WO2011148018A1 - Method for moulding the surfaces of curable materials - Google Patents

Method for moulding the surfaces of curable materials Download PDF

Info

Publication number
WO2011148018A1
WO2011148018A1 PCT/ES2011/070363 ES2011070363W WO2011148018A1 WO 2011148018 A1 WO2011148018 A1 WO 2011148018A1 ES 2011070363 W ES2011070363 W ES 2011070363W WO 2011148018 A1 WO2011148018 A1 WO 2011148018A1
Authority
WO
WIPO (PCT)
Prior art keywords
drops
methyl
butyl
imidazolium
molding
Prior art date
Application number
PCT/ES2011/070363
Other languages
Spanish (es)
French (fr)
Inventor
María Luisa GONZALEZ MARTIN
Luis Lobajos Broncano
Antonio Mendez Vilas
Julia María PERERA NUÑEZ
Original Assignee
Universidad De Extremadura
Consorcio De Investigación Biomédica En Red, En Bioingenieria, Biomateriales Y Nanomedicina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Extremadura, Consorcio De Investigación Biomédica En Red, En Bioingenieria, Biomateriales Y Nanomedicina filed Critical Universidad De Extremadura
Publication of WO2011148018A1 publication Critical patent/WO2011148018A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention is related to the techniques used in lithography for the formation of topographies on substrates, and more particularly, it is related to a method that generates well-defined curved topographies on the surface of curable materials, from microscopic to macroscopic scales.
  • topographies allow to form topographies on solid substrates
  • these techniques are well developed and usually produce topographies that basically contain straight parts such as edges or corners, cylinders, rectangular section channels, pyramids, etc.
  • soft lithography comprises a series of techniques or procedures to modify the topography of soft material surfaces on a microscopic scale by replicating, on the surface of these materials, templates or masters normally generated by conventional lithography techniques. , among which we can mention, photolithography, electron lithography, etc., with these procedures reverse replicas of the original templates are obtained, potentially up to nanometric scales.
  • liquid drops as lithographic molds, since they have surfaces that exhibit curved shapes as a result of their surface tension / energy.
  • small droplets take the form of a spherical cap when deposited on surfaces solid flat.
  • the techniques of formation and dispensing of microdroplets of different nature are rapidly being developed, especially in the field of microfluidics and in "lab-on-a-chip" technologies, which allows liquid drops to be used massively. , of the desired size, as lithographic templates.
  • a procedure is provided that generates well-defined curved topographies on the surface of curable materials, from macroscopic to microscopic scales, which are characteristics that are out of reach using conventional lithography methods.
  • the process of the present invention comprises as a first step forming drops of an ionic liquid on the surface of a solid substrate. Then, the substrate is coated as well as the drops with a curable material; Subsequently, the material is cured, with any of the curing processes that solidify it, finally the curable material already cured is separated from the rest of the system, obtaining as a result a solid surface that presents a topography of surface characteristics identical to those of the surfaces of the drops of the ionic liquid formed on the substrate.
  • the drops used can be of any volume, and in any arrangement that is ordered or disorderly.
  • a solid surface of a curable material is created that has cavities of topographic characteristics identical to those of the drop surfaces of ionic liquids.
  • the process of the present invention gives the resulting surfaces a roughness similar to that presented by the surfaces of the liquids (that is, extremely low), a fact that represents a great advantage over other lithographic methods, since this is a characteristic of interest for its applications such as: microlenses, chemical micro-reactors and crystallization.
  • Figure 1 is a schematic representation of how a substrate is molded by a preferred embodiment of the process of the present invention.
  • Figure 2 shows a series of cross-sectional photographs of the spherical caps of different curvature (quantified by the contact angle of the cavity) formed on the surface of the PDMS for different solid substrates: glass, polyvinyl chloride (PVC), polystyrene (PS), polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE).
  • PVC polyvinyl chloride
  • PS polystyrene
  • PDMS polydimethylsiloxane
  • PTFE polytetrafluoroethylene
  • Figure 3 shows a spherical profile of the cross-section of the cavities formed on the surface of the curable PDMS for the solid substrates: glass, PVC, PS, PDMS and PTFE.
  • Figure 4 shows a graph of the contact angle of the spherical caps against the diameter of the cavity for the solid substrates of Figure 3.
  • Figure 5 shows a graph of the cavities as a function of the thickness of the layer of the curable material for the solid substrates of Figure 3
  • Figure 6 shows an image obtained by scanning electron microscopy for a crystal of sodium chloride inside a cavity formed in PDMS (substrate: PDMS; ionic liquid: [BMIm] [BF4]).
  • Figure 7 shows optical microscopy images of flat-concave lenses of different sizes formed in spherical caps produced by replicating drops of the ionic liquid [BMIm] [BF4] deposited on a polystyrene substrate.
  • Figure 8 shows a graph of the contact angle of the cavities formed by molding PDMS with drops of the ionic liquids [EMIm] [BF 4 ], [BMIm] [BF 4 ], [HMIm] [BF 4 ] and [ DecMlm] [BF 4 ] deposited on solid PS surfaces.
  • Figure 9 shows a graph of the contact angle of the cavities formed by molding PDMS with drops of the ionic liquids [BMIm] [BF 4 ], [BMIm] [PF 6 ], [BMIm] [CI], [BMIm ] [S0 4 CH 3 ] and [BMIm] [S0 4 C 8 H 17 ] deposited on solid PS surfaces.
  • the invention is a new method that generates well-defined curved topographies on the surface of curable materials, from macroscopic to microscopic scales, outside the scope of conventional lithography methods. With the proposed procedure, a solid surface of a curable material is created with cavities of topographic characteristics identical to those of liquid drop surfaces.
  • Figure 1 it can be seen schematically how the process of the present invention is developed, initially drops of an ionic liquid are deposited on a solid substrate, subsequently, a curable material is applied on the drops and the substrate, then, Once the material is cured, the curable material is separated from the substrate, obtaining the molded surface.
  • an ionic liquid is one that has a structure composed of an organic cation, preferably with an asymmetric and large size and an organic or inorganic anion.
  • the number of ionic liquids is huge thanks to the multitude of cations and anions that are known today, synthesizing new varieties every day. Due to the characteristics of the ionic liquids, weaker attractive forces are present between the cation and the anion than in conventional ionic salts, causing the ionic liquids to be in a liquid state in a wide range of temperatures that normally encompasses room temperature.
  • the drops of ionic liquids are used as a mold, preferably for use in "soft" lithography processes.
  • the liquids used in the present invention are characterized by their ionic nature, highly polar in general, and by their zero volatility, this being the property on which the process of the present invention is based.
  • ionic liquids those whose cation can be a di or tri substituted imidazolium, substituted pyridinium, tetraalkylammonium and tetraalkylsulfonium can be used.
  • ionic liquids whose anion is a halide, sulfate, sulphonate, triflate, amide and imide, borate and phosphate can be used.
  • ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl-imidazolium tetrafluoroborate, 1-hexyl-3-methyl-imidazolium tetrafluoroborate, 1 -decyl- 3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl-imidazolium hexafluorophosphate, 1-butyl-3-methyl-imidazolium chloride, 1-butyl-3-methyl-imidazolium methyl sulfate, 1-butyl-3-methyl-imidazolium octylsulfate, ethyldimethyl- (2 -methoxyethyl) ammonium tris (pentafluoroethyl) trifluorophosphate, ethyl-dimethyl-propylammonium bis (
  • the first step of this procedure consists in the formation of drops of ionic liquid on the surface of a substrate, by any technique, such as pneumatic, piezoelectric, thermal, acoustic, electrostatic or inertial activation; formation of drops by nucleation / condensation or by traditional techniques using a micro-syringe or by entrainment of the liquid.
  • Drops of ionic liquids can be formed in an orderly or disorderly manner and of the desired volumes, on a solid surface.
  • a total control of the volume of the drops of ionic liquids is available once they have been generated on the solid substrate, a requirement that cannot be achieved with the use of other types of liquids because to the spontaneous evaporation thereof.
  • the zero volatility of the ionic liquids allows to control the volume of the cavities originated in the surface of the curable materials up to the limits that the techniques of formation and deposition of liquid drops allow.
