WO2011147169A1 - 电池管理方法和装置 - Google Patents

电池管理方法和装置 Download PDF

Info

Publication number
WO2011147169A1
WO2011147169A1 PCT/CN2010/079089 CN2010079089W WO2011147169A1 WO 2011147169 A1 WO2011147169 A1 WO 2011147169A1 CN 2010079089 W CN2010079089 W CN 2010079089W WO 2011147169 A1 WO2011147169 A1 WO 2011147169A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
battery
rectifier
preset
output voltage
Prior art date
Application number
PCT/CN2010/079089
Other languages
English (en)
French (fr)
Inventor
薛冰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10852038.8A priority Critical patent/EP2579418A4/en
Publication of WO2011147169A1 publication Critical patent/WO2011147169A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply

Definitions

  • the present invention relates to the field of battery management, and in particular, to a battery management method and apparatus. Background technique
  • the valve-regulated lead-acid battery is the battery of choice for the combined power supply system because of its small size, stable voltage, no pollution, and high discharge capacity. Since the cost of the battery accounts for a large proportion of the entire system, how to effectively manage and maintain the battery reasonably and reliably, and improve the battery life, has become one of the focuses of various power supply manufacturers.
  • Battery management is mainly the management of charge and discharge.
  • the management of charge and discharge mainly includes discharge protection and charging protection.
  • the charging management of the battery is controlled by the output current of the rectifier.
  • the control method can be divided into a voltage regulation type and a regulation flow point type.
  • the voltage regulator type is applied to the non-intelligent rectifier.
  • the non-intelligent rectifier regulates the current limit by adjusting the voltage difference between the rectifier output voltage and the battery voltage.
  • Smart rectifier comes with a processor, through
  • the RS485 bus or controller area network (CAN) receives the commands sent by the system.
  • the system calculates the current limit according to the currently configured charging current and load current, and sends it to the rectifier.
  • the inventors of the present invention found that the battery charging management of the intelligent rectifier system uses the method of adjusting the flow point, and the rectifier voltage is directly adjusted to the floating charge or the average charging voltage, and the system is unstable. Moreover, if the rectifier is frequently turned on and off, a sudden change in charging current will result in a shortened battery life. Summary of the invention
  • a primary object of the present invention is to provide an efficient battery management method based on an intelligent rectifier that combines voltage regulation and regulated flow points to achieve stable charge and discharge.
  • the present invention also provides a corresponding device.
  • the invention provides a battery management method, comprising:
  • the rectifier current is adjusted according to the battery current and the current limit point is controlled to control the battery current to reach the preset current limit value.
  • the method further includes:
  • the regulator output voltage is lowered.
  • the method further includes:
  • the current limit is lowered by a predetermined first step.
  • the method further includes:
  • the output voltage is lowered by a predetermined second step.
  • the method further includes:
  • the method further includes:
  • the invention also provides a battery management device, comprising:
  • a monitoring module for monitoring total load current, battery capacity, charging current ratio, and number of working rectifiers
  • a calculation module configured to calculate a current limit point according to the total load current, the battery capacity, the charging current ratio, and the number of working rectifiers;
  • the adjustment module is configured to adjust the operating voltage and the current limiting point of the rectifier according to the battery current, and control the battery current to reach a preset current limiting value.
  • the device also includes:
  • a rectifier output voltage adjustment module is configured to adjust the output voltage of the regulator when the output voltage of the rectifier is greater than the target voltage.
  • the device also includes:
  • a first detecting module configured to detect each group of effective battery currents
  • the current limit adjustment module is configured to: when any battery current is greater than or equal to a preset first threshold, lower the current limit point by a preset first step length.
  • the device also includes:
  • the output voltage adjustment module is configured to: when any of the battery currents is greater than or equal to the preset second threshold being less than the first threshold, the output voltage is lowered by a predetermined second step.
  • the device also includes:
  • a second detecting module configured to detect a rectifier state
  • the current limit adjustment module is further configured to: when the current of any valid battery is less than a preset discharge threshold When the rectifier is in the current limiting state, the current limiting point is adjusted by a preset third step; when the current of any valid battery is greater than or equal to the current limiting value, the current limiting point is stopped.
  • the output voltage adjustment module is further configured to gradually increase the output voltage to the target voltage according to a preset fourth step when the rectifier is not in the current limiting state.
  • the invention combines the regulation current limiting point and the regulated output voltage to manage the battery, so that the current limiting regulation of the battery is both real-time and stable, and prolongs the service life of the battery.
  • FIG. 1 is a flow chart of an embodiment of a battery management method according to the present invention.
  • FIG. 2 is a schematic diagram of specific adjustments in an embodiment of a battery management method according to the present invention
  • FIG. 3 is a schematic structural view of an embodiment of a battery management apparatus according to the present invention. detailed description
  • FIG. 1 is a flowchart of an embodiment of a battery management method according to the present invention, and a method for implementing battery management provided by the present invention is specifically described below.
  • the fundamental purpose of adjusting the current limiting point is to ensure that the battery is neither overcharged nor undercharged, that is, the battery charging current is maintained near the set current limit value, and is usually adjusted to the e-limit current value to the b-fold current limit.
