WO2011148701A1 - Color filter, and reflection-type display device equipped with same - Google Patents
Color filter, and reflection-type display device equipped with same Download PDFInfo
- Publication number
- WO2011148701A1 WO2011148701A1 PCT/JP2011/056036 JP2011056036W WO2011148701A1 WO 2011148701 A1 WO2011148701 A1 WO 2011148701A1 JP 2011056036 W JP2011056036 W JP 2011056036W WO 2011148701 A1 WO2011148701 A1 WO 2011148701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photonic crystal
- crystal layer
- color filter
- refractive index
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
- G02B1/005—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/30—Metamaterials
Definitions
- the present invention relates to a color filter using a photonic crystal structure and a reflective display device including the color filter.
- display devices are roughly classified into a transmissive display device and a reflective display device based on the display method.
- a transmissive display device is a display device in which a backlight as a light source is provided on the back side of the display unit, and an image displayed on the display unit can be visually recognized using light emitted from the backlight. It is to make.
- the reflective display device reflects external light incident from the display surface side of the display unit on the back surface side of the display unit, thereby making it possible to visually recognize an image displayed on the display unit using the reflected light. Is.
- the reflective display device has an advantage that it consumes less power than the transmissive display device in that it does not require a backlight. Therefore, the power consumption of the reflective display device is particularly low in mobile phones, portable music players, electronic paper, and the like. It is suitable for use in required equipment.
- reflective display devices generally tend to darken the screen, and are inferior to transmissive display devices in terms of visibility, and so have not been widely used.
- the phenomenon that the screen becomes dark is partly due to the low utilization efficiency of incident light, and the improvement is strongly desired.
- color filters used for display devices for example, those using pigments such as red, green and blue are used.
- pigments such as red, green and blue
- the hue is determined by the light absorption spectrum exhibited by the pigment, it is necessary to configure the color filter to be thick to some extent. It tends to end up.
- the amount of light that can be used for display is determined by the amount of incident external light, so when using a color filter using a pigment as described above in the reflective display device, If an attempt is made to reproduce high color purity, the light transmittance is lowered, resulting in a problem that the screen brightness is greatly lowered.
- Photonic crystal structure is a general term for nanostructures whose refractive index changes periodically. By making the period of change of the refractive index below the wavelength of incident light, high wavelength selectivity can be realized. is there. Therefore, by adopting a color filter using a photonic crystal structure, it becomes possible to selectively reflect light of a specific wavelength and transmit light of other wavelengths in the color filter.
- a color filter using a photonic crystal structure since the hue is determined by the light band of the photonic crystal structure, a high reflectance can be realized by using an appropriate structure. Therefore, in the reflective display device, if the color filter using the photonic crystal structure as described above is used, the screen brightness can be greatly improved as compared with the conventional case.
- the photonic crystal structure has a one-dimensional photonic crystal structure based on whether the periodic change in refractive index is one-dimensional, two-dimensional, or three-dimensional. It is roughly classified into a two-dimensional photonic crystal structure and a three-dimensional photonic crystal structure. Conventionally, it has been studied that a one-dimensional photonic crystal structure is applied to a color filter, but the one-dimensional photonic crystal structure has sufficient wavelength selectivity due to the influence of polarization dependence and light incident angle dependence. There was a problem that the reflectance could not be obtained.
- Patent Document 1 proposes to apply a two-dimensional photonic crystal structure to a color filter for the purpose of further improving wavelength selectivity and reflectance.
- Patent Document 1 providing a two-dimensional photonic crystal structure on a transparent substrate, and comprising a color filter by these transparent substrates and a two-dimensional photonic crystal structure is disclosed. Has been.
- the two-dimensional photonic crystal structure has a smaller wavelength selectivity and lower reflectance due to the influence of polarization dependency and light incident angle dependency than the one-dimensional photonic crystal structure. For this reason, the reflective display device including the color filter using the two-dimensional photonic crystal structure can achieve both high color purity and improvement in screen luminance.
- the two-dimensional photonic crystal structure has a smaller wavelength selectivity and lower reflectance due to the influence of polarization dependency and light incident angle dependency than the one-dimensional photonic crystal structure, the polarization dependency and light incident angle are small. There is a problem that the reflectance is still lowered due to the influence of dependency.
- the electric field oscillates perpendicularly to the incident surface that is, perpendicular to the reflecting surface that reflects the incident light beam and includes the incident light beam and the reflected light beam.
- the influence of the light incident angle dependency is small, so that even when the light incident angle is large, the wavelength selectivity and the reflectance are hardly lowered, but the p-polarized light whose electric field oscillates parallel to the incident surface.
- the influence of the light incident angle dependency is large, and as a result, as the light incident angle increases, the reflectance decreases significantly.
- the present invention has been made to solve the above-described problems, and its object is to provide a color filter excellent in wavelength selectivity and reflectance, and using the color filter. Accordingly, an object of the present invention is to provide a reflective display device with excellent visibility.
- a color filter according to the present invention includes a half-wave plate having a front surface and a back surface, a surface-side photonic crystal layer having a two-dimensional refractive index periodic structure and disposed on the front surface side of the half-wave plate, A back-side photonic crystal layer having a three-dimensional refractive index periodic structure and disposed on the back side of the half-wave plate.
- the front-side photonic crystal layer includes a first photonic crystal region having a first periodic refractive index change, and the back-side photonic crystal.
- the layer includes a second photonic crystal region having a periodic refractive index change substantially the same as the first periodic refractive index change.
- the first photonic crystal region and the second photonic crystal region are arranged corresponding to each other with the half-wave plate interposed therebetween.
- the surface-side photonic crystal layer has a third periodic refractive index change different from the first periodic refractive index change.
- the back-side photonic crystal layer further includes a fourth photonic crystal region having a periodic refractive index change substantially the same as the second periodic refractive index change. Also good. In that case, it is preferable that the third photonic crystal region and the fourth photonic crystal region are arranged corresponding to each other with the half-wave plate interposed therebetween.
- the surface-side photonic crystal layer has a third period different from both the first periodic refractive index change and the second periodic refractive index change.
- a fifth photonic crystal region having a typical refractive index change, and the back-side photonic crystal layer has a periodic refractive index change substantially the same as the third periodic refractive index change.
- a sixth photonic crystal region having the following may be further included. In that case, it is preferable that the fifth photonic crystal region and the sixth photonic crystal region are arranged correspondingly with the half-wave plate interposed therebetween.
- the color filter according to the present invention further includes a front-side light-transmitting substrate disposed on the front surface of the half-wave plate and a back-side light-transmitting substrate disposed on the back surface of the half-wave plate.
- the surface-side photonic crystal layer is provided on the main surface of the surface-side translucent substrate opposite to the main surface on which the half-wave plate is located, and the back surface side. It is preferable that the photonic crystal layer is provided on the main surface on the side opposite to the main surface on the side where the half-wave plate of the back-side translucent substrate is located.
- the front-side photonic crystal layer and the back-side photonic crystal layer are arranged in a two-dimensional lattice pattern, and the plurality of block structures. It is preferable that it is comprised by the space
- the front-side photonic crystal layer and the back-side photonic crystal layer are arranged in a two-dimensional lattice pattern, and the plurality of block structures. It is preferable that it is comprised with the translucent member filled between.
- the reflection type display device includes any one of the color filters described above and an optical switching unit disposed to face the surface-side photonic crystal layer of the color filter.
- the optical switching unit is configured by a MEMS (Micro Electro Mechanical Systems) shutter.
- a color filter having excellent wavelength selectivity and reflectance can be obtained, and a reflective display device having excellent visibility can be obtained by using the color filter.
- FIG. 1 It is sectional drawing of the color filter in Embodiment 1 of this invention. It is a top view of the color filter shown in FIG. It is a bottom view of the color filter shown in FIG. It is a schematic diagram for demonstrating the function of the color filter in Embodiment 1 of this invention. It is a schematic cross-sectional view showing a typical light path when white light is irradiated to a red filter portion of a conventional color filter using a photonic crystal structure. It is a schematic cross section which shows the path
- FIG. 1 is a cross-sectional view of a color filter according to Embodiment 1 of the present invention.
- 2 is a top view of the color filter shown in FIG. 1
- FIG. 3 is a bottom view of the color filter shown in FIG.
- FIG. 4 is a schematic diagram for explaining the function of the color filter in the present embodiment.
- the color filter 1A is a so-called RGB color filter including a red filter portion 2R, a green filter portion 2G, and a blue filter portion 2B.
- the color filter 1A is configured to have a flat outer shape as a whole, and usually includes a plurality of red filter portions 2R, green filter portions 2G, and blue filter portions 2B as shown in the drawing as unit units. Configured as follows.
- the color filter 1A includes a half-wave plate 3, a front-side translucent substrate 4, a front-side photonic crystal layer 5, a back-side translucent substrate 6, and a back-side photonic crystal layer 7. It is comprised as a laminated body of these.
- Each of the red filter portion 2R, the green filter portion 2G, and the blue filter portion 2B described above includes a front-side photonic crystal layer 5, a half-wave plate 3 and a back surface that are mainly located at portions corresponding to the filter portions 2R, 2G, and 2B.
- the side photonic crystal layer 7 is constituted.
- the half-wave plate 3 is an optical system that generates a phase difference of 1 ⁇ 2 wavelength in light, and has a function of rotating the incident light beam by rotating it by 90 °.
- the half-wave plate 3 is made of natural crystals such as quartz, mica, and karsite.
- the half-wave plate 3 is composed of a flat member having a front surface and a back surface as a pair of main surfaces, and the thickness thereof is uniquely determined by the material.
- the front-side light-transmitting substrate 4 is made of a flat plate member that can transmit light, and is disposed on the surface of the half-wave plate 3 described above.
- the surface side light-transmitting substrate 4 is made of, for example, a glass substrate or a transparent plastic substrate, and the thickness is not particularly limited, but is preferably about 780 nm to 900 ⁇ m.
- the surface-side photonic crystal layer 5 has a first photonic crystal region having a first periodic refractive index change, and a second periodic refractive index change different from the first periodic refractive index change.
- the first photonic crystal region is disposed in a portion corresponding to the red filter portion 2R
- the third photonic crystal region is disposed in a portion corresponding to the green filter portion 2G
- the fifth photonic crystal region is , And is disposed at a portion corresponding to the blue filter portion 2B.
- the back-side light-transmitting substrate 6 is made of a flat plate member that can transmit light, and is disposed on the back surface of the half-wave plate 3 described above.
- the back side light-transmitting substrate 6 is made of, for example, a glass substrate or a transparent plastic substrate, and the thickness is not particularly limited, but is preferably about 780 nm to 900 ⁇ m.
- the back-side photonic crystal layer 7 has a two-dimensional refractive index periodic structure, and more specifically, a plurality of block structures 7a arranged in a two-dimensional lattice, and the plurality of block structures 7a. And a gap portion located between the two.
- the back-side photonic crystal layer 7 is provided on the main surface opposite to the main surface on the side where the half-wave plate 3 is located, of the pair of main surfaces of the back-side light-transmitting substrate 6.
- the plurality of block structures 7a described above are composed of, for example, Si, SiC, ZnS, AlN, BN, GaTe, AgI, TiO 2 , SiON, GaP, or a composite thereof.
- the back-side photonic crystal layer 7 includes a second photonic crystal region having substantially the same periodic refractive index change as the above-described first periodic refractive index change, and the above-described second periodic refraction.
- the second photonic crystal region is disposed in a portion corresponding to the red filter portion 2R
- the fourth photonic crystal region is disposed in a portion corresponding to the green filter portion 2G
- the sixth photonic crystal region is , And is disposed at a portion corresponding to the blue filter portion 2B.
- the arrangement pitch D R (that is, the period of the first periodic refractive index change) of the plurality of block structures 5a and 7a arranged in a two-dimensional lattice is about 300 nm, and each block structure 5a , 7a has a width L R of about 150 nm, and each of the block structures 5a, 7a has a height H R of about 250 nm.
- the arrangement pitch D G (that is, the period of the second periodic refractive index change) of the plurality of block structures 5a and 7a arranged in a two-dimensional lattice is about 240 nm, and each block structure 5a, is the width L G of about 120nm of 7a, each block structure 5a, the height HG of 7a is about 190 nm.
- the arrangement pitch D B (that is, the period of the third periodic refractive index change) of the plurality of block structures 5a and 7a arranged in a two-dimensional lattice is set to about 210 nm, and each block structure 5a, is a 7a width L B of about 105nm of each of the block structure 5a, the height HB of 7a is about 170 nm.
- the color filter 1A in the present embodiment when white light is irradiated to the main surface on the side where the surface-side photonic crystal layer 5 of the color filter 1A is disposed, In the red filter portion 2R, only light in a wavelength range mainly exhibiting red color (light in a wavelength of 620 nm to 750 nm) is selectively reflected, light in other wavelength ranges is transmitted, and green color is mainly displayed in the green filter portion 2G.
- wavelength band light having a wavelength of 495 nm to 570 nm
- light in other wavelength bands is transmitted
- light in a wavelength band mainly exhibiting blue (wavelength of 450 nm to 495 nm) is transmitted in the blue filter portion 2B.
- Only light) is selectively reflected, and light in other wavelength ranges is transmitted.
- the wavelength selectivity as a color filter is implement
- FIG. 5 is a schematic cross-sectional view showing a typical light path when white light is irradiated on a red filter portion of a conventional color filter using a photonic crystal structure
- FIG. 6 shows the present embodiment. It is a schematic cross section which shows the path
- the color filter according to the present embodiment is superior in wavelength selectivity and reflectivity compared to the conventional color filter using a photonic crystal structure. A mechanism that can be used as a color filter will be described.
- a two-dimensional surface is formed on the surface which is one of the main surfaces of the pair of translucent substrates 4 ′.
- a photonic crystal layer 5 'having a refractive index periodic structure is provided.
- the photonic crystal layer 5 ' includes a plurality of block structures 5a' arranged in a two-dimensional lattice.
- the conventional color filter 1 ′ when white light such as natural light is applied to the red filter portion 2R ′, light other than red light 100R such as green light 100G and blue light 100B included in the white light is selected. Thus, the light passes through the photonic crystal layer 5 'and further passes through the light transmitting substrate 4'. On the other hand, at least a part of the red light 100R included in the white light is selectively reflected in the photonic crystal layer 5 ′.
- the photonic crystal layer 5 ′ has a so-called two-dimensional photonic crystal structure having a two-dimensional refractive index periodic structure as described above, the photonic crystal layer 5 ′ is perpendicular to the incident surface (that is, the reflection surface that reflects incident light).
- the s-polarized light whose electric field oscillates perpendicularly to the plane including the incident light and the reflected light has little influence on the light incident angle, so that even when the light incident angle is large, wavelength selectivity and reflection
- the p-polarized light whose electric field oscillates in parallel to the incident surface has a large influence on the light incident angle, so that the decrease in the reflectivity becomes remarkable as the light incident angle increases. Become.
