WO2011148513A1 - Charged-particle irradiation system - Google Patents

Charged-particle irradiation system Download PDF

Info

Publication number
WO2011148513A1
WO2011148513A1 PCT/JP2010/059157 JP2010059157W WO2011148513A1 WO 2011148513 A1 WO2011148513 A1 WO 2011148513A1 JP 2010059157 W JP2010059157 W JP 2010059157W WO 2011148513 A1 WO2011148513 A1 WO 2011148513A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnet
charged particle
transport system
irradiation
electromagnet group
Prior art date
Application number
PCT/JP2010/059157
Other languages
French (fr)
Japanese (ja)
Inventor
尚文 石黒
真澄 梅澤
聡 遠竹
知久 今川
大春 千葉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2010/059157 priority Critical patent/WO2011148513A1/en
Priority to JP2012517079A priority patent/JP5396538B2/en
Publication of WO2011148513A1 publication Critical patent/WO2011148513A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • the present invention relates to a charged particle irradiation system, and in particular, includes a charged particle beam generator and a beam transport system, and consists of repeating “incidence ⁇ acceleration ⁇ extraction ⁇ deceleration” of a charged particle beam as a single operation cycle.
  • the present invention relates to a charged particle irradiation system optimum for an electromagnet initialization operation in a case where normal operation is continuously performed.
  • a treatment method in which a charged particle beam such as a proton is irradiated to an affected area of a patient such as cancer.
  • a large-scale treatment system used for this treatment has conventionally been provided with a charged particle beam generator, a beam transport system, and a plurality of irradiation devices installed in a plurality of treatment rooms.
  • the charged particle beam accelerated by the charged particle beam generator reaches the irradiation device in each treatment room through the beam transport system, and is irradiated to the affected area of the patient from the nozzle of the irradiation device.
  • the beam transport system includes one common beam transport system and a plurality of branched beam transport systems that branch from the common beam transport system and reach the irradiation apparatus in each treatment room.
  • Each branch beam transport system is provided with a switching electromagnet for deflecting the charged particle beam from the common beam transport system and introducing it into the branch beam transport system.
  • An electromagnet group (electromagnet group belonging to the second beam transport system) such as a deflection electromagnet and a quadrupole electromagnet for guiding the charged particle beam introduced by the electromagnet to the irradiation device is provided.
  • the switching electromagnet and the electromagnet group belonging to the second beam transport system share the power source with the switching electromagnet corresponding to another treatment room and the electromagnet group belonging to the second beam transport system (Patent Document 1). Therefore, when beam irradiation is performed with another irradiation device after irradiation with a certain irradiation device, the switching electromagnet is controlled to be switched and the load switching device is connected to connect the power supply group to the electromagnet group belonging to the branch beam transport system. Switching processing is performed (Patent Documents 1 and 2).
  • a switching electromagnet in a charged particle irradiation system having a beam transport system that branches into a plurality of irradiation apparatuses such as the particle beam therapy system performs switching between excitation and non-excitation.
  • the beam is guided to the irradiation apparatus, but the initialization operation is performed only on the switching electromagnet that is excited.
  • the initialization operation is not performed only by being in the excited state, and the initialization operation is performed after only the downstream switching electromagnet is excited.
  • the residual magnetic field of the upstream switching electromagnet is affected by the hysteresis after completion of the upstream normal operation. Therefore, the influence of the normal operation on the downstream side from the residual magnetic field of the upstream switching electromagnet is different each time.
  • the first object of the present invention is to increase the operating rate of the apparatus by shortening the waiting time before the start of normal operation.
  • the treatment is completed after the patient enters the treatment room.
  • a second object of the present invention is a charged particle irradiation system having a beam transport system that branches into a plurality of irradiation devices, in which the influence of hysteresis due to the previous normal operation is made constant every time, so that stable beam irradiation can be performed constantly. Is to provide a system.
  • the present invention that realizes the first object includes a charged particle beam generating apparatus that emits a charged particle beam, an irradiation apparatus that irradiates the charged particle beam, and an emitted apparatus that emits the charged particle beam from the charged particle beam generator to the irradiation apparatus.
  • the charged particle irradiation system comprising the beam transport system for transporting the charged particle beam
  • the electromagnet group belonging to the charged particle beam generator and the electromagnet group belonging to the beam transport system are excited, It is provided with a control device that automatically performs initialization operation for initializing the electromagnet group excited in the normal operation after the normal operation is completed by repeating this process as many times as necessary with “acceleration ⁇ extraction ⁇ deceleration” as one operation cycle. is there.
  • the present invention for realizing the first and second objects includes a charged particle beam generator for emitting a charged particle beam, a plurality of irradiation devices respectively installed at a plurality of locations, and the charged particle beam generator.
  • an electromagnet belonging to the charged particle beam generator A group of electromagnets from an upstream side of the first beam transport system to a switching electromagnet corresponding to an irradiation device used for treatment among the plurality of irradiation devices; and After exciting the electromagnet group belonging to the second beam transport system corresponding to the irradiation device and repeating the necessary number of times as “injection ⁇ acceleration ⁇ extraction ⁇ de
  • the present invention for realizing the first and second objects includes a charged particle beam generator for emitting a charged particle beam, a plurality of irradiation devices respectively installed at a plurality of locations, and the charged particle beam generator.
  • a beam transport system for transporting the charged particle beam emitted from the charged particle beam generator to each of the irradiation devices, and the beam transport system is connected to the charged particle beam generator
  • the first beam transport system includes a second electromagnet group
  • the plurality of second beam transport systems includes a third electromagnet group
  • the third electromagnet group extends from the first beam transport system.
  • a charged particle irradiation system including a switching electromagnet group arranged at each branch position of the second beam transport system, a first electromagnet power supply device for exciting the first electromagnet group and the second electromagnet group, and the third A second electromagnet power supply for exciting the electromagnet group, and a second electromagnet selected from the electromagnets of the third electromagnet group belonging to one second beam transport system selected for treatment.
  • the first electromagnet group belonging to the charged particle beam generator, and the second electromagnet group belonging to the first beam transport system upstream of the first beam transport system
  • a first control device that automatically performs a control operation, and a preparation completion indicating that the initialization operation by the first control device has been completed and that irradiation preparation at one of the plurality of locations has been completed
  • the load switching device is controlled, and among the electromagnets of the third electromagnet group, the selected electromagnet group belonging to the second beam transport system corresponding to the one place is moved to the second electromagnet.
  • a second control device that switches to connect to the power supply device.
  • control device further stores a time when the initialization is completed when the electromagnet group is initialized by the initialization operation, and the electromagnet group is initialized for a predetermined time or more from this time. It is preferable that the initialization operation for reinitializing the electromagnet group is automatically performed when the operation is not performed.
  • control device automatically performs an initialization operation for stopping the normal operation and initializing the electromagnet group when a normal operation stop command is received during the normal operation. Is preferred.
  • the present invention in a charged particle irradiation system having a single irradiation device or a plurality of irradiation devices, by automatically performing an initialization operation to initialize an electromagnet group excited in normal operation after completion of normal operation, The waiting time before the start of normal operation can be shortened and the operating rate of the apparatus can be increased. As a result, in the particle beam therapy system, the time from when the patient enters the treatment room until the treatment is completed can be shortened, and the burden on the patient can be reduced.
  • stable beam irradiation can be performed by making the influence of hysteresis in the residual magnetic field of the switching electromagnet constant.
  • FIG. 1 is a configuration diagram of a charged particle irradiation system (charged particle therapy system) in a first embodiment of the present invention.
  • FIG. It is a figure which shows the structure of the control part of the control apparatus of this embodiment, and the relationship of transmission / reception of the signal between a control part, an electromagnet power supply device, a charged particle beam generator, and a treatment room. It is a flowchart which shows the flow of the process in a control part. It is a time chart which compares the flow of operation
  • the charged particle irradiation system of the present embodiment is, for example, a proton beam treatment system, and the proton beam treatment system includes a charged particle beam generator 1, a treatment room 2, and a charged particle beam generator as shown in FIG.
  • a beam transport system 4 for guiding an ion beam from 1 to the treatment room 2 is provided.
  • the charged particle beam generator 1 includes an ion source (not shown), a pre-stage accelerator (pre-stage charged particle beam generator) 7 using a linear accelerator, and a synchrotron 9. Ions generated in the ion source (positive ions—for example, carbon ions in the case of other particle beams) are accelerated by the front stage accelerator 7. An ion beam (for example, a positive ion beam) emitted from the front stage accelerator 7 is incident on the synchrotron 9 via the deflection electromagnet 8. The ion beam, which is a charged particle beam (particle beam), is accelerated by the synchrotron 9 by being given energy by a high-frequency power applied from a high-frequency acceleration cavity (not shown).
  • the synchrotron 9 After the energy of the ion beam that circulates in the synchrotron 9 is increased to a set energy (for example, 100 to 200 MeV), a high frequency is applied to the ion beam from a high frequency application device (not shown) for extraction. The ion beam orbiting within the stability limit moves outside the stability limit by the application of this high frequency, and is emitted from the synchrotron 9 through an extraction deflector (not shown).
  • the synchrotron 9 includes a group of electromagnets such as a quadrupole electromagnet 51 and a deflection electromagnet 52.
  • a current guided to the electromagnet such as the quadrupole electromagnet 51 and the deflection electromagnet 52 is held at a current set value, and the stability limit. Is also held almost constant.
  • the ion beam extraction from the synchrotron 9 is stopped by stopping the application of high-frequency power to the high-frequency application device.
  • the ion beam emitted from the synchrotron 9 is transported from the beam transport system 4 to the treatment room 2.
  • the beam transport system 4 includes a quadrupole electromagnet 13, a deflection electromagnet 12, a quadrupole electromagnet 14, a deflection electromagnet 6, a quadrupole electromagnet 15, a deflection electromagnet 16, a quadrupole electromagnet 17, a deflection electromagnet 18 disposed on the beam path from the upstream side in the beam traveling direction.
  • a deflection electromagnet 19 is provided.
  • the ion beam introduced into the beam transport system 4 is transported to the irradiation device 10 through the beam path.
  • the irradiation device 10 is attached to a rotating gantry (not shown) installed in each treatment room 2.
  • the irradiation device 10 is a double scatterer type irradiation device. Alternatively, a wobbler type irradiation apparatus may be used.
  • the treatment room 2 is a treatment room for cancer patients, for example.
  • the electromagnet group belonging to the beam transport system 4 is listed below.
  • the electromagnet group is partially omitted from illustration. For example, the steering electromagnet in the synchrotron 9 and the beam transport system 4 is omitted.
  • the proton beam therapy system of this embodiment includes a control device 20, and the control device 20 includes a control unit 21 and an electromagnet power supply device 22.
  • the electromagnet power supply 22 is for exciting each electromagnet included in the electromagnet group belonging to the synchrotron 9 and the electromagnet group belonging to the beam transport system 4.
  • FIG. 2 shows the configuration of the control unit 21 of the control device 20 of the present embodiment and the signal transmission / reception relationship between the control unit 21, the electromagnet power supply device 22, the charged particle beam generator 1, and the treatment room 2.
  • the flow of processing in the control unit 21 is shown in FIG.
  • the control unit 21 includes a storage device 24, an output device 25, and a sequencer 23.
  • the storage device 24 includes an initialization excitation pattern 26 for each electromagnet necessary for the initialization operation and a normal excitation for each electromagnet necessary for the normal operation.
  • the pattern 27 is stored and held in advance.
  • the control unit 21 includes a normal operation start determination device 28, an initialization operation start determination device 29, and an initialization timer 30.
  • a normal operation completion signal 35 is output from the charged particle beam generator 1.
  • the initialization operation start determination device 29 outputs an initialization operation start command 31 to the output device 25 (step S140).
  • the initialization operation start determination device 29 outputs an initialization operation start signal 32 to the initialization timer.
  • the initialization timer stores the timing at which the initialization start signal 32 is received. And when there is no initialization start signal for a predetermined time or more after receiving the previous initialization start signal, it is determined that the residual magnetic field of the electromagnet has changed over time, and the initialization operation start determination device A reinitialization request 33 is output.
  • the initialization operation start determination device 29 Upon receiving the re-initialization request 33, the initialization operation start determination device 29 outputs an initialization operation start command 31 to the output device 25 (step S100). Further, when the treatment is interrupted in the treatment room 2 due to manual operation or interlock operation, or when the normal operation is interrupted due to the interlock operation in the charged particle beam generator 1, etc., the normal operation stop commands 34a and 34b are issued. Are output from the treatment room 2 and the charged particle beam generator 1 to the initialization operation start determination device 29. Even in this case, the initialization operation start determination device 29 outputs the initialization operation start command 31 to the output device 25 (step S130).
  • the output device 25 When the output device 25 receives the initialization operation start command 31, the output device 25 outputs the initialization pattern 26 stored in the storage device 24 to the electromagnet power supply device 22, and performs the initialization operation to initialize the electromagnet group excited in the normal operation. (Step S150).
  • the initialization operation completion signal 36 is output from the electromagnet power supply device 22 to the normal operation start determination device 28, and the normal operation can be started (step S160).
  • the normal operation start determination device 28 outputs a normal operation start signal 38 to the output device 25 and the charged particle beam generator 1.
  • the output device 25 receives the normal operation start command 38, the output device 25 outputs the operation pattern 27 stored in the storage device 24 to the electromagnet power supply device 22, and normal operation is performed (steps S110 ⁇ S120).
  • FIG. 5 shows the excitation state of the electromagnet power source belonging to the beam transport system during normal operation and initialization operation in FIG.
  • FIG. 4 is a time chart showing the flow of operation in the case where the normal operation per person is repeated three times for two patients in comparison with the conventional embodiment.
  • the treatment room preparation in the figure refers to a preparation process such as patient fixation
  • the irradiation preparation refers to a preparation process such as adjustment of a nozzle and a gantry before starting normal operation.
  • FIG. 5 is a diagram showing the excitation state of the transport system electromagnet during the initialization operation in comparison with the prior art and the present embodiment. As shown in FIG. 5, in the normal operation, “incidence ⁇ acceleration ⁇ extraction ⁇ deceleration” of the charged particle beam is performed as one operation cycle, and this is repeated as many times as necessary (in the example of FIG. 5, three times). The maximum and minimum excitations of the electromagnet are repeated a plurality of times (three times in the example of FIG. 5).
  • the initialization operation is performed before each normal operation.
  • the initialization operation method of the present embodiment as shown in the lower side of FIG. 4, the initialization operation is performed before the normal operation 1 because a predetermined time has elapsed since the previous initialization operation. However, otherwise, the initialization operation is automatically started after each normal operation, and the initialization operation is performed.