  • any liquid drop on a solid surface adopts a geometric shape (spherical cap, ellipsoidal cap) defined by its surface tension and the characteristic interfacial free energy of the system formed by the ionic liquid and solid surface used.
  • a drop takes the form of a spherical cap as long as any characteristic length thereof does not exceed the capillarity length of the system.
  • the size of the spherical cap is characterized by the contact angle, the amount of which depends on the ionic liquid and the solid surface used.
  • the process of the present invention allows the contact angle to be varied in a controlled manner by the appropriate selection of the ionic liquid and / or the solid substrate. In this way, drops of ionic liquids with contact angles from practically zero degrees to 180 degrees can be obtained.
  • the second step of this procedure consists in coating the drops of ionic liquids formed on the solid substrate with a curable material. It ensures that the curable material and the selected ionic liquid are immiscible. In this way it is possible that the drops of ionic liquids remain stable despite being immersed in a fluid medium.
  • curable materials may include the following: poly (dimethylxyloxane) (PDMS), fluorosilicone, elastomers such as polyurethanes and polyimides, epoxy resins such as Novolac TM or SU-8, or perfluoropolyethers (PFPEs).
  • the curable material is subjected to any of the curing processes, such as for example heat curing by heating, photocuration by exposure to ultraviolet radiation, addition of chemical compounds, bombardment with electrons that solidify the curable material to separate it from the rest of the system, etc. .
  • the solidified curable material is obtained a solid surface with topographic accidents of surface characteristics identical to those of the ionic liquid droplet surfaces used in this procedure.
  • this molding process gives the surfaces resulting from a roughness similar to that of the surfaces of the liquids, a fact that represents a great advantage over other lithographic methods, since this is a characteristic of interest of its applications such as : microlenses, chemical and crystallization micro reactors.
  • the process of the present invention is simple, cheap, versatile and easily scalable, does not require the use of masks that previously have to manufactured using conventional lithographic techniques (unlike conventional "soft” lithography methods) and is free of mechanical or thermal stresses
  • the process of the present invention can be used to manufacture various products among which, for example, the following can be mentioned:
  • Lenses and optical cavities from millimeter sizes to potentially nanometric sizes.
  • the related industries that require these products are optics, photonics, electronics, communications, optoelectronics, and any other in which these elements are necessary.
  • Topographically modified substrates with conventional techniques have been used for cell culture, demonstrating a positive influence on cell behavior, improving adhesion and / or growth and / or differentiation.
  • Confinement systems from millimeter sizes to potentially nanometric sizes. As an example, they can perform chemical or biochemical reactions, crystallization processes or chemical synthesis, or study the behavior of biological systems such as cells, bacteria, etc., or any other where it is required to restrict the available space without the presence of edges or corners.
  • Microchips and Micro-arrays for use in Biology, Biochemistry, Medicine, Biotechnology, etc.
  • Example 1 The process of the present invention will be more clearly illustrated by means of the examples described below, which are presented for purposes of illustration only, but not limiting thereof, said examples being the following: Example 1.
  • a macroscopic drop of the ionic liquid was deposited on a solid substrate by means of a micropipette and dragged along the solid surface with the help of a brush (fibrous system finished in fine bristles). This method generates a random distribution of drops in a wide range of sizes and with a high spatial density.
  • High polarity Glass.
  • the curable liquid polymer with which the system formed by the drops of ionic liquid generated on the different substrates was coated was the PDMS elastomer generated through the Sylgard 184 Silicone kit supplied by DOW Corning, USA.
  • This polymer commonly used in applications related to the "Soft” lithography technique due to its chemical, mechanical, optical properties, easy processing and biocompatibility, and selected for not having an electric charge and for its non-polar nature, characteristics that prevent its dissolution in ionic liquids based on imidazole. Furthermore, since its density is lower (0.965 g cm 3 ) than that of the ionic liquid [BMIm] [BF 4 ] (1,120 g cm “ 3 ), the floating of the drops of this liquid is avoided.
  • This kit consists of two components, a polymeric PDMS base and a curing agent that are mixed in a 10: 1 mass ratio.
  • the liquid polymer was introduced into a vacuum hood for 1 hour.
  • the resulting product was slowly poured onto the solid substrate containing the drops of ionic liquid.
  • Figure 2 shows an image, obtained with an optical microscope, of a cross-section of the final cavities formed on the surface of the PDMS through the procedure described in the present example.
  • the cavities have different shapes that range from very open spherical caps (glass) to practically closed (PTFE), with a range of sizes between 10 ° and 10 3 microns, similar to the ionic liquid drops formed on the surfaces of solids.
  • the drops of ionic liquid were coated with layers of different thickness of curable PDMS: 0.5, 3 and 10 mm.
  • the hydrostatic pressure only exceeds atmospheric 88.2 Pa. This additional pressure results in compression work on the drop of ionic liquid that could reduce its size.
  • this phenomenon has no significant effect on the angle of the cavities, a consequence of the incompressible nature of ionic liquids.
  • Roughness of the surface of the cavities The roughness of the surface of PDMS resulting from the process of replication of the surface of an ionic liquid was quantified by Atomic Force Microscopy (AFM), obtaining roughness values R A and RRMS, in an area 3 ⁇ 2 , equal to 0.60 ⁇ 0.1 nm and 0.8 ⁇ 0.1 nm, respectively. These extremely low values give an idea of the smoothness of the surface of the cavities, in contrast to that obtained in other methods that propose the use of solidified drops.
  • AFM Atomic Force Microscopy
  • One application is to use high-angle cavities as chemical micro-reactors, since in them it is possible to confine small amounts of liquid that can be used to confine chemical processes.
  • micro / nanocrystal growths can be carried out in the reactors as a result of the slowness of the evaporation process in their inside.
  • the micromolded surface of PDMS was immersed in a 2M solution of sodium chloride to spontaneously penetrate inside the cavities, subsequently extracting it in an upright position.
  • Figure 6 shows an electron microscopy image taken once the evaporation process had ended. It shows the existence of a microcrystalline sodium chloride inside one of the cavities formed by the procedure described (substrate: PDMS; ionic liquid: [BMIm] [BF 4 ]). It should be noted that the low roughness of the surface of the cavity and the absence of corners or edges favors the formation of monocrystals due to the shortage of nucleation centers.
  • a second application consists in using the resulting cavities as optical lenses, as shown in Figure 7.
  • some examples of flat-concave lenses of different sizes formed in cavities obtained by the procedure can be seen, using polystyrene (PS) as a solid substrate in which the drops of the ionic liquid [BMIm] [BF4] were formed. Note the liquid appearance of these lenses, the result of the very low roughness of the surface of the cavities.
  • PS polystyrene
  • the surface of the PDMS elastomer was molded by drops of a homologous series of ionic liquids based on the imidazolium cation, generated on a Polystyrene (PS) substrate.
  • PS Polystyrene
  • ionic liquids of the same cation and different anion.
  • five ionic liquids have been selected, based on Imidazolium, whose cation is 1-butyl-3 methylimidazolium [BMIm].
  • the selected anions are: tetrafluoroborate [BF4], hexafluorophosphate [PF6], chloride [CI-], methylsulfate [S04CH3] and octylsulfate [S04C8H17]:
  • Example 4 The technical procedure has been identical to that of Example 4.
  • This system was subsequently coated using the PDMS elastomer generated through the Sylgard 184 Silicone kit supplied by DOW Corning, USA. It was then subjected to the curing process (heating in an oven at 60 5 C for 2 hours) and finally the resulting solid PDMS was separated from the template formed by the drops of ionic liquids deposited on the solid PS substrate, eliminating the remains that they could be left of the ionic liquids by soaking it in an ultrasonic acetone bath for 5 minutes.
  • the graph of Figure 9 shows how the contact angle of the cavities obtained by molding the surface of the PDMS elastomer by means of the template made by the formation of drops of these ionic liquids on a Polystyrene (PS) surface changes as a consequence of the variation of the anion that characterizes ionic liquids.
  • PS Polystyrene

