WO2011147167A1 - Message transmission method, base station, terminal and multi-standard communication system - Google Patents

Message transmission method, base station, terminal and multi-standard communication system Download PDF

Info

Publication number
WO2011147167A1
WO2011147167A1 PCT/CN2010/078891 CN2010078891W WO2011147167A1 WO 2011147167 A1 WO2011147167 A1 WO 2011147167A1 CN 2010078891 W CN2010078891 W CN 2010078891W WO 2011147167 A1 WO2011147167 A1 WO 2011147167A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
configuration information
frame
superframe
configuration
Prior art date
Application number
PCT/CN2010/078891
Other languages
French (fr)
Chinese (zh)
Inventor
方惠英
曲红云
关艳峰
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011147167A1 publication Critical patent/WO2011147167A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications, and in particular to a method for transmitting a message, a base station, a terminal, and a multi-communication system. Background technique
  • OFDM Orthogonal Frequency Division Multiplexing
  • WiMAX WiMAX
  • LTE Long Term Evolution
  • a WiMAX system based on OFDM A is a system using OFDM technology. From the perspective of the frequency domain, different users occupy a certain number of orthogonal subcarrier resources. To achieve the purpose of multiple access.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IMT-AdV Advanced Mobile Radio Service
  • 3G Third Generation
  • candidate technologies for IMT-ADV mainly include LTE+ and IEEE802.16m.
  • LTE is an evolution of the third generation mobile communication system (3th Generation, 3G for short).
  • the TGm task force of the IEEE 802.16 working group is working to develop an improved air interface specification 802.16m for mobile WiMAX systems that can support higher peak rates, higher spectral efficiency and sector capacity.
  • the frame structure of the LTE-Time Division Duplex (LTE-TDD) uses a superframe structure of 10ms period.
  • the superframe structure has multiple frame configuration modes, including 5ms conversion point period and 10ms conversion.
  • a plurality of frame configurations of a dot period, and a special subframe including both a downlink OFDM symbol and an uplink OFDM symbol is introduced.
  • all frame configuration modes are 5ms transition point periods. Due to the different frame transition point period settings of the frames in the superframe in the future wireless communication system for IMT-ADV, the existing frame structure design scheme in the message communication system cannot meet the coexistence requirements of the future evolution of LTE and WiMAX.
  • a primary object of the present invention is to provide a method for transmitting a message, a base station, a terminal, and a multi-communication system to solve the above-mentioned existence of different frame transition point periods due to frames in a superframe, resulting in existing information in the message communication system.
  • the frame structure design solution cannot meet the coexistence requirements of the future evolution of LTE and WiMAX.
  • a method of transmitting a message is provided.
  • the method for transmitting a message according to the present invention includes: generating superframe configuration information and subframe configuration information according to a coexistence configuration of a multi-communication system, wherein the coexistence configuration is configured to support a frame structure in which a multi-communication system coexists;
  • the configuration information configures part or all of the unit frames of the superframe of the radio frame in the multi-communication system, where the superframe configuration information is used to indicate the configuration attribute of the unit frame; the subframe in the unit frame is configured according to the subframe configuration information, where the subframe
  • the configuration information is used to indicate the distribution attribute of the subframe; ⁇ the message is sent by using the radio frame.
  • the type of the subframe includes at least one of the following: a downlink subframe, an uplink subframe, and a special subframe, where the special subframe refers to the subframe including the downlink orthogonal frequency division multiplexing (OFDM) symbol and the uplink OFDM symbol.
  • the partial or all unit frames of the superframe of the radio frame in the multi-communication system are configured according to the superframe configuration information, including: the superframe configuration information configuration part or all of the unit frames are configured with the same or different subframes.
  • the subframe in the unit frame is one of the following formats: the subframes are all composed of downlink subframes, and the subframes are all composed of uplink subframes, The subframes are all composed of special subframes, the subframes are composed of downlink subframes and uplink subframes, the subframes are composed of downlink subframes and special subframes, and the subframes are composed of uplink subframes and special subframes.
  • the subframe length is the same.
  • a subframe consists of a plurality of elementary symbol units and/or idle time slots.
  • the subframe includes 12 OFDM symbols and a free slot, wherein the cyclic prefix CP of the subframe is 2.5 us and the subcarrier spacing is 12.5 k; the subframe includes 11 OFDM symbols and idle slots, where the cyclic prefix of the subframe The CP is 9.375us and the subcarrier spacing is 12.5k.
  • the subframe includes 10 OFDM symbols and idle slots.
  • the subframe has a cyclic prefix CP of 16.875us and a subcarrier spacing of 12.5k.
  • the superframe length is 20ms, the unit frame length is 5ms, the superframe length is 20ms, and the unit frame length is 10ms.
  • the terminal After the superframe configuration information and the subframe configuration information are generated according to the coexistence configuration of the multi-communication system, the terminal includes: Receiving the superframe configuration information from the base station; determining whether to acquire the subframe configuration information according to the superframe configuration information. The method further includes: if the judging result is that the superframe configuration information is configured to indicate that the subframe in the unit frame of the superframe is In the non-full uplink subframe or the non-full downlink subframe, the terminal acquires the subframe configuration information.
  • a base station is provided.
  • the base station includes: a generating module, configured to The superframe configuration information and the subframe configuration information are generated according to the coexistence configuration of the multi-communication system, wherein the coexistence configuration is configured to support a frame structure in which the multi-communication system coexists; the first configuration module is configured to configure according to the superframe configuration information. a part or all of a unit frame of a superframe of a radio frame in a multi-communication system, wherein a superframe configuration
  • the second configuration module is configured to configure a subframe in a unit frame according to the subframe configuration information, where the subframe configuration information is used to indicate a distribution attribute of the subframe, and the sending module is configured to be used.
  • the wireless frame transmits a message.
  • a terminal configured to include: a receiving module configured to receive superframe configuration information from a base station; The method is configured to determine whether to obtain the subframe configuration information according to the superframe configuration information, and the obtaining module is configured to determine that the superframe configuration information is a subframe in the unit frame indicating the superframe, and the configuration manner is a non-full uplink subframe or a non-full subframe. In the downlink sub-frame, the sub-frame configuration information is obtained.
  • a multi-communication system is provided.
  • the multi-communication system includes: the base station and the terminal According to the present invention, the superframe configuration information and the superframe configuration information are generated according to the coexistence configuration of the multi-communication system.
  • Subframe configuration information wherein the coexistence configuration is configured to support a frame structure in which a multi-communication system coexists; and some or all unit frames of a superframe of a radio frame in the multi-communication system are configured according to the superframe configuration information, wherein
  • the frame configuration information is used to indicate a configuration attribute of the unit frame;
  • the sub-frame configuration information is configured to be a sub-frame in a unit frame, where the sub-frame configuration information is used to indicate a distribution attribute of the sub-frame; and the radio frame is used to send a message, and the multi-communication system is solved.
  • FIG. 1 is a flowchart of a method for transmitting a message according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a frame structure according to an embodiment of the present invention
  • FIG. 3 is a second schematic diagram of a frame structure according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a subframe structure according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a subframe structure according to an embodiment of the present invention
  • FIG. 7 is a subframe structure of an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention
  • FIG. FIG. 12 is a structural block diagram of a base station according to an embodiment of the present invention
  • Embodiment 1 This embodiment provides a method for transmitting a message.
  • 1 is a flowchart of a method for transmitting a message according to an embodiment of the present invention. As shown in FIG.
  • the method includes the following steps: step S20 to step 4: S20: Step S20, according to the coexistence of the multi-communication system Configuring to generate superframe configuration information and subframe configuration information, where the coexistence configuration is to support the configuration of the frame structure in which the multi-communication system coexists; and in step S40, the superframe of the radio frame in the multi-communication system is configured according to the superframe configuration information. a partial or all unit frame of the frame, where the superframe configuration information is used to indicate a configuration attribute of the unit frame; and in step S60, the subframe in the unit frame is configured according to the subframe configuration information, where the subframe configuration information is used to indicate the subframe.
  • the multi-communication system uses different frame structures with different conversion points. Because the frame structure is not uniform, the multi-communication system is incompatible, and there is a problem of interference when transmitting a message.
  • the superframe configuration information and the subframe configuration information are generated, and the unit frame and the subframe are respectively configured according to the above two kinds of information, thereby solving the interference problem when the multi-communication system for the IMT-ADV coexists, and according to
  • the frame configuration design suitable for the coexistence scenario is selected to adapt to the scenario of multi-system coexistence configuration in the next-generation broadband mobile communication system, thereby satisfying the requirements of IMT-Advanced for system performance, and different frames between multiple communication systems.
  • the type of the subframe includes at least one of the following: a downlink subframe, an uplink subframe, and a special subframe, where the special subframe refers to the subframe including the downlink orthogonal frequency division multiplexing OFDM symbol and the uplink OFDM symbol.
  • the subframe type is configured according to system requirements, and the subframe type is improved.
  • the flexibility of the subframe configuration includes: - configuring some or all of the unit frames according to the superframe configuration information, using the same or different subframe configurations .
  • the structure of the unit frame can be configured according to different system requirements, and the flexibility of the unit frame configuration is improved.
  • the sub-frame in the sub-frame configuration information configuration unit frame includes: the sub-frame configuration information configuration unit frame, the sub-frame in the frame is one of the following formats: the sub-frames are all composed of the downlink sub-frames, and the sub-frames are all composed of the uplink sub-frames.
  • the subframes are all composed of special subframes, the subframes are composed of downlink subframes and uplink subframes, the subframes are composed of downlink subframes and special subframes, and the subframes are composed of uplink subframes and special subframes.
  • the subframe structure can be flexibly configured according to the requirements of different communication systems, and resource utilization is improved.
  • the subframes are the same length.
  • the subframes are all configured to be of equal length, which improves the efficiency of subframe configuration.
  • the subframe consists of a plurality of elementary symbol units and/or idle time slots.
  • the composition of the subframes is flexibly configured according to the system configuration.
  • the subframe when the sub-carrier interval is 12.5 k, when the cyclic prefix CP of the subframe is 2.5 us, the subframe includes 12 OFDM symbols and idle slots; when the cyclic prefix CP of the subframe is 9.375 us, The subframe includes 11 OFDM symbols and idle slots; when the cyclic prefix CP of the subframe is 16.875us, the subframe includes 10 OFDM symbols and idle slots.
  • the number of OFDMs in a subframe is flexibly configured according to different CP lengths.
  • the OFDM symbol length is 82.5 us
  • the OFDM symbol length is 89.375 us
  • the OFDM symbol length is 96.875 us.
  • the method further includes: receiving, by the terminal, superframe configuration information from the base station; determining, according to the superframe configuration information, whether to acquire the sub Frame configuration information.
  • the terminal receives the superframe configuration information, and according to the superframe configuration information, determines whether to acquire the subframe configuration information, and implements optimal configuration of resources.
  • the terminal acquires the subframe configuration information.