  • the waiting time due to the initialization operation is eliminated by performing in parallel with the irradiation preparation. If the initialization operation is performed after the irradiation operation, the initialization operation before the normal operation becomes unnecessary, and the usage time of the irradiation apparatus is shortened.
  • the initialization operation of the electromagnet group belonging to the synchrotron 9 and the electromagnet group belonging to the transport system is performed, and at the same time, the next irradiation preparation is performed, thereby reducing the operation rate of the apparatus. Can be increased.
  • the treatment room preparation is 15 minutes
  • the irradiation preparation is 5 minutes
  • the normal operation is 2 minutes
  • the initialization operation is 1 minute.
  • the operating time of the apparatus in the conventional initialization operation method is 68 minutes from the following equation.
  • the operating time of the apparatus in the initialization operation method of the present embodiment is 63 minutes from the following equation.
  • the proton beam treatment system which is the charged particle irradiation system of the present embodiment includes a charged particle beam generator 1 similar to that of the first embodiment and three treatment rooms 2A, 2B, 2C. And a first beam transport system 4A connected to the downstream side of the charged particle beam generator 1 and second beam transport systems 5A, 5B, 5C provided so as to branch from the first beam transport system 4A, respectively. It has a beam transport system.
  • the first beam transport system 4A is a common beam transport system that guides an ion beam to each of the second beam transport systems 5A, 5B, and 5C.
  • the synchrotron 9 of the charged particle beam generator 1 includes an electromagnet group (hereinafter referred to as a first electromagnet group) such as a quadrupole electromagnet 51 and a deflection electromagnet 52 as described above.
  • the ion beam emitted from the synchrotron 9 is transported downstream from the first beam transport system 4A.
  • the first beam transport system 4A includes a quadrupole electromagnet 13, a deflection electromagnet 12, a quadrupole electromagnet 14A, a switching electromagnet 6A, a quadrupole electromagnet 14B, a switching electromagnet 6B, a quadrupole electromagnet 14C, and a switching electromagnet arranged on the beam path from the upstream side in the beam traveling direction.
  • the ion beam introduced into the first beam transport system 4A is selected as one of the second beam transport systems 5A, 5B, and 5C depending on the presence or absence of a deflection action by switching the excitation electromagnets 6A, 6B, and 6C. Introduced.
  • Each switching electromagnet is a kind of deflection electromagnet.
  • the second beam transport system 5A is connected to the beam path of the first transport system 4A and is connected to the irradiation apparatus 10A disposed in the treatment room 2A.
  • the quadrupole electromagnet 15A is disposed from the upstream side in the beam traveling direction in the beam path.
  • a deflection electromagnet 16A, a quadrupole electromagnet 17A, a deflection electromagnet 18A, and a deflection electromagnet 19A It can be said that the switching electromagnet 6A is arranged on the beam path of the second beam transport system 5A.
  • the second beam transport system 5B and the second beam transport system 5C are configured similarly to the second beam transport system 5A.
  • These second beam transport systems 2B and 2C are composed of constituent elements obtained by adding subscripts B and C in place of the subscript A to the reference numerals of the constituent elements of the second beam transport system 2A.
  • the ion beam introduced into the second beam transport system 5A is transported to the irradiation device 10A through the beam path by excitation of the electromagnet.
  • the ion beams are transported to the irradiation devices 10B and 10C through the respective beam paths.
  • the electromagnet groups belonging to the first beam transport system 4A and the second beam transport systems 5A to 5C are listed below.
  • a quadrupole electromagnet 13 A quadrupole electromagnet 13, a deflection electromagnet 12, a quadrupole electromagnet 14A, a switching electromagnet 6A, a quadrupole electromagnet 14B, a switching electromagnet 6B, a quadrupole electromagnet 14C, a switching electromagnet 6C, and a quadrupole electromagnet 14D.
  • Electromagnet group corresponding to treatment room 2A (four-pole electromagnet 15A, deflection electromagnet 16A, quadrupole electromagnet 17A, deflection electromagnet 18A, deflection electromagnet 19A) 2.
  • Electromagnet group corresponding to treatment room 2B (quadrupole electromagnet 15B, deflection electromagnet 16B, quadrupole electromagnet 17B, deflection electromagnet 18B, deflection electromagnet 19B) 3.
  • Electromagnet group electromagnet group (quadrupole electromagnet 15C, deflection electromagnet 16C, quadrupole electromagnet 17C, deflection electromagnet 18C, deflection electromagnet 19C) corresponding to treatment room 2C.
  • the electromagnet group is partially omitted from explanation.
  • the steering electromagnets in the synchrotron 9, the first beam transport system 4A, and the second beam transport systems 5A, 5B, and 5C are omitted.
  • the proton beam therapy system of this embodiment includes a control device 20A, and the control device 20A includes a control unit 21A, an electromagnet power supply device 22A, and a load switching device 40.
  • the control unit 21A includes an electromagnet control unit 21a and a load switching control unit 21b. The functions of the electromagnet controller 21a and the load switching controller 21b will be described later.
  • the electromagnet power supply device 22A includes the electromagnets included in the first electromagnet group belonging to the synchrotron 9, the second electromagnet group belonging to the first beam transport system 4A, and the third electromagnet group belonging to the second beam transport systems 5A to 5C, respectively.
  • the load switching device 40 selects the second electromagnet group belonging to the second beam transport system corresponding to the treatment room among the third electromagnet groups belonging to the second beam transport systems 5A to 5C. It switches so that it may connect with the electromagnet power supply device 22b, and performs excitation control of these electromagnet groups.
  • FIG. 7 shows the signal transmission / reception relationship between the treatment rooms 2A, 2B, and 2C.
  • the electromagnet control unit 21a corresponds to the control unit 21 in the first embodiment, and the process flow in the electromagnet control unit 21a is the same as that in FIG.
  • This embodiment is different from the first embodiment in that the normal part occupies corresponding portions of the synchrotron 9 and the first beam transport system, and each treatment room outputs a normal operation start request 37. Therefore, it is necessary to switch the load on the third electromagnet group belonging to the second beam transport system for guiding the beam to the treatment room.
  • the electromagnet groups 12, 13, 14A, and the third group belonging to the second beam transport system 5A are excited to perform normal operation.
  • a normal operation completion signal 35 is output from the charged particle beam generator 1, and in response to this, the initialization operation start determination device 29 outputs an initialization operation start command 31 to the output device 25 (FIG. 3 step S140).
  • the output device 25 Upon receiving the initialization operation start command 31, the output device 25 outputs the initialization pattern 26 stored in the storage device 24 to the electromagnet power supply device 22A, and the initialization operation is performed (step S150 in FIG. 3). That is, when the normal operation is completed, the initialization operation for initializing the electromagnet group excited in the normal operation is automatically performed.
  • the electromagnet control unit 21a of the control unit 21A performs control of normal operation and initialization operation performed by selecting the electromagnet group and exciting the electromagnet group in the first beam transport system 4A.
  • a preparation completion signal 41 is output from each treatment room to the load switching control unit 21b.
  • the initialization operation completion signal 36 is output from the electromagnet power supply device 22A to the normal operation start determination device 28 and the load switching control unit 21b.
  • the load switching control unit 21b Upon receiving the preparation completion signal 41 and the initialization operation completion signal 36, the load switching control unit 21b immediately outputs a load switching request 42 to the load switching device 40.
  • the load switching device 40 receives the load switching request 42 and performs load switching, and then outputs a load switching completion signal 43 to the load switching control unit 21b.
  • the load switching control unit 21b sends a normal operation start permission signal 44 to the treatment room. Output to.
  • the normal operation can be started for the first time, and the normal operation start request 37 can be output from the treatment room.
  • the electromagnet group when the electromagnet group is initialized by the initialization operation, the time when the initialization is completed is stored, and when the electromagnet group is not initialized for a predetermined time from this time.
  • the initialization operation for reinitializing the electromagnet group is automatically performed (step S100 in FIG. 3), and when the normal operation stop command is received during the normal operation, the normal operation is stopped and the electromagnet group is The initialization operation to be initialized automatically (step S130 in FIG. 3) is the same as in the first embodiment.
  • the re-initialization when the initialization has not been performed for a predetermined time or more after the previous initialization is performed by the electromagnet group of the synchrotron 9, the second electromagnet group of the first beam transport system 4A, and the second beam transport system 5A to It is necessary to re-initialize only the corresponding electromagnet group by monitoring the passage of a predetermined time from the previous initialization by distinguishing it from the 5C third electromagnet group.
  • FIG. 8 and FIG. 9 compare two examples of the operation flow of the charged particle irradiation system when a normal operation is repeated three times for one patient in the treatment rooms 2A and 2B. It is a time chart shown.
  • initialization operation is performed before each irradiation.
  • the initialization operation is performed before the normal operation 1 for the treatment room 2A because the fixed time has elapsed since the previous initialization operation.
  • the initialization operation is automatically started after each normal operation, and the initialization operation is performed.
  • the treatment room 2B since a predetermined time has not elapsed since the previous initialization operation, it is not necessary to perform the initialization operation before the normal operation 4.
  • the next irradiation preparation is performed in parallel with the initialization operation.
  • FIG. 8 is an example in the case where the beam irradiation starts in the treatment rooms 2A and 2B overlap and the normal operation is alternately performed.
  • a charged particle irradiation system that branches into a plurality of treatment rooms, normal operation and initialization operation in another treatment room cannot be started when normal operation and initialization operation are performed in a certain treatment room. Therefore, in this example, in both the conventional initialization operation and the initialization operation of the present embodiment, a waiting time is generated before all the normal operations except the normal operation 1, and the initialization operation is performed before the normal operation. There is no superiority or inferiority in time reduction depending on whether it is performed after normal operation.
  • FIG. 9 shows an example in which the normal operation in the treatment room 2B is started after three normal operations in the treatment room 2A without the beam irradiation start in the treatment rooms 2A and 2B overlapping.
  • the conventional initialization operation when the preparation of the treatment room 2B is completed, the beam irradiation in the treatment room 2A is not completely completed, and a waiting time occurs before the normal operation 4.
  • a waiting time occurs before the normal operation 4
  • the beam irradiation of the treatment room 2A is completed earlier by performing the initialization operation and the irradiation preparation in parallel. Therefore, the waiting time before the normal operation 4 is shortened.
  • the apparatus operation time is shortened by performing initialization and irradiation preparation in parallel.
  • treatment room preparation is 15 minutes
  • irradiation preparation is 5 minutes
  • normal operation is 2 minutes
  • initialization operation is 1 minute.
  • the time required for completing six normal operations in the conventional initialization operation method is 53 minutes from the following equation.
  • the time required to complete a total of six irradiations in the initialization operation method of the present embodiment is 49 minutes from the following equation.
  • FIG. 10 shows the initialization status of each electromagnet in the conventional initialization operation of FIG. 8 and FIG. 11 shows the initialization status of each electromagnet in the initialization operation of the present embodiment.
  • FIG. 10 shows the normal operation of the treatment room 2A in the conventional initialization operation of FIG. 8 (normal operation 1, normal operation 2, normal operation 3) and the normal operation of the treatment room 2B (normal operation 4, normal operation 5, normal operation).
  • the initialization status of the operation 6) is indicated by white for the initialized electromagnet and black for the uninitialized electromagnet.
  • the first electromagnet group belonging to the synchrotron 9 and the second electromagnet group from the upstream side of the first beam transport system to the position immediately before the switching electromagnet 6A, the treatment room 2A, by the immediately preceding initialization operation.
  • the third electromagnet group (including the switching electromagnet 6A) belonging to the second beam transport system corresponding to is initialized.
  • the first electromagnet group belonging to the synchrotron 9 and the second electromagnet group from the upstream side of the first beam transport system to the position immediately before the switching electromagnet 6B, the treatment room 2B, by the immediately previous initialization operation.
  • the third electromagnet group (including the switching electromagnet 6B) belonging to the second beam transport system corresponding to is initialized.
  • the switching electromagnet 6A since the electromagnet power supply device 22b is switched to be connected to the switching electromagnet 6B by the load switching device 40, the switching electromagnet 6A is only in a non-excited state and is not initialized.
  • the residual magnetic field of the switching electromagnet 6A during normal operation in the treatment room 6B is affected by hysteresis due to normal operation in the treatment room 2A. And the influence which the normal driving
  • FIG. 11 shows the normal operation of the treatment room 2A (normal operation 1, normal operation 2, normal operation 3) and the normal operation of the treatment room 2B (normal operation 4, normal operation) in the initialization operation of the present embodiment of FIG. 5.
  • Initialization status of normal operation 6) is indicated by white for an initialized electromagnet and black for an uninitialized electromagnet.
  • the first electromagnet group belonging to the synchrotron 9 and the upstream side of the first beam transport system by the initialization operation immediately before the normal operation 1 and the initialization operation immediately after the normal operation 1 and the normal operation 2 The second electromagnet group up to immediately before the switching electromagnet 6A and the third electromagnet group (including the switching electromagnet 6A) belonging to the second beam transport system corresponding to the treatment room 2A are already initialized. Further, the treatment room 2B is located upstream of the first beam transport system due to the fact that a fixed time has not passed since the previous initialization operation immediately before the normal operation 4 and the initialization operation immediately after the normal operation 4 and the normal operation 5.
  • the second electromagnet group up to immediately before the switching electromagnet 6B and the third electromagnet group (including the switching electromagnet 6B) belonging to the second beam transport system corresponding to the treatment room 2B have been initialized. Further, since the electromagnet used after the normal operation of the treatment room 2A is initialized, the normal state of the treatment room 2B is the same as the normal state of the treatment room 2A. Since the initialization operation of the switching electromagnet 6A is performed, the hysteresis due to the normal operation in the treatment room 2A does not affect the beam irradiation in the treatment room 2B.
  • the influence of the hysteresis due to the normal operation in the previous treatment room can be made constant every time.
  • the initialization operation is performed after the normal operation, and the next irradiation preparation is performed in parallel therewith, so that the operation time of the apparatus can be shortened depending on the treatment start timing of each treatment room.
  • the example of the synchrotron is given, but the same effect can be obtained in the cyclotron.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

A control unit (21) excites an electromagnet group belonging to synchrotron (9), and an electromagnet group belonging to a beam transport system (4), sets the "incidence → acceleration → outgoing → deceleration" of a charged-particle beam to one operating cycle, and, after the completion of normal operation performed by repeating the number of times of the cycles required, automatically performs initialization operation for initializing the electromagnet group belonging to the synchrotron (9), and the electromagnet group belonging to the beam transport system (4). As a result, the waiting time before the start of the normal operation can be shortened to enhance the operating rate of devices, and, in a particle beam therapy system, the time from when a patient enters a treatment room until the treatment is completed can be shortened to alleviate the burden on the patient. A system having the beam transport system that is branched into a plurality of irradiation devices is always able to perform stabilized beam irradiation by making the effect of hysteresis by the earlier normal operation constant every time.