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a method for moulding the surface of curable materials, comprising the following steps consisting in: forming drops of an ionic liquid on the surface of a solid substrate; coating the substrate and the drops with a curable material; curing the material; and separating the cured material, thereby obtaining a solid surface having a topography of surface characteristics identical to those of the surfaces of the drops of the ionic liquid formed on the substrate.

Description

PROCEDIMIENTO PARA MOLDEAR SUPERFICIES DE MATERIALES  PROCEDURE FOR MOLDING MATERIAL SURFACES
CURABLES  CURABLE
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada con las técnicas empleadas en litografía para la formación de topografías sobre sustratos, y más particularmente, está relacionada con un procedimiento que genera topografías curvas bien definidas en la superficie de materiales curables, desde escalas microscópicas hasta macroscópicas.  The present invention is related to the techniques used in lithography for the formation of topographies on substrates, and more particularly, it is related to a method that generates well-defined curved topographies on the surface of curable materials, from microscopic to macroscopic scales.
ANTECEDENTES DE LA INVENCIÓN  BACKGROUND OF THE INVENTION
Es conocido que las técnicas litográficas, permiten formar topografías sobre sustratos sólidos, esta técnicas se encuentran bien desarrolladas y producen usualmente topografías que contienen básicamente partes rectas tales como aristas o esquinas, cilindros, canales de sección rectangular, pirámides, etc.  It is known that lithographic techniques, allow to form topographies on solid substrates, these techniques are well developed and usually produce topographies that basically contain straight parts such as edges or corners, cylinders, rectangular section channels, pyramids, etc.
Por ejemplo, la litografía "soft" comprende una serie de técnicas o procedimientos para modificar la topografía de las superficies de materiales blandos a escala microscópica mediante la replicación, en la superficie de estos materiales, de plantillas o másteres generadas normalmente mediante técnicas de litografía convencional, entre las que se puede mencionar, fotolitografía, litografía de electrones, etcétera, con estos procedimientos se obtienen replicas inversas de las plantillas originales, potencialmente hasta escalas nanométricas.  For example, "soft" lithography comprises a series of techniques or procedures to modify the topography of soft material surfaces on a microscopic scale by replicating, on the surface of these materials, templates or masters normally generated by conventional lithography techniques. , among which we can mention, photolithography, electron lithography, etc., with these procedures reverse replicas of the original templates are obtained, potentially up to nanometric scales.
Aunque estos procedimientos presentan en la actualidad un amplio grado de desarrollo, los procesos de fabricación de las plantillas impiden la obtención de algunos tipos de estructuras topográficas, es decir, geometrías esféricas, curvas, elipsoidales etc.  Although these procedures currently have a wide degree of development, the manufacturing processes of the templates prevent the obtaining of some types of topographic structures, that is, spherical geometries, curves, ellipsoids etc.
Esta problemática ha provocado un gran interés en los últimos años por el desarrollo de metodologías innovadoras para la obtención de estructuras tridimensionales curvas en la superficie de materiales blandos, topografía inhabitual en superficies sólidas. No obstante, todas ellas implican un alto coste o necesitan realizar procesos o utilizar técnicas altamente sofisticadas.  This problem has caused great interest in recent years for the development of innovative methodologies for obtaining three-dimensional curved structures on the surface of soft materials, unusual topography on solid surfaces. However, they all involve a high cost or need to perform processes or use highly sophisticated techniques.
Una alternativa consiste en el empleo de gotas de líquidos como moldes litográficos, ya que éstas poseen superficies que exhiben formas curvas como resultado de su tensión/energía superficial. Por ejemplo, las gotas de pequeño tamaño adoptan forma de casquete esférico cuando se depositan sobre superficies sólidas planas. En la actualidad, las técnicas de formación y dispensación de microgotas de distinta naturaleza están siendo rápidamente desarrolladas, especialmente en el campo de la microfluídica y en tecnologías "lab-on-a-chip", lo que permite utilizar de forma masiva gotas de líquido, del tamaño deseado, como plantillas litográficas. An alternative is the use of liquid drops as lithographic molds, since they have surfaces that exhibit curved shapes as a result of their surface tension / energy. For example, small droplets take the form of a spherical cap when deposited on surfaces solid flat. At present, the techniques of formation and dispensing of microdroplets of different nature are rapidly being developed, especially in the field of microfluidics and in "lab-on-a-chip" technologies, which allows liquid drops to be used massively. , of the desired size, as lithographic templates.
El procedimiento evita las limitaciones de diseño y el alto coste asociados a los métodos litográficos convencionales. Sin embargo, el uso de gotas líquidas de pequeño tamaño no está siendo actualmente explotado debido a la volatilidad de los líquidos convencionales tal como se establece en los siguientes documentos:  The procedure avoids the design limitations and the high cost associated with conventional lithographic methods. However, the use of small liquid droplets is not currently being exploited due to the volatility of conventional liquids as set forth in the following documents:
Villarroya, M., Abadal, G., Verd, J., Teva, J., Pérez-Murano, F., Figueras, E., Montserrat, J., Uranga, A., Esteve, J. & Barniol, N., Time-Resolved Evaporation Rate of Attoliter Glycerine Drops Using On-Chip CMOS Mass Sensors Based on Resonant Silicon Micro Cantilevers, IEEE Trans. Nanotechnol., 6, 509-512 (2007).  Villarroya, M., Abadal, G., Verd, J., Teva, J., Pérez-Murano, F., Figueras, E., Montserrat, J., Uranga, A., Esteve, J. & Barniol, N ., Time-Resolved Evaporation Rate of Attoliter Glycerine Drops Using On-Chip CMOS Mass Sensors Based on Resonant Silicon Micro Cantilevers, IEEE Trans. Nanotechnol., 6, 509-512 (2007).
NanoDispense(R) Contad Angle Measurements, FirstTenAngstroms Technical Note, http://www.firsttenangstroms.com (accessed October 2009), 2004.  NanoDispense (R) Count Angle Measurements, FirstTenAngstroms Technical Note, http://www.firsttenangstroms.com (accessed October 2009), 2004.
Ondarcuhu, T., Arcamone, J., Fang, A., Durou, H., Dujardin, E., Rius, G. & Perez-Murano, F. Controlled deposition of nanodroplets on a surface by liquid nanodispensing: Application to the study of the evaporation of femtoliter sessile droplets. Eur. Phys. J. Special Topics, 166, 15-20 (2009).  Ondarcuhu, T., Arcamone, J., Fang, A., Durou, H., Dujardin, E., Rius, G. & Perez-Murano, F. Controlled deposition of nanodroplets on a surface by liquid nanodispensing: Application to the study of the evaporation of femtoliter sessile droplets. Eur. Phys. J. Special Topics, 166, 15-20 (2009).
Saya, D., L ichlé, T., Pourciel, J. B., Bergaud, C. & Nicu, L., Collective fabrication of an in-plane silicon nanotip for parallel femtoliter droplet deposition. J. Micromech. Microeng., 17, N1-N5 (2007).  Saya, D., L ichlé, T., Pourciel, J. B., Bergaud, C. & Nicu, L., Collective manufacturing of an in-plane silicon nanotip for parallel femtoliter droplet deposition. J. Micromech. Microeng., 17, N1-N5 (2007).
Arcamone, J., Dujardin, E., Rius, G., Perez-Murano, F. & Ondarcuchu, T., Evaporation of Femtoliter Sessile Droplets Monitored with Nanomechanical Mass Sensors. J. Phys. Chem. B, 2007, 1 11, 13020-13027 (2007).  Arcamone, J., Dujardin, E., Rius, G., Perez-Murano, F. & Ondarcuchu, T., Evaporation of Femtoliter Sessile Droplets Monitored with Nanomechanical Mass Sensors. J. Phys. Chem. B, 2007, 1 11, 13020-13027 (2007).
Jung, Y. C. & Bhushan, B ., Technique to measure contact angle of micro/nanodroplets using atomic forcé microscopy. J. Vac. Sci. Technol. A., 26, 777- 782 (2008)  Jung, Y. C. & Bhushan, B., Technique to measure contact angle of micro / nanodroplets using atomic force microscopy. J. Vac. Sci. Technol. A., 26, 777-782 (2008)
Incluso la volatilidad se presenta en atmósferas saturadas, tal como menciona Butt, H.J., Golovko, D.S. & Bonaccurso, E., On the Derivation of Young's Equation for Sessile Drops: Nonequilibrium Effects Due to Evaporation. J. Phys. Chem. B, 111, 5277-5283 (2007). Por lo que se observa, existe una necesidad de nuevas tecnologías que permitan la generación de superficies curvas en sustratos curables de forma controlada y a menor coste. Even volatility occurs in saturated atmospheres, as mentioned by Butt, HJ, Golovko, DS & Bonaccurso, E., On the Derivation of Young's Equation for Sessile Drops: Nonequilibrium Effects Due to Evaporation. J. Phys. Chem. B, 111, 5277-5283 (2007). From what is observed, there is a need for new technologies that allow the generation of curved surfaces in curable substrates in a controlled way and at a lower cost.
SUMARIO DE LA INVENCIÓN  SUMMARY OF THE INVENTION
Para superar los problemas del arte previo, se provee un procedimiento que genera topografías curvas bien definidas en la superficie de materiales curables, desde escalas macroscópicas hasta microscópicas, que son características que están fuera del alcance utilizando los métodos convencionales de litografía.  To overcome the problems of the prior art, a procedure is provided that generates well-defined curved topographies on the surface of curable materials, from macroscopic to microscopic scales, which are characteristics that are out of reach using conventional lithography methods.
Para ello, el procedimiento de la presente invención comprende como primera etapa formar gotas de un líquido iónico sobre la superficie de un sustrato sólido. Luego, se recubre el sustrato así como las gotas con un material curable; posteriormente, el material se cura, con cualquiera de los procesos de curado que lo solidifiquen, finalmente se separa el material curable ya curado del resto del sistema, obteniendo como resultado una superficie sólida que presenta una topografía de características superficiales idénticas a aquellas de las superficies de las gotas del líquido iónico formadas sobre el sustrato.  For this, the process of the present invention comprises as a first step forming drops of an ionic liquid on the surface of a solid substrate. Then, the substrate is coated as well as the drops with a curable material; Subsequently, the material is cured, with any of the curing processes that solidify it, finally the curable material already cured is separated from the rest of the system, obtaining as a result a solid surface that presents a topography of surface characteristics identical to those of the surfaces of the drops of the ionic liquid formed on the substrate.
Las gotas empleadas, pueden ser de cualquier volumen, y en cualquier disposición es decir ordenada o desordenada.  The drops used can be of any volume, and in any arrangement that is ordered or disorderly.
Con el procedimiento de la presente invención, se crea una superficie sólida de un material curable que presenta cavidades de características topográficas idénticas a las aquellas de las superficies de gotas de líquidos iónicos.  With the process of the present invention, a solid surface of a curable material is created that has cavities of topographic characteristics identical to those of the drop surfaces of ionic liquids.