  • the preferred embodiment implements the acquisition of subframe configuration information by the terminal, and improves resource utilization.
  • the frame structure in the preferred embodiment is composed of a plurality of unit frames, wherein the configuration of each unit frame in the super frame may be the same or different, and each unit frame is composed of multiple downlink subframes and/or multiple
  • the uplink subframe or the uplink subframe is composed of multiple OFDM symbols or multiple OFDM symbols and idle slots.
  • FIG. 2 is a first schematic diagram of a frame structure according to an embodiment of the present invention.
  • the superframe is composed of L unit frames, and the unit frame is composed of N subframe units, and the subframe unit can be divided into a downlink subframe unit and/or an uplink subframe unit, which can be configured according to the system.
  • the subframe unit is composed of M OFDM symbols.
  • FIG. 3 is a second schematic diagram of a frame structure according to an embodiment of the present invention.
  • a 20 ms superframe is composed of four 5 ms unit frames, and each unit frame is composed of five lms subframe units. According to different CP configurations, subframe units are composed of different numbers of OFDM symbols.
  • 4 is a schematic diagram 3 of a frame structure according to an embodiment of the present invention.
  • a superframe 101 of 20 ms is composed of two 10 ms unit frames 105, and each unit frame 105 is composed of 10 lm subframe units 103. According to different CP configurations, the subframe unit 103 is composed of a different number of OFDM symbols.
  • FIG. 5 is a schematic diagram 1 of a subframe structure according to an embodiment of the present invention.
  • the subframe unit (subframe) is composed of N unit symbols (symbols) and idle slots.
  • FIG. 6 is a second schematic diagram of a subframe structure according to an embodiment of the present invention, showing a subframe unit design with a short CP length of 2.5 us.
  • the OFDM symbol length is 82.5 us.
  • FIG. 7 is a third schematic diagram of a subframe structure according to an embodiment of the present invention, showing a subframe unit design with a standard CP length of 9.375us.
  • FIG. 8 is a fourth schematic diagram of a subframe structure according to an embodiment of the present invention, showing a subframe unit design with a long CP length of 16.875us.
  • the subframe unit includes the subframe unit including 10 OFDM symbols with a length of 16.875 us CP and a free time slot of 31.25 us long.
  • Figures 6 to 8 show the composition of the subframes set for the three CP lengths, respectively.
  • FIG. 9 is a schematic diagram 1 of a superframe configuration structure according to an embodiment of the present invention.
  • the 20ms superframe is composed of four 5ms unit frames.
  • the superframe frame configuration information is used to characterize the configuration features of each unit frame in the superframe.
  • the superframe frame configuration information represents the configuration attributes of four unit frames, as shown in Table 1. .
  • Table 1 X and Y indicate that the subframes in the unit frame are configured in the subframes in Table 2, D indicates that the subframes in the unit frame are all downlink subframes, and U indicates that the subframes in the unit frame are all uplink subframes. .
  • the 5ms unit frame in the superframe consists of five 1ms downlink subframes and/or uplink subframes.
  • the subframes in the unit frame may be composed of the downlink subframes or all of the uplink subframes or the downlink subframes and the uplink subframes, or the downlink subframes, the uplink subframes, and the special subframes.
  • the subframe configurations in different unit frames in the superframe may be the same or different, for example, unit frame 1 includes 3 downlink subframes and 2 uplink subframes; and unit frame 3 is all downlink subframes. composition.
  • the subframe configuration information is used to represent the distribution information of the downlink subframe and the uplink subframe of each subframe in the unit frame, as shown in Table 2, in Table 2, D, U and S represent downlink, uplink, and special subframes, respectively.
  • FIG. 10 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention.
  • the 20 ms superframe is composed of two 10 ms unit frames, wherein the superframe frame configuration information is used to characterize the configuration features of each unit frame in the superframe.
  • the superframe frame configuration information characterizes the configuration properties of two unit frames, as shown in Table 3.
  • Table 3 X, and Y indicate that the subframe in the unit frame is configured with the subframe in Table 4
  • D indicates that all the subframes in the unit frame are downlink subframes
  • U indicates that the subframes of the unit frame are all uplinks. Subframe.
  • the 10ms unit frame in the superframe consists of 10 1ms downlink subframes and/or uplink subframes.
  • the subframes in the unit frame may all be composed of the downlink subframe or all of the uplink subframe or the downlink subframe and the uplink subframe.
  • the subframe configuration in different unit frames in the superframe may be the same or different unit frame 1 and unit frame 2, using the same subframe configuration. The same configuration is used in Figure 10.
  • 11 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention. As shown in FIG. 11, unit frame 1 and unit frame 2 are configured with different subframes, for example, unit frame 1 includes 7 downlink subframes and 3 uplinks.
  • Subframe, and unit frame 2 consists of 8 downlink subframes and 2 uplink subframes.
  • the subframe configuration information is used to represent the distribution information of the downlink subframe and the uplink subframe of each subframe in the unit frame, as shown in Table 4, Table 4 D, U And S represent the downlink, uplink, and special subframes, respectively.
  • Table 3 Superframe frame configuration information
  • FIG. 12 is a structural block diagram of a base station according to an embodiment of the present invention.
  • the base station includes: a generating module 20, a first configuration module 40, a second configuration module 60, and a sending module 80.
  • the generating module 20 is configured to generate superframe configuration information and subframe configuration information according to the coexistence configuration of the multi-communication system, wherein the coexistence configuration is to support coexistence of the multi-communication system a configuration of the frame structure;
  • the first configuration module 40 is connected to the generating module 20, configured to configure part or all of the unit frames of the superframe of the radio frame in the multi-communication system according to the superframe configuration information generated by the generating module 20, where The superframe configuration information is used to indicate the configuration attribute of the unit frame.
  • the second configuration module 60 is connected to the generating module 20, configured to configure the subframe in the unit frame according to the subframe configuration information generated by the generating module 20, where the subframe configuration information a distribution attribute for indicating a subframe; a sending module 80, connected to the first configuration module 40 and the second configuration module 60, for using the first configuration module 40 and the wireless frame configured by the second configuration module 60 sends a message.
  • the multi-communication system uses different frame structures with different conversion points. Because the frame structure is not uniform, the multi-communication system is incompatible, and there is a problem of interference when transmitting messages.
  • the generating module 20 generates the superframe configuration information and the subframe configuration information according to the coexistence configuration of the multi-communication system, and the first configuration module 40 and the second configuration module 60 respectively configure the unit frame and the subframe respectively.
  • the terminal includes: a receiving module 132, a determining module 134, and an obtaining module 136.
  • the receiving module 132 receives a superframe configuration from a base station.
  • the determining module 134 is connected to the receiving module 132 for determining whether to acquire the subframe configuration information according to the superframe configuration information received by the receiving module 132.
  • the obtaining module 136 is connected to the determining module 134 for determining the module 134. If the configuration result of the superframe configuration information is that the configuration of the subframe in the unit frame indicating the superframe is a non-full uplink subframe or a non-full downlink subframe, the subframe configuration information is acquired.
  • FIG. 14 is a block diagram showing the structure of a multi-communication system according to an embodiment of the present invention, which includes a base station 2 and a terminal 4.
  • the structure of the base station 2 is the same as that of the base station described in FIG. 12.
  • the structure of the terminal 4 is the same as that of the terminal shown in FIG. 13, and will not be described here.
  • Preferred Embodiment 5 The present invention further provides a preferred embodiment, which combines the technical solutions of the foregoing preferred embodiments.
  • FIG. 5 is a block diagram showing the structure of a multi-communication system according to an embodiment of the present invention, which includes a base station 2 and a terminal 4.
  • the structure of the base station 2 is the same as that of the base station described in FIG. 12.
  • the structure of the terminal 4 is the same as that of the terminal shown in FIG. 13, and will not be described here.
  • Preferred Embodiment 5 The present invention further provides a preferred embodiment, which combines the technical solutions of the foregoing preferred embodiments.
  • Step S1501 Configure a super subframe of the base station system and a specific subframe configuration in a unit frame according to a coexistence requirement between different communication systems.
  • the subframe configurations in different unit frames in the superframe may be the same or different.
  • the superframe is composed of N unit frames, wherein the configuration features of each unit frame in the superframe are characterized by superframe frame configuration information.
  • the superframe frame configuration information characterizes the configuration attributes of the N unit frames.
  • Different unit frames in the superframe Multiple downlink subframes and/or uplink subframes are formed, and subframes in the frame structure define the same lms subframe length.
  • choose to set three different CP lengths which are short CP, standard CP and long CP.
  • the composition of a specific subframe is determined for different CP lengths. For example: Based on the subcarrier spacing (Af) of 12.5k, three different CP lengths are set for different application scenarios: short CP length is 2.5us, standard CP length is 9.375us, and long CP length is 16.875us.
  • the OFDM symbol length is 82.5 us
  • the OFDM symbol length is 89.375 us
  • the OFDM symbol length is 96.875 us.
  • the base station is configured to superframe frame configuration, and sends frame configuration information and/or subframe configuration information. Specifically, the terminal may be notified by transmitting a superframe frame configuration sequence number.
  • Step S1503 The terminal acquires superframe frame configuration information.
  • the terminal is in the super frame frame configuration information, and determines whether the subframe configuration information of the corresponding unit frame needs to be further acquired.
  • the terminal obtains the frame structure configuration information in the subframe configuration information corresponding to the unit frame.
  • the 20ms superframe is composed of four 5ms unit frames.
  • the 4 unit frames in the superframe are configured with the same or different subframes.
  • the system conversion point period is 5 ms.
  • the four unit frames in the superframe are configured with different subframes, the unit frame 1 and the unit frame 3 in the superframe are configured with the same subframe A, and the unit frame 2 and the unit frame 4 in the superframe are used.
  • Frame configuration A has the same or different subframe configuration B, as shown in superframe configuration number 2 in Table 5.
  • the system conversion point period of unit frame 2 and unit frame 4 configured with subframes different from unit frame 1 and unit frame 3 is 10 ms.
  • the multi-communication system described in the device embodiment corresponds to the foregoing method embodiment, and the specific implementation process has been described in detail in the method embodiment, and details are not described herein again.
  • the method of the present invention by using the configurable subframe configuration of the unit frame in the super frame, the interference problem of the multi-communication system for IMT-ADV coexistence can be solved, and can be selected according to the actual network deployment. It is suitable for the frame configuration design of the coexistence scenario to adapt to the scenario of multi-system coexistence configuration in the next-generation broadband mobile communication system, thus meeting the requirements of IMT-Advanced for system performance.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are a message transmission method, a base station, a terminal and a multi-standard communication system in the present invention. The method includes: according to a coexistence configuration of a multi-standard communication system, generating super-frame configuration information and sub-frame configuration information, wherein the coexistence configuration is a frame structure configuration supporting the coexistence of the multi-standard communication system; according to the super-frame configuration information, configuring part or all of unit frames in super-frames of wireless frames in the multi-standard communication system, wherein the super-frame configuration information is used for indicating the configuration attribute of the unit frames; according to the sub-frame configuration information, configuring sub-frames in the unit frames, wherein the sub-frame configuration information is used for indicating the distribution attribute of the sub-frames; and transmitting a message using the wireless frames. The present invention can solve the problem of message transmission interference caused by disunity of the frame structure when multiple communication systems coexist with each other, and improve the utilization ratio of resources.