  • Values can be used.
  • the values of e and b can be flexibly configured according to requirements. Generally, e takes 0.9 and b takes 1.1.
  • the current limit value of each battery is calculated by the battery capacity X charging current ratio. The specific steps are as follows:
  • Step S101 monitoring the total load current, the battery capacity, the charging current ratio, and the number of working rectifiers.
  • the battery management device first monitors the total load current, the battery capacity, the charging current ratio, and the number of working rectifiers in real time to calculate the current limiting point in step S102.
  • Step S102 Calculate a current limit point.
  • This formula quickly obtains the approximate value of the current limit of the rectifier, so that the charging current of the battery can be quickly locked within a reasonable range. If all the quantities are very accurate, battery management can only be achieved according to this formula, but the battery management device may have errors and abnormal conditions may occur, which requires fine adjustment to correct.
  • the current limit point is calculated according to the formula again, otherwise step S103 is performed.
  • a threshold can be set for each quantity, for example, when the load changes by 10A.
  • Step S103 Adjust a rectifier output voltage.
  • the current limit regulator can be adjusted directly based on the battery current.
  • the regulator output voltage is required. Since the down regulation voltage does not increase the battery charging current, the down regulation voltage can be directly executed.
  • the step size of the down adjustment is not too large, and it is recommended to be between 0.1V and 0.3V.
  • the regulator determines if you need to increase the voltage. If the rectifier output voltage is less than the target voltage, for example, when the system switches from test to float, the regulator output voltage is required. Since the up-regulation voltage will increase the battery charging current, in the process of raising the voltage, it is necessary to detect the battery current at all times and limit the battery current to a reasonable range. All the following steps are It is built on top of the upper voltage.
  • Step S104 The current limit point is lowered.
  • step S103 it is necessary to judge whether the battery is charged with an excessive current and adjust the current limit point.
  • the current limit point is lowered by a first step. Adjusting the current limit point at this time can achieve the purpose of rapidly reducing the battery charging current. If the battery charging current is too large, the battery charging current is greater than or equal to the preset first threshold.
  • the first threshold should be greater than the battery capacity X charging current ratio.
  • the first threshold can be configured according to the usage scenario or user requirements, such as battery charging. A current limit value greater than a times is considered to be too large, and a value is generally 1.3.
  • the value c of the first step can also be freely configured, for example 10% at a time. If all of the battery charging currents are within the first threshold, then step S105 is performed.
  • Step S105 the output voltage is lowered.
  • Step S104 solves the problem that the battery charging current is too large, and the battery may be in an overcharge state, that is, the battery charging current is greater than the second threshold value less than the first threshold value, and the second threshold value is taken as the b-fold current limiting value, That is, when the battery charging current is between the b-fold current limit value and the a-fold current limit value.
  • the timeliness of the battery current regulation is not very important. For the stability of the system, it can be adjusted by reducing the output voltage. The output voltage is reduced by a preset second step d each time. The second step d cannot be too large and is recommended to be between 0.1V and 0.3V. If all the batteries are not overcharged, step S106 is performed.
  • Step SI 06 the current limit is raised.
  • Step S106 is mainly for preventing abnormal discharge of the battery.
  • Step S105 solves the problem of overcharging of the battery, but the battery may be in a discharged state, which is not allowed.
  • the current-limiting discharge is an abnormal situation, which means that the current limit of the rectifier is too small to support the load, and a part of the current is supplied by the battery.
  • the state of the rectifier is detected first; when the current of any valid battery is less than the preset discharge threshold and the rectifier is in the current limiting state, the current limiting point is adjusted by a preset third step; when the current of any valid battery is greater than When it is equal to the current limit value, stop the current limit point.
  • the discharge threshold is preset by the difference in battery specification parameters.
  • step S106 If all of the batteries are not abnormally discharged, step S106 is performed.
  • Step S107 Determine whether the battery charging current reaches a current limit value.
  • step S108 is performed.
  • Step SI 08 the current limit is raised.
  • step S109 is performed.
  • Step S109 The output voltage is adjusted to the target voltage.
  • step S109 When the process goes to step S109, all the states of the system are normal, and the output voltage can be gradually adjusted to the target voltage.
  • the fourth step of up or down is not too large, it is recommended to be between 0.1V and 0.3V. At this point, a flow limiting process is completed, and the battery management is periodically adjusted according to the above process according to the data.
  • the battery charging current is reduced to 56.875A; The charging current is less than 58.5A.
  • the rectifier output voltage and the battery voltage are kept within a reasonable voltage difference.
  • the rectifier has an additional output capability and does not increase the charging current of the battery.
  • the battery may remain at a higher charging current for a long time; if you simply use the method of adjusting the flow point, match the fine adjustment of the current limit point, adjust the position after four times, the speed. Soon, but if the rectifier is turned on at this time, the rectifier needs to be adjusted several times, and the battery still has a period of overcharging. This shows the advantages of current limit and voltage combination regulation.
  • battery management is performed by using a combination of a current limiting point and an output voltage.