Adicionalmente, el procedimiento de la presente invención confiere a las superficies resultantes una rugosidad similar a la que presentan las superficies de los líquidos (esto es, extremadamente baja), hecho que supone una gran ventaja frente a otros métodos litográficos, ya que ésta es una característica de interés para sus aplicaciones tales como: microlentes, micro-reactores químicos y de cristalización.  Additionally, the process of the present invention gives the resulting surfaces a roughness similar to that presented by the surfaces of the liquids (that is, extremely low), a fact that represents a great advantage over other lithographic methods, since this is a characteristic of interest for its applications such as: microlenses, chemical micro-reactors and crystallization.
BREVE DESCRIPCIÓN DE LAS FIGURAS  BRIEF DESCRIPTION OF THE FIGURES
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de esta descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: La figura 1 es una representación esquemática de cómo se logra moldear una sustrato mediante una realización preferida del procedimiento de la presente invención. To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of this description. In an illustrative and non-limiting manner, the following has been represented: Figure 1 is a schematic representation of how a substrate is molded by a preferred embodiment of the process of the present invention.
La figura 2 muestra una serie de fotografías en sección transversal de los casquetes esféricos de distinta curvatura (cuantificada por el ángulo de contacto de la cavidad) formados en la superficie del PDMS para distintos sustratos sólidos: vidrio, cloruro de polivinilo (PVC), poliestireno (PS), polidimetilsiloxano (PDMS) y politetrafluoroetileno (PTFE).  Figure 2 shows a series of cross-sectional photographs of the spherical caps of different curvature (quantified by the contact angle of the cavity) formed on the surface of the PDMS for different solid substrates: glass, polyvinyl chloride (PVC), polystyrene (PS), polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE).
La figura 3 muestra un perfil esférico de la sección transversal de las cavidades formadas en la superficie del PDMS curable para los sustratos sólidos: vidrio, PVC, PS, PDMS y PTFE.  Figure 3 shows a spherical profile of the cross-section of the cavities formed on the surface of the curable PDMS for the solid substrates: glass, PVC, PS, PDMS and PTFE.
La figura 4 muestra una gráfica del ángulo de contacto de los casquetes esféricos frente al diámetro de la cavidad para los sustratos sólidos de la figura 3.  Figure 4 shows a graph of the contact angle of the spherical caps against the diameter of the cavity for the solid substrates of Figure 3.
La figura 5 muestra una gráfica de las cavidades en función del espesor de la capa del material curable para los sustratos sólidos de la figura 3  Figure 5 shows a graph of the cavities as a function of the thickness of the layer of the curable material for the solid substrates of Figure 3
La figura 6 muestra una imagen obtenida mediante microscopía electrónica de barrido para un cristal de cloruro sódico en el interior de una cavidad formada en PDMS (sustrato: PDMS; líquido iónico: [BMIm][BF4]).  Figure 6 shows an image obtained by scanning electron microscopy for a crystal of sodium chloride inside a cavity formed in PDMS (substrate: PDMS; ionic liquid: [BMIm] [BF4]).
La figura 7 muestra imágenes de microscopía óptica de lentes plano- cóncavas de diferente tamaño formadas en casquetes esféricos producidos al replicar gotas del líquido iónico [BMIm][BF4] depositadas sobre un sustrato de poliestireno.  Figure 7 shows optical microscopy images of flat-concave lenses of different sizes formed in spherical caps produced by replicating drops of the ionic liquid [BMIm] [BF4] deposited on a polystyrene substrate.
La figura 8 muestra una gráfica del ángulo de contacto de las cavidades formadas mediante el moldeado de PDMS con gotas de los líquidos iónicos [EMIm][BF4], [BMIm][BF4], [HMIm][BF4] y [DecMlm][BF4] depositadas sobre superfices sólidas de PS. Figure 8 shows a graph of the contact angle of the cavities formed by molding PDMS with drops of the ionic liquids [EMIm] [BF 4 ], [BMIm] [BF 4 ], [HMIm] [BF 4 ] and [ DecMlm] [BF 4 ] deposited on solid PS surfaces.
La figura 9 muestra una gráfica del ángulo de contacto de las cavidades formadas mediante el moldeado de PDMS con gotas de los líquidos iónicos [BMIm][BF4], [BMIm][PF6], [BMIm] [CI ], [BMIm] [S04CH3] y [BMIm] [S04C8H17] depositadas sobre superficies sólidas de PS. Figure 9 shows a graph of the contact angle of the cavities formed by molding PDMS with drops of the ionic liquids [BMIm] [BF 4 ], [BMIm] [PF 6 ], [BMIm] [CI], [BMIm ] [S0 4 CH 3 ] and [BMIm] [S0 4 C 8 H 17 ] deposited on solid PS surfaces.
DESCRIPCIÓN DETALLADA DE LA REALIZACIONES PREFERENTES DE LA INVENCIÓN La invención es un nuevo procedimiento que genera topografías curvas bien definidas en la superficie de materiales curables, desde escalas macroscópicas hasta microscópicas, fuera del alcance de los métodos convencionales de litografía. Con el procedimiento que se propone, se crea una superficie sólida de un material curable con cavidades de características topográficas idénticas a las de las superficies de gotas de líquidos. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION The invention is a new method that generates well-defined curved topographies on the surface of curable materials, from macroscopic to microscopic scales, outside the scope of conventional lithography methods. With the proposed procedure, a solid surface of a curable material is created with cavities of topographic characteristics identical to those of liquid drop surfaces.
En la figura 1 , se puede apreciar de forma esquemática como se desarrolla el procedimiento de la presente invención, inicialmente gotas de un liquido iónico se depositan sobre un sustrato sólido, posteriormente, se aplica una material curable sobre las gotas y el sustrato, luego, una vez que cura el material, se separa el material curable del sustrato logrando obtener la superficie moldeada.  In Figure 1, it can be seen schematically how the process of the present invention is developed, initially drops of an ionic liquid are deposited on a solid substrate, subsequently, a curable material is applied on the drops and the substrate, then, Once the material is cured, the curable material is separated from the substrate, obtaining the molded surface.
Dentro de la presente descripción, se debe entender que un líquido iónico es todo aquel que tiene una estructura compuesta por un catión orgánico, preferiblemente con forma asimétrica y de gran tamaño y un anión orgánico o inorgánico. El número de líquidos iónicos es enorme gracias a la multitud de cationes y aniones que se conocen en la actualidad, sintetizándose cada día nuevas variedades de los mismos. Debido a las características que presentan los líquidos iónicos, entre el catión y el anión se presentan fuerzas atractivas más débiles de las que se dan en las sales iónicas convencionales, haciendo que los líquidos iónicos se encuentren en estado líquido en un amplio rango de temperaturas que engloba normalmente a la temperatura ambiente.  Within the present description, it should be understood that an ionic liquid is one that has a structure composed of an organic cation, preferably with an asymmetric and large size and an organic or inorganic anion. The number of ionic liquids is huge thanks to the multitude of cations and anions that are known today, synthesizing new varieties every day. Due to the characteristics of the ionic liquids, weaker attractive forces are present between the cation and the anion than in conventional ionic salts, causing the ionic liquids to be in a liquid state in a wide range of temperatures that normally encompasses room temperature.
En la presente invención, las gotas de líquidos iónicos se utilizan como molde, preferiblemente para su uso en procesos de litografía "soft". Los líquidos empleados en la presente invención se caracterizan por su naturaleza iónica, altamente polar en general, y por su nula volatilidad, siendo esta la propiedad en la que se fundamenta el procedimiento de la presente invención.  In the present invention, the drops of ionic liquids are used as a mold, preferably for use in "soft" lithography processes. The liquids used in the present invention are characterized by their ionic nature, highly polar in general, and by their zero volatility, this being the property on which the process of the present invention is based.
En la presente invención y sin ánimo de ser excluyentes, entre los líquidos iónicos existentes en la actualidad se pueden utilizar aquellos cuyos catión sea un imidazolio di o tri sustituido, piridinio sustituido, tetraalquilamonio y tetraalquilsulfonio. O bien se pueden emplear líquidos iónicos cuyo anión sea un halogenuro, sulfato, sulfonato, triflato, amida e imida, borato y fosfato.  In the present invention and without being exclusive, among the ionic liquids currently present, those whose cation can be a di or tri substituted imidazolium, substituted pyridinium, tetraalkylammonium and tetraalkylsulfonium can be used. Or, ionic liquids whose anion is a halide, sulfate, sulphonate, triflate, amide and imide, borate and phosphate can be used.
A manera de ejemplo se pueden citar como líquidos iónicos los siguientes: 1 -etil-3-metil-imidazolio tetrafluoroborato, 1 -butil-3-metil-imidazolio tetrafluoroborato, 1 -hexil-3-metil- imidazolio tetrafluoroborato, 1 -decil-3-metil- imidazolio tetrafluoroborato, 1 -butil-3-metil-imidazolio hexafluorofosfato, 1 -butil-3-metil- imidazolio cloruro, 1 -butil-3-metil-imidazolio metilsulfato, 1 -butil-3-metil-imidazolio octilsulfato, etildimetil-(2-metoxietil)amonio tris(pentafluoroetil)trifluorofosfato, etil- dimetil-propilamonio bis(trifluorometilsulfonil)imida, metiltrioctilamonio trifluoroacetato, trihexil(tetradecil)fosfonio tris(pentafluoroetil)trifluorofosfato, guanidinio tris(pentafluoroetil)trifluoro fosfato, 4-(2-Metoxietil)-4-metilmorfolinio tris(pentafluoroetil)trifluorofosfato, 1 -(2-metoxietil)-1 -metilpiperidinio bis(trifluormetilsulfonil)imida, 1 -butil-1 -metilpirrolidinio bis[oxalato(2-)]-borato, 1 -butil- 1 -metilpirrolidinio bis(trifluorometilsulfonil)imida, 1 -butil-1 -metilpirrolidinio trifluorometanosulfonato, trietilsulfonio bis(trifluormetilsulfonil) imida. As an example, the following can be mentioned as ionic liquids: 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl-imidazolium tetrafluoroborate, 1-hexyl-3-methyl-imidazolium tetrafluoroborate, 1 -decyl- 3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl-imidazolium hexafluorophosphate, 1-butyl-3-methyl-imidazolium chloride, 1-butyl-3-methyl-imidazolium methyl sulfate, 1-butyl-3-methyl-imidazolium octylsulfate, ethyldimethyl- (2 -methoxyethyl) ammonium tris (pentafluoroethyl) trifluorophosphate, ethyl-dimethyl-propylammonium bis (trifluoromethylsulfonyl) imide, methyltrioctylammonium trifluoroacetate, trihexyl (tetradecyl) phosphonium tris (pentafluoroethyl) trifluoroethyl (trifluoroethyl) trifluoroethyl (trifluoroethyl) trifluoroethyl (4) -4-methylmorpholinium tris (pentafluoroethyl) trifluorophosphate, 1 - (2-methoxyethyl) -1-methylpiperidinium bis (trifluoromethylsulfonyl) imide, 1 -butyl-1-methylpyrrolidinium bis [oxalate (2 -)] - borate, 1 -butyl -methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, 1 -butyl-1-methylpyrrolidinium trifluoromethanesulfonate, triethylsulfonium bis (trifluoromethylsulfonyl) imide.
Debe destacarse que existen líquidos iónicos en un amplio rango de temperaturas, hecho que dota de versatilidad al procedimiento que se describe. La gran variedad de líquidos iónicos que existe en el mercado y el hecho de que continuamente se sinteticen nuevos líquidos iónicos permiten el empleo de este procedimiento con multitud de combinaciones líquido iónico - material curable dependiendo del interés del usuario.  It should be noted that there are ionic liquids in a wide range of temperatures, which gives versatility to the procedure described. The wide variety of ionic liquids that exist in the market and the fact that new ionic liquids are continuously synthesized allow the use of this procedure with a multitude of combinations of ionic liquid - curable material depending on the user's interest.
