。横軸は対物レンズから離れる方向を正とする。開口数NA0.6以上の周辺領域の第2光路差付与構造は、第2光路差付与構造を通過した第1光束の5次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第2光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくする構造(以下、(5/3)構造という)である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 6 is a longitudinal spherical aberration diagram of the objective lens of Example 1 when using a DVD. The horizontal axis is positive in the direction away from the objective lens. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more makes the fifth-order diffracted light quantity of the first light beam that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity. This is a structure in which the third-order diffracted light quantity of the second light beam that has passed through the two-optical path difference providing structure is larger than any other order diffracted light quantity (hereinafter referred to as a (5/3) structure). In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を(5/3)構造とすると、図6に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 When the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 6, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例2)
 実施例2の対物レンズのレンズデータを表2に示す。又、実施例2の対物レンズのBD使用時の球面収差図を図7に示す。図7に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.39である。
(Example 2)
Table 2 shows lens data of the objective lens of Example 2. FIG. 7 shows a spherical aberration diagram of the objective lens of Example 2 when using the BD. As shown in FIG. 7, spherical aberration is good in BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.39.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図8は、実施例2の対物レンズにおけるDVD使用時の縦球面収差図である。開口数NA0.6以上の周辺領域の第2光路差付与構造は、(5/3)構造である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 8 is a longitudinal spherical aberration diagram of the objective lens of Example 2 when using a DVD. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure. In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を(5/3)構造とすると、図8に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 When the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 8, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例3)
 実施例3の対物レンズのレンズデータを表3に示す。又、実施例3の対物レンズのBD使用時の球面収差図を図9に示す。図9に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.25である。
(Example 3)
Table 3 shows lens data of the objective lens of Example 3. FIG. 9 shows a spherical aberration diagram of the objective lens of Example 3 when using the BD. As shown in FIG. 9, spherical aberration is good in BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.25.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図10は、実施例3の対物レンズにおけるDVD使用時の縦球面収差図である。開口数NA0.6以上の周辺領域の第2光路差付与構造は、(5/3)構造である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 10 is a longitudinal spherical aberration diagram of the objective lens of Example 3 when using a DVD. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure. In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を(5/3)構造とすると、図10に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 Assuming that the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 10, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例4)
 実施例4の対物レンズのレンズデータを表4に示す。又、実施例4の対物レンズのBD使用時の球面収差図を図11に示す。図11に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.23である。
Example 4
Table 4 shows lens data of the objective lens of Example 4. FIG. 11 shows a spherical aberration diagram of the objective lens of Example 4 when using the BD. As shown in FIG. 11, spherical aberration is good in BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.23.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図12は、実施例4の対物レンズにおけるDVD使用時の縦球面収差図である。開口数NA0.6以上の周辺領域の第2光路差付与構造は、(5/3)構造である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 12 is a longitudinal spherical aberration diagram of the objective lens of Example 4 when using a DVD. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure. In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を、(5/3)構造とすると、図12に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 When the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 12, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency 99 of the second light beam that has passed through the peripheral region. It can be seen that a good flare is formed because the third-order diffracted light of .49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例5)
 実施例5の対物レンズのレンズデータを表5に示す。又、実施例5の対物レンズのBD使用時の球面収差図を図13に示す。図13に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.17である。
(Example 5)
Table 5 shows lens data of the objective lens of Example 5. FIG. 13 shows a spherical aberration diagram of the objective lens of Example 5 when using the BD. As shown in FIG. 13, spherical aberration is good in BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this example, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.17.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図14は、実施例5の対物レンズにおけるDVD使用時の縦球面収差図である。開口数NA0.6以上の周辺領域の第2光路差付与構造は、(5/3)構造である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 14 is a longitudinal spherical aberration diagram of the objective lens of Example 5 when using a DVD. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure. In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を(5/3)構造とすると、図14に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 Assuming that the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 14, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例6)
 実施例6の対物レンズのレンズデータを表6に示す。又、実施例6の対物レンズのBD使用時の球面収差図を図15に示す。図15に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.18である。
(Example 6)