Description

荷電粒子照射システムCharged particle irradiation system
 本発明は荷電粒子照射システムに係わり、特に荷電粒子ビーム発生装置とビーム輸送系を備え、荷電粒子ビームの「入射→加速→出射→減速」を1運転サイクルとしてこれを必要回数繰り返することからなる通常運転を連続して行う場合の電磁石初期化運転に最適な荷電粒子照射システムに関する。 The present invention relates to a charged particle irradiation system, and in particular, includes a charged particle beam generator and a beam transport system, and consists of repeating “incidence → acceleration → extraction → deceleration” of a charged particle beam as a single operation cycle. The present invention relates to a charged particle irradiation system optimum for an electromagnet initialization operation in a case where normal operation is continuously performed.
 がんなどの患者の患部に陽子等の荷電粒子ビームを照射する治療方法が知られている。この治療に用いる治療システムのうち大規模なものは、従来、荷電粒子ビーム発生装置、ビーム輸送系、及び複数の治療室に設置された複数の照射装置を備えている。荷電粒子ビーム発生装置で加速された荷電粒子ビームは、ビーム輸送系を経て各治療室の照射装置に達し、照射装置のノズルから患者の患部に照射される。このとき、ビーム輸送系は、1つの共通のビーム輸送系と、この共通のビーム輸送系から分岐して各治療室の照射装置へと至る複数の分岐したビーム輸送系とから構成される。各分岐ビーム輸送系の分岐位置には、共通のビーム輸送系からの荷電粒子ビームを偏向し当該分岐ビーム輸送系へ導入するための切替電磁石がそれぞれ設けられ、各分岐ビーム輸送系には、切替電磁石により導入された荷電粒子ビームを照射装置に導くための偏向電磁石、四極電磁石等の電磁石群(第2ビーム輸送系に属する電磁石群)が設けられている。切替電磁石及び第2ビーム輸送系に属する電磁石群は、他の治療室に対応する切替電磁石と第2ビーム輸送系に属する電磁石群と互いに電源を共有している(特許文献1)。そのため、ある照射装置での照射後に他の照射装置でビーム照射を行なう場合は、切替電磁石を切替制御すると共に、当該分岐ビーム輸送系に属する電磁石群に電源群を接続するために負荷切替装置の切替処理を行なう(特許文献1及び2)。通常運転開始前には、荷電粒子ビーム発生装置及びビーム輸送系に属する電磁石の残留磁場が通常運転に影響を与えないようにするために、使用する電磁石の最大と最小の励磁を複数回繰り返す初期化運転を行い、ヒステリシスの影響を毎回一定にする(特許文献2及び3)。 A treatment method is known in which a charged particle beam such as a proton is irradiated to an affected area of a patient such as cancer. A large-scale treatment system used for this treatment has conventionally been provided with a charged particle beam generator, a beam transport system, and a plurality of irradiation devices installed in a plurality of treatment rooms. The charged particle beam accelerated by the charged particle beam generator reaches the irradiation device in each treatment room through the beam transport system, and is irradiated to the affected area of the patient from the nozzle of the irradiation device. At this time, the beam transport system includes one common beam transport system and a plurality of branched beam transport systems that branch from the common beam transport system and reach the irradiation apparatus in each treatment room. Each branch beam transport system is provided with a switching electromagnet for deflecting the charged particle beam from the common beam transport system and introducing it into the branch beam transport system. An electromagnet group (electromagnet group belonging to the second beam transport system) such as a deflection electromagnet and a quadrupole electromagnet for guiding the charged particle beam introduced by the electromagnet to the irradiation device is provided. The switching electromagnet and the electromagnet group belonging to the second beam transport system share the power source with the switching electromagnet corresponding to another treatment room and the electromagnet group belonging to the second beam transport system (Patent Document 1). Therefore, when beam irradiation is performed with another irradiation device after irradiation with a certain irradiation device, the switching electromagnet is controlled to be switched and the load switching device is connected to connect the power supply group to the electromagnet group belonging to the branch beam transport system. Switching processing is performed (Patent Documents 1 and 2). Before starting normal operation, in order to prevent the residual magnetic field of the electromagnets belonging to the charged particle beam generator and the beam transport system from affecting normal operation, the initial and maximum excitations of the electromagnet used are repeated several times. Operation is performed, and the influence of hysteresis is made constant each time (Patent Documents 2 and 3).
特表平11-501232号公報Japanese National Patent Publication No. 11-501232 特開2006-228579号公報JP 2006-228579 A 特開平8-298200号公報JP-A-8-298200
 特許文献2及び3に記載のように、上記粒子線治療システムのような従来の荷電粒子照射システムにおいては、治療室準備完了後に初期化運転を行い、それから通常運転を行う。そのため、通常運転開始前には、治療室の準備時間に初期化運転の時間を加えた待ち時間が発生する。 As described in Patent Documents 2 and 3, in a conventional charged particle irradiation system such as the above particle beam therapy system, an initialization operation is performed after completion of treatment room preparation, and then a normal operation is performed. Therefore, before normal operation starts, a waiting time is generated by adding the initialization operation time to the treatment room preparation time.
 また、特許文献1及び2に記載のように、上記粒子線治療システムのような複数の照射装置に分岐するビーム輸送系を有する荷電粒子照射システムにおける切替電磁石は、励磁、無励磁の切替を行うことで当該照射装置にビームを導くが、初期化運転が行われるのは励磁している切替電磁石のみである。つまり、ビーム輸送系の上流側に位置する照射装置で通常運転完了後に下流側の照射装置で通常運転を行う場合、下流側の照射装置での通常運転開始前には上流側の切替電磁石は無励磁状態となるだけで初期化運転は行なわれず、下流側の切替電磁石だけが励磁された上で初期化運転が行なわれる。このとき、上流側の切替電磁石の残留磁場は、上流側の通常運転完了後のヒステリシスによる影響を受ける。そのため、下流側での通常運転が上流側の切替電磁石の残留磁場から受ける影響は毎回異なってくる。 Further, as described in Patent Documents 1 and 2, a switching electromagnet in a charged particle irradiation system having a beam transport system that branches into a plurality of irradiation apparatuses such as the particle beam therapy system performs switching between excitation and non-excitation. In this way, the beam is guided to the irradiation apparatus, but the initialization operation is performed only on the switching electromagnet that is excited. In other words, when normal operation is performed with a downstream irradiation device after completion of normal operation with an irradiation device located upstream of the beam transport system, there is no upstream switching electromagnet before normal operation with the downstream irradiation device is started. The initialization operation is not performed only by being in the excited state, and the initialization operation is performed after only the downstream switching electromagnet is excited. At this time, the residual magnetic field of the upstream switching electromagnet is affected by the hysteresis after completion of the upstream normal operation. Therefore, the influence of the normal operation on the downstream side from the residual magnetic field of the upstream switching electromagnet is different each time.
 本発明の第1の目的は、通常運転開始前の待ち時間を短縮することで、装置の稼働率を高め、粒子線治療システムにおいては、患者が治療室に入ってから治療が完了するまでの時間を短縮し、患者の負担を軽減することができる荷電粒子照射システムを提供することである。 The first object of the present invention is to increase the operating rate of the apparatus by shortening the waiting time before the start of normal operation. In the particle beam therapy system, the treatment is completed after the patient enters the treatment room. To provide a charged particle irradiation system capable of reducing time and reducing a burden on a patient.
 本発明の第2の目的は、複数の照射装置に分岐するビーム輸送系を有する荷電粒子照射システムにおいて、先の通常運転によるヒステリシスの影響を毎回一定にし、常に安定したビーム照射を行える荷電粒子照射システムを提供することである。 A second object of the present invention is a charged particle irradiation system having a beam transport system that branches into a plurality of irradiation devices, in which the influence of hysteresis due to the previous normal operation is made constant every time, so that stable beam irradiation can be performed constantly. Is to provide a system.
 上記第1の目的を実現する本発明は、荷電粒子ビームを出射する荷電粒子ビーム発生装置と、前記荷電粒子ビームの照射を行う照射装置と、前記荷電粒子ビーム発生装置から前記照射装置に出射された前記荷電粒子ビームを輸送するビーム輸送系とを備える荷電粒子照射システムにおいて、前記荷電粒子ビーム発生装置に属する電磁石群及び前記ビーム輸送系に属する電磁石群を励磁し、荷電粒子ビームの「入射→加速→出射→減速」を1運転サイクルとしてこれを必要回数繰り返すことにより行う通常運転完了後に、前記通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行う制御装置を備えるものである。 The present invention that realizes the first object includes a charged particle beam generating apparatus that emits a charged particle beam, an irradiation apparatus that irradiates the charged particle beam, and an emitted apparatus that emits the charged particle beam from the charged particle beam generator to the irradiation apparatus. In the charged particle irradiation system comprising the beam transport system for transporting the charged particle beam, the electromagnet group belonging to the charged particle beam generator and the electromagnet group belonging to the beam transport system are excited, It is provided with a control device that automatically performs initialization operation for initializing the electromagnet group excited in the normal operation after the normal operation is completed by repeating this process as many times as necessary with “acceleration → extraction → deceleration” as one operation cycle. is there.
 また、上記第1及び第2の目的を実現する本発明は、荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の場所にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系を有する荷電粒子照射システムにおいて、前記荷電粒子ビーム発生装置に属する電磁石群、前記第1ビーム輸送系の上流側から、前記複数の照射装置のうち治療に用いる照射装置に対応する切替電磁石までの電磁石群、及び当該照射装置に対応する第2ビーム輸送系に属する電磁石群を励磁し、荷電粒子ビームの「入射→加速→出射→減速」を1運転サイクルとしてこれを必要回数繰り返すことにより行う通常運転完了後に、前記通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行う制御装置を備えるものである。 The present invention for realizing the first and second objects includes a charged particle beam generator for emitting a charged particle beam, a plurality of irradiation devices respectively installed at a plurality of locations, and the charged particle beam generator. A beam transport system for transporting the charged particle beam emitted from the charged particle beam generator to each of the irradiation devices, and the beam transport system is connected to the charged particle beam generator In a charged particle irradiation system having a first beam transport system and a plurality of second beam transport systems branched from the first beam transport system and connected to the respective irradiation devices, an electromagnet belonging to the charged particle beam generator A group of electromagnets from an upstream side of the first beam transport system to a switching electromagnet corresponding to an irradiation device used for treatment among the plurality of irradiation devices; and After exciting the electromagnet group belonging to the second beam transport system corresponding to the irradiation device and repeating the necessary number of times as “injection → acceleration → extraction → deceleration” of the charged particle beam as one operation cycle, A control device for automatically performing an initialization operation for initializing the electromagnet group excited in the normal operation is provided.
 更に、上記第1及び第2の目的を実現する本発明は、荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の場所にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記複数の照射装置に接続された複数の第2ビーム輸送系を有し、前記荷電粒子ビーム発生装置は第1電磁石群を有し、前記第1ビーム輸送系は第2電磁石群を有し、前記複数の第2ビーム輸送系は第3電磁石群を有し、前記第3電磁石群は前記第1ビーム輸送系から前記複数の第2ビーム輸送系の各分岐位置に配置された切替電磁石群を含む荷電粒子照射システムにおいて、前記第1電磁石群及び第2電磁石群を励磁するための第1電磁石電源装置と、前記第3電磁石群を励磁するための第2電磁石電源装置と、前記第3電磁石群の電磁石のうち、治療のために選択された1つの第2ビーム輸送系に属する選択された電磁石群を前記第2電磁石電源装置に接続するよう切り替える負荷切替装置と、前記荷電粒子ビーム発生装置に属する前記第1電磁石群、前記第1ビーム輸送系に属する前記第2電磁石群のうち、前記第1ビーム輸送系の上流側から前記選択された1つの第2ビーム輸送系に対応する切替電磁石の直前までの電磁石群、及び前記第2ビーム輸送系に属する前記第3電磁石群のうち前記選択された電磁石群を励磁し、荷電粒子ビームの「入射→加速→出射→減速」を1運転サイクルとしてこれを必要回数繰り返すことにより行う通常運転完了後に、前記通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行う第1制御装置と、前記第1制御装置による前記初期化運転が完了し、かつ前記複数の場所の1つからその場所での照射準備が完了したことを示す準備完了信号が出力されたときに前記負荷切替装置を制御し、前記第3電磁石群の電磁石のうち、前記1つの場所に対応する第2ビーム輸送系に属する前記選択された電磁石群を前記第2電磁石電源装置に接続するよう切り替える第2制御装置とを備えるものである。 Furthermore, the present invention for realizing the first and second objects includes a charged particle beam generator for emitting a charged particle beam, a plurality of irradiation devices respectively installed at a plurality of locations, and the charged particle beam generator. A beam transport system for transporting the charged particle beam emitted from the charged particle beam generator to each of the irradiation devices, and the beam transport system is connected to the charged particle beam generator A first beam transport system; and a plurality of second beam transport systems branched from the first beam transport system and connected to the plurality of irradiation devices, respectively, and the charged particle beam generator includes a first electromagnet group The first beam transport system includes a second electromagnet group, the plurality of second beam transport systems includes a third electromagnet group, and the third electromagnet group extends from the first beam transport system. Duplicate In a charged particle irradiation system including a switching electromagnet group arranged at each branch position of the second beam transport system, a first electromagnet power supply device for exciting the first electromagnet group and the second electromagnet group, and the third A second electromagnet power supply for exciting the electromagnet group, and a second electromagnet selected from the electromagnets of the third electromagnet group belonging to one second beam transport system selected for treatment. Of the load switching device for switching to connect to the power supply device, the first electromagnet group belonging to the charged particle beam generator, and the second electromagnet group belonging to the first beam transport system, upstream of the first beam transport system The selected electromagnet group among the electromagnet group immediately before the switching electromagnet corresponding to the selected second beam transport system from the side, and the third electromagnet group belonging to the second beam transport system. Initializing the magnet group excited in the normal operation after the normal operation is completed by exciting the stone group and repeating this operation as many times as necessary with “incidence → acceleration → extraction → deceleration” of the charged particle beam. A first control device that automatically performs a control operation, and a preparation completion indicating that the initialization operation by the first control device has been completed and that irradiation preparation at one of the plurality of locations has been completed When the signal is output, the load switching device is controlled, and among the electromagnets of the third electromagnet group, the selected electromagnet group belonging to the second beam transport system corresponding to the one place is moved to the second electromagnet. And a second control device that switches to connect to the power supply device.
 ここで、前記制御装置は、更に、前記初期化運転により前記電磁石群を初期化したときに、初期化が完了した時刻を記憶し、この時刻から予め設定した所定時間以上前記電磁石群の初期化が行われない場合に、前記電磁石群を再初期化する初期化運転を自動的に行うものとすることが好ましい。 Here, the control device further stores a time when the initialization is completed when the electromagnet group is initialized by the initialization operation, and the electromagnet group is initialized for a predetermined time or more from this time. It is preferable that the initialization operation for reinitializing the electromagnet group is automatically performed when the operation is not performed.
 また、前記制御装置は、更に、前記通常運転中に通常運転停止指令を受けた場合に、前記通常運転を停止して前記電磁石群を初期化する初期化運転を自動的に行うものとすることが好ましい。 Further, the control device automatically performs an initialization operation for stopping the normal operation and initializing the electromagnet group when a normal operation stop command is received during the normal operation. Is preferred.
 本発明によれば、単一の照射装置あるいは複数の照射装置を有する荷電粒子照射システムにおいて、通常運転完了後に通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行うことで、通常運転開始前の待ち時間を短縮し、装置の稼働率を高めることができる。その結果、粒子線治療システムにおいては、患者が治療室に入ってから治療が完了するまでの時間を短縮し、患者の負担を軽減することができる。 According to the present invention, in a charged particle irradiation system having a single irradiation device or a plurality of irradiation devices, by automatically performing an initialization operation to initialize an electromagnet group excited in normal operation after completion of normal operation, The waiting time before the start of normal operation can be shortened and the operating rate of the apparatus can be increased. As a result, in the particle beam therapy system, the time from when the patient enters the treatment room until the treatment is completed can be shortened, and the burden on the patient can be reduced.