Tal como se ha mencionado, el primer paso de este procedimiento consiste en la formación de gotas de líquido iónico en la superficie de un sustrato, mediante cualquier técnica, tal como la activación neumática, piezoeléctrica, térmica, acústica, electrostática o inercial; formación de gotas mediante nucleación/condensación ó mediante técnicas tradicionales utilizando una microjeringa o por arrastre del líquido.  As mentioned, the first step of this procedure consists in the formation of drops of ionic liquid on the surface of a substrate, by any technique, such as pneumatic, piezoelectric, thermal, acoustic, electrostatic or inertial activation; formation of drops by nucleation / condensation or by traditional techniques using a micro-syringe or by entrainment of the liquid.
Las gotas de líquidos iónicos se pueden formar de forma ordenada o desordenada y de los volúmenes deseados, sobre una superficie sólida. Como consecuencia de la nula volatilidad de los líquidos iónicos, se dispone de un control total del volumen de las gotas de líquidos iónicos una vez que han sido generadas sobre el sustrato sólido, requisito que no puede conseguirse con el empleo de otros tipos de líquidos debido a la evaporación espontánea de los mismos.  Drops of ionic liquids can be formed in an orderly or disorderly manner and of the desired volumes, on a solid surface. As a result of the zero volatility of the ionic liquids, a total control of the volume of the drops of ionic liquids is available once they have been generated on the solid substrate, a requirement that cannot be achieved with the use of other types of liquids because to the spontaneous evaporation thereof.
La nula volatilidad de los líquidos iónicos, permite controlar el volumen de las cavidades originadas en la superficie de los materiales curables hasta los límites que las técnicas de formación y deposición de gotas líquidas permita.  The zero volatility of the ionic liquids, allows to control the volume of the cavities originated in the surface of the curable materials up to the limits that the techniques of formation and deposition of liquid drops allow.
Es conveniente mencionar que cualquier gota líquida sobre una superficie solida adopta una forma geométrica (casquete esférico, casquete elipsoidal) definida por su tensión superficial y por la energía libre interfacial característica del sistema formado por el líquido iónico y la superficie sólida empleados. It is convenient to mention that any liquid drop on a solid surface adopts a geometric shape (spherical cap, ellipsoidal cap) defined by its surface tension and the characteristic interfacial free energy of the system formed by the ionic liquid and solid surface used.
Mas particularmente, una gota adopta forma de casquete esférico siempre que cualquier longitud característica de la misma no exceda la longitud de capilaridad del sistema. En este supuesto, el tamaño del casquete esférico viene caracterizado por el ángulo de contacto, magnitud cuya cuantía depende del líquido iónico y de la superficie solida empleados.  More particularly, a drop takes the form of a spherical cap as long as any characteristic length thereof does not exceed the capillarity length of the system. In this case, the size of the spherical cap is characterized by the contact angle, the amount of which depends on the ionic liquid and the solid surface used.
El procedimiento de la presente invención permite variar de forma controlada el ángulo de contacto mediante la selección adecuada del líquido iónico y/o del sustrato sólido. De este modo pueden obtenerse gotas de líquidos iónicos con ángulos de contacto desde prácticamente los cero grados hasta los 180 grados.  The process of the present invention allows the contact angle to be varied in a controlled manner by the appropriate selection of the ionic liquid and / or the solid substrate. In this way, drops of ionic liquids with contact angles from practically zero degrees to 180 degrees can be obtained.
El segundo paso de este procedimiento consiste en recubrir con un material curable las gotas de líquidos iónicos formadas sobre el sustrato sólido. En él se asegura de que el material curable y el líquido iónico seleccionado sean inmiscibles. De esta forma se consigue que las gotas de líquidos iónicos permanezcan estables a pesar de encontrarse inmersas en un medio fluido. Como ejemplos de materiales curables se puede mencionar los siguientes: poli(dimetilxiloxano) (PDMS), fluorosilicona, elastómeros como poliuretanos y poliimidas, resinas epoxy como Novolac™ o SU-8, o perfluoropolieters (PFPEs).  The second step of this procedure consists in coating the drops of ionic liquids formed on the solid substrate with a curable material. It ensures that the curable material and the selected ionic liquid are immiscible. In this way it is possible that the drops of ionic liquids remain stable despite being immersed in a fluid medium. Examples of curable materials may include the following: poly (dimethylxyloxane) (PDMS), fluorosilicone, elastomers such as polyurethanes and polyimides, epoxy resins such as Novolac ™ or SU-8, or perfluoropolyethers (PFPEs).
Finalmente, el material curable se somete a cualquiera de los procesos de curado, como por ejemplo termocuración por calentamiento, fotocuración por exposición a radiación ultravioleta, adición de compuestos químicos, bombardeo con electrones que solidifiquen al material curable para separarlo del resto del sistema, etc.  Finally, the curable material is subjected to any of the curing processes, such as for example heat curing by heating, photocuration by exposure to ultraviolet radiation, addition of chemical compounds, bombardment with electrons that solidify the curable material to separate it from the rest of the system, etc. .
Como resultado, el material curable solidificado se obtiene una superficie sólida con accidentes topográficos de características superficiales idénticas a las de las superficies de las gotas del líquido iónico empleadas en este procedimiento. Concretamente, este procedimiento de moldeado confiere a las superficies resultantes de una rugosidad similar a la que presentan las superficies de los líquidos, hecho que representa una gran ventaja frente a otros métodos litográficos, ya que ésta es una característica de interés de sus aplicaciones tales como: microlentes, micro- reacto res químicos y de cristalización.  As a result, the solidified curable material is obtained a solid surface with topographic accidents of surface characteristics identical to those of the ionic liquid droplet surfaces used in this procedure. Specifically, this molding process gives the surfaces resulting from a roughness similar to that of the surfaces of the liquids, a fact that represents a great advantage over other lithographic methods, since this is a characteristic of interest of its applications such as : microlenses, chemical and crystallization micro reactors.
El procedimiento de la presente invención, es simple, barato, versátil y fácilmente escalable, no requiere del uso de máscaras que previamente han de fabricarse mediante técnicas litográficas convencionales (a diferencia de los métodos de litografía "soft" convencionales) y está libre de tensiones mecánicas o térmicas The process of the present invention, is simple, cheap, versatile and easily scalable, does not require the use of masks that previously have to manufactured using conventional lithographic techniques (unlike conventional "soft" lithography methods) and is free of mechanical or thermal stresses
El procedimiento de la presente invención puede ser utilizado para fabricar diverso productos entre los cuales se pueden mencionar, a manera de ejemplo, los siguientes:  The process of the present invention can be used to manufacture various products among which, for example, the following can be mentioned:
1 . Lentes y cavidades ópticas, desde tamaños milimétricos hasta potencialmente nanométricos. Las industrias relacionadas que requieren estos productos son la óptica, fotónica, electrónica, comunicaciones, optoelectrónica, y cualquier otra en la que sean necesarios estos elementos.  one . Lenses and optical cavities, from millimeter sizes to potentially nanometric sizes. The related industries that require these products are optics, photonics, electronics, communications, optoelectronics, and any other in which these elements are necessary.
2. Espejos curvos. El recubrimiento con sustancias reflectantes de las topografías curvas da lugar a espejos, desde tamaños milimétricos hasta potencialmente nanométricos. Una aplicación importante es en dispositivos concentradores de luz. Las industrias relacionadas que requieren estos productos son la óptica, fotónica, electrónica, comunicaciones, optoelectrónica, y cualesquiera otras en las que sean necesarios estos elementos.  2. Curved mirrors. Coating with reflective substances from curved topographies results in mirrors, from millimeter to potentially nanometric sizes. An important application is in light concentrating devices. The related industries that require these products are optics, photonics, electronics, communications, optoelectronics, and any others in which these elements are necessary.
3. Sustratos para cultivos celulares. Sustratos modificados topográficamente con técnicas convencionales han sido utilizados para cultivo celular, demostrando una influencia positiva en el comportamiento celular, mejorando la adhesión y/o crecimiento y/o diferenciación.  3. Substrates for cell cultures. Topographically modified substrates with conventional techniques have been used for cell culture, demonstrating a positive influence on cell behavior, improving adhesion and / or growth and / or differentiation.
4. Sistemas de confinamiento, desde tamaños milimétricos hasta potencialmente nanométricos. A modo de ejemplo, en ellos pueden realizarse reacciones químicas o bioquímicas, procesos de cristalización o síntesis química, o estudiar el comportamiento de sistemas biológicos como células, bacterias, etc., o de cualquier otro donde se requiera restringir el espacio disponible sin la presencia de aristas o esquinas.  4. Confinement systems, from millimeter sizes to potentially nanometric sizes. As an example, they can perform chemical or biochemical reactions, crystallization processes or chemical synthesis, or study the behavior of biological systems such as cells, bacteria, etc., or any other where it is required to restrict the available space without the presence of edges or corners.
5. Microchips y Micro-arrays, de uso en Biología, Bioquímica, Medicina, Biotecnología, etc.  5. Microchips and Micro-arrays, for use in Biology, Biochemistry, Medicine, Biotechnology, etc.
El procedimiento de la presente invención, será más claramente ilustrados por medio de los ejemplos que a continuación se describen, los cuales se presentan con propósitos meramente ilustrativos, pero no limitativos de la misma, siendo dichos ejemplos los siguientes: Ejemplo 1. The process of the present invention will be more clearly illustrated by means of the examples described below, which are presented for purposes of illustration only, but not limiting thereof, said examples being the following: Example 1.
Moldeado de Polidimetilsiloxano PDMS con gotas del líquido iónico [BMIm][BF4] depositadas sobre superficies sólidas. Molded Polydimethylsiloxane PDMS with drops of ionic liquid [BMIm] [BF 4 ] deposited on solid surfaces.
Gotas del líquido iónico hidrofílico 1 -butil-3-metilimidazolio tetrafluoroborato ([BMIm][BF4]), con tamaños que abarcan tres órdenes de magnitud (10°-103 μηι), fueron generadas sobre diversas superficies sólidas. Para ello se depositó una gota macroscópica del líquido iónico sobre un sustrato sólido mediante una micropipeta y se arrastró por la superficie sólida con la ayuda de un pincel (sistema fibroso finalizado en finas cerdas). Este método genera una distribución aleatoria de gotas en un amplio rango de tamaños y con una alta densidad espacial. Drops of the hydrophilic ionic liquid 1 -butyl-3-methylimidazolium tetrafluoroborate ([BMIm] [BF 4 ]), with sizes covering three orders of magnitude (10 ° -10 3 μηι), were generated on various solid surfaces. For this, a macroscopic drop of the ionic liquid was deposited on a solid substrate by means of a micropipette and dragged along the solid surface with the help of a brush (fibrous system finished in fine bristles). This method generates a random distribution of drops in a wide range of sizes and with a high spatial density.