  • the regulation phase of the current limit can quickly limit the battery current to a safe range, and the output voltage is in a safe range.
  • the battery charging current is fine-tuned within the enclosure until the current limit is reached. Due to the limitation of the output voltage, even if the rectifier is turned on and off during the adjustment process, the charging current of the battery is not affected, thereby achieving the purpose of fast and stable, and achieving efficient battery management.
  • FIG. 3 is a schematic structural diagram of an embodiment of a battery management device according to the present invention.
  • a battery management device provided by an embodiment of the present invention includes:
  • the monitoring module 31 is configured to monitor the total load current, the battery capacity, the charging current ratio, and the number of working rectifiers;
  • the calculation module 32 is configured to calculate a current limit point according to the total load current, the battery capacity, the charging current ratio, and the number of working rectifiers;
  • the adjusting module 33 is configured to adjust the operating voltage and the current limiting point of the current according to the battery current to control the battery current to reach a preset current limiting value.
  • the device further includes:
  • the rectifier output voltage adjustment module 34 is configured to adjust the output voltage of the regulator when the output voltage of the rectifier is greater than the target voltage.
  • the device further includes:
  • a first detecting module 35 configured to detect each group of effective battery currents
  • the current limit adjustment module 36 is configured to: when any battery current is greater than or equal to the preset first threshold, lower the current limit point by a preset first step length.
  • the device further includes:
  • the output voltage adjustment module 37 is configured to: when any battery current is greater than or equal to the preset second threshold being less than the first threshold, lowering the output voltage by a preset second step.
  • the device further includes:
  • a second detecting module 38 configured to detect a rectifier state
  • the current limiting point adjustment module 36 is further configured to: when the current of any valid battery is less than the preset discharge threshold and the rectifier is in the current limiting state, the current limiting point is adjusted by a preset third step; when any valid battery is When the current is greater than or equal to the current limit value, stop the current limit point.
  • the output voltage adjustment module 37 is further configured to gradually increase the output voltage to the target voltage according to the preset fourth step when the rectifier is not in the current limiting state.
  • the calculation module 32 calculates the current limit point calculation formula according to the total load current, the battery capacity, the charging current ratio, and the number of working rectifiers as follows:
  • This formula quickly obtains the approximate value of the current limit of the rectifier, so that the charging current of the battery can be quickly locked within a reasonable range. If all the quantities are very accurate, battery management can only be achieved according to this formula, but the battery management device may have errors and abnormal conditions may occur, which requires fine adjustment to correct.
  • the calculation module 32 calculates the current limit point again according to the formula.
  • a threshold value can be set for each quantity, for example, when the load changes by 10A.
  • the current limit regulator can be adjusted directly based on the battery current.
  • the rectifier output voltage adjustment module 34 When the rectifier output voltage is greater than the target voltage, for example, when the system is transferred from the float charge to the test, it is necessary to use the rectifier output voltage adjustment module 34 to adjust the output voltage of the regulator. Since the down regulation voltage does not increase the battery charging current, the down regulation voltage can be directly executed. The step size of the down adjustment is not too large, and it is recommended to be between 0.1V and 0.3V.
  • the regulator output voltage adjustment module 34 needs to adjust the regulator output voltage. Upregulation voltage will increase battery charging Current, in the process of raising the voltage, it is necessary to detect the battery current at all times and limit the battery current to a reasonable range. All the following steps are based on the upper voltage.
  • the current limit adjustment module 36 lowers the current limit by a predetermined first step.
  • the first threshold should be greater than the battery capacity X charging current ratio; the first threshold can be configured according to the usage scenario or user requirements, for example, the battery charging current is greater than a times the current limiting value is considered to be too large, generally a The value is 1.3.
  • the step size c can also be freely configured, for example 10% at a time.
  • the output voltage is reduced by a second step each time, and the second step is not too large, and it is recommended to be at 0.1V. Between 0.3 V.
  • the occurrence of current-limiting discharge is an abnormal situation and needs to be adjusted quickly.
  • the current limit point can be adjusted, that is, when the current of any effective battery is less than the preset discharge threshold and the rectifier is in the current-limit state, the current limit point
  • the adjustment module 36 raises the current limit point by a third step.
  • the third step can be freely configured, for example 10% at a time.
  • the discharge threshold is preset by a difference in battery specification parameters.
  • battery management is performed by using a combination of a current limiting point and an output voltage.
  • the regulation phase of the current limit can quickly limit the battery current to a safe range, and the output voltage is fine-tuned within the safe range until the current limit is reached. Due to the limitation of the output voltage, even if the rectifier is turned on and off during the regulation process, it will not affect the charging current of the battery, thus achieving the goal of fast and stable, and achieving efficient battery management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明揭示了一种电池管理方法,包括:监测负载总电流、电池容量、充电电流比率和工作整流器个数;根据负载总电流、电池容量、充电电流比率和工作整流器个数计算得到限流点;根据电池电流调整整流器工作电压和限流点,控制电池电流达到预设限流值。本发明还提供了对应的电池管理装置。本发明将调节限流点和调节输出电压结合起来对电池进行管理,使电池的限流调节既有实时性,又稳定,延长了电池的使用寿命。