 また、複数の部屋に分岐するビーム輸送系を有する荷電粒子照射システムにおいては、切替電磁石の残留磁場におけるヒステリシスの影響を一定にすることで、安定したビーム照射を行うことができる。 In a charged particle irradiation system having a beam transport system that branches into a plurality of rooms, stable beam irradiation can be performed by making the influence of hysteresis in the residual magnetic field of the switching electromagnet constant.
本発明の第1の実施の形態における荷電粒子照射システム(荷電粒子治療システム)の構成図である。1 is a configuration diagram of a charged particle irradiation system (charged particle therapy system) in a first embodiment of the present invention. FIG. 本実施形態の制御装置の制御部の構成と、制御部、電磁石電源装置、荷電粒子ビーム発生装置、治療室間の信号の送受信の関係を示す図である。It is a figure which shows the structure of the control part of the control apparatus of this embodiment, and the relationship of transmission / reception of the signal between a control part, an electromagnet power supply device, a charged particle beam generator, and a treatment room. 制御部における処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process in a control part. 二人の患者に一人当たり通常運転を3回繰り返す場合の荷電粒子照射システムの動作の流れを、従来と本実施の形態とで比較して示すタイムチャートである。It is a time chart which compares the flow of operation | movement of the charged particle irradiation system in the case of repeating a normal driving | operation per person 3 times for two patients, and this embodiment. 初期化運転時の輸送系電磁石の励磁状態を従来と本実施の形態とで比較して示す図である。It is a figure which compares and shows the excitation state of the transport system electromagnet at the time of initialization operation by the past and this Embodiment. 本発明の第2の実施の形態における荷電粒子照射システム(荷電粒子治療システム)の構成図である。It is a block diagram of the charged particle irradiation system (charged particle therapy system) in the 2nd Embodiment of this invention. 本実施形態の制御装置の電磁石制御部の構成と、電磁石制御部及び負荷切替制御部、電磁石電源装置、負荷切替装置、荷電粒子ビーム発生装置、治療室間の信号の送受信の関係を示す図である。It is a figure which shows the relationship of the transmission / reception of the signal between the structure of the electromagnet control part of the control apparatus of this embodiment, an electromagnet control part, a load switching control part, an electromagnet power supply device, a load switching apparatus, a charged particle beam generator, and a treatment room. is there. 2つの治療室において一人の患者に対し3回通常運転を繰り返す場合の荷電粒子照射システムの動作の流れの一例を、従来と本実施の形態とで比較して示すタイムチャートである。It is a time chart which shows an example of the operation | movement flow of a charged particle irradiation system in the case of repeating a normal driving | operation 3 times with respect to one patient in two treatment rooms by comparison with the past and this Embodiment. 2つの治療室において一人の患者に対し3回通常運転を繰り返す場合の荷電粒子照射システムの動作の流れの他の例を、従来と本実施の形態とで比較して示すタイムチャートである。It is a time chart which compares the other example of the operation | movement flow of the charged particle irradiation system in the case of repeating a normal driving | operation 3 times with respect to one patient in two treatment rooms, and this embodiment. 従来の初期化運転における各電磁石の初期化状況を示す図である。It is a figure which shows the initialization condition of each electromagnet in the conventional initialization driving | operation. 本実施の形態の初期化運転における各電磁石の初期化状況を示す図である。It is a figure which shows the initialization condition of each electromagnet in the initialization operation | movement of this Embodiment.
 <第1の実施の形態>
 以下、本発明の第1の実施形態である荷電粒子照射システムを図面を参照しつつ説明する。
<First Embodiment>
Hereinafter, a charged particle irradiation system according to a first embodiment of the present invention will be described with reference to the drawings.
 本実施の形態の荷電粒子照射システムは例えば陽子線治療システムであり、この陽子線治療システムは、図1に示すように、荷電粒子ビーム発生装置1と、治療室2と、荷電粒子ビーム発生装置1から治療室2にイオンビームを導くビーム輸送系4を有している。 The charged particle irradiation system of the present embodiment is, for example, a proton beam treatment system, and the proton beam treatment system includes a charged particle beam generator 1, a treatment room 2, and a charged particle beam generator as shown in FIG. A beam transport system 4 for guiding an ion beam from 1 to the treatment room 2 is provided.
 荷電粒子ビーム発生装置1は、イオン源(図示せず)、線形加速器を用いた前段加速器(前段荷電粒子ビーム発生装置)7及びシンクロトロン9を有する。イオン源で発生したイオン(陽イオン-他の粒子線の場合は例えば炭素イオン)は前段加速器7で加速される。前段加速器7から出射されたイオンビーム(例えば、陽イオンビーム)は偏向電磁石8を介しシンクロトロン9に入射される。荷電粒子ビーム(粒子線)であるそのイオンビームは、シンクロトロン9で、高周波加速空胴(図示せず)から印加される高周波電力によってエネルギーを与えられて加速される。シンクロトロン9内を周回するイオンビームのエネルギーが設定されたエネルギー(例えば100~200MeV)までに高められた後、出射用の高周波印加装置(図示せず)から高周波がイオンビームに印加される。安定限界内で周回しているイオンビームは、この高周波の印加によって安定限界外に移行し、出射用デフレクタ(図示せず)を通ってシンクロトロン9から出射される。シンクロトロン9は四極電磁石51、偏向電磁石52等の電磁石群を備え、イオンビームの出射の際には四極電磁石51、偏向電磁石52等の電磁石に導かれる電流が電流設定値に保持され、安定限界もほぼ一定に保持されている。尚、シンクロトロン9からのイオンビームの出射停止は、高周波印加装置への高周波電力の印加を停止することによって行われる。 The charged particle beam generator 1 includes an ion source (not shown), a pre-stage accelerator (pre-stage charged particle beam generator) 7 using a linear accelerator, and a synchrotron 9. Ions generated in the ion source (positive ions—for example, carbon ions in the case of other particle beams) are accelerated by the front stage accelerator 7. An ion beam (for example, a positive ion beam) emitted from the front stage accelerator 7 is incident on the synchrotron 9 via the deflection electromagnet 8. The ion beam, which is a charged particle beam (particle beam), is accelerated by the synchrotron 9 by being given energy by a high-frequency power applied from a high-frequency acceleration cavity (not shown). After the energy of the ion beam that circulates in the synchrotron 9 is increased to a set energy (for example, 100 to 200 MeV), a high frequency is applied to the ion beam from a high frequency application device (not shown) for extraction. The ion beam orbiting within the stability limit moves outside the stability limit by the application of this high frequency, and is emitted from the synchrotron 9 through an extraction deflector (not shown). The synchrotron 9 includes a group of electromagnets such as a quadrupole electromagnet 51 and a deflection electromagnet 52. When the ion beam is emitted, a current guided to the electromagnet such as the quadrupole electromagnet 51 and the deflection electromagnet 52 is held at a current set value, and the stability limit. Is also held almost constant. The ion beam extraction from the synchrotron 9 is stopped by stopping the application of high-frequency power to the high-frequency application device.
 シンクロトロン9から出射されたイオンビームは、ビーム輸送系4より治療室2へ輸送される。ビーム輸送系4は、ビーム経路にビーム進行方向上流側より配置された四極電磁石13、偏向電磁石12、四極電磁石14、偏向電磁石6、四極電磁石15、偏向電磁石16、四極電磁石17、偏向電磁石18、偏向電磁石19を備える。ビーム輸送系4へ導入されたイオンビームは、ビーム経路を通って照射装置10へと輸送される。 The ion beam emitted from the synchrotron 9 is transported from the beam transport system 4 to the treatment room 2. The beam transport system 4 includes a quadrupole electromagnet 13, a deflection electromagnet 12, a quadrupole electromagnet 14, a deflection electromagnet 6, a quadrupole electromagnet 15, a deflection electromagnet 16, a quadrupole electromagnet 17, a deflection electromagnet 18 disposed on the beam path from the upstream side in the beam traveling direction. A deflection electromagnet 19 is provided. The ion beam introduced into the beam transport system 4 is transported to the irradiation device 10 through the beam path.
 照射装置10は、治療室2にそれぞれ設置された回転ガントリー(図示せず)に取り付けられている。照射装置10は二重散乱体方式の照射装置である。これに代えウォブラー方式の照射装置を用いてもよい。治療室2は例えばがん患者用の治療室である。 The irradiation device 10 is attached to a rotating gantry (not shown) installed in each treatment room 2. The irradiation device 10 is a double scatterer type irradiation device. Alternatively, a wobbler type irradiation apparatus may be used. The treatment room 2 is a treatment room for cancer patients, for example.
 本実施の形態の陽子線治療システムにおける電磁石のうち、ビーム輸送系4に属する電磁石群を以下に列挙する。 Among the electromagnets in the proton beam therapy system of the present embodiment, the electromagnet group belonging to the beam transport system 4 is listed below.
 <ビーム輸送系4に属する電磁石群>
 四極電磁石13、偏向電磁石12、四極電磁石14、偏向電磁石6、四極電磁石15、偏向電磁石16、四極電磁石17、偏向電磁石18、偏向電磁石19
 尚、電磁石群は一部を説明を省略し示している。例えば、シンクロトロン9及びビーム輸送系4におけるステアリング電磁石は省略している。
<Electromagnet group belonging to beam transport system 4>
Quadrupole electromagnet 13, deflection electromagnet 12, quadrupole electromagnet 14, deflection electromagnet 6, quadrupole electromagnet 15, deflection electromagnet 16, quadrupole electromagnet 17, deflection electromagnet 18, deflection electromagnet 19
The electromagnet group is partially omitted from illustration. For example, the steering electromagnet in the synchrotron 9 and the beam transport system 4 is omitted.
 本実施形態の陽子線治療システムは、制御装置20を備え、制御装置20は、制御部21と、電磁石電源装置22を有している。電磁石電源装置22は、シンクロトロン9に属する電磁石群及びビーム輸送系4に属する電磁石群に含まれる各電磁石をそれぞれ励磁するためのものである。 The proton beam therapy system of this embodiment includes a control device 20, and the control device 20 includes a control unit 21 and an electromagnet power supply device 22. The electromagnet power supply 22 is for exciting each electromagnet included in the electromagnet group belonging to the synchrotron 9 and the electromagnet group belonging to the beam transport system 4.
 本実施形態の制御装置20の制御部21の構成と、制御部21、電磁石電源装置22、荷電粒子ビーム発生装置1、治療室2間の信号の送受信の関係を図2に示す。制御部21における処理の流れを図3に示す。 FIG. 2 shows the configuration of the control unit 21 of the control device 20 of the present embodiment and the signal transmission / reception relationship between the control unit 21, the electromagnet power supply device 22, the charged particle beam generator 1, and the treatment room 2. The flow of processing in the control unit 21 is shown in FIG.
 制御部21は記憶装置24と出力装置25とシーケンサ23を備えており、記憶装置24には、初期化運転に必要な各電磁石の初期化励磁パターン26及び通常運転に必要な各電磁石の通常励磁パターン27を予め保存して保有している。制御部21は通常運転開始判定装置28と、初期化運転開始判定装置29と、初期化タイマー30とを有している。 The control unit 21 includes a storage device 24, an output device 25, and a sequencer 23. The storage device 24 includes an initialization excitation pattern 26 for each electromagnet necessary for the initialization operation and a normal excitation for each electromagnet necessary for the normal operation. The pattern 27 is stored and held in advance. The control unit 21 includes a normal operation start determination device 28, an initialization operation start determination device 29, and an initialization timer 30.
 通常運転が完了すると、荷電粒子ビーム発生装置1より通常運転完了信号35が出力される。これを受け、初期化運転開始判定装置29は出力装置25に対し初期化運転開始指令31を出力する(ステップS140)。同時に初期化運転開始判定装置29は、初期化運転開始信号32を初期化タイマーに出力する。初期化タイマーは初期化開始信号32を受けたタイミングを記憶しておく。そして、前回の初期化開始信号を受けてから予め設定した一定時間以上初期化開始信号がない場合は、長時間経過により電磁石の残留磁場が変化していると判断し、初期化運転開始判定装置に対し再初期化要求33を出力する。再初期化要求33を受けると、初期化運転開始判定装置29は出力装置25に対し初期化運転開始指令31を出力する(ステップS100)。また、治療室2において手動またはインターロックが働く等により治療が中断された場合、或いは荷電粒子ビーム発生装置1においてインターロックが働く等により通常運転が中断された場合、通常運転停止指令34a,34bが治療室2及び荷電粒子ビーム発生装置1から初期化運転開始判定装置29に対し出力される。この場合においても、初期化運転開始判定装置29は出力装置25に対し初期化運転開始指令31を出力する(ステップS130)。 When the normal operation is completed, a normal operation completion signal 35 is output from the charged particle beam generator 1. In response to this, the initialization operation start determination device 29 outputs an initialization operation start command 31 to the output device 25 (step S140). At the same time, the initialization operation start determination device 29 outputs an initialization operation start signal 32 to the initialization timer. The initialization timer stores the timing at which the initialization start signal 32 is received. And when there is no initialization start signal for a predetermined time or more after receiving the previous initialization start signal, it is determined that the residual magnetic field of the electromagnet has changed over time, and the initialization operation start determination device A reinitialization request 33 is output. Upon receiving the re-initialization request 33, the initialization operation start determination device 29 outputs an initialization operation start command 31 to the output device 25 (step S100). Further, when the treatment is interrupted in the treatment room 2 due to manual operation or interlock operation, or when the normal operation is interrupted due to the interlock operation in the charged particle beam generator 1, etc., the normal operation stop commands 34a and 34b are issued. Are output from the treatment room 2 and the charged particle beam generator 1 to the initialization operation start determination device 29. Even in this case, the initialization operation start determination device 29 outputs the initialization operation start command 31 to the output device 25 (step S130).
 出力装置25は初期化運転開始指令31を受けると、記憶装置24に格納された初期化パターン26を電磁石電源装置22に出力し、通常運転で励磁した電磁石群を初期化する初期化運転が行なわれる(ステップS150)。初期化運転が完了すると電磁石電源装置22から通常運転開始判定装置28に初期化運転完了信号36が出力され、通常運転開始が可能な状態となる(ステップS160)。その後、治療室2より通常運転開始要求37に応じて、通常運転開始判定装置28は出力装置25及び荷電粒子ビーム発生装置1に対し通常運転開始信号38を出力する。出力装置25は通常運転開始指令38を受けると、記憶装置24に格納された運転パターン27を電磁石電源装置22に出力し、通常運転が行なわれる(ステップS110→S120)。 When the output device 25 receives the initialization operation start command 31, the output device 25 outputs the initialization pattern 26 stored in the storage device 24 to the electromagnet power supply device 22, and performs the initialization operation to initialize the electromagnet group excited in the normal operation. (Step S150). When the initialization operation is completed, the initialization operation completion signal 36 is output from the electromagnet power supply device 22 to the normal operation start determination device 28, and the normal operation can be started (step S160). Thereafter, in response to a normal operation start request 37 from the treatment room 2, the normal operation start determination device 28 outputs a normal operation start signal 38 to the output device 25 and the charged particle beam generator 1. When the output device 25 receives the normal operation start command 38, the output device 25 outputs the operation pattern 27 stored in the storage device 24 to the electromagnet power supply device 22, and normal operation is performed (steps S110 → S120).
 次に、従来の初期化運転方式と本実施の形態における初期化運転方式の比較を図4を用いて説明する。図4における通常運転及び初期化運転時のビーム輸送系に属する電磁石電源の励磁状態を図5に示す。 Next, a comparison between the conventional initialization operation method and the initialization operation method in the present embodiment will be described with reference to FIG. FIG. 5 shows the excitation state of the electromagnet power source belonging to the beam transport system during normal operation and initialization operation in FIG.
 図4は、二人の患者に一人当たり通常運転を3回繰り返す場合の動作の流れを、従来と本実施の形態とで比較して示すタイムチャートである。図中の治療室準備は患者の固定等の準備工程を指し、照射準備は通常運転開始前のノズルやガントリの調整等の準備工程を指す。図5は初期化運転時の輸送系電磁石の励磁状態を従来と本実施の形態とで比較して示す図である。図5に示すように、通常運転では、荷電粒子ビームの「入射→加速→出射→減速」を1運転サイクルとしてこれを必要回数(図5の例では3回)繰り返して行い、初期化運転では、電磁石の最大と最小の励磁を複数回(図5の例では3回)繰り返して行う。 FIG. 4 is a time chart showing the flow of operation in the case where the normal operation per person is repeated three times for two patients in comparison with the conventional embodiment. The treatment room preparation in the figure refers to a preparation process such as patient fixation, and the irradiation preparation refers to a preparation process such as adjustment of a nozzle and a gantry before starting normal operation. FIG. 5 is a diagram showing the excitation state of the transport system electromagnet during the initialization operation in comparison with the prior art and the present embodiment. As shown in FIG. 5, in the normal operation, “incidence → acceleration → extraction → deceleration” of the charged particle beam is performed as one operation cycle, and this is repeated as many times as necessary (in the example of FIG. 5, three times). The maximum and minimum excitations of the electromagnet are repeated a plurality of times (three times in the example of FIG. 5).