Table 6 shows lens data of the objective lens of Example 6. FIG. 15 shows a spherical aberration diagram of the objective lens of Example 6 when using the BD. As shown in FIG. 15, the spherical aberration is good in the BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.18.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図16は、実施例6の対物レンズにおけるDVD使用時の縦球面収差図である。開口数NA0.6以上の周辺領域の第2光路差付与構造は、(5/3)構造である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 16 is a longitudinal spherical aberration diagram of the objective lens of Example 6 when using a DVD. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure. In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を(5/3)構造とすると、図16に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 If the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 16, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例7)
 実施例7の対物レンズのレンズデータを表7に示す。又、実施例7の対物レンズのBD使用時の球面収差図を図17に示す。図17に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.12である。
(Example 7)
Table 7 shows lens data of the objective lens of Example 7. FIG. 17 shows a spherical aberration diagram of the objective lens of Example 7 when using the BD. As shown in FIG. 17, spherical aberration is good in BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.12.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図18は、実施例7の対物レンズにおけるDVD使用時の縦球面収差図である。開口数NA0.6以上の周辺領域の第2光路差付与構造は、(5/3)構造である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 18 is a longitudinal spherical aberration diagram of the objective lens of Example 7 when using a DVD. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure. In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を(5/3)構造とすると、図18に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 Assuming that the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 18, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例8)
 実施例8の対物レンズのレンズデータを表8に示す。又、実施例8の対物レンズのBD使用時の球面収差図を図19に示す。図19に示すように、BDにおいて球面収差は良好である。なお、+30℃の環境温度変化が生じた場合でも球面収差は良好であり、+5nmの光源波長変動が生じた場合であっても、球面収差が大きく悪化することはない。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.11である。
(Example 8)
Table 8 shows lens data of the objective lens of Example 8. FIG. 19 shows a spherical aberration diagram of the objective lens of Example 8 when using the BD. As shown in FIG. 19, spherical aberration is good in BD. The spherical aberration is good even when the environmental temperature change of + 30 ° C. occurs, and the spherical aberration is not greatly deteriorated even when the light source wavelength fluctuation of +5 nm occurs. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.11.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図20は、実施例8の対物レンズにおけるDVD使用時の縦球面収差図である。開口数NA0.6以上の周辺領域の第2光路差付与構造は、(5/3)構造である。尚、図でグラフの縦軸は、対物レンズの光学面の半径を1として表記しており、mは回折次数を示す。又、グラフは回折次数が0次以上で、回折効率が1%以上のものを表記している。 FIG. 20 is a longitudinal spherical aberration diagram of the objective lens of Example 8 when using a DVD. The second optical path difference providing structure in the peripheral region having a numerical aperture NA of 0.6 or more is a (5/3) structure. In the figure, the vertical axis of the graph represents the radius of the optical surface of the objective lens as 1, and m represents the diffraction order. Further, the graph shows a diffraction order of 0 order or higher and a diffraction efficiency of 1% or higher.
 第2光路差付与構造を(5/3)構造とすると、図20に示すように、中央領域を通過した第2光束の1次回折光が、周辺領域を通過した第2光束の回折効率99.49%である3次回折光と集光位置が光軸方向に離れ、またそれ以外の次数の回折光はほぼ発生しないため、良好なフレアが形成されることがわかる。 Assuming that the second optical path difference providing structure is a (5/3) structure, as shown in FIG. 20, the first-order diffracted light of the second light beam that has passed through the central region has a diffraction efficiency of 99. It can be seen that a good flare is formed because the third-order diffracted light of 49% is separated from the condensing position in the optical axis direction, and diffracted light of other orders is hardly generated.
(実施例9)
 実施例9の対物レンズのレンズデータを表9に示す。又、実施例9の対物レンズのBD使用時の球面収差図を図21に示す。図21に示すように、BDにおいて球面収差は良好である。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.05である。
Example 9
Table 9 shows lens data of the objective lens of Example 9. FIG. 21 shows a spherical aberration diagram of the objective lens of Example 9 when using the BD. As shown in FIG. 21, spherical aberration is good in BD. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.05.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例10)
 実施例10の対物レンズのレンズデータを表10に示す。又、実施例10の対物レンズのBD使用時の球面収差図を図22に示す。図22に示すように、BDにおいて球面収差は良好である。本実施例において、第1光路差付与構造を第2光束が通過する際における近軸パワーは、-0.05である。
(Example 10)
Table 10 shows lens data of the objective lens of Example 10. In addition, FIG. 22 shows a spherical aberration diagram of the objective lens of Example 10 when using the BD. As shown in FIG. 22, spherical aberration is good in BD. In this embodiment, the paraxial power when the second light flux passes through the first optical path difference providing structure is −0.05.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11に、実施例1~10の特徴となる数値をまとめて示す。尚、(3)式に関し、本実施例においては0.892μm<d<1.508μmを満たす。 Table 11 summarizes the numerical values that are characteristic of Examples 1 to 10. Incidentally, regarding the expression (3), in this embodiment, 0.892 μm <d <1.508 μm is satisfied.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
AC1 2軸アクチュエータ
BS 偏光ビームスプリッタ
CN 中央領域
COL コリメートレンズ
DP ダイクロイックプリズム
LD1 第1半導体レーザ又は青紫色半導体レーザ
LD2 第2半導体レーザ
LD3 第3半導体レーザ
LDP レーザユニット
M 立ち上げミラー
OL 対物レンズ
OT 周辺領域
PD 受光素子
PL1 保護基板
PL2 保護基板
PL3 保護基板
PU1 光ピックアップ装置
QWP λ/4波長板
RL1 情報記録面
RL2 情報記録面
RL3 情報記録面
SEN センサレンズ
AC1 Biaxial actuator BS Polarizing beam splitter CN Central region COL Collimating lens DP Dichroic prism LD1 First semiconductor laser or blue-violet semiconductor laser LD2 Second semiconductor laser LD3 Third semiconductor laser LDP Laser unit M Rising mirror OL Objective lens OT Peripheral region PD light receiving element PL1 protective substrate PL2 protective substrate PL3 protective substrate PU1 optical pickup device QWP λ / 4 wave plate RL1 information recording surface RL2 information recording surface RL3 information recording surface SEN sensor lens