- the p-polarized component 100R (p) of the red light 100R is transmitted without being reflected by the photonic crystal layer 5 ′. Only the s-polarized component 100R (s) of the red light 100R is reflected by the photonic crystal layer 5 ′, and the reflectance of the red filter portion 2R ′ is significantly reduced. Although illustration and explanation thereof are omitted, the above phenomenon also occurs in the filter portions of other colors.
- the front-side light-transmitting substrate 4 and the back-side light-transmitting substrate 6 are arranged so as to sandwich the half-wave plate 3 therebetween.
- the photonic crystal layer 5 having a two-dimensional refractive index periodic structure is provided on the main surface of the front surface side transparent substrate 4, and the two-dimensional refractive index periodic structure is provided on the main surface of the rear surface side transparent substrate 6.
- a photonic crystal layer 7 is provided.
- red light 100R such as green light 100G and blue light 100B included in white light
- the light is selectively transmitted through the surface-side photonic crystal layer 5 and further sequentially transmitted through the surface-side translucent substrate 4, the half-wave plate 3, the back-side translucent substrate 6, and the back-side photonic crystal layer 7.
- at least a part of the red light 100R included in the white light is selectively reflected by the front surface side photonic crystal layer 5, and at least a part of the red light 100R is also selectively reflected by the back surface side photonic crystal layer 7. Will be reflected.
- the s-polarized component 100R (s) of the red light 100R is reflected by the surface-side photonic crystal layer 5 and the p-polarized component of the red light 100R.
- 100R (p) is transmitted without being reflected by the surface-side photonic crystal layer 5, but the p-polarized component 100R (p) of the transmitted red light 100R is transmitted through the surface-side light-transmitting substrate 4 and is a half-wave plate. 3 is incident.
- the p-polarized component 100R (p) of the red light 100R incident on the half-wave plate 3 is converted into the s-polarized component 100R (s) because the vibration direction is rotated by 90 ° when passing through the half-wave plate 3.
- the light enters the back side translucent substrate 6.
- the converted s-polarized component 100R (s) incident on the back-side translucent substrate 6 passes through the back-side translucent substrate 6 and is irradiated on the back-side photonic crystal layer 7. Since the converted s-polarized component 100R (s) irradiated to the back-side photonic crystal layer 7 is s-polarized light whose electric field oscillates perpendicularly to the incident surface, the influence of the light incident angle dependency is small. Therefore, even when the light incident angle ⁇ is large, the light is reflected with a high reflectance.
- the s-polarized component 100R (s) reflected by the back-side photonic crystal layer 7 passes through the back-side translucent substrate 6 and enters the half-wave plate 3 again.
- the reflected s-polarized component 100R (s) incident on the half-wave plate 3 is rotated by 90 ° when passing through the half-wave plate 3, so that it is converted into the p-polarized component 100R (p) and the surface.
- the light enters the side translucent substrate 4.
- the converted p-polarized component 100R (p) incident on the surface-side translucent substrate 4 is transmitted through the surface-side translucent substrate 4 and irradiated on the surface-side photonic crystal layer 5.
- the converted p-polarized component 100R (p) irradiated to the surface-side photonic crystal layer 5 is p-polarized light whose electric field oscillates perpendicularly to the incident surface, and therefore has a large influence on the light incident angle dependency. Therefore, when the light incident angle ⁇ is large, the light passes through the surface side photonic crystal layer 5.
- the red light 100R included in the white light irradiated on the red filter portion 2R is reflected on the surface side photo.
- At least a part of the nick crystal layer 5 is selectively reflected, and at least a part of the nick crystal layer 5 is also selectively reflected by the back-side photonic crystal layer 7. Therefore, by using the color filter 1A in the present embodiment, not only the red light reflected on the front-side photonic crystal layer 5 but also the back-side photonic crystal, compared to the conventional color filter 1 ′ described above.
- the red light reflected in the layer 7 is obtained as the reflected light in the red filter portion 2R of the color filter 1A, and the reflectance in the red filter portion 2R as a whole is greatly improved. Although illustration and description thereof are omitted, the improvement in the reflectance can be similarly obtained in the filter portions of other colors.
- the color filter 1A in the present embodiment by using the color filter 1A in the present embodiment, the p-polarized component of incident light that could not be used in the conventional color filter 1 ′ described above is reflected in the back-side photonic crystal layer 7. It can be used after being reflected and emitted from the surface side of the color filter 1A. Therefore, by using the color filter 1A in the present embodiment, a decrease in wavelength selectivity and reflectance due to the influence of polarization dependency and incident angle dependency can be greatly reduced. As a result, wavelength selectivity and A color filter having excellent reflectance can be obtained.
- FIG. 7 to 18 specifically design the color filter according to the example based on the present embodiment, and show the reflection characteristics in the front-side photonic crystal layer and the back-side photonic crystal layer of the designed color filter. It is a graph which shows the result computed based on RCWA (Rigorous Coupled Wave Analysis) method. More specifically, FIG. 7 and FIG. 8 are graphs showing the light incident angle dependence of the reflection characteristics of the surface-side photonic crystal layer of the red filter portion of the color filter according to the example. FIG. 11 is a graph showing the light incident angle dependence of the reflection characteristics of the surface-side photonic crystal layer of the green filter portion of the color filter according to the embodiment. FIGS. 11 and 12 are blue filter portions of the color filter according to the embodiment.
- RCWA Ragorous Coupled Wave Analysis
- FIG. 13 and 14 are graphs showing the light incident angle dependency of the reflection characteristics of the back side photonic crystal layer of the red filter portion of the color filter according to the example.
- FIGS. 15 and 16 are graphs showing the example.
- FIG. 17 and FIG. 18 are graphs showing the light incident angle dependence of the reflection characteristics of the back side photonic crystal layer of the green filter part of the color filter according to FIG. It is a graph which shows the light incident angle dependence of the reflection characteristic of a photonic crystal layer.
- the surface-side photonic crystal layer has generally good reflection characteristics when the light incident angle ⁇ is 0 °, 10 °, and 20 ° (that is, the reflectance is approximately 0.6).
- the reflection characteristics greatly decrease (that is, the reflectivity becomes less than about 0.6). It can be confirmed that there is a tendency to decrease).
- the light incident on the surface-side photonic crystal layer is white light including an s-polarized component and a p-polarized component, and the decrease in the reflection characteristics described above is based on the light incident angle dependency.
- the conventional color filter described above is configured such that incident light is reflected only by the surface-side photonic crystal layer as described above, the result is the same as the conventional color filter described above. It also shows the reflection characteristics of the filter.
- the light incident on the back-side photonic crystal layer is mainly light of the s-polarized component generated by converting the p-polarized component transmitted through the front-side photonic crystal layer by the action of the latter half wave plate.
- the above-described reflection characteristics generally mean the reflectance of the s-polarized component.
- FIG. 19 is a cross-sectional view of the color filter according to Embodiment 2 of the present invention.
- the structure of the color filter in the present embodiment will be described with reference to FIG.
- symbol is attached
- the color filter 1B is a so-called RGB including a red filter portion 2R, a green filter portion 2G, and a blue filter portion 2B, similarly to the color filter 1A according to the first embodiment. It is a color filter.
- the color filter 1B includes a half-wave plate 3, a front-side translucent substrate 4, a front-side photonic crystal layer 5, a back-side translucent substrate 6, and a back-side photonic crystal layer 7, which are laminated. It is structured as a body.
- Each of the red filter portion 2R, the green filter portion 2G, and the blue filter portion 2B described above includes a front-side photonic crystal layer 5, a half-wave plate 3 and a back surface that are mainly located at portions corresponding to the filter portions 2R, 2G, and 2B.
- the side photonic crystal layer 7 is constituted.
- the surface-side translucent member 8 is formed on the main surface of the surface-side translucent substrate 4 so as to seal the plurality of block structures 5a included in the surface-side photonic crystal layer 5.
- a back surface side light transmissive member 9 is provided on the main surface of the back surface side light transmissive substrate 6 so as to seal a plurality of block structures 7a included in the back surface side photonic crystal layer 7. That is, on the main surface of the front surface side transparent substrate 4, the space between the plurality of block structures 5a is filled with the front surface side transparent member 8, and on the main surface of the rear surface side transparent substrate 6, A space between the plurality of block structures 7 a is filled with the back surface side light transmissive member 9.
- the surface side photonic crystal layer 5 is comprised by the several block structure 5a arranged in the two-dimensional lattice form, and the surface side translucent member 8 with which the space between these several block structures 5a is filled.
- the back-side photonic crystal layer 7 is composed of a plurality of block structures 7a arranged in a two-dimensional lattice, and a back-side translucent member 9 filling between the plurality of block structures 7a. Will be composed.
- the surface side translucent member 8 and the back surface side translucent member 9 are comprised, for example with a transparent organic substance, and the thickness is not specifically limited.
- the wavelength selectivity or the wavelength selectivity due to the influence of the polarization dependency or the incident angle dependency is similar to the case of the color filter 1A according to the first embodiment.
- a decrease in reflectance can be greatly reduced. Therefore, by using the color filter 1B having the configuration, a color filter having excellent wavelength selectivity and reflectance can be obtained.
- FIG. 20 is a schematic cross-sectional view of a reflective display device according to Embodiment 3 of the present invention.
- the structure of the reflective display device according to the present embodiment will be described with reference to FIG.
- symbol is attached
- the reflective display device 10A in the present embodiment includes the color filter 1A in the first embodiment described above.
- the reflective display device 10A mainly includes a color filter 1A, a TFT (Thin Film Transistor) substrate 12, a liquid crystal layer 13, a counter substrate 14, a polarizing plate 15, a light shielding substrate 16, and a support member 17. Yes.
- TFT Thin Film Transistor
- the TFT substrate 12 mainly includes a translucent substrate 12a provided with TFTs (not shown), a transparent electrode layer 12b, and an alignment film (not shown), and the surface-side photonic crystal layer of the color filter 1A. 5 is arranged opposite to the main surface provided.
- the transparent electrode layer 12b is provided on the upper surface of the transparent substrate 12a, and the alignment film is provided on the upper surface of the transparent substrate 12a so as to cover the transparent electrode layer 12b and the TFT.
- the translucent substrate 12a is made of, for example, a glass substrate or a transparent plastic substrate having a sufficiently low refractive index
- the transparent electrode layer 12b is made of, for example, an ITO (Indium Thin Oxide) film or the like.
- the alignment film is composed of, for example, a polyimide film.
- the counter substrate 14 mainly includes a translucent substrate 14 a, a transparent electrode layer 14 b, and an alignment film (not shown), and is disposed to face the upper surface of the TFT substrate 12.
- the transparent electrode layer 14b is provided on the lower surface of the translucent substrate 14a, and the alignment film is provided on the lower surface of the translucent substrate 14a so as to cover the transparent electrode layer 14b.
- the translucent substrate 14a is composed of, for example, a glass substrate or a transparent plastic substrate having a sufficiently low refractive index
- the transparent electrode layer 14b is composed of, for example, an ITO film.
- the alignment film is composed of, for example, a polyimide film.
- the liquid crystal layer 13 functions as an optical switching unit, and is configured by filling a liquid crystal in the space between the TFT substrate 12 and the counter substrate 14 described above.
- a liquid crystal nematic, smectic, cholesteric, or a mixture thereof can be applied.
- As the alignment state of the liquid crystal molecules homogeneous, homeotropic, twist, hybrid, bend and the like are preferable.
- the thickness of the liquid crystal layer 13 is preferably 10 ⁇ m or less.
- the polarizing plate 15 is formed by laminating a protective film, a polarizing portion, a protective film, and an adhesive in this order from the top, and is disposed on the upper surface of the counter substrate 14 described above.
- the protective film triacetyl cellulose is suitably used, and the thickness thereof is preferably 40 ⁇ m or less.
- a material obtained by adsorbing and dispersing a material such as iodine or a dye on a polyvinyl alcohol film and stretching it in one direction is preferably used, and the thickness is preferably 25 ⁇ m to 30 ⁇ m.
- the light shielding substrate 16 is, for example, a substrate whose surface is coated with a black matrix, and is disposed so as to face the main surface on which the back surface side photonic crystal layer 7 of the color filter 1A is provided.
- the support member 17 functions as a spacer and holder for holding the color filter 1A, the TFT substrate 12, the liquid crystal layer 13, the counter substrate 14, the polarizing plate 15, and the light shielding substrate 16 in a stacked state.
- a substrate coated with a black matrix is used.
- the distance g between the surface-side photonic crystal layer 5 and the liquid crystal layer 13 is preferably 780 nm or more, which is the longest wavelength of visible light. This is to prevent unintended light interference between the photonic crystal layer 7 and the liquid crystal layer 13, and if there is no interference within the range of visible light, the function as a reflective display device is achieved. It is because it is not inhibited.
- the reflective display device 10A in the present embodiment described above By adopting the reflective display device 10A in the present embodiment described above, a wide viewing angle is ensured, and both high color purity and improvement in screen luminance are achieved within the wide viewing angle range.
- a reflective display device can be obtained. This is because the reflective display device 10 ⁇ / b> A includes the color filter 1 ⁇ / b> A according to Embodiment 1 described above, which is excellent in wavelength selectivity and reflectance. Therefore, by using the reflective display device 10A having the above configuration, a reflective display device with excellent visibility can be obtained.
- FIG. 21 is a schematic cross-sectional view of a reflective display device according to Embodiment 4 of the present invention.
- the structure of the reflective display device according to the present embodiment will be described with reference to FIG.
- symbol is attached
- the reflective display device 10B includes the color filter 1B according to the second embodiment described above, and the configuration thereof is the reflection according to the third embodiment described above. It conforms to the type display device 10A.
- the reflective display device 10B mainly includes a color filter 1B, a transparent electrode layer 8a, a liquid crystal layer 13, a counter substrate 14, a polarizing plate 15, a light shielding substrate 16, and a support member 17.
- the transparent electrode layer 8a is provided on the upper surface of the surface side light transmitting member 8 of the color filter 1B, and a TFT (not shown) is further provided on the upper surface of the surface side light transmitting member 8.
- an alignment film (not shown) is provided on the upper surface of the surface-side translucent member 8 so as to cover the transparent electrode layer 8a and the TFT. That is, in the reflective display device 10B in the present embodiment, the translucent substrate 12a of the TFT substrate 12 included in the reflective display device 10A in the above-described third embodiment is used as the surface-side translucent member 8 of the color filter 1B.
- the other configuration is the same as that of the reflective display device 10A according to the third embodiment described above.
- FIG. 22 is a schematic cross-sectional view of a reflective display device according to Embodiment 5 of the present invention.
- the structure of the reflective display device according to the present embodiment will be described with reference to FIG.
- symbol is attached
- the reflective display device 10C includes the color filter 1A according to the first embodiment described above, and the configuration thereof is the reflection according to the third embodiment described above. It conforms to the type display device 10A.