 図4の上側に示すように、従来の初期化運転方式では、それぞれの通常運転の前に初期化運転を行っている。それに対し、本実施の形態の初期化運転方式では、図4の下側に示すように、前回の初期化運転から一定時間経過しているという理由で通常運転1の前に初期化運転を行うが、それ以外はそれぞれの通常運転後に自動で初期化運転を開始し、初期化運転を行うものとする。また、通常運転後の初期化運転に関しては、照射準備と並行してを行うことで初期化運転による待ち時間を無くす。そして、照射運転後に初期化運転を行えば通常運転前の初期化運転が不要となるため、照射装置の使用時間が短縮される。 As shown on the upper side of FIG. 4, in the conventional initialization operation method, the initialization operation is performed before each normal operation. On the other hand, in the initialization operation method of the present embodiment, as shown in the lower side of FIG. 4, the initialization operation is performed before the normal operation 1 because a predetermined time has elapsed since the previous initialization operation. However, otherwise, the initialization operation is automatically started after each normal operation, and the initialization operation is performed. In addition, regarding the initialization operation after the normal operation, the waiting time due to the initialization operation is eliminated by performing in parallel with the irradiation preparation. If the initialization operation is performed after the irradiation operation, the initialization operation before the normal operation becomes unnecessary, and the usage time of the irradiation apparatus is shortened.
 以上により、本実施の形態では通常運転後にシンクロトロン9に属する電磁石群及び輸送系に属する電磁石群の初期化運転を行い、それと並行して次の照射準備を行うことにより、装置の稼働率を高めることができる。 As described above, in this embodiment, after the normal operation, the initialization operation of the electromagnet group belonging to the synchrotron 9 and the electromagnet group belonging to the transport system is performed, and at the same time, the next irradiation preparation is performed, thereby reducing the operation rate of the apparatus. Can be increased.
 図3において、治療室準備を15分、照射準備を5分、通常運転を2分、初期化運転を1分とする。この場合、従来の初期化運転方式における装置の稼動時間は以下の式から68分となる。 In FIG. 3, the treatment room preparation is 15 minutes, the irradiation preparation is 5 minutes, the normal operation is 2 minutes, and the initialization operation is 1 minute. In this case, the operating time of the apparatus in the conventional initialization operation method is 68 minutes from the following equation.
 15*2+5*4+2*6+1*6=68
これに対し、本実施の形態の初期化運転方式における装置の稼動時間は以下の式から63分となる。
15 * 2 + 5 * 4 + 2 * 6 + 1 * 6 = 68
On the other hand, the operating time of the apparatus in the initialization operation method of the present embodiment is 63 minutes from the following equation.
 15*2+5*4+2*6+1*1=63
よって、二人の患者の治療に要する時間を5分短縮できる。
15 * 2 + 5 * 4 + 2 * 6 + 1 * 1 = 63
Therefore, the time required for treatment of two patients can be shortened by 5 minutes.
 <第2の実施の形態>
 本発明の第2の実施の形態による荷電粒子照射システムを図面を参照しつつ説明する。
<Second Embodiment>
A charged particle irradiation system according to a second embodiment of the present invention will be described with reference to the drawings.
 本実施の形態の荷電粒子照射システムである陽子線治療システムは、図6に示すように、第1の実施の形態と同様の荷電粒子ビーム発生装置1と、3つの治療室2A,2B,2Cと、荷電粒子ビーム発生装置1の下流側に接続された第1ビーム輸送系4A及びこの第1ビーム輸送系4Aから分岐するようにそれぞれ設けられた第2ビーム輸送系5A,5B,5Cを有するビーム輸送系を有している。第1ビーム輸送系4Aは、第2ビーム輸送系5A,5B,5Cのそれぞれにイオンビームを導く共通のビーム輸送系である。 As shown in FIG. 6, the proton beam treatment system which is the charged particle irradiation system of the present embodiment includes a charged particle beam generator 1 similar to that of the first embodiment and three treatment rooms 2A, 2B, 2C. And a first beam transport system 4A connected to the downstream side of the charged particle beam generator 1 and second beam transport systems 5A, 5B, 5C provided so as to branch from the first beam transport system 4A, respectively. It has a beam transport system. The first beam transport system 4A is a common beam transport system that guides an ion beam to each of the second beam transport systems 5A, 5B, and 5C.
 荷電粒子ビーム発生装置1のシンクロトロン9は、前述したように四極電磁石51、偏向電磁石52等の電磁石群(以下第1電磁石群という)を備えている。シンクロトロン9から出射されたイオンビームは、第1ビーム輸送系4Aより下流側へ輸送される。第1ビーム輸送系4Aは、ビーム経路にビーム進行方向上流側より配置された四極電磁石13、偏向電磁石12、四極電磁石14A、切替電磁石6A、四極電磁石14B、切替電磁石6B、四極電磁石14C、切替電磁石6C、四極電磁石14Dを備えている。第1ビーム輸送系4Aに導入されたイオンビームは、切替電磁石6A,6B,6Cの励磁、非励磁の切替えによる偏向作用の有無によって、第2ビーム輸送系5A,5B,5Cのいずれかに選択的に導入される。各切替電磁石は、偏向電磁石の一種である。 The synchrotron 9 of the charged particle beam generator 1 includes an electromagnet group (hereinafter referred to as a first electromagnet group) such as a quadrupole electromagnet 51 and a deflection electromagnet 52 as described above. The ion beam emitted from the synchrotron 9 is transported downstream from the first beam transport system 4A. The first beam transport system 4A includes a quadrupole electromagnet 13, a deflection electromagnet 12, a quadrupole electromagnet 14A, a switching electromagnet 6A, a quadrupole electromagnet 14B, a switching electromagnet 6B, a quadrupole electromagnet 14C, and a switching electromagnet arranged on the beam path from the upstream side in the beam traveling direction. 6C and a quadrupole electromagnet 14D. The ion beam introduced into the first beam transport system 4A is selected as one of the second beam transport systems 5A, 5B, and 5C depending on the presence or absence of a deflection action by switching the excitation electromagnets 6A, 6B, and 6C. Introduced. Each switching electromagnet is a kind of deflection electromagnet.
 第2ビーム輸送系5Aは、第1輸送系4Aのビーム経路に接続されて治療室2A内に配置された照射装置10Aに連絡されるビーム経路にビーム進行方向上流側より配置された四極電磁石15A、偏向電磁石16A、四極電磁石17A、偏向電磁石18A、偏向電磁石19Aを備える。切替電磁石6Aは第2ビーム輸送系5Aのビーム経路上に配置されているとも言える。 The second beam transport system 5A is connected to the beam path of the first transport system 4A and is connected to the irradiation apparatus 10A disposed in the treatment room 2A. The quadrupole electromagnet 15A is disposed from the upstream side in the beam traveling direction in the beam path. , A deflection electromagnet 16A, a quadrupole electromagnet 17A, a deflection electromagnet 18A, and a deflection electromagnet 19A. It can be said that the switching electromagnet 6A is arranged on the beam path of the second beam transport system 5A.
 第2ビーム輸送系5B、第2ビーム輸送系5Cも第2ビーム輸送系5Aと同様に構成されている。これら第2ビーム輸送系2B、2Cは、第2ビーム輸送系2Aの構成要素の参照数字に、添え字Aに代わって添え字B,Cを付した構成要素から成る。 The second beam transport system 5B and the second beam transport system 5C are configured similarly to the second beam transport system 5A. These second beam transport systems 2B and 2C are composed of constituent elements obtained by adding subscripts B and C in place of the subscript A to the reference numerals of the constituent elements of the second beam transport system 2A.
 第2ビーム輸送系5Aへ導入されたイオンビームは、当該電磁石の励磁によりビーム経路を通って照射装置10Aへと輸送される。第2ビーム輸送系5B,5Cについても同様に、イオンビームは各ビーム経路を通って照射装置10B,10Cにそれぞれ輸送される。 The ion beam introduced into the second beam transport system 5A is transported to the irradiation device 10A through the beam path by excitation of the electromagnet. Similarly, in the second beam transport systems 5B and 5C, the ion beams are transported to the irradiation devices 10B and 10C through the respective beam paths.
 本実施の形態の陽子線治療システムにおける電磁石のうち、第1ビーム輸送系4A及び第2ビーム輸送系5A~5Cに属する電磁石群を以下に列挙する。 Among the electromagnets in the proton beam therapy system of the present embodiment, the electromagnet groups belonging to the first beam transport system 4A and the second beam transport systems 5A to 5C are listed below.
 <第1ビーム輸送系4Aに属する電磁石群(以下第2電磁石群という)>
 四極電磁石13、偏向電磁石12、四極電磁石14A、切替電磁石6A、四極電磁石14B、切替電磁石6B、四極電磁石14C、切替電磁石6C、四極電磁石14D。
<Electromagnet group belonging to first beam transport system 4A (hereinafter referred to as second electromagnet group)>
A quadrupole electromagnet 13, a deflection electromagnet 12, a quadrupole electromagnet 14A, a switching electromagnet 6A, a quadrupole electromagnet 14B, a switching electromagnet 6B, a quadrupole electromagnet 14C, a switching electromagnet 6C, and a quadrupole electromagnet 14D.
 <第2ビーム輸送系5A~5Cに属する電磁石群(以下第3電磁石群という)>
 1.治療室2Aに対応する電磁石群(四極電磁石15A、偏向電磁石16A、四極電磁石17A、偏向電磁石18A、偏向電磁石19A)
 2.治療室2Bに対応する電磁石群(四極電磁石15B、偏向電磁石16B、四極電磁石17B、偏向電磁石18B、偏向電磁石19B)
 3.治療室2Cに対応する電磁石群電磁石群(四極電磁石15C、偏向電磁石16C、四極電磁石17C、偏向電磁石18C、偏向電磁石19C)。
<Electromagnet group belonging to second beam transport systems 5A to 5C (hereinafter referred to as third electromagnet group)>
1. Electromagnet group corresponding to treatment room 2A (four-pole electromagnet 15A, deflection electromagnet 16A, quadrupole electromagnet 17A, deflection electromagnet 18A, deflection electromagnet 19A)
2. Electromagnet group corresponding to treatment room 2B (quadrupole electromagnet 15B, deflection electromagnet 16B, quadrupole electromagnet 17B, deflection electromagnet 18B, deflection electromagnet 19B)
3. Electromagnet group electromagnet group (quadrupole electromagnet 15C, deflection electromagnet 16C, quadrupole electromagnet 17C, deflection electromagnet 18C, deflection electromagnet 19C) corresponding to treatment room 2C.
 尚、電磁石群は一部を説明を省略し示している。例えば、シンクロトロン9、第1ビーム輸送系4A及び第2ビーム輸送系5A,5B,5Cにおけるステアリング電磁石は省略している。 The electromagnet group is partially omitted from explanation. For example, the steering electromagnets in the synchrotron 9, the first beam transport system 4A, and the second beam transport systems 5A, 5B, and 5C are omitted.
 本実施形態の陽子線治療システムは、制御装置20Aを備え、制御装置20Aは、制御部21A、電磁石電源装置22A、負荷切替装置40を有している。制御部21Aは電磁石制御部21a及び負荷切替制御部21bを有している。電磁石制御部21a及び負荷切替制御部21bの機能は後述する。電磁石電源装置22Aは、シンクロトロン9に属する第1電磁石群及び第1ビーム輸送系4Aに属する第2電磁石群、第2ビーム輸送系5A~5Cに属する第3電磁石群に含まれる各電磁石をそれぞれ励磁するためのものであり、第1電磁石群及び第2電磁石群を励磁するための第1電磁石電源装置22aと、第3電磁石群を励磁するための第2電磁石電源装置22bとを有している。負荷切替装置40は、治療室が選択されたときに、第2ビーム輸送系5A~5Cに属する第3電磁石群のうち、当該治療室に対応する第2ビーム輸送系に属する電磁石群を第2電磁石電源装置22bに接続するよう切り替え、それら電磁石群の励磁制御を行うものである。 The proton beam therapy system of this embodiment includes a control device 20A, and the control device 20A includes a control unit 21A, an electromagnet power supply device 22A, and a load switching device 40. The control unit 21A includes an electromagnet control unit 21a and a load switching control unit 21b. The functions of the electromagnet controller 21a and the load switching controller 21b will be described later. The electromagnet power supply device 22A includes the electromagnets included in the first electromagnet group belonging to the synchrotron 9, the second electromagnet group belonging to the first beam transport system 4A, and the third electromagnet group belonging to the second beam transport systems 5A to 5C, respectively. A first electromagnet power supply device 22a for exciting the first electromagnet group and the second electromagnet group, and a second electromagnet power supply device 22b for exciting the third electromagnet group. Yes. When the treatment room is selected, the load switching device 40 selects the second electromagnet group belonging to the second beam transport system corresponding to the treatment room among the third electromagnet groups belonging to the second beam transport systems 5A to 5C. It switches so that it may connect with the electromagnet power supply device 22b, and performs excitation control of these electromagnet groups.
 本実施形態の制御装置20Aの制御部21Aの電磁石制御部21aの構成と、制御部21Aの電磁石制御部21a及び負荷切替制御部21b、電磁石電源装置22A、負荷切替装置40、荷電粒子ビーム発生装置1、治療室2A,2B,2C間の信号の送受信の関係を図7に示す。 The configuration of the electromagnet control section 21a of the control section 21A of the control apparatus 20A of the present embodiment, the electromagnet control section 21a and the load switching control section 21b of the control section 21A, the electromagnet power supply apparatus 22A, the load switching apparatus 40, and the charged particle beam generator 1. FIG. 7 shows the signal transmission / reception relationship between the treatment rooms 2A, 2B, and 2C.
 制御部21Aにおいて、電磁石制御部21aは第1の実施の形態における制御部21に相当し、電磁石制御部21aにおける処理の流れは図3と同様である。 In the control unit 21A, the electromagnet control unit 21a corresponds to the control unit 21 in the first embodiment, and the process flow in the electromagnet control unit 21a is the same as that in FIG.
 本実施の形態において第1の実施の形態と異なる点は、通常運転ではシンクロトロン9と第1ビーム輸送系の該当する部分を占有することと、各治療室が通常運転開始要求37を出力するためには、該当治療室にビームを導くための第2ビーム輸送系に属する第3電磁石群に負荷切替が必要なことである。 This embodiment is different from the first embodiment in that the normal part occupies corresponding portions of the synchrotron 9 and the first beam transport system, and each treatment room outputs a normal operation start request 37. Therefore, it is necessary to switch the load on the third electromagnet group belonging to the second beam transport system for guiding the beam to the treatment room.
 例えば、治療室2Aで治療を行う場合、シンクロトロン9の電磁石群、第1ビーム輸送系4Aに属する第2電磁石群のうち電磁石群12,13,14A、第2ビーム輸送系5Aに属する第3電磁石群6A,15A~19Aを励磁して通常運転を行う。通常運転が完了すると、荷電粒子ビーム発生装置1より通常運転完了信号35が出力され、これを受けて初期化運転開始判定装置29は出力装置25に対し初期化運転開始指令31を出力する(図3のステップS140)。出力装置25は初期化運転開始指令31を受けると、記憶装置24に格納された初期化パターン26を電磁石電源装置22Aに出力し、初期化運転が行なわれる(図3のステップS150)。すなわち、通常運転が完了すると、通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行う。この第1ビーム輸送系4Aにおける電磁石群の選択及び電磁石群を励磁して行う通常運転及び初期化運転の制御は制御部21Aの電磁石制御部21aが行う。 For example, when treatment is performed in the treatment room 2A, among the electromagnet group of the synchrotron 9 and the second electromagnet group belonging to the first beam transport system 4A, the electromagnet groups 12, 13, 14A, and the third group belonging to the second beam transport system 5A. The electromagnet groups 6A, 15A to 19A are excited to perform normal operation. When the normal operation is completed, a normal operation completion signal 35 is output from the charged particle beam generator 1, and in response to this, the initialization operation start determination device 29 outputs an initialization operation start command 31 to the output device 25 (FIG. 3 step S140). Upon receiving the initialization operation start command 31, the output device 25 outputs the initialization pattern 26 stored in the storage device 24 to the electromagnet power supply device 22A, and the initialization operation is performed (step S150 in FIG. 3). That is, when the normal operation is completed, the initialization operation for initializing the electromagnet group excited in the normal operation is automatically performed. The electromagnet control unit 21a of the control unit 21A performs control of normal operation and initialization operation performed by selecting the electromagnet group and exciting the electromagnet group in the first beam transport system 4A.
 この後、別の治療室で治療を行う場合、その治療室にビームを導くための負荷切替を行う。この負荷切替は次のようにして行う。 After this, when treatment is performed in another treatment room, the load is switched to guide the beam to the treatment room. This load switching is performed as follows.
 各治療室2A,2B,2Cにおいて、患者の位置決め等の治療室準備或いはノズルやガントリの調整等の照射準備が完了すると、各治療室から準備完了信号41が負荷切替制御部21bに出力される。また、初期化運転が完了すると電磁石電源装置22Aから通常運転開始判定装置28と負荷切替制御部21bに初期化運転完了信号36が出力される。負荷切替制御部21bは準備完了信号41と初期化運転完了信号36を受けると、直ちに負荷切替要求42を負荷切替装置40に出力する。負荷切替装置40はその負荷切替要求42を受けて負荷切替を行なった後に、負荷切替完了信号43を負荷切替制御部21bに出力し、負荷切替制御部21bは通常運転開始許可信号44を治療室に出力する。こうして初めて通常運転開始が可能な状態となり、当該治療室から通常運転開始要求37を出力することが可能になる。 In each treatment room 2A, 2B, 2C, when treatment room preparation such as patient positioning or irradiation preparation such as nozzle and gantry adjustment is completed, a preparation completion signal 41 is output from each treatment room to the load switching control unit 21b. . When the initialization operation is completed, the initialization operation completion signal 36 is output from the electromagnet power supply device 22A to the normal operation start determination device 28 and the load switching control unit 21b. Upon receiving the preparation completion signal 41 and the initialization operation completion signal 36, the load switching control unit 21b immediately outputs a load switching request 42 to the load switching device 40. The load switching device 40 receives the load switching request 42 and performs load switching, and then outputs a load switching completion signal 43 to the load switching control unit 21b. The load switching control unit 21b sends a normal operation start permission signal 44 to the treatment room. Output to. Thus, the normal operation can be started for the first time, and the normal operation start request 37 can be output from the treatment room.