Description

电池管理方法和装置 技术领域
本发明涉及电池管理领域, 特别涉及一种电池管理方法和装置。 背景技术
随着移动通信网络的建设和发展, 与之相应的通信用组合电源的需求 量也在逐日增大。 为保证通信设备的可靠工作, 组合电源一般都会配置蓄 电池, 阀控式铅酸蓄电池以其体积小、 电压稳定、 无污染、 放电能力高等 特点, 而成为组合电源系统的首选电池。 由于电池的成本在整个系统中占 较大比例, 如何合理可靠的对电池进行有效管理和维护, 提高电池使用寿 命, 也成为各个电源厂家竟争的重点之一。 电池管理中主要是对充放电的 管理, 充放电的管理主要包括放电保护和充电保护。 通常对电池的充电管 理, 是通过对整流器的输出电流进行控制, 控制方法可分为调压型和调限 流点型。
调压型应用在非智能整流器上。 非智能整流器, 通过调节整流器输出 电压和蓄电池的电压的压差, 来进行限流管理。
调限流点型一般应用在智能整流器上。 智能整流器自带处理器, 通过
RS485总线或控制器局域网络(CAN, Controller Area Network ) 总线接收 系统下发的命令。 系统根据当前配置的充电电流和负载电流计算限流点, 下发给整流器。
在具体实施过程中, 本发明的发明人发现, 对釆用智能整流器系统的 电池充电管理都釆用调限流点的方式, 整流器电压直接调至浮充或均充电 压, 系统不稳定。 而且如果对整流器频繁的开关机, 充电电流突变会导致 电池使用寿命缩短。 发明内容
本发明的主要目的为提供基于智能整流器、 将调压和调限流点结合实 现稳定充放电的高效电池管理方法, 本发明还提供了对应的装置。
本发明提出一种电池管理方法, 包括:
监测负载总电流、 电池容量、 充电电流比率和工作整流器个数; 根据所述负载总电流、 电池容量、 充电电流比率和工作整流器个数计 算得到限流点;
根据电池电流调整整流器工作电压和限流点, 控制电池电流达到预设 限流值。
在所述根据电池电流调整整流器工作电压和限流点, 控制电池电流达 到预设限流值前, 该方法还包括:
当整流器输出电压大于目标电压时, 下调整流器输出电压。
在所述根据电池电流调整整流器工作电压和限流点, 控制电池电流达 到预设限流值后, 该方法还包括:
检测每一组有效电池电流;
当任一电池电流大于或等于预设第一阔值时, 将限流点下调一预设第 一步长。
在所述根据电池电流调整整流器工作电压和限流点, 控制电池电流达 到预设限流值后, 该方法还包括:
检测每一组有效电池电流;
当任一电池电流大于或等于预设第二阔值小于第一阔值时, 将输出电 压下调一预设第二步长。
在所述检测每一组有效电池电流后 , 该方法还包括:
检测整流器状态;
当任一有效电池的电流小于预设放电阔值且整流器处于限流状态时, 上调限流点一预设第三步长;
当任一有效电池的电流大于或等于限流值时, 停止上调限流点。
在所述检测整流器状态后, 该方法还包括:
整流器不处于限流状态时, 按照预设第四步长逐步上调输出电压至目 标电压。
本发明还提出一种电池管理装置, 包括:
监测模块, 用于监测负载总电流、 电池容量、 充电电流比率和工作整 流器个数;
计算模块, 用于根据所述负载总电流、 电池容量、 充电电流比率和工 作整流器个数计算得到限流点;
调整模块, 用于根据电池电流调整整流器工作电压和限流点, 控制电 池电流达到预设限流值。
所述装置还包括:
整流器输出电压调整模块, 用于当整流器输出电压大于目标电压时, 下调整流器输出电压。
所述装置还包括:
第一检测模块, 用于检测每一组有效电池电流;
限流点调整模块, 用于当任一电池电流大于或等于预设第一阔值时, 将限流点下调一预设第一步长。
所述装置还包括:
输出电压调整模块, 用于当任一电池电流大于或等于预设第二阔值小 于第一阔值时, 将输出电压下调一预设第二步长。
所述装置还包括:
第二检测模块, 用于检测整流器状态;
所述限流点调整模块还用于当任一有效电池的电流小于预设放电阔值 且整流器处于限流状态时, 上调限流点一预设第三步长; 当任一有效电池 的电流大于或等于限流值时, 停止上调限流点。
所述输出电压调整模块还用于当整流器不处于限流状态时, 按照预设 第四步长逐步上调输出电压至目标电压。
本发明将调节限流点和调节输出电压结合起来对电池进行管理, 使电 池的限流调节既有实时性, 又稳定, 延长了电池的使用寿命。 附图说明
图 1为本发明一种电池管理方法的一实施例的流程图;
图 2为本发明一种电池管理方法的一实施例中具体的调节示意图; 图 3为本发明一种电池管理装置的一实施例的结构示意图。 具体实施方式
应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于 限定本发明。
参照图 1 , 为本发明一种电池管理方法的一实施例的流程图, 以下具体 描述本发明提供的电池管理的实现方法。
在本发明中调节限流点的根本目的是保证电池既不过充, 也不欠充, 即保持电池充电电流在设定的限流值附近, 通常调节至 e倍限流值到 b倍 限流值之间即可, e、 b的取值可根据需求灵活配置, 一般 e取值 0.9, b取 值 1.1。 每组电池的限流值通过电池容量 X充电电流比率计算得到。 具体的 釆用如下步骤:
步骤 S101、 监测负载总电流、 电池容量、 充电电流比率和工作整流器 个数。
电池管理装置先实时监测负载总电流、 电池容量、 充电电流比率和工 作整流器个数, 以便步骤 S102中计算限流点。 步骤 S102、 计算限流点。
根据负载总电流、 电池容量、 充电电流比率和工作整流器个数计算限 流点计算基本公式如下:
限流点 = (负载总电流 +电池总容量 X充电电流比率) /正常工作的整流 器数。