Description

传输消息的方法、 基站、 终端及多通信制式系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种传输消息的方法、 基站、 终 端及多通信制式系统。 背景技术  TECHNICAL FIELD The present invention relates to the field of communications, and in particular to a method for transmitting a message, a base station, a terminal, and a multi-communication system. Background technique
OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)作 为一种多载波传输模式, 通过将高速传输的数据流转换为低速并行传输的数 据流, 使系统对多径衰落信道频率选择性的敏感度大大降低。 微波存耳又全球互通 ( Worldwide Interoperability for Microwave Access, 简 称为 WiMAX )和长期演进 ( Long Term Evolution, 简称为 LTE )是近年通讯 技术的两大亮点。 基于 OFDM A ( Orthogonal Frequency Division Multiple Access, 正交频分复用多址) 的 WiMAX系统就是使用 OFDM技术的系统, 从频域的角度上看, 不同的用户通过占用一定数量的正交子载波资源来实现 多址接入的目的。 面向高级国际无线通信系统 ( International Mobile TelecommunicationOFDM (Orthogonal Frequency Division Multiplexing) is a multi-carrier transmission mode that makes the system sensitive to multipath fading channel frequency selectivity by converting high-speed data streams into low-speed parallel data streams. The degree is greatly reduced. Worldwide Interoperability for Microwave Access (WiMAX) and Long Term Evolution (LTE) are two highlights of communication technology in recent years. A WiMAX system based on OFDM A (Orthogonal Frequency Division Multiple Access) is a system using OFDM technology. From the perspective of the frequency domain, different users occupy a certain number of orthogonal subcarrier resources. To achieve the purpose of multiple access. For advanced international wireless communication systems (International Mobile Telecommunication
Advance, 简称为 IMT-AdV )的 4G技术与 3G相比, 优势体现在: 高数据速 率、 分组传送、 延迟降低、 广域覆盖和向下兼容。 目前, IMT-ADV 的候选 技术主要包括 LTE+和 IEEE802.16m。 LTE 是第三代移动通信系统 ( 3th Generation, 简称为 3G ) 的演进。 目前, IEEE802.16工作组的 TGm任务组 正在致力于制定移动 WiMAX系统改进的空中接口规范 802.16m, 该规范能 支持更高的峰值速率, 更高的频谱效率和扇区容量。 时分双工长期演进系统 ( LTE-Time Division Duplex, 简称为 LTE-TDD ) 中帧结构釆用 10ms周期的超帧结构, 该超帧结构有多种帧配置方式, 包含 5ms转换点周期和 10ms转换点周期的多种帧配置方式, 并且引入了既包含 下行 OFDM符号又包含上行 OFDM符号的特殊子帧。 而基于 IEEE 802.16e 和 IEEE802.16m的 WiMAX系统中,所有的帧配置方式均是 5ms的转换点周 期。 由于面向 IMT-ADV的未来无线通信系统中, 超帧中的帧存在不同的帧 转换点周期设置, 导致消息通信系统中现存的帧结构设计方案不能满足 LTE 和 WiMAX未来演进的共存要求。 发明内容 本发明的主要目的在于提供一种传输消息的方法、 基站、 终端及多通信 制式系统, 以解决上述由于超帧中的帧存在不同的帧转换点周期设置, 导致 消息通信系统中现存的帧结构设计方案不能满足 LTE和 WiMAX未来演进的 共存要求。 为了实现上述目的, 根据本发明的一个方面, 提供了一种传输消息的方 法。 根据本发明的传输消息的方法包括: 根据多通信制式系统的共存配置生 成超帧配置信息和子帧配置信息, 其中, 共存配置为支持多通信制式系统共 存的帧结构的配置; 才艮据超帧配置信息配置多通信制式系统中无线帧的超帧 的部分或全部单位帧, 其中, 超帧配置信息用于指示单位帧的配置属性; 根 据子帧配置信息配置单位帧中子帧, 其中子帧配置信息用于指示子帧的分布 属性; 釆用无线帧发送消息。 子帧的类型包括以下至少之一: 下行子帧、 上行子帧、 特殊子帧, 其中, 特殊子帧是指子帧同时包含下行正交频分复用 (OFDM )符号和上行 OFDM 符号。 才艮据超帧配置信息配置多通信制式系统中无线帧的超帧的部分或全部单 位帧包括: 居超帧配置信息配置部分或全部单位帧釆用相同或者不同的子 帧配置。 才艮据子帧配置信息配置单位帧中子帧包括: 居子帧配置信息配置单位 帧中子帧为以下格式之一: 子帧全部由下行子帧组成、 子帧全部由上行子帧 组成、 子帧全部由特殊子帧组成、 子帧由下行子帧和上行子帧组成、 子帧由 下行子帧和特殊子帧组成、 子帧由上行子帧和特殊子帧组成。 子帧长度相同。 子帧由多个基本符号单元和 /或空闲时隙组成。 子帧包括 12个 OFDM符号和空闲时隙, 其中, 子帧的循环前缀 CP为 2.5us, 子载波间隔为 12.5k; 子帧包括 11个 OFDM符号和空闲时隙, 其中, 子帧的循环前缀 CP为 9.375us, 子载波间隔为 12.5k; 子帧包括 10个 OFDM 符号和空闲时隙,其中,子帧的循环前缀 CP为 16.875us,子载波间隔为 12.5k。 超帧长度为 20ms, 单位帧长度为 5ms; 超帧长度为 20ms, 单位帧长度 为 10ms„ 在才艮据多通信制式系统的共存配置生成超帧配置信息和子帧配置信息之 后, 还包括: 终端接收来自基站的超帧配置信息; 根据超帧配置信息, 判断 是否获取子帧配置信息。 上述方法还包括: 如果判断结果为超帧配置信息为指示超帧的单位帧中 子帧的配置方式为非全上行子帧或非全下行子帧, 终端获取子帧配置信息。 为了实现上述目的, 根据本发明的另一方面, 提供了一种基站。 根据本发明的基站包括: 生成模块, 设置为根据多通信制式系统的共存 配置生成超帧配置信息和子帧配置信息, 其中, 共存配置为支持多通信制式 系统共存的帧结构的配置; 第一配置模块, 设置为才艮据超帧配置信息配置多 通信制式系统中无线帧的超帧的部分或全部单位帧, 其中, 超帧配置信息用 于指示单位帧的配置属性; 第二配置模块, 设置为根据子帧配置信息配置单 位帧中子帧, 其中子帧配置信息用于指示子帧的分布属性; 发送模块, 用于 釆用无线帧发送消息。 为了实现上述目的, 才艮据本发明的再一方面, 提供了一种终端。 根据本发明的终端包括: 接收模块, 设置为接收来自基站的超帧配置信 息; 判断模块, 设置为根据超帧配置信息, 判断是否获取子帧配置信息; 获 取模块, 用于判断结果为超帧配置信息为指示超帧的单位帧中子帧的配置方 式为非全上行子帧或非全下行子帧, 则获取子帧配置信息。 为了实现上述目的, 根据本发明的又一方面, 提供了一种多通信制式系 统。 才艮据本发明的多通信制式系统包括: 上述基站和上述终端。 通过本发明, 釆用才艮据多通信制式系统的共存配置生成超帧配置信息和 子帧配置信息, 其中,共存配置为支持多通信制式系统共存的帧结构的配置; 才艮据超帧配置信息配置多通信制式系统中无线帧的超帧的部分或全部单位 帧, 其中, 超帧配置信息用于指示单位帧的配置属性; 居子帧配置信息配 置单位帧中子帧, 其中子帧配置信息用于指示子帧的分布属性; 釆用无线帧 发送消息, 解决了多通信系统共存时由于帧结构不统一造成的消息传输千扰 的问题, 进而扩大了下一代宽带移动通信系统中多通信系统共存的场景, 提 高了资源利用率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据本发明实施例的传输消息的方法的流程图; 图 2是本发明实施例的帧结构示意图一; 图 3是本发明实施例的帧结构示意图二; 图 4是本发明实施例的帧结构示意图三; 图 5是本发明实施例的子帧结构示意图一; 图 6是本发明实施例的子帧结构示意图二; 图 7是本发明实施例的子帧结构示意图三; 图 8是本发明实施例的子帧结构示意图四; 图 9是本发明实施例的超帧配置结构示意图一; 图 10是本发明实施例的超帧配置结构示意图二; 图 11是本发明实施例的超帧配置结构示意图三; 图 12是根据本发明实施例的基站的结构框图; 图 13是根据本发明实施例的终端的结构框图; 图 14是才艮据本发明实施例的多通信制式系统的结构框图; 以及 图 15是才艮据本发明优选实施例的帧结构配置流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 本实施例提供了一种传输消息的方法。 图 1是根据本发明实施例的传输消息的方法的流程图, 如图 1所示, 该 方法包括如下的步 4聚 S20至步 4聚 S80: 步骤 S20, 才艮据多通信制式系统的共存配置生成超帧配置信息和子帧配 置信息, 其中, 共存配置为支持所述多通信制式系统共存的帧结构的配置; 步骤 S40, 才艮据超帧配置信息配置多通信制式系统中无线帧的超帧的部 分或全部单位帧, 其中, 超帧配置信息用于指示单位帧的配置属性; 步骤 S60, 才艮据子帧配置信息配置单位帧中子帧, 其中子帧配置信息用 于指示子帧的分布属性; 步骤 S80, 釆用无线帧发送消息。 相关技术中, 多通信制式系统釆用不同的转换点不同的帧结构, 由于帧 结构不统一, 造成多通信制式系统不兼容, 在传送消息时, 存在千扰的问题, 本实施例通过才艮据多通信制式系统的共存配置生成超帧配置信息和子帧配置 信息, 并根据上述两种信息分别配置单位帧和子帧, 解决面向 IMT-ADV的 多通信系统共存时的千扰问题, 并可根据实际网络部署, 选择适用于共存场 景的帧配置设计,以适应下一代宽带移动通信系统中多系统共存配置的场景, 从而满足 IMT-Advanced对系统性能的要求, 使得多通信制式系统间的不同 帧结构得以兼容, 提高了资源利用率。 优选地, 子帧的类型包括以下至少之一: 下行子帧、 上行子帧、 特殊子 帧, 其中, 特殊子帧是指子帧同时包含下行正交频分复用 OFDM符号和上行 OFDM符号。 通过该优选实施例, 实现根据系统需求去配置子帧类型, 提高 了子帧配置的灵活性。 优选地, 才艮据超帧配置信息配置多通信制式系统中无线帧的超帧的部分 或全部单位帧包括: -据超帧配置信息配置部分或全部单位帧釆用相同或者 不同的子帧配置。 通过本优选实施例, 可以才艮据不同系统需求配置单位帧的 结构, 提高了单位帧配置的灵活性。 优选地, 居子帧配置信息配置单位帧中子帧包括: 居子帧配置信息 配置单位帧中子帧为以下格式之一: 子帧全部由下行子帧组成、 子帧全部由 上行子帧组成、子帧全部由特殊子帧组成、子帧由下行子帧和上行子帧组成、 子帧由下行子帧和特殊子帧组成、 子帧由上行子帧和特殊子帧组成。 通过本 优选实施例, 可以实现根据不同通信系统需求, 灵活配置子帧结构, 提高了 资源利用率。 优选地, 子帧长度相同。 通过该优选实施例, 将子帧都配置为等长的, 提高了子帧配置效率。 优选地, 子帧由多个基本符号单元和 /或空闲时隙组成。 通过该优选实施 例, 实现了根据系统配置, 灵活地配置子帧的组成。 优选地,在子载波间隔为 12.5k的条件下,当子帧的循环前缀 CP为 2.5us 时,子帧包括 12个 OFDM符号和空闲时隙;当子帧的循环前缀 CP为 9.375us 时,子帧包括 11个 OFDM符号和空闲时隙;当子帧的循环前缀 CP为 16.875us 时, 子帧包括 10个 OFDM符号和空闲时隙。 通过该优选实施例, 实现了才艮 据不同的 CP长度, 灵活地配置子帧中 OFDM的数量。 具体地, 基于 12.5k 的子载波间隔 (Af), 针对不同的应用场景, 设置 三种不同的 CP长度: 短 CP长度为 2.5us, 标准 CP长度为 9.375us, 长 CP 长度为 16.875us。 在 12.5k的子载波间隔下, 有用 OFDM符号长度为 1/Δ f=l/12.5k=80us。 在短 CP配置的情况下, OFDM符号长度为 82.5us, 在标准 CP 配置的情况下, OFDM符号长度为 89.375us, 在长 CP 配置的情况下, OFDM符号长度为 96.875us。 则 4十对不同的 CP配置, 1ms子帧分别包含 12 个, 11个或 10个 OFDM符号以及相应的空闲时隙。 优选地, 超帧长度为 20ms, 单位帧长度为 5ms; 超帧长度为 20ms, 单 位帧长度为 10ms。 通过该优选实施例, 实现了 LTE系统和 WiMAX系统帧 结构的兼容。 优选地, 在才艮据多通信制式系统的共存配置生成超帧配置信息和子帧配 置信息之后, 上述方法还包括: 终端接收来自基站的超帧配置信息; 根据超 帧配置信息, 判断是否获取子帧配置信息。 通过该优选实施例, 终端接收超 帧配置信息, 并根据超帧配置信息, 判断是否获取子帧配置信息, 实现了资 源的优化配置。 优选地, 如果判断结果为超帧配置信息为指示超帧的单位帧中子帧的配 置方式为非全上行子帧或非全下行子帧, 终端获取子帧配置信息。 该优选实 施例实现了终端对子帧配置信息的获取, 提高了资源利用率。 为了帮助理解上述实施例, 下面进一步描述本发明的其他多个优选实施 例。 优选实施例一 本优选实施例中的帧结构由多个单位帧组成超帧, 其中, 超帧中各单位 帧的配置可相同或不同, 各单位帧由多个下行子帧和 /或多个上行子帧组成, 下行子帧或上行子帧由多个 OFDM符号组成或多个 OFDM符号和空闲时隙 组成。 图 2是本发明实施例的帧结构示意图一。 超帧由 L个单位帧组成, 单位 帧由 N个子帧单元组成, 子帧单元可分为下行子帧单元和 /或上行子帧单元, 可才艮据系统进行配置。 子帧单元由 M个 OFDM符号构成。 图 3是本发明实施例的帧结构示意图二, 20ms的超帧由 4个 5ms单位 帧组成, 各单位帧由 5个 lms的子帧单元组成。 根据不同的 CP配置, 子帧 单元由不同个数的 OFDM符号组成。 图 4是本发明实施例的帧结构示意图三, 20ms的超帧 101由 2个 10ms 单位帧 105组成, 各单位帧 105由 10个 lms的子帧单元 103组成。 才艮据不 同的 CP配置, 子帧单元 103由不同个数的 OFDM符号组成。 优选实施例二 图 5是本发明实施例的子帧结构示意图一, 该子帧单元(子帧) 由 N个 单位符号 (符号) 和空闲时隙组成。 图 6是本发明实施例的子帧结构示意图二, 示出了当短 CP长度为 2.5us 的子帧单元设计。 在 12.5k的子载波间隔下, 有用 OFDM符号长度为 1/Δ f=l/12.5k=80us。 其中, 在短 CP配置的情况下, OFDM符号长度为 82.5us。 图 7 是本发明实施例的子帧结构示意图三, 示出了标准 CP 长度为 9.375us的子帧单元设计。 该子帧单元包含 12个釆用 2.5us CP长度的 OFDM 符号和 lOus长的空闲时隙。 图 8是本发明实施例的子帧结构示意图四,示出了长 CP长度为 16.875us 的子帧单元设计。 该子帧单元包含该子帧单元包含 10个釆用 16.875us CP长 度的 OFDM符号和 31.25us长的空闲时隙。 图 6〜图 8分别给出了针对三种 CP长度设置的子帧组成。 优选实施例三 图 9是本发明实施例的超帧配置结构示意图一。 20ms超帧由 4个 5ms 单位帧组成, 其中,通过超帧帧配置信息来表征超帧中各单位帧的配置特征, 超帧帧配置信息表征 4个单位帧的配置属性, 如表 1所示。 表 1中, X和 Y 表示单位帧中的子帧釆用表 2中的子帧配置, D表示单位帧中的子帧全为下 行子帧, U表示单位帧的子帧全为上行子帧。 超帧中 5ms单位帧由 5个 1ms 下行子帧和 /或上行子帧组成。上述单位帧中的子帧可全部由下行子帧组成或 全部由上行子帧或由下行子帧、 上行子帧共同组成或由下行子帧、 上行子帧 和特殊子帧共同组成。 如图 9中所示, 超帧中不同单位帧中的子帧配置可相 同或不同, 如单位帧 1包含 3个下行子帧和 2个上行子帧; 而单位帧 3则全 部由下行子帧组成。 对于同时包含下行子帧和上行子帧的单位帧, 通过子帧 配置信息表征单位帧中的各子帧的下行子帧和上行子帧的分布信息, 如表 2 所示, 表 2中 D、 U和 S分别表示下行、 上行和特殊子帧。 表 1超帧帧配置信息 Advance, referred to as IMT-AdV, has the advantages of 4G technology compared to 3G: high data rate, packet transmission, delay reduction, wide area coverage and backward compatibility. Currently, candidate technologies for IMT-ADV mainly include LTE+ and IEEE802.16m. LTE is an evolution of the third generation mobile communication system (3th Generation, 3G for short). Currently, the TGm task force of the IEEE 802.16 working group is working to develop an improved air interface specification 802.16m for mobile WiMAX systems that can support higher peak rates, higher spectral efficiency and sector capacity. The frame structure of the LTE-Time Division Duplex (LTE-TDD) uses a superframe structure of 10ms period. The superframe structure has multiple frame configuration modes, including 5ms conversion point period and 10ms conversion. A plurality of frame configurations of a dot period, and a special subframe including both a downlink OFDM symbol and an uplink OFDM symbol is introduced. In the WiMAX system based on IEEE 802.16e and IEEE802.16m, all frame configuration modes are 5ms transition point periods. Due to the different frame transition point period settings of the frames in the superframe in the future wireless communication system for IMT-ADV, the existing frame structure design scheme in the message communication system cannot meet the coexistence requirements of the future evolution of LTE and WiMAX. SUMMARY OF THE INVENTION A primary object of the present invention is to provide a method for transmitting a message, a base station, a terminal, and a multi-communication system to solve the above-mentioned existence of different frame transition point periods due to frames in a superframe, resulting in existing information in the message communication system. The frame structure design solution cannot meet the coexistence requirements of the future evolution of LTE and WiMAX. In order to achieve the above object, according to an aspect of the present invention, a method of transmitting a message is provided. The method for transmitting a message according to the present invention includes: generating superframe configuration information and subframe configuration information according to a coexistence configuration of a multi-communication system, wherein the coexistence configuration is configured to support a frame structure in which a multi-communication system coexists; The configuration information configures part or all of the unit frames of the superframe of the radio frame in the multi-communication system, where the superframe configuration information is used to indicate the configuration attribute of the unit frame; the subframe in the unit frame is configured according to the subframe configuration information, where the subframe The configuration information is used to indicate the distribution