- the reflective display device 10 ⁇ / b> C mainly includes a color filter 1 ⁇ / b> A, a MEMS shutter 18, a translucent substrate 19, a polarizing plate 15, a light shielding substrate 16, and a support member 17.
- the reflective display device 10C in the present embodiment is different from the reflective display device 10A in the third embodiment described above in the configuration of the optical switching unit, and the other configurations are the reflection in the third embodiment described above. This is the same as the type display device 10A.
- the translucent substrate 19 is disposed to face the main surface of the color filter 1A on which the surface-side photonic crystal layer 5 is provided, and is composed of, for example, a glass substrate or a transparent plastic substrate having a sufficiently low refractive index.
- the translucent substrate 19 corresponds to a base material on which the MEMS shutter 18 is formed, and the MEMS shutter 18 is provided on the lower surface of the translucent substrate 19.
- the MEMS shutter 18 is an optical switching unit formed by applying MEMS technology, and serves as an alternative to the liquid crystal layer 13 in the third embodiment described above.
- the MEMS shutter 18 is an element having a shutter structure capable of mechanically controlling the passage / shielding of light, and, for example, a MEMS shutter element manufactured by PIXTRONIX can be suitably used.
- a shutter as disclosed in JP-T-2008-533510 can be used.
- the color filter is described by exemplifying a so-called RGB color filter including a red filter portion, a green filter portion, and a blue filter portion.
- the number of filter units is not particularly limited, and includes a color filter that includes only one type of filter unit, a color filter that includes only two types of filter units, and four or more types of filter units.
- the block structure provided in the photonic crystal structure provided in the color filter is exemplified as a rectangular parallelepiped, but the block structure
- the shape of the body is not limited to this, and block structures having various shapes such as a columnar shape and a polygonal column shape can be used.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Filters (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
A color filter (1A) comprising: a half-wave plate (3) which has a front surface and a rear surface; a front-surface-side photonic crystal layer (5) which has a two-dimensional photonic periodic structure and is formed on the front surface side of the half-wave plate (3); and a rear-surface-side photonic crystal layer (7) which has a two-dimensional photonic periodic structure and is formed on the rear surface side of the half-wave plate (3).
Description
本発明は、フォトニック結晶構造を利用したカラーフィルタおよびこれを備えた反射型表示装置に関する。
The present invention relates to a color filter using a photonic crystal structure and a reflective display device including the color filter.
近年、表示装置の適用範囲は拡大を続けており、テレビジョンやパーソナルコンピュータはもとより、携帯電話、携帯音楽プレイヤ、電子広告、電子ペーパ等、様々な機器において表示装置の利用が普及している。表示装置は、一般にその表示方式に基づいて透過型表示装置と反射型表示装置とに大別される。
In recent years, the application range of display devices has continued to expand, and the use of display devices has become widespread in various devices such as mobile phones, portable music players, electronic advertisements, and electronic paper as well as televisions and personal computers. In general, display devices are roughly classified into a transmissive display device and a reflective display device based on the display method.
通常、透過型表示装置は、表示部の裏面側に光源としてのバックライトが設けられてなる表示装置であり、バックライトから照射された光を利用して表示部に表示された画像を視認可能にするものである。一方、反射型表示装置は、表示部の表示面側から入射した外光を表示部の裏面側において反射させることにより、当該反射光を利用して表示部に表示された画像を視認可能にするものである。
Usually, a transmissive display device is a display device in which a backlight as a light source is provided on the back side of the display unit, and an image displayed on the display unit can be visually recognized using light emitted from the backlight. It is to make. On the other hand, the reflective display device reflects external light incident from the display surface side of the display unit on the back surface side of the display unit, thereby making it possible to visually recognize an image displayed on the display unit using the reflected light. Is.
したがって、反射型表示装置は、バックライトを必要としない点において透過型表示装置に比べて消費電力が小さいという利点があるため、携帯電話や携帯音楽プレイヤ、電子ペーパ等、特に低消費電力化が求められる機器においてその利用に適している。
Therefore, the reflective display device has an advantage that it consumes less power than the transmissive display device in that it does not require a backlight. Therefore, the power consumption of the reflective display device is particularly low in mobile phones, portable music players, electronic paper, and the like. It is suitable for use in required equipment.
しかしながら、反射型表示装置は、一般的に画面が暗くなってしまう傾向にあり、視認性の点において透過型表示装置に劣っているため、その普及があまり進んでいない。反射型表示装置において、画面が暗くなってしまう現象は、入射光の利用効率が低いことにその一因があり、その改善が強く望まれているところである。
However, reflective display devices generally tend to darken the screen, and are inferior to transmissive display devices in terms of visibility, and so have not been widely used. In the reflective display device, the phenomenon that the screen becomes dark is partly due to the low utilization efficiency of incident light, and the improvement is strongly desired.
従来、表示装置に利用されるカラーフィルタとしては、たとえば赤色、緑色および青色等の顔料を用いたものが利用されている。この顔料を用いたカラーフィルタにあっては、顔料が呈する光の吸収スペクトルによって色相が決定されるため、ある程度カラーフィルタを厚く構成することが必要になり、その結果、透光率が低下してしまう傾向にある。
Conventionally, as color filters used for display devices, for example, those using pigments such as red, green and blue are used. In the color filter using this pigment, since the hue is determined by the light absorption spectrum exhibited by the pigment, it is necessary to configure the color filter to be thick to some extent. It tends to end up.
反射型表示装置においては、入射した外光の光量によって表示に利用できる光の光量が決定されてしまうため、反射型表示装置において上述した如くの顔料を用いたカラーフィルタを利用した場合には、高色純度を再現しようとすると透光率が低下してしまい、結果として大幅に画面輝度が低下してしまう問題が生じる。
In the reflective display device, the amount of light that can be used for display is determined by the amount of incident external light, so when using a color filter using a pigment as described above in the reflective display device, If an attempt is made to reproduce high color purity, the light transmittance is lowered, resulting in a problem that the screen brightness is greatly lowered.
そこで、近年、上述した問題の解決を図るために、フォトニック結晶構造を利用したカラーフィルタを採用することが提案されている。フォトニック結晶構造は、周期的に屈折率が変化するナノ構造体の総称であり、その屈折率が変化する周期を入射する光の波長以下とすることにより、高い波長選択性が実現できるものである。したがって、フォトニック結晶構造を利用したカラーフィルタを採用することにより、当該カラーフィルタにおいて特定波長の光を選択的に反射させ、その他の波長の光を透過させることが可能になる。
Therefore, in recent years, in order to solve the above-described problems, it has been proposed to employ a color filter using a photonic crystal structure. Photonic crystal structure is a general term for nanostructures whose refractive index changes periodically. By making the period of change of the refractive index below the wavelength of incident light, high wavelength selectivity can be realized. is there. Therefore, by adopting a color filter using a photonic crystal structure, it becomes possible to selectively reflect light of a specific wavelength and transmit light of other wavelengths in the color filter.
フォトニック結晶構造を利用したカラーフィルタにおいては、フォトニック結晶構造の有する光バンドによって色相が決定されるため、適切な構造を用いることで高い反射率を実現することができる。したがって、反射型表示装置において、上述した如くのフォトニック結晶構造を利用したカラーフィルタを用いれば、従来に比して大幅に画面輝度を向上させることが可能になる。
In a color filter using a photonic crystal structure, since the hue is determined by the light band of the photonic crystal structure, a high reflectance can be realized by using an appropriate structure. Therefore, in the reflective display device, if the color filter using the photonic crystal structure as described above is used, the screen brightness can be greatly improved as compared with the conventional case.
また、フォトニック結晶構造は、その屈折率の周期的な変化が一次元的であるか、二次元的であるか、あるいは三次元的であるかに基づいて、一次元フォトニック結晶構造と、二次元フォトニック結晶構造と、三次元フォトニック結晶構造とに大別される。従来においては、カラーフィルタに一次元フォトニック結晶構造が適用されることが検討されていたが、一次元フォトニック結晶構造は、偏光依存性や光入射角依存性の影響によって十分な波長選択性や反射率が得られないという問題があった。
In addition, the photonic crystal structure has a one-dimensional photonic crystal structure based on whether the periodic change in refractive index is one-dimensional, two-dimensional, or three-dimensional. It is roughly classified into a two-dimensional photonic crystal structure and a three-dimensional photonic crystal structure. Conventionally, it has been studied that a one-dimensional photonic crystal structure is applied to a color filter, but the one-dimensional photonic crystal structure has sufficient wavelength selectivity due to the influence of polarization dependence and light incident angle dependence. There was a problem that the reflectance could not be obtained.
そのため、さらなる波長選択性や反射率の改善を目的に、カラーフィルタに二次元フォトニック結晶構造を適用することが、特開2009-276766号公報(特許文献1)において提案されている。当該特開2009-276766号公報(特許文献1)においては、透明基板上に二次元フォトニック結晶構造を設けることによってこれら透明基板と二次元フォトニック結晶構造とによってカラーフィルタを構成することが開示されている。
Therefore, Japanese Patent Application Laid-Open No. 2009-276766 (Patent Document 1) proposes to apply a two-dimensional photonic crystal structure to a color filter for the purpose of further improving wavelength selectivity and reflectance. In the said Unexamined-Japanese-Patent No. 2009-276766 (patent document 1), providing a two-dimensional photonic crystal structure on a transparent substrate, and comprising a color filter by these transparent substrates and a two-dimensional photonic crystal structure is disclosed. Has been.
ここで、二次元フォトニック結晶構造は、一次元フォトニック結晶構造に比べて偏光依存性や光入射角依存性の影響による波長選択性や反射率の低下が小さい。そのため、当該二次元フォトニック結晶構造を利用したカラーフィルタを具備した反射型表示装置とすることにより、高色純度と画面輝度の向上との両立が図られることになる。
Here, the two-dimensional photonic crystal structure has a smaller wavelength selectivity and lower reflectance due to the influence of polarization dependency and light incident angle dependency than the one-dimensional photonic crystal structure. For this reason, the reflective display device including the color filter using the two-dimensional photonic crystal structure can achieve both high color purity and improvement in screen luminance.
しかしながら、二次元フォトニック結晶構造は、一次元フォトニック結晶構造に比べて偏光依存性や光入射角依存性の影響による波長選択性や反射率の低下が小さいものの、偏光依存性や光入射角依存性の影響による反射率の低下が依然として生じてしまう問題がある。
However, although the two-dimensional photonic crystal structure has a smaller wavelength selectivity and lower reflectance due to the influence of polarization dependency and light incident angle dependency than the one-dimensional photonic crystal structure, the polarization dependency and light incident angle are small. There is a problem that the reflectance is still lowered due to the influence of dependency.
より詳細には、二次元フォトニック結晶構造においては、入射面(すなわち、入射光線を反射する反射面に垂直でかつ入射光線と反射光線とを含む平面)に対して垂直に電場が振動するs偏光については、光入射角依存性の影響が小さく、そのため光入射角が大きい場合にも波長選択性や反射率の低下が殆ど生じない反面、入射面に対して平行に電場が振動するp偏光については、光入射角依存性の影響が大きく、そのため光入射角が大きくなるにつれ反射率の低下が顕著となってしまう。
More specifically, in the two-dimensional photonic crystal structure, the electric field oscillates perpendicularly to the incident surface (that is, perpendicular to the reflecting surface that reflects the incident light beam and includes the incident light beam and the reflected light beam). As for the polarization, the influence of the light incident angle dependency is small, so that even when the light incident angle is large, the wavelength selectivity and the reflectance are hardly lowered, but the p-polarized light whose electric field oscillates parallel to the incident surface. As for, the influence of the light incident angle dependency is large, and as a result, as the light incident angle increases, the reflectance decreases significantly.
そのため、上述した特開2009-276766号公報に開示の如くのカラーフィルタとした場合には、光入射角が大きくなるにつれて反射率の低下が顕著となってしまう問題があり、この点の改善が必要となっている。
For this reason, in the case of the color filter as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2009-276766, there is a problem that the reflectance is significantly reduced as the light incident angle is increased. It is necessary.
したがって、本発明は、上述した問題を解決すべくなされたものであり、その目的とするところは、波長選択性や反射率に優れたカラーフィルタを提供することにあり、また当該カラーフィルタを利用することで視認性に優れた反射型表示装置を提供することにある。
Accordingly, the present invention has been made to solve the above-described problems, and its object is to provide a color filter excellent in wavelength selectivity and reflectance, and using the color filter. Accordingly, an object of the present invention is to provide a reflective display device with excellent visibility.
本発明に基づくカラーフィルタは、表面および裏面を有する半波長板と、二次元の屈折率周期構造を有し、上記半波長板の上記表面側に配置された表面側フォトニック結晶層と、二次元の屈折率周期構造を有し、上記半波長板の上記裏面側に配置された裏面側フォトニック結晶層とを備えている。
A color filter according to the present invention includes a half-wave plate having a front surface and a back surface, a surface-side photonic crystal layer having a two-dimensional refractive index periodic structure and disposed on the front surface side of the half-wave plate, A back-side photonic crystal layer having a three-dimensional refractive index periodic structure and disposed on the back side of the half-wave plate.
上記本発明に基づくカラーフィルタにあっては、上記表面側フォトニック結晶層が、第1の周期的な屈折率変化を有する第1フォトニック結晶領域を含んでいるとともに、上記裏面側フォトニック結晶層が、上記第1の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第2フォトニック結晶領域を含んでいることが好ましい。その場合には、上記第1フォトニック結晶領域と上記第2フォトニック結晶領域とが、上記半波長板を挟んで対応して配置されていることが好ましい。
In the color filter according to the present invention, the front-side photonic crystal layer includes a first photonic crystal region having a first periodic refractive index change, and the back-side photonic crystal. Preferably, the layer includes a second photonic crystal region having a periodic refractive index change substantially the same as the first periodic refractive index change. In that case, it is preferable that the first photonic crystal region and the second photonic crystal region are arranged corresponding to each other with the half-wave plate interposed therebetween.
上記本発明に基づくカラーフィルタにあっては、上記表面側フォトニック結晶層が、上記第1の周期的な屈折率変化と異なる第2の周期的な屈折率変化を有する第3フォトニック結晶領域をさらに含んでいるとともに、上記裏面側フォトニック結晶層が、上記第2の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第4フォトニック結晶領域をさらに含んでいてもよい。その場合には、上記第3フォトニック結晶領域と上記第4フォトニック結晶領域とが、上記半波長板を挟んで対応して配置されていることが好ましい。
In the color filter according to the present invention, the surface-side photonic crystal layer has a third periodic refractive index change different from the first periodic refractive index change. And the back-side photonic crystal layer further includes a fourth photonic crystal region having a periodic refractive index change substantially the same as the second periodic refractive index change. Also good. In that case, it is preferable that the third photonic crystal region and the fourth photonic crystal region are arranged corresponding to each other with the half-wave plate interposed therebetween.