此公式可快速得到整流器限流点的大概值, 使电池的充电电流可以快 速锁定在合理的范围内。 如果所有的量都非常精确, 那只根据此公式就可 实现电池管理, 但电池管理装置都可能存在误差, 并且可能出现异常情况, 这就需要进行微调以纠正。
当公式中负载总电流、 电池容量、 充电电流比率和工作整流器个数中 任意一个量发生变化时, 重新按照公式计算限流点, 否则进行步骤 S103。 为了防止频繁的进行公式计算, 对各个量可设定一个阔值, 例如负载变化 10A 时才认为变化。 计算出限流点后根据电池电流调整整流器工作电压, 控制电池电流达到预设限流值。
步骤 S103、 调整整流器输出电压。
由于有些电源系统考虑成本的限制, 并未配置负载分流器, 因此负载 电流也无法检测, 考虑到这种情况, 限流调压可直接根据电池电流进行调 节。
当整流器输出电压大于目标电压时, 例如系统从浮充转入测试时, 需 要下调整流器输出电压。 由于下调电压不会增加电池充电电流, 故下调电 压可直接执行。 下调的步长不易过大, 建议在 0.1V到 0.3V之间。
如果不需下调整流器输出电压, 再判断是否需要上调电压。 如果整流 器输出电压小于目标电压, 例如系统从测试转入浮充时, 需要上调整流器 输出电压。 由于上调电压会增加电池充电电流, 在上调电压的过程中, 需 要时刻检测电池电流, 将电池电流限制在合理的范围内, 以下所有步骤都 是建立在上调电压之上。
步骤 S104、 限流点下调。
为防止电池过充较大, 第一步调整结束后, 电池充电电流可能过大, 会对电池造成较严重的损坏, 需要进行快速纠正。 步骤 S103就需要判断电 池是否以过大的电流充电, 并进行限流点的调节。
具体步骤为:
A、 检查每一组有效电池的电流;
B、 当任意一个电池以过大电流充电时, 则限流点下调一个第一步长。 这时调节限流点可实现快速减小电池充电电流的目的。 电池充电电流 过大是指电池充电电流大于或等于预设第一阔值, 第一阔值应该大于电池 容量 X充电电流比率; 第一阔值可以根据使用场景或用户要求进行配置, 例 如电池充电电流大于 a倍的限流值即认为是过大, 一般 a取值 1.3。 所述第 一步长的值 c也可自由配置, 例如一次调节 10%。 如果所有电池充电电流 都降至第一阔值以内, 则进行步骤 S105。
步骤 S105、 输出电压下调。
步骤 S104解决了电池充电电流过大的问题, 电池还有可能处于过充状 态, 即电池充电电流大于第二阔值小于第一阔值, 所述第二阔值取 b倍限 流值, 也即是当电池充电电流在 b倍限流值和 a倍限流值之间。 虽然不会 对电池造成致命影响, 但也是不允许的。 但这时对电池电流调节的及时性 就不是很重要, 为了系统的稳定性, 可釆用降低输出电压的方式来调节, 输出电压每次降低一个预设第二步长 d。第二步长 d不能太大,建议在 0.1V 到 0.3V之间。 如果所有电池都没有过充, 则进行步骤 S106。
步骤 SI 06、 限流点上调。
步骤 S106主要为了防止电池异常放电。 步骤 S105解决了电池过充的 问题, 但电池有可能处于放电的状态, 这是不允许的。 电池放电有两种可 能, 一种是自然放电, 另一种是限流放电。 自然放电在系统停电、 测试等 过程中, 是一种正常的情况, 这时整流器无输出电流, 由电池给负载供电。 而限流放电则是种异常的情况, 这说明整流器限流点太小, 不够支持负载 的需求, 而由电池提供一部分电流。
具体的, 先对检测整流器状态; 当任一有效电池的电流小于预设放电 阔值且整流器处于限流状态时, 上调限流点一预设第三步长; 当任一有效 电池的电流大于或等于限流值时, 停止上调限流点。 放电阔值由电池规格 参数的不同预先设置。
出现限流放电是一种异常情况, 需要快速的调整, 这时可通过对限流 点进行调节, 限流点上调一个第三步长。 所述第三步长可自由配置, 例如 一次调节 10%。 如果所有电池都没有异常放电, 则进行步骤 S106。
步骤 S 107、 判断电池充电电流是否达到限流值。
到这步以后, 所有的电池即没有过充, 又没有异常放电。 即所有的电 池电流小于 b倍限流值。 这时只要有任意一组的电池大于第三阔值即 e倍 限流值时, 则停止调节。
如果所有电池的充电电流都小于 e倍限流点, 则进行步骤 S108。
步骤 SI 08、 限流点上调。
如果所有电池的充电电流都小于 e倍限流点, 且整流器处于限流状态, 这说明整流器限流点偏小, 这时通过调节电压是无效的, 只能上调限流点 一预设第三步长^ 由于此时电池在充电, 只是充电电流不足, 上调预设第 三步长 f 不能太大, 防止电池过充, 步长可按照电池目标限流值的 10%逐 步上调。 如果整流器不在处于限流状态, 则进行步骤 S109。
步骤 S109、 输出电压上调至目标电压。
到步骤 S109时, 系统的一切状态都处于正常, 可逐步调节输出电压至 目标电压。 上调或下调的第四步长不易过大, 建议在 0.1V到 0.3V之间。 至此, 一个限流调压的流程结束, 电池管理根据釆样的数据周期性的 按照以上流程进行调节。
下面结合上述流程以及图 2 以具体的电池管理实例进行说明, 暂不考 虑电流温度补偿,则电池限流值为 300x0.15=45A,整流器限流点为( 50+45 ) /4=23.75A。 如果系统检测一切正常, 则电池充电电流肯定能限制在限流值 内, 调节结束。