attribute of the subframe; 发送 the message is sent by using the radio frame. The type of the subframe includes at least one of the following: a downlink subframe, an uplink subframe, and a special subframe, where the special subframe refers to the subframe including the downlink orthogonal frequency division multiplexing (OFDM) symbol and the uplink OFDM symbol. The partial or all unit frames of the superframe of the radio frame in the multi-communication system are configured according to the superframe configuration information, including: the superframe configuration information configuration part or all of the unit frames are configured with the same or different subframes. Configuring the subframe in the unit frame according to the subframe configuration information includes: Deploying the subframe configuration information The subframe in the unit frame is one of the following formats: the subframes are all composed of downlink subframes, and the subframes are all composed of uplink subframes, The subframes are all composed of special subframes, the subframes are composed of downlink subframes and uplink subframes, the subframes are composed of downlink subframes and special subframes, and the subframes are composed of uplink subframes and special subframes. The subframe length is the same. A subframe consists of a plurality of elementary symbol units and/or idle time slots. The subframe includes 12 OFDM symbols and a free slot, wherein the cyclic prefix CP of the subframe is 2.5 us and the subcarrier spacing is 12.5 k; the subframe includes 11 OFDM symbols and idle slots, where the cyclic prefix of the subframe The CP is 9.375us and the subcarrier spacing is 12.5k. The subframe includes 10 OFDM symbols and idle slots. The subframe has a cyclic prefix CP of 16.875us and a subcarrier spacing of 12.5k. The superframe length is 20ms, the unit frame length is 5ms, the superframe length is 20ms, and the unit frame length is 10ms. After the superframe configuration information and the subframe configuration information are generated according to the coexistence configuration of the multi-communication system, the terminal includes: Receiving the superframe configuration information from the base station; determining whether to acquire the subframe configuration information according to the superframe configuration information. The method further includes: if the judging result is that the superframe configuration information is configured to indicate that the subframe in the unit frame of the superframe is In the non-full uplink subframe or the non-full downlink subframe, the terminal acquires the subframe configuration information. To achieve the above object, according to another aspect of the present invention, a base station is provided. The base station according to the present invention includes: a generating module, configured to The superframe configuration information and the subframe configuration information are generated according to the coexistence configuration of the multi-communication system, wherein the coexistence configuration is configured to support a frame structure in which the multi-communication system coexists; the first configuration module is configured to configure according to the superframe configuration information. a part or all of a unit frame of a superframe of a radio frame in a multi-communication system, wherein a superframe configuration The second configuration module is configured to configure a subframe in a unit frame according to the subframe configuration information, where the subframe configuration information is used to indicate a distribution attribute of the subframe, and the sending module is configured to be used. The wireless frame transmits a message. In order to achieve the above object, according to still another aspect of the present invention, a terminal is provided. The terminal according to the present invention includes: a receiving module configured to receive superframe configuration information from a base station; The method is configured to determine whether to obtain the subframe configuration information according to the superframe configuration information, and the obtaining module is configured to determine that the superframe configuration information is a subframe in the unit frame indicating the superframe, and the configuration manner is a non-full uplink subframe or a non-full subframe. In the downlink sub-frame, the sub-frame configuration information is obtained. To achieve the above object, according to still another aspect of the present invention, a multi-communication system is provided. The multi-communication system according to the present invention includes: the base station and the terminal According to the present invention, the superframe configuration information and the superframe configuration information are generated according to the coexistence configuration of the multi-communication system. Subframe configuration information, wherein the coexistence configuration is configured to support a frame structure in which a multi-communication system coexists; and some or all unit frames of a superframe of a radio frame in the multi-communication system are configured according to the superframe configuration information, wherein The frame configuration information is used to indicate a configuration attribute of the unit frame; the sub-frame configuration information is configured to be a sub-frame in a unit frame, where the sub-frame configuration information is used to indicate a distribution attribute of the sub-frame; and the radio frame is used to send a message, and the multi-communication system is solved. In the coexistence, the problem of message transmission interference caused by the inconsistent frame structure expands the scenario where multiple communication systems coexist in the next generation broadband mobile communication system, and improves resource utilization. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 is a flowchart of a method for transmitting a message according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a frame structure according to an embodiment of the present invention; FIG. 3 is a second schematic diagram of a frame structure according to an embodiment of the present invention; FIG. 5 is a schematic diagram of a subframe structure according to an embodiment of the present invention; FIG. 6 is a schematic diagram of a subframe structure according to an embodiment of the present invention; FIG. 7 is a subframe structure of an embodiment of the present invention; FIG. 8 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention; FIG. 9 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention; FIG. FIG. 12 is a structural block diagram of a base station according to an embodiment of the present invention; FIG. 13 is a structural block diagram of a terminal according to an embodiment of the present invention; Figure 14 is a block diagram showing the structure of a multi-communication system according to an embodiment of the present invention; and Figure 15 is a flow chart showing the configuration of a frame structure according to a preferred embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. Embodiment 1 This embodiment provides a method for transmitting a message. 1 is a flowchart of a method for transmitting a message according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps: step S20 to step 4: S20: Step S20, according to the coexistence of the multi-communication system Configuring to generate superframe configuration information and subframe configuration information, where the coexistence configuration is to support the configuration of the frame structure in which the multi-communication system coexists; and in step S40, the superframe of the radio frame in the multi-communication system is configured according to the superframe configuration information. a partial or all unit frame of the frame, where the superframe configuration information is used to indicate a configuration attribute of the unit frame; and in step S60, the subframe in the unit frame is configured according to the subframe configuration information, where the subframe configuration information is used to indicate the subframe. The distribution attribute; step S80, sending a message by using a radio frame. In the related art, the multi-communication system uses different frame structures with different conversion points. Because the frame structure is not uniform, the multi-communication system is incompatible, and there is a problem of interference when transmitting a message. According to the coexistence configuration of the multi-communication system, the superframe configuration information and the subframe configuration information are generated, and the unit frame and the subframe are respectively configured according to the above two kinds of information, thereby solving the interference problem when the multi-communication system for the IMT-ADV coexists, and according to In actual network deployment, the frame configuration design suitable for the coexistence scenario is selected to adapt to the scenario of multi-system coexistence configuration in the next-generation broadband mobile communication system, thereby satisfying the requirements of IMT-Advanced for system performance, and different frames between multiple communication systems. The structure is compatible and the resource utilization is improved. Preferably, the type of the subframe includes at least one of the following: a downlink subframe, an uplink subframe, and a special subframe, where the special subframe refers to the subframe including the downlink orthogonal frequency division multiplexing OFDM symbol and the uplink OFDM symbol. With the preferred embodiment, the subframe type is configured according to system requirements, and the subframe type is improved. The flexibility of the subframe configuration. Preferably, configuring part or all of the unit frames of the superframe of the radio frame in the multi-communication system according to the superframe configuration information includes: - configuring some or all of the unit frames according to the superframe configuration information, using the same or different subframe configurations . With the preferred embodiment, the structure of the unit frame can be configured according to different system requirements, and the flexibility of the unit frame configuration is improved. Preferably, the sub-frame in the sub-frame