上記本発明に基づくカラーフィルタにあっては、上記表面側フォトニック結晶層が、上記第1の周期的な屈折率変化および上記第2の周期的な屈折率変化のいずれとも異なる第3の周期的な屈折率変化を有する第5フォトニック結晶領域をさらに含んでいるとともに、上記裏面側フォトニック結晶層が、上記第3の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第6フォトニック結晶領域をさらに含んでいてもよい。その場合には、上記第5フォトニック結晶領域と上記第6フォトニック結晶領域とが、上記半波長板を挟んで対応して配置されることが好ましい。
In the color filter according to the present invention, the surface-side photonic crystal layer has a third period different from both the first periodic refractive index change and the second periodic refractive index change. A fifth photonic crystal region having a typical refractive index change, and the back-side photonic crystal layer has a periodic refractive index change substantially the same as the third periodic refractive index change. A sixth photonic crystal region having the following may be further included. In that case, it is preferable that the fifth photonic crystal region and the sixth photonic crystal region are arranged correspondingly with the half-wave plate interposed therebetween.
上記本発明に基づくカラーフィルタは、上記半波長板の上記表面上に配置された表面側透光基板と、上記半波長板の上記裏面上に配置された裏面側透光基板とをさらに備えていることが好ましい。その場合には、上記表面側フォトニック結晶層が、上記表面側透光基板の上記半波長板が位置する側の主面とは反対側の主面上に設けられているとともに、上記裏面側フォトニック結晶層が、上記裏面側透光基板の上記半波長板が位置する側の主面とは反対側の主面上に設けられていることが好ましい。
The color filter according to the present invention further includes a front-side light-transmitting substrate disposed on the front surface of the half-wave plate and a back-side light-transmitting substrate disposed on the back surface of the half-wave plate. Preferably it is. In that case, the surface-side photonic crystal layer is provided on the main surface of the surface-side translucent substrate opposite to the main surface on which the half-wave plate is located, and the back surface side. It is preferable that the photonic crystal layer is provided on the main surface on the side opposite to the main surface on the side where the half-wave plate of the back-side translucent substrate is located.
上記本発明に基づくカラーフィルタにあっては、上記表面側フォトニック結晶層および上記裏面側フォトニック結晶層が、二次元格子状に配列された複数のブロック構造体と、これら複数のブロック構造体の間に位置する空隙部とによって構成されていることが好ましい。
In the color filter according to the present invention, the front-side photonic crystal layer and the back-side photonic crystal layer are arranged in a two-dimensional lattice pattern, and the plurality of block structures. It is preferable that it is comprised by the space | gap part located between.
上記本発明に基づくカラーフィルタにあっては、上記表面側フォトニック結晶層および上記裏面側フォトニック結晶層が、二次元格子状に配列された複数のブロック構造体と、これら複数のブロック構造体の間を充填する透光部材とによって構成されていることが好ましい。
In the color filter according to the present invention, the front-side photonic crystal layer and the back-side photonic crystal layer are arranged in a two-dimensional lattice pattern, and the plurality of block structures. It is preferable that it is comprised with the translucent member filled between.
本発明に基づく反射型表示装置は、上述したいずれかのカラーフィルタと、当該カラーフィルタの上記表面側フォトニック結晶層に対向して配置された光スイッチング部とを備えている。
The reflection type display device according to the present invention includes any one of the color filters described above and an optical switching unit disposed to face the surface-side photonic crystal layer of the color filter.
上記本発明に基づく反射型表示装置にあっては、上記光スイッチング部が、液晶層にて構成されていることが好ましい。
In the reflective display device according to the present invention, it is preferable that the optical switching unit is composed of a liquid crystal layer.
上記本発明に基づく反射型表示装置にあっては、上記光スイッチング部が、MEMS(Micro Electro Mechanical Systems)シャッタにて構成されていることが好ましい。
In the reflective display device according to the present invention, it is preferable that the optical switching unit is configured by a MEMS (Micro Electro Mechanical Systems) shutter.
本発明によれば、波長選択性や反射率に優れたカラーフィルタとすることができ、当該カラーフィルタを利用することで視認性に優れた反射型表示装置とすることができる。
According to the present invention, a color filter having excellent wavelength selectivity and reflectance can be obtained, and a reflective display device having excellent visibility can be obtained by using the color filter.
以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態においては、本発明が適用されたカラーフィルタを実施の形態1および2において例示して説明し、本発明が適用された反射型表示装置を実施の形態3ないし5において例示して説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiments described below, a color filter to which the present invention is applied is illustrated and described in the first and second embodiments, and a reflective display device to which the present invention is applied is illustrated in the third to fifth embodiments. To explain.
(実施の形態1)
図1は、本発明の実施の形態1におけるカラーフィルタの断面図である。図2は、図1に示すカラーフィルタの上面図であり、図3は、図1に示すカラーフィルタの下面図である。また、図4は、本実施の形態におけるカラーフィルタの機能を説明するための模式図である。まず、これら図1ないし図4を参照して、本実施の形態におけるカラーフィルタの構造および機能について説明する。 (Embodiment 1)
FIG. 1 is a cross-sectional view of a color filter according toEmbodiment 1 of the present invention. 2 is a top view of the color filter shown in FIG. 1, and FIG. 3 is a bottom view of the color filter shown in FIG. FIG. 4 is a schematic diagram for explaining the function of the color filter in the present embodiment. First, the structure and function of the color filter in the present embodiment will be described with reference to FIGS.
図1は、本発明の実施の形態1におけるカラーフィルタの断面図である。図2は、図1に示すカラーフィルタの上面図であり、図3は、図1に示すカラーフィルタの下面図である。また、図4は、本実施の形態におけるカラーフィルタの機能を説明するための模式図である。まず、これら図1ないし図4を参照して、本実施の形態におけるカラーフィルタの構造および機能について説明する。 (Embodiment 1)
FIG. 1 is a cross-sectional view of a color filter according to
図1ないし図3に示すように、本実施の形態におけるカラーフィルタ1Aは、赤色フィルタ部2R、緑色フィルタ部2Gおよび青色フィルタ部2Bを含む、いわゆるRGBカラーフィルタである。カラーフィルタ1Aは、全体としてその外形が平板状となるように構成されており、通常は、図示する如くの赤色フィルタ部2R、緑色フィルタ部2Gおよび青色フィルタ部2Bを単位ユニットとしてこれを複数含むように構成される。
As shown in FIGS. 1 to 3, the color filter 1A according to the present embodiment is a so-called RGB color filter including a red filter portion 2R, a green filter portion 2G, and a blue filter portion 2B. The color filter 1A is configured to have a flat outer shape as a whole, and usually includes a plurality of red filter portions 2R, green filter portions 2G, and blue filter portions 2B as shown in the drawing as unit units. Configured as follows.
より詳細には、カラーフィルタ1Aは、半波長板3と、表面側透光基板4と、表面側フォトニック結晶層5と、裏面側透光基板6と、裏面側フォトニック結晶層7とを含み、これらの積層体として構成されている。上述した赤色フィルタ部2R、緑色フィルタ部2G、青色フィルタ部2Bのそれぞれは、主としてこれらフィルタ部2R,2G,2Bに対応する部分に位置する表面側フォトニック結晶層5、半波長板3および裏面側フォトニック結晶層7によって構成される。
More specifically, the color filter 1A includes a half-wave plate 3, a front-side translucent substrate 4, a front-side photonic crystal layer 5, a back-side translucent substrate 6, and a back-side photonic crystal layer 7. It is comprised as a laminated body of these. Each of the red filter portion 2R, the green filter portion 2G, and the blue filter portion 2B described above includes a front-side photonic crystal layer 5, a half-wave plate 3 and a back surface that are mainly located at portions corresponding to the filter portions 2R, 2G, and 2B. The side photonic crystal layer 7 is constituted.
半波長板3は、光に1/2波長の位相差を生じさせる光学系であり、入射した光線の振動方向を90°回転させて出射する機能を有する。半波長板3は、たとえば水晶、雲母、カールサイトといった天然結晶にて構成される。半波長板3は、表面および裏面を一対の主表面として有する平板状の部材からなり、その厚みは、材料によって一意に決まる。
The half-wave plate 3 is an optical system that generates a phase difference of ½ wavelength in light, and has a function of rotating the incident light beam by rotating it by 90 °. The half-wave plate 3 is made of natural crystals such as quartz, mica, and karsite. The half-wave plate 3 is composed of a flat member having a front surface and a back surface as a pair of main surfaces, and the thickness thereof is uniquely determined by the material.
表面側透光基板4は、光を透過可能な平板状の部材からなり、上述した半波長板3の表面上に配置されている。表面側透光基板4は、たとえばガラス基板や透明なプラスチック基板にて構成され、その厚みは特に制限されるものではないが、780nm~900μm程度とされることが好ましい。
The front-side light-transmitting substrate 4 is made of a flat plate member that can transmit light, and is disposed on the surface of the half-wave plate 3 described above. The surface side light-transmitting substrate 4 is made of, for example, a glass substrate or a transparent plastic substrate, and the thickness is not particularly limited, but is preferably about 780 nm to 900 μm.
表面側フォトニック結晶層5は、二次元の屈折率周期構造を有しており、より詳細には、二次元格子状に配列された複数のブロック構造体5aと、これら複数のブロック構造体5aの間に位置する空隙部とによって構成されている。表面側フォトニック結晶層5は、表面側透光基板4の一対の主面のうち、半波長板3が位置する側の主面とは反対側の主面上に設けられている。上述した複数のブロック構造体5aは、たとえばSi、SiC、ZnS、AlN、BN、GaTe、AgI、TiO2、SiON、GaPまたはこれらの合成物にて構成される。
The surface-side photonic crystal layer 5 has a two-dimensional refractive index periodic structure, and more specifically, a plurality of block structures 5a arranged in a two-dimensional lattice, and the plurality of block structures 5a. And a gap portion located between the two. The surface-side photonic crystal layer 5 is provided on the main surface opposite to the main surface on the side where the half-wave plate 3 is located, of the pair of main surfaces of the surface-side light-transmitting substrate 4. The plurality of block structures 5a described above are composed of, for example, Si, SiC, ZnS, AlN, BN, GaTe, AgI, TiO 2 , SiON, GaP, or a composite thereof.
表面側フォトニック結晶層5は、第1の周期的な屈折率変化を有する第1フォトニック結晶領域と、上記第1の周期的な屈折率変化と異なる第2の周期的な屈折率変化を有する第3フォトニック結晶領域と、上記第1の周期的な屈折率変化および上記第2の周期的な屈折率変化と異なる第3の周期的な屈折率変化を有する第5フォトニック結晶領域とを含んでいる。このうち、第1フォトニック結晶領域は、赤色フィルタ部2Rに対応する部分に配置され、第3フォトニック結晶領域は、緑色フィルタ部2Gに対応する部分に配置され、第5フォトニック結晶領域は、青色フィルタ部2Bに対応する部分に配置される。
The surface-side photonic crystal layer 5 has a first photonic crystal region having a first periodic refractive index change, and a second periodic refractive index change different from the first periodic refractive index change. A third photonic crystal region having a third periodic refractive index change different from the first periodic refractive index change and the second periodic refractive index change; Is included. Among these, the first photonic crystal region is disposed in a portion corresponding to the red filter portion 2R, the third photonic crystal region is disposed in a portion corresponding to the green filter portion 2G, and the fifth photonic crystal region is , And is disposed at a portion corresponding to the blue filter portion 2B.
裏面側透光基板6は、光を透過可能な平板状の部材からなり、上述した半波長板3の裏面上に配置されている。裏面側透光基板6は、たとえばガラス基板や透明なプラスチック基板にて構成され、その厚みは特に制限されるものではないが、780nm~900μm程度とされることが好ましい。
The back-side light-transmitting substrate 6 is made of a flat plate member that can transmit light, and is disposed on the back surface of the half-wave plate 3 described above. The back side light-transmitting substrate 6 is made of, for example, a glass substrate or a transparent plastic substrate, and the thickness is not particularly limited, but is preferably about 780 nm to 900 μm.
裏面側フォトニック結晶層7は、二次元の屈折率周期構造を有しており、より詳細には、二次元格子状に配列された複数のブロック構造体7aと、これら複数のブロック構造体7aの間に位置する空隙部とによって構成されている。裏面側フォトニック結晶層7は、裏面側透光基板6の一対の主面のうち、半波長板3が位置する側の主面とは反対側の主面上に設けられている。上述した複数のブロック構造体7aは、たとえばSi、SiC、ZnS、AlN、BN、GaTe、AgI、TiO2、SiON、GaPまたはこれらの合成物にて構成される。
The back-side photonic crystal layer 7 has a two-dimensional refractive index periodic structure, and more specifically, a plurality of block structures 7a arranged in a two-dimensional lattice, and the plurality of block structures 7a. And a gap portion located between the two. The back-side photonic crystal layer 7 is provided on the main surface opposite to the main surface on the side where the half-wave plate 3 is located, of the pair of main surfaces of the back-side light-transmitting substrate 6. The plurality of block structures 7a described above are composed of, for example, Si, SiC, ZnS, AlN, BN, GaTe, AgI, TiO 2 , SiON, GaP, or a composite thereof.
裏面側フォトニック結晶層7は、上述した第1の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第2フォトニック結晶領域と、上述した第2の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第4フォトニック結晶領域と、上述した第3の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第6フォトニック結晶領域とを含んでいる。このうち、第2フォトニック結晶領域は、赤色フィルタ部2Rに対応する部分に配置され、第4フォトニック結晶領域は、緑色フィルタ部2Gに対応する部分に配置され、第6フォトニック結晶領域は、青色フィルタ部2Bに対応する部分に配置される。
The back-side photonic crystal layer 7 includes a second photonic crystal region having substantially the same periodic refractive index change as the above-described first periodic refractive index change, and the above-described second periodic refraction. A fourth photonic crystal region having a periodic refractive index change substantially the same as the refractive index change, and a sixth photo having a periodic refractive index change substantially the same as the third periodic refractive index change described above. And a nick crystal region. Among these, the second photonic crystal region is disposed in a portion corresponding to the red filter portion 2R, the fourth photonic crystal region is disposed in a portion corresponding to the green filter portion 2G, and the sixth photonic crystal region is , And is disposed at a portion corresponding to the blue filter portion 2B.
ここで、赤色フィルタ部2Rを構成する部分の表面側フォトニック結晶層5および裏面側フォトニック結晶層7(すなわち、上記第1フォトニック結晶領域および上記第2フォトニック結晶領域)にあっては、二次元格子状に配列された複数のブロック構造体5a,7aの配置ピッチDR(すなわち、上記第1の周期的な屈折率変化の周期)が約300nmとされ、各々のブロック構造体5a,7aの幅LRが約150nmとされ、各々のブロック構造体5a,7aの高さHRが約250nmとされている。
Here, in the front surface side photonic crystal layer 5 and the back surface side photonic crystal layer 7 (that is, the first photonic crystal region and the second photonic crystal region) constituting the red filter portion 2R. The arrangement pitch D R (that is, the period of the first periodic refractive index change) of the plurality of block structures 5a and 7a arranged in a two-dimensional lattice is about 300 nm, and each block structure 5a , 7a has a width L R of about 150 nm, and each of the block structures 5a, 7a has a height H R of about 250 nm.