Claims (16)

  1.  第1波長λ1(nm)(390≦λ1≦415)の第1光束を射出する第1光源と、第2波長λ2(nm)(630≦λ2≦670)の第2光束を射出する第2光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有するBDの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有するDVDの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
     前記対物レンズは単玉であり、
     前記対物レンズの光学面は、中央領域と、前記中央領域の周りの周辺領域とを有し、
     前記中央領域は、第1光路差付与構造を有し、
     前記対物レンズは、前記中央領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、
     前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記第1光路差付与構造は、前記第1光路差付与構造を通過した第1光束のN次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1光路差付与構造を通過した第2光束のN次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     以下の式を満たすことを特徴とする対物レンズ。
     1.7≦φ1≦2.9   (1)
     0.10≦WD2/f≦0.42   (2)
    但し、
    φ1:前記BD使用時の前記対物レンズの有効径(mm)
    WD2:前記DVD使用時の前記対物レンズのワーキングディスタンス(mm)
    f:前記第1光束における前記対物レンズの焦点距離(mm)
    A first light source that emits a first light beam with a first wavelength λ1 (nm) (390 ≦ λ1 ≦ 415) and a second light source that emits a second light beam with a second wavelength λ2 (nm) (630 ≦ λ2 ≦ 670) And recording and / or reproducing information on a BD having a protective substrate having a thickness of t1 using the first light flux, and having a thickness of t2 (t1 <t2) using the second light flux. An objective lens used in an optical pickup device for recording and / or reproducing information of a DVD having a protective substrate,
    The objective lens is a single ball,
    The optical surface of the objective lens has a central region and a peripheral region around the central region,
    The central region has a first optical path difference providing structure,
    The objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region. Are collected so that information can be recorded and / or reproduced on the information recording surface of the DVD,
    The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area. Is not condensed so that information can be recorded and / or reproduced on the information recording surface of the DVD,
    The first optical path difference providing structure makes the Nth-order diffracted light quantity of the first light beam that has passed through the first optical path difference providing structure larger than any other order diffracted light quantity, and passes through the first optical path difference providing structure. The Nth-order diffracted light amount of the second light flux is larger than any other order diffracted light amount,
    An objective lens characterized by satisfying the following expression:
    1.7 ≦ φ1 ≦ 2.9 (1)
    0.10 ≦ WD2 / f ≦ 0.42 (2)
    However,
    φ1: Effective diameter of the objective lens when using the BD (mm)
    WD2: Working distance of the objective lens when using the DVD (mm)
    f: Focal length (mm) of the objective lens in the first light flux
  2.  前記第1光路差付与構造は、複数の光路差付与構造を重畳した構造ではないことを特徴とする請求項1に記載の対物レンズ。 The objective lens according to claim 1, wherein the first optical path difference providing structure is not a structure in which a plurality of optical path difference providing structures are superimposed.
  3.  前記第1光路差付与構造はブレーズ型構造のみからなることを特徴とする請求項2に記載の対物レンズ。 3. The objective lens according to claim 2, wherein the first optical path difference providing structure comprises only a blaze type structure.
  4.  |N|=1であることを特徴とする請求項1乃至3のいずれか1項に記載の対物レンズ。 The objective lens according to claim 1, wherein | N | = 1.
  5.  N=+1であることを特徴とする請求項4に記載の対物レンズ。 The objective lens according to claim 4, wherein N = + 1.
  6.  以下の式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の対物レンズ。
      0.9・λ1/(n-1)≦d≦2.2・λ1/(n-1)   (3)
    但し、
    d:前記第1光路差付与構造の光軸方向の段差量 (nm)
    n:前記第1波長λ1における前記対物レンズの屈折率
    The objective lens according to claim 1, wherein the following expression is satisfied.
    0.9 · λ1 / (n-1) ≦ d ≦ 2.2 · λ1 / (n-1) (3)
    However,