configuration information configuration unit frame includes: the sub-frame configuration information configuration unit frame, the sub-frame in the frame is one of the following formats: the sub-frames are all composed of the downlink sub-frames, and the sub-frames are all composed of the uplink sub-frames. The subframes are all composed of special subframes, the subframes are composed of downlink subframes and uplink subframes, the subframes are composed of downlink subframes and special subframes, and the subframes are composed of uplink subframes and special subframes. With the preferred embodiment, the subframe structure can be flexibly configured according to the requirements of different communication systems, and resource utilization is improved. Preferably, the subframes are the same length. With the preferred embodiment, the subframes are all configured to be of equal length, which improves the efficiency of subframe configuration. Preferably, the subframe consists of a plurality of elementary symbol units and/or idle time slots. With the preferred embodiment, the composition of the subframes is flexibly configured according to the system configuration. Preferably, when the sub-carrier interval is 12.5 k, when the cyclic prefix CP of the subframe is 2.5 us, the subframe includes 12 OFDM symbols and idle slots; when the cyclic prefix CP of the subframe is 9.375 us, The subframe includes 11 OFDM symbols and idle slots; when the cyclic prefix CP of the subframe is 16.875us, the subframe includes 10 OFDM symbols and idle slots. With the preferred embodiment, it is achieved that the number of OFDMs in a subframe is flexibly configured according to different CP lengths. Specifically, based on the subcarrier spacing (Af) of 12.5 k, three different CP lengths are set for different application scenarios: a short CP length of 2.5 us, a standard CP length of 9.375 us, and a long CP length of 16.875 us. At a subcarrier spacing of 12.5 k, the useful OFDM symbol length is 1/Δf=l/12.5k=80us. In the case of a short CP configuration, the OFDM symbol length is 82.5 us, in the case of a standard CP configuration, the OFDM symbol length is 89.375 us, and in the case of a long CP configuration, the OFDM symbol length is 96.875 us. Then 40 pairs of different CP configurations, 1ms subframes respectively contain 12, 11 or 10 OFDM symbols and corresponding idle time slots. Preferably, the superframe length is 20 ms, the unit frame length is 5 ms, the superframe length is 20 ms, and the unit frame length is 10 ms. With the preferred embodiment, compatibility of the frame structure of the LTE system and the WiMAX system is achieved. Preferably, after the superframe configuration information and the subframe configuration information are generated according to the coexistence configuration of the multi-communication system, the method further includes: receiving, by the terminal, superframe configuration information from the base station; determining, according to the superframe configuration information, whether to acquire the sub Frame configuration information. With the preferred embodiment, the terminal receives the superframe configuration information, and according to the superframe configuration information, determines whether to acquire the subframe configuration information, and implements optimal configuration of resources. Preferably, if the result of the determination is that the superframe configuration information is that the configuration of the subframe in the unit frame indicating the superframe is a non-full uplink subframe or a non-full downlink subframe, the terminal acquires the subframe configuration information. The preferred embodiment implements the acquisition of subframe configuration information by the terminal, and improves resource utilization. To assist in understanding the above embodiments, other preferred embodiments of the present invention are further described below. The frame structure in the preferred embodiment is composed of a plurality of unit frames, wherein the configuration of each unit frame in the super frame may be the same or different, and each unit frame is composed of multiple downlink subframes and/or multiple The uplink subframe or the uplink subframe is composed of multiple OFDM symbols or multiple OFDM symbols and idle slots. FIG. 2 is a first schematic diagram of a frame structure according to an embodiment of the present invention. The superframe is composed of L unit frames, and the unit frame is composed of N subframe units, and the subframe unit can be divided into a downlink subframe unit and/or an uplink subframe unit, which can be configured according to the system. The subframe unit is composed of M OFDM symbols. FIG. 3 is a second schematic diagram of a frame structure according to an embodiment of the present invention. A 20 ms superframe is composed of four 5 ms unit frames, and each unit frame is composed of five lms subframe units. According to different CP configurations, subframe units are composed of different numbers of OFDM symbols. 4 is a schematic diagram 3 of a frame structure according to an embodiment of the present invention. A superframe 101 of 20 ms is composed of two 10 ms unit frames 105, and each unit frame 105 is composed of 10 lm subframe units 103. According to different CP configurations, the subframe unit 103 is composed of a different number of OFDM symbols. Preferred Embodiment 2 FIG. 5 is a schematic diagram 1 of a subframe structure according to an embodiment of the present invention. The subframe unit (subframe) is composed of N unit symbols (symbols) and idle slots. FIG. 6 is a second schematic diagram of a subframe structure according to an embodiment of the present invention, showing a subframe unit design with a short CP length of 2.5 us. At a subcarrier spacing of 12.5 k, the useful OFDM symbol length is 1/Δf=l/12.5k=80us. Wherein, in the case of a short CP configuration, the OFDM symbol length is 82.5 us. FIG. 7 is a third schematic diagram of a subframe structure according to an embodiment of the present invention, showing a subframe unit design with a standard CP length of 9.375us. The subframe unit contains 12 OFDM symbols with a length of 2.5 us CP and idle slots with a length of 10us. FIG. 8 is a fourth schematic diagram of a subframe structure according to an embodiment of the present invention, showing a subframe unit design with a long CP length of 16.875us. The subframe unit includes the subframe unit including 10 OFDM symbols with a length of 16.875 us CP and a free time slot of 31.25 us long. Figures 6 to 8 show the composition of the subframes set for the three CP lengths, respectively. Preferred Embodiment 3 FIG. 9 is a schematic diagram 1 of a superframe configuration structure according to an embodiment of the present invention. The 20ms superframe is composed of four 5ms unit frames. The superframe frame configuration information is used to characterize the configuration features of each unit frame in the superframe. The superframe frame configuration information represents the configuration attributes of four unit frames, as shown in Table 1. . In Table 1, X and Y indicate that the subframes in the unit frame are configured in the subframes in Table 2, D indicates that the subframes in the unit frame are all downlink subframes, and U indicates that the subframes in the unit frame are all uplink subframes. . The 5ms unit frame in the superframe consists of five 1ms downlink subframes and/or uplink subframes. The subframes in the unit frame may be composed of the downlink subframes or all of the uplink subframes or the downlink subframes and the uplink subframes, or the downlink subframes, the uplink subframes, and the special subframes. As shown in FIG. 9, the subframe configurations in different unit frames in the superframe may be the same or different, for example, unit frame 1 includes 3 downlink subframes and 2 uplink subframes; and unit frame 3 is all downlink subframes. composition. For the unit frame including the downlink subframe and the uplink subframe, the subframe configuration information is used to represent the distribution information of the downlink subframe and the uplink subframe of each subframe in the unit frame, as shown in Table 2, in Table 2, D, U and S represent downlink, uplink, and special subframes, respectively. Table 1 superframe frame configuration information
Figure imgf000010_0001
表 2子帧配置信息
Figure imgf000010_0001
Table 2 subframe configuration information
Figure imgf000011_0001
Figure imgf000011_0001
优选实施例四 图 10是本发明实施例的超帧配置结构示意图二, 20ms超帧由 2个 10ms 单位帧组成, 其中,通过超帧帧配置信息来表征超帧中各单位帧的配置特征, 超帧帧配置信息表征 2个单位帧的配置属性, 如表 3所示。 表 3中, X,和 Y, 表示单位帧中的子帧釆用表 4中的子帧配置, D表示单位帧中的子帧全为下 行子帧,U表示单位帧的子帧全为上行子帧。超帧中 10ms单位帧由 10个 1ms 下行子帧和 /或上行子帧组成。单位帧中的子帧可全部由下行子帧组成或全部 由上行子帧或由下行子帧和上行子帧共同组成。 超帧中不同单位帧中的子帧 配置可相同或不同单位帧 1和单位帧 2釆用相同的子帧配置。 图 10 中釆用 相同的配置。 图 11是本发明实施例的超帧配置结构示意图三, 如图 11所示, 单位帧 1和单位帧 2釆用不同的子帧配置, 比如单位帧 1包含 7个下行子帧和 3个 上行子帧, 而单位帧 2则包含 8个下行子帧和 2个上行子帧组成。 对于同时 包含下行子帧和上行子帧的单位帧, 通过子帧配置信息表征单位帧中的各子 帧的下行子帧和上行子帧的分布信息, 如表 4所示, 表 4 D、 U和 S分别 表示下行、 上行和特殊子帧。 表 3超帧帧配置信息  Preferred Embodiment 4 FIG. 10 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention. The 20 ms superframe is composed of two 10 ms unit frames, wherein the superframe frame configuration information is used to characterize the configuration features of each unit frame in the superframe. The superframe frame configuration information characterizes the configuration properties of two unit frames, as shown in Table 3. In Table 3, X, and Y indicate that the subframe in the unit frame is configured with the subframe in Table 4, D indicates that all the subframes in the unit frame are downlink subframes, and U indicates that the subframes of the unit frame are all uplinks. Subframe. The 10ms unit frame in the superframe consists of 10 1ms downlink subframes and/or uplink subframes. The subframes in the unit frame may all be composed of the downlink subframe or all of the uplink subframe or the downlink subframe and the uplink subframe. The subframe configuration in different unit frames in the superframe may be the same or different unit frame 1 and unit frame 2, using the same subframe configuration. The same configuration is used in Figure 10. 11 is a schematic diagram of a superframe configuration structure according to an embodiment of the present invention. As shown in FIG. 11, unit frame 1 and unit frame 2 are configured with different subframes, for example, unit frame 1 includes 7 downlink subframes and 3 uplinks. Subframe, and unit frame 2 consists of 8 downlink subframes and 2 uplink subframes. For the unit frame including the downlink subframe and the uplink subframe, the subframe configuration information is used to represent the distribution information of the downlink subframe and the uplink subframe of each subframe in the unit frame, as shown in Table 4, Table 4 D, U And S represent the downlink, uplink, and special subframes, respectively. Table 3 Superframe frame configuration information