また、緑色フィルタ部2Gを構成する部分の表面側フォトニック結晶層5および裏面側フォトニック結晶層7(すなわち、上記第3フォトニック結晶領域および上記第4フォトニック結晶領域)にあっては、二次元格子状に配列された複数のブロック構造体5a,7aの配置ピッチDG(すなわち、上記第2の周期的な屈折率変化の周期)が約240nmとされ、各々のブロック構造体5a,7aの幅LGが約120nmとされ、各々のブロック構造体5a,7aの高さHGが約190nmとされている。
Further, in the front surface side photonic crystal layer 5 and the back surface side photonic crystal layer 7 (that is, the third photonic crystal region and the fourth photonic crystal region) constituting the green filter part 2G, The arrangement pitch D G (that is, the period of the second periodic refractive index change) of the plurality of block structures 5a and 7a arranged in a two-dimensional lattice is about 240 nm, and each block structure 5a, is the width L G of about 120nm of 7a, each block structure 5a, the height HG of 7a is about 190 nm.
また、青色フィルタ部2Bを構成する部分の表面側フォトニック結晶層5および裏面側フォトニック結晶層7(すなわち、上記第5フォトニック結晶領域および上記第6フォトニック結晶領域)にあっては、二次元格子状に配列された複数のブロック構造体5a,7aの配置ピッチDB(すなわち、上記第3の周期的な屈折率変化の周期)が約210nmとされ、各々のブロック構造体5a,7aの幅LBが約105nmとされ、各々のブロック構造体5a,7aの高さHBが約170nmとされている。
Further, in the surface side photonic crystal layer 5 and the back side photonic crystal layer 7 (that is, the fifth photonic crystal region and the sixth photonic crystal region) constituting the blue filter portion 2B, The arrangement pitch D B (that is, the period of the third periodic refractive index change) of the plurality of block structures 5a and 7a arranged in a two-dimensional lattice is set to about 210 nm, and each block structure 5a, is a 7a width L B of about 105nm of each of the block structure 5a, the height HB of 7a is about 170 nm.
図4に示すように、本実施の形態におけるカラーフィルタ1Aにあっては、当該カラーフィルタ1Aの表面側フォトニック結晶層5が配置された側の主面に白色光が照射された場合に、赤色フィルタ部2Rにおいて、主として赤色を呈する波長域の光(波長620nm~750nmの光)のみが選択的に反射され、他の波長域の光が透過され、緑色フィルタ部2Gにおいて、主として緑色を呈する波長域の光(波長495nm~570nmの光)のみが選択的に反射され、他の波長域の光が透過され、青色フィルタ部2Bにおいて、主として青色を呈する波長域の光(波長450nm~495nmの光)のみが選択的に反射され、他の波長域の光が透過される。これにより、特定の波長域の光がカラーフィルタ1Aの各フィルタ部2R,2G,2Bにて反射されることでカラーフィルタとしての波長選択性が実現される。
As shown in FIG. 4, in the color filter 1A in the present embodiment, when white light is irradiated to the main surface on the side where the surface-side photonic crystal layer 5 of the color filter 1A is disposed, In the red filter portion 2R, only light in a wavelength range mainly exhibiting red color (light in a wavelength of 620 nm to 750 nm) is selectively reflected, light in other wavelength ranges is transmitted, and green color is mainly displayed in the green filter portion 2G. Only light in the wavelength band (light having a wavelength of 495 nm to 570 nm) is selectively reflected, light in other wavelength bands is transmitted, and light in a wavelength band mainly exhibiting blue (wavelength of 450 nm to 495 nm) is transmitted in the blue filter portion 2B. Only light) is selectively reflected, and light in other wavelength ranges is transmitted. Thereby, the wavelength selectivity as a color filter is implement | achieved because the light of a specific wavelength range is reflected in each filter part 2R, 2G, 2B of the color filter 1A.
図5は、フォトニック結晶構造を利用した従来のカラーフィルタの赤色フィルタ部に白色光が照射された場合の代表的な光の経路を示す模式断面図であり、図6は、本実施の形態におけるカラーフィルタの赤色フィルタ部に白色光が照射された場合の代表的な光の経路を示す模式断面図である。次に、これら図5および図6を参照して、本実施の形態におけるカラーフィルタとすることにより、フォトニック結晶構造を利用した従来のカラーフィルタとした場合よりも波長選択性や反射率に優れたカラーフィルタとすることができる仕組みについて説明する。
FIG. 5 is a schematic cross-sectional view showing a typical light path when white light is irradiated on a red filter portion of a conventional color filter using a photonic crystal structure, and FIG. 6 shows the present embodiment. It is a schematic cross section which shows the path | route of a typical light when white light is irradiated to the red filter part of the color filter. Next, referring to FIG. 5 and FIG. 6, the color filter according to the present embodiment is superior in wavelength selectivity and reflectivity compared to the conventional color filter using a photonic crystal structure. A mechanism that can be used as a color filter will be described.
図5に示すように、フォトニック結晶構造を利用した従来のカラーフィルタ1′にあっては、透光基板4′の一対の主面のうちの一方の主面である表面上に二次元の屈折率周期構造を有するフォトニック結晶層5′が設けられている。当該フォトニック結晶層5′は、二次元格子状に配列された複数のブロック構造体5a′を含んでいる。
As shown in FIG. 5, in the conventional color filter 1 ′ using the photonic crystal structure, a two-dimensional surface is formed on the surface which is one of the main surfaces of the pair of translucent substrates 4 ′. A photonic crystal layer 5 'having a refractive index periodic structure is provided. The photonic crystal layer 5 'includes a plurality of block structures 5a' arranged in a two-dimensional lattice.
当該従来のカラーフィルタ1′においては、自然光等の白色光が赤色フィルタ部2R′に照射された場合に、白色光に含まれる緑色光100Gおよび青色光100B等の赤色光100R以外の光が選択的にフォトニック結晶層5′を透過し、さらに透光基板4′を透過することになる。一方、上記白色光に含まれる赤色光100Rは、フォトニック結晶層5′においてその少なくとも一部が選択的に反射されることになる。
In the conventional color filter 1 ′, when white light such as natural light is applied to the red filter portion 2R ′, light other than red light 100R such as green light 100G and blue light 100B included in the white light is selected. Thus, the light passes through the photonic crystal layer 5 'and further passes through the light transmitting substrate 4'. On the other hand, at least a part of the red light 100R included in the white light is selectively reflected in the photonic crystal layer 5 ′.
ここで、フォトニック結晶層5′は、上述したように二次元の屈折率周期構造を有する、いわゆる二次元フォトニック結晶構造であるため、入射面(すなわち、入射光線を反射する反射面に垂直でかつ入射光線と反射光線とを含む平面)に対して垂直に電場が振動するs偏光については、光入射角依存性の影響が小さく、そのため光入射角が大きい場合にも波長選択性や反射率の低下が殆ど生じない反面、入射面に対して平行に電場が振動するp偏光については、光入射角依存性の影響が大きく、そのため光入射角が大きくなるにつれ反射率の低下が顕著となる。
Here, since the photonic crystal layer 5 ′ has a so-called two-dimensional photonic crystal structure having a two-dimensional refractive index periodic structure as described above, the photonic crystal layer 5 ′ is perpendicular to the incident surface (that is, the reflection surface that reflects incident light). In addition, the s-polarized light whose electric field oscillates perpendicularly to the plane including the incident light and the reflected light) has little influence on the light incident angle, so that even when the light incident angle is large, wavelength selectivity and reflection On the other hand, the p-polarized light whose electric field oscillates in parallel to the incident surface has a large influence on the light incident angle, so that the decrease in the reflectivity becomes remarkable as the light incident angle increases. Become.
したがって、図5に示すように、光入射角θがある程度大きい値をとった場合には、赤色光100Rのp偏光成分100R(p)がフォトニック結晶層5′にて反射されずに透過し、赤色光100Rのs偏光成分100R(s)のみがフォトニック結晶層5′にて反射されることとなって、赤色フィルタ部2R′における反射率の著しい低下が生じてしまうこととなる。なお、その図示や説明は省略するが、上記現象は、他の色のフィルタ部においても同様に生じる。
Therefore, as shown in FIG. 5, when the light incident angle θ has a certain large value, the p-polarized component 100R (p) of the red light 100R is transmitted without being reflected by the photonic crystal layer 5 ′. Only the s-polarized component 100R (s) of the red light 100R is reflected by the photonic crystal layer 5 ′, and the reflectance of the red filter portion 2R ′ is significantly reduced. Although illustration and explanation thereof are omitted, the above phenomenon also occurs in the filter portions of other colors.
一方、図6に示すように、本実施の形態におけるカラーフィルタ1Aにあっては、上述したように、半波長板3を挟みこむように表面側透光基板4および裏面側透光基板6が配置され、表面側透光基板4の主面上に二次元の屈折率周期構造を有するフォトニック結晶層5が設けられるとともに、裏面側透光基板6の主面上に二次元の屈折率周期構造を有するフォトニック結晶層7が設けられている。
On the other hand, as shown in FIG. 6, in the color filter 1A in the present embodiment, as described above, the front-side light-transmitting substrate 4 and the back-side light-transmitting substrate 6 are arranged so as to sandwich the half-wave plate 3 therebetween. The photonic crystal layer 5 having a two-dimensional refractive index periodic structure is provided on the main surface of the front surface side transparent substrate 4, and the two-dimensional refractive index periodic structure is provided on the main surface of the rear surface side transparent substrate 6. A photonic crystal layer 7 is provided.
当該本実施の形態におけるカラーフィルタ1Aにおいては、自然光等の白色光が赤色フィルタ部2Rに照射された場合に、白色光に含まれる緑色光100Gおよび青色光100B等の赤色光100R以外の光が選択的に表面側フォトニック結晶層5を透過し、さらに表面側透光基板4、半波長板3、裏面側透光基板6および裏面側フォトニック結晶層7を順次透過することになる。一方、上記白色光に含まれる赤色光100Rは、表面側フォトニック結晶層5においてその少なくとも一部が選択的に反射されるとともに、裏面側フォトニック結晶層7においてもその少なくとも一部が選択的に反射されることになる。
In the color filter 1A in the present embodiment, when white light such as natural light is irradiated to the red filter portion 2R, light other than red light 100R such as green light 100G and blue light 100B included in white light is emitted. The light is selectively transmitted through the surface-side photonic crystal layer 5 and further sequentially transmitted through the surface-side translucent substrate 4, the half-wave plate 3, the back-side translucent substrate 6, and the back-side photonic crystal layer 7. On the other hand, at least a part of the red light 100R included in the white light is selectively reflected by the front surface side photonic crystal layer 5, and at least a part of the red light 100R is also selectively reflected by the back surface side photonic crystal layer 7. Will be reflected.
より詳細には、光入射角θがある程度大きい値とった場合には、赤色光100Rのs偏光成分100R(s)が表面側フォトニック結晶層5にて反射され、赤色光100Rのp偏光成分100R(p)が表面側フォトニック結晶層5にて反射されずに透過するが、透過した赤色光100Rのp偏光成分100R(p)は、表面側透光基板4を透過して半波長板3に入射する。半波長板3に入射した赤色光100Rのp偏光成分100R(p)は、半波長板3を透過する際に振動方向が90°回転させられるため、s偏光成分100R(s)に変換されて裏面側透光基板6に入射する。
More specifically, when the light incident angle θ has a certain large value, the s-polarized component 100R (s) of the red light 100R is reflected by the surface-side photonic crystal layer 5 and the p-polarized component of the red light 100R. 100R (p) is transmitted without being reflected by the surface-side photonic crystal layer 5, but the p-polarized component 100R (p) of the transmitted red light 100R is transmitted through the surface-side light-transmitting substrate 4 and is a half-wave plate. 3 is incident. The p-polarized component 100R (p) of the red light 100R incident on the half-wave plate 3 is converted into the s-polarized component 100R (s) because the vibration direction is rotated by 90 ° when passing through the half-wave plate 3. The light enters the back side translucent substrate 6.
裏面側透光基板6に入射した変換後のs偏光成分100R(s)は、裏面側透光基板6を透過し、裏面側フォトニック結晶層7に照射される。裏面側フォトニック結晶層7に照射された変換後のs偏光成分100R(s)は、入射面に対して垂直に電場が振動するs偏光であるため、光入射角依存性の影響が小さく、そのため光入射角θが大きい場合にも高い反射率で反射されることになる。
The converted s-polarized component 100R (s) incident on the back-side translucent substrate 6 passes through the back-side translucent substrate 6 and is irradiated on the back-side photonic crystal layer 7. Since the converted s-polarized component 100R (s) irradiated to the back-side photonic crystal layer 7 is s-polarized light whose electric field oscillates perpendicularly to the incident surface, the influence of the light incident angle dependency is small. Therefore, even when the light incident angle θ is large, the light is reflected with a high reflectance.
裏面側フォトニック結晶層7にて反射されたs偏光成分100R(s)は、裏面側透光基板6を透過して再び半波長板3に入射する。半波長板3に入射した反射後のs偏光成分100R(s)は、半波長板3を透過する際に振動方向が90°回転させられるため、p偏光成分100R(p)に変換されて表面側透光基板4に入射する。
The s-polarized component 100R (s) reflected by the back-side photonic crystal layer 7 passes through the back-side translucent substrate 6 and enters the half-wave plate 3 again. The reflected s-polarized component 100R (s) incident on the half-wave plate 3 is rotated by 90 ° when passing through the half-wave plate 3, so that it is converted into the p-polarized component 100R (p) and the surface. The light enters the side translucent substrate 4.
表面側透光基板4に入射した変換後のp偏光成分100R(p)は、表面側透光基板4を透過し、表面側フォトニック結晶層5に照射される。表面側フォトニック結晶層5に照射された変換後のp偏光成分100R(p)は、入射面に対して垂直に電場が振動するp偏光であるため、光入射角依存性の影響が大きく、そのため光入射角θが大きい場合には表面側フォトニック結晶層5を透過する。
The converted p-polarized component 100R (p) incident on the surface-side translucent substrate 4 is transmitted through the surface-side translucent substrate 4 and irradiated on the surface-side photonic crystal layer 5. The converted p-polarized component 100R (p) irradiated to the surface-side photonic crystal layer 5 is p-polarized light whose electric field oscillates perpendicularly to the incident surface, and therefore has a large influence on the light incident angle dependency. Therefore, when the light incident angle θ is large, the light passes through the surface side photonic crystal layer 5.