如果此时手动开启一个整流器, 但监控暂时还没有检测到, 在这段期 间内整流器总的输出电流为 5x23.75=118.75A, 除去负载的 50A之外, 剩下 的 68.75A全部给电池充电; 由于剩下的电流远大于 45x l.3=58.5A, 这时系 统会分次降低限流点 10% , 在第一次调节之后, 电池充电电流降低至 56.875A; 由于第一调节后的充电电流小于 58.5A, 这时需要对电压进行敖 调, 电压从 53.5V, 按 0.1V的步长逐步下调, 假设八次后下调至 52.7V时, 电池充电电流为 49A, 小于 45x l. l=49.5A, 微调结束。 如果这时监控检测 到整流器, 重新计算限流点 ( 50+45 ) /5=19A, 电池充电电流又变为 45A。 此时整流器输出电压和电池电压保持在一个合理的压差内, 以后即使在增 加整流器, 由于压差固定, 整流器虽然有额外的输出能力, 也不会增加电 池的充电电流。 如果单纯釆用调压的方式, 电池可能长时间保持在在较高 的充电电流; 而如果单纯釆用调限流点的方式, 配合限流点的微调, 经过 四次后就调节到位, 速度很快, 但如果这时又开启整流器, 整流器还需要 经过几次调节, 电池还是要有一段过充的阶段。 由此看出限流点和电压结 合调节的优势了。
以上是由于开启整流器导致电池过充的场景, 整流器通讯断开造成电 池过充的场景也都类似。
本发明实施例釆用限流点和输出电压结合方法进行电池管理。 限流点 的调节相能快速的将电池电流限制在一个安全范围内, 输出电压在安全范 围内再对电池充电电流进行微调, 直到达到限流值为止。 由于有输出电压 的限制, 即使在调节过程中有整流器的开关机操作, 也不会对电池的充电 电流造成影响, 从而达到了即快速有稳定的目的, 实现了高效的电池管理。
请参阅图 3 , 为本发明一种电池管理装置的一实施例的结构示意图。 本发明实施例提供的一种电池管理装置, 包括:
监测模块 31 , 用于监测负载总电流、 电池容量、 充电电流比率和工作 整流器个数;
计算模块 32 , 用于根据负载总电流、 电池容量、 充电电流比率和工作 整流器个数计算得到限流点;
调整模块 33 , 用于根据电池电流微调整流器工作电压和限流点, 控制 电池电流达到预设限流值。
进一步, 该装置还包括:
整流器输出电压调整模块 34 ,用于当整流器输出电压大于目标电压时, 下调整流器输出电压。
进一步, 该装置还包括:
第一检测模块 35 , 用于检测每一组有效电池电流;
限流点调整模块 36 ,用于当任一电池电流大于或等于预设第一阔值时, 将限流点下调一预设第一步长。
进一步, 该装置还包括:
输出电压调整模块 37 , 用于当任一电池电流大于或等于预设第二阔值 小于第一阔值时, 将输出电压下调一预设第二步长。
进一步, 该装置还包括:
第二检测模块 38 , 用于检测整流器状态;
限流点调整模块 36还用于当任一有效电池的电流小于预设放电阔值且 整流器处于限流状态时, 上调限流点一预设第三步长; 当任一有效电池的 电流大于或等于限流值时, 停止上调限流点。
进一步, 输出电压调整模块 37还用于当整流器不处于限流状态时, 按 照预设第四步长逐步上调输出电压至目标电压。
具体的, 计算模块 32根据负载总电流、 电池容量、 充电电流比率和工 作整流器个数计算限流点计算基本公式如下:
限流点 = (负载总电流 +电池总容量 X充电电流比率) /正常工作的整流 器数。
此公式可快速得到整流器限流点的大概值, 使电池的充电电流可以快 速锁定在合理的范围内。 如果所有的量都非常精确, 那只根据此公式就可 实现电池管理, 但电池管理装置都可能存在误差, 并且可能出现异常情况, 这就需要进行微调以纠正。
当公式中负载总电流、 电池容量、 充电电流比率和工作整流器个数中 任意一个量发生变化时, 所述计算模块 32重新按照公式计算限流点。 为了 防止频繁的进行公式计算, 对各个量可设定一个阔值, 例如负载变化 10A 时才认为变化。
由于有些电源系统考虑成本的限制, 并未配置负载分流器, 因此负载 电流也无法检测, 考虑到这种情况, 限流调压可直接根据电池电流进行调 节。
当整流器输出电压大于目标电压时, 例如系统从浮充转入测试时, 需 要釆用整流器输出电压调整模块 34下调整流器输出电压。 由于下调电压不 会增加电池充电电流, 故下调电压可直接执行。 下调的步长不易过大, 建 议在 0.1V到 0.3V之间。
如果不需下调整流器输出电压, 再判断是否需要上调电压。 如果整流 器输出电压小于目标电压, 例如系统从测试转入浮充时, 需要釆用整流器 输出电压调整模块 34上调整流器输出电压。 由于上调电压会增加电池充电 电流, 在上调电压的过程中, 需要时刻检测电池电流, 将电池电流限制在 合理的范围内, 以下所有步骤都是建立在上调电压之上。
当任一电池电流大于或等于预设第一阔值时, 限流点调整模块 36将限 流点下调一预设第一步长。 所述第一阔值应该大于电池容量 X充电电流比 率; 所述第一阔值可以根据使用场景或用户要求进行配置, 例如电池充电 电流大于 a倍的限流值即认为是过大, 一般 a取值 1.3。 步长 c也可自由配 置, 例如一次调节 10%。
为了系统的稳定性, 当任一电池电流大于或等于预设第二阔值小于第 压,输出电压每次降低一个第二步长,所述第二步长不能太大,建议在 0.1V 到 0.3 V之间。
出现限流放电是一种异常情况, 需要快速的调整, 这时可通过对限流 点进行调节即当任一有效电池的电流小于预设放电阔值且整流器处于限流 状态时, 限流点调整模块 36将限流点上调一个第三步长。 第三步长可自由 配置, 例如一次调节 10%。 所述放电阔值由电池规格参数的不同预先设置。
本发明实施例釆用限流点和输出电压结合方法进行电池管理。 限流点 的调节相能快速的将电池电流限制在一个安全范围内, 输出电压在安全范 围内再对电池充电电流进行微调, 直到达到限流值为止。 由于有输出电压 的限制, 即使在调节过程中有整流器的开关机操作, 也不会对电池的充电 电流造成影响, 从而达到了即快速有稳定的目的, 实现了高效的电池管理。
以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡 是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围 内。