Figure imgf000011_0002
表 4子帧配置信息
Figure imgf000011_0002
Table 4 subframe configuration information
Figure imgf000012_0001
Figure imgf000012_0001
需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执 行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是 在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 本发明实施例还提供了一种基站, 图 12 是根据本发明实施例的基站的 结构框图, 该基站包括: 生成模块 20、 第一配置模块 40、 第二配置模块 60、 发送模块 80, 下面对上述结构进行详细描述: 生成模块 20, 用于才艮据多通信制式系统的共存配置生成超帧配置信息和 子帧配置信息, 其中, 所述共存配置为支持所述多通信制式系统共存的帧结 构的配置; 第一配置模块 40, 连接至生成模块 20, 用于才艮据生成模块 20生 成的超帧配置信息配置多通信制式系统中无线帧的超帧的部分或全部单位 帧, 其中, 超帧配置信息用于指示单位帧的配置属性; 第二配置模块 60, 连 接至生成模块 20, 用于根据生成模块 20生成的子帧配置信息配置单位帧中 子帧, 其中子帧配置信息用于指示子帧的分布属性; 发送模块 80, 连接至第 一配置模块 40和第二配置模块 60,用于釆用第一配置模块 40和第二配置模 块 60配置的无线帧发送消息。 相关技术中, 多通信制式系统釆用不同的转换点不同的帧结构, 由于帧 结构不统一, 造成多通信制式系统不兼容, 在传送消息时, 存在千扰的问题, 本实施例通过生成模块 20 才艮据多通信制式系统的共存配置生成超帧配置信 息和子帧配置信息, 第一配置模块 40和第二配置模块 60分别 居上述两种 信息分别配置单位帧和子帧, 解决面向 IMT-ADV的多通信系统共存时的千 扰问题, 并可根据实际网络部署, 选择适用于共存场景的帧配置设计, 以适 应下一代宽带移动通信系统中多 系统共存配置的场景, 从而满足 IMT- Advanced对系统性能的要求,使得多通信制式系统间的不同帧结构得以 兼容, 提高了资源利用率。 图 13 是根据本发明实施例的终端的结构框图, 该终端包括: 接收模块 132、 判断模块 134和获取模块 136 , 下面对上述结构进行详细描述: 接收模块 132 , 接收来自基站的超帧配置信息; 判断模块 134 , 连接至 接收模块 132 , 用于根据接收模块 132接收到的超帧配置信息, 判断是否获 取子帧配置信息; 获取模块 136 , 连接至判断模块 134 , 用于判断模块 134 的判断结果为超帧配置信息为指示超帧的单位帧中子帧的配置方式为非全上 行子帧或非全下行子帧, 则获取子帧配置信息。 该优选实施例, 实现了终端对超帧配置信息和子帧配置信息的获取, 使 得多通信制式系统间的不同帧结构得以兼容, 提高了资源利用率。 图 14是才艮据本发明实施例的多通信制式系统的结构框图, 该系统 0 包 括基站 2和终端 4。 基站 2的结构和图 12描述的基站结构相同, 终端 4的结构和图 13描述 的终端结构相同, 在此不再赞述。 优选实施例五 本发明还提供了一个优选实施例, 结合了上述多个优选实施例的技术方 案, 图 15是才艮据本发明优选实施例的帧结构配置流程图, 下面结合图 15来 详细描述。 步骤 S 1501 , 根据不同通信系统间的共存需求来配置本基站系统的超帧 和单位帧中的具体子帧配置。 优选地, 超帧中不同单位帧中的子帧配置可相同或不同。 所述超帧由 N 个单位帧组成, 其中, 通过超帧帧配置信息来表征超帧中各单位帧的配置特 征。 超帧帧配置信息表征 N个单位帧的配置属性。 所述超帧中不同单位帧由 多个下行子帧和 /或上行子帧组成,帧结构中的子帧定义相同的 lms的子帧长 度。 根据不同的应用场景, 选择设置三种不同的 CP长度, 分别为短 CP, 标 准 CP和长 CP。 针对不同的 CP长度, 确定具体子帧的组成结构。 例如: 基于 12.5k 的子载波间隔 (Af ), 针对不同的应用场景, 设置三 种不同的 CP长度: 短 CP长度为 2.5us, 标准 CP长度为 9.375us, 长 CP长 度为 16.875us。 在短 CP配置的情况下, OFDM符号长度为 82.5us, 在标准 CP 配置的情况下, OFDM符号长度为 89.375us, 在长 CP 配置的情况下, OFDM符号长度为 96.875us。 则 4十对不同的 CP配置, lms子帧分别包含 12 个, 11个或 10个 OFDM符号以及相应的空闲时隙。 步骤 S 1502, 基站 居超帧帧配置情况, 发送帧配置信息和 /或子帧配置 信息。 具体可为通过发送超帧帧配置序号来通知终端。 对于超帧帧配置序号 对应的单位帧为 X或 Y的情况,基站系统需进一步依次发送对应单位帧的子 帧配置信息, 具体可通过发送子帧配置序号。 步骤 S 1503 , 终端获取超帧帧配置信息。 终端 居超帧帧配置信息, 确 定是否需要进一步获取对应单位帧的子帧配置信息。 优选地, 对于超帧帧配置信息指示对应单位帧中子帧非全上行子帧或全 下行子帧的配置, 则终端 居对应单位帧的子帧配置信息获取帧结构配置信 息。 需要说明的是,本发明还可应用于基于 IEEE802.16m的移动 WiMAX系 统中, 20ms超帧由 4个 5ms单位帧组成。 超帧中的 4个单位帧釆用相同或 不同的子帧配置。 当超帧中所有单位帧均釆用相同子帧配置 A, 如表 5中的 超帧配置序号 0, 系统转换点周期为 5ms。 超帧中的 4个单位帧釆用不同的 子帧配置, 超帧中的单位帧 1和单位帧 3釆用相同的子帧配置 A, 超帧中的 单位帧 2和单位帧 4釆用与帧配置 A相同或不同的子帧配置 B, 如表 5中的 超帧配置序号 2所示。 单位帧 2和单位帧 4釆用与单位帧 1和单位帧 3不 同的子帧配置的系统转换点周期是 10ms。 表 5超帧配置 It should be noted that the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and, although the logical order is shown in the flowchart, in some cases, The steps shown or described may be performed in an order different than that herein. The embodiment of the present invention further provides a base station, and FIG. 12 is a structural block diagram of a base station according to an embodiment of the present invention. The base station includes: a generating module 20, a first configuration module 40, a second configuration module 60, and a sending module 80. The foregoing structure is described in detail: the generating module 20 is configured to generate superframe configuration information and subframe configuration information according to the coexistence configuration of the multi-communication system, wherein the coexistence configuration is to support coexistence of the multi-communication system a configuration of the frame structure; the first configuration module 40 is connected to the generating module 20, configured to configure part or all of the unit frames of the superframe of the radio frame in the multi-communication system according to the superframe configuration information generated by the generating module 20, where The superframe configuration information is used to indicate the configuration attribute of the unit frame. The second configuration module 60 is connected to the generating module 20, configured to configure the subframe in the unit frame according to the subframe configuration information generated by the generating module 20, where the subframe configuration information a distribution attribute for indicating a subframe; a sending module 80, connected to the first configuration module 40 and the second configuration module 60, for using the first configuration module 40 and the wireless frame configured by the second configuration module 60 sends a message. In the related art, the multi-communication system uses different frame structures with different conversion points. Because the frame structure is not uniform, the multi-communication system is incompatible, and there is a problem of interference when transmitting messages. In this embodiment, the generating module 20 generates the superframe configuration information and the subframe configuration information according to the coexistence configuration of the multi-communication system, and the first configuration module 40 and the second configuration module 60 respectively configure the unit frame and the subframe respectively. To solve the problem of interference in the coexistence of multi-communication systems for IMT-ADV, and to select a frame configuration design suitable for coexistence scenarios according to the actual network deployment, to adapt to the scenario of multi-system coexistence configuration in the next-generation broadband mobile communication system. Therefore, the requirements of IMT-Advanced for system performance are met, so that different frame structures between multi-communication systems are compatible, and resource utilization is improved. FIG. 13 is a structural block diagram of a terminal according to an embodiment of the present invention. The terminal includes: a receiving module 132, a determining module 134, and an obtaining module 136. The foregoing structure is described in detail. The receiving module 132 receives a superframe configuration from a base station. The determining module 134 is connected to the receiving module 132 for determining whether to acquire the subframe configuration information according to the superframe configuration information received by the receiving module 132. The obtaining module 136 is connected to the determining module 134 for determining the module 134. If the configuration result of the superframe configuration information is that the configuration of the subframe in the unit frame indicating the superframe is a non-full uplink subframe or a non-full downlink subframe, the subframe configuration information is acquired. In the preferred embodiment, the acquisition of the superframe configuration information and the subframe configuration information by the terminal is implemented, so that different frame structures between the multiple communication systems are compatible, and resource utilization is improved. FIG. 14 is a block diagram showing the structure of a multi-communication system according to an embodiment of the present invention, which includes a base station 2 and a terminal 4. The structure of the base station 2 is the same as that of the base station described in FIG. 12. The structure of the terminal 4 is the same as that of the terminal shown in FIG. 13, and will not be described here. Preferred Embodiment 5 The present invention further provides a preferred embodiment, which combines the technical solutions of the foregoing preferred embodiments. FIG. 15 is a flowchart of a frame structure configuration according to a preferred embodiment of the present invention, which is described in detail below with reference to FIG. description. Step S1501: Configure a super subframe of the base station system and a specific subframe configuration in a unit frame according to a coexistence requirement between different communication systems. Preferably, the subframe configurations in different unit frames in the superframe may be the same or different. The superframe is composed of N unit frames, wherein the configuration features of each unit frame in the superframe are characterized by superframe frame configuration information. The superframe frame configuration information characterizes the configuration attributes of the N unit frames. Different unit frames in the superframe Multiple downlink subframes and/or uplink subframes are formed, and subframes in the frame structure define the same lms subframe length. According to different application scenarios, choose to set three different CP lengths, which are short CP, standard CP and long CP. The composition of a specific subframe is determined for different CP lengths. For example: Based on the subcarrier spacing (Af) of 12.5k, three different CP lengths are set for different application scenarios: short CP length is 2.5us, standard CP length is 9.375us, and long CP length is 16.875us. In the case of a short CP configuration, the OFDM symbol length is 82.5 us, in the case of a standard CP configuration, the OFDM symbol length is 89.375 us, and in the case of a long CP configuration, the OFDM symbol length is 96.875 us. Then, for 40 pairs of different CP configurations, the lms subframes respectively contain 12, 11 or 10 OFDM symbols and corresponding idle slots. Step S1502: The base station is configured to superframe frame configuration, and sends frame configuration information and/or subframe configuration information. Specifically, the terminal may be notified by transmitting a superframe frame configuration sequence number. For the case where the unit frame corresponding to the super frame frame configuration sequence number is X or Y, the base station system needs to further transmit the subframe configuration information of the corresponding unit frame, and specifically, the subframe number can be configured by sending the subframe. Step S1503: The terminal acquires superframe frame configuration information. The terminal is in the super frame frame configuration information, and determines whether the subframe configuration information of the corresponding unit frame needs to be further acquired. Preferably, if the super frame frame configuration information indicates the configuration of the subframe incomplete uplink subframe or the full downlink subframe in the corresponding unit frame, the terminal obtains the frame structure configuration information in the subframe configuration information corresponding to the unit frame. It should be noted that the present invention is also applicable to a mobile WiMAX system based on IEEE802.16m. The 20ms superframe is composed of four 5ms unit frames. The 4 unit frames in the superframe are configured with the same or different subframes. When all unit frames in the superframe use the same subframe configuration A, as in the superframe configuration sequence number 0 in Table 5, the system conversion point period is 5 ms. The four unit frames in the superframe are configured with different subframes, the unit frame 1 and the unit frame 3 in the superframe are configured with the same subframe A, and the unit frame 2 and the unit frame 4 in the superframe are used. Frame configuration A has the same or different subframe configuration B, as shown in superframe configuration number 2 in Table 5. The system conversion point period of unit frame 2 and unit frame 4 configured with subframes different from unit frame 1 and unit frame 3 is 10 ms. Table 5 superframe configuration