 本実施の形態において、初期化運転により電磁石群を初期化したときに、初期化が完了した時刻を記憶し、この時刻から予め設定した所定時間以上前記電磁石群の初期化が行われない場合に、前記電磁石群を再初期化する初期化運転を自動的に行うこと(図3のステップS100)、及び通常運転中に通常運転停止指令を受けた場合に、通常運転を停止して電磁石群を初期化する初期化運転を自動的に行うこと(図3のステップS130)は、第1の実施の形態と同じである。ただし、前回の初期化から所定時間以上初期化が行われなかった場合の再初期化は、シンクロトロン9の電磁石群、第1ビーム輸送系4Aの第2電磁石群、第2ビーム輸送系5A~5Cの第3電磁石群とで区別して前回の初期化からの所定時間の経過を監視し、該当する電磁石群のみを再初期化する必要がある。 In the present embodiment, when the electromagnet group is initialized by the initialization operation, the time when the initialization is completed is stored, and when the electromagnet group is not initialized for a predetermined time from this time. The initialization operation for reinitializing the electromagnet group is automatically performed (step S100 in FIG. 3), and when the normal operation stop command is received during the normal operation, the normal operation is stopped and the electromagnet group is The initialization operation to be initialized automatically (step S130 in FIG. 3) is the same as in the first embodiment. However, the re-initialization when the initialization has not been performed for a predetermined time or more after the previous initialization is performed by the electromagnet group of the synchrotron 9, the second electromagnet group of the first beam transport system 4A, and the second beam transport system 5A to It is necessary to re-initialize only the corresponding electromagnet group by monitoring the passage of a predetermined time from the previous initialization by distinguishing it from the 5C third electromagnet group.
 次に、従来の初期化運転方式と本実施の形態における初期化方式の比較を図8及び図9を用いて説明する。図8及び図9における通常運転及び初期化運転時のビーム輸送系に属する電磁石電源の励磁状態は図5と同様である。 Next, a comparison between the conventional initialization operation method and the initialization method in the present embodiment will be described with reference to FIGS. The excitation state of the electromagnet power source belonging to the beam transport system during normal operation and initialization operation in FIGS. 8 and 9 is the same as that in FIG.
 図8及び図9は、治療室2A、2Bにおいて一人の患者に対し3回通常運転を繰り返す場合の荷電粒子照射システムの動作の流れの2つの例を、従来と本実施の形態とで比較して示すタイムチャートである。従来の初期化運転方式では、それぞれの照射の前に初期化運転を行っている。それに対し、本実施の形態の初期化運転方式では、治療室2Aについては前回の初期化運転から一定時間経過しているという理由で通常運転1の前に初期化運転を行うが、それ以外はそれぞれの通常運転後に自動で初期化運転を開始し、初期化運転を行うものとする。治療室2Bについては前回の初期化運転から一定時間経過していないため、通常運転4の前に初期化運転を行う必要がないものとする。照射後の初期化運転に関しては、初期化運転と並行して次の照射準備を行う。 FIG. 8 and FIG. 9 compare two examples of the operation flow of the charged particle irradiation system when a normal operation is repeated three times for one patient in the treatment rooms 2A and 2B. It is a time chart shown. In the conventional initialization operation method, initialization operation is performed before each irradiation. On the other hand, in the initialization operation method of the present embodiment, the initialization operation is performed before the normal operation 1 for the treatment room 2A because the fixed time has elapsed since the previous initialization operation. The initialization operation is automatically started after each normal operation, and the initialization operation is performed. As for the treatment room 2B, since a predetermined time has not elapsed since the previous initialization operation, it is not necessary to perform the initialization operation before the normal operation 4. Regarding the initialization operation after irradiation, the next irradiation preparation is performed in parallel with the initialization operation.
 図8は、治療室2A、2Bのビーム照射開始が重なり、交互に通常運転を行う場合の例である。複数の治療室に分岐する荷電粒子照射システムにおいては、ある治療室で通常運転及び初期化運転を行っている場合、他の治療室の通常運転や初期化運転を開始することができない。この例ではそのため、従来の初期化運転と本実施の形態の初期化運転いずれにおいても、通常運転1を除くすべての通常運転前に待ち時間が発生し、初期化運転を通常運転前に行うか通常運転後に行うかによる時間短縮の優劣は存在しない。 FIG. 8 is an example in the case where the beam irradiation starts in the treatment rooms 2A and 2B overlap and the normal operation is alternately performed. In a charged particle irradiation system that branches into a plurality of treatment rooms, normal operation and initialization operation in another treatment room cannot be started when normal operation and initialization operation are performed in a certain treatment room. Therefore, in this example, in both the conventional initialization operation and the initialization operation of the present embodiment, a waiting time is generated before all the normal operations except the normal operation 1, and the initialization operation is performed before the normal operation. There is no superiority or inferiority in time reduction depending on whether it is performed after normal operation.
 図9は、治療室2A、2Bのビーム照射開始が重ならず、治療室2Aでの3回の通常運転後に治療室2Bでの通常運転を開始する場合の例である。従来の初期化運転では、治療室2Bの準備が完了した時点では、治療室2Aでのビーム照射が全て完了しておらず、通常運転4の前に待ち時間が発生している。本実施の形態の初期化運転においても、通常運転4の前に待ち時間が発生しているが、初期化運転と照射準備を並行して行うことで治療室2Aのビーム照射がより早く完了するため、通常運転4の前の待ち時間が短縮される。それに加え、治療室2Bにおいても初期化と照射準備を並行して行うことで装置稼動時間は短縮される。 FIG. 9 shows an example in which the normal operation in the treatment room 2B is started after three normal operations in the treatment room 2A without the beam irradiation start in the treatment rooms 2A and 2B overlapping. In the conventional initialization operation, when the preparation of the treatment room 2B is completed, the beam irradiation in the treatment room 2A is not completely completed, and a waiting time occurs before the normal operation 4. Even in the initialization operation of the present embodiment, a waiting time occurs before the normal operation 4, but the beam irradiation of the treatment room 2A is completed earlier by performing the initialization operation and the irradiation preparation in parallel. Therefore, the waiting time before the normal operation 4 is shortened. In addition, in the treatment room 2B, the apparatus operation time is shortened by performing initialization and irradiation preparation in parallel.
 図9において、治療室準備を15分、照射準備を5分、通常運転を2分、初期化運転を1分とする。この場合、従来の初期化運転方式における計6回の通常運転が完了するまでの時間は以下の式から53分となる。 In FIG. 9, treatment room preparation is 15 minutes, irradiation preparation is 5 minutes, normal operation is 2 minutes, and initialization operation is 1 minute. In this case, the time required for completing six normal operations in the conventional initialization operation method is 53 minutes from the following equation.
 15*1+5*4+2*6+1*6=53
それに対し、本実施の形態の初期化運転方式における計6回の照射が完了するまでの時間は以下の式から49分となる。
15 * 1 + 5 * 4 + 2 * 6 + 1 * 6 = 53
On the other hand, the time required to complete a total of six irradiations in the initialization operation method of the present embodiment is 49 minutes from the following equation.
 15*1+5*4+2*6+1*2=49
よって、二人の患者の治療に要する時間を4分短縮できる。
15 * 1 + 5 * 4 + 2 * 6 + 1 * 2 = 49
Therefore, the time required for treatment of two patients can be shortened by 4 minutes.
 図8の従来の初期化運転における各電磁石の初期化状況を図10に、本実施の形態の初期化運転における各電磁石の初期化状況を図11に示す。 FIG. 10 shows the initialization status of each electromagnet in the conventional initialization operation of FIG. 8, and FIG. 11 shows the initialization status of each electromagnet in the initialization operation of the present embodiment.
 図10は図8の従来の初期化運転における治療室2Aの通常運転時(通常運転1、通常運転2、通常運転3)及び治療室2Bの通常運転時(通常運転4、通常運転5、通常運転6)の初期化状況を、初期化済の電磁石を白、初期化されていない電磁石を黒で示している。治療室2Aの通常運転時は、直前の初期化運転により、シンクロトロン9に属する第1電磁石群、第1ビーム輸送系の上流側から切替電磁石6Aの直前までの第2電磁石群、治療室2Aに対応する第2ビーム輸送系に属する第3電磁石群(切替電磁石6Aを含む)が初期化済となる。治療室2Bの通常運転時は、直前の初期化運転により、シンクロトロン9に属する第1電磁石群、第1ビーム輸送系の上流側から切替電磁石6Bの直前までの第2電磁石群、治療室2Bに対応する第2ビーム輸送系に属する第3電磁石群(切替電磁石6Bを含む)が初期化済となる。但し、切替電磁石6Aに関しては、負荷切替装置40により電磁石電源装置22bが切替電磁石6Bと接続するよう切り替えられているため、切替電磁石6Aは無励磁状態となるだけで、初期化は行われない。そのため、治療室6Bにおける通常運転時の切替電磁石6Aの残留磁場は、治療室2Aでの通常運転によるヒステリシスの影響を受ける。そして、治療室2Bの通常運転が切替電磁石6Aの残留磁場から受ける影響が毎回異なってくる。 FIG. 10 shows the normal operation of the treatment room 2A in the conventional initialization operation of FIG. 8 (normal operation 1, normal operation 2, normal operation 3) and the normal operation of the treatment room 2B (normal operation 4, normal operation 5, normal operation). The initialization status of the operation 6) is indicated by white for the initialized electromagnet and black for the uninitialized electromagnet. During the normal operation of the treatment room 2A, the first electromagnet group belonging to the synchrotron 9 and the second electromagnet group from the upstream side of the first beam transport system to the position immediately before the switching electromagnet 6A, the treatment room 2A, by the immediately preceding initialization operation. The third electromagnet group (including the switching electromagnet 6A) belonging to the second beam transport system corresponding to is initialized. During the normal operation of the treatment room 2B, the first electromagnet group belonging to the synchrotron 9 and the second electromagnet group from the upstream side of the first beam transport system to the position immediately before the switching electromagnet 6B, the treatment room 2B, by the immediately previous initialization operation. The third electromagnet group (including the switching electromagnet 6B) belonging to the second beam transport system corresponding to is initialized. However, regarding the switching electromagnet 6A, since the electromagnet power supply device 22b is switched to be connected to the switching electromagnet 6B by the load switching device 40, the switching electromagnet 6A is only in a non-excited state and is not initialized. Therefore, the residual magnetic field of the switching electromagnet 6A during normal operation in the treatment room 6B is affected by hysteresis due to normal operation in the treatment room 2A. And the influence which the normal driving | operation of the treatment room 2B receives from the residual magnetic field of 6 A of switching electromagnets changes every time.
 図11は図8の本実施の形態の初期化運転における治療室2Aの通常運転時(通常運転1、通常運転2、通常運転3)及び治療室2Bの通常運転時(通常運転4、通常運転5、通常運転6)の初期化状況を、初期化済の電磁石を白、初期化されていない電磁石を黒で示している。治療室2Aの通常運転時は、通常運転1直前の初期化運転及び通常運転1、通常運転2直後の初期化運転により、シンクロトロン9に属する第1電磁石群、第1ビーム輸送系の上流側から切替電磁石6Aの直前までの第2電磁石群、治療室2Aに対応する第2ビーム輸送系に属する第3電磁石群(切替電磁石6Aを含む)が初期化済となる。また、治療室2Bは通常運転4の直前においては前回の初期化運転から一定時間が経過していないこと及び通常運転4、通常運転5直後の初期化運転により、第1ビーム輸送系の上流側から切替電磁石6Bの直前までの第2電磁石群、治療室2Bに対応する第2ビーム輸送系に属する第3電磁石群(切替電磁石6Bを含む)についても初期化済である。また、治療室2Aの通常運転後に使用した電磁石は初期化されるため、治療室2Bの通常運転時も治療室2Aの通常運転時と同様の初期化状況となる。そして、切替電磁石6Aの初期化運転が行われているため、治療室2Aでの通常運転によるヒステリシスが治療室2Bのビーム照射へ影響を及ぼすことはない。 11 shows the normal operation of the treatment room 2A (normal operation 1, normal operation 2, normal operation 3) and the normal operation of the treatment room 2B (normal operation 4, normal operation) in the initialization operation of the present embodiment of FIG. 5. Initialization status of normal operation 6) is indicated by white for an initialized electromagnet and black for an uninitialized electromagnet. During normal operation of the treatment room 2A, the first electromagnet group belonging to the synchrotron 9 and the upstream side of the first beam transport system by the initialization operation immediately before the normal operation 1 and the initialization operation immediately after the normal operation 1 and the normal operation 2 The second electromagnet group up to immediately before the switching electromagnet 6A and the third electromagnet group (including the switching electromagnet 6A) belonging to the second beam transport system corresponding to the treatment room 2A are already initialized. Further, the treatment room 2B is located upstream of the first beam transport system due to the fact that a fixed time has not passed since the previous initialization operation immediately before the normal operation 4 and the initialization operation immediately after the normal operation 4 and the normal operation 5. The second electromagnet group up to immediately before the switching electromagnet 6B and the third electromagnet group (including the switching electromagnet 6B) belonging to the second beam transport system corresponding to the treatment room 2B have been initialized. Further, since the electromagnet used after the normal operation of the treatment room 2A is initialized, the normal state of the treatment room 2B is the same as the normal state of the treatment room 2A. Since the initialization operation of the switching electromagnet 6A is performed, the hysteresis due to the normal operation in the treatment room 2A does not affect the beam irradiation in the treatment room 2B.
 尚、図9における各電磁石の初期化状況についても同様に、図10、図11のようになる。 In addition, the initialization state of each electromagnet in FIG. 9 is similarly as shown in FIGS.
 第2の実施の形態では通常運転後に初期化運転を行うことで、前の治療室での通常運転によるヒステリシスの影響を毎回一定にすることができる。また、通常運転後に初期化運転を行い、それと並行して次の照射準備を行うことにより、各治療室の治療開始のタイミングによっては、装置稼働時間の短縮ができる。 In the second embodiment, by performing the initialization operation after the normal operation, the influence of the hysteresis due to the normal operation in the previous treatment room can be made constant every time. In addition, the initialization operation is performed after the normal operation, and the next irradiation preparation is performed in parallel therewith, so that the operation time of the apparatus can be shortened depending on the treatment start timing of each treatment room.
 尚、第1及び第2の実施の形態では共にシンクロトロンの例を挙げたが、サイクロトロンにおいても同様の効果が得られる。 In the first and second embodiments, the example of the synchrotron is given, but the same effect can be obtained in the cyclotron.
1 荷電粒子ビーム発生装置
2,2A,2B,2C 治療室
4 ビーム輸送系
4A 第1ビーム輸送系
5A,5B,5C 第2ビーム輸送系
6,8,12,16,16A,16B,16C,18,18A,18B,18C,19,19A,19B,19C 偏向電磁石
6A,6B,6C 切替電磁石
7 前段加速器
9 シンクロトロン
10,10A,10B,10C 照射装置
13,14,14A,14B,14C,14D,15,15A,15B,15C,17,17A,17B,17C 四極電磁石
20,20A 制御装置
21,21A 制御部
21a 電磁石制御部
21b 負荷切替制御部
22 電磁石電源装置
22a 第1電磁石電源装置
22b 第2電磁石電源装置
23 シーケンサ
24 記憶装置
25 出力装置
26 初期化パターン
27 通常運転パターン
28 通常運転判定装置
29 初期化運転判定装置
30 初期化タイマー
31 初期化運転開始指令
32 初期化運転開始信号
33 再初期化要求
34a,34b 通常運転停止指令
35 通常運転完了信号
36 初期化運転完了信号
37 通常運転開始要求
38 通常運転開始信号
40 負荷切替装置
41 準備完了信号
42 負荷切替要求
43 負荷切替完了信号
44 通常運転開始許可信号
51 四極電磁石
52 偏向電磁石
1 charged particle beam generator 2, 2A, 2B, 2C treatment room 4 beam transport system 4A first beam transport system 5A, 5B, 5C second beam transport system 6, 8, 12, 16, 16A, 16B, 16C, 18 , 18A, 18B, 18C, 19, 19A, 19B, 19C Deflection electromagnet 6A, 6B, 6C Switching electromagnet 7 Pre-stage accelerator 9 Synchrotron 10, 10A, 10B, 10C Irradiation device 13, 14, 14A, 14B, 14C, 14D, 15, 15A, 15B, 15C, 17, 17A, 17B, 17C Quadrupole electromagnets 20, 20A Control devices 21, 21A Control unit 21a Electromagnet control unit 21b Load switching control unit 22 Electromagnet power supply device 22a First electromagnet power supply device 22b Second electromagnet Power supply device 23 Sequencer 24 Storage device 25 Output device 26 Initialization pattern 27 Normal operation pattern 2 Normal operation determination device 29 Initialization operation determination device 30 Initialization timer 31 Initialization operation start command 32 Initialization operation start signal 33 Reinitialization request 34a, 34b Normal operation stop command 35 Normal operation completion signal 36 Initialization operation completion signal 37 Normal operation start request 38 Normal operation start signal 40 Load switching device 41 Preparation completion signal 42 Load switching request 43 Load switching completion signal 44 Normal operation start permission signal 51 Quadrupole electromagnet 52 Bending electromagnet