Claims

权利要求书
1、 一种电池管理方法, 其特征在于, 包括:
监测负载总电流、 电池容量、 充电电流比率和工作整流器个数; 根据所述负载总电流、 电池容量、 充电电流比率和工作整流器个数计 算得到限流点;
根据电池电流调整整流器工作电压和限流点, 控制电池电流达到预设 限流值。
2、 根据权利要求 1所述的电池管理方法, 其特征在于, 在所述根据电 池电流调整整流器工作电压和限流点, 控制电池电流达到预设限流值前, 该方法还包括:
当整流器输出电压大于目标电压时, 下调整流器输出电压。
3、 根据权利要求 1所述的电池管理方法, 其特征在于, 在所述根据电 池电流调整整流器工作电压和限流点, 控制电池电流达到预设限流值后, 该方法还包括:
检测每一组有效电池电流;
当任一电池电流大于或等于预设第一阔值时, 将限流点下调一预设第 一步长。
4、 根据权利要求 3所述的电池管理方法, 其特征在于, 在所述根据电 池电流调整整流器工作电压和限流点, 控制电池电流达到预设限流值后, 该方法还包括:
检测每一组有效电池电流;
当任一电池电流大于或等于预设第二阔值小于第一阔值时, 将输出电 压下调一预设第二步长。
5、 根据权利要求 4所述的电池管理方法, 其特征在于, 在所述检测每 一组有效电池电流后, 该方法还包括: 检测整流器状态;
当任一有效电池的电流小于预设放电阔值且整流器处于限流状态时, 上调限流点一预设第三步长;
当任一有效电池的电流大于或等于限流值时, 停止上调限流点。
6、 根据权利要求 5所述的电池管理方法, 其特征在于, 在所述检测整 流器状态后, 该方法还包括:
整流器不处于限流状态时, 按照预设第四步长逐步调节输出电压至目 标电压。
7、 一种电池管理装置, 其特征在于, 包括:
监测模块, 用于监测负载总电流、 电池容量、 充电电流比率和工作整 流器个数;
计算模块, 用于根据所述负载总电流、 电池容量、 充电电流比率和工 作整流器个数计算得到限流点;
调整模块, 用于根据电池电流调整整流器工作电压和限流点, 控制电 池电流达到预设限流值。
8、 根据权利要求 7所述的电池管理装置, 其特征在于, 所述装置还包 括:
整流器输出电压调整模块, 用于当整流器输出电压大于目标电压时, 下调整流器输出电压。
9、 根据权利要求 7所述的电池管理装置, 其特征在于, 所述装置还包 括:
第一检测模块, 用于检测每一组有效电池电流;
限流点调整模块, 用于当任一电池电流大于或等于预设第一阔值时, 将限流点下调一预设第一步长。
10、 根据权利要求 9所述的电池管理装置, 其特征在于, 所述装置还 包括:
输出电压调整模块, 用于当任一电池电流大于或等于预设第二阔值小 于第一阔值时, 将输出电压下调一预设第二步长。
11、 根据权利要求 10所述的电池管理装置, 其特征在于, 所述装置还 包括:
第二检测模块, 用于检测整流器状态;
所述限流点调整模块还用于当任一有效电池的电流小于预设放电阔值 且整流器处于限流状态时, 上调限流点一预设第三步长; 当任一有效电池 的电流大于或等于限流值时, 停止上调限流点。
12、 根据权利要求 11所述的电池管理装置, 其特征在于, 所述输出电 压调整模块还用于当整流器不处于限流状态时, 按照预设第四步长逐步上 调输出电压至目标电压。
PCT/CN2010/079089 2010-05-28 2010-11-24 电池管理方法和装置 WO2011147169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10852038.8A EP2579418A4 (en) 2010-05-28 2010-11-24 METHOD AND DEVICE FOR MANAGING ACCUMULATORS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010186854.5A CN101860059B (zh) 2010-05-28 2010-05-28 电池管理方法和装置
CN201010186854.5 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011147169A1 true WO2011147169A1 (zh) 2011-12-01