Con objeto de obtener gotas del líquido iónico con diferente ángulo de contacto se seleccionaron sustratos sólidos de distinta polaridad que se mencionan a continuación:  In order to obtain drops of the ionic liquid with different contact angle, solid substrates of different polarity were selected which are mentioned below:
1 . Alta polaridad: Vidrio.  one . High polarity: Glass.
2. Polaridad media: Policloruro de vinilo (PVC) y Poliestireno (PS).  2. Medium polarity: Polyvinyl chloride (PVC) and Polystyrene (PS).
3. Baja polaridad: Politetrafluoroetileno (PTFE) y Polidimetilsiloxano (PDMS) Los sustratos poliméricos (PVC, PS, PTFE y PDMS) se utilizaron en este procedimiento como los suministró el fabricante (Goodfellow, Inglaterra). El sustrato de vidrio (portamuestras de microscopía; Menxel-Glaser, Alemania) se sometió antes de utilizarlo en el procedimiento a un proceso de limpieza consistente en: 3. Low polarity: Polytetrafluoroethylene (PTFE) and Polydimethylsiloxane (PDMS) Polymeric substrates (PVC, PS, PTFE and PDMS) were used in this procedure as supplied by the manufacturer (Goodfellow, England). The glass substrate (microscopy sample holder; Menxel-Glaser, Germany) was subjected to a cleaning process before using it in the procedure consisting of:
• Frotado de su superficie con una gasa impregnada en una mezcla de agua destilada y jabón. • Rubbed its surface with gauze impregnated in a mixture of distilled water and soap.
• Enjuague y posterior inmersión en un baño ultrasónico en agua destilada durante 10 minutos.  • Rinse and subsequent immersion in an ultrasonic bath in distilled water for 10 minutes.
• Inmersión en mezcla crómica durante 1 hora.  • Immersion in chromic mixture for 1 hour.
• Nuevo enjuague y posterior inmersión en un baño ultrasónico en agua destilada durante 10 minutos.  • New rinse and subsequent immersion in an ultrasonic bath in distilled water for 10 minutes.
• Secado en una estufa a 40 5C durante 1 hora. • Drying in an oven at 40 5 C for 1 hour.
El polímero líquido curable con el que se recubre el sistema formado por las gotas de líquido iónico generadas sobre los distintos sustratos fue el elastómero PDMS generado a través del kit Sylgard 184 Silicone suministrado por DOW Corning, EEUU. Este polímero, utilizado es comúnmente en aplicaciones relacionadas con la técnica de litografía "Soft" debido a sus propiedades químicas, mecánicas, ópticas, a su fácil procesamiento y a su biocompatibilidad, y se seleccionó por no poseer carga eléctrica y por su carácter apolar, características que evitan su disolución en los líquidos iónicos basados en imidazol. Además al ser su densidad menor (0.965 g cm3) que la del líquido iónico [BMIm][BF4] (1 .120 g cm" 3) se evita la flotación de las gotas de este líquido. The curable liquid polymer with which the system formed by the drops of ionic liquid generated on the different substrates was coated was the PDMS elastomer generated through the Sylgard 184 Silicone kit supplied by DOW Corning, USA. This polymer, commonly used in applications related to the "Soft" lithography technique due to its chemical, mechanical, optical properties, easy processing and biocompatibility, and selected for not having an electric charge and for its non-polar nature, characteristics that prevent its dissolution in ionic liquids based on imidazole. Furthermore, since its density is lower (0.965 g cm 3 ) than that of the ionic liquid [BMIm] [BF 4 ] (1,120 g cm " 3 ), the floating of the drops of this liquid is avoided.
Este kit consta de dos componentes, una base polimérica de PDMS y un agente curante que se mezclan en proporción másica 10:1 .  This kit consists of two components, a polymeric PDMS base and a curing agent that are mixed in a 10: 1 mass ratio.
Para eliminar las burbujas de aire que surgen en el proceso de mezcla se introdujo el polímero líquido en una campana de vacío durante 1 hora.  To eliminate the air bubbles that arise in the mixing process, the liquid polymer was introduced into a vacuum hood for 1 hour.
El producto resultante se vertió lentamente sobre el sustrato sólido que contenía las gotas de líquido iónico.  The resulting product was slowly poured onto the solid substrate containing the drops of ionic liquid.
Finalmente, se sometió al proceso de curado (calentamiento en una estufa a 60 5C durante 2 horas). El PDMS sólido resultante se separó de la plantilla formada por las gotas de líquido iónico depositadas sobre los distintos sustratos sólidos y posteriormente se sumergió en un baño ultrasónico de acetona durante 5 minutos para eliminar los posibles restos del líquido iónico. Finally, he underwent the curing process (heating in an oven at 60 5 C for 2 hours). The resulting solid PDMS was separated from the template formed by the drops of ionic liquid deposited on the various solid substrates and subsequently immersed in an ultrasonic acetone bath for 5 minutes to eliminate possible debris from the ionic liquid.
En la figura 2 se muestra una imagen, obtenida con un microscopio óptico, de una sección transversal de las cavidades finales formadas en la superficie del PDMS a través del procedimiento descrito en el presente ejemplo. Dependiendo del sustrato empleado, las cavidades presentan distintas formas que abarcan desde casquetes esféricos muy abiertos (vidrio) a prácticamente cerrados (PTFE), con un rango de tamaños comprendidos entre 10° y 103 mieras, similar al de las gotas de líquido iónico formadas en las superficies de los sólidos. Figure 2 shows an image, obtained with an optical microscope, of a cross-section of the final cavities formed on the surface of the PDMS through the procedure described in the present example. Depending on the substrate used, the cavities have different shapes that range from very open spherical caps (glass) to practically closed (PTFE), with a range of sizes between 10 ° and 10 3 microns, similar to the ionic liquid drops formed on the surfaces of solids.
Esfericidad de las cavidades: No se encontraron desviaciones de la esfericidad en las cavidades formadas en la superficie del PDMS curable moldeada con gotas de líquido iónico. Esto se debe a que las dimensiones de las gotas de Sphericity of the cavities: No deviations of the sphericity were found in the cavities formed on the surface of the curable PDMS molded with drops of ionic liquid. This is because the dimensions of the drops of
[BMIm][BF4] no sobrepasaban la longitud de capilaridad, igual a 3.7 mm cuando estas gotas se encuentran inmersas en PDMS líquido. Los perfiles esféricos mostrados en la figura 3 dejan ver este hecho. [BMIm] [BF4] did not exceed the capillary length, equal to 3.7 mm when these drops are immersed in liquid PDMS. The spherical profiles shown in Figure 3 show this fact.
Independencia del ángulo de las cavidades con el tamaño de las cavidades: De acuerdo con el arte previo, existe una hipótesis que el ángulo de contacto de una gota líquida depende, principalmente a escalas microscópicas, del tamaño de la propia gota debido a la tensión de línea que actúa en la línea de triple contacto y que los líquidos iónicos están afectados por este fenómeno. Debido a lo anterior, se exploró si el ángulo de las cavidades depende del tamaño de las gotas de líquido iónico de las que proceden. En la figura 4 se representa este parámetro frente al diámetro de las cavidades para cada uno de los sustratos sólidos empleados. Puede observarse que el diámetro de la gota no es un factor que afecte al ángulo de la cavidad. Esto asegura que la forma de las cavidades depende exclusivamente del líquido iónico y del sustrato sólido elegidos, ofreciéndonos un control sobre estos parámetros durante el procedimiento que se propone. Independence of the angle of the cavities with the size of the cavities: According to the prior art, there is a hypothesis that the contact angle of a liquid drop depends, mainly at microscopic scales, on the size of the drop itself due to the tension of line that acts on the triple contact line and that ionic liquids are affected by this phenomenon. Due to the above, it was explored if the angle of the cavities depends on the size of the ionic liquid drops from which they originate. Figure 4 shows this parameter against the diameter of the cavities for each of the solid substrates used. It can be seen that the diameter of the drop is not a factor that affects the angle of the cavity. This ensures that the shape of the cavities depends exclusively on the ionic liquid and solid substrate chosen, offering us control over these parameters during the proposed procedure.
Independencia del ángulo de las cavidades con el espesor de la capa de PDMS: Asimismo, se exploró si la posible modificación del espesor de la capa de PDMS afecta el ángulo de las cavidades como consecuencia de la presión hidrostática a que se ven sometidas las gotas de líquido iónico inmersas en este medio.  Independence of the angle of the cavities with the thickness of the PDMS layer: It was also explored if the possible modification of the thickness of the PDMS layer affects the angle of the cavities as a result of the hydrostatic pressure to which the drops of Ionic liquid immersed in this medium.
Con este propósito se recubrieron las gotas de líquido iónico con capas de distinto espesor de PDMS curable: 0.5, 3 y 10 mm. En este último caso, la presión hidrostática tan solo supera en 88.2 Pa a la atmosférica. Esta presión adicional da lugar a un trabajo de compresión sobre la gota de líquido iónico que podría reducir su tamaño. Sin embargo, tal y como se muestra en la figura 5, este fenómeno no tiene un efecto significativo sobre el ángulo de las cavidades, consecuencia del carácter incompresible de los líquidos iónicos.  For this purpose, the drops of ionic liquid were coated with layers of different thickness of curable PDMS: 0.5, 3 and 10 mm. In the latter case, the hydrostatic pressure only exceeds atmospheric 88.2 Pa. This additional pressure results in compression work on the drop of ionic liquid that could reduce its size. However, as shown in Figure 5, this phenomenon has no significant effect on the angle of the cavities, a consequence of the incompressible nature of ionic liquids.
Rugosidad de la superficie de las cavidades: La rugosidad de la superficie de PDMS resultante del proceso de replicación de la superficie de un líquido iónico se cuantificó mediante Microscopía de Fuerza Atómica (AFM), obteniéndose valores de rugosidad RA y RRMS, en un área de 3 μηι2, iguales a 0,60 ± 0,1 nm y 0,8 ± 0,1 nm, respectivamente. Estos valores extremadamente bajos dan idea de la lisura de la superficie de las cavidades, en contraste con la obtenida en otros métodos que proponen el uso de gotas solidificadas. Roughness of the surface of the cavities: The roughness of the surface of PDMS resulting from the process of replication of the surface of an ionic liquid was quantified by Atomic Force Microscopy (AFM), obtaining roughness values R A and RRMS, in an area 3 μηι 2 , equal to 0.60 ± 0.1 nm and 0.8 ± 0.1 nm, respectively. These extremely low values give an idea of the smoothness of the surface of the cavities, in contrast to that obtained in other methods that propose the use of solidified drops.
Ejemplo 2  Example 2
Micro-reactores químicos.  Chemical micro reactors