したがって、本実施の形態におけるカラーフィルタ1Aにあっては、光入射角θがある程度大きい値とった場合にも、赤色フィルタ部2Rに照射された白色光に含まれる赤色光100Rが、表面側フォトニック結晶層5においてその少なくとも一部が選択的に反射されるとともに、裏面側フォトニック結晶層7においてもその少なくとも一部が選択的に反射されることになる。そのため、本実施の形態におけるカラーフィルタ1Aとすることにより、上述した従来のカラーフィルタ1′とした場合に比べ、表面側フォトニック結晶層5において反射された赤色光のみならず裏面側フォトニック結晶層7において反射された赤色光までもがカラーフィルタ1Aの赤色フィルタ部2Rにおける反射光として得られることになり、赤色フィルタ部2Rにおける反射率が全体として大幅に向上することになる。なお、その図示や説明は省略するが、当該反射率の向上は、他の色のフィルタ部においても同様に得ることができる。
Therefore, in the color filter 1A according to the present embodiment, even when the light incident angle θ has a certain large value, the red light 100R included in the white light irradiated on the red filter portion 2R is reflected on the surface side photo. At least a part of the nick crystal layer 5 is selectively reflected, and at least a part of the nick crystal layer 5 is also selectively reflected by the back-side photonic crystal layer 7. Therefore, by using the color filter 1A in the present embodiment, not only the red light reflected on the front-side photonic crystal layer 5 but also the back-side photonic crystal, compared to the conventional color filter 1 ′ described above. Even the red light reflected in the layer 7 is obtained as the reflected light in the red filter portion 2R of the color filter 1A, and the reflectance in the red filter portion 2R as a whole is greatly improved. Although illustration and description thereof are omitted, the improvement in the reflectance can be similarly obtained in the filter portions of other colors.
すなわち、本実施の形態におけるカラーフィルタ1Aとすることにより、上述した従来のカラーフィルタ1′とした場合にはその利用ができなかった入射光のp偏光成分を、裏面側フォトニック結晶層7において反射してカラーフィルタ1Aの表面側から出射させて利用することが可能になる。したがって、本実施の形態におけるカラーフィルタ1Aとすることにより、偏光依存性や入射角依存性の影響による波長選択性や反射率の低下を大幅に低減することができ、その結果、波長選択性や反射率に優れたカラーフィルタとすることができる。
That is, by using the color filter 1A in the present embodiment, the p-polarized component of incident light that could not be used in the conventional color filter 1 ′ described above is reflected in the back-side photonic crystal layer 7. It can be used after being reflected and emitted from the surface side of the color filter 1A. Therefore, by using the color filter 1A in the present embodiment, a decrease in wavelength selectivity and reflectance due to the influence of polarization dependency and incident angle dependency can be greatly reduced. As a result, wavelength selectivity and A color filter having excellent reflectance can be obtained.
図7ないし図18は、本実施の形態に基づいた実施例に係るカラーフィルタを具体的に設計し、当該設計したカラーフィルタの表面側フォトニック結晶層および裏面側フォトニック結晶層における反射特性をRCWA(Rigorous Coupled Wave Analysis)法に基づいて算出した結果を示すグラフである。より詳細には、図7および図8は、実施例に係るカラーフィルタの赤色フィルタ部の表面側フォトニック結晶層の反射特性の光入射角依存性を示すグラフであり、図9および図10は、実施例に係るカラーフィルタの緑色フィルタ部の表面側フォトニック結晶層の反射特性の光入射角依存性を示すグラフであり、図11および図12は、実施例に係るカラーフィルタの青色フィルタ部の表面側フォトニック結晶層の反射特性の光入射角依存性を示すグラフである。また、図13および図14は、実施例に係るカラーフィルタの赤色フィルタ部の裏面側フォトニック結晶層の反射特性の光入射角依存性を示すグラフであり、図15および図16は、実施例に係るカラーフィルタの緑色フィルタ部の裏面側フォトニック結晶層の反射特性の光入射角依存性を示すグラフであり、図17および図18は、実施例に係るカラーフィルタの青色フィルタ部の裏面側フォトニック結晶層の反射特性の光入射角依存性を示すグラフである。
7 to 18 specifically design the color filter according to the example based on the present embodiment, and show the reflection characteristics in the front-side photonic crystal layer and the back-side photonic crystal layer of the designed color filter. It is a graph which shows the result computed based on RCWA (Rigorous Coupled Wave Analysis) method. More specifically, FIG. 7 and FIG. 8 are graphs showing the light incident angle dependence of the reflection characteristics of the surface-side photonic crystal layer of the red filter portion of the color filter according to the example. FIG. 11 is a graph showing the light incident angle dependence of the reflection characteristics of the surface-side photonic crystal layer of the green filter portion of the color filter according to the embodiment. FIGS. 11 and 12 are blue filter portions of the color filter according to the embodiment. It is a graph which shows the light incident angle dependence of the reflection characteristic of the surface side photonic crystal layer. 13 and 14 are graphs showing the light incident angle dependency of the reflection characteristics of the back side photonic crystal layer of the red filter portion of the color filter according to the example. FIGS. 15 and 16 are graphs showing the example. FIG. 17 and FIG. 18 are graphs showing the light incident angle dependence of the reflection characteristics of the back side photonic crystal layer of the green filter part of the color filter according to FIG. It is a graph which shows the light incident angle dependence of the reflection characteristic of a photonic crystal layer.
図7ないし図12に示すように、表面側フォトニック結晶層においては、光入射角θが0°、10°、20°の場合に概ね良好な反射特性(すなわち、反射率が概ね0.6~0.95程度)が得られるのに対し、光入射角θが30°、40°、50°と大きい値をとるにつれて反射特性の大幅な低下(すなわち、反射率が概ね0.6未満にまで低下)が生じる傾向にあることが確認できる。ここで、表面側フォトニック結晶層に入射する光は、s偏光成分およびp偏光成分を含む白色光であり、上述した反射特性の低下は、光入射角依存性に基づいて光入射角θが増加するに伴ってp偏光成分が表面側フォトニック結晶層を透過する割合が増加することに起因するものである。なお、上述した従来のカラーフィルタは、前述したように当該表面側フォトニック結晶層のみにて入射光が反射されるように構成されたものであるため、当該結果は、そのまま上述した従来のカラーフィルタの反射特性を示すものでもある。
As shown in FIGS. 7 to 12, the surface-side photonic crystal layer has generally good reflection characteristics when the light incident angle θ is 0 °, 10 °, and 20 ° (that is, the reflectance is approximately 0.6). In contrast, as the light incident angle θ takes a large value of 30 °, 40 °, or 50 °, the reflection characteristics greatly decrease (that is, the reflectivity becomes less than about 0.6). It can be confirmed that there is a tendency to decrease). Here, the light incident on the surface-side photonic crystal layer is white light including an s-polarized component and a p-polarized component, and the decrease in the reflection characteristics described above is based on the light incident angle dependency. This is because the proportion of the p-polarized component transmitted through the surface-side photonic crystal layer increases as the number increases. In addition, since the conventional color filter described above is configured such that incident light is reflected only by the surface-side photonic crystal layer as described above, the result is the same as the conventional color filter described above. It also shows the reflection characteristics of the filter.
一方、図13ないし図18に示すように、裏面側フォトニック結晶層においては、光入射角θが0°、10°、20°の場合のみならず、30°、40°、50°と大きな値をとった場合にも、概ね良好な反射特性(すなわち、反射率が概ね0.6~0.95程度)が得られることが確認できる。ここで、裏面側フォトニック結晶層に入射する光は、主として、表面側フォトニック結晶層を透過したp偏光成分が、その後半波長板の作用によって変換されることで生じたs偏光成分の光であり、上述した反射特性は、当該s偏光成分の反射率を概ね意味することになる。
On the other hand, as shown in FIGS. 13 to 18, in the back side photonic crystal layer, not only when the light incident angle θ is 0 °, 10 °, 20 °, but also as large as 30 °, 40 °, 50 °. Even when the value is taken, it can be confirmed that generally good reflection characteristics (that is, the reflectance is approximately 0.6 to 0.95) can be obtained. Here, the light incident on the back-side photonic crystal layer is mainly light of the s-polarized component generated by converting the p-polarized component transmitted through the front-side photonic crystal layer by the action of the latter half wave plate. The above-described reflection characteristics generally mean the reflectance of the s-polarized component.
以上の結果から、本実施の形態におけるカラーフィルタとすることにより、図7ないし図12に示した反射特性に基づいて表面側フォトニック結晶層にて反射される光に加え、図13ないし図18に示した反射特性に基づいて裏面側フォトニック結晶層にて反射される光がカラーフィルタの表面側から出射されることになり、その結果、偏光依存性や入射角依存性の影響による波長選択性や反射率の低下を大幅に低減できることが確認された。
From the above results, by using the color filter in the present embodiment, in addition to the light reflected by the surface-side photonic crystal layer based on the reflection characteristics shown in FIGS. 7 to 12, FIGS. Based on the reflection characteristics shown in Fig. 1, the light reflected by the back-side photonic crystal layer is emitted from the front side of the color filter. As a result, wavelength selection is affected by the influence of polarization dependence and incident angle dependence. As a result, it was confirmed that the decrease in the property and reflectance can be greatly reduced.
(実施の形態2)
図19は、本発明の実施の形態2におけるカラーフィルタの断面図である。以下においては、図19を参照して、本実施の形態におけるカラーフィルタの構造について説明する。なお、上述した実施の形態1におけるカラーフィルタと同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 2)
FIG. 19 is a cross-sectional view of the color filter according toEmbodiment 2 of the present invention. Hereinafter, the structure of the color filter in the present embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected in the figure about the part similar to the color filter in Embodiment 1 mentioned above, and the description is not repeated here.
図19は、本発明の実施の形態2におけるカラーフィルタの断面図である。以下においては、図19を参照して、本実施の形態におけるカラーフィルタの構造について説明する。なお、上述した実施の形態1におけるカラーフィルタと同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 2)
FIG. 19 is a cross-sectional view of the color filter according to
図19に示すように、本実施の形態におけるカラーフィルタ1Bは、上述した実施の形態1におけるカラーフィルタ1Aと同様に、赤色フィルタ部2R、緑色フィルタ部2Gおよび青色フィルタ部2Bを含む、いわゆるRGBカラーフィルタである。カラーフィルタ1Bは、半波長板3と、表面側透光基板4と、表面側フォトニック結晶層5と、裏面側透光基板6と、裏面側フォトニック結晶層7とを含み、これらの積層体として構成されている。上述した赤色フィルタ部2R、緑色フィルタ部2G、青色フィルタ部2Bのそれぞれは、主としてこれらフィルタ部2R,2G,2Bに対応する部分に位置する表面側フォトニック結晶層5、半波長板3および裏面側フォトニック結晶層7によって構成される。
As shown in FIG. 19, the color filter 1B according to the present embodiment is a so-called RGB including a red filter portion 2R, a green filter portion 2G, and a blue filter portion 2B, similarly to the color filter 1A according to the first embodiment. It is a color filter. The color filter 1B includes a half-wave plate 3, a front-side translucent substrate 4, a front-side photonic crystal layer 5, a back-side translucent substrate 6, and a back-side photonic crystal layer 7, which are laminated. It is structured as a body. Each of the red filter portion 2R, the green filter portion 2G, and the blue filter portion 2B described above includes a front-side photonic crystal layer 5, a half-wave plate 3 and a back surface that are mainly located at portions corresponding to the filter portions 2R, 2G, and 2B. The side photonic crystal layer 7 is constituted.
ここで、カラーフィルタ1Bにあっては、表面側フォトニック結晶層5に含まれる複数のブロック構造体5aを封止するように表面側透光基板4の主表面上に表面側透光部材8が設けられるとともに、裏面側フォトニック結晶層7に含まれる複数のブロック構造体7aを封止するように裏面側透光基板6の主表面上に裏面側透光部材9が設けられている。すなわち、表面側透光基板4の主表面上において、複数のブロック構造体5aの間の空間が、表面側透光部材8によって充填されるとともに、裏面側透光基板6の主表面上において、複数のブロック構造体7aの間の空間が、裏面側透光部材9によって充填されている。
Here, in the color filter 1B, the surface-side translucent member 8 is formed on the main surface of the surface-side translucent substrate 4 so as to seal the plurality of block structures 5a included in the surface-side photonic crystal layer 5. Is provided, and a back surface side light transmissive member 9 is provided on the main surface of the back surface side light transmissive substrate 6 so as to seal a plurality of block structures 7a included in the back surface side photonic crystal layer 7. That is, on the main surface of the front surface side transparent substrate 4, the space between the plurality of block structures 5a is filled with the front surface side transparent member 8, and on the main surface of the rear surface side transparent substrate 6, A space between the plurality of block structures 7 a is filled with the back surface side light transmissive member 9.
これにより、表面側フォトニック結晶層5は、二次元格子状に配列された複数のブロック構造体5aと、これら複数のブロック構造体5aの間を充填する表面側透光部材8とによって構成されることになり、裏面側フォトニック結晶層7は、二次元格子状に配列された複数のブロック構造体7aと、これら複数のブロック構造体7aの間を充填する裏面側透光部材9とによって構成されることになる。なお、表面側透光部材8および裏面側透光部材9は、たとえば透明有機物にて構成され、その厚みは特に限定されるものではない。
Thereby, the surface side photonic crystal layer 5 is comprised by the several block structure 5a arranged in the two-dimensional lattice form, and the surface side translucent member 8 with which the space between these several block structures 5a is filled. Thus, the back-side photonic crystal layer 7 is composed of a plurality of block structures 7a arranged in a two-dimensional lattice, and a back-side translucent member 9 filling between the plurality of block structures 7a. Will be composed. In addition, the surface side translucent member 8 and the back surface side translucent member 9 are comprised, for example with a transparent organic substance, and the thickness is not specifically limited.
以上において説明した本実施の形態におけるカラーフィルタ1Bとした場合にも、上述した実施の形態1におけるカラーフィルタ1Aとした場合と同様に、偏光依存性や入射角依存性の影響による波長選択性や反射率の低下を大幅に低減することができる。したがって、当該構成のカラーフィルタ1Bとすることにより、波長選択性や反射率に優れたカラーフィルタとすることができる。
In the case of the color filter 1B according to the present embodiment described above, the wavelength selectivity or the wavelength selectivity due to the influence of the polarization dependency or the incident angle dependency is similar to the case of the color filter 1A according to the first embodiment. A decrease in reflectance can be greatly reduced. Therefore, by using the color filter 1B having the configuration, a color filter having excellent wavelength selectivity and reflectance can be obtained.
(実施の形態3)
図20は、本発明の実施の形態3における反射型表示装置の模式断面図である。以下においては、図20を参照して、本実施の形態における反射型表示装置の構造について説明する。なお、上述した実施の形態1と同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 3)
FIG. 20 is a schematic cross-sectional view of a reflective display device according toEmbodiment 3 of the present invention. Hereinafter, the structure of the reflective display device according to the present embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected in the figure about the part similar to Embodiment 1 mentioned above, and the description is not repeated here.