    d: Level difference in the optical axis direction of the first optical path difference providing structure (nm)
    n: Refractive index of the objective lens at the first wavelength λ1
  7.  前記第1光路差付与構造の、少なくとも光軸に最も近い段差が光軸とは逆の方向を向いていることを特徴とする請求項1乃至6のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 6, wherein a step closest to the optical axis of the first optical path difference providing structure is directed in a direction opposite to the optical axis.
  8.  前記第1光路差付与構造の、前記第2波長λ2における近軸パワーの値が負であることを特徴とする請求項1乃至7のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 7, wherein the first optical path difference providing structure has a negative paraxial power value at the second wavelength λ2.
  9.  以下の式を満たすことを特徴とする請求項8に記載の対物レンズ。
     -0.44≦P0*f≦-0.06   (4)
    但し、
    0:前記第1光路差付与構造の前記第2波長λ2における近軸パワー
    The objective lens according to claim 8, wherein the following expression is satisfied.
    −0.44 ≦ P 0 * f ≦ −0.06 (4)
    However,
    P 0 : Paraxial power at the second wavelength λ2 of the first optical path difference providing structure
  10.  以下の式を満たすことを特徴とする請求項1~9のいずれかに記載の対物レンズ。
     0.75≦dx/f≦1.70   (5)
    但し、
    dx:前記対物レンズの軸上厚
    The objective lens according to any one of claims 1 to 9, wherein the following expression is satisfied.
    0.75 ≦ dx / f ≦ 1.70 (5)
    However,
    dx: axial thickness of the objective lens
  11.  前記周辺領域は、光路差付与構造を重畳しない第2光路差付与構造を有し、前記第2光路差付与構造は、前記第2光路差付与構造を通過した第1光束の5次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2光路差付与構造を通過した第2光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする請求項1乃至10のいずれか1項に記載の対物レンズ。 The peripheral region has a second optical path difference providing structure that does not overlap the optical path difference providing structure, and the second optical path difference providing structure is the fifth-order diffracted light quantity of the first light beam that has passed through the second optical path difference providing structure. Is made larger than any other order of the diffracted light amount, and the third order diffracted light amount of the second light beam that has passed through the second optical path difference providing structure is made larger than any other order of diffracted light amount. Item 11. The objective lens according to any one of Items 1 to 10.
  12.  前記中央領域を通過した前記第2光束の集光位置と、前記周辺領域を通過した前記第2光束の集光位置との光軸方向の距離Δが0.005mm以上であることを特徴とする請求項1乃至11のいずれか1項に記載の対物レンズ。 A distance Δ in the optical axis direction between the condensing position of the second light flux that has passed through the central area and the condensing position of the second light flux that has passed through the peripheral area is 0.005 mm or more. The objective lens according to claim 1.
  13.  前記第2光路差付与構造はブレーズ型構造のみからなることを特徴とする請求項1乃至12のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 12, wherein the second optical path difference providing structure comprises only a blaze type structure.
  14.  請求項1乃至13のいずれか1項に記載の対物レンズを有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the objective lens according to any one of claims 1 to 13.
  15.  スリムタイプであることを特徴とする請求項14に記載の光ピックアップ装置。 15. The optical pickup device according to claim 14, which is a slim type.
  16.  請求項14又は15に記載の光ピックアップ装置を有することを特徴とする光情報記録再生装置。 An optical information recording / reproducing device comprising the optical pickup device according to claim 14.
PCT/JP2011/061366 2010-05-24 2011-05-18 Objective lens for optical pickup device, optical pickup device, and optical information read and write device WO2011148832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012517225A JPWO2011148832A1 (en) 2010-05-24 2011-05-18 Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
CN201180025822XA CN102906815A (en) 2010-05-24 2011-05-18 Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010118103 2010-05-24
JP2010-118103 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011148832A1 true WO2011148832A1 (en) 2011-12-01