Claims (5)

  1.  荷電粒子ビームを出射する荷電粒子ビーム発生装置(1)と、
     前記荷電粒子ビームの照射を行う照射装置(10)と、
     前記荷電粒子ビーム発生装置から前記照射装置に出射された前記荷電粒子ビームを輸送するビーム輸送系(4)とを備える荷電粒子照射システムにおいて、
     前記荷電粒子ビーム発生装置(1)に属する電磁石群(51,52)及び前記ビーム輸送系(4)に属する電磁石群(6,12~19)を励磁して行う通常運転完了後に、前記通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行う制御装置(21)を備えることを特徴とする荷電粒子照射システム。
    A charged particle beam generator (1) for emitting a charged particle beam;
    An irradiation device (10) for irradiating the charged particle beam;
    In a charged particle irradiation system comprising a beam transport system (4) for transporting the charged particle beam emitted from the charged particle beam generator to the irradiation device,
    After completion of normal operation performed by exciting the electromagnet group (51, 52) belonging to the charged particle beam generator (1) and the electromagnet group (6, 12 to 19) belonging to the beam transport system (4), the normal operation is performed. A charged particle irradiation system comprising a control device (21) for automatically performing an initialization operation for initializing the electromagnet group excited in step (1).
  2.  荷電粒子ビームを出射する荷電粒子ビーム発生装置(1)と、
     複数の場所にそれぞれ設置された複数の照射装置(10A~10C)と、
     前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系(4A,5A~5C)とを備え、
     前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系(4A)と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系(5A~5C)を有する荷電粒子照射システムにおいて、
     前記荷電粒子ビーム発生装置(1)に属する電磁石群(51,52)、前記第1ビーム輸送系(4A)の上流側から、前記複数の照射装置(10A~10C)のうち治療に用いる照射装置(例えば10A)に対応する切替電磁石(例えば6A)までの電磁石群(例えば12,13,14A)、及び当該照射装置に対応する第2ビーム輸送系(例えば5A)に属する電磁石群(例えば6A,12A~19A)を励磁して行う通常運転完了後に、前記通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行う制御装置(21A,21a)を備えることを特徴とする荷電粒子照射システム。
    A charged particle beam generator (1) for emitting a charged particle beam;
    A plurality of irradiation devices (10A to 10C) respectively installed at a plurality of locations;
    A beam transport system (4A, 5A to 5C) that communicates with the charged particle beam generator and transports the charged particle beam emitted from the charged particle beam generator to each of the irradiation devices;
    The beam transport system includes a first beam transport system (4A) connected to the charged particle beam generator and a plurality of second beams branched from the first beam transport system and connected to the irradiation devices. In a charged particle irradiation system having a transport system (5A-5C),
    Irradiation device used for treatment among the plurality of irradiation devices (10A to 10C) from the upstream side of the first beam transport system (4A) from the electromagnet group (51, 52) belonging to the charged particle beam generator (1). Electromagnet groups (for example, 12, 13, 14A) up to switching electromagnets (for example, 6A) corresponding to (for example, 10A), and electromagnet groups (for example, 6A, 6A) belonging to the second beam transport system (for example, 5A) corresponding to the irradiation apparatus. Charged particles comprising a control device (21A, 21a) for automatically performing an initialization operation for initializing the electromagnet group excited in the normal operation after the normal operation performed by exciting 12A to 19A) is completed Irradiation system.
  3.  荷電粒子ビームを出射する荷電粒子ビーム発生装置(1)と、
     複数の場所(2A~2C)にそれぞれ設置された複数の照射装置(10A~10C)と、
     前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系(4A,5A~5C)とを備え、
     前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系(4A)と、この第1ビーム輸送系から分岐し、それぞれの前記複数の照射装置に接続された複数の第2ビーム輸送系(5A~5C)を有し、
     前記荷電粒子ビーム発生装置(1)は第1電磁石群(51,52)を有し、前記第1ビーム輸送系(4A)は第2電磁石群(12,13,14A~14D)を有し、前記複数の第2ビーム輸送系(5A~5C)は第3電磁石群(6A,15A~19A,6B,15B~19B,6C,15C~19C)を有し、前記第3電磁石群は前記第1ビーム輸送系から前記複数の第2ビーム輸送系の各分岐位置に配置された切替電磁石群(6A~6C)を含む荷電粒子照射システムにおいて、
     前記第1電磁石群(51,52)及び第2電磁石群(12,13,14A~14D)を励磁するための第1電磁石電源装置(22a)と、
     前記第3電磁石群(6A,15A~19A,6B,15B~19B,6C,15C~19C)を励磁するための第2電磁石電源装置(22b)と、
     前記第3電磁石群の電磁石のうち、治療のために選択された1つの第2ビーム輸送系(例えば5A)に属する選択された電磁石群(例えば6A,15A~19A)を前記第2電磁石電源装置(22b)に接続するよう切り替える負荷切替装置(40)と、
     前記荷電粒子ビーム発生装置(1)に属する第1電磁石群、前記第1ビーム輸送系に属する前記第2電磁石群のうち、前記第1ビーム輸送系の上流側から前記選択された1つの第2ビーム輸送系(例えば5A)に対応する切替電磁石(例えば6A)の直前までの電磁石群(例えば12,13,14A)、及び前記第2ビーム輸送系に属する前記第3電磁石群のうち前記選択された電磁石群(例えば6A,15A~19A)を励磁して行う通常運転完了後に、前記通常運転で励磁した電磁石群を初期化する初期化運転を自動的に行う第1制御装置(21A,21a)と、
     前記第1制御装置による前記初期化運転が完了し、かつ前記複数の場所(2A~2C)の1つ(例えば2B)からその場所での照射準備が完了したことを示す準備完了信号(41)が出力されたときに前記負荷切替装置(40)を制御し、前記第3電磁石群の電磁石のうち、前記1つの場所に対応する第2ビーム輸送系(例えば5B)に属する前記選択された電磁石群(例えば6B,15B~19B)を前記第2電磁石電源装置(22b)に接続するよう切り替える第2制御装置(21A,21b)とを備えることを特徴とする荷電粒子照射システム。
    A charged particle beam generator (1) for emitting a charged particle beam;
    A plurality of irradiation devices (10A to 10C) respectively installed at a plurality of locations (2A to 2C);
    A beam transport system (4A, 5A to 5C) that communicates with the charged particle beam generator and transports the charged particle beam emitted from the charged particle beam generator to each of the irradiation devices;
    The beam transport system includes a first beam transport system (4A) connected to the charged particle beam generator and a plurality of first branches branched from the first beam transport system and connected to the plurality of irradiation devices. 2 beam transport system (5A-5C)
    The charged particle beam generator (1) has a first electromagnet group (51, 52), and the first beam transport system (4A) has a second electromagnet group (12, 13, 14A-14D), The plurality of second beam transport systems (5A to 5C) includes a third electromagnet group (6A, 15A to 19A, 6B, 15B to 19B, 6C, 15C to 19C), and the third electromagnet group includes the first electromagnet group. In a charged particle irradiation system including a switching electromagnet group (6A to 6C) arranged at each branch position of the plurality of second beam transport systems from a beam transport system,
    A first electromagnet power supply (22a) for exciting the first electromagnet group (51, 52) and the second electromagnet group (12, 13, 14A-14D);
    A second electromagnet power supply (22b) for exciting the third electromagnet group (6A, 15A to 19A, 6B, 15B to 19B, 6C, 15C to 19C);
    Among the electromagnets of the third electromagnet group, the selected electromagnet group (for example, 6A, 15A to 19A) belonging to one second beam transport system (for example, 5A) selected for treatment is used as the second electromagnet power supply device. A load switching device (40) for switching to connect to (22b);
    Of the first electromagnet group belonging to the charged particle beam generator (1) and the second electromagnet group belonging to the first beam transport system, the second one selected from the upstream side of the first beam transport system. The electromagnet group (for example, 12, 13, 14A) up to immediately before the switching electromagnet (for example, 6A) corresponding to the beam transport system (for example, 5A) and the third electromagnet group belonging to the second beam transport system are selected. The first control device (21A, 21a) for automatically performing initialization operation for initializing the electromagnet group excited in the normal operation after the normal operation performed by exciting the electromagnet group (for example, 6A, 15A to 19A) is completed. When,
    A preparation completion signal (41) indicating that the initialization operation by the first control device is completed and that irradiation preparation at one of the plurality of locations (2A to 2C) (for example, 2B) is completed at that location. Is output, and the selected electromagnet belonging to the second beam transport system (for example, 5B) corresponding to the one place among the electromagnets of the third electromagnet group is controlled. A charged particle irradiation system comprising: a second control device (21A, 21b) that switches a group (for example, 6B, 15B to 19B) to connect to the second electromagnet power supply device (22b).
  4.  請求項1~3のいずれか1項記載の荷電粒子照射システムにおいて、
     前記制御装置(21)は、更に、前記初期化運転により前記電磁石群(51,52,6,12~19)を初期化したときに、初期化が完了した時刻を記憶し、この時刻から予め設定した所定時間以上前記電磁石群の初期化が行われない場合に、前記電磁石群を再初期化する初期化運転を自動的に行うことを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to any one of claims 1 to 3,
    The control device (21) further stores a time when the initialization is completed when the electromagnet group (51, 52, 6, 12 to 19) is initialized by the initialization operation. A charged particle irradiation system, wherein an initialization operation for reinitializing the electromagnet group is automatically performed when the electromagnet group is not initialized for a set predetermined time or more.
  5.  請求項1~3のいずれか1項記載の荷電粒子照射システムにおいて、
     前記制御装置(21)は、更に、前記通常運転中に通常運転停止指令を受けた場合に、前記通常運転を停止して前記電磁石群(51,52,6,12~19)を初期化する初期化運転を自動的に行うことを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to any one of claims 1 to 3,
    The control device (21) further stops the normal operation and initializes the electromagnet groups (51, 52, 6, 12 to 19) when a normal operation stop command is received during the normal operation. Charged particle irradiation system characterized by automatically performing initialization operation.
PCT/JP2010/059157 2010-05-28 2010-05-28 Charged-particle irradiation system WO2011148513A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/059157 WO2011148513A1 (en) 2010-05-28 2010-05-28 Charged-particle irradiation system
JP2012517079A JP5396538B2 (en) 2010-05-28 2010-05-28 Charged particle irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059157 WO2011148513A1 (en) 2010-05-28 2010-05-28 Charged-particle irradiation system