Una aplicación consiste en utilizar las cavidades de alto ángulo como micro- reactores químicos, ya que en ellas es posible confinar pequeñas cantidades de líquido que pueden ser usados para confinar procesos químicos. Por ejemplo, en los reactores pueden llevarse a cabo crecimientos de micro/nano cristales como consecuencia de la lentitud con que se desarrolla el proceso de evaporación en su interior. Como demostración de esta aplicación, la superficie micromoldeada de PDMS se sumergió en una disolución 2M de cloruro sódico para que penetrase de forma espontánea en el interior de las cavidades, extrayéndola posteriormente en posición vertical. One application is to use high-angle cavities as chemical micro-reactors, since in them it is possible to confine small amounts of liquid that can be used to confine chemical processes. For example, micro / nanocrystal growths can be carried out in the reactors as a result of the slowness of the evaporation process in their inside. As a demonstration of this application, the micromolded surface of PDMS was immersed in a 2M solution of sodium chloride to spontaneously penetrate inside the cavities, subsequently extracting it in an upright position.
En la figura 6 se muestra una imagen de microscopía electrónica tomada una vez que el proceso de evaporación había finalizado. En ella se aprecia la existencia de un microcristal de cloruro sódico en el interior de una de las cavidades formadas mediante el procedimiento descrito (sustrato: PDMS; líquido iónico: [BMIm][BF4]). Debe resaltarse que la escasa rugosidad de la superficie de la cavidad y la ausencia de esquinas o bordes favorece la formación de monocristales debido a la escasez de centros de nucleación. Figure 6 shows an electron microscopy image taken once the evaporation process had ended. It shows the existence of a microcrystalline sodium chloride inside one of the cavities formed by the procedure described (substrate: PDMS; ionic liquid: [BMIm] [BF 4 ]). It should be noted that the low roughness of the surface of the cavity and the absence of corners or edges favors the formation of monocrystals due to the shortage of nucleation centers.
Ejemplo 3  Example 3
Lentes ópticas.  Optical lenses
Una segunda aplicación consiste en utilizar las cavidades resultantes como lentes ópticas, tal y como se muestra en la figura 7. En ella puede verse algunos ejemplos de lentes plano-cóncavas de diferentes tamaños formadas en cavidades obtenidas mediante el procedimiento, utilizando poliestireno (PS) como sustrato sólido en el que se formaron las gotas del líquido iónico [BMIm][BF4]. Nótese la apariencia líquida de estas lentes, resultado de la bajísima rugosidad de la superficie de las cavidades.  A second application consists in using the resulting cavities as optical lenses, as shown in Figure 7. In it, some examples of flat-concave lenses of different sizes formed in cavities obtained by the procedure can be seen, using polystyrene (PS) as a solid substrate in which the drops of the ionic liquid [BMIm] [BF4] were formed. Note the liquid appearance of these lenses, the result of the very low roughness of the surface of the cavities.
Ejemplo 4 Example 4
Moldeado de PDMS con gotas de los líquidos iónicos [EMIm][BF4], PDMS molding with drops of ionic liquids [EMIm] [BF 4 ],
[BMIm][BF4], [HMIm][BF4] y [DecMlm][BF4] depositadas sobre superficies sólidas de PS. [BMIm] [BF 4 ], [HMIm] [BF 4 ] and [DecMlm] [BF 4 ] deposited on solid PS surfaces.
Para probar la versatilidad del procedimiento de la presente invención, se moldeó la superficie del elastómero PDMS mediante gotas de una serie homologa de líquidos iónicos basados en el catión imidazolio, generadas sobre un sustrato de Poliestireno (PS).  To test the versatility of the process of the present invention, the surface of the PDMS elastomer was molded by drops of a homologous series of ionic liquids based on the imidazolium cation, generated on a Polystyrene (PS) substrate.
Se seleccionaron cuatro líquidos iónicos de esta familia, disponibles comercialmente, que se diferenciaban en la longitud de la cadena alquílica. Concretamente, aquellos cuya cadena alquílica estaba formada por dos, cuatro, seis y diez átomos de carbono:  Four commercially available ionic liquids of this family were selected that differed in the length of the alkyl chain. Specifically, those whose alkyl chain was formed by two, four, six and ten carbon atoms:
• 1 -etil-3-metil-imidazolio tetrafluoroborato [EMim][BF4] 1 -butil-3-metil-imidazolio tetrafluoroborato [BMim][BF4] • 1-ethyl-3-methyl-imidazolium tetrafluoroborate [EMim] [BF4] 1-Butyl-3-methyl-imidazolium tetrafluoroborate [BMim] [BF4]
1 -hexil-3-metil- imidazolio tetrafluoroborato [HMim][BF4]  1-hexyl-3-methyl-imidazolium tetrafluoroborate [HMim] [BF4]
1 -decil-3-metil- imidazolio tetrafluoroborato [DecMim][BF4]  1-Decyl-3-methyl-imidazolium tetrafluoroborate [DecMim] [BF4]
Las gotas de estos líquidos, de un volumen comprendido entre 3 y 6 microlitros, se depositaron sobre el sustrato sólido PS mediante una micropipeta. Posteriormente se recubrió este sistema mediante el elastómero PDMS generado a través del kit Sylgard 184 Silicone suministrado por DOW Corning, EEUU. Seguidamente se sometió al proceso de curado (calentamiento en una estufa a 60 5C durante 2 horas) y finalmente el PDMS sólido resultante se separó de la plantilla formada por las gotas de los líquidos iónicos depositadas sobre el sustrato sólido PS, eliminándose los restos que pudiesen quedar de los líquidos iónicos sumergiéndolo en un baño ultrasónico de acetona durante 5 minutos. The drops of these liquids, of a volume between 3 and 6 microliters, were deposited on the solid PS substrate by a micropipette. This system was subsequently coated using the PDMS elastomer generated through the Sylgard 184 Silicone kit supplied by DOW Corning, USA. It was then subjected to the curing process (heating in an oven at 60 5 C for 2 hours) and finally the resulting solid PDMS was separated from the template formed by the drops of ionic liquids deposited on the solid PS substrate, eliminating the remains that they could be left of the ionic liquids by soaking it in an ultrasonic acetone bath for 5 minutes.
En la gráfica de la figura 8, se muestra los resultados de este procedimiento. Concretamente, se observa que el ángulo de contacto de las cavidades formadas con los distintos líquidos iónicos mencionados anteriormente disminuye, desde los 120Q hasta prácticamente O5, a medida que aumenta la longitud de la cadena alquílica de los mismos. Este hecho pone de manifiesto que esta forma de realización del procedimiento que se describe puede utilizarse para generar cavidades en la superficie del PDMS de distinta curvatura, caracterizadas por los distintos ángulos de las cavidades. The results of this procedure are shown in the graph in Figure 8. Specifically, it is observed that the contact angle of the cavities formed with the different ionic liquids mentioned above decreases, from 120 Q to practically O 5 , as the length of the alkyl chain thereof increases. This fact shows that this embodiment of the procedure described can be used to generate cavities on the surface of the PDMS of different curvature, characterized by the different angles of the cavities.
Ejemplo 5 Example 5
Moldeado de PDMS con gotas de los líquidos iónicos [BMIm][BF4], PDMS molding with drops of ionic liquids [BMIm] [BF 4 ],
[BMIm][PF6], [BMIm] [CI ], [BMIm] [S04CH3] y [BMIm] [S04C8H17] depositadas sobre superficies sólidas de PS. [BMIm] [PF 6 ], [BMIm] [CI], [BMIm] [S0 4 CH 3 ] and [BMIm] [S0 4 C 8 H 17 ] deposited on solid PS surfaces.
Finalmente también se demuestra la versatilidad del procedimiento utilizando una serie de líquidos iónicos de idéntico catión y diferente anión. Concretamente se han seleccionado cinco líquidos iónicos, basados en Imidazolio, cuyo catión es el 1 -butil-3 metilimidazolio [BMIm]. Los aniones seleccionados son: tetrafluoroborato [BF4], hexafluorofosfato [PF6], cloruro [CI-], metilsulfato [S04CH3] y octilsulfato [S04C8H17]:  Finally, the versatility of the process is also demonstrated using a series of ionic liquids of the same cation and different anion. Specifically, five ionic liquids have been selected, based on Imidazolium, whose cation is 1-butyl-3 methylimidazolium [BMIm]. The selected anions are: tetrafluoroborate [BF4], hexafluorophosphate [PF6], chloride [CI-], methylsulfate [S04CH3] and octylsulfate [S04C8H17]:
• 1 -butil-3-metil-imidazolio tetrafluoroborato [BMim][BF4]  • 1-Butyl-3-methyl-imidazolium tetrafluoroborate [BMim] [BF4]
• 1 -butil-3-metil-imidazolio hexafluorofosfato [BMim][PF6] 1 -butil-3-metil-imidazolio cloruro [BMim] [CI-] • 1-Butyl-3-methyl-imidazolium hexafluorophosphate [BMim] [PF6] 1 -butyl-3-methyl-imidazolium chloride [BMim] [CI-]
1 -butil-3-metil-imidazolio metilsulfato [BMim] [S04CH3]  1-Butyl-3-methyl-imidazolium methyl sulfate [BMim] [S04CH3]
• 1 -butil-3-metil-imidazolio octilsulfato [BMim] [S04C8H17]  • 1-Butyl-3-methyl-imidazolium octylsulfate [BMim] [S04C8H17]
El procedimiento técnico ha sido idéntico al del ejemplo 4. Las gotas de los líquidos iónicos seleccionados, de un volumen comprendido entre 3 y 6 microlitros, se depositaron sobre el sustrato sólido PS mediante una micropipeta. Posteriormente se recubrió este sistema mediante el elastomero PDMS generado a través del kit Sylgard 184 Silicone suministrado por DOW Corning, EEUU. Seguidamente se sometió al proceso de curado (calentamiento en una estufa a 60 5C durante 2 horas) y finalmente el PDMS sólido resultante se separó de la plantilla formada por las gotas de los líquidos iónicos depositadas sobre el sustrato sólido PS, eliminándose los restos que pudiesen quedar de los líquidos iónicos sumergiéndolo en un baño ultrasónico de acetona durante 5 minutos. The technical procedure has been identical to that of Example 4. The drops of the selected ionic liquids, of a volume between 3 and 6 microliters, were deposited on the solid PS substrate by means of a micropipette. This system was subsequently coated using the PDMS elastomer generated through the Sylgard 184 Silicone kit supplied by DOW Corning, USA. It was then subjected to the curing process (heating in an oven at 60 5 C for 2 hours) and finally the resulting solid PDMS was separated from the template formed by the drops of ionic liquids deposited on the solid PS substrate, eliminating the remains that they could be left of the ionic liquids by soaking it in an ultrasonic acetone bath for 5 minutes.
En la gráfica de la figura 9 se muestra como el ángulo de contacto de las cavidades obtenidas al moldear la superficie del elastomero PDMS mediante la plantilla fabricada por la formación de gotas de estos líquidos iónicos sobre una superficie de Poliestireno (PS) cambia como consecuencia de la variación del anión que caracteriza a los líquidos iónicos.  The graph of Figure 9 shows how the contact angle of the cavities obtained by molding the surface of the PDMS elastomer by means of the template made by the formation of drops of these ionic liquids on a Polystyrene (PS) surface changes as a consequence of the variation of the anion that characterizes ionic liquids.
Los resultados de los ejemplos 1 , 4 y 5 ponen de manifiesto la alta versatilidad del procedimiento de la presente invención, ya que es posible variar la curvatura de las cavidades creadas en la superficie del elastomero PDMS mediante la adecuada selección del sustrato sólido sobre el que se depositan las gotas de líquido iónico así como de los cationes y/o aniones de los líquidos iónicos.  The results of examples 1, 4 and 5 show the high versatility of the process of the present invention, since it is possible to vary the curvature of the cavities created on the surface of the PDMS elastomer by proper selection of the solid substrate on which the drops of ionic liquid are deposited as well as the cations and / or anions of the ionic liquids.
A la vista de esta descripción y juego de figuras, el experto en la materia podrá entender que las realizaciones de la invención que se han descrito pueden ser combinadas de múltiples maneras dentro del objeto de la invención.  In view of this description and set of figures, the person skilled in the art will be able to understand that the embodiments of the invention that have been described can be combined in multiple ways within the scope of the invention.