Family

ID=45003823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061366 WO2011148832A1 (en) 2010-05-24 2011-05-18 Objective lens for optical pickup device, optical pickup device, and optical information read and write device

Country Status (3)

Country Link
JP (1) JPWO2011148832A1 (en)
CN (1) CN102906815A (en)
WO (1) WO2011148832A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149626A (en) * 2003-11-17 2005-06-09 Fujinon Corp Objective lens for optical recording medium, and optical pickup device using the same
JP2006012393A (en) * 2004-05-27 2006-01-12 Konica Minolta Opto Inc Objective optical system, optical pickup device, and optical disk driving device
WO2006085452A1 (en) * 2005-02-10 2006-08-17 Konica Minolta Opto, Inc. Objective lens, optical pickup device and optical information recording/reproducing device
JP2009193665A (en) * 1999-01-22 2009-08-27 Konica Minolta Holdings Inc Optical pickup apparatus
JP2009266290A (en) * 2008-04-24 2009-11-12 Konica Minolta Opto Inc Objective lens and optical pickup device
JP2010092586A (en) * 2007-10-11 2010-04-22 Konica Minolta Opto Inc Objective lens for optical pickup device, and optical pickup device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245407B2 (en) * 2002-06-10 2007-07-17 Matsushita Electric Industrial Co., Ltd. Complex objective lens compatible with information media of different thicknesses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193665A (en) * 1999-01-22 2009-08-27 Konica Minolta Holdings Inc Optical pickup apparatus
JP2005149626A (en) * 2003-11-17 2005-06-09 Fujinon Corp Objective lens for optical recording medium, and optical pickup device using the same
JP2006012393A (en) * 2004-05-27 2006-01-12 Konica Minolta Opto Inc Objective optical system, optical pickup device, and optical disk driving device
WO2006085452A1 (en) * 2005-02-10 2006-08-17 Konica Minolta Opto, Inc. Objective lens, optical pickup device and optical information recording/reproducing device
JP2010092586A (en) * 2007-10-11 2010-04-22 Konica Minolta Opto Inc Objective lens for optical pickup device, and optical pickup device
JP2009266290A (en) * 2008-04-24 2009-11-12 Konica Minolta Opto Inc Objective lens and optical pickup device

Also Published As

Publication number Publication date
CN102906815A (en) 2013-01-30
JPWO2011148832A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2010013616A1 (en) Objective lens and optical pickup device
JP5071883B2 (en) Optical pickup device and objective optical element
JP4502079B2 (en) Objective lens and optical pickup device
JP5013117B2 (en) Optical pickup device and objective optical element for optical pickup device
JP2009110591A (en) Objective lens and optical pickup device
JP2009129515A (en) Objective optical element and optical pickup device
JP2010055683A (en) Objective optical element and optical pickup device
JP2009037719A (en) Optical pickup device and objective optical element
WO2010089933A1 (en) Objective lens and optical pickup device
JP2011248936A (en) Objective lens for optical pickup device, optical pickup device and optical information recording/reproducing device
JP2010055732A (en) Objective optical element and optical pickup device
WO2011148832A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information read and write device
JPWO2008146675A1 (en) Objective optical element for optical pickup device and optical pickup device
WO2011114895A1 (en) Objective lens, optical pickup device, and optical information recording/ reproducing device
WO2010067733A1 (en) Objective and optical pickup device
JP5441014B2 (en) Objective lens for optical pickup device and optical pickup device
JPWO2009051019A1 (en) Optical pickup device, objective optical element for optical pickup device, and optical information recording / reproducing device
JPWO2009057415A1 (en) Objective lens and optical pickup device
WO2009122896A1 (en) Objective optical element for optical pickup device and optical pickup device
WO2013077071A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012111552A1 (en) Optical pickup device and optical information recording/reproduction device
JP2012146373A (en) Correction element for optical pickup device, objective lens unit, optical pickup device, and optical information recording and reproducing device
WO2010116852A1 (en) Objective lens, coupling element, and optical pickup device
JP2011210314A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device
JP2009169999A (en) Objective optical element and optical pickup device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025822.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517225

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786531

Country of ref document: EP

Kind code of ref document: A1