Family

ID=42945779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079089 WO2011147169A1 (zh) 2010-05-28 2010-11-24 电池管理方法和装置

Country Status (3)

Country Link
EP (1) EP2579418A4 (zh)
CN (1) CN101860059B (zh)
WO (1) WO2011147169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709985A (zh) * 2012-06-18 2012-10-03 深圳市健网科技有限公司 一种模块化的蓄电池充电管理系统及充电管理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860059B (zh) * 2010-05-28 2014-03-12 中兴通讯股份有限公司 电池管理方法和装置
CN103199312B (zh) * 2012-01-04 2016-01-20 艾默生网络能源系统北美公司 电池电流的管理方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515724A (zh) * 2008-02-20 2009-08-26 中兴通讯股份有限公司 一种蓄电池的充放电方法及系统
CN101860059A (zh) * 2010-05-28 2010-10-13 中兴通讯股份有限公司 电池管理方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986434A (en) * 1997-09-25 1999-11-16 Astec International Limited Controller system for a DC power supply
CN1252857C (zh) * 2001-09-26 2006-04-19 中兴通讯股份有限公司 一种蓄电池充电方法
JP4056965B2 (ja) * 2003-10-29 2008-03-05 株式会社マキタ 充電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515724A (zh) * 2008-02-20 2009-08-26 中兴通讯股份有限公司 一种蓄电池的充放电方法及系统
CN101860059A (zh) * 2010-05-28 2010-10-13 中兴通讯股份有限公司 电池管理方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709985A (zh) * 2012-06-18 2012-10-03 深圳市健网科技有限公司 一种模块化的蓄电池充电管理系统及充电管理方法

Also Published As

Publication number Publication date
EP2579418A4 (en) 2014-02-19
CN101860059A (zh) 2010-10-13
EP2579418A1 (en) 2013-04-10
CN101860059B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN102655333B (zh) 电池充电装置及其充电方法
KR102234703B1 (ko) 에너지 저장 시스템 및 이의 제어 방법
US9225186B2 (en) Method and device for controlling charge of battery
US20120176095A1 (en) Electric power management system
CN110323764B (zh) 基于储能单元与负荷控制的孤网系统稳定运行控制方法
WO2022166524A1 (zh) 电池充电控制方法、系统、车辆、可读存储介质及设备
CA2858805C (en) Power storage system, power storage control device, and power storage control method
WO2021056904A1 (zh) 电动汽车安全充电方法、电子设备及存储介质
CN101702453A (zh) 一种蓄电池充电管理方法及装置
JP7168438B2 (ja) 電力供給システムおよび電力供給方法
CN103581938A (zh) 基站电源管理方法、装置和系统、开关电源
CN113725881B (zh) 一种用于辅助调频的超级电容储能装置及控制方法
CN105244900A (zh) 一种基于移频控制的微电网离网能量平衡控制方法
CN113224813B (zh) 离网光伏储能系统控制方法、装置、计算机及存储介质
WO2011147169A1 (zh) 电池管理方法和装置
CN117220384A (zh) 一种电池并联运行的电流分配方法和电池并联系统
KR101977165B1 (ko) 비상 전원용 ess 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
US20100312411A1 (en) Ac consumption controller, method of managing ac power consumption and a battery plant employing the same
JP6795082B2 (ja) 直流給電システム
CN102709985B (zh) 一种模块化的蓄电池充电管理系统及充电管理方法
CN117674218A (zh) 储能系统的控制方法、控制装置、储能系统和存储介质
WO2019034140A1 (zh) 电动汽车及其中动力电池组的保护控制方法、系统
CN103248105A (zh) 利用高频开关电源控制磷酸铁锂电池组裸用的系统
WO2012049973A1 (ja) 電力管理システム
CN114336821A (zh) 光储系统控制方法、控制电路、光储系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010852038

Country of ref document: EP