Claims

REIVINDICACIONES
1 . Procedimiento para moldear la superficie de materiales curables, caracterizado porque comprende las etapas de: one . Procedure for shaping the surface of curable materials, characterized in that it comprises the steps of:
a) formar gotas de un líquido iónico sobre la superficie de un sustrato sólido;  a) forming drops of an ionic liquid on the surface of a solid substrate;
b) recubrir el sustrato así como las gotas con un material curable;  b) coating the substrate as well as the drops with a curable material;
c) curar el material; y,  c) cure the material; Y,
d) separar el material curado.  d) separate the cured material.
2. Procedimiento para moldear la superficie de materiales curables, según la reivindicación 1 , caracterizado porque el líquido iónico se selecciona de aquellos cuyo catión es imidazolio di o tri sustituido, piridinio sustituido, tetraalquilamonio y tetraalquilsulfonio. 2. Method for molding the surface of curable materials according to claim 1, characterized in that the ionic liquid is selected from those whose cation is di or tri substituted imidazolium, substituted pyridinium, tetraalkylammonium and tetraalkylsulfonium.
3. Procedimiento para moldear la superficie de materiales curables, según la reivindicación 1 ó 2, caracterizado porque el líquido iónico se selecciona de aquellos cuyo anión es halogenuro, sulfato, sulfonato, triflato, amida, imida, borato o fosfato. 3. Method for molding the surface of curable materials according to claim 1 or 2, characterized in that the ionic liquid is selected from those whose anion is halide, sulfate, sulphonate, triflate, amide, imide, borate or phosphate.
4. Procedimiento para moldear la superficie de materiales curables, según cualquiera de las reivindicaciones 1 a 3 caracterizado porque el liquido iónico se selecciona del grupo que comprende: 1 -etil-3-metil-imidazolio tetrafluoroborato, 1 - butil-3-metil-imidazolio tetrafluoroborato, 1 -hexil-3-metil- imidazolio tetrafluoroborato, 1 -decil-3-metil- imidazolio tetrafluoroborato, 1 -butil-3-metil-imidazolio hexafluorofosfato, 1 -butil-3-metil-imidazolio cloruro, 1 -butil-3-metil-imidazolio metilsulfato, 1 -butil-3-metil-imidazolio octilsulfato, etildimetil-(2-metoxietil)amonio tris(pentafluoroetil)trifluorofosfato, etil-dimetil-propilamonio bis(trifluorometilsulfonil)imida, metiltrioctilamonio trifluoroacetato, trihexil(tetradecil)fosfonio tris(pentafluoroetil)trifluorofosfato, guanidinio tris(pentafluoroetil)trifluoro fosfato, 4-(2-Metoxietil)-4-metilmorfolinio tris(pentafluoroetil)trifluorofosfato, 1 -(2-Metoxietil)-1 -metilpiperidinio bis(trifluormetilsulfonil)imida, 1 -butil-1 -metilpirrolidinio bis[oxalato(2-)]-borato, 1 -butil- 1 -metilpirrolidinio bis(trifluorometilsulfonil)imida, 1 -butil-1 -metilpirrolidinio trifluorometanosulfonato y trietilsulfonio bis(trifluormetilsulfonil) imida. Method for molding the surface of curable materials, according to any one of claims 1 to 3, characterized in that the ionic liquid is selected from the group comprising: 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl- imidazolium tetrafluoroborate, 1-hexyl-3-methyl-imidazolium tetrafluoroborate, 1-decyl-3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl-imidazolium hexafluorophosphate, 1-butyl-3-methyl-imidazolium chloride, 1 -butyl -3-Methyl-imidazolium methylsulfate, 1-butyl-3-methyl-imidazolium octylsulfate, ethyldimethyl- (2-methoxyethyl) ammonium tris (pentafluoroethyl) trifluorophosphate, ethyl-dimethyl-propylammonium bis (trifluoromethylsulfonyltrifacetyl trimethalamide (tetraethyl) thiocyloacetate tetramethyl acetate tetraethyl acetate ) Phosphonium tris (pentafluoroethyl) trifluorophosphate, guanidinium tris (pentafluoroethyl) trifluoro phosphate, 4- (2-Methoxyethyl) -4-methylmorpholinium tris (pentafluoroethyl) trifluorophosphate, 1 - (2-Methoxyethylthiophenyl) -1-bis (3-methylmethyl) diphenylidene) 1 -butyl-1 -m ethylpyrrolidinium bis [oxalate (2 -)] - borate, 1 -butyl- 1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, 1 -butyl-1-methylpyrrolidinium trifluoromethanesulfonate and triethylsulfonium bis (trifluoromethylsulfonyl) imide.
5. Procedimiento para moldear la superficie de materiales curables, según cualquiera de las reivindicaciones 1 a 4, caracterizado porque las gotas de líquido iónico se forman mediante activación neumática, piezoeléctrica, térmica, acústica, electrostática o inercial, nucleación/condensación, formación mediante una microjeringa o por arrastre de líquido. 5. Method for molding the surface of curable materials, according to any one of claims 1 to 4, characterized in that the drops of ionic liquid are formed by pneumatic, piezoelectric, thermal, acoustic, electrostatic or inertial activation, nucleation / condensation, formation by means of a microjeringa or liquid drag.
6. Procedimiento para moldear la superficie de materiales curables, según cualquiera de las reivindicaciones 1 a 5, caracterizado porque las gotas tienen un ángulo de contacto desde 0 grados hasta los 180 grados. Method for molding the surface of curable materials according to any one of claims 1 to 5, characterized in that the drops have a contact angle from 0 degrees to 180 degrees.
7. Procedimiento para moldear la superficie de materiales curables, según cualquiera de las reivindicaciones 1 a 6, caracterizado porque el material curable se selecciona del grupo que comprende poli(dimetilxiloxano) (PDMS), fluorosilicona, elastómeros, resinas epoxy, perfluoropolieters (PFPEs). Method for molding the surface of curable materials, according to any one of claims 1 to 6, characterized in that the curable material is selected from the group comprising poly (dimethylxyloxane) (PDMS), fluorosilicone, elastomers, epoxy resins, perfluoropolyethers (PFPEs) .
8. Procedimiento para moldear la superficie de materiales curables, según cualquiera de las reivindicaciones 1 a 7, caracterizado porque para curar el material curable éste se somete a termocuración por calentamiento, fotocuración por exposición a radiación ultravioleta, adición de compuestos químicos ó bombardeo con electrones. Method for molding the surface of curable materials, according to any one of claims 1 to 7, characterized in that to cure the curable material it is subjected to heat curing by heating, photocuration by exposure to ultraviolet radiation, addition of chemical compounds or bombardment with electrons .
9. Procedimiento para moldear la superficie de materiales curables, según cualquiera de las reivindicaciones 1 a 8, caracterizado porque las gotas se forman en una disposición ordenada o desordena de cualquier volumen. 9. Method for molding the surface of curable materials, according to any of claims 1 to 8, characterized in that the drops are formed in an orderly or disordered arrangement of any volume.
10. Una superficie moldeada que se obtiene de acuerdo al procedimiento de cualquiera de las reivindicaciones 1 a 9. 10. A molded surface that is obtained according to the method of any of claims 1 to 9.
1 1 . Una superficie moldeada, de conformidad con la reivindicación 10, caracterizada porque dicha superficie está incluida en un micro-reactor, un espejo o un lente. eleven . A molded surface according to claim 10, characterized in that said surface is included in a micro-reactor, a mirror or a lens.
PCT/ES2011/070363 2010-05-26 2011-05-20 Method for moulding the surfaces of curable materials WO2011148018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030795A ES2370690B2 (en) 2010-05-26 2010-05-26 PROCEDURE FOR MOLDING SURFACES OF CURABLE MATERIALS.
ESP201030795 2010-05-26

Publications (1)

Publication Number Publication Date
WO2011148018A1 true WO2011148018A1 (en) 2011-12-01

Family

ID=45003370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070363 WO2011148018A1 (en) 2010-05-26 2011-05-20 Method for moulding the surfaces of curable materials

Country Status (2)

Country Link
ES (1) ES2370690B2 (en)
WO (1) WO2011148018A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113950A (en) * 2011-11-28 2013-06-10 Sumitomo Chemical Co Ltd Resist composition and method for producing resist pattern

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOI, H.K. ET AL.: "Fabrication of ordered nanostructured arrays using poly(dimethylsiloxane) replica molds based on three-dimensional colloidal crystals", ADVANCED FUNCTIONAL MATERIALS, vol. 19, 2009, pages 1594 - 1600 *
FANG, A. ET AL.: "An approach to control of droplet size in nanoscale dispensing", JOURNAL OF PHYSICS: CONFERENCE SERIES, vol. 61, 2007, pages 298 - 301 *
NAM, H.J.: "Two-dimensional nanopatterning by PDMS relief structures of polymeric colloidal crystals", APPLIED SURFACE SCIENCE, vol. 254, 2008, pages 5134 - 5140 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113950A (en) * 2011-11-28 2013-06-10 Sumitomo Chemical Co Ltd Resist composition and method for producing resist pattern

Also Published As

Publication number Publication date
ES2370690B2 (en) 2012-07-25
ES2370690A1 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Zang et al. Evaporation of a Droplet: From physics to applications
Tang et al. Surface patterning with SiO2@ PNiPAm core–shell particles
Dietrich et al. Stick-jump mode in surface droplet dissolution
Schellenberger et al. Direct observation of drops on slippery lubricant-infused surfaces
Han et al. Drying-mediated assembly of colloidal nanoparticles into large-scale microchannels
Zhang et al. Colloidal self‐assembly meets nanofabrication: From two‐dimensional colloidal crystals to nanostructure arrays
Lewandowski et al. Orientation and self-assembly of cylindrical particles by anisotropic capillary interactions
Kraft et al. Colloidal molecules with well-controlled bond angles
Helgeson et al. Hydrogel microparticles from lithographic processes: Novel materials for fundamental and applied colloid science
Xiu et al. Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition
Gao et al. Wetting 101°
Duan et al. Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion
Neuhaus et al. Anisotropic wetting of microstructured surfaces as a function of surface chemistry
Utech et al. Tailoring re-entrant geometry in inverse colloidal monolayers to control surface wettability
Faustini et al. From chemical solutions to inorganic nanostructured materials: a journey into evaporation-driven processes
Suh et al. Control over wettability of polyethylene glycol surfaces using capillary lithography
Zhang et al. Unidirectional self-driving liquid droplet transport on a monolayer graphene-covered textured substrate
Russell et al. Binary colloidal crystal films grown by vertical evaporation of silica nanoparticle suspensions
Faustini et al. Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications
Fatona et al. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels
Wu et al. Using hierarchical self-assembly to form three-dimensional lattices of spheres
Dong et al. Superhydrophobic, low-hysteresis patterning chemistry for water-drop manipulation
Bigdeli et al. Making photonic crystals via evaporation of nanoparticle-laden droplets on superhydrophobic microstructures
Li et al. Electrowetting assisted air detrapping in transfer micromolding for difficult-to-mold microstructures
Li et al. Large-scale and well-ordered assembly of microspheres in a small container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786167

Country of ref document: EP

Kind code of ref document: A1