超帧内的单位帧序号  Unit frame number within the superframe
超帧配置序号  Superframe configuration sequence number
0 1 2 3  0 1 2 3
0 A A A A  0 A A A A
1 A B A B 需要说明的是, 装置实施例中描述的多通信制式系统对应于上述的方法 实施例, 其具体的实现过程在方法实施例中已经进行过详细说明, 在此不再 赘述。 通过本发明, 通过使用本发明的方法, 通过釆用超帧中单位帧可配置的 子帧配置, 可以解决面向 IMT-ADV的多通信系统共存时的千扰问题, 可根 据实际网络部署, 选择适用于共存场景的帧配置设计, 以适应下一代宽带移 动通信系统中多系统共存配置的场景, 从而满足 IMT-Advanced对系统性能 的要求。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 1 ABAB It should be noted that the multi-communication system described in the device embodiment corresponds to the foregoing method embodiment, and the specific implementation process has been described in detail in the method embodiment, and details are not described herein again. By using the method of the present invention, by using the configurable subframe configuration of the unit frame in the super frame, the interference problem of the multi-communication system for IMT-ADV coexistence can be solved, and can be selected according to the actual network deployment. It is suitable for the frame configuration design of the coexistence scenario to adapt to the scenario of multi-system coexistence configuration in the next-generation broadband mobile communication system, thus meeting the requirements of IMT-Advanced for system performance. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种传输消息的方法, 包括: 1. A method of transmitting a message, comprising:
才艮据多通信制式系统的共存配置生成超帧配置信息和子帧配置信 息, 其中, 所述共存配置为支持所述多通信制式系统共存的帧结构的配 置;  The superframe configuration information and the subframe configuration information are generated according to the coexistence configuration of the multi-communication system, wherein the coexistence configuration is configured to support a frame structure in which the multi-communication system coexists;
才艮据所述超帧配置信息配置多通信制式系统中无线帧的超帧的部分 或全部单位帧, 其中, 所述超帧配置信息用于指示所述单位帧的配置属 性;  And configuring, according to the superframe configuration information, part or all of the unit frames of the superframe of the radio frame in the multi-communication system, where the superframe configuration information is used to indicate a configuration attribute of the unit frame;
才艮据所述子帧配置信息配置所述单位帧中子帧, 其中所述子帧配置 信息用于指示所述子帧的分布属性;  And configuring the subframe in the unit frame according to the subframe configuration information, where the subframe configuration information is used to indicate a distribution attribute of the subframe;
釆用所述无线帧发送消息。  Sending a message with the radio frame.
2. 根据权利要求 1所述的方法, 其中, 所述子帧的类型包括以下至少之一: 下行子帧、 上行子帧、 特殊子帧, 其中, 所述特殊子帧是指所述子 帧同时包含下行正交频分复用 OFDM符号和上行 OFDM符号。 The method according to claim 1, wherein the type of the subframe includes at least one of the following: a downlink subframe, an uplink subframe, and a special subframe, where the special subframe refers to the subframe The downlink orthogonal frequency division multiplexing OFDM symbol and the uplink OFDM symbol are simultaneously included.
3. 才艮据权利要求 1所述的方法, 其中, 才艮据所述超帧配置信息配置多通信 制式系统中无线帧的超帧的部分或全部单位帧包括: 3. The method according to claim 1, wherein configuring part or all of the unit frames of the superframe of the radio frame in the multi-communication system according to the superframe configuration information comprises:
才艮据所述超帧配置信息配置部分或全部所述单位帧釆用相同或者不 同的子帧配置。  The partial or all of the unit frames are configured with the same or different subframe configurations according to the superframe configuration information.
4. 根据权利要求 2所述的方法, 其中, 根据所述子帧配置信息配置所述单 位帧中子帧包括: The method according to claim 2, wherein configuring the subframe in the unit frame according to the subframe configuration information comprises:
才艮据所述子帧配置信息配置所述单位帧中子帧为以下格式之一: 所述子帧全部由下行子帧组成、 所述子帧全部由上行子帧组成、 所 述子帧全部由特殊子帧组成、 所述子帧由下行子帧和上行子帧组成、 所 述子帧由下行子帧和特殊子帧组成、 所述子帧由上行子帧和特殊子帧组 成。 根据权利要求 4所述的方法, 其中, 所述子帧长度相同。  Configuring the subframe in the unit frame according to the subframe configuration information to be one of the following formats: all the subframes are composed of downlink subframes, all of the subframes are composed of uplink subframes, and all the subframes are all The sub-frame is composed of a downlink sub-frame and an uplink sub-frame, and the sub-frame is composed of a downlink sub-frame and a special sub-frame, and the sub-frame is composed of an uplink sub-frame and a special sub-frame. The method according to claim 4, wherein the subframes are the same length.
6. 根据权利要求 5 所述的方法, 其中, 所述子帧由多个基本符号单元和 / 或空闲时隙组成。 6. The method according to claim 5, wherein the subframe is composed of a plurality of basic symbol units and / Or an idle time slot.
7. 根据权利要求 6所述的方法, 其中, 7. The method according to claim 6, wherein
所述子帧包括 12个 OFDM符号和所述空闲时隙, 其中, 所述子帧 的循环前缀 CP为 2.5us, 子载波间隔为 12.5k;  The subframe includes 12 OFDM symbols and the idle time slot, where the cyclic prefix CP of the subframe is 2.5 us, and the subcarrier spacing is 12.5 k;
所述子帧包括 11个 OFDM符号和所述空闲时隙, 其中, 所述子帧 的循环前缀 CP为 9.375us, 所述子载波间隔为 12.5k;  The subframe includes 11 OFDM symbols and the idle time slot, wherein the cyclic prefix CP of the subframe is 9.375 us, and the subcarrier spacing is 12.5 k;
所述子帧包括 10个 OFDM符号和所述空闲时隙, 其中, 所述子帧 的循环前缀 CP为 16.875us, 所述子载波间隔为 12.5k。  The subframe includes 10 OFDM symbols and the idle time slot, wherein the cyclic prefix CP of the subframe is 16.875 us, and the subcarrier spacing is 12.5 k.
8. 根据权利要求 2至 7任一项所述的方法, 其中, The method according to any one of claims 2 to 7, wherein
所述超帧长度为 20ms, 所述单位帧长度为 5ms;  The superframe length is 20 ms, and the unit frame length is 5 ms;
所述超帧长度为 20ms, 所述单位帧长度为 10ms。  The superframe length is 20 ms, and the unit frame length is 10 ms.
9. 根据权利要求 1所述的方法, 其中, 在根据多通信制式系统的共存配置 生成超帧配置信息和子帧配置信息之后, 还包括: The method according to claim 1, wherein after the generating the superframe configuration information and the subframe configuration information according to the coexistence configuration of the multi-communication system, the method further includes:
终端接收来自基站的所述超帧配置信息;  Receiving, by the terminal, the superframe configuration information from the base station;
根据所述超帧配置信息, 判断是否获取所述子帧配置信息。  Determining whether to acquire the subframe configuration information according to the superframe configuration information.
10. 根据权利要求 9所述的方法, 其中, 还包括: 10. The method according to claim 9, further comprising:
如果判断结果为所述超帧配置信息为指示所述超帧的单位帧中子帧 的配置方式为非全上行子帧或非全下行子帧, 所述终端获取所述子帧配 置信息。  If the result of the determination is that the superframe configuration information is that the configuration of the subframe in the unit frame of the superframe is a non-full uplink subframe or a non-full downlink subframe, the terminal acquires the subframe configuration information.
11. 一种基站, 包括: 11. A base station comprising:
生成模块, 设置为根据多通信制式系统的共存配置生成超帧配置信 息和子帧配置信息, 其中, 所述共存配置为支持所述多通信制式系统共 存的帧结构的配置;  a generating module, configured to generate superframe configuration information and subframe configuration information according to a coexistence configuration of the multi-communication system, wherein the coexistence configuration is a configuration of a frame structure that supports coexistence of the multi-communication system;
第一配置模块, 设置为根据所述超帧配置信息配置多通信制式系统 中无线帧的超帧的部分或全部单位帧, 其中, 所述超帧配置信息用于指 示所述单位帧的配置属性;  a first configuration module, configured to configure a part or all of a unit frame of a superframe of a radio frame in the multi-communication system according to the superframe configuration information, where the superframe configuration information is used to indicate a configuration attribute of the unit frame ;
第二配置模块, 设置为根据所述子帧配置信息配置所述单位帧中子 帧, 其中所述子帧配置信息用于指示所述子帧的分布属性; 发送模块, 用于釆用所述无线帧发送消息。 a second configuration module, configured to configure a subframe in the unit frame according to the subframe configuration information, where the subframe configuration information is used to indicate a distribution attribute of the subframe; And a sending module, configured to send a message by using the wireless frame.
12. 一种终端, 包括: 12. A terminal comprising:
接收模块, 设置为接收来自基站的所述超帧配置信息; 判断模块, 设置为根据所述超帧配置信息, 判断是否获取所述子帧 配置信息;  The receiving module is configured to receive the superframe configuration information from the base station, and the determining module is configured to determine, according to the superframe configuration information, whether to acquire the subframe configuration information;
获取模块, 设置为判断结果为所述超帧配置信息为指示所述超帧的 单位帧中子帧的配置方式为非全上行子帧或非全下行子帧, 则获取所述 子帧配置信息。  Obtaining a module, configured to determine that the superframe configuration information is that the configuration manner of the subframe in the unit frame of the superframe is a non-full uplink subframe or a non-full downlink subframe, and acquiring the subframe configuration information .
13. —种多通信制式系统, 包括: 13. A multi-communication system, including:
权利要求 11所述的基站和权利要求 12所述的终端。  The base station of claim 11 and the terminal of claim 12.
PCT/CN2010/078891 2010-05-25 2010-11-18 Message transmission method, base station, terminal and multi-standard communication system WO2011147167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010188724.5 2010-05-25
CN201010188724.5A CN102263720B (en) 2010-05-25 2010-05-25 The method of message transfer, base station, terminal and multi-communication-mode system