Publications (1)

Publication Number Publication Date
WO2011148513A1 true WO2011148513A1 (en) 2011-12-01

Family

ID=45003519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059157 WO2011148513A1 (en) 2010-05-28 2010-05-28 Charged-particle irradiation system

Country Status (2)

Country Link
JP (1) JP5396538B2 (en)
WO (1) WO2011148513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498246A (en) * 2020-03-18 2021-10-12 住友重机械工业株式会社 Particle beam device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228579A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Accelerator system and its operation method
JP2007268031A (en) * 2006-03-31 2007-10-18 Hitachi Ltd Therapeutic system by particle radiation and method for switching beam course thereof
JP2010063725A (en) * 2008-09-12 2010-03-25 Hitachi Ltd Particle beam irradiation system, and method of operating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857598B2 (en) * 1995-04-26 1999-02-17 株式会社日立製作所 Accelerator operation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228579A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Accelerator system and its operation method
JP2007268031A (en) * 2006-03-31 2007-10-18 Hitachi Ltd Therapeutic system by particle radiation and method for switching beam course thereof
JP2010063725A (en) * 2008-09-12 2010-03-25 Hitachi Ltd Particle beam irradiation system, and method of operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498246A (en) * 2020-03-18 2021-10-12 住友重机械工业株式会社 Particle beam device

Also Published As

Publication number Publication date
JPWO2011148513A1 (en) 2013-07-25
JP5396538B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP4691583B2 (en) Charged particle beam irradiation system and charged particle beam extraction method
JP4691576B2 (en) Particle beam therapy system
US7755305B2 (en) Charged particle beam extraction system and method
JP4988516B2 (en) Particle beam therapy system
JP5816518B2 (en) Particle beam irradiation system and beam correction method
WO2012120678A1 (en) Particle therapy device
JP2013215442A (en) Particle beam therapy system
JP5978125B2 (en) Particle beam therapy system
JP2015047260A (en) Particle beam irradiation system and operation method for the same
WO2016051550A1 (en) Particle beam therapy apparatus, and operation method therefor
JP2015024024A5 (en)
JP2015024024A (en) Particle beam irradiation system and method of operating the same
JP5705372B2 (en) Particle beam therapy apparatus and method of operating particle beam therapy apparatus
WO2015029178A1 (en) Particle therapy system
JP2014028061A (en) Corpuscular ray irradiation system and operation method therefor
JP5111311B2 (en) Particle beam irradiation apparatus and operation method thereof
JP2005302734A (en) Medical accelerator facility
JP5998089B2 (en) Particle beam irradiation system and its operation method
JP5396538B2 (en) Charged particle irradiation system
JP2016220753A (en) Particle beam therapy system
JPH10127792A (en) Charged particle beam device
JP2014022222A (en) Particle beam irradiation system and operation method thereof
JP3894215B2 (en) Charged particle beam extraction method and particle beam irradiation system
JP6279036B2 (en) Particle beam irradiation system and its operation method
JPH10106800A (en) Charged particle beam irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517079

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852180

Country of ref document: EP

Kind code of ref document: A1