図20は、本発明の実施の形態3における反射型表示装置の模式断面図である。以下においては、図20を参照して、本実施の形態における反射型表示装置の構造について説明する。なお、上述した実施の形態1と同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 3)
FIG. 20 is a schematic cross-sectional view of a reflective display device according to
図20に示すように、本実施の形態における反射型表示装置10Aは、上述した実施の形態1におけるカラーフィルタ1Aを具備してなるものである。反射型表示装置10Aは、カラーフィルタ1Aと、TFT(Thin Film Transistor)基板12と、液晶層13と、対向基板14と、偏光板15と、遮光基板16と、支持部材17とを主として備えている。
As shown in FIG. 20, the reflective display device 10A in the present embodiment includes the color filter 1A in the first embodiment described above. The reflective display device 10A mainly includes a color filter 1A, a TFT (Thin Film Transistor) substrate 12, a liquid crystal layer 13, a counter substrate 14, a polarizing plate 15, a light shielding substrate 16, and a support member 17. Yes.
TFT基板12は、TFT(不図示)が設けられた透光基板12aと、透明電極層12bと、配向膜(不図示)とを主として有しており、カラーフィルタ1Aの表面側フォトニック結晶層5が設けられた主表面に対向して配置されている。透明電極層12bは、透光基板12aの上面上に設けられており、配向膜は、透明電極層12bやTFTを覆うように透光基板12aの上記上面上に設けられている。透光基板12aは、たとえば屈折率が十分に低いガラス基板や透明プラスチック基板等にて構成され、透明電極層12bは、たとえばITO(Indium Thin Oxide)膜等にて構成される。また、配向膜は、たとえばポリイミド膜等にて構成される。
The TFT substrate 12 mainly includes a translucent substrate 12a provided with TFTs (not shown), a transparent electrode layer 12b, and an alignment film (not shown), and the surface-side photonic crystal layer of the color filter 1A. 5 is arranged opposite to the main surface provided. The transparent electrode layer 12b is provided on the upper surface of the transparent substrate 12a, and the alignment film is provided on the upper surface of the transparent substrate 12a so as to cover the transparent electrode layer 12b and the TFT. The translucent substrate 12a is made of, for example, a glass substrate or a transparent plastic substrate having a sufficiently low refractive index, and the transparent electrode layer 12b is made of, for example, an ITO (Indium Thin Oxide) film or the like. The alignment film is composed of, for example, a polyimide film.
対向基板14は、透光基板14aと、透明電極層14bと、配向膜(不図示)とを主として有しており、TFT基板12の上面に対向して配置されている。透明電極層14bは、透光基板14aの下面上に設けられており、配向膜は、透明電極層14bを覆うように透光基板14aの上記下面上に設けられている。透光基板14aは、たとえば屈折率が十分に低いガラス基板や透明プラスチック基板等にて構成され、透明電極層14bは、たとえばITO膜等にて構成される。また、配向膜は、たとえばポリイミド膜等にて構成される。
The counter substrate 14 mainly includes a translucent substrate 14 a, a transparent electrode layer 14 b, and an alignment film (not shown), and is disposed to face the upper surface of the TFT substrate 12. The transparent electrode layer 14b is provided on the lower surface of the translucent substrate 14a, and the alignment film is provided on the lower surface of the translucent substrate 14a so as to cover the transparent electrode layer 14b. The translucent substrate 14a is composed of, for example, a glass substrate or a transparent plastic substrate having a sufficiently low refractive index, and the transparent electrode layer 14b is composed of, for example, an ITO film. The alignment film is composed of, for example, a polyimide film.
液晶層13は、光スイッチング部として機能するものであり、上述したTFT基板12と対向基板14との間の空間に液晶が充填されることで構成されている。液晶としては、ネマティック、スメクティック、コレステリックまたはこれらの混合物等が適用できる。液晶分子の配向状態としては、ホモジニアス、ホメオトロピック、ツイスト、ハイブリッド、ベンド等が好適である。液晶層13の厚さは、好ましくは10μm以下とされる。
The liquid crystal layer 13 functions as an optical switching unit, and is configured by filling a liquid crystal in the space between the TFT substrate 12 and the counter substrate 14 described above. As the liquid crystal, nematic, smectic, cholesteric, or a mixture thereof can be applied. As the alignment state of the liquid crystal molecules, homogeneous, homeotropic, twist, hybrid, bend and the like are preferable. The thickness of the liquid crystal layer 13 is preferably 10 μm or less.
偏光板15は、保護フィルム、偏光部、保護フィルムおよび接着剤がこの順で上から順に積層されたものであり、上述した対向基板14の上面上に配置される。保護フィルムは、好適にはトリアセチルセルロースが使用され、その厚さは、好ましくは40μm以下とされる。偏光部は、ヨウ素または染料等の素材をポリビニルアルコール製のフィルムに吸着・分散させてこれを一方向に延伸したものが好適に使用され、その厚さは、好ましくは25μm~30μmとされる。
The polarizing plate 15 is formed by laminating a protective film, a polarizing portion, a protective film, and an adhesive in this order from the top, and is disposed on the upper surface of the counter substrate 14 described above. As the protective film, triacetyl cellulose is suitably used, and the thickness thereof is preferably 40 μm or less. As the polarizing part, a material obtained by adsorbing and dispersing a material such as iodine or a dye on a polyvinyl alcohol film and stretching it in one direction is preferably used, and the thickness is preferably 25 μm to 30 μm.
遮光基板16は、たとえば表面にブラックマトリックスが塗布された基板等が使用され、カラーフィルタ1Aの裏面側フォトニック結晶層7が設けられた主表面に対向して配置されている。
The light shielding substrate 16 is, for example, a substrate whose surface is coated with a black matrix, and is disposed so as to face the main surface on which the back surface side photonic crystal layer 7 of the color filter 1A is provided.
支持部材17は、上述したカラーフィルタ1A、TFT基板12、液晶層13、対向基板14、偏光板15および遮光基板16を積層した状態で保持するためのスペーサ兼ホルダとして機能するものであり、表面にブラックマトリックスが塗布された基板等が使用される。
The support member 17 functions as a spacer and holder for holding the color filter 1A, the TFT substrate 12, the liquid crystal layer 13, the counter substrate 14, the polarizing plate 15, and the light shielding substrate 16 in a stacked state. A substrate coated with a black matrix is used.
なお、表面側フォトニック結晶層5と液晶層13との間の距離gは、好ましくは可視光の最長波長である780nm以上とされる。これは、フォトニック結晶層7と液晶層13との間で意図しない光の干渉が生じないようにするためであり、可視光の範囲内で干渉が生じなければ反射型表示装置としての機能が阻害されないためである。
The distance g between the surface-side photonic crystal layer 5 and the liquid crystal layer 13 is preferably 780 nm or more, which is the longest wavelength of visible light. This is to prevent unintended light interference between the photonic crystal layer 7 and the liquid crystal layer 13, and if there is no interference within the range of visible light, the function as a reflective display device is achieved. It is because it is not inhibited.
以上において説明した本実施の形態における反射型表示装置10Aとすることにより、視野角が広く確保されるとともに、当該広い視野角の範囲内において高色純度と画面輝度の向上との両立が図られた反射型表示装置とすることができる。これは、反射型表示装置10Aが、波長選択性や反射率に優れた、上述した実施の形態1におけるカラーフィルタ1Aを具備しているためである。したがって、当該構成の反射型表示装置10Aとすることにより、視認性に優れた反射型表示装置とすることができる。
By adopting the reflective display device 10A in the present embodiment described above, a wide viewing angle is ensured, and both high color purity and improvement in screen luminance are achieved within the wide viewing angle range. A reflective display device can be obtained. This is because the reflective display device 10 </ b> A includes the color filter 1 </ b> A according to Embodiment 1 described above, which is excellent in wavelength selectivity and reflectance. Therefore, by using the reflective display device 10A having the above configuration, a reflective display device with excellent visibility can be obtained.
(実施の形態4)
図21は、本発明の実施の形態4における反射型表示装置の模式断面図である。以下においては、図21を参照して、本実施の形態における反射型表示装置の構造について説明する。なお、上述した実施の形態1ないし3と同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 4)
FIG. 21 is a schematic cross-sectional view of a reflective display device according toEmbodiment 4 of the present invention. Hereinafter, the structure of the reflective display device according to the present embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected in the figure about the part similar to Embodiment 1 thru | or 3 mentioned above, and the description is not repeated here.
図21は、本発明の実施の形態4における反射型表示装置の模式断面図である。以下においては、図21を参照して、本実施の形態における反射型表示装置の構造について説明する。なお、上述した実施の形態1ないし3と同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 4)
FIG. 21 is a schematic cross-sectional view of a reflective display device according to
図21に示すように、本実施の形態における反射型表示装置10Bは、上述した実施の形態2におけるカラーフィルタ1Bを具備してなるものであり、その構成は、上述した実施の形態3における反射型表示装置10Aに準じている。反射型表示装置10Bは、カラーフィルタ1Bと、透明電極層8aと、液晶層13と、対向基板14と、偏光板15と、遮光基板16と、支持部材17とを主として備えている。
As shown in FIG. 21, the reflective display device 10B according to the present embodiment includes the color filter 1B according to the second embodiment described above, and the configuration thereof is the reflection according to the third embodiment described above. It conforms to the type display device 10A. The reflective display device 10B mainly includes a color filter 1B, a transparent electrode layer 8a, a liquid crystal layer 13, a counter substrate 14, a polarizing plate 15, a light shielding substrate 16, and a support member 17.
透明電極層8aは、カラーフィルタ1Bの表面側透光部材8の上面上に設けられており、当該表面側透光部材8の上面上には、さらにTFT(不図示)が設けられている。また、表面側透光部材8の上記上面上には、透明電極層8aおよびTFTを覆うように配向膜(不図示)が設けられている。すなわち、本実施の形態における反射型表示装置10Bは、上述した実施の形態3における反射型表示装置10Aが具備していたTFT基板12の透光基板12aをカラーフィルタ1Bの表面側透光部材8によって代替したものであり、他の構成は、上述した実施の形態3における反射型表示装置10Aと同様である。
The transparent electrode layer 8a is provided on the upper surface of the surface side light transmitting member 8 of the color filter 1B, and a TFT (not shown) is further provided on the upper surface of the surface side light transmitting member 8. In addition, an alignment film (not shown) is provided on the upper surface of the surface-side translucent member 8 so as to cover the transparent electrode layer 8a and the TFT. That is, in the reflective display device 10B in the present embodiment, the translucent substrate 12a of the TFT substrate 12 included in the reflective display device 10A in the above-described third embodiment is used as the surface-side translucent member 8 of the color filter 1B. The other configuration is the same as that of the reflective display device 10A according to the third embodiment described above.
以上において説明した本実施の形態における反射型表示装置10Bとした場合にも、上述した実施の形態3における反射型表示装置10Aとした場合と同様に、視野角が広く確保されるとともに、当該広い視野角の範囲内において高色純度と画面輝度の向上との両立が図られた反射型表示装置とすることができる。したがって、当該構成の反射型表示装置10Bとすることにより、視認性に優れた反射型表示装置とすることができる。
Even in the case of the reflective display device 10B in the present embodiment described above, a wide viewing angle is secured and the wide display as in the case of the reflective display device 10A in the third embodiment described above. A reflective display device that achieves both high color purity and improved screen brightness within the viewing angle range can be obtained. Therefore, by using the reflective display device 10B having the above configuration, a reflective display device with excellent visibility can be obtained.
(実施の形態5)
図22は、本発明の実施の形態5における反射型表示装置の模式断面図である。以下においては、図22を参照して、本実施の形態における反射型表示装置の構造について説明する。なお、上述した実施の形態1ないし4と同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 5)
FIG. 22 is a schematic cross-sectional view of a reflective display device according toEmbodiment 5 of the present invention. Hereinafter, the structure of the reflective display device according to the present embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected in the figure about the part similar to Embodiment 1 thru | or 4 mentioned above, and the description is not repeated here.
図22は、本発明の実施の形態5における反射型表示装置の模式断面図である。以下においては、図22を参照して、本実施の形態における反射型表示装置の構造について説明する。なお、上述した実施の形態1ないし4と同様の部分について図中同一の符号を付し、その説明はここでは繰り返さない。 (Embodiment 5)
FIG. 22 is a schematic cross-sectional view of a reflective display device according to
図22に示すように、本実施の形態における反射型表示装置10Cは、上述した実施の形態1におけるカラーフィルタ1Aを具備してなるものであり、その構成は、上述した実施の形態3における反射型表示装置10Aに準じている。反射型表示装置10Cは、カラーフィルタ1Aと、MEMSシャッタ18と、透光基板19と、偏光板15と、遮光基板16と、支持部材17とを主として備えている。本実施の形態における反射型表示装置10Cは、光スイッチング部の構成が上述した実施の形態3における反射型表示装置10Aと相違するものであり、他の構成は、上述した実施の形態3における反射型表示装置10Aと同様である。
As shown in FIG. 22, the reflective display device 10C according to the present embodiment includes the color filter 1A according to the first embodiment described above, and the configuration thereof is the reflection according to the third embodiment described above. It conforms to the type display device 10A. The reflective display device 10 </ b> C mainly includes a color filter 1 </ b> A, a MEMS shutter 18, a translucent substrate 19, a polarizing plate 15, a light shielding substrate 16, and a support member 17. The reflective display device 10C in the present embodiment is different from the reflective display device 10A in the third embodiment described above in the configuration of the optical switching unit, and the other configurations are the reflection in the third embodiment described above. This is the same as the type display device 10A.
透光基板19は、カラーフィルタ1Aの表面側フォトニック結晶層5が設けられた主表面に対向して配置されており、たとえば屈折率が十分に低いガラス基板や透明プラスチック基板等にて構成される。透光基板19は、MEMSシャッタ18が形成される基材に該当するものであり、MEMSシャッタ18は、当該透光基板19の下面に設けられている。
The translucent substrate 19 is disposed to face the main surface of the color filter 1A on which the surface-side photonic crystal layer 5 is provided, and is composed of, for example, a glass substrate or a transparent plastic substrate having a sufficiently low refractive index. The The translucent substrate 19 corresponds to a base material on which the MEMS shutter 18 is formed, and the MEMS shutter 18 is provided on the lower surface of the translucent substrate 19.
MEMSシャッタ18は、MEMS技術を適用することで形成された光スイッチング部であり、上述した実施の形態3における液晶層13の代替手段となるものである。具体的には、MEMSシャッタ18は、機械的に光の通過/遮蔽を制御可能なシャッタ構造を有する素子であり、たとえばPIXTRONIX社製のMEMSシャッタ素子が好適に利用可能である。なお、MEMSシャッタ18としては、たとえば特表2008-533510号公報に開示される如くのものが利用できる。
The MEMS shutter 18 is an optical switching unit formed by applying MEMS technology, and serves as an alternative to the liquid crystal layer 13 in the third embodiment described above. Specifically, the MEMS shutter 18 is an element having a shutter structure capable of mechanically controlling the passage / shielding of light, and, for example, a MEMS shutter element manufactured by PIXTRONIX can be suitably used. As the MEMS shutter 18, for example, a shutter as disclosed in JP-T-2008-533510 can be used.