Publications (1)

Publication Number Publication Date
WO2011147167A1 true WO2011147167A1 (en) 2011-12-01

Family

ID=45003250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078891 WO2011147167A1 (en) 2010-05-25 2010-11-18 Message transmission method, base station, terminal and multi-standard communication system

Country Status (2)

Country Link
CN (1) CN102263720B (en)
WO (1) WO2011147167A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584148C1 (en) * 2012-06-01 2016-05-20 Хуавей Текнолоджиз Ко., Лтд. Wireless communication method, base station and terminal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000193A1 (en) 2012-06-27 2014-01-03 富士通株式会社 Method, apparatus, and system for processing in-device coexistence configuration information
CN107770865A (en) * 2016-08-17 2018-03-06 北京信威通信技术股份有限公司 A kind of collocation method of wireless frame structure
CN107959647B (en) * 2016-10-14 2022-02-25 中兴通讯股份有限公司 Symbol configuration method and device of multi-carrier system, and data demodulation method and device
CN108282315B (en) * 2017-01-06 2020-11-10 华为技术有限公司 Time slot type indicating method, time slot type determining method and time slot type determining device
CN108810982B (en) * 2017-05-05 2021-09-07 捷开通讯(深圳)有限公司 Communication method, base station, user equipment and device with storage function
WO2019144360A1 (en) * 2018-01-25 2019-08-01 华为技术有限公司 Method and device for communication
CN117792855A (en) * 2024-02-26 2024-03-29 山东浪潮数据库技术有限公司 Method and device for realizing frame structure of wireless ad hoc network system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116427A1 (en) * 2007-11-07 2009-05-07 Nextwave Broadband Inc. Advanced technology frame structure with backward compatibility
US20090185632A1 (en) * 2007-11-09 2009-07-23 Sean Cai Flexible ofdm/ofdma frame structure for communication systems
CN101547496A (en) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 Terminal access method
CN101572590A (en) * 2008-05-04 2009-11-04 中兴通讯股份有限公司 Method for sending frame control message

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116427A1 (en) * 2007-11-07 2009-05-07 Nextwave Broadband Inc. Advanced technology frame structure with backward compatibility
US20090185632A1 (en) * 2007-11-09 2009-07-23 Sean Cai Flexible ofdm/ofdma frame structure for communication systems
CN101547496A (en) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 Terminal access method
CN101572590A (en) * 2008-05-04 2009-11-04 中兴通讯股份有限公司 Method for sending frame control message

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584148C1 (en) * 2012-06-01 2016-05-20 Хуавей Текнолоджиз Ко., Лтд. Wireless communication method, base station and terminal
US9788306B2 (en) 2012-06-01 2017-10-10 Huawei Technologies Co., Ltd. Wireless communication method, base station, and terminal

Also Published As

Publication number Publication date
CN102263720A (en) 2011-11-30
CN102263720B (en) 2015-08-12

Similar Documents

Publication Publication Date Title
TWI698110B (en) Method and apparatus for phase tracking reference signal transmission
JP6931106B2 (en) WLAN design to support outdoor propagation channels
EP3433989B1 (en) System and method for a wireless network having multiple station classes
US10362573B2 (en) Method and system for multi-protocol transmissions
WO2011147167A1 (en) Message transmission method, base station, terminal and multi-standard communication system
WO2017004774A1 (en) Data transmission method, wireless network device and communication system
US20200163097A1 (en) Communication method, network device, and relay device
EP3243354A1 (en) Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (wlan) system
WO2020143482A1 (en) Communication method and apparatus
US20090185476A1 (en) Duration-shortened ofdm symbols
WO2016149970A1 (en) Method for sending uplink multi-user transmission triggering frame, access point, and station
US11146440B2 (en) Coexistence of OFDM and on-off keying (OOK) signals in WLAN
WO2009052752A1 (en) Transmission method and device in long term evolution time division duplex system
WO2015127616A1 (en) Wireless local area network data transmission method and device
WO2017076351A1 (en) Data transmission method
WO2010051752A1 (en) Method and device for enabling multi-carriers aggregation transmission
WO2018129987A1 (en) Unauthorized transmission method, terminal device and network device
JP2019511879A (en) Information transmission method and device
US20190245726A1 (en) Method and system for multi-protocol transmissions
US10868643B2 (en) Method and system for orthogonal multi-protocol transmissions
CN107852222B (en) System and method for transmission by frequency diversity
WO2021159344A1 (en) Synchronization signal block transmission method and apparatus, and synchronization signal block receiving method and apparatus
US9173227B2 (en) System compatibility method and apparatus
WO2010022577A1 (en) A control information transmission method and a receiving terminal
WO2018028454A1 (en) Method for transmitting information and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852036

Country of ref document: EP

Kind code of ref document: A1