以上において説明した本実施の形態における反射型表示装置10Cとした場合にも、上述した実施の形態3における反射型表示装置10Aとした場合と同様に、視野角が広く確保されるとともに、当該広い視野角の範囲内において高色純度と画面輝度の向上との両立が図られた反射型表示装置とすることができる。したがって、当該構成の反射型表示装置10Cとすることにより、視認性に優れた反射型表示装置とすることができる。
Even in the case of the reflective display device 10C in the present embodiment described above, a wide viewing angle is secured and the wide display as in the case of the reflective display device 10A in the third embodiment described above. A reflective display device that achieves both high color purity and improved screen brightness within the viewing angle range can be obtained. Therefore, by using the reflective display device 10C having the above configuration, a reflective display device with excellent visibility can be obtained.
以上において説明した本発明の実施の形態1ないし5においては、カラーフィルタとして、赤色フィルタ部、緑色フィルタ部および青色フィルタ部を具備してなるいわゆるRGBカラーフィルタを例示して説明を行なった。しかしながら、フィルタ部の数は特に制限されるものではなく、一種のフィルタ部のみを備えてなるカラーフィルタや、二種のフィルタ部のみを備えてなるカラーフィルタ、四種以上のフィルタ部を備えてなるカラーフィルタ等に本発明を適用することも当然に可能である。
In the first to fifth embodiments of the present invention described above, the color filter is described by exemplifying a so-called RGB color filter including a red filter portion, a green filter portion, and a blue filter portion. However, the number of filter units is not particularly limited, and includes a color filter that includes only one type of filter unit, a color filter that includes only two types of filter units, and four or more types of filter units. Naturally, it is possible to apply the present invention to a color filter or the like.
また、以上において説明した本発明の実施の形態1ないし5においては、カラーフィルタに設けられるフォトニック結晶構造に具備されるブロック構造体を直方体状のもので構成した場合を例示したが、ブロック構造体の形状としてはこれに限定されるものではなく、円柱状、多角柱状等、種々の形状のブロック構造体とすることもできる。
In Embodiments 1 to 5 of the present invention described above, the block structure provided in the photonic crystal structure provided in the color filter is exemplified as a rectangular parallelepiped, but the block structure The shape of the body is not limited to this, and block structures having various shapes such as a columnar shape and a polygonal column shape can be used.
このように、今回開示した上記各実施の形態および実施例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
Thus, the above-described embodiments and examples disclosed this time are examples in all respects and are not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1A,1B カラーフィルタ、2R 赤色フィルタ部、2G 緑色フィルタ部、2B 青色フィルタ部、3 半波長板、4 表面側透光基板、5 表面側フォトニック結晶層、5a ブロック構造体、6 裏面側透光基板、7 裏面側フォトニック結晶層、7a ブロック構造体、8 表面側透光部材、9 裏面側透光部材、10A~10C 反射型表示装置、12 TFT基板、12a 透光基板、12b 透明電極層、13 液晶層、14 対向基板、14a 透光基板、14b 透明電極層、15 偏光板、16 遮光基板、17 支持部材、18 MEMSシャッタ、19 透光基板。
1A, 1B color filter, 2R red filter section, 2G green filter section, 2B blue filter section, 3 half-wave plate, 4 surface side translucent substrate, 5 surface side photonic crystal layer, 5a block structure, 6 back side translucent Optical substrate, 7 Back side photonic crystal layer, 7a Block structure, 8 Front side translucent member, 9 Back side translucent member, 10A to 10C reflective display device, 12 TFT substrate, 12a translucent substrate, 12b transparent electrode Layer, 13 liquid crystal layer, 14 counter substrate, 14a translucent substrate, 14b transparent electrode layer, 15 polarizing plate, 16 light shielding substrate, 17 support member, 18 MEMS shutter, 19 translucent substrate.
Claims (10)
- 表面および裏面を有する半波長板(3)と、
二次元の屈折率周期構造を有し、前記半波長板(3)の前記表面側に配置された表面側フォトニック結晶層(5)と、
二次元の屈折率周期構造を有し、前記半波長板(3)の前記裏面側に配置された裏面側フォトニック結晶層(7)とを備えた、カラーフィルタ。 A half-wave plate (3) having a front surface and a back surface;
A surface-side photonic crystal layer (5) having a two-dimensional refractive index periodic structure and disposed on the surface side of the half-wave plate (3);
A color filter having a two-dimensional refractive index periodic structure and comprising a back side photonic crystal layer (7) disposed on the back side of the half wave plate (3). - 前記表面側フォトニック結晶層(5)は、第1の周期的な屈折率変化を有する第1フォトニック結晶領域を含み、
前記裏面側フォトニック結晶層(7)は、前記第1の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第2フォトニック結晶領域を含み、
前記第1フォトニック結晶領域と前記第2フォトニック結晶領域とが、前記半波長板(3)を挟んで対応して配置されている、請求項1に記載のカラーフィルタ。 The surface-side photonic crystal layer (5) includes a first photonic crystal region having a first periodic refractive index change;
The back-side photonic crystal layer (7) includes a second photonic crystal region having a periodic refractive index change substantially the same as the first periodic refractive index change;
2. The color filter according to claim 1, wherein the first photonic crystal region and the second photonic crystal region are arranged so as to sandwich the half-wave plate (3). - 前記表面側フォトニック結晶層(5)は、前記第1の周期的な屈折率変化と異なる第2の周期的な屈折率変化を有する第3フォトニック結晶領域をさらに含み、
前記裏面側フォトニック結晶層(7)は、前記第2の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第4フォトニック結晶領域をさらに含み、
前記第3フォトニック結晶領域と前記第4フォトニック結晶領域とが、前記半波長板(3)を挟んで対応して配置されている、請求項2に記載のカラーフィルタ。 The surface-side photonic crystal layer (5) further includes a third photonic crystal region having a second periodic refractive index change different from the first periodic refractive index change,
The back-side photonic crystal layer (7) further includes a fourth photonic crystal region having a periodic refractive index change substantially the same as the second periodic refractive index change,
3. The color filter according to claim 2, wherein the third photonic crystal region and the fourth photonic crystal region are arranged to correspond to each other with the half-wave plate (3) interposed therebetween. - 前記表面側フォトニック結晶層(5)は、前記第1の周期的な屈折率変化および前記第2の周期的な屈折率変化のいずれとも異なる第3の周期的な屈折率変化を有する第5フォトニック結晶領域をさらに含み、
前記裏面側フォトニック結晶層(7)は、前記第3の周期的な屈折率変化と実質的に同じ周期的な屈折率変化を有する第6フォトニック結晶領域をさらに含み、
前記第5フォトニック結晶領域と前記第6フォトニック結晶領域とが、前記半波長板(3)を挟んで対応して配置されている、請求項3に記載のカラーフィルタ。 The surface-side photonic crystal layer (5) has a third periodic refractive index change different from both the first periodic refractive index change and the second periodic refractive index change. Further comprising a photonic crystal region,
The back side photonic crystal layer (7) further includes a sixth photonic crystal region having a periodic refractive index change substantially the same as the third periodic refractive index change,
4. The color filter according to claim 3, wherein the fifth photonic crystal region and the sixth photonic crystal region are arranged so as to sandwich the half-wave plate (3). - 前記半波長板(3)の前記表面上に配置された表面側透光基板(4)と、
前記半波長板(3)の前記裏面上に配置された裏面側透光基板(6)とをさらに備え、
前記表面側フォトニック結晶層(5)が、前記表面側透光基板(4)の前記半波長板(3)が位置する側の主面とは反対側の主面上に設けられ、
前記裏面側フォトニック結晶層(7)が、前記裏面側透光基板(6)の前記半波長板(3)が位置する側の主面とは反対側の主面上に設けられている、請求項1から4のいずれかに記載のカラーフィルタ。 A surface-side translucent substrate (4) disposed on the surface of the half-wave plate (3);
A back-side light-transmitting substrate (6) disposed on the back surface of the half-wave plate (3);
The surface-side photonic crystal layer (5) is provided on the main surface opposite to the main surface on the side on which the half-wave plate (3) of the surface-side translucent substrate (4) is located,
The back-side photonic crystal layer (7) is provided on the main surface opposite to the main surface on the side where the half-wave plate (3) is located of the back-side translucent substrate (6). The color filter according to claim 1. - 前記表面側フォトニック結晶層(5)および前記裏面側フォトニック結晶層(7)が、二次元格子状に配列された複数のブロック構造体(5a,7a)と、これら複数のブロック構造体(5a,7a)の間に位置する空隙部とによって構成されている、請求項1から5のいずれかに記載のカラーフィルタ。 A plurality of block structures (5a, 7a) in which the front-side photonic crystal layer (5) and the back-side photonic crystal layer (7) are arranged in a two-dimensional lattice, and the plurality of block structures ( The color filter according to any one of claims 1 to 5, wherein the color filter is formed by a gap portion located between 5a and 7a).
- 前記表面側フォトニック結晶層(5)および前記裏面側フォトニック結晶層(7)が、二次元格子状に配列された複数のブロック構造体(5a,7a)と、これら複数のブロック構造体(5a,7a)の間を充填する透光部材(8,9)とによって構成されている、請求項1から5のいずれかに記載のカラーフィルタ。 A plurality of block structures (5a, 7a) in which the front-side photonic crystal layer (5) and the back-side photonic crystal layer (7) are arranged in a two-dimensional lattice, and the plurality of block structures ( The color filter according to any one of claims 1 to 5, wherein the color filter is configured by a translucent member (8, 9) filling a space between 5a and 7a).
- 請求項1から7のいずれかに記載のカラーフィルタと、
前記カラーフィルタの前記表面側フォトニック結晶層(5)に対向して配置された光スイッチング部とを備えた、反射型表示装置。 A color filter according to any one of claims 1 to 7;
A reflective display device comprising: an optical switching portion disposed to face the surface-side photonic crystal layer (5) of the color filter. - 前記光スイッチング部が、液晶層(13)にて構成されている、請求項8に記載の反射型表示装置。 The reflective display device according to claim 8, wherein the optical switching unit is configured by a liquid crystal layer (13).
- 前記光スイッチング部が、MEMSシャッタ(18)にて構成されている、請求項8に記載の反射型表示装置。 The reflective display device according to claim 8, wherein the optical switching unit is configured by a MEMS shutter (18).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010122706A JP2013164429A (en) | 2010-05-28 | 2010-05-28 | Color filter and reflection type display device including the same |
JP2010-122706 | 2010-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148701A1 true WO2011148701A1 (en) | 2011-12-01 |
Family
ID=45003694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056036 WO2011148701A1 (en) | 2010-05-28 | 2011-03-15 | Color filter, and reflection-type display device equipped with same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013164429A (en) |
WO (1) | WO2011148701A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013054115A1 (en) * | 2011-10-10 | 2013-04-18 | Lamda Guard Canada Inc | Filter made of metamaterials |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210055450A (en) * | 2019-11-07 | 2021-05-17 | 삼성전자주식회사 | Optical filter, and spectrometer and electronic apparatus including the optical filter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001350040A (en) * | 2000-06-06 | 2001-12-21 | Tokin Corp | Optical fiber |
JP2003131039A (en) * | 2001-10-29 | 2003-05-08 | Kyocera Corp | Optical filter module |
JP2008033279A (en) * | 2006-06-28 | 2008-02-14 | Konica Minolta Holdings Inc | Area division type wavelength plate and method for manufacturing the same |
WO2009093452A1 (en) * | 2008-01-23 | 2009-07-30 | Panasonic Corporation | Wavelength splitting device, plane-type lighting device using same, and liquid crystal display device using same |
JP2010078795A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Corp | Liquid crystal display device |
-
2010
- 2010-05-28 JP JP2010122706A patent/JP2013164429A/en not_active Withdrawn
-
2011
- 2011-03-15 WO PCT/JP2011/056036 patent/WO2011148701A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001350040A (en) * | 2000-06-06 | 2001-12-21 | Tokin Corp | Optical fiber |
JP2003131039A (en) * | 2001-10-29 | 2003-05-08 | Kyocera Corp | Optical filter module |
JP2008033279A (en) * | 2006-06-28 | 2008-02-14 | Konica Minolta Holdings Inc | Area division type wavelength plate and method for manufacturing the same |
WO2009093452A1 (en) * | 2008-01-23 | 2009-07-30 | Panasonic Corporation | Wavelength splitting device, plane-type lighting device using same, and liquid crystal display device using same |
JP2010078795A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Corp | Liquid crystal display device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013054115A1 (en) * | 2011-10-10 | 2013-04-18 | Lamda Guard Canada Inc | Filter made of metamaterials |
US10698143B2 (en) | 2011-10-10 | 2020-06-30 | Lamda Guard Technologies Ltd. | Filter made of metamaterials |
US10996385B2 (en) | 2011-10-10 | 2021-05-04 | Lamda Guard Technologies Ltd. | Filter made of metamaterials |
Also Published As
Publication number | Publication date |
---|---|
JP2013164429A (en) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5749960B2 (en) | Display device and electronic device | |
US8833952B2 (en) | Display apparatus including recessed color filters | |
WO2000048039A1 (en) | Liquid-crystal display | |
KR101474668B1 (en) | Transparent display | |
US20130208201A1 (en) | Display device | |
JP2008102416A (en) | Wire grid polarizer and liquid crystal display using the same | |
JP3058620B2 (en) | Liquid crystal display | |
WO2017170400A1 (en) | Switching mirror panel and switching mirror device | |
CN112859426B (en) | Display panel and display device | |
TWI506310B (en) | Liquid crystal display device | |
US20180196302A1 (en) | Display device | |
CN107247357B (en) | Display panel, display method thereof and display device | |
US8625056B2 (en) | Liquid crystal display | |
CN109143665A (en) | A kind of display panel and display device | |
KR100393390B1 (en) | reflective liquid crystal display device | |
US7667799B2 (en) | Liquid crystal display panel and liquid crystal display device using the same | |
US11099422B2 (en) | Reflective filter comprising a periodic array structure having an equivalent refractive index and display panel having the same, display device and control method thereof | |
JP5114853B2 (en) | Display device | |
JP5836847B2 (en) | Liquid crystal display | |
WO2011148701A1 (en) | Color filter, and reflection-type display device equipped with same | |
WO1998057221A1 (en) | Display and electronic device | |
JP2003195288A (en) | Semi-transmission type liquid crystal display | |
JP2001183646A (en) | Liquid crystal display device | |
JP2009092972A (en) | Display device | |
JP2003035901A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11786401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |