WO2011145885A2 - Composition for screening and a screening method for substances active in treating hepatitis b - Google Patents

Composition for screening and a screening method for substances active in treating hepatitis b Download PDF

Info

Publication number
WO2011145885A2
WO2011145885A2 PCT/KR2011/003685 KR2011003685W WO2011145885A2 WO 2011145885 A2 WO2011145885 A2 WO 2011145885A2 KR 2011003685 W KR2011003685 W KR 2011003685W WO 2011145885 A2 WO2011145885 A2 WO 2011145885A2
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
interferon
hbv polymerase
activity
expression vector
Prior art date
Application number
PCT/KR2011/003685
Other languages
French (fr)
Korean (ko)
Other versions
WO2011145885A3 (en
Inventor
류왕식
왕해봉
류동균
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2011145885A2 publication Critical patent/WO2011145885A2/en
Publication of WO2011145885A3 publication Critical patent/WO2011145885A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • G01N2333/02Hepadnaviridae, e.g. hepatitis B virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general
    • G01N2333/91245Nucleotidyltransferases (2.7.7)
    • G01N2333/9125Nucleotidyltransferases (2.7.7) with a definite EC number (2.7.7.-)
    • G01N2333/9128RNA-directed DNA polymerases, e.g. RT (2.7.7.49)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/99Isomerases (5.)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a composition for screening and a method for screening a hepatitis B therapeutically active substance, and more specifically, to identify a mechanism by which the polymerase of hepatitis B virus inhibits the induction of interferon and a new concept through the mechanism.
  • the present invention relates to a screening composition and a screening method capable of screening a hepatitis B therapeutically active substance.
  • Hepatitis B virus is a virus that causes chronic hepatitis, as well as acute hepatitis, and is a clinically significant virus that currently infects about 400 million people (Seeger, Zoulim, and Mason, 2007). .
  • HBV is a DNA virus, but has a very specific replication mechanism that replicates DNA genes through reverse transcriptase activity possessed by HBV polymerase.
  • the genome of HBV has a circular DNA gene of about 3.2k bp and is composed of core protein (C, core), polymerase (P, polymerase), surface antigen (S, surface antigen), and X protein ( ⁇ ). Code four viral protein genes. These four .
  • core protein (C) and polymerase ( ⁇ ) are essential for gene replication of hepatitis B virus.
  • Hepatitis B virus synthesizes DNA through a reverse transcription process similar to retrovirus (Nassal, 2008).
  • Nucleoside analogues such as interferon or lamivudine, have been developed as antiviral agents, but their effects are insufficient due to side effects and the production of resistant viruses. Therefore, the development of new chronic hepatitis B treatment is urgently needed (Zoulim and Locarnini, 2009).
  • TLR Toll-like receptors
  • TLR include TLR3, TLR7, TLR 8, TLR9 and the like and are located in endosomes such as dendritic cells.
  • Recognition of PAMPs by TLR activates signaling processes such as IRF signaling to activate transcription factors such as IRF3 / 7 and NF-kB.
  • TLR employs an adapter protein called TRIF (TIR-doma in-containing adapter protein inducing IFN 3), which in turn activates ⁇ / ⁇ (TAN-binding kinase 1/1 ⁇ kinase- ⁇ ).
  • TRIF TIR-doma in-containing adapter protein inducing IFN 3
  • ⁇ / ⁇ TAN-binding kinase 1/1 ⁇ kinase- ⁇
  • Phosphorylation of the factor IRF3 / 7 induces the expression of interferon (Akira, Uematsu, and Takeuchi, 2006; Nissan and Taniguchi, 2006).
  • the second PRR line is called retinoic-acid inducible gene I (RIG-I) -like receptors (RLRs), which belong to RIG ⁇ I and MDA-5 (melanoma different iat ion-associated gene 5) (Pichlmair and Reis). e Sous a, 2007).
  • RLR retinoic-acid inducible gene I
  • MDA-5 melanoma different iat ion-associated gene 5
  • viral nucleic acid recognition by RLR activates IRF signaling and the like, and activates transcription factors such as IRF3 / 7 and NF-kB.
  • RLR binds to the adapter IPSGFNP -promoter stimulator 1, or MAVS, VISA, or Cardif).
  • HBV infection is somewhat exceptional. Infection studies of chimpanzee animal models did not detect the expression of genetically related genes (Wieland et al., 2004; Wieland and Chisari, 2005). The results suggest that HBV infection is not recognized by the innate immune system and has been called "Stealth virus.” Unlike these early reports, there are reports of observations of innate immunity to actual HBV infection. For example, the response of natural killer cells, a characteristic of innate immunity, has been observed in patients with acute infection during initial infection (Fisicaro et al., 2009).
  • HepaRG cells a cell line sensitive to HBV infection, have observed that HBV infection induces a strong congenital immune response and inhibits HBV DNA replication (Lucifora et al., 2010). Based on the above results, in real HBV infection, the innate immune response is strongly induced but It can be inferred that the protein inhibits it.
  • the DEAD-box RNA helicase is a large protein family with about 38 genes found in the human genome (Under, 2006). DEAD-box RNA helicase acts on various RNA metabolism in cells such as transcription, RNA splicing, RNA nuclear release, and translation (Rocak and Linder, 2004). DDX3, a member of the DEAD-box RNA helicase family, has also been reported to be involved in various RNA targets.
  • DDX3 (GeneBank accession No. ⁇ 001356.3) also works in the life history of various viruses. First, it acts on the proliferation of human immunodeficiency virus (HIV). Specifically, it acts on the Rev / RRE pathway and is essential for nuclear release of HIV RNA (Yedavalli et al., 2004). DDX3 also plays an essential role in RNA genome proliferation of hepatitis C virus (Ariurai et al., 2007; Owsianka and Patel, 1999). On the other hand, in contrast, the present inventors have recently reported that DDX3 inhibits HBV genome proliferation through binding to HBV polymerase (Wang, Kim, and Ryu, 2009).
  • DDX3 has been reported to promote congenital immune response (Schroder, Bar an, and Bowie, 2008; Soul at et al., 2008). Specifically, DDX3 promotes innate immunity by amplifying ⁇ / ⁇ kinase activators through the combination of ⁇ / ⁇ , an effector kinase of IRF signaling.
  • the present invention has been made to solve the above-mentioned problems, the first problem to be solved of the present invention is a screening composition that can screen a hepatitis B therapeutically active substance of a new concept that can prevent the generation of resistance mutations and It is to provide a screening method.
  • the present invention is a) a base sequence encoding the HBV polymerase, the first recombinant expression vector; b) a second recombinant expression vector comprising a reporter gene for measuring the activity of an interferon beta (IFNi3) promoter and an interferon beta (IFNp) promoter operably linked thereto; It provides a composition for.
  • IFNi3 interferon beta
  • IFNp interferon beta
  • the composition may comprise c) an animal cell having the ability to produce interferon during virus infection.
  • the composition is d) interferon It may include a third recombinant expression vector comprising a gene encoding a gene for stimulating factor.
  • the interferon-producing stimulus is TRIF (GeneBank accession No. NM_182919.2), RIG-I (GeneBank accession No. ⁇ _014314.3) / 3 ⁇ 4 «-5, IPS-1 And TBK1 ((GeneBank accession No. # _004180.2) / IKK ⁇ (GeneBank accession No. NM_014002.3) molecules.
  • the reporter gene is E. coli ⁇ -galactosidase, luciferase, alkaline phosphatase, secretory placental alkaline Phosphatase (secreted placental alkaline phosphatase) or chloramphenicol
  • Chloramphenicol acetyltransferase (CAT).
  • a first recombinant expression vector and an interferon beta ( ⁇ ) promoter encoding a sequence encoding HBV polymerase in an animal cell having an interferon generating ability during virus infection And transfecting a second recombinant expression vector operably linked thereto and comprising a reporter gene for measuring activity of an interferon beta (IFNi3) promoter; (2) adding an interferon production promoter to the animal cell; (3) measuring the activity of the interferon beta (IFNP) promoter by adding candidates to the animal cells;
  • (4) provides a method for screening the hepatitis B therapeutically active substance comprising the step of selecting a candidate substance with increased activity of the promoter when the candidate substance is added compared to the case where the candidate substance is not added.
  • the interferon production promoter may be poly (I: C).
  • the embodiment of the present invention was performed only for the TLR3 receptor and poly (I: C), which is a ligand of TLR3, but the present invention is not limited thereto and includes all other ten kinds of TLR family receptors and various ligands accordingly.
  • the effect of the present invention will be the same even if the TLR9 receptor and CpG DNA which is a ligand of TLR9 are used.
  • the animal cell may further comprise a third recombinant expression vector comprising a gene encoding an interferon generating stimulation factor, in this case more preferred
  • the interferon production stimulus may be any one or more selected from the group consisting of TRIF, RIG-I / MDA-5, IPS-1, ⁇ / ⁇ ⁇ molecules.
  • the reporter gene is ⁇ . coli ⁇ -galactosidase, luci f erase, alkaline phosphatase, secreted placental alkaline phosphatase or chloramphenicol
  • Chloramphenicol acetyltransferase CAT
  • the base sequence encoding the HBV polymerase is a first recombinant expression vector, b) interferon beta (IFNP) promoter and a second recombinant expression vector operably linked thereto comprising a reporter gene for measuring the activity of the interferon beta (IFN 3) promoter and c) a gene encoding the interferon production promoter and interferon production stimulating factor.
  • IFNP interferon beta
  • IFN 3 interferon beta
  • the nucleotide sequence encoding HBV polymerase is included in the recombinant expression vector and the nucleotide sequence encoding the IRF3-GAL4 fusion protein.
  • Transfection of an expression vector and a fourth expression vector comprising a gene encoding an interferon generator stimulating factor and a third recombinant expression vector comprising a nucleotide sequence operably linked to the expression vector and a pFR promoter (transfection); (2) measuring the activity of the pFR promoter by adding a candidate to the animal cells; And (3) selecting candidate substances in which the activity of the IFNp promoter is increased when the candidate substances are added as compared with the case where the candidate substances are not added.
  • screening of a hepatitis B therapeutically active substance for selecting a candidate substance that inhibits binding of HBV polymerase and DDX3 by adding a candidate substance to an animal cell expressing HBV polymerase Provide a system
  • HBV polymerase A candidate system is added to animal cells to inhibit the binding of HBV polymerase and DDX3 to provide a screening system for a hepatitis B therapeutically active substance that selects candidates that induce binding of DDX3 with ⁇ / ⁇ .
  • the term "having the ability of interferon to produce virus infection” refers to a cell that promotes interferon expression by viral infection to produce interferon.
  • operably linked means a functional binding between a nucleic acid expression control sequence (e.g., a promoter, signal sequence, or transcriptional regulator binding site) and another nucleic acid sequence, whereby the regulatory sequence is
  • a nucleic acid expression control sequence e.g., a promoter, signal sequence, or transcriptional regulator binding site
  • IFNp promoter refers to a DNA sequence that can regulate the expression of interferon, which is an IRF3 / 7 binding site and an NF-kB transcription factor binding site.
  • reporter gene refers to a DNA molecule that encodes an expression product (such as an enzyme) that is readily measurable, for example, in biological activity assays.
  • pFR promoter is a promoter having a GAL4 binding site, which is a transcription factor of yeast, and is widely used for measuring GAL4 dependent transcription.
  • candidate refers to a substance that inhibits the interaction of HBV polymerase with DDX3 and inhibits the inhibition of interferon expression by HBV plymerase, and thus is expected to recover the original expression of interferon expression.
  • candidates include, but are not limited to, for example, low molecular weight organic compounds, high molecular weight organic compounds, nucleic acid molecules (eg, DNA, RNA, PNA and aptamers), proteins, sugars, and lipids.
  • the present invention screens for substances that selectively inhibit binding between HBV polymerase-DDX3 molecules, the likelihood of resistance mutant viruses avoiding them will be very slim.
  • the binding of HBV polymerase and DDX3 molecules is a target formed specifically for infected cells, the cytotoxicity of a substance that inhibits the binding is expected to be extremely low. In the case of chronic hepatitis B, which requires long-term treatment for more than 1 year, low resistance mutagenesis and cytotoxicity is an excellent antiviral agent.
  • La to lc are cleavage maps of the recombinant polamide used in the present invention.
  • la is a cleavage map of HBV polymerase expression vector (pcDNA-HBV Pol).
  • the P gene of the ayw genotype (GenBank accession V01460) is inserted at multiple cloning sites of the pcDNA3.0 vector (In Vitrogen Inc.) and expressed from a cytomegalovirus (CMV) pyroelectric promoter.
  • CMV cytomegalovirus
  • Lb is an expression vector of the HBx protein (pCMV7-HBx), in which the X gene of the HBV ayw genotype (GenBank accession V01460) is inserted into a multiple cloning site of the pCMV7 vector (Sigma Inc.) and expressed from a cytomegalovirus (CMV) superelectric promoter. .
  • CMV cytomegalovirus
  • Figure lc shows the expression vector of core protein (Core) (pcDNA-Core) of the gene of the HBV ayw genotype (GenBank accession V01460) is inserted into the multiple cloning site of the pcDNAl / Amp vector (In Vitrogen Inc.) (MV (cytoraegalovirus)
  • Figure 2 shows the inhibition of interferonogenesis by HBV polymerase
  • Figure 2 shows the transfection of the protein expression vector of ⁇ Luc if erase reporter plasmid and HBV in HepG2 cells, liver cancer cell lines, respectively.
  • TLR3 expression plasmids were transfected together to complement the function of HepG2 cells.
  • 3 to 4 show the inhibition of interferon production according to the increase in the amount of HBV polymerase-expressing plasmid.
  • poly (I: C) After adding poly (I: C) to the medium of HepG2 cells, which is a hepatic cancer cell line, IFNP Luc if erase
  • lucif erase activity was measured in comparison with the control group and expressed in multiples compared with the control group.
  • 4 is transfected poly (I: C) to HepG2 cells, hepatocellular carcinoma cell lines, transfected IFNP Lucif erase reporter plasmid and HBV polymerase expression plasmid, respectively, and measured luciferase activity in comparison with the control group. It is expressed in multiples compared to.
  • FIG. 5 shows the inhibition of IRF signaling according to HBV polymerase expression
  • HepG2 cells were added poly (I: C) to the medium, and after transfection of the HBV polymerase expression plasmid, cells were harvested 3 days later .
  • Samples were electrophoresed by SDS-PAGE and phosphorylated IRF was detected by Western blot using phosphorylated IRF antibodies.
  • Figure 6 shows that after transfecting the RIG-I expression plasmid, IRF3 Luciferase reporter fulllasmid and HBV polymerase expressing plasmid in HepG2 cells, the luciferase activity was compared with the control group. Measure it and It is expressed in multiples compared to the control group.
  • Figure 7 After transfection of the TRIF expression plasmid, IRF3 Luciferase reporter plasmid and HBV polymerase expression plasmid in HepG2 cells, respectively, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group.
  • HBV polymerase shows the activity of ⁇ / ⁇ .
  • Target DDX3 to promote 9 shows transfection of TBK1 expression plasmid, IRF3 Luciferase reporter pollamide and HBV polymerase expression plasmid, respectively, in HepG2 cells.
  • Luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group.
  • 11 is a transfection of ⁇ expression full psmid, ISRE Luciferase reporter plasmid and HBV holyrylase expression plasmid in HepG2 cells, respectively, measured luciferase activity compared to the control group and expressed in multiples compared with the control group .
  • FIG. 13 to 15 show the antagonism of DDX3 on IRF signaling inhibition of HBV polymerase.
  • FIG. 13 shows TBK1 expression plasmid and IRF3 in HepG2 cells.
  • FIG. 14 was transfected with ⁇ expression fulllasmid, IRF3 Luciferase reporter plasmid and HBV polymerase expression plasmid in HepG2 cells, respectively, and luciferase activity was measured in comparison with the control group and expressed in folds compared with the control group. At this time, the effect of increasing the amount of DDX3 expression plasmid was observed.
  • Figure 15 shows the protein precipitated by Western blot (IB, immunoblot) after the immunoprecipitation (IP, immunoprecipitation) to investigate the interaction between DDX3- ⁇ . It is observed.
  • IB Western blot
  • IP immunoprecipitation
  • Figure 16 is a schematic diagram showing the screening mechanism of the chronic hepatitis B therapeutic agent according to one feature of the present invention.
  • Figure 17 shows the luciferase activity decreased as the amount of HBV polymerase expression plasmid increased as a result of IFN
  • HBV polymerase inhibits the interaction of the ⁇ / ⁇ molecule and the DDX3 protein that is already bound when interacting with the DDX3 protein.
  • the therapeutic agent added is a substance that selectively inhibits the interaction between HBV polymerase and DDX3 protein
  • the DDX3 protein that inhibited the interaction with HBV polymerase binds to the ⁇ / ⁇ ⁇ molecule to Induction of activation leads to an increase in the activity of the promoter, and a therapeutic candidate for such an activity can be used as a hepatitis B therapeutic.
  • the sequence encoding the HBV polymerase in an animal cell having the ability to generate interferon upon virus infection with a recombinant expression vector and an interferon beta (IFN3) promoter Adding and transfecting a second recombinant expression vector operably linked thereto and comprising a reporter gene for measuring the activity of interferon beta (IFN
  • IFN interferon beta
  • the nucleotide sequence encoding the HBV polymerase to an animal cell having interferon-producing ability during virus infection is operably linked to the first recombinant expression vector and the IFNP promoter, and to measure the activity with the IFNP promoter.
  • an animal cell having interferon-producing ability during viral infection expresses DDX3 protein, and animal cells belonging to it may be used without limitation, but preferably
  • HE 293, HeLa, HepG2 cells and the like can be used.
  • a recombinant expression vector of Crab 1 is added to the nucleotide sequence encoding the HBV polymerase.
  • HBV polymerase when transfected into animal cells, interacts with DDX3 in animal cells and plays a role of inhibiting promoter activity.
  • a non-HBV polymerase contains a nucleotide sequence encoding a HBV core portion or other region of HBV
  • HBV polymerase must be used since it does not interact with DDX3 to inhibit the expression of IFN
  • the base sequence encoding should be added with a first recombinant expression vector (see Example 1).
  • the nucleotide sequence encoding the HBV polymerase may be the nucleotide sequence represented by SEQ ID NO: 1, but is not limited thereto.
  • Various HBV polymerases may be used, and further, FLAG at the N-terminus of the HBV polymerase for expression measurement. Adding sequences and the like will also be apparent to those skilled in the art.
  • any recombinant expression vector for use in the invention are commercially available, or inserting a specific DNA sequence in a plasmid that can be easily obtained in the laboratory or as a recombinant plasmid that can be easily obtained, in a commercial or laboratory, and its production method is generally a recombinant expression vector It can be produced according to the method for manufacturing, which is obvious to those skilled in the art.
  • a second recombinant expression vector comprising a reporter gene for measuring the activity of the promoter and the IFNp promoter is operably linked to the animal cell.
  • Promoter eg, Lin et al., Mol. Cell Biol. 20: 6342 (2000)
  • Reporter genes that can be used in the second recombinant expression vector of the present invention include E. coli ⁇ -galactosidase [An et al. , Mol. Cell. Biol. 2: 1628 (1982)], lucif erase (lucif erase) [De Wet et al. , Mol. Cell. Biol. 7: 725 (1987)], alkaline phosphatase [Henthorn et al., Proc. Natl. Acad. Sci. USA 85: 6342 (1988)], secretory placental alkaline
  • the animal cell may further comprise three recombinant expression vectors comprising a gene encoding the interferon stimulating factor.
  • the interferon production stimulating factor may be any one or more selected from the group consisting of TRIF, RIG-I / MDA-5, IPS-1, and ⁇ / ⁇ protein molecules.
  • Interferon production stimulating factor is a protein molecule that can replace the function of poly (I: C), an interferon production promoter. It is also possible to transfect animal cells with poly (I: C) RNA.
  • Interferon-producing stimulating factor that can be used is preferably the interferon generating stimulating factor, including the ⁇ / ⁇ molecule, as shown in the center of Figure 9, preferably the interferon generating stimulating factor is TRIF, RIG-I / MDA— 5, IPS—1, ⁇ / ⁇ may be any one or more selected from the group consisting of, but not limited to, interferon generation stimulating factors not disclosed in FIG. It can be used.
  • Interferon-producing promoter is added to the animal cells.
  • Interferon production promoter is a substance that is recognized by PRR receptors such as TLR or RIG-I and triggers the IRF signal pathway when it is processed into cells. It is a poly (I: C), which is a replacement nucleic acid of double stranded RNA, and a DNA replacement nucleic acid. CpG and the like are used. Although poly (I: C) is used in the present invention, the present invention is not limited thereto.
  • the activity of the promoter is measured by adding a candidate substance to the animal cells.
  • the candidate substance refers to a substance expected to activate the promoter or the expression of interferon by inhibiting the binding (binding) or interaction of HBV polymerase and DDX3.
  • candidates include, but are not limited to, for example, low molecular weight organic compounds, high molecular weight organic compounds, nucleic acid molecules (eg, DNA, RNA, PNA and aptamers), protein sugars and lipids.
  • the activity of the IFNp promoter can be confirmed by measuring the expression product of the reporter gene and can be measured using conventional reporter gene standard methods. (4) selecting the candidate material whose promoter activity is increased when the candidate material is added as compared with the case where the candidate material is not added.
  • HBV polymerase transfected and expressed in animal cells blocks the induction of interferon against viral infection through interaction with DDX3 molecules, so if the added candidate increases the activity of the promoter. It can be interpreted as selectively inhibiting the action of HBV polymerase that inhibits the binding of DDX3 and TBK1 / IKK ⁇ molecule. This may be assumed to be an active substance that inhibits the binding or interaction between DDX3 and HBV polymerase, and may be used as a therapeutic agent for hepatitis ⁇ .
  • the high-speed search method is a search method that can reduce the size of existing search units or automate repetitive tasks to obtain superior results in terms of quality and quantity compared to conventional search methods.
  • Tablets in the form of search Binding affinity for the protein receptor, enzyme activity search, or cell-level functional search can be divided into.
  • a) a base sequence encoding the HBV polymerase is first recombinant expression vector, b) interferon beta (IFNP) A second recombinant expression vector operably linked to the promoter and comprising a reporter gene for measuring the activity of the interferon beta (IFN 3) promoter and c) a gene encoding the interferon production promoter and interferon production stimulating factor.
  • IFNP interferon beta
  • IFNP interferon beta
  • the first embodiment adds an interferon production promoter such as poly (I: C) after transfection, but in the second embodiment instead, the method further comprises transfecting any one or more substances selected from the group consisting of a third expression vector including a gene encoding an interferon production-promoting agent and an interferon-producing stimulating factor in step (1).
  • poly (I: C) is a commonly used nucleic acid material instead of double stranded RNA, and when added to the medium, it acts as a ligand of TLR, while transfecting into cells acts as a ligand of RIG-I to promote interferon production. do.
  • a base sequence encoding HBV polymerase is encoded by a first recombinant expression vector, an IRF3-GAL4 fusion protein, into an animal cell having an interferon production capacity during virus infection.
  • a second recombinant expression vector comprising a nucleotide sequence and a pFR promoter and a gene encoding a third recombinant expression vector and an interferon generator stimulating factor operably linked thereto and comprising a base sequence encoding pFR luciferase.
  • Transfecting a fourth expression vector comprising; (2) measuring the activity of the pFR promoter by adding candidates to the animal cells; And (3) selecting a candidate substance whose activity of the IFN13 promoter is increased when the candidate substance is added as compared with the case where the candidate substance is not added. Provide a method for cleaning.
  • the third recombinant expression vector comprising a nucleotide sequence encoding pFR luciferase means a reporter plasmid having a GAL4 binding site at a promoter site and promoting transcription in a GAL4-dependent manner.
  • the screening method of the first embodiment of the present invention described above is in communication with an interferon beta promoter and a second recombinant expression vector in place of a second recombinant expression vector comprising a reporter gene for measuring the activity of the interferon beta promoter.
  • a second recombinant expression vector comprising a nucleotide sequence encoding a GAL4 fusion protein
  • a system 3 recombinant expression vector comprising a nucleotide sequence encoding an IRF3 GAL4 dependent pFR luciferase.
  • the IRF3-GAL4 fusion protein serves as a transcriptional promoter
  • the pFR luciferase third recombinant expression vector having a GAL4 binding site serves as a reporter.
  • the base sequence encoding the HBV polymerase is a first recombinant expression vector
  • b) provides a composition for screening a hepatitis B therapeutically active substance comprising a IFN13 promoter and a second recombinant expression vector operably linked thereto and comprising a reporter gene for measuring the activity of the IFNP promoter.
  • the activity of the promoter can be measured by adding to the animal cells having the ability to produce interferon upon infection with Irol virus and transfecting it, and then adding candidates.
  • Antivirals screened through the screening methods of the present invention will be more effective than the nucleoside derivatives currently in use. Because they act on new protein surface structures formed by binding between viral proteins and host proteins, they inhibit the formation of binding between proteins, making it very unlikely that a mutant virus will be created that avoids them.
  • the target provided by the present invention is a target specifically formed only for virus-infected cells, antiviral compounds selected by the present screening method are expected to have low toxicity to host cells.
  • hepatitis B virus can be removed to prevent cirrhosis and liver cancer caused by chronic hepatitis B virus.
  • the antiviral active substance discovered in the present invention can be used in combination with an existing antiviral agent and may also be co-administered with interferon.
  • the transfection technique, luciferase activity assay, immunoprecipitation method, and immunostaining method used to establish the assay for developing the antiviral agent used experimental materials and experimental methods frequently used by the literature and experts in this field. .
  • the following abbreviations are used:
  • HBV Hepatitis B virus
  • IFN interferon
  • PR pattern recognition receptor
  • TRF I RFC interferon regulatory factor
  • TIR TIR one domain—containing adapter protein inducing IFN
  • TBK TRF ⁇ associated NF ⁇ kB activator -binding kinase, IB kinase- ⁇ (IKK ⁇ ), pattern recognition molecular pattern (PAMP), toll 1-1 ike receptor (TLR), melanoma differentiat ion—associated gene 5 (MDA-5), human immunodeficiency virus ),
  • Hepatitis B virus can demonstrate the generation of interferon inhibition by polymerase 'IFNP Luciferase reporter assay
  • the cells were used as H e pG2 cells, using DMEM medium supplemented with 10% fetal added 53 ⁇ 4> were cultured in the incubator C3 ⁇ 4. Transfection is
  • PEI polyethylenimine
  • the plasmids used in the experiment were each given to the following researchers: IFN ⁇ -Luc reporter (Bowie, Trinity Col lege Dubl in, Ireland). Meanwhile, the plastic below The smid was previously used in the inventor's laboratory.
  • HBV polymerase expression fulllasmid (Ryu, Kim, and Ryu, 2008) has a cleavage map of the HBV polymerase expression plasmid shown in FIG. La, and encodes a gene encoding HBV polymerase represented by SEQ ID NO: 1. Include.
  • the HBV polymerase expression polamide may be prepared by inserting a gene encoding HBV polymerase represented by SEQ ID NO: 1 into pcDNA3 polamide (InVitrogen Inc.).
  • HBV core protein expression plasmid (Ryu, Kim, and Ryu, 2008) is a nucleotide sequence encoding the HBV core protein gene in pcDNA3 plasmid (InVitrogen Inc) (SEQ ID NO:
  • the Y Li D mutation expression plasmid of HBV polymerase is the same as that of said HBV polymerase. However, aspartic acid (D) residue of YMDD motif, which is an enzyme residue, is substituted with histidine (H) residue to express HBV polymerase that has lost enzymatic activity.
  • D aspartic acid
  • H histidine
  • the reporter assay was carried out according to the method of the manufacturer (Promega Inc.) after harvesting cells 24 hours after transfection of the following plasmid in a 24-well plate. Specifically, after transfecting the protein expression vector of HBV to HepG2 cells, liver cancer cell line, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group. At this time, poly (I: C), a substitute for double-stranded RNA, was added to the medium to activate TLR signaling, a major receptor for innate immunity. Meanwhile, TLR3 expression plasmids were transfected together to complement the function of HepG2 cells lacking TLR3 expression (Li et al., 2005).
  • FIG. 2 transfected IFNP Luciferase reporter plasmid and HBV protein expression vector in HepG2 cells, liver cancer cell lines, respectively, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group.
  • poly (I: C) was added to the medium to activate TLR signaling, and TLR3 expression plasmids were transfected together to complement the function of HepG2 cells deficient in TLR3 expression.
  • HBV polymerase reproducibly inhibited at least about 10 times the promoter active ol.
  • Core and X proteins are IFNp promoters. It did not inhibit the activity.
  • YMHD a mutant of the YMDD motif, an active site of HBV polymerase, also inhibited IFNP promoter activity. Therefore, the reverse transcription activity of HBV polymerase is not required for IFNP promoter activity inhibition.
  • Example 2 IFNP Luc if erase reporter assay showing that HBV polymerase inhibits induction of interferon expression by TLR3 and RIG-I receptors
  • the cells were HepG2 cells and were cultured in a 5% C0 2 incubator using DMEM medium with 10% fetal calf added. Transfection is
  • the method using PEI polyethylenimine was followed, and about 12 ug of plasmid DNA was transfected into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008).
  • the plasmids used in the experiment were each given to the following researchers: IFNb-Luc reporter (Bowie, Trinity College Dublin, Ireland).
  • the following Polismid was purchased from the manufacturer: HA-TLR3 (InvivoGen Inc).
  • the following plasmids were conventionally used in the inventor's laboratory: (1) HBV Pol expression fulllasmid (Fig. La).
  • the reporter assay was carried out according to the method of the manufacturer (Promega) after harvesting cells 24 hours after transfection of the following plasmid in 24-well full rate. Specifically, unlike the embodiment of 1-1, after transfecting while increasing the amount of HBV polymerase expression vector plasmid in HepG2 cells by doubling, the luc if erase activity was measured in comparison with the control group and the control group It was expressed in comparison to multiples (FIG. 3).
  • IFNP promoter activity decreased in proportion to the HBV polymerase concentration.
  • PEI polyethylenimine
  • IRF Interferon induction is performed through IRF signaling.
  • two major signs of IRF signaling are phosphorylation of IRF and nuclear transfer of IRF. Therefore, IRF may be used to determine whether innate immunity inhibition by HBV polymerase occurs via IRF signaling. Anger was investigated.
  • transfected poly I: C
  • HepG2 cells HepG2 cells
  • liver cancer cell line liver cancer cell line
  • IRF phosphorylation according to HBV polymerase expression was performed by Western blot using IRF phosphorylation specific antibody. It was investigated.
  • the cells were prepared as a complete solution containing 1% NP-40 (50 niM Tris-Cl [pH 7.4], 50 mM NaCl, 5 mM EDTA, 1
  • NP-40 50 niM Tris-Cl [pH 7.4], 50 mM NaCl, 5 mM EDTA, 1
  • the protein was electrophoresed with 12% SDS-PAGE gel after harvesting with% NP-40), the protein was blotted with PVDF membrane (Immobi lon-P; Millipore), and then detected with antibody.
  • Figure 5 HepG2 cells were added to the poly (I: C) medium, and after transfection of the HBV polymerase expression plasmid, cells were harvested three days later.
  • Example 4 HBV polymerase target in IRF signaling was identified as a subordinate of RIG-I or TIRF molecule
  • RIG-I and TRIF molecules were expressed instead of poly (I: C) to trigger IRF signaling and investigated IRF signaling inhibition by HBV polymerase. It was. 4-1. Inhibition of IRF Signaling Activated by RIG-I
  • IRF3-luci f erase reporter plasmids were used to investigate IRF signaling inhibition (Schroder, Bar an, and Bowie, 2008).
  • the IRF3-lucif erase reporter plasmid means a combination of an IRF3 / 7-GAL4 fusion protein expression plasmid and a pFR-luc if erase reporter plasmid having a GAL4 dependent promoter.
  • the cells were HepG2 cells, and cultured in a 5% C02 incubator using DMEM medium added with 10% fetal calf. Transfection is
  • PEI polyethylenimine
  • IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter polelasmid (Dr. Bowie, Trinity College Dublin, Ireland) and Flag-RIG-I (Dr. Fujita, Kyoto University).
  • pFR luciferase reporter polamide is a reporter plasmid with GAL4 binding site and is designed to measure the transcriptional activity of IRF3 / 7 by binding IRF3 / 7-GAL4 fusion protein through GA binding site.
  • transfection was performed together with an IRF3 / 7-GAL4 fusion protein expression plasmid and a pFR-luciferase reporter plasmid (Stack et al., 2005). Specifically, transfection of RIG-I molecule expression plasmid and IRF3-luci f erase construct in HepG2 cells and transfection with gradual increase of HBV polymerase expression vector plasmid were performed. Measured and expressed in multiples compared to the control group (FIG. 6). As a result, the IRF3 promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is located under the RIG-I molecule.
  • IRF3_luci f erase construct IRF signaling inhibition was investigated (Schroder, Bar an, and Bowie, 2008).
  • Cells were HepG2 cells and were cultured in 5) C02 incubator using DMEM medium added with 10% fetal calf.
  • Transfection followed the method using PEI (polyethylenimine) and transfected about 12 ug of plasmid DNA on a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008).
  • the polyamides used in the experiment were each obtained from the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter (Dr. Bowie, Trinity College Dublin, Ireland) and Flag-TRIF (Dr. Akira, Osaka).
  • Example 5 Results clarifying that the target of HBV polymerase is TBKl / IKKe in IRF signaling
  • Example 5 shows that HBV polymerase targets ⁇ / ⁇ molecules.
  • IRF signaling inhibition was investigated using an IRF3-luc if erase construct (Schroder, Bar an, and Bowie, 2008). HepG2 cells were used and cultured in a 5% CO 2 incubator using DMEM medium supplemented with 10% fetal calf. Transfection followed the method using polyethylenimine (PEI) and transfected approximately 12 ug of polamide DNA into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008).
  • PEI polyethylenimine
  • the plasmids used in the experiment were each obtained from the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luc if erase reporter (Dr. Bowie, Trinity College Dublin, Ireland), TBK-Flag, (Dr. Fitzgerald,
  • the kic if erase activity was controlled with the control group. Measured by comparison and expressed in multiples compared with the control group (FIG. 9). As a result, the IRF3 promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is at or below the TBK1 molecule.
  • IRF signaling was stimulated by expressing ⁇ molecules and examined for inhibition of IRF signaling by HBV polymerase. Unlike FIG. 3, IRF3—lucif erase reporter plasmid using IRF3
  • the cells were HepG2 cells, and cultured in a 5% C02 incubator using DMEM medium added with 10% fetal calf. Transfection is
  • PEI polyethylenimine
  • IRF3-luci ferase reporter plasmid was used to investigate IRF signaling inhibition (Schroder, Bar an, and Bowie, 2008).
  • Cells were HepG2 cells and were cultured in a 5% CO 2 incubator using DMEM medium supplemented with 10% fetal calf.
  • Transfection followed the method using polyethylenimine (PEI) and transfected approximately 12 ug of plasmid DNA into a 60 mm diameter plate (Ryu., Kim, and Ryu, 2008).
  • PEI polyethylenimine
  • ISRE-luci ferase construct (Stratagene Inc.). Specifically, transfecting ⁇ molecule expression plasmid and ISRE-luci ferase reporter plasmid into HepG2 cells and transfecting with increasing amounts of HBV polymerase expression vector plasmid gradually, luciferase activity was measured and compared with the control group. It was expressed in multiples compared to the control group (FIG. 11). As a result, the ISRE promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is at or below the ⁇ molecule.
  • PEI polyethylenimine
  • IRF3 Dr. Bowie, Trinity College Dublin, Ireland
  • the following plasmids were purchased from each manufacturer: ISRE-luci f erase construct (Stratagene Inc.). Specifically, after transfecting IRF3 expressing plasmid and ISRE-luci f erase reporter plasmid in HepG2 cells, and transfecting gradually increasing the amount of HBV polymerase expression vector polamide, luc if erase activity was compared with control group.
  • Example 5 suggest that the target of HBV polymerase is a TBK1 / IKK ⁇ molecule of IRF signaling. Recently, DDX3 has been reported to promote the activity of TBK1 / IKK ⁇ serine kinase, an effector kinase of IRF signaling (Schroder, Bar an, and Bowie, 2008; Soul at et al., 2008). This suggests that IRF signaling inhibition of HBV polymerase is the result of the interaction of DDX3 with HBV polymerase.
  • Example 6 shows an experimental result that is consistent with the above prediction.
  • HepG2 cells were used and cultured in a 5% CO 2 incubator using DMEM medium with 10% fetal calf added. Transfection is
  • PEI polyethylenimine
  • Plasmid DNA was transfected (Ryu, Kim, and Ryu, 2008).
  • the plasmids used in the experiment were obtained from the following researchers, respectively: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter, IFNP-Luc reporter (Dr. Bowie, Trinity Col lege Dublin, Ireland), TBKl-Flag (Dr. Fitzgerald, University of Massachusetts Medical School, Worcester, MA), DDX3 (Dr. KT Jeang, National Institute of Health, USA).
  • 13 is transfected TBK1 expressing full plasmid, IRF3 luciferase reporter plasmid and HBV polymerase expressing plasmid in HepG2 cells, and luciferase activity was measured in comparison with the control group and expressed in folds compared with the control group.
  • the effect of increasing the amount of DDX3 expression plasmid was observed.
  • the IRF3 promoter activity was restored in proportion to the expression of DDX3.
  • this result indicates that DDX3 antagonizes IRF signaling inhibition by HBV polymerase.
  • TBK1 instead of TBK1, the expression of ⁇ triggered IRF signaling, and the amount of DDX3 expressing plasmid was gradually increased, thereby inhibiting IRF signaling inhibition by HBV polymerase.
  • Cells were HepG2 cells and were cultured in a 5% CO 2 incubator using DMEM medium supplemented with 10% fetal calf. Transfection followed the method using PEI (polyethylenimine) and transfected about 12 ug of polamide DNA into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008).
  • PEI polyethylenimine
  • the plasmids used in the experiment were each given to the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter (Dr. Bowie, Trinity College Dublin, Ireland), IKK ⁇ -Flag (Dr. Fitzgerald,
  • FIG. 14 transfected ⁇ expression plasmid, IRF3 Luciferase reporter plasmid and HBV polymerase expression plasmid in HepG2 cells, respectively, and measured luciferase activity in comparison with the control group and expressed it in folds compared with the control group.
  • Examples 6-1 and 6-2 predict that HBV polymerase inhibits IRF signaling by blocking the interaction between DDX3- ⁇ . Immunoprecipitation was performed to investigate this hypothesis.
  • Cells were HepG2 cells and were cultured in a C02 incubator using DMEM medium supplemented with 10% fetal calf. Transfection followed the method using PEI (polyethylenimine) and transfected about 12 ug of plasmid DNA on a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008).
  • the pollamides used in the experiments were each obtained from the following researchers: ⁇ -Flag (Dr. Fitzgerald, University of
  • Example 7 Results showing application of hepatitis B treatment active substance screening
  • the experiment of Example 2 may be carried out on a 96 well plate to screen for the hepatitis B therapeutic active substance.
  • the active substance screening for hepatitis B treatment was carried out by the following method-The compound library is azaguanine-8, al lantoin, acetazol amide, metformin hydrochloride , atracurium besylate, isof lupredone acetate, amilor ide hydrochloride, amprol ium hydrochloride, hydrochlorothiazide and sul faguanidine.
  • HEK293 cells were used, and cultured in a 53 ⁇ 4 C0 2 incubator using DMEM medium containing 10% fetal calf. Transfection is
  • polyethylenimine PEI
  • cleavage map of IFN ⁇ -Luc reporter plasmid Dr. Bowie, Trinity College Dublin, Ireland
  • TLR3 expression plasmid InvivoGen Inc.
  • FIG. HBV polymerase expressing plasmids having been transfected intracellularly.
  • poly (I: C) was treated with medium for about 12 hours, and then luciferase activity was measured through a reporter assay.
  • the reporter assay was carried out according to the method of "(Victor 3 Inc. Perk in-Elmer Inc.) when the following plasmid was prepared 24 hours after transfection in a 96 well plate.
  • IFNp luc if erase reporter fulllasmid IFNP promoter activity was designed to be conveniently measured using luciferase and is a well known plasmid.
  • the IFNP promoter is composed of an IRF3 / 7 binding site and an NF-kB binding site to measure the activation of the two transcription factors.
  • luciferase activity decreased (FIG. 17), and Compounds # 1 to 10 of the compound library.
  • luciferase activity was not restored.
  • the 300 compounds investigated in this example did not recover promoter activity. It is judged that there is no activity as a therapeutic agent for hepatitis B. This example is described for the purpose of illustration of chronic hepatitis B virus therapeutically active substance screening.
  • the screening system of hepatitis B therapeutically active substance according to the present invention can easily detect drugs that induce secretory activity of innate immunity (interferon) by inhibiting the interaction of HBV primerase and DDX3. It can be usefully used for developing hepatitis therapeutics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention is for screening for substances that selectively inhibit binding between DDX3 proteins and HBV polymerase as distinct from the molecules of the virus itself, and it can be expected that not only will there be only a very remote possibility of mutant viruses occurring that have resistance to avoid the same but also that the cytotoxicity with respect to host cells will be extremely low since the invention entails a target that is formed specifically only in infected cells. In particular, there is the advantage that the invention is outstanding in terms of cytotoxicity and the low occurrence of resistant mutations in chronic hepatitis B requiring long-term treatment of 1 year or more.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
B형 간염 치료활성 물질의 스크리닝용 조성물 및 스크리닝 방법  Compositions and Screening Methods for Screening Hepatitis B Therapeutic Active Materials
【기술분야】  Technical Field
본 발명은 B형 간염 치료활성 물질의 스크리닝용 조성물 및 스크리닝 방법에 관한 것으로, 보다 상세하게는 B형 간염바이러스의 폴리머라제가 인터페론 의 발 현유도를 저해하는 기작을 규명하고 상기 기작을 통해 새로운 개념의 B형 간염 치 료활성 물질을 스크리닝할 수 있는 스크리닝용 조성물 및 스크리닝 방법에 관한 것 이다.  The present invention relates to a composition for screening and a method for screening a hepatitis B therapeutically active substance, and more specifically, to identify a mechanism by which the polymerase of hepatitis B virus inhibits the induction of interferon and a new concept through the mechanism. The present invention relates to a screening composition and a screening method capable of screening a hepatitis B therapeutically active substance.
【배경기술】  Background Art
B형 간염바이러스 (Hepatitis B virus, HBV)는 급성 간염 뿐 아니라, 만성 간 염을 일으키는 바이러스로서 현재 약 4억의 인구가 감염자인 임상적으로 매우 증요 한 바이러스이다 (Seeger, Zoulim, and Mason, 2007) . HBV는 DNA 바이러스이지만, RNA를 주형으로 HBV폴리머라제 (polymerase)가 가지고 있는 역전사 활성 (reverse transcriptase activity)을 통하여 DNA유전자를 복제하는 매우 특이한 복제기전을 갖는다. HBV의 게놈은 약 3.2k bp의 원형의 DNA유전자를 갖고 있으며 , 코아 단백 질 (C, core), 폴리머라제 (P, polymerase), 표면항원 (S, surface antigen), 그리고 X 단백질 (ΗΒχ)의 네 개의 바이러스 단백질 유전자를 코드한다. 이러한 네. 개의 바 이러스 단백질 중에서 코아 단백질 (C), 폴리머라제 (Ρ)는 Β형 간염 바이러스의 유전 자 복제에 필수적이다. Β형 간염 바이러스는 레트로바이러스와 유사한 역전사 과정 을 거쳐 DNA를 합성한다 (Nassal, 2008) . Hepatitis B virus (HBV) is a virus that causes chronic hepatitis, as well as acute hepatitis, and is a clinically significant virus that currently infects about 400 million people (Seeger, Zoulim, and Mason, 2007). . HBV is a DNA virus, but has a very specific replication mechanism that replicates DNA genes through reverse transcriptase activity possessed by HBV polymerase. The genome of HBV has a circular DNA gene of about 3.2k bp and is composed of core protein (C, core), polymerase (P, polymerase), surface antigen (S, surface antigen), and X protein (ΗΒχ). Code four viral protein genes. These four . Among the four viral proteins, core protein (C) and polymerase (Ρ) are essential for gene replication of hepatitis B virus. Hepatitis B virus synthesizes DNA through a reverse transcription process similar to retrovirus (Nassal, 2008).
인터페론 혹은 라미부딘 등의 뉴클레오사이드 유사체가 항바이러스제로 개발 되어 사용 증이지만 부작용 및 내성바이러스의 생성 등으로 그 효과는 미흡하다. 따라서, 새로운 만성 B형 간염치료제의 개발이 절실하다 (Zoulim and Locarnini , 2009).  Nucleoside analogues, such as interferon or lamivudine, have been developed as antiviral agents, but their effects are insufficient due to side effects and the production of resistant viruses. Therefore, the development of new chronic hepatitis B treatment is urgently needed (Zoulim and Locarnini, 2009).
한편, 바이러스 감염은 흔히 항바이러스 활성을 갖는 인터페론 (interferons, IFN)의 발현을 유도하는 선천면역반응을 일으킨다. 최근, 바이러스의 침입을 인지 하여 인터페론을 생성하는 세포기전이 비교적 상세히 규명되었다. 구체적으로, 세 균이나 곰광이와 마찬가지로, 세포에 진입한 바이러스도 소위 PRR(pattern recognition receptor)이라고 불리는 수용체들에 의해 인지된다 (Akira, Uematsu, and Takeuchi , 2006; Pichlmair and Reis e Sousa, 2007) . 흔히 바이러스 게놈을 구성하는 핵산물질이 PR 에 의해 인지되는 PAMPs(pattern-associated molecular patterns)로 작용한다. PRJ?은 크게 두 가계로 나뉜다. 우선, 첫 가계는 Viral infections, on the other hand, often produce an innate immune response that induces the expression of interferons (IFNs) with antiviral activity. In recent years, the cellular mechanism of interferon generation by recognizing virus invasion has been identified in detail. Specifically, viruses, as well as bacteria and bearheads, are recognized by receptors called PRRs (Akira, Uematsu, and Takeuchi, 2006; Pichlmair and Reis e Sousa, 2007). . Often, nucleic acid constituting the viral genome is pattern-associated molecular (PAMPs) recognized by PR. patterns). PRJ? Is divided into two families. First of all, the first household
TLR(toll-like receptor)로서 TLR3, TLR7, TLR 8, TLR9 등을 포함하며 수지상 세포 등의 엔도솜에 위치한다. TLR에 의한 PAMPs의 인지는 IRF signaling등의 신호전달 과정을 활성화하여 IRF3/7, NF-kB등의 전사인자를 활성화한다. 구체적으로, TLR은 TRIF(TIR-doma in-containing adaptor protein inducing IFN 3)'라는 어댑터 단백질 을 채용하고, 이는 다시 ΤΒΚΙ/ΙΚΚε (TAN -binding kinase 1/1 Β kinase- ε 를 활 성화하여 결국 전사인자인 IRF3/7의 인산화를 통해 인터페론의 발현을 유도한다 (Akira, Uematsu, and Takeuchi , 2006; Honda and Taniguchi , 2006) . Toll-like receptors (TLR) include TLR3, TLR7, TLR 8, TLR9 and the like and are located in endosomes such as dendritic cells. Recognition of PAMPs by TLR activates signaling processes such as IRF signaling to activate transcription factors such as IRF3 / 7 and NF-kB. Specifically, TLR employs an adapter protein called TRIF (TIR-doma in-containing adapter protein inducing IFN 3), which in turn activates ΤΒΚΙ / ΙΚΚε (TAN-binding kinase 1/1 Β kinase-ε). Phosphorylation of the factor IRF3 / 7 induces the expression of interferon (Akira, Uematsu, and Takeuchi, 2006; Honda and Taniguchi, 2006).
두번째의 PRR 가계는 RLR(retinoic-acid inducible gene I (RIG-I)-like receptors) 이라고 부르며, RIGᅳ I 및 MDA-5 (melanoma different iat ion-associated gene 5)가 여기에 속한다 (Pichlmair and Reis e Sous a, 2007). TLR과 마찬가지로, RLR에 의한 바이러스 핵산의 인지는 IRF signaling등을 활성화하여 IRF3/7, NF-kB 등의 전사인자를 활성화를 일으킨다. 특히, RLR은 어댑터인 IPSGFNP -promoter stimulator 1, 혹은 MAVS, VISA, 또는 Cardif 라고도 부른다)와의 결합을  The second PRR line is called retinoic-acid inducible gene I (RIG-I) -like receptors (RLRs), which belong to RIG ᅳ I and MDA-5 (melanoma different iat ion-associated gene 5) (Pichlmair and Reis). e Sous a, 2007). Like TLR, viral nucleic acid recognition by RLR activates IRF signaling and the like, and activates transcription factors such as IRF3 / 7 and NF-kB. In particular, RLR binds to the adapter IPSGFNP -promoter stimulator 1, or MAVS, VISA, or Cardif).
통해 ΤΒΚΙ/ΙΚΚε kinases를 활성화하고. 이는 다시 전사인자인 IRF3/7, NF-kB을 활 성화한다 (Akira, Uematsu, and Takeuchi , 2006). 결국, 두 가계의 수용체 모두 IRF3 signaling의 effector kinase인 ΤΒΚΙ/ΙΚΚε kinases를 활성화시키고, 이 kinase가 IRF3, IRF7, NF-kB등의 전사인자를 인산화하고 핵 이동을 촉진하면서 전 사인자의 활성화하는 것이 핵심적인 측면이다. Through ΤΒΚΙ / ΙΚΚε kinases. This in turn activates the transcription factors IRF3 / 7, NF-kB (Akira, Uematsu, and Takeuchi, 2006). Eventually, both family receptors activate ΤΒΚΙ / ΙΚΚε kinases, effector kinases for IRF3 signaling, which phosphorylate transcription factors such as IRF3, IRF7, and NF-kB, and promote nuclear migration, while activating all of them. It is an aspect.
바이러스 감염에 대항하기 위해 세포는 선천면역기능을 작동하여 바이러스의 증식을 억제하고자 한다. 즉, 바이러스 감염올 인지한후 IRF signaling의 활성화 를 통해 인터페론을 발현하여 바이러스 증식을 억제하고자 한다. 그런데, HBV 감염 은 다소 예외적이다. 침팬지 동물모델의 감염실험을 통해 선천면역에 관련된 유전 자의 발현이 감지되지 않았다 (Wieland et al ., 2004; Wieland and Chisari , 2005). 이 결과는 HBV감염은 선천면역시스템이 인지하지 못한다는 추정을 하게 되 어 "스텔스바이러스 (Stealth virus)"라고 불리기도 했다. 이러한 초기 보고와는 달리, 실제 HBV 감염에 대한 선천면역을 관찰한 보고들이 있다. 예를 들면, 초기감 염 시, 선천면역유도의 특성인 자연살상세포 (natural killer cell)의 반응이 급성 감염 환자에서 관찰된 바 있다 (Fisicaro et al. , 2009). 또한, HBV 감염에 민감한 세포주인 HepaRG 세포를 이용하여, HBV 감염이 강력한 선천면역반웅을 유도하며 이 반웅이 HBV DNA 복제를 저해함을 관찰한 바 있다 (Lucifora et al. , 2010). 이상의 결과를 종합하여, 실제 HBV 감염 시, 선천면역반응이 강하게 유도되지만 바이러스 단백질이 이를 대항하여 저해한다고 추론할 수 있다. To combat viral infections, cells try to suppress the proliferation of viruses by innate immune function. In other words, after recognizing the virus infection, the interferon is expressed by activating IRF signaling to suppress virus growth. However, HBV infection is somewhat exceptional. Infection studies of chimpanzee animal models did not detect the expression of genetically related genes (Wieland et al., 2004; Wieland and Chisari, 2005). The results suggest that HBV infection is not recognized by the innate immune system and has been called "Stealth virus." Unlike these early reports, there are reports of observations of innate immunity to actual HBV infection. For example, the response of natural killer cells, a characteristic of innate immunity, has been observed in patients with acute infection during initial infection (Fisicaro et al., 2009). In addition, HepaRG cells, a cell line sensitive to HBV infection, have observed that HBV infection induces a strong congenital immune response and inhibits HBV DNA replication (Lucifora et al., 2010). Based on the above results, in real HBV infection, the innate immune response is strongly induced but It can be inferred that the protein inhibits it.
한편, DEAD-box RNA helicase는 인간게놈에 약 38개의 유전자가 발견된 큰 단백질 가계이다 (Under, 2006). DEAD-box RNA helicase는 세포 내에서 전사, RNA 스플라이싱, RNA 핵 방출, 번역 등의 다양한 RNA 대사에 작용한다 (Rocak and Linder, 2004) . DEAD-box RNA helicase 가계에 속하는 DDX3도 다양한 RNA 대상에 관련됨이 보고된 바 있다.  The DEAD-box RNA helicase, on the other hand, is a large protein family with about 38 genes found in the human genome (Under, 2006). DEAD-box RNA helicase acts on various RNA metabolism in cells such as transcription, RNA splicing, RNA nuclear release, and translation (Rocak and Linder, 2004). DDX3, a member of the DEAD-box RNA helicase family, has also been reported to be involved in various RNA targets.
구체적으로 DDX3(GeneBank accession No. 丽 _001356.3)는 다양한 바이러스의 생활사에서도 작용한다 . 우선 인간면역결핍바이러스인 HIV(human immunodeficiency virus)의 증식에 작용한다. 구체적으로 Rev/RRE 경로에 작용하여 HIV RNA의 핵 방출에 필수적이다 (Yedavalli et al. , 2004). 또한, DDX3는 C형 간 염바이러스의 RNA 게놈증식에도 필수적으로 작용한다 (Ariurai et al . , 2007; Owsianka and Patel , 1999). 한편, 이와는 대조적으로 최근 본 발명자는 DDX3는 HBV 폴리머라제와의 결합을 통해 HBV 게놈증식을 저해함올 보고한 바 있다 (Wang, Kim, and Ryu, 2009). 한편, RNA 대사의 관련성 이외에도, DDX3는 선천면역반웅을 촉진함이 보고된 바 있다 (Schroder, Bar an, and Bowie, 2008; Soul at et al . , 2008). 구체작으로 DDX3가 IRF signaling의 effector kinase인 ΤΒΚΙ/ΙΚΚε 와의 결 합을 통해 ΤΒΚΙ/ΙΚΚε kinase 활성올 증폭함으로써 선천면역을 촉진하는 것이다. Specifically, DDX3 (GeneBank accession No. 丽 001356.3) also works in the life history of various viruses. First, it acts on the proliferation of human immunodeficiency virus (HIV). Specifically, it acts on the Rev / RRE pathway and is essential for nuclear release of HIV RNA (Yedavalli et al., 2004). DDX3 also plays an essential role in RNA genome proliferation of hepatitis C virus (Ariurai et al., 2007; Owsianka and Patel, 1999). On the other hand, in contrast, the present inventors have recently reported that DDX3 inhibits HBV genome proliferation through binding to HBV polymerase (Wang, Kim, and Ryu, 2009). On the other hand, in addition to the relevance of RNA metabolism, DDX3 has been reported to promote congenital immune response (Schroder, Bar an, and Bowie, 2008; Soul at et al., 2008). Specifically, DDX3 promotes innate immunity by amplifying ΤΒΚΙ / ΙΚΚε kinase activators through the combination of ΤΒΚΙ / ΙΚΚε, an effector kinase of IRF signaling.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 상술한 문제점올 해결하기 위해 안출된 것으로, 본 발명의 첫번째 해결하려는 과제는 내성변이 바이러스의 생성을 방지할 수 있는 새로운 개념의 B형 간염 치료활성 물질을 스크리닝할 수 있는 스크리닝용 조성물 및 스크리닝 방법올 제공하는 것이다.  The present invention has been made to solve the above-mentioned problems, the first problem to be solved of the present invention is a screening composition that can screen a hepatitis B therapeutically active substance of a new concept that can prevent the generation of resistance mutations and It is to provide a screening method.
【기술적 해결방법】  Technical Solution
상기 첫번째 해결하려는 과제를 달성하기 위하여, 본 발명은 a) HBV 폴리머 라제를 코딩하는 염기서열을 제 1 재조합 발현백터; b) 인터페론 베타 (IFNi3) 프로 모터 및 이에 작동가능하게 연결되며 인터페론 베타 (IFNp) 프로모터의 활성을 측 정하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터;를 포함하는 B형 간염 치료활성 물질의 스크리닝용 조성물을 제공한다.  In order to achieve the first object to be solved, the present invention is a) a base sequence encoding the HBV polymerase, the first recombinant expression vector; b) a second recombinant expression vector comprising a reporter gene for measuring the activity of an interferon beta (IFNi3) promoter and an interferon beta (IFNp) promoter operably linked thereto; It provides a composition for.
본 발명의 바람직한 일실시예에 따르면, 상기 조성물은 c) 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포를 포함할 수 있다.  According to a preferred embodiment of the present invention, the composition may comprise c) an animal cell having the ability to produce interferon during virus infection.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 조성물은 d) 인터페론 생성자극인자를 코딩하는 유전자를 포함하는 제 3 재조합 발현백터를 포함할 수 있 다. According to another preferred embodiment of the present invention, the composition is d) interferon It may include a third recombinant expression vector comprising a gene encoding a gene for stimulating factor.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 인터페론 생성자극인 자는 TRIF(GeneBank accession No. NM_182919.2) , RIG- I (GeneBank accession No. 丽_014314.3)/¾« -5, IPS-1, TBK1( (GeneBank accession No. 蘭 _004180.2)/IKK ε (GeneBank accession No.NM_014002.3)분자로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있다.  According to another preferred embodiment of the present invention, the interferon-producing stimulus is TRIF (GeneBank accession No. NM_182919.2), RIG-I (GeneBank accession No. 丽 _014314.3) / ¾ «-5, IPS-1 And TBK1 ((GeneBank accession No. # _004180.2) / IKK ε (GeneBank accession No. NM_014002.3) molecules.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 리포터 유전자는 E. coli β-갈락토시다아제 (galactosidase), 루시퍼라아제 (luciferase) , 알칼라인 포 스파타아제 (alkaline phosphatase), 분비성 태반 알칼라인 포스파타아제 (secreted placental alkaline phosphatase) 또는 클로람페니콜  According to another preferred embodiment of the present invention, the reporter gene is E. coli β-galactosidase, luciferase, alkaline phosphatase, secretory placental alkaline Phosphatase (secreted placental alkaline phosphatase) or chloramphenicol
아세틸트랜스퍼라아제 (chloramphenicol acetyltransferase, CAT)일 수 있다. 본 발명의 바람직한 또 다른 일실시예에 따르면, (1) 바이러스 감염 시 인터 페론의 생성능을 갖는 동물세포에, HBV 폴리머라제를 코딩하는 염기서열을 제 1 재 조합 발현백터 및 인터페론 베타 (ΙΡΝβ) 프로모터와 이에 작동가능하게 연결되며 인터페론 베타 (IFNi3) 프로모터의 활성을 측정하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터를 트랜스펙션 (transfection)하는 단계; (2) 상기 동물세포에 인터페론생성 촉진물질을 첨가하는 단계; (3) 상기 동물세포에 후보물질을 첨가하 여 인터페론 베타 (IFNP) 프로모터의 활성올 측정하는 단계; 및 (4) 상기 후보물질 을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 프로모터의 활성이 증가한 후보물질을 선별하는 단계를 포함하는 B형 간염 치료활성 물질을 스크리닝 하는 방법을 제공한다. Chloramphenicol acetyltransferase (CAT). According to another preferred embodiment of the present invention, (1) a first recombinant expression vector and an interferon beta (ΙΡΝβ) promoter encoding a sequence encoding HBV polymerase in an animal cell having an interferon generating ability during virus infection And transfecting a second recombinant expression vector operably linked thereto and comprising a reporter gene for measuring activity of an interferon beta (IFNi3) promoter; (2) adding an interferon production promoter to the animal cell; (3) measuring the activity of the interferon beta (IFNP) promoter by adding candidates to the animal cells; And (4) provides a method for screening the hepatitis B therapeutically active substance comprising the step of selecting a candidate substance with increased activity of the promoter when the candidate substance is added compared to the case where the candidate substance is not added.
본 발명의 바람직한 일실시예에 따르면, 상기 인터페론생성 촉진물질은 폴리 (I:C)일 수 있다. 본 발명의 실시예는 TLR3 수용체와 TLR3의 리간드인 폴리 (I:C)의 경우만을 수행하였으나, 본 발명은 이에 제한되지 않고 다른 10 여종 의 TLR 가계의 수용체와그에 따른 다양한 리간드도 모두 포함된다. 예를 들면, TLR9 수용체와 TLR9의 리간드인 CpG DNA를사용해도 본 발명의 효과는 동일할 것이 다.  According to a preferred embodiment of the present invention, the interferon production promoter may be poly (I: C). The embodiment of the present invention was performed only for the TLR3 receptor and poly (I: C), which is a ligand of TLR3, but the present invention is not limited thereto and includes all other ten kinds of TLR family receptors and various ligands accordingly. For example, the effect of the present invention will be the same even if the TLR9 receptor and CpG DNA which is a ligand of TLR9 are used.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (1) 단계에서, 상기 동물 세포에 인터페론 생성자극인자를 코딩하는 유전자를 포함하는 제 3 재조합 발현백 터를 더 포함할 수 있으며 , 이 경우 보다 바람직하게는 상기 인터페론 생성자극인 자는 TRIF, RIG- I /MDA-5, IPS-1, ΤΒ Ι/Ι Κε 분자로 구성되는 군으로부터 선택되 는 어느 하나 이상일 수 있다. According to another preferred embodiment of the present invention, in the step (1), the animal cell may further comprise a third recombinant expression vector comprising a gene encoding an interferon generating stimulation factor, in this case more preferred Preferably the interferon production stimulus The rule may be any one or more selected from the group consisting of TRIF, RIG-I / MDA-5, IPS-1, ΤΒΙ / Ι κε molecules.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 리포터 유전자는 Ε. coli β-갈락토시다아제 (galactosidase), 루시퍼라아제 ( luci f erase), 알칼라인 포 스파타아제 (alkaline phosphatase), 분비성 태반 알칼라인 포스파타아제 (secreted placental alkaline phosphatase) 또는 클로람페니콜  According to another preferred embodiment of the present invention, the reporter gene is Ε. coli β-galactosidase, luci f erase, alkaline phosphatase, secreted placental alkaline phosphatase or chloramphenicol
아세틸트랜스퍼라아제 (chloramphenicol acetyltransferase, CAT)일 수 있다. Chloramphenicol acetyltransferase (CAT).
본 발명의 바람직한 또 다른 일실시예에 따르면, (1) 바이러스 감염 시 인터 페론의 생성능을 갖는 동물세포에, a) HBV 폴리머라제를 코딩하는 염기서열을 제 1 재조합 발현백터, b) 인터페론 베타 (IFNP) 프로모터와 이에 작동가능하게 연결되 며 인터페론 베타 (IFN 3) 프로모터의 활성을 측정하기 위한 리포터 유전자를 포함 하는 제 2 재조합 발현백터 및 c) 인터페론생성 촉진물질과 인터페론 생성자극인자 를 코딩하는 유전자를 포함하는 제 3 발현백터로 구성되는 군으로부터 선택되는 어 느 하나 이상의 물질을 트랜스펙션 (transfection)하는 단계; (2) 상기 동물세포에 후보물질을 첨가하여 인터페론 베타 (IFNP) 프로모터의 활성을 측정하는 단계; 및 (3) 상기 후보물질을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 IFNp 프 로모터의 활성이 증가한후보물질을 선별하는 단계를 포함할 수 있다ᅳ 본 발명의 바람직한 또 다른 일실시예에 따르면, (1) 바이러스 감염 시 인터 페론의 생성능을 갖는 동물세포에, HBV 폴리머라제를 코딩하는 염기서열을 게 1 재 조합 발현백터, IRF3-GAL4 융합단백질을 코딩하는 염기서열을 포함하는 거 12 재조합 발현백터 및 pFR 프로모터와 이에 작동가능하게 연결되며 pFR 루시퍼라제를 코당하 는 염기서열을 포함하는 제 3 재조합 발현백터 및 인터페론 생성자극인자를 코딩하 는 유전자를 포함하는 제 4 발현백터를 트랜스펙션 (transfection)하는 단계; (2) 상 기 동물세포에 후보물질을 첨가하여 pFR 프로모터의 활성을 측정하는 단계; 및 (3) 상기 후보물질올 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 IFNp 프로모 터의 활성이 증가한후보물질을 선별하는 단계를 포함할 수 있다. 본 발명의 바람직한 또 다른 일실시예에 따르면, HBV폴리머라제를 발현하는 동물세포에 후보물질을 첨가하여 HBV폴리머라제와 DDX3의 결합을 저해하는 후보물 질을 선별하는 B형 간염 치료활성 물질의 스크리닝 시스템을 제공한다ᅳ  According to another preferred embodiment of the present invention, (1) in an animal cell having the ability to produce interferon during virus infection, a) the base sequence encoding the HBV polymerase is a first recombinant expression vector, b) interferon beta ( IFNP) promoter and a second recombinant expression vector operably linked thereto comprising a reporter gene for measuring the activity of the interferon beta (IFN 3) promoter and c) a gene encoding the interferon production promoter and interferon production stimulating factor. Transfecting any one or more substances selected from the group consisting of a third expression vector comprising a; (2) measuring the activity of the interferon beta (IFNP) promoter by adding candidates to the animal cells; And (3) selecting a candidate material having increased IFNp promoter activity when the candidate material is added as compared with the case where the candidate material is not added. In another preferred embodiment of the present invention, According to (1) an animal cell having an interferon-producing ability during virus infection, the nucleotide sequence encoding HBV polymerase is included in the recombinant expression vector and the nucleotide sequence encoding the IRF3-GAL4 fusion protein. Transfection of an expression vector and a fourth expression vector comprising a gene encoding an interferon generator stimulating factor and a third recombinant expression vector comprising a nucleotide sequence operably linked to the expression vector and a pFR promoter (transfection); (2) measuring the activity of the pFR promoter by adding a candidate to the animal cells; And (3) selecting candidate substances in which the activity of the IFNp promoter is increased when the candidate substances are added as compared with the case where the candidate substances are not added. According to another preferred embodiment of the present invention, screening of a hepatitis B therapeutically active substance for selecting a candidate substance that inhibits binding of HBV polymerase and DDX3 by adding a candidate substance to an animal cell expressing HBV polymerase Provide a system
본 발명의 바람직한 또 다른 일실시예에 따르면, HBV폴리머라제를 발현하는 동물세포에 후보물질을 첨가하여 HBV폴리머라제와 DDX3의 결합을 저해하여 DDX3와 ΤΒΚΙ/ΙΚΚε와의 결합을 유도하는 후보물질을 선별하는 Β형 간염 치료활성 물질의 스크리닝 시스템올 제공한다. 이하, 본 발명에 사용된 용어를 설명한다. According to another preferred embodiment of the present invention, to express HBV polymerase A candidate system is added to animal cells to inhibit the binding of HBV polymerase and DDX3 to provide a screening system for a hepatitis B therapeutically active substance that selects candidates that induce binding of DDX3 with ΤΒΚΙ / ΙΚΚε. Hereinafter, terms used in the present invention will be described.
용어 "바이러스 감염 시 인터페론의 생성능을 갖는"이라 함은 바이러스 감염 에 의해 인터페론 발현이 촉진되어 인터페론을 생산하는 세포를 의미한다.  The term "having the ability of interferon to produce virus infection" refers to a cell that promotes interferon expression by viral infection to produce interferon.
용어 "작동적으로 결합된' '은 핵산 발현 조절 서열 (예: 프로모터, 시그널 서 열, 또는 전사조절인자 결합 위치)과 다른 핵산서열사이의 기능적인 결합을 의미 하며 , 이에 의해 상기 조절 서열은 상기 다른 핵산서열의 전사를 조절하게 된다. 용어 " IFNp 프로모터"는 인터페론의 발현을 조절할 수 있는 DNA서열을 의 미한다. IFNp 프로모터는 IRF3/7 결합부위와 NF-kB 전사인자 결합부위로  The term "operably linked" means a functional binding between a nucleic acid expression control sequence (e.g., a promoter, signal sequence, or transcriptional regulator binding site) and another nucleic acid sequence, whereby the regulatory sequence is The term “IFNp promoter” refers to a DNA sequence that can regulate the expression of interferon, which is an IRF3 / 7 binding site and an NF-kB transcription factor binding site.
구성된다. It is composed.
용어 "리포터 유전자 "는 예컨대 생물학적 활성 분석으로 용이하게 측정 가능 한 발현 산물 (효소 등)을 인코딩하는 DNA분자를 의미한다.  The term “reporter gene” refers to a DNA molecule that encodes an expression product (such as an enzyme) that is readily measurable, for example, in biological activity assays.
용어 "pFR프로모터"는 효모의 전사인자인 GAL4 결합부위를 갖는 프로모터로 서 GAL4 의존성 전사를 측정하는 목적으로 널리 사용된다.  The term “pFR promoter” is a promoter having a GAL4 binding site, which is a transcription factor of yeast, and is widely used for measuring GAL4 dependent transcription.
용어 "후보물질" 은 HBV 폴리머라제와 DDX3와의 상호작용 (interaction)을 저해하여 HBV 플리머라제에 의한 인터페론 발현억제를 저해하여 인터페론발현의 원 상회복이 기대되는 물질을 의미한다. 상기 후보물질은 예를 들어, 저분자량 유기화 합물, 고분자량 유기화합물, 핵산분자 (예컨대, DNA, RNA, PNA 및 앱타머), 단백질, 당 및 지질 등을 포함하나, 이에 한정되지 않는다.  The term "candidate" refers to a substance that inhibits the interaction of HBV polymerase with DDX3 and inhibits the inhibition of interferon expression by HBV plymerase, and thus is expected to recover the original expression of interferon expression. Such candidates include, but are not limited to, for example, low molecular weight organic compounds, high molecular weight organic compounds, nucleic acid molecules (eg, DNA, RNA, PNA and aptamers), proteins, sugars, and lipids.
【유리한 효과】  Advantageous Effects
본 발명은 HBV 폴리머라제 -DDX3 분자 간의 결합을 선택적으로 저해하는 물질 을 스크리닝하는 것이므로 이를 회피하는 내성 돌연변이 바이러스의 발생가능성이 매우 희박할 것이다. 또한 HBV 폴리머라제와 DDX3 분자의 결합은 감염세포에만 특 이적으로 형성된 표적본이므로 이 결합을 저해하는 물질의 세포독성은 극히 낮을 것으로 기대된다. 특히 1년 이상 장기간 치료를 요하는 만성 B형 간염의 경우 낮은 내성변이주 발생 및 세포독성은 항바이러스제로서의 뛰어난 장점이다.  Since the present invention screens for substances that selectively inhibit binding between HBV polymerase-DDX3 molecules, the likelihood of resistance mutant viruses avoiding them will be very slim. In addition, since the binding of HBV polymerase and DDX3 molecules is a target formed specifically for infected cells, the cytotoxicity of a substance that inhibits the binding is expected to be extremely low. In the case of chronic hepatitis B, which requires long-term treatment for more than 1 year, low resistance mutagenesis and cytotoxicity is an excellent antiviral agent.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 la 내지 도 lc 는 본 발명에 사용된 재조합폴라스미드의 개열지도이다. 구체적으로 도 la는 HBV폴리머라제 발현백터 (pcDNA-HBV Pol)의 개열지도로서 HBV ayw유전자형 (GenBank accession V01460)의 P유전자가 pcDNA3.0 백터 (In Vitrogen Inc.)의 multiple cloning site에 삽입되어 CMV(cytomegalovirus) 초전기 프로모터 로부터 발현된다. HBV 폴리머라제 유전자의 N-말단에 연결된 FLAG tag은 감지를 위해 삽입된 것이다. 도 lb는 HBx 단백질의 발현백터 (pCMV7- HBx)로서 HBV ayw 유전자형 (GenBank accession V01460)의 X유전자가 pCMV7 백터 (Sigma Inc.)의 multiple cloning site에 삽입되어 CMV(cytomegalovirus) 초전기 프로모터로부터 발현된다. X 유전자의 C-말단에 연결된 FLAG tag은 감지를 위해 삽입된 것이다. 도 lc는 코아단백질 (Core)의 발현백터 (pcDNA-Core)로서 HBV ayw유전자형 (GenBank accession V01460)의 코아유전자가 pcDNAl/Amp 백터 (In Vitrogen Inc.)의 multiple cloning site에 삽입되어 (MV(cytoraegalovirus) 초전기 프로모터로부터 발현된다. 도 2는 HBV폴리머라제에 의한 인터페론생성 저해를 보여주는 결과로서, 도 2는 간암 세포주인 HepG2 세포에 ΙΡΝβ Luc if erase 리포터 플라스미드와 HBV의 단 백질 발현백터를 각각 트랜스팩션 한 후, luc if erase 활성을 제어군과 비교하여 측 정하고 이를 제어군과 비교한 배수로 표시하였다. 또한, TLR signaling을 활성화하 기 위해 poly(I:C)를 배지에 첨가하였고, TLR3 발현이 결핍된 HepG2세포의 기능을 보완하기 위해 TLR3 발현 플라스미드를 함께 트랜스팩션하였다. La to lc are cleavage maps of the recombinant polamide used in the present invention. Specifically, la is a cleavage map of HBV polymerase expression vector (pcDNA-HBV Pol). The P gene of the ayw genotype (GenBank accession V01460) is inserted at multiple cloning sites of the pcDNA3.0 vector (In Vitrogen Inc.) and expressed from a cytomegalovirus (CMV) pyroelectric promoter. The FLAG tag linked to the N-terminus of the HBV polymerase gene was inserted for detection. Lb is an expression vector of the HBx protein (pCMV7-HBx), in which the X gene of the HBV ayw genotype (GenBank accession V01460) is inserted into a multiple cloning site of the pCMV7 vector (Sigma Inc.) and expressed from a cytomegalovirus (CMV) superelectric promoter. . The FLAG tag linked to the C-terminus of the X gene is inserted for detection. Figure lc shows the expression vector of core protein (Core) (pcDNA-Core) of the gene of the HBV ayw genotype (GenBank accession V01460) is inserted into the multiple cloning site of the pcDNAl / Amp vector (In Vitrogen Inc.) (MV (cytoraegalovirus) Figure 2 shows the inhibition of interferonogenesis by HBV polymerase, Figure 2 shows the transfection of the protein expression vector of ΙΡΝβ Luc if erase reporter plasmid and HBV in HepG2 cells, liver cancer cell lines, respectively. Luc if erase activity was measured in comparison with the control group and expressed in multiples compared with the control group, and poly (I: C) was added to the medium to activate TLR signaling, and the expression of TLR3 was deficient. TLR3 expression plasmids were transfected together to complement the function of HepG2 cells.
도 3 ~ 4는 HBV 폴리머라제 발현 플라스미드의 양의 증가에 따른 인터페론생 성 저해를 보여주는 결과로서, 도 3 간암세포주인 HepG2 세포에 poly(I:C)를 배지 에 첨가해준 후, IFNP Luc if erase 리포터 플라스미드와 HBV 폴리머라제 발현 플라 스미드를 각각 트랜스팩션 한 후, lucif erase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. 도 4는 간암세포주인 HepG2 세포에 poly(I:C)를 트랜스팩션 한후, IFNP Lucif erase 리포터 플라스미드와 HBV폴리머 라제 발현 플라스미드를 각각 트랜스팩션 한후, luciferase 활성을 제어군과 비교 하여 측정하고 이를 제어군과 비교한 배수로 표시하였다.  3 to 4 show the inhibition of interferon production according to the increase in the amount of HBV polymerase-expressing plasmid. After adding poly (I: C) to the medium of HepG2 cells, which is a hepatic cancer cell line, IFNP Luc if erase After transfecting the reporter plasmid and the HBV polymerase expressing plasmid, respectively, lucif erase activity was measured in comparison with the control group and expressed in multiples compared with the control group. 4 is transfected poly (I: C) to HepG2 cells, hepatocellular carcinoma cell lines, transfected IFNP Lucif erase reporter plasmid and HBV polymerase expression plasmid, respectively, and measured luciferase activity in comparison with the control group. It is expressed in multiples compared to.
도 5는 HBV 폴리머라제 발현에 따른 IRF signaling 저해를 보여주는 결과로 서, HepG2 세포에 poly(I:C)를 배지에 첨가하고, HBV폴리머라제 발현 플라스미드 를 트랜스팩션 한후, 3일 후 세포를 수확하였다. 샘플을 SDS-PAGE로 전기영동한 후 인산화된 IRF를 인산화 IRF 항체를 이용해 웨스턴 블롯으로 탐지하였다.  Figure 5 shows the inhibition of IRF signaling according to HBV polymerase expression, HepG2 cells were added poly (I: C) to the medium, and after transfection of the HBV polymerase expression plasmid, cells were harvested 3 days later . Samples were electrophoresed by SDS-PAGE and phosphorylated IRF was detected by Western blot using phosphorylated IRF antibodies.
도 6, 7은 HBV 폴리머라제 발현 플라스미드의 양의 증가에 따른  6, 7 shows the increase in the amount of HBV polymerase expression plasmid
IRF3-lucif erase 활성 감소를 보여주는 결과로서, 도 6은 HepG2 세포에 RIG-I 발현 플라스미드와 IRF3 Luciferase 리포터 풀라스미드와 HBV폴리머라제 발현 폴라스미 드를 각각 트랜스팩션 한후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. 도 7은 HepG2 세포에 TRIF 발현 플라스미드와 IRF3 Luciferase reporter 플라스미드와 HBV 폴리머라제 발현 플라스미드를 각각 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. As a result showing the decrease in IRF3-lucif erase activity, Figure 6 shows that after transfecting the RIG-I expression plasmid, IRF3 Luciferase reporter fulllasmid and HBV polymerase expressing plasmid in HepG2 cells, the luciferase activity was compared with the control group. Measure it and It is expressed in multiples compared to the control group. Figure 7 After transfection of the TRIF expression plasmid, IRF3 Luciferase reporter plasmid and HBV polymerase expression plasmid in HepG2 cells, respectively, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group.
도 8 ~ 12는 HBV 폴리머라제의 표적이 IRF signaling의 ΤΒΚΙ/ΙΚΚε 분자임을 보여주는 결과로서, 도 8은 IRF signaling에 관여하는 분자들의 상호관계를 보여주 는 것으로 특히 HBV 폴리머라제가 ΤΒΚΙ/ΙΚΚε의 활성을 촉진하는 DDX3를 표적함을 나타낸다. 도 9는 HepG2 세포에 TBK1 발현 플라스미드와 IRF3 Luciferase 리포터 폴라스미드와 HBV 폴리머라제 발현 플라스미드를 각각 트랜스팩션 한 후,  8 to 12 show that the target of HBV polymerase is a ΤΒΚΙ / ΙΚΚε molecule of IRF signaling, and FIG. 8 shows the interrelationship of molecules involved in IRF signaling. In particular, HBV polymerase shows the activity of ΤΒΚΙ / ΙΚΚε. Target DDX3 to promote 9 shows transfection of TBK1 expression plasmid, IRF3 Luciferase reporter pollamide and HBV polymerase expression plasmid, respectively, in HepG2 cells.
luciferase 활성올 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시 하였다. Luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group.
도 10은 HepG2 세포에 ΙΚΚ ε 발현 플라스미드와 IRF3 Luciferase 리포터 플 라스미드와 HBV 폴리머라제 발현 플라스미드를 각각 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다.  10 is transfected ΙΚΚ ε expression plasmid, IRF3 Luciferase reporter plasmid and HBV polymerase expression plasmid in HepG2 cells, respectively, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group.
도 11은 HepG2 세포에 ΙΚΚε 발현 풀라스미드와 ISRE Luciferase 리포터 플 라스미드와 HBV 홀리머라제 발현 플라스미드를 각각 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다.  11 is a transfection of ΙΚΚε expression full psmid, ISRE Luciferase reporter plasmid and HBV holyrylase expression plasmid in HepG2 cells, respectively, measured luciferase activity compared to the control group and expressed in multiples compared with the control group .
도 12는 HepG2 세포에 IRF3 발현 풀라스미드와 ISRE Luciferase 리포터 플라 스미드와 HBV 폴리머라제 발현 플라스미드를 각각 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다.  12 was transfected with IRF3 expressing fulllasmid, ISRE Luciferase reporter plasmid and HBV polymerase expressing plasmid in HepG2 cells, respectively, and luciferase activity was measured in comparison with the control group and expressed in folds compared with the control group.
도 13 ~ 15는 HBV폴리머라제의 IRF signaling 저해에 대한 DDX3의 길항작용 을 보여주는 결과로서, 도 13은 HepG2 세포에 TBK1 발현 플라스미드와 IRF3  13 to 15 show the antagonism of DDX3 on IRF signaling inhibition of HBV polymerase. FIG. 13 shows TBK1 expression plasmid and IRF3 in HepG2 cells.
Luciferase 리포터 풀라스미드와 HBV폴리머라제 발현 풀라스미드를 각각 트랜스팩 션 한후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. 이때, DDX3 발현 플라스미드의 양이 증가함에 따른 효과를 관 찰한 것이다. 도 14는 HepG2 세포에 ΙΚΚε 발현 풀라스미드와 IRF3 Luciferase 리 포터 플라스미드와 HBV폴리머라제 발현 플라스미드를 각각 트랜스팩션 한후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시 하였다. 이때, DDX3 발현 플라스미드의 양이 증가함에 따른 효과를 관찰한 것이다. 도 15는 DDX3- ΙΚΚε간의 상호결합을 조사하기 위하여 면역침전법 (IP, immunoprecipitation)을 실시한 후 웨스턴붙롯 (IB, immunoblot )으로 침전된 단백질 . 을 관찰한 것이다. HepG2 세포에 ΙΚΚε 및 DDX3 발현 플라스미드를 트랜스팩션한 후, ant i -Flag antibody로 면역침전하고, anti_HA antibody로 After transfecting Luciferase reporter full lasmid and HBV polymerase expressing full lasmid, respectively, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group. At this time, the effect of increasing the amount of DDX3 expression plasmid was observed. FIG. 14 was transfected with ΙΚΚε expression fulllasmid, IRF3 Luciferase reporter plasmid and HBV polymerase expression plasmid in HepG2 cells, respectively, and luciferase activity was measured in comparison with the control group and expressed in folds compared with the control group. At this time, the effect of increasing the amount of DDX3 expression plasmid was observed. Figure 15 shows the protein precipitated by Western blot (IB, immunoblot) after the immunoprecipitation (IP, immunoprecipitation) to investigate the interaction between DDX3-ΙΚΚε. It is observed. Transfected ΙΚΚε and DDX3 Expression Plasmids in HepG2 Cells After that, immunoprecipitation with ant i -Flag antibody and anti_HA antibody
웨스턴블롯하였다 (lane 3). HBV 폴리머라제 발현 플라스미드를 트랜스팩션한 경우, 침전된 DDX3가 감소하였다 (lane 4). Western blot (lane 3). Transfection of the HBV polymerase expression plasmid reduced the precipitated DDX3 (lane 4).
도 16은 본 발명의 한 특징에 따른 만성 B형 간염 치료제의 스크리닝 기작올 나타내는 개략도이다.  Figure 16 is a schematic diagram showing the screening mechanism of the chronic hepatitis B therapeutic agent according to one feature of the present invention.
도 17은 후보물질 10종의 화합물을 처리에 따른 IFN|3-Luc reporter 에세이 의 결과로서, HBV 폴리머라제 발현 플라스미드의 양이 증가함에 따라 루시퍼라제 활성이 감소하였다. 본 실시예에서 수행한 300여 종의 화합물이 모두 유사한 결과 를 보였으므로 10종 화합물의 결과만을 예시하였다.  Figure 17 shows the luciferase activity decreased as the amount of HBV polymerase expression plasmid increased as a result of IFN | 3-Luc reporter assay following treatment with 10 candidate compounds. Since all 300 compounds performed in this example showed similar results, only the results of 10 compounds were illustrated.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
이하, 본 발명을 보다 상세히 설명한다.  Hereinafter, the present invention will be described in more detail.
상술한 바와 같이, 종래의 B형간염 치료제는 바이러스 분자자체를 타겟으로 하므로 고빈도 돌연변이를 생성하는 바이러스의 특성상 내성변이주의 생성되어 치 료효과가 제한적이었다. 이에 본 발명에서는 HBV 폴리머라제는 DDX3 단백질과 상호작용할 때 이미 결 합된 ΤΒΚΙ/ΙΚΚε분자와 DDX3 단백질의 상호작용을 저해하여 그 결과 인터페론의 생산을 억제하여 선천면역을 억제하는 부반웅을 초래하는 사실을 발견하고 이를 이 용하여 Β형 간염 치료물질을 스크리닝할 수 있는 조성물 및 스크리닝 방법을 개발 하였다.  As described above, since the conventional hepatitis B therapeutic agent targets the virus molecule itself, the treatment effect is limited because of the resistance of the mutant strain to generate high frequency mutations. Therefore, in the present invention, HBV polymerase inhibits the interaction of the ΤΒΚΙ / ΙΚΚε molecule and the DDX3 protein that is already bound when interacting with the DDX3 protein. We have developed a composition and a screening method that can screen for hepatitis B therapeutics.
이를 통해 , 첨가되는 치료제 후보물질이 HBV폴리머라제— DDX3단백질간의 상 호작용을 선택적으로 저해하는 물질인 경우 HBV폴리머라제와의 상호작용이 저해된 DDX3단백질이 ΤΒΚΙ/Ι Κε 분자와 결합하여 IRF signaling의 활성화를 유도하고 이 를 통해 프로모터의 활성이 증가하며, 이러한 활성증가 반응을 보이는 치료 제 후보물질은 B형간염 치료제로 활용할 수 있는 것이다. 이를 위하여, 본 발명의 바람직한 제 1 실시예에 따르면, 1) 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포에, HBV폴리머라제를 코딩하는 염기서열을 쎄 1 재조합 발현백터 및 인터페론 베타 (IFN3) 프로모터와 이에 작동가능하게 연결 되며 인터페론 베타 (IFN|3)의 활성을 측정하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터를 첨가하고 트랜스펙션 (transfection)하는 단계; (2) 상기 동물세 포에 인터페론생성 촉진물질을 첨가하는 단계; (3) 상기 동물세포에 후보물질을 첨 . In this case, if the therapeutic agent added is a substance that selectively inhibits the interaction between HBV polymerase and DDX3 protein, the DDX3 protein that inhibited the interaction with HBV polymerase binds to the ΤΒΚΙ / Ι Κε molecule to Induction of activation leads to an increase in the activity of the promoter, and a therapeutic candidate for such an activity can be used as a hepatitis B therapeutic. To this end, according to the first preferred embodiment of the present invention, 1) the sequence encoding the HBV polymerase in an animal cell having the ability to generate interferon upon virus infection with a recombinant expression vector and an interferon beta (IFN3) promoter Adding and transfecting a second recombinant expression vector operably linked thereto and comprising a reporter gene for measuring the activity of interferon beta (IFN | 3); (2) adding an interferon production promoter to the animal cell; (3) attaching candidate substances to the animal cells; .
10  10
가하여 인터페론 베타 (IFN 3) 프로모터의 활성올 측정하는 단계 ; 및 (4) 상기 후보 물질을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 인터페론 베타 (IFNI3) 프로모터의 활성이 증가한 후보물질을 선별하는 단계를 포함하는 B형 간염 치료활 성 물질을 스크리닝하는 방법을 제공한다. 구체적으로, 1) 단계로서 바이러스 감염 시 인터페론의 생성능을 갖는 동물 세포에 HBV폴리머라제를 코딩하는 염기서열을 제 1 재조합 발현백터 및 IFNP 프로 모터와 이에 작동가능하게 연결되며 IFNP 프로모터와 활성을 측정하기 위한 리포 터 유전자를 포함하는 계 2 재조합 발현백터를 첨가하고 트랜스펙션 (transfection) 하는 단계를 포함한다. Adding to measure the activity of the interferon beta (IFN 3) promoter; And (4) selecting a candidate substance having increased activity of the interferon beta (IFNI3) promoter when the candidate substance is added as compared with the case where the candidate substance is not added. To provide. Specifically, in step 1), the nucleotide sequence encoding the HBV polymerase to an animal cell having interferon-producing ability during virus infection is operably linked to the first recombinant expression vector and the IFNP promoter, and to measure the activity with the IFNP promoter. Adding and transfecting a second recombinant expression vector comprising a reporter gene for transfection.
먼저 , 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포는 DDX3 단백질 올 발현하며, 이에 속하는 동물세포는 제한없이 사용될 수 있으나, 바람직하게는  First, an animal cell having interferon-producing ability during viral infection expresses DDX3 protein, and animal cells belonging to it may be used without limitation, but preferably
HE 293, HeLa, HepG2 세포 등을사용할수 있다. 다음, 상기 동물세포에 HBV폴리머라제를 코딩하는 염기서열을 게 1 재조합 발현백터를 첨가한다. HBV폴리머라제는 동물세포내에 트랜스팩션되는 경우 동물세 포의 DDX3와상호작용하여, 프로모터의 활성을 억제하는 역할을 수행한다. 한편 , HBV폴리머라제가 아닌 HBV코어부분이나 기타 HBV의 다른 영역을 코딩하는 염기서열을 포함하는 경우에는 DDX3와상호작용하여 IFN|3의 발현 및 프로모 터의 활성을 억제하지 못하므로 반드시 HBV폴리머라제를 코딩하는 염기서열을 제 1 재조합 ·발현백터를 첨가하여야 한다 (실시예 1 참조). HE 293, HeLa, HepG2 cells and the like can be used. Next, a recombinant expression vector of Crab 1 is added to the nucleotide sequence encoding the HBV polymerase. HBV polymerase, when transfected into animal cells, interacts with DDX3 in animal cells and plays a role of inhibiting promoter activity. On the other hand, if a non-HBV polymerase contains a nucleotide sequence encoding a HBV core portion or other region of HBV, HBV polymerase must be used since it does not interact with DDX3 to inhibit the expression of IFN | 3 and the activity of the promoter. The base sequence encoding should be added with a first recombinant expression vector (see Example 1).
한편 HBV폴리머라제를 코딩하는 염기서열은 서열번호 1로 표시되는 염기서 열일 수 있으나 이에 제한되지 않으며, 다양한 HBV폴리머라제를사용할 수 있고, 나아가, 발현측정을 위하여 HBV 폴리머라제의 N-말단에 FLAG서열 등을 추가하는 것 역시 당업자에게 자명하게 웅용될 수 있을 것이다.  Meanwhile, the nucleotide sequence encoding the HBV polymerase may be the nucleotide sequence represented by SEQ ID NO: 1, but is not limited thereto. Various HBV polymerases may be used, and further, FLAG at the N-terminus of the HBV polymerase for expression measurement. Adding sequences and the like will also be apparent to those skilled in the art.
한편, 본 발명에 사용되는 모든 재조합 발현백터들은 상용 또는 연구실에서 쉽게 구할 수 있는 플라스미드 내에 특정 염기서열을 삽입하거나 상용 또는 연구실 에서 쉽게'구할 수 있는 재조합 플라스미드로서 , 이의 제작방법은 통상의 재조합 발현백터를 제작하는 방법에 따라 제작될 수 있으며 , 이는 당업자에게 자명한 것이 다. On the other hand, any recombinant expression vector for use in the invention are commercially available, or inserting a specific DNA sequence in a plasmid that can be easily obtained in the laboratory or as a recombinant plasmid that can be easily obtained, in a commercial or laboratory, and its production method is generally a recombinant expression vector It can be produced according to the method for manufacturing, which is obvious to those skilled in the art.
다음, 동물세포에 프로모터와 이에 작동가능하게 연결되며 IFNp 프로 모터의 활성을 측정하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터를 첨 가한다. 본 발명에 사용될 수 있는 인터페론의 발현을 조절할 수 있는 프로모터 (예 를 들어 [Lin et al., Mol. Cell Biol. 20:6342(2000)]) 서열은 제한없이 사용될 수 있다. 본 발명의 제 2 재조합 발현백터에 사용될 수 있는 리포터 유전자로는 E. coli β-갈락토시다아제 (galactosidase) [An et al . , Mol. Cell. Biol. 2:1628 (1982)], 루시퍼라아제 (lucif erase) [De Wet et al . , Mol. Cell. Biol. 7:725 (1987)], 알칼라인 포스파타아제 (alkaline phosphatase) [Henthorn et al., Proc. Natl. Acad. Sci . USA 85:6342 (1988)], 분비성 태반 알칼라인 Next, a second recombinant expression vector comprising a reporter gene for measuring the activity of the promoter and the IFNp promoter is operably linked to the animal cell. Add. Promoter (eg, Lin et al., Mol. Cell Biol. 20: 6342 (2000)) sequences capable of modulating the expression of interferon that can be used in the present invention can be used without limitation. Reporter genes that can be used in the second recombinant expression vector of the present invention include E. coli β-galactosidase [An et al. , Mol. Cell. Biol. 2: 1628 (1982)], lucif erase (lucif erase) [De Wet et al. , Mol. Cell. Biol. 7: 725 (1987)], alkaline phosphatase [Henthorn et al., Proc. Natl. Acad. Sci. USA 85: 6342 (1988)], secretory placental alkaline
포스파타아제 (secreted lacental alkaline phosphatase) [Berger et al., Gene 66:1 (1988)] 및 클로람페니콜 아세틸트랜스퍼라아제 (chloramphenicol Phosphatase (secreted lacental alkaline phosphatase) [Berger et al., Gene 66: 1 (1988)] and chloramphenicol acetyltransferase (chloramphenicol
acetyl transferase, CAT) [Gorman et al. , Mol. Cell. Biol. 2: 1044 (1982); Tsang et al., Proc. Natl. Acad. Sci. USA 85:8598 (1988)] 등올 포함하지만 이에 한정 되지 않는다. 이들 리포터 유전자는 상업적으로 구입이 가능하다. 바람직하게는 본 발명의 방법에서는 상기 리포터 유전자로서 루시퍼라아제를 사용할 수 있다. 본 발명의 바람직한 다른 일실시예에 따르면, 상기 (1) 단계에서, 상기 동물 세포에 인터페론 생성자극인자를 코딩하는 유전자를 포함하는 게 3 재조합 발현백터 를 더 포함할 수 있다. 상기 인터페론 생성자극인자는 TRIF, RIG-I/MDA— 5, IPS-1, ΤΒΚΙ/Ι Κε 단백질 분자로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있 다. 인터페론 생성자극인자는 인터페론생성 촉진물질인 폴리 (I:C)의 기능을 대체할 수 있는 단백질 분자이다. 또한 RNA물질인 폴리 (I:C)를 동물세포에 트랜스펙션하 는 것 역시 가능하다. 한편, HBV 폴리머라제 DDX3 단백질과 상호작용을 통해 이미 결합된 TBK1/IKK ε 분자와 DDX3단백질의 상호작용을 저해하여 인터페론의 발현을 억제하여 선천면 역을 억제하는 부반웅을 초래하므로, 본 발명에 사용될 수 있는 인터페론 생성자극 인자는 도 9를 중심으로 살펴볼 때 ΤΒΚΙ/ΙΚΚε 분자를 포함하여 그 이전의 인터페 론 생성자극인자인 것이 바람직하며, 바람직하게는 상기 인터페론 생성자극인자는 TRIF, RIG-I/MDA— 5, IPS—1, ΤΒΚΙ/ΙΚΚε으로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있으나, 이에 제한되지 않으며, 도 8에 개시되지 않은 인터페론 생 성자극인자 역시 본 발명의 목적을 만족할 수 있다면, 사용될 수 있는 것이다. 그 뒤, 상기 동물세포에 상술한 재조합 발현백터들을 트랜스펙션 (transfection)하게 되며 트랜스펙션의 방법은 통상적으로 알려진 방법 을사용할 수 있다ᅳ 다음, (2) 상기 동물세포에 인터페론 생성촉진물질올 첨가한다. 인터페론 생 성촉진물질이란 세포에 처리 시 TLR혹은 RIG-I 등의 PRR수용체에 인지되어 IRF 신호경로를 촉발하는 물질로서, 통상 이중가닥 RNA의 대체 핵산인 폴리 (I:C), DNA 대체 핵산인 CpG등이 사용된다. 본 발명에서는 폴리 (I:C)를 사용했지만 이에 제한 되지 않는다. 다음, (3) 상기 동물세포에 후보물질을 첨가하여 프로모터의 활성을 측정한다. 상기 후보물질은 HBV폴리머라제와 DDX3와의 결합 (binding) 또는 상호작 용 (interaction)을 저해하여 인터페론의 발현촉진 또는 프로모터를 활성화하 는 것으로 기대되는 물질을 의미한다. 상기 후보물질은 예를 들어, 저분자량 유기 화합물, 고분자량 유기화합물, 핵산분자 (예컨대, DNA, RNA, PNA 및 앱타머), 단백 질 당 및 지질 등을 포함하나, 이에 한정되지 않는다. acetyl transferase, CAT) [Gorman et al. , Mol. Cell. Biol. 2: 1044 (1982); Tsang et al., Proc. Natl. Acad. Sci. USA 85: 8598 (1988)], including but not limited to. These reporter genes are commercially available. In the method of the present invention, luciferase may be used as the reporter gene. According to another preferred embodiment of the present invention, in the step (1), the animal cell may further comprise three recombinant expression vectors comprising a gene encoding the interferon stimulating factor. The interferon production stimulating factor may be any one or more selected from the group consisting of TRIF, RIG-I / MDA-5, IPS-1, and ΤΒΚΙ / Ικε protein molecules. Interferon production stimulating factor is a protein molecule that can replace the function of poly (I: C), an interferon production promoter. It is also possible to transfect animal cells with poly (I: C) RNA. On the other hand, by interacting with the HBV polymerase DDX3 protein inhibits the interaction of already bound TBK1 / IKK ε molecule and DDX3 protein to inhibit the expression of interferon, resulting in side reactions that inhibit innate immunity, Interferon-producing stimulating factor that can be used is preferably the interferon generating stimulating factor, including the ΤΒΚΙ / ΙΚΚε molecule, as shown in the center of Figure 9, preferably the interferon generating stimulating factor is TRIF, RIG-I / MDA— 5, IPS—1, ΤΒΚΙ / ΙΚΚε may be any one or more selected from the group consisting of, but not limited to, interferon generation stimulating factors not disclosed in FIG. It can be used. Then, the above-described recombinant expression vector on the animal cell Transfection and transfection can be carried out using a commonly known method. (2) Interferon-producing promoter is added to the animal cells. Interferon production promoter is a substance that is recognized by PRR receptors such as TLR or RIG-I and triggers the IRF signal pathway when it is processed into cells. It is a poly (I: C), which is a replacement nucleic acid of double stranded RNA, and a DNA replacement nucleic acid. CpG and the like are used. Although poly (I: C) is used in the present invention, the present invention is not limited thereto. Next, (3) the activity of the promoter is measured by adding a candidate substance to the animal cells. The candidate substance refers to a substance expected to activate the promoter or the expression of interferon by inhibiting the binding (binding) or interaction of HBV polymerase and DDX3. Such candidates include, but are not limited to, for example, low molecular weight organic compounds, high molecular weight organic compounds, nucleic acid molecules (eg, DNA, RNA, PNA and aptamers), protein sugars and lipids.
IFNp 프로모터의 활성은 리포터 유전자의 발현 산물의 측정을 통해 확인할 수 있으며 , 통상의 리포터 유전자 표준 방법을사용하여 측정할 수 있다. 그 뒤 (4) 상기 후보물질을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 프로모터의 활성이 증가한후보물질을 선별하는 단계를 포함한다. 상술 한 바와 같이 동물세포에 트랜스팩션되어 발현된 HBV폴리머라제는、 DDX3 분자와의 상호작용을 통해 바이러스 감염에 대항하는 인터페론의 유도를 차단하므로, 만일 첨가된 후보물질이 프로모터의 활성올 증가시키는 경우에는 DDX3와 TBK1/IKK ε 분자와의 결합을 저해하는 HBV폴리머라제의 작용을 선택적으로 저해하는 것으 로 해석될 수 있다. 이는 DDX3와 HBV 폴리머라제간의 결합 또는 상호작용을 저해하 는 활성올 갖는 물질로 추정할 수 있으며, 이를 Β형 간염 치료제로 활용할 수 있올 것이다. The activity of the IFNp promoter can be confirmed by measuring the expression product of the reporter gene and can be measured using conventional reporter gene standard methods. (4) selecting the candidate material whose promoter activity is increased when the candidate material is added as compared with the case where the candidate material is not added. As described above, HBV polymerase transfected and expressed in animal cells blocks the induction of interferon against viral infection through interaction with DDX3 molecules, so if the added candidate increases the activity of the promoter. It can be interpreted as selectively inhibiting the action of HBV polymerase that inhibits the binding of DDX3 and TBK1 / IKK ε molecule. This may be assumed to be an active substance that inhibits the binding or interaction between DDX3 and HBV polymerase, and may be used as a therapeutic agent for hepatitis Β.
. 본 발명에 의한 스크리닝 시스템은 신약 개발에 있어, 고속처리 . Screening system according to the present invention in the development of new drugs, high-speed processing
검색법 (High-throughput Screening, HTS)에 사용될 수 있다. 고속처리검색법은 기 존의 검색 단위를 소형화하거나, 반복작업을 자동화하여 종래의 검색법에 비해 질 적, 양적인 면에서 월등할 결과를 얻을수 있는 검색법이다. 검색의 형태로는 정제 된 단백질 수용체에 대한 결합 친화도 검색, 효소 활성 검색, 혹은 세포 단위의 기 능검색 등으로 나눌 수 있다. 본 발명의 바람직한 제 2 실시예에 따르면, (1) 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포에, a) HBV폴리머라제를 코당하는 염기서열을 제 1 재조합 발현백터, b) 인터페론 베타 (IFNP) 프로모터와 이에 작동가능하게 연결되며 인터 페론 베타 (IFN 3) 프로모터의 활성을 측정하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터 및 c) 인터페론생성 촉진물질과 인터페론 생성자극인자를 코딩하 는 유전자를 포함하는 제 3 발현백터로 구성되는 군으로부터 선택되는 어느 하나 이 상의 물질을 트랜스펙션 (transfection)하는 단계; (2) 상기 동물세포에 후보물질을 첨가하여 인터페론 베타 (IFNP) 프로모터의 활성을 측정하는 단계; 및 (3) 상기 후 보물질을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 IFNP 프로모터의 활 성이 증가한 후보물질을 선별하는 단계를 포함하는 B형 간염 치료활성 물질을 스크 리닝하는 방법을 제공한다. It can be used for high-throughput screening (HTS). The high-speed search method is a search method that can reduce the size of existing search units or automate repetitive tasks to obtain superior results in terms of quality and quantity compared to conventional search methods. Tablets in the form of search Binding affinity for the protein receptor, enzyme activity search, or cell-level functional search can be divided into. According to a second preferred embodiment of the present invention, (1) in an animal cell having the ability to produce interferon upon virus infection, a) a base sequence encoding the HBV polymerase is first recombinant expression vector, b) interferon beta (IFNP) A second recombinant expression vector operably linked to the promoter and comprising a reporter gene for measuring the activity of the interferon beta (IFN 3) promoter and c) a gene encoding the interferon production promoter and interferon production stimulating factor. Transfecting any one or more substances selected from the group consisting of a third expression vector comprising; (2) measuring the activity of the interferon beta (IFNP) promoter by adding candidates to the animal cells; And (3) selecting a candidate substance having an increased activity of an IFNP promoter when the candidate substance is added as compared with the case where the candidate substance is not added. do.
상기 제 1 실시예와의 차이점을 중심으로 제 2 실시예를 설명하면 , 제 1 실시예 에서는 트랜스펙션 이후 폴리 (I:C)와 같은 인터페론생성 촉진물질을 첨가하나, 제 2 실시예에서는 이를 대신하여 (1) 단계에서 인터페론생성 촉진물질과 인터페론 생성 자극인자를 코딩하는 유전자를 포함하는 제 3 발현백터로 구성되는 군으로부터 선택 되는 어느 하나 이상의 물질을 트랜스펙션 (transfection)하는 구성을 더 포함하여 제 1 실시예와 동일한 효과를 달성할 수 있다. 한편 , 폴리 (I:C)는 이중가닥 RNA의 대신 흔히 사용되는 핵산물질로 배지에 첨가하면 TLR의 리간드로 작용하는 반면 세 포내로 트랜스펙션하면 RIG-I의 리간드로 작용하여 인터페론 생성을 촉진한다. 본 발명의 바람직한 게 3 실시예에 따르면, (1) 바이러스 감염 시 인터페론의 생산능을 갖는 동물세포에, HBV 폴리머라제를 코딩하는 염기서열을 제 1 재조합 발 현백터, IRF3-GAL4 융합단백질올 코딩하는 염기서열을 포함하는 제 2 재조합 발현백 터 및 pFR 프로모터와 이에 작동가능하게 연결되며 pFR 루시퍼라제를 코딩하는 염 기서열올 포함하는 제 3 재조합 발현백터 및 인터페론 생성자극인자를 코딩하는 유 전자를 포함하는 제 4 발현백터를 트랜스펙션 (transfection)하는 단계; (2) 상기 동 물세포에 후보물질을 첨가하여 pFR 프로모터의 활성을 측정하는 단계; 및 (3) 상기 후보물질을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 IFN13 프로모터의 활성이 증가한 후보물질을 선별하는 단계를 포함하는 B형 간염 치료활성 물질올 스 크리닝하는 방법을 제공한다. Referring to the second embodiment centering on the difference from the first embodiment, the first embodiment adds an interferon production promoter such as poly (I: C) after transfection, but in the second embodiment Instead, the method further comprises transfecting any one or more substances selected from the group consisting of a third expression vector including a gene encoding an interferon production-promoting agent and an interferon-producing stimulating factor in step (1). Thus, the same effects as in the first embodiment can be achieved. Meanwhile, poly (I: C) is a commonly used nucleic acid material instead of double stranded RNA, and when added to the medium, it acts as a ligand of TLR, while transfecting into cells acts as a ligand of RIG-I to promote interferon production. do. According to a third preferred embodiment of the present invention, (1) a base sequence encoding HBV polymerase is encoded by a first recombinant expression vector, an IRF3-GAL4 fusion protein, into an animal cell having an interferon production capacity during virus infection. A second recombinant expression vector comprising a nucleotide sequence and a pFR promoter and a gene encoding a third recombinant expression vector and an interferon generator stimulating factor operably linked thereto and comprising a base sequence encoding pFR luciferase. Transfecting a fourth expression vector comprising; (2) measuring the activity of the pFR promoter by adding candidates to the animal cells; And (3) selecting a candidate substance whose activity of the IFN13 promoter is increased when the candidate substance is added as compared with the case where the candidate substance is not added. Provide a method for cleaning.
여기에서 pFR 루시퍼라제를 코딩하는 염기서열을 포함하는 제 3 재조합 발현 백터는 프로모터 부위에 GAL4 결합부위를 갖고 있어 GAL4 의존적으로 전사를 촉진 하는 리포터 플라스미드를 의미한다.  Here, the third recombinant expression vector comprising a nucleotide sequence encoding pFR luciferase means a reporter plasmid having a GAL4 binding site at a promoter site and promoting transcription in a GAL4-dependent manner.
구체적으로 상술한 본 발명의 제 1 실시예의 스크리닝 방법과는 인터페론 베 타 프로모터와 이에 작동가능하게 연결되며 인터페론 베타 프로모터의 활성을 측정 하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터를 대신하여 IRF3-GAL4 융합단백질을 코딩하는 염기서열을 포함하는 제 2 재조합 발현백터, IRF3 GAL4 의존 성 pFR 루시퍼라제를 코딩하는 염기서열을 포함하는 계 3 재조합 발현백터를 첨가하 는데 차이가 있다. 여기에서 IRF3-GAL4 융합단백질은 전사촉진인자 역할을 수행하 고, GAL4 결합부위를 갖는 pFR 루시퍼라제 제 3 재조합 발현백터는 리포터 역할을 수행한다. 한편, 본 발명의 바람직한 제 4실시예에 따르면 a) HBV폴리머라제를 코딩하 는 염기서열을 제 1 재조합 발현백터; b) IFN13 프로모터 및 이에 작동가능하게 연 결되며 IFNP 프로모터의 활성올 측정하기 위한 리포터 유전자를 포함하는 제 2 재 조합 발현백터;를 포함하는 B형 간염 치료활성 물질의 스크리닝용 조성물을 제공하 며, 이롤 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포에 첨가하고 이를 트랜스팩션한 후 후보물질을 첨가하여 프로모터의 활성을 측정할 수 있다. 본 발명의 스크리닝 방법을 통해 스크리닝되는 항바이러스제는 현재 사용중 인 뉴클레오사이드 유도체보다는 더욱 효과적일 것이다. 왜냐하면 이들은 바이러 스 단백질과 숙주단백질간에 결합으로 형성된 새로운 단백질 표면구조에 작용하여 단백질간의 결합형성을 억제하므로 이를 회피하는 돌연변이 바이러스가 생성될 가 능성이 매우 희박하다. 더군다나, 본 발명이 제공하는 표적은 바이러스 감염세포 에만 특이적으로 형성된 표적이므로, 본 스크리닝법으로 선발된 항바이러스 화합물 은 숙주세포에 대한 독성은 낮을 것으로 기대된다. 이는 치료효과를 얻기 위해서는 치료제를 1년 이상 장기복용해야하는 만성 B형 간염의 경우에는 현저한 장점이다. 더욱이, B형 간염바이러스의 증식을 저해함으로서 궁극적으로는 B형 간염바이러스 의 제거하여 만성 B형 간염으로 인한 간 경변 및 간암을 예방할 수 있을 것이다. 또한, 본 발명에서 발굴한 항바이러스 활성물질은 기존의 항바이러스제와 병 용투여로사용할 수 있으며 또한 인터페론과도 병용투여 할 수 있을 것이다. 【발명의 실시를 위한 형태】 Specifically, the screening method of the first embodiment of the present invention described above is in communication with an interferon beta promoter and a second recombinant expression vector in place of a second recombinant expression vector comprising a reporter gene for measuring the activity of the interferon beta promoter. There is a difference in adding a second recombinant expression vector comprising a nucleotide sequence encoding a GAL4 fusion protein and a system 3 recombinant expression vector comprising a nucleotide sequence encoding an IRF3 GAL4 dependent pFR luciferase. Here, the IRF3-GAL4 fusion protein serves as a transcriptional promoter, and the pFR luciferase third recombinant expression vector having a GAL4 binding site serves as a reporter. On the other hand, according to a fourth embodiment of the present invention a) the base sequence encoding the HBV polymerase is a first recombinant expression vector; b) provides a composition for screening a hepatitis B therapeutically active substance comprising a IFN13 promoter and a second recombinant expression vector operably linked thereto and comprising a reporter gene for measuring the activity of the IFNP promoter. The activity of the promoter can be measured by adding to the animal cells having the ability to produce interferon upon infection with Irol virus and transfecting it, and then adding candidates. Antivirals screened through the screening methods of the present invention will be more effective than the nucleoside derivatives currently in use. Because they act on new protein surface structures formed by binding between viral proteins and host proteins, they inhibit the formation of binding between proteins, making it very unlikely that a mutant virus will be created that avoids them. Furthermore, since the target provided by the present invention is a target specifically formed only for virus-infected cells, antiviral compounds selected by the present screening method are expected to have low toxicity to host cells. This is a significant advantage in the case of chronic hepatitis B, which requires a long-term treatment of the drug for more than one year to obtain a therapeutic effect. Moreover, by inhibiting the proliferation of hepatitis B virus, ultimately, hepatitis B virus can be removed to prevent cirrhosis and liver cancer caused by chronic hepatitis B virus. In addition, the antiviral active substance discovered in the present invention can be used in combination with an existing antiviral agent and may also be co-administered with interferon. [Form for implementation of invention]
본 발명을 구체적인 실시예를 통하여 보다상세히 설명한다. The present invention will be described in more detail with reference to specific examples.
본 발명에서 제공하는 항바이러스제 개발을 위한 측정법을 확립하기 위해 사 용된 트랜스팩션 기술, luciferase 활성측정법, 면역침전법, 면역염색법은 문헌과 이 분야의 전문가들이 많이 사용하는 실험재료와 실험방법을 이용하였다. 본 발명에서는 다음과 같은 약어를 사용하였다:  The transfection technique, luciferase activity assay, immunoprecipitation method, and immunostaining method used to establish the assay for developing the antiviral agent provided by the present invention used experimental materials and experimental methods frequently used by the literature and experts in this field. . In the present invention, the following abbreviations are used:
M (molar) , mM. (mi 11 imolar ) , μ 1 (microliters), ml (milliliters), u g  M (molar), mM. (mi 11 imolar), μ 1 (microliters), ml (milliliters), u g
(micrograms) , mg (milligrams), bp (kilo base pairs) , 0RF(open reading frame) , PC (polymerase chain react ion) , PEG (polyethylene glycol ) , (micrograms), mg (milligrams), bp (kilo base pairs), 0RF (open reading frame), PC (polymerase chain react ion), PEG (polyethylene glycol),
HBV(hepatitis B virus) , IFN( interferon) , P R(pattern recognition receptor) , I RFC interferon regulatory factor) , TRIF(TIR一 domain—containing adaptor protein inducing IFN|3 ), TBK(TRAF一 associated NFᅳ kB activator-binding kinase) , I B kinase- ε (IKK ε ) , PAMP(pattern recognition molecular pattern) , TLR(tol 1— 1 ike receptor) , MDA-5 (melanoma differentiat ion— associated gene 5), HIV(human immunodeficiency virus) , Hepatitis B virus (HBV), interferon (IFN), pattern recognition receptor (PR), I RFC interferon regulatory factor (TRF), TIR one domain—containing adapter protein inducing IFN | 3), TBK (TRAF 一 associated NF ᅳ kB activator -binding kinase, IB kinase-ε (IKK ε), pattern recognition molecular pattern (PAMP), toll 1-1 ike receptor (TLR), melanoma differentiat ion—associated gene 5 (MDA-5), human immunodeficiency virus ),
<실시예 1> B형 간염바이러수 (HBV) 폴리머라제에 의한 인터페론생성 저해를 보여주 는' IFNP Luciferase reporter assay <Example 1> Hepatitis B virus can (HBV) demonstrate the generation of interferon inhibition by polymerase 'IFNP Luciferase reporter assay
1-1. HBV폴리머라제에 의한 IFNp 프로모터 활성억제 1-1. Inhibition of IFNp Promoter Activity by HBV Polymerase
우선, HBV가 코드하는 코아단백질 (core), 폴리머라제 (Pol), X 단백질 (HBx) 등 3개 바이러스 단백질이 인터페론 생성을 저해하는가를 조사하였다 (도 1). 본 측 정은 이미 문헌에 잘 알려진 인터페론 베타 프로모터 리포터인 IFN|3 루시퍼라제 리포터를 활용하였다 (Schroder, Bar an, and Bowie, 2008) .  First, it was examined whether three viral proteins such as core protein (core), polymerase (Pol), and X protein (HBx) encoded by HBV inhibit interferon production (FIG. 1). This measurement utilizes the IFN | 3 luciferase reporter, an interferon beta promoter reporter that is well known in the literature (Schroder, Bar an, and Bowie, 2008).
.' 구체적으로 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용하여 5¾> C¾ 인큐베이터에서 배양하였다. 트랜스펙션은 . "Specifically, the cells were used as H e pG2 cells, using DMEM medium supplemented with 10% fetal added 5¾> were cultured in the incubator C¾. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60 mm 플레이트에 약 12 ug 의 플라스미드 DNA를 트랜스팩션하였다 (Ryu, Kim, and Ryu, 2008) .  PEI (polyethylenimine) was followed and transfected with about 12 ug of plasmid DNA in a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008).
실험에 사용한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IFN β -Luc reporter (Bowie, Trinity Col lege Dubl in, Ireland) . 한편 , 아래의 플라 스미드는 발명자의 연구실에서 기존에 사용하던 것이다. The plasmids used in the experiment were each given to the following researchers: IFN β-Luc reporter (Bowie, Trinity Col lege Dubl in, Ireland). Meanwhile, the plastic below The smid was previously used in the inventor's laboratory.
(1) HBV 폴리머라제 발현 풀라스미드 (Ryu, Kim, and Ryu, 2008)는 도 la에 도시된 HBV 폴리머라제 발현 플라스미드의 개열지도를 가지며, 서열번호 1로 표시 되는 HBV폴리머라제를 코딩하는 유전자를 포함한다. 상기 HBV폴리머라제 발현 폴 라스미드는 pcDNA3 폴라스미드 (InVitrogen Inc.)에 서열번호 1로 표시되는 HBV 폴 리머라제를 코딩하는 유전자를 삽입하여 제작할 수 있다.  (1) HBV polymerase expression fulllasmid (Ryu, Kim, and Ryu, 2008) has a cleavage map of the HBV polymerase expression plasmid shown in FIG. La, and encodes a gene encoding HBV polymerase represented by SEQ ID NO: 1. Include. The HBV polymerase expression polamide may be prepared by inserting a gene encoding HBV polymerase represented by SEQ ID NO: 1 into pcDNA3 polamide (InVitrogen Inc.).
(2) HBV코아단백질 발현 플라스미드 (Ryu, Kim, and Ryu, 2008)는 pcDNA3 플 라스미드 (InVitrogen Inc)에 HBV 코아단백질 유전자를 코딩하는 염기서열 (서열번호 (2) HBV core protein expression plasmid (Ryu, Kim, and Ryu, 2008) is a nucleotide sequence encoding the HBV core protein gene in pcDNA3 plasmid (InVitrogen Inc) (SEQ ID NO:
2)을 포함하며, 하기 도 lb에 도시된 개열지도를 가진다. 2) and has a cleavage map shown in FIG.
(3) HBx 발현 플라스미드 (Cha et al. , 2004)는 pcDNA3  (3) HBx expressing plasmid (Cha et al., 2004) for pcDNA3
플라스미드 (InVitrogen Inc)에 HBV X유전자 부분을 코딩하는 염기서열 (서열번호Nucleotide sequence encoding HBV X gene moiety to plasmid (InVitrogen Inc) (SEQ ID NO:
3)을 포함하며, 하기 도 lc에 도시된 개열지도를 가진다. 3) and has a cleavage map shown in FIG.
(4) HBV 폴리머라제의 Y丽 D돌연변이 발현 플라스미드는 상기 HBV 폴리머라 제와 동일하다. 단, 효소활성잔기인 YMDD motif의 아스파라긴산 (D, aspartic acid) 잔기가 히스티딘 (H, histidine) 잔기로 치환되어 효소활성을 상실한 HBV 폴리머라 제를 발현하는 특징을 가진다.  (4) The Y Li D mutation expression plasmid of HBV polymerase is the same as that of said HBV polymerase. However, aspartic acid (D) residue of YMDD motif, which is an enzyme residue, is substituted with histidine (H) residue to express HBV polymerase that has lost enzymatic activity.
리포터에세이는 24-well 플레이트에 아래의 플라스미드를 트랜스팩션 후 24 시간 후에 세포를 수확한 후 제조사 (Promega Inc.) 의 방법에 따라 실시하였다. 구체적으로 간암 세포주인 HepG2 세포에 HBV의 단백질 발현백터를 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수 로 표시하였다. 이때, 선천면역의 주요수용체인 TLR signaling을 활성화하기 위해 이중가닥 RNA의 대체물질인 poly(I:C)를 배지에 첨가하였다. 한편, TLR3 발현이 결 핍된 HepG2세포의 기능을 보완하기 위해 TLR3 발현 플라스미드를 함께 트랜스팩션 하였다 (Li et al. , 2005).  The reporter assay was carried out according to the method of the manufacturer (Promega Inc.) after harvesting cells 24 hours after transfection of the following plasmid in a 24-well plate. Specifically, after transfecting the protein expression vector of HBV to HepG2 cells, liver cancer cell line, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group. At this time, poly (I: C), a substitute for double-stranded RNA, was added to the medium to activate TLR signaling, a major receptor for innate immunity. Meanwhile, TLR3 expression plasmids were transfected together to complement the function of HepG2 cells lacking TLR3 expression (Li et al., 2005).
도 2는 간암 세포주인 HepG2 세포에 IFNP Luciferase reporter 플라스미드와 HBV의 단백질 발현백터를 각각 트랜스팩션 한 후, luciferase 활성을 제어군과 비 교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. 또한, TLR signaling을 활성화하기 위해 poly(I:C)를 배지에 첨가하였고, TLR3 발현이 결핍된 HepG2세포의 기능을 보완하기 위해 TLR3 발현 플라스미드를 함께 트랜스팩션하였다.  Figure 2 transfected IFNP Luciferase reporter plasmid and HBV protein expression vector in HepG2 cells, liver cancer cell lines, respectively, luciferase activity was measured in comparison with the control group and expressed in multiples compared with the control group. In addition, poly (I: C) was added to the medium to activate TLR signaling, and TLR3 expression plasmids were transfected together to complement the function of HepG2 cells deficient in TLR3 expression.
도 2의 실험결과에 의하면, HBV폴리머라제가 프로모터 활성올 약 10배 이상 재현성있게 억제함을 관찰하였다. 반면, 코아 및 X 단백질은 IFNp 프로모터 활성을 저해하지 않았다. 또한, HBV 폴리머라제의 활성부위인 YMDD motif의 돌연변 이인 YMHD도 IFNP 프로모터 활성을 저해하였으므로 HBV폴리머라제의 역전사활성 은 IFNP 프로모터 활성저해에 필요하지 않음을 확인할 수 있다. According to the experimental results of FIG. 2, it was observed that HBV polymerase reproducibly inhibited at least about 10 times the promoter active ol. Core and X proteins, on the other hand, are IFNp promoters. It did not inhibit the activity. In addition, YMHD, a mutant of the YMDD motif, an active site of HBV polymerase, also inhibited IFNP promoter activity. Therefore, the reverse transcription activity of HBV polymerase is not required for IFNP promoter activity inhibition.
<실시예 2> HBV폴리머라제가 TLR3 및 RIG-I 수용체에 의한 인터페론발현 유도를 저해함을보여주는 IFNP Luc if erase reporter assay Example 2 IFNP Luc if erase reporter assay showing that HBV polymerase inhibits induction of interferon expression by TLR3 and RIG-I receptors
2-1. IFNP 프로모터 활성억제의 HBV폴리머라제 농도 의존성. 2-1. HBV polymerase concentration dependence of IFNP promoter activity inhibition.
HBV폴리머라제에 의한 IFN13 프로모터 활성억제를 좀더 확실히 규명하기 위 해 HBV폴리머라제 농도에 따라 프로모터 활성이 어떻게 변화하는지 조사하 였다. 구체적으로 세포는 HepG2 세포를사용하였으며 / 10%우태아가 첨가된 DMEM 배지를 이용하여 5% C02 인큐베이터에서 배양하 다. 트랜스팩션은 In order to clarify the inhibition of IFN13 promoter activity by HBV polymerase, it was investigated how the promoter activity changes with HBV polymerase concentration. Specifically, the cells were HepG2 cells and were cultured in a 5% C0 2 incubator using DMEM medium with 10% fetal calf added. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며, 직경 60匪플레이트에 약 12 ug의 플라스미드 DNA를 트랜스팩션하였다 (Ryu, Kim, and Ryu, 2008). 실험에 사용 한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IFNb-Luc reporter (Bowie, Trinity College Dublin, Ireland). 아래의 폴라스미드는 제조사에서 구입한 것이 다: HA-TLR3 (InvivoGen Inc). 한편, 아래의 플라스미드는 발명자의 연구실에서 기존에 사용하던 것이다: (1) HBV Pol 발현 풀라스미드 (도 la)  The method using PEI (polyethylenimine) was followed, and about 12 ug of plasmid DNA was transfected into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008). The plasmids used in the experiment were each given to the following researchers: IFNb-Luc reporter (Bowie, Trinity College Dublin, Ireland). The following Polismid was purchased from the manufacturer: HA-TLR3 (InvivoGen Inc). On the other hand, the following plasmids were conventionally used in the inventor's laboratory: (1) HBV Pol expression fulllasmid (Fig. La).
리포터에세이는 24-well 풀레이트에 아래의 플라스미드를 트랜스팩션 후 24 시간후에 세포를 수확한후 제조사 (Promega) 의 방법에 따라 실시하였다. 구체적으로, 상기 1-1의 실시예와 달리, HepG2 세포에 HBV 폴리머라제 발현백 터 플라스미드 량을 2배수로 증가하면서 트랜스팩션 한 후, luc if erase 활성을 제 어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다 (도 3).  The reporter assay was carried out according to the method of the manufacturer (Promega) after harvesting cells 24 hours after transfection of the following plasmid in 24-well full rate. Specifically, unlike the embodiment of 1-1, after transfecting while increasing the amount of HBV polymerase expression vector plasmid in HepG2 cells by doubling, the luc if erase activity was measured in comparison with the control group and the control group It was expressed in comparison to multiples (FIG. 3).
도 3은 간암세포주인 HepG2 세포에 poly(I:C)를 배지에 첨가해준 후, IFNp Lucif erase reporter 폴라스미드와 HBV 폴리머라제 발현 플라스미드를 각각 트랜스 팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. 그 결과, HBV 폴리머라제 농도에 비례하여 IFNP 프로모터 활 성이 감소한 것을 알 수 있다. 2-2. HBV 폴리머라제에 의한 프로모터 활성억제 . 3 is a poly (I: C) added to the HepG2 cells, a hepatocellular carcinoma cell line, transfected IFNp Lucif erase reporter polamide and HBV polymerase expression plasmid, respectively, and luciferase activity was measured in comparison with the control group. And expressed as a multiple compared with the control group. As a result, it can be seen that IFNP promoter activity decreased in proportion to the HBV polymerase concentration. 2-2. Inhibition of promoter activity by HBV polymerase.
HBV 폴리머라제에 의한 프로모터 활성억제를 좀더 확실히 규명하기 위 해, poly(I:C) 트랜스팩션한 경우, HBV 폴리머라제 농도에 따라 프로모터 활 성이 어떻게 변화하는지 조사하였다. 구체적으로, 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용하여 5% C02 인큐베이터에서 배양하였다. 트랜스팩션은  To further clarify the inhibition of promoter activity by HBV polymerase, we investigated how the promoter activity varies with HBV polymerase concentration when poly (I: C) transfection is performed. Specifically, the cells were HepG2 cells, and cultured in a 5% C02 incubator using DMEM medium added with 10% fetal calf. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60匪폴레이트에 약 12 ug 의 플라스미드 DNA를 트랜스팩션하였다 (Ryu, Kim, and Ryu, 2008) . 실험에 사용한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IFNb-Luc reporter (Bowie, Trinity College Dublin, Ireland). 한편, 아래의 플라스미드는 발명자의 연구실 에서 기존에 사용하던 것이다: (1) HBV Pol 발현 플라스미드 (도 la). 리포터에세 이는 24-well 풀레이트에 아래의 플라스미드를 트랜스팩션 후 24시간 후에 세포를 수확한 후 제조사 (Promega) 의 방법에 따라 실시하였다. 도 4는 간암세포주인 HepG2 세포에 poly(I:C)를 트랜스팩션 한후, PEI (polyethylenimine) was followed, and about 12 ug of plasmid DNA was transfected into 60 μF folate (Ryu, Kim, and Ryu, 2008). The plasmids used in the experiment were each given to the following researchers: IFNb-Luc reporter (Bowie, Trinity College Dublin, Ireland). On the other hand, the following plasmid was conventionally used in the inventor's laboratory: (1) HBV Pol expression plasmid (FIG. La). Reporter assay was carried out according to the manufacturer (Promega) method after harvesting cells 24 hours after transfection of the following plasmid in 24-well full rate. 4 is after transfecting poly (I: C) into HepG2 cells, a liver cancer cell line,
Luc if erase reporter 플라스미드와 HBV폴리머라제 발현 플라스미드를 각각 트랜스 팩션 한 후, hicif erase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. ' 구체적으로 poly(I:C)를 배지에 첨가해준 도 3의 실시예와 달리, poly(I:C) 를 트랜스팩션한 경우에는 p0ly(I:C)가 세포질에 위치하게 된다. 이 경우, TLR3 대 신 RIG-I/MDA5 분자가 수용체로 작용한다 (Saito and Gale, 2008). 구체적으로, HepG2 세포에 HBV 폴리머라제 발현백터 플라스미드 량을 2배수로 증가하면서 트랜 스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교 한 배수로 표시하였다 (도 4). 실험결과, HBV폴리머라제 농도에 비례하여 프 로모터 활성이 감소하였다. 즉, HBV폴리머라제는 TLR3 뿐 아니라 RIG— I/MDA5에 의 해 활성화된 IRF signaling도 저해하였다. After transfecting the Luc if erase reporter plasmid and the HBV polymerase expression plasmid, the hicif erase activity was measured in comparison with the control group and expressed in multiples compared with the control group. Is located in the cytoplasm: (C I) 'More specifically, poly (I:: C), unlike the embodiment of Figure 3 haejun added to the medium, poly p is 0 ly case of the (I C) trans faction. In this case, RIG-I / MDA5 molecules act as receptors instead of TLR3 (Saito and Gale, 2008). Specifically, after transfection while increasing the amount of HBV polymerase expression vector plasmid in HepG2 cells by two-fold, luciferase activity was measured in comparison with the control group and displayed in multiples compared with the control group (FIG. 4). As a result, promoter activity decreased in proportion to HBV polymerase concentration. In other words, HBV polymerase inhibited not only TLR3 but also IRF signaling activated by RIG—I / MDA5.
<실시예 3> HBV폴리머라제가 IRF signaling을 저해 Example 3 HBV Polymerase Inhibits IRF Signaling
인터페론 유도는 IRF signaling을 통해 수행된다. 그런데, IRF signaling의 두 가지 주요 징표은 IRF의 인산화 및 IRF의 핵 이동이다. 따라서 , HBV 폴리머라제 에 의한 선천면역억제가 IRF signaling을 통해 일어나는가를 규명하기 위해 IRF 인 화를 조사하였다. Interferon induction is performed through IRF signaling. However, two major signs of IRF signaling are phosphorylation of IRF and nuclear transfer of IRF. Therefore, IRF may be used to determine whether innate immunity inhibition by HBV polymerase occurs via IRF signaling. Anger was investigated.
3-1. HBV폴리머라제에 의한 IRF 인산화 저해 3-1. Inhibition of IRF Phosphorylation by HBV Polymerase
HBV 폴리머라제에 의한 IRF 인산화 저해를 조사하기 위해 , 간암세포주인 HepG2 세포에 poly(I:C)를 트랜스팩션 한 후, HBV폴리머라제 발현여부에 따른 IRF 인산화를 IRF 인산화 특이항체를 이용하여 웨스턴 블럿으로 조사하였다.  In order to investigate the inhibition of IRF phosphorylation by HBV polymerase, transfected poly (I: C) to HepG2 cells, liver cancer cell line, and then IRF phosphorylation according to HBV polymerase expression was performed by Western blot using IRF phosphorylation specific antibody. It was investigated.
3-1.1실험재료 및 방법 3-1.1 Experimental Materials and Methods
세포는 HepG2 세포를 사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용하여 5% C02 인큐베이터에서 배양하였다. 트랜스팩션은 PEI(polyethylenimine)을 이용한 방법을 따랐으며, 직경 60 mm 플레이트에 약 12 ug의 플라스미드 DNA를 트랜스팩션 하였다 (Ryu, Kim, and Ryu, 2008). 실험에 사용한 폴라스미드는 아래의 연구자에 게 받은 것이다: DDX3 (K.T. Jeang, National Institute of Health, USA). 아래의 항체는 각각 아래의 제조사에서 구입한 것이다: anti-IRF3 (Zymed Inc.), ant i-phospho-Ser396-IRF3 (Cell Signaling Inc.). '웨스턴블롯은 표준방법을 준수 하였으며, 구체적으로는 트랜스팩션 2일 후 세포를 1% NP-40가포함된 완층용액 (50 niM Tris-Cl [pH 7.4] , 50 mM NaCl , 5 mM EDTA, 1% NP-40)으로 수확한후 12% SDS-PAGE 젤로 단백질을 전기영동하고, 단백질을 PVDF membrane (Immobi lon-P; Millipore)로 블롯팅 한후, 항체로 탐지하였다. 도 5는 HepG2 세포에 poly(I:C)를 배지에 첨가하고, HBV폴리머라제 발현 플라 스미드를 트랜스팩션 한 후, 3일 후 세포를 수확하였다. 샘플을 SDS-PAGE로 전기영 동한 후 인산화된 IRF를 인산화 IRF항체를 이용해 웨스턴 불롯으로 탐지하였다. 실험결과, poly(I:C)를 트랜스팩션 한 후에는 인산화된 IRF가 탐지되었지만, HBV 폴리머라제가 발현된 경우에는 인산화된 IRF가 탐지되지 않았다 (도 5). 이 결 과는 HBV폴리머라제가 IRF signaling을 저해함을 의미한다. Cells were HepG2 cells and were cultured in a 5% C02 incubator using DMEM medium with 10% fetal calf added. Transfection was followed by PEI (polyethylenimine) and transfected about 12 ug of plasmid DNA into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008). The polelasme used in the experiment was received from the following researchers: DDX3 (KT Jeang, National Institute of Health, USA). The following antibodies were each purchased from the following manufacturers: anti-IRF3 (Zymed Inc.) and ant i-phospho-Ser396-IRF3 (Cell Signaling Inc.). ' Western blot complies with the standard method. Specifically, after 2 days of transfection, the cells were prepared as a complete solution containing 1% NP-40 (50 niM Tris-Cl [pH 7.4], 50 mM NaCl, 5 mM EDTA, 1 The protein was electrophoresed with 12% SDS-PAGE gel after harvesting with% NP-40), the protein was blotted with PVDF membrane (Immobi lon-P; Millipore), and then detected with antibody. Figure 5 HepG2 cells were added to the poly (I: C) medium, and after transfection of the HBV polymerase expression plasmid, cells were harvested three days later. Samples were electrophoresed by SDS-PAGE and phosphorylated IRF was detected by Western blot using phosphorylated IRF antibodies. As a result, phosphorylated IRF was detected after transfection of poly (I: C), but phosphorylated IRF was not detected when HBV polymerase was expressed (FIG. 5). This result indicates that HBV polymerase inhibits IRF signaling.
<실시예 4> IRF signaling에서 HBV폴리머라제의 표적이 RIG-I 혹은 TIRF분자의 하위임을 규명 Example 4 HBV polymerase target in IRF signaling was identified as a subordinate of RIG-I or TIRF molecule
HBV폴리머라제에 의한 IRF signaling의 표적을 규명하기 위해, 상기의 poly(I:C) 대신 RIG-I 및 TRIF 분자를 발현하여 IRF signaling을 촉발한 후 HBV폴 리머라제에 의한 IRF signaling 저해를 조사하였다. 4-1. RIG-I에 의해 활성화된 IRF signaling의 저해 In order to identify the target of IRF signaling by HBV polymerase, RIG-I and TRIF molecules were expressed instead of poly (I: C) to trigger IRF signaling and investigated IRF signaling inhibition by HBV polymerase. It was. 4-1. Inhibition of IRF Signaling Activated by RIG-I
RIG-I 분자를 발현하여 IRF signaling을 촉발한 후 HBV폴리머라제에 의한 IRF signaling 저해를 조사하였다. 상기 도 4와는 달리, IRF3-luci f erase 리포터 플라스미드를 이용—하으ᅳ IRF signaling 저해를 조사하였다 (Schroder, Bar an, and Bowie, 2008) . 여기에서, IRF3-lucif erase 리포터 플라스미드는 IRF3/7-GAL4 융합 단백질 발현 플라스미드와 GAL4 의존성 프로모터를 갖는 pFR-luc if erase 리포터 플 라스미드의 조합을 의미한다. 구체적으로, 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용하여 5% C02 인큐베이터에서 배양하였다. 트랜스팩션은 The expression of RIG-I molecules triggered IRF signaling and investigated the inhibition of IRF signaling by HBV polymerase. Unlike FIG. 4, IRF3-luci f erase reporter plasmids were used to investigate IRF signaling inhibition (Schroder, Bar an, and Bowie, 2008). Here, the IRF3-lucif erase reporter plasmid means a combination of an IRF3 / 7-GAL4 fusion protein expression plasmid and a pFR-luc if erase reporter plasmid having a GAL4 dependent promoter. Specifically, the cells were HepG2 cells, and cultured in a 5% C02 incubator using DMEM medium added with 10% fetal calf. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60 mm플레이트에 약 12 ug 의 플라스미드 DNA를 트랜스팩션하였다 (Ryu, Kim, and Ryu, 2008). 실험에 사용한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IRF3-GAL4, IRF7-GAL4, pFR luciferase 리포터 폴라스미드 (Dr. Bowie, Trinity College Dublin, Ireland) , Flag-RIG-I (Dr. Fujita, Kyoto University). pFR luciferase 리포터 폴라스미드 는 GAL4 결합부위를 갖는 리포터 플라스미드로서 IRF3/7-GAL4융합단백질이 GA 결합부위를 통해 결합하여 IRF3/7의 전사활성을 측정하게 고안된 리포터 플라스미 드이다. 예를 들면, IRF3/7프로모터 활성을 측정하기 위해서는 IRF3/7-GAL4 융합 단백질 발현플라스미드와 pFR- luciferase 리포터 플라스미드를 함께 트랜스팩션하 여 실시하였다 (Stack et al ., 2005). 구체적으로, HepG2 세포에 RIG-I 분자 발현 플라스미드와 IRF3-luci f erase construct를 트랜스팩션하고, 또한 HBV폴리머라제 발현백터 플라스미드 량을 점차 적으로 증가하면서 트랜스맥션 한 후, luciferase 활성을 제어군과 비교하여 측정 하고 이를 제어군과 비교한 배수로 표시하였다 (도 6). 실험결과, HBV폴리머라제 농도에 비례하여 IRF3 프로모터 활성이 감소하였다. 즉, 이 결과는 HBV폴리머라 제의 표적이 RIG-I 분자의 하위에 위치함을 의미한다 . PEI (polyethylenimine) was followed, and about 12 ug of plasmid DNA was transfected into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008). The plasmids used in the experiments were each obtained from the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter polelasmid (Dr. Bowie, Trinity College Dublin, Ireland) and Flag-RIG-I (Dr. Fujita, Kyoto University). ). pFR luciferase reporter polamide is a reporter plasmid with GAL4 binding site and is designed to measure the transcriptional activity of IRF3 / 7 by binding IRF3 / 7-GAL4 fusion protein through GA binding site. For example, in order to measure IRF3 / 7 promoter activity, transfection was performed together with an IRF3 / 7-GAL4 fusion protein expression plasmid and a pFR-luciferase reporter plasmid (Stack et al., 2005). Specifically, transfection of RIG-I molecule expression plasmid and IRF3-luci f erase construct in HepG2 cells and transfection with gradual increase of HBV polymerase expression vector plasmid were performed. Measured and expressed in multiples compared to the control group (FIG. 6). As a result, the IRF3 promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is located under the RIG-I molecule.
4-2. TRIF에 의해 활성화된 IRF signaling의 저해 4-2. Inhibition of IRF Signaling Activated by TRIF
TRIF 분자를 발현하여 IRF signaling을 촉발한 후 HBV 폴리머라제에 의한 IRF signaling 저해를 조사하였다. 상기 도 3과는 달리, IRF3_luci f erase construct를 이용하여 IRF signaling 저해를 조사하였다 (Schroder, Bar an, and Bowie, 2008) . 세포는 HepG2 세포를 사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용 하여 5 ) C02 인큐베이터에서 배양하였다. 트랜스팩션은 PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60 mm플레이트에 약 12 ug의 플라스미드 DNA를 트랜 스팩션하였다 (Ryu, Kim, and Ryu, 2008) . 실험에 사용한 폴라스미드는 각각 아래 의 연구자에게 받은 것이다: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter (Dr. Bowie, Trinity College Dublin, Ireland) , Flag-TRIF (Dr. Akira, Osaka The expression of TRIF molecules triggered IRF signaling and investigated the inhibition of IRF signaling by HBV polymerase. Unlike FIG. 3, IRF3_luci f erase construct IRF signaling inhibition was investigated (Schroder, Bar an, and Bowie, 2008). Cells were HepG2 cells and were cultured in 5) C02 incubator using DMEM medium added with 10% fetal calf. Transfection followed the method using PEI (polyethylenimine) and transfected about 12 ug of plasmid DNA on a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008). The polyamides used in the experiment were each obtained from the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter (Dr. Bowie, Trinity College Dublin, Ireland) and Flag-TRIF (Dr. Akira, Osaka).
Universi ty) . 구체적으로, HepG2 세포에 TRIF 분자 발현 플라스미드와 IRF3_luci f erase 플 라스미드를 트랜스팩션하고, 또한 HBV폴리머라제 발현백터 플라스미드 량을 점차 적으로 증가하면서 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정 하고 이를 제어군과 비교한 배수로 표시하였다 (도 7). 실험결과, HBV폴리머라제 농도에 비례하여 IRF3 프로모터 활성이 감소하였다. 즉, 이 결과는 HBV폴리머라 제의 표적이 IRF signaling에서 TRIF 분자의 하위에 위치함을 의미한다. Universi ty). Specifically, after transfecting TRIF molecule expression plasmid and IRF3_luci f erase plasmid into HepG2 cells, and transfecting gradually increasing the amount of HBV polymerase expression vector plasmid, luciferase activity was measured in comparison with the control group. And expressed as a multiple compared with the control group (FIG. 7). As a result, the IRF3 promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is located below the TRIF molecule in IRF signaling.
<실시예 5> IRF signaling에서 HBV폴리머라제의 표적이 TBKl/IKKe 임을 규명하는 결과 Example 5 Results clarifying that the target of HBV polymerase is TBKl / IKKe in IRF signaling
HBV폴리머라제에 의한 IRF signaling의 표적을 규명하기 위해, 상기의 poly(I:C) 대신 TBKl/ΙΚΚε , IRF3 분자를 발현하여 IRF signaling을 촉발한후 HBV 폴리머라제에 의한 IRF signaling 저해를 조사하였다. 구체적으로 실시예 5에서는 HBV폴리머라제가 ΤΒΚΙ/ΙΚΚε 분자를 표적함을 보여준다.  In order to identify the target of IRF signaling by HBV polymerase, the expression of TBKl / ΙΚΚε and IRF3 molecules instead of poly (I: C) triggered IRF signaling and investigated the inhibition of IRF signaling by HBV polymerase. Specifically Example 5 shows that HBV polymerase targets ΤΒΚΙ / ΙΚΚε molecules.
5-1. IRF signaling의 개념도 5-1. Conceptual Diagram of IRF Signaling
도 8에 표시된 바 와 같이, IRF signaling에 관여하는 신호전달 분자간의 상 호관계는 이미 규명된 바 있다 (Bowie and Unterholzner , 2008) . 특히 , 본 발명과 관련된 것으로는 최근 DEAD-box RNA helicase인 DDX3가 ΤΒΚΙ/ΙΚΚε 의 활성을 촉진 한다고 보고된 바 있다 (Schroder, Bar an, and Bowie, 2008; Soul at et al., 2008) .  As shown in FIG. 8, the interrelationship between signaling molecules involved in IRF signaling has already been identified (Bowie and Unterholzner, 2008). In particular, it has recently been reported that DDX3, a DEAD-box RNA helicase, promotes the activity of ΤΒΚΙ / ΙΚΚε (Schroder, Bar an, and Bowie, 2008; Soul at et al., 2008).
5-2. TBK1에 의해 활성화된 IRF signaling의 저해 5-2. Inhibition of IRF Signaling Activated by TBK1
HBV폴리머라제의 표적을 규명하기 위해, TBK1 분자를 발현하여 IRF signaling을 촉발한 후 HBV 폴리머라제에 의한 IRF signaling 저해를 조사하였다. 상기 도 4와 는 달리, IRF3-luc if erase construct를 이용하여 IRF signaling 저해를 조사하였다 (Schroder , Bar an, and Bowie, 2008) . 세포는 HepG2 세포를 사용하였으며 , 10%우태아가 첨가된 DMEM 배지를 이용 하여 5% C02인큐베이터에서 배양하였다. 트랜스팩션은 PEI(polyethylenimine)을 이 용한 방법올 따랐으며,직경 60 mm 플레이트에 약 12 ug의 폴라스미드 DNA를 트랜스 팩션하였다 (Ryu, Kim, and Ryu, 2008) . 실험에 사용한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IRF3-GAL4, IRF7-GAL4, pFR luc if erase reporter (Dr. Bowie, Trinity College Dublin, Ireland) , TBKl-Flag, (Dr. Fitzgerald, To identify the targets of HBV polymerase, the expression of TBK1 molecule was used to generate IRF signaling. After triggering, we investigated the inhibition of IRF signaling by HBV polymerase. Unlike FIG. 4, IRF signaling inhibition was investigated using an IRF3-luc if erase construct (Schroder, Bar an, and Bowie, 2008). HepG2 cells were used and cultured in a 5% CO 2 incubator using DMEM medium supplemented with 10% fetal calf. Transfection followed the method using polyethylenimine (PEI) and transfected approximately 12 ug of polamide DNA into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008). The plasmids used in the experiment were each obtained from the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luc if erase reporter (Dr. Bowie, Trinity College Dublin, Ireland), TBK-Flag, (Dr. Fitzgerald,
University of Massachusetts Medical School , Worcester , MA). 구체적으로, HepG2 세포에 TBK1 분자 발현 폴라스미드와 IRF3_luci f erase플 라스미드를 트랜스팩션하고, 또한 HBV폴리머라제 발현백터 플라스미드 량을 점차 적으로 증가하면서 트랜스팩션 한 후, kic if erase 활성을 제어군과 비교하여 측정 하고 이를 제어군과 비교한 배수로 표시하였다 (도 9). 실험결과, HBV폴리머라제 농도에 비례하여 IRF3 프로모터 활성이 감소하였다. 즉, 이 결과는 HBV폴리머라 제의 표적이 TBK1 분자이거나혹은 이의 하위에 위치함을 의미한다 . University of Massachusetts Medical School, Worcester, MA). Specifically, after transfecting TBK1 molecule expression plasmid and IRF3_luci f erase plasmid into HepG2 cells and gradually increasing the amount of HBV polymerase expression vector plasmid, the kic if erase activity was controlled with the control group. Measured by comparison and expressed in multiples compared with the control group (FIG. 9). As a result, the IRF3 promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is at or below the TBK1 molecule.
5-3. ΙΚΚε에 의해 활성화된 IRF signaling의 저해 5-3. Inhibition of IRF Signaling Activated by ΙΚΚε
HBV 폴리머라제의 표적을 규명하기 위해, ΙΚΚε분자를 발현하여 IRF signaling을 촉발한 후 HBV폴리머라제에 의한 IRF signaling 저해를 조사하였다. 상기 도 3과는 달리, IRF3—lucif erase 리포터 플라스미드를 이용하여 IRF  In order to identify the target of HBV polymerase, IRF signaling was stimulated by expressing ΙΚΚε molecules and examined for inhibition of IRF signaling by HBV polymerase. Unlike FIG. 3, IRF3—lucif erase reporter plasmid using IRF3
Signaling 저해를 조사하였다 (Schroder, Bar an, and Bowie, 2008) . 구체적으로, 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용하여 5% C02 인큐베이터에서 배양하였다. 트랜스팩션은 Signaling inhibition was investigated (Schroder, Bar an, and Bowie, 2008). Specifically, the cells were HepG2 cells, and cultured in a 5% C02 incubator using DMEM medium added with 10% fetal calf. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60匪플레이트에 약 12 ug 의 플라스미드 DNA를 트랜스팩션하였다 (Ryu, Kim, and Ryu, 2008) . 실험에 사용한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IRF3-GAL4, IRF7-GAL4, pFR luci ferase reporter (Dr. Bowie, Trinity Col lege Dublin, Ireland) , IKK ε -Flag (Dr. Fitzgerald, University of Massachusetts Medical School , Worcester , MA). 구체적으로, HepG2 세포에 ΙΚΚε 분자 발현 플라스미드와 IRF3-luci ferase 리포터 플라스미드를 트랜스팩션하고, 또한 HBV폴리머라제 발현백터 풀라스미드 량을 점차적으로 증가하면서 트랜스팩션 한 후, luci ferase 활성을 제어군과 비교 하여 측정하고 이를 제어군과 비교한 배수로 표시하였다 (도 10). 실험결과, HBV폴 리머라제 농도에 비례하여 IRF3 프로모터 활성이 감소하였다. 즉, 이 결과는 HBV 폴리머라제의 표적이 ΐΚΚε 분자이거나 혹은 이의 하위에 위치함을 의미한다 . PEI (polyethylenimine) was followed, and about 12 ug of plasmid DNA was transfected into a 60 micrometer plate (Ryu, Kim, and Ryu, 2008). The plasmids used in the experiments were each given to the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luci ferase reporter (Dr. Bowie, Trinity Col lege Dublin, Ireland) and IKK ε-Flag (Dr. Fitzgerald, University of Massachusetts) Medical School, Worcester, MA). Specifically, transfected ÎΚΚε molecule expression plasmid and IRF3-luci ferase reporter plasmid into HepG2 cells and transfected with increasing amounts of HBV polymerase expression vector full plasmid gradually, and then compared luci ferase activity with control group. Measured and expressed in multiples compared to the control group (FIG. 10). As a result, the IRF3 promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of the HBV polymerase is at or below the ΐΚΚε molecule.
5-4. ΙΚΚε에 의해 활성화된 IRF signaling의 저해 5-4. Inhibition of IRF Signaling Activated by ΙΚΚε
HBV폴리머라제의 표적올 규명하기 위해 다음에는 ΙΚΚε 분자를 발현하여 IRF signaling을 촉발한후 HBV폴리머라제에 의한 IRF signaling 저해를 조사하였 다. 상기 도 2와는 달리, IRF3-luci ferase 리포터 플라스미드를 이용하여 IRF signaling 저해를 조사하였다 (Schroder, Bar an, and Bowie, 2008). 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용 하여 5% C02 인큐베이터에서 배양하였다. 트랜스팩션은 PEI(polyethylenimine)을 이 용한 방법올 따랐으며,직경 60 mm 플레이트에 약 12 ug의 플라스미드 DNA를 트랜스 팩션하였다 (Ryu., Kim, and Ryu, 2008) . 실험에 사용한 폴라스미드는 각각 아래의 연구자에게 받은 것이다: ΙΚΚε -Flag (Dr. Fitzgerald, University of In order to identify the target oligomers of HBV polymerase, IRF expression was triggered by expressing ΙΚΚε molecule and then IRF signaling inhibition by HBV polymerase was investigated. Unlike FIG. 2, IRF3-luci ferase reporter plasmid was used to investigate IRF signaling inhibition (Schroder, Bar an, and Bowie, 2008). Cells were HepG2 cells and were cultured in a 5% CO 2 incubator using DMEM medium supplemented with 10% fetal calf. Transfection followed the method using polyethylenimine (PEI) and transfected approximately 12 ug of plasmid DNA into a 60 mm diameter plate (Ryu., Kim, and Ryu, 2008). Each of the polelasmids used in the experiment was given by the following researchers: ΙΚΚε -Flag (Dr.
Massachusetts Medical School , Worcester, MA) . 아래의 플라스미드는 각 제조사 에서 구입한 것이다: ISRE-luci ferase construct (Stratagene Inc.). 구체적으로, HepG2 세포에 ΙΚΚε 분자 발현 플라스미드와 ISRE-luci ferase 리포터 플라스미드를 트랜스팩션하고, 또한 HBV 폴리머라제 발현백터 플라스미드 량을 점차적으로 증가하면서 트랜스팩션 한후, luciferase 활성을 제어군과 비교 하여 측정하고 이를 제어군과 비교한 배수로 표시하였다 (도 11). 실험결과, HBV폴 리머라제 농도에 비례하여 ISRE프로모터 활성이 감소하였다. 즉, 이 결과는 HBV 폴리머라제의 표적이 ΙΚΚε 분자이거나혹은 이의 하위에 위치함을 의미한다 . Massachusetts Medical School, Worcester, MA). The following plasmids were purchased from each manufacturer: ISRE-luci ferase construct (Stratagene Inc.). Specifically, transfecting ΙΚΚε molecule expression plasmid and ISRE-luci ferase reporter plasmid into HepG2 cells and transfecting with increasing amounts of HBV polymerase expression vector plasmid gradually, luciferase activity was measured and compared with the control group. It was expressed in multiples compared to the control group (FIG. 11). As a result, the ISRE promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is at or below the ΙΚΚε molecule.
5-5. IRF3에 의해 활성화된 IRF signaling의 저해 5-5. Inhibition of IRF Signaling Activated by IRF3
HBV폴리머라제의 표적을 규명하기 위해, TRIF분자를 발현하여 IRF signaling을 촉발한 후 HBV폴리머라제에 의한 IRF signaling 저해를 조사하였다. 상기 도 4와는 달리 , ISRE-luci ferase 리포터 플라스미드를 이용하여 IRF signaling 저해를 조사하였다 (Schroder, Bar an, and Bowie, 2008) . 구체적으로 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용하여 5% C¾ 인큐베이터에서 배양하였다. 트랜스팩션은 In order to identify the target of HBV polymerase, the expression of TRIF molecules triggered IRF signaling and the inhibition of IRF signaling by HBV polymerase was investigated. Unlike FIG. 4, IRF using an ISRE-luci ferase reporter plasmid Signaling inhibition was investigated (Schroder, Bar an, and Bowie, 2008). Specifically, HepG2 cells were used and cultured in a 5% C¾ incubator using DMEM medium containing 10% fetal calf. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60 mm폴레이트에 약 12 ug 의 플라스미드 DNA를 트랜스팩션하였다 (Ryu, Kim, and Ryu, 2008) . 실험에 사용한 폴라스미드는 각각 아래의 연구자에게 받은 것이다: IRF3 (Dr. Bowie, Trinity College Dublin, Ireland). 아래의 플라스미드는 각 제조사에서 구입한 것이다: ISRE-luci f erase construct (Stratagene Inc.). 구체적으로, HepG2 세포에 IRF3 발현 플라스미드와 ISRE-luci f erase 리포터 플라스미드를 트랜스팩션하고, 또한 HBV폴리머라제 발현백터 폴라스미드 량을 점 차적으로 증가하면서 트랜스팩션 한후, luc if erase 활성을 제어군과 비교하여 측 정하고 이를 제어군과 비교한 배수로 표시하였다 (도 12). 그 결과, HBV 폴리머라제 농도에 비례하여 ISRE 프로모터 활성이 감소하였다. 즉, 이 결과는 HBV폴리머라 제의 표적이 ISRE 분자의 상위에 위치함을 의미한다.  PEI (polyethylenimine) was followed, and about 12 ug of plasmid DNA was transfected into a 60 mm diameter folate (Ryu, Kim, and Ryu, 2008). Each of the polelasmids used in the experiment was given to the following researchers: IRF3 (Dr. Bowie, Trinity College Dublin, Ireland). The following plasmids were purchased from each manufacturer: ISRE-luci f erase construct (Stratagene Inc.). Specifically, after transfecting IRF3 expressing plasmid and ISRE-luci f erase reporter plasmid in HepG2 cells, and transfecting gradually increasing the amount of HBV polymerase expression vector polamide, luc if erase activity was compared with control group. Was measured and expressed in multiples compared with the control group (FIG. 12). As a result, the ISRE promoter activity decreased in proportion to the HBV polymerase concentration. In other words, this result means that the target of HBV polymerase is located on top of the ISRE molecule.
<실시예 6> HBV폴리머라제의 IRF signaling저해에 대한 DDX3의 길항작용을보여 주는 결과 Example 6 Results Showing Antagonistic Action of DDX3 on IRF Signaling Inhibition of HBV Polymerase
상기 실시예 5의 결과는 HBV폴리머라제의 표적이 IRF signaling의 TBK1/IKK ε 분자임올 시사한다. 최근, DDX3가 IRF signaling의 effector kinase인 TBK1/IKK ε serine kinase의 활성을 촉진한다고 보고된 바 있다 (Schroder, Bar an, and Bowie, 2008; Soul at et al . , 2008). 이는 HBV 폴리머라제의 IRF signaling 저해가 HBV 폴리머라제와 DDX3의 상호작용의 결과라고 추정할 수 있다. 실시예 6에서는 상 기 예측과 일치하는 실험결과를 보여준다.  The results of Example 5 suggest that the target of HBV polymerase is a TBK1 / IKK ε molecule of IRF signaling. Recently, DDX3 has been reported to promote the activity of TBK1 / IKK ε serine kinase, an effector kinase of IRF signaling (Schroder, Bar an, and Bowie, 2008; Soul at et al., 2008). This suggests that IRF signaling inhibition of HBV polymerase is the result of the interaction of DDX3 with HBV polymerase. Example 6 shows an experimental result that is consistent with the above prediction.
6-1. DDX3의 HBV폴리머라제에 대한 길항작용을 보여주는 결과 I. 6-1. Results showing antagonism of DDX3 against HBV polymerase I.
DDX3의 발현이 HBV폴리머라제에 의한 IRF signaling 저해를 회복시키는지 조사하 였다.  It was investigated whether the expression of DDX3 restored IRF signaling inhibition by HBV polymerase.
구체적으로 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용하여 5% C02 인큐베이터에서 배양하였다. 트랜스팩션은 Specifically, HepG2 cells were used and cultured in a 5% CO 2 incubator using DMEM medium with 10% fetal calf added. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60薩 플레이트에 약 12 ug 의 플라스미드 DNA를 트랜스팩션하였다 (Ryu, Kim, and Ryu, 2008). 실험에 사용한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter , IFNP -Luc reporter (Dr. Bowie, Trinity Col lege Dublin, Ireland) , TBKl-Flag (Dr. Fitzgerald, University of Massachusetts Medical School, Worcester, MA), DDX3 (Dr. K.T. Jeang, National Institute of Health, USA) . 구체적으로, HepG2 세포에 TBK1 분자를 발현하여 IRF signaling을 촉발한 후 DDX3 발현 플라스미드의 양을 점차적으로 증가시키면서 이로 인한 HBV폴리머라제 에 의한 IRF signaling 저해를 조사하였다. 도 13은 HepG2 세포에 TBK1 발현 풀라 스미드와 IRF3 luciferase 리포터 플라스미드와 HBV폴리머라제 발현 플라스미드를 각각 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어 군과 비교한 배수로 표시하였다. 이때, DDX3 발현 플라스미드의 양이 증가함에 따 른 효과를 관찰한 것이다. 그 결과, DDX3의 발현에 비례하여 IRF3 프로모터 활성이 회복되었다. 즉, 이 결과는 DDX3가 HBV폴리머라제에 의한 IRF signaling 저해에 대한 길항작용을 함을 의미한다. 실시예 6-1과 달리, TBK1 대신, ΙΚΚε를 발현하여 IRF signaling을 촉발한 후 DDX3 발현 플라스미드의 양을 점차적으로 증가시키면서 이로 인한 HBV 폴리머라 제에 의한 IRF signaling 저해를 조사하였다. PEI (polyethylenimine) was followed, and about 12 ug in a 60 薩 diameter plate. Plasmid DNA was transfected (Ryu, Kim, and Ryu, 2008). The plasmids used in the experiment were obtained from the following researchers, respectively: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter, IFNP-Luc reporter (Dr. Bowie, Trinity Col lege Dublin, Ireland), TBKl-Flag (Dr. Fitzgerald, University of Massachusetts Medical School, Worcester, MA), DDX3 (Dr. KT Jeang, National Institute of Health, USA). Specifically, the expression of TBK1 molecules in HepG2 cells triggered IRF signaling, and the inhibition of IRF signaling by HBV polymerase was investigated by gradually increasing the amount of DDX3 expressing plasmid. 13 is transfected TBK1 expressing full plasmid, IRF3 luciferase reporter plasmid and HBV polymerase expressing plasmid in HepG2 cells, and luciferase activity was measured in comparison with the control group and expressed in folds compared with the control group. At this time, the effect of increasing the amount of DDX3 expression plasmid was observed. As a result, the IRF3 promoter activity was restored in proportion to the expression of DDX3. In other words, this result indicates that DDX3 antagonizes IRF signaling inhibition by HBV polymerase. Unlike Example 6-1, instead of TBK1, the expression of ΙΚΚε triggered IRF signaling, and the amount of DDX3 expressing plasmid was gradually increased, thereby inhibiting IRF signaling inhibition by HBV polymerase.
세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용 하여 5% C02 인큐베이터에서 배양하였다. 트랜스팩션은 PEI(polyethylenimine)을 이 용한 방법을 따랐으며,직경 60 mm플레이트에 약 12 ug의 폴라스미드 DNA를 트랜스 팩션하였다 (Ryu, Kim, and Ryu, 2008) . 실험에 사용한 플라스미드는 각각 아래의 연구자에게 받은 것이다: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter (Dr. Bowie, Trinity College Dublin, Ireland) , IKK ε -Flag (Dr. Fitzgerald, Cells were HepG2 cells and were cultured in a 5% CO 2 incubator using DMEM medium supplemented with 10% fetal calf. Transfection followed the method using PEI (polyethylenimine) and transfected about 12 ug of polamide DNA into a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008). The plasmids used in the experiment were each given to the following researchers: IRF3-GAL4, IRF7-GAL4, pFR luciferase reporter (Dr. Bowie, Trinity College Dublin, Ireland), IKK ε-Flag (Dr. Fitzgerald,
University of Massachusetts Medical School , Worcester , MA) , DDX3 (Dr. K.T. Jeang , National Institute of Health, USA) . 도 14는 HepG2 세포에 ΙΚΚε 발현 플라스미드와 IRF3 Luciferase 리포터 플 라스미드와 HBV 폴리머라제 발현 플라스미드를 각각 트랜스팩션 한 후, luciferase 활성을 제어군과 비교하여 측정하고 이를 제어군과 비교한 배수로 표시하였다. 이 때, DDX3 발현 플라스미드의 양이 증가함에 따른 효과를 관찰한 것이다. 그 결과 실시예 6-1과 유사하게 DDX3의 발현에 비례하여 IRF3 프로모터 활성이 회복되었다 ( 도 14). 즉, 이 결과는 DDX3가 HBV 폴리머라제에 의한 IRF signaling 저해에 대한 길항작용올 함을 의미한다. University of Massachusetts Medical School, Worcester, MA), DDX3 (Dr. KT Jeang, National Institute of Health, USA). FIG. 14 transfected ΙΚΚε expression plasmid, IRF3 Luciferase reporter plasmid and HBV polymerase expression plasmid in HepG2 cells, respectively, and measured luciferase activity in comparison with the control group and expressed it in folds compared with the control group. this When the amount of DDX3 expression plasmid was increased, the effect was observed. As a result, similar to Example 6-1, IRF3 promoter activity was restored in proportion to the expression of DDX3 (FIG. 14). In other words, this result indicates that DDX3 antagonizes the inhibition of IRF signaling by HBV polymerase.
6-3. HBV 폴리머라제가 IKKe_DDX3 결합을 저해함을 보여주는 결과. 6-3. Results show that HBV polymerase inhibits IKKe_DDX3 binding.
상기 실시예 6-1 및 6-2의 결과는 HBV 폴리머라제가 DDX3- ΙΚΚ ε간의 상호결 합을 차단하여 IRF signaling을 저해함을 예측하게 한다. 이 가설을조사하기 위해 면역침전법을 수행하였다ᅳ 세포는 HepG2 세포를사용하였으며, 10%우태아가 첨가된 DMEM 배지를 이용 하여 5) C02 인큐베이터에서 배양하였다. 트랜스팩션은 PEI(polyethylenimine)을 이용한 방법을 따랐으며,직경 60 mm플레이트에 약 12 ug의 플라스미드 DNA를 트랜 스팩션하였다 (Ryu, Kim, and Ryu, 2008) . 실험에 사용한 폴라스미드는각각 아래 의 연구자에게 받은 것이다: ΙΚΚε -Flag (Dr. Fitzgerald, University of  The results of Examples 6-1 and 6-2 predict that HBV polymerase inhibits IRF signaling by blocking the interaction between DDX3- ΙΚΚε. Immunoprecipitation was performed to investigate this hypothesis. Cells were HepG2 cells and were cultured in a C02 incubator using DMEM medium supplemented with 10% fetal calf. Transfection followed the method using PEI (polyethylenimine) and transfected about 12 ug of plasmid DNA on a 60 mm diameter plate (Ryu, Kim, and Ryu, 2008). The pollamides used in the experiments were each obtained from the following researchers: ΙΚΚε -Flag (Dr. Fitzgerald, University of
Massachusetts Medical School , Worcester , MA), DDX3 (Dr. K.T. Jeang, National Institute of Health, USA). 면역침전법은 표준방법을 준수하였다 (Pyronnet et al. , 1999), 구체적으로는 트랜스팩션 후 3일 후, 세포를 세포용해 완층액 buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl , 1 mM EDTA, 1 mM DTT, 0.2 mM PMSF, and 1% NP-40], 으로 수확한 다음, 세포용해물에 먼저 단백질 G-아가로스 비드를 첨가, 배양, 원심분리하여 준비한다. 여기에 1차항체인 anti-Flag 항체를 첨가ᅳ 배양, 원심분리하여 면역결합체를 수확한다. 수확한 면역침전물을 상기 용해완층용액으로 5번 이상씻은 후, Lae隱 Π 샘플액에 녹인 후 2 SDS—PAGE로 전기영동하여 분석한 다. Massachusetts Medical School, Worcester, MA), DDX3 (Dr. K. T. Jeang, National Institute of Health, USA). Immunoprecipitation was followed by standard methods (Pyronnet et al., 1999), specifically 3 days after transfection, cells were lysed in lye buffer buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.2 mM PMSF, and 1% NP-40], and then prepared by adding, culturing and centrifuging protein G-agarose beads to the cell lysate first. The anti-Flag antibody, a primary antibody, was added thereto, followed by culturing and centrifugation to harvest an immunoconjugate. The harvested immunoprecipitates are washed five times or more with the complete solution, and then dissolved in Lae 隱 Π sample solution and analyzed by electrophoresis with 2 SDS-PAGE.
구체적으로, 세포에 DDX3 발현 플라스미드, ΙΚΚε 발현 플라스미드를 트랜스 팩션 한 후, 면역침전법올 통하여 DDX3- ΙΚΚε 분자간의 상호결합을 확인하였다 (도 15, lane 3). 한편, 상기 실험군에 HBV 폴리머라제 발현 플라스미드를 트랜스팩션 한 경우, DDX3-IKKe간의 상호결합이 상당히 감소하였다 (도 15, lane 4). 이 결과 는 HBV 폴리머라제가 DDX3-IKI 분자간의 상호결합을 차단하여 IRF signaling을 저해함을 증명한 것이다 (도 16).  Specifically, after transfection of DDX3 expressing plasmid and ΙΚΚε expressing plasmid in the cells, the mutual binding between DDX3-ΙΚΚε molecules was confirmed through immunoprecipitation method (FIG. 15, lane 3). On the other hand, when the transfection of the HBV polymerase expression plasmid in the experimental group, the cross-linking between DDX3-IKKe was significantly reduced (Fig. 15, lane 4). This result demonstrates that HBV polymerase inhibits IRF signaling by blocking the interaction between DDX3-IKI molecules (FIG. 16).
<질시예 7> B형 간염치료 활성물질 스크리닝에 활용을보여주는 결과 상기 실시예 2의 실험을 96 웰 플레이트에 실시하여 B형 간염치료 활성물질을 스크리닝하는 방법으로 사용할 수 있다. 발명자의 연구실에서 확보한 약 300여 개의 유기 소분자를 포함하는 화합물 라이브러리를 활용하여 아래의 방법으로 B형 간염치료 활성물질 스크리닝을 하였다 - 본 화합물 라이브러리는 azaguanine-8, al lantoin, acetazol amide, metformin hydrochloride, atracur ium besylate, isof lupredone acetate, ami lor ide hydrochloride, amprol ium hydrochloride, hydrochlorothiazide, sul faguanidine 등을 포함한다. 구체적으로 세포는 HEK293 세포를 사용하였으며 , 10%우태아가 첨가된 DMEM 배지를 이용하여 5¾ C02 인큐베이터에서 배양하였다. 트랜스팩션은 <Example 7> Results showing application of hepatitis B treatment active substance screening The experiment of Example 2 may be carried out on a 96 well plate to screen for the hepatitis B therapeutic active substance. Using the compound library containing about 300 organic small molecules obtained from the inventor's laboratory, the active substance screening for hepatitis B treatment was carried out by the following method-The compound library is azaguanine-8, al lantoin, acetazol amide, metformin hydrochloride , atracurium besylate, isof lupredone acetate, amilor ide hydrochloride, amprol ium hydrochloride, hydrochlorothiazide and sul faguanidine. Specifically, HEK293 cells were used, and cultured in a 5¾ C0 2 incubator using DMEM medium containing 10% fetal calf. Transfection is
PEI(polyethylenimine)을 이용한 방법을 따랐으며, 96 웰 플레이트에 IFN β -Luc 리 포터 플라스미드 (Dr. Bowie, Trinity College Dublin, Ireland), TLR3 발현 플라스 미드 (InvivoGen Inc.), 도 la의 개열지도를 갖는 HBV 폴리머라제 발현 플라스미드 를 세포내에 트랜스팩션하였다. 이로부터 2일 후에, poly(I:C)를 약 12시간 배지에 처리한 후, 리포터에세이를 통해 루시퍼라제의 활성을 측정하였다. 리포터에세이는 96 웰 플레이트에 아래의 플라스미드를 트랜스팩션 후 24시간 후에 제조시 "(Victor 3 Inc. Perk in-Elmer Inc.) 의 방법에 따라 실시하였다. 한편, IFNp luc if erase 리 포터 풀라스미드는 IFNP 프로모터 활성을 루시.퍼라제 이용하여 편리하게 측정하게 고안되었으며 널리 알려진 플라스미드로서 구체적으로, IFNP 프로모터는 IRF3/7 결합부위와 NF-kB 결합부위로 구성되어 상기 두 전사인자의 활성화를 측정할 수 있 다. 구체적으로, 실시예 2의 도 3과 마찬가지로, HBV 폴리머라제 발현 플라스미 드의 양이 증가함에 따라 루시퍼라제 활성이 감소하였다 (도 17). 또한, 화합물 라 이브러리의 화합물 #1~10을 처리한 경우, 루시퍼라제의 활성이 회복되지 않았다. 결국, 본 실시 예에서 조사한 300 여종의 화합물은 프로모터 활성을 회복하 지 못하였으므로 만성 B형 간염의 치료제로서의 활성은 없다고 판단된다. 본 실시 예는 만성 B형 간염바이러스 치료활성물질 스크리닝의 예시의 목적으로서 기술한 것이다.  The method using polyethylenimine (PEI) was followed, and the cleavage map of IFN β-Luc reporter plasmid (Dr. Bowie, Trinity College Dublin, Ireland), TLR3 expression plasmid (InvivoGen Inc.), FIG. HBV polymerase expressing plasmids having been transfected intracellularly. After 2 days, poly (I: C) was treated with medium for about 12 hours, and then luciferase activity was measured through a reporter assay. The reporter assay was carried out according to the method of "(Victor 3 Inc. Perk in-Elmer Inc.) when the following plasmid was prepared 24 hours after transfection in a 96 well plate. IFNp luc if erase reporter fulllasmid IFNP promoter activity was designed to be conveniently measured using luciferase and is a well known plasmid. Specifically, the IFNP promoter is composed of an IRF3 / 7 binding site and an NF-kB binding site to measure the activation of the two transcription factors. Specifically, as in Example 3 of Example 2, as the amount of HBV polymerase expression plasmid increased, luciferase activity decreased (FIG. 17), and Compounds # 1 to 10 of the compound library. In the case of treatment, luciferase activity was not restored.In conclusion, the 300 compounds investigated in this example did not recover promoter activity. It is judged that there is no activity as a therapeutic agent for hepatitis B. This example is described for the purpose of illustration of chronic hepatitis B virus therapeutically active substance screening.
【산업상 이용가능성】 본 발명에 의한 B형 간염 치료활성물질 스크리닝 시스템을 이용하면 HBV 플 리머라제와 DDX3의 상호작용을 저해하여 선천면역 (인터페론)의 분비활성을 유발시 키는 약물을 용이하게 탐색할 수 있어 B형 간염의 치료제 개발 등에 유용하게 이용 할 수 있다. Industrial Applicability The screening system of hepatitis B therapeutically active substance according to the present invention can easily detect drugs that induce secretory activity of innate immunity (interferon) by inhibiting the interaction of HBV primerase and DDX3. It can be usefully used for developing hepatitis therapeutics.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
a) HBV 폴리머라제를 코딩하는 염기서열을 제 1 재조합 발현백터; b) 인터페 론 베타 (IFNP) 프로모터 및 이에 작동가능하게 연결되며 인터페론 베타 (IFNP) 프 로모터의 활성을 측정하기 위한 리포터 유전자를 포함하는 게 2 재조합 발현백터;를 포함하는 B형 간염 치료활성 물질의 스크리닝용 조성물.  a) a nucleotide sequence encoding HBV polymerase comprises a first recombinant expression vector; b) a hepatitis B therapeutically active substance comprising an interferon beta (IFNP) promoter and a recombinant expression vector comprising a reporter gene operably linked thereto and for measuring the activity of the interferon beta (IFNP) promoter. Composition for screening.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 조성물은 c) 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포를 포함하는 B형 간염 치료활성 물질의 스크리닝용 조성물.  The composition is c) a composition for screening hepatitis B therapeutically active material comprising animal cells having the ability to produce interferon during virus infection.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 조성물은 d) 인터페론 생성자극인자를 코딩하는 유전자를 포함하는 제 3 재조합 발현백터를 포함하는 B형 간염 치료활성 물질의 스크리닝용 조성물.  The composition is d) a composition for screening a hepatitis B therapeutically active material comprising a third recombinant expression vector comprising a gene encoding an interferon production stimulating factor.
[청구항 4】  [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 인터페론 생성자극인자는 TRIF, RIG- I /MDA-5, IPS—1, ΤΒ Ι/Ι ε 분자 로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 Β형 간염 치료활성 물질의 스크리닝용 조성물.  The interferon generation stimulating factor is TRIF, RIG- I / MDA-5, IPS-1, ΤΒ Ι / ε ε for the screening composition of the hepatitis B therapeutic active material, characterized in that any one or more selected from the group consisting of molecules. .
【청구항 5】  [Claim 5]
제 1항에 있어서, ' The method of claim 1 wherein '
상기 리포터 유전자는 E. coli β-갈락토시다아제 (galactosidase), 루시퍼라 아제 (luciferase), 알칼라인 포스파타아제 (alkal ine phosphatase), 분비성 태반 알 칼라인 포스파타아제 (secreted placental alkaline phosphatase) 또는 클로람페니 콜 아세틸트랜스퍼라아제 (chloramphenicol acetyltransferase, CAT)인 것을 특징으 로 하는 B형 간염 치료활성 물질의 스크리닝용 조성물.  The reporter gene is E. coli β-galactosidase, luciferase, alkaline ine phosphatase, secreted placental alkaline phosphatase or A chloramphenicol acetyltransferase (CAT) composition for screening a hepatitis B therapeutically active substance.
【청구항 6]  [Claim 6]
하기의 단계를 포함하는 B형 간염 치료활성 물질을 스크리닝하는 방법.  A method for screening a hepatitis B therapeutically active substance comprising the following steps.
(1) 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포에 , HBV 폴리머라 제를 코딩하는 염기서열을 제 1 재조합 발현백터 및 인터페론 베타 (IFNP) 프로모터 와 이에 작동가능하게 연결되며 인터페론 베타 (IFNP) 프로모터의 활성을 측정하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터를 트랜스펙션 (transfection) 하는 단계 ; (1) The first recombinant expression vector and the interferon beta (IFNP) promoter and the interferon beta (IFNP) promoter are operably linked to an animal cell having interferon-producing ability during viral infection. Transfection of a second recombinant expression vector comprising a reporter gene for measuring activity of the Doing;
(2) 상기 동물세포에 인터페론생성 촉진물질을 첨가하는 단계;  (2) adding an interferon production promoter to the animal cell;
(3) 상기 동물세포에 후보물질을 첨가하여 인터페론 베타 (IFN|3) 프로모터의 활성을 측정하는 단계; 및  (3) measuring the activity of the interferon beta (IFN | 3) promoter by adding candidates to the animal cells; And
(4) 상기 후보물질올 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 IFNp 프로모터의 활성이 증가한후보물질을 선별하는 단계.  (4) selecting a candidate material in which the activity of the IFNp promoter is increased when the candidate material is added as compared with the case where the candidate material is not added.
【청구항 7]  [Claim 7]
하기의 단계를 포함하는 B형 간염 치료활성 물질을 스크리닝하는 방법. A method for screening a hepatitis B therapeutically active substance comprising the following steps.
(1) 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포에, a) HBV 폴리머 라제를 코딩하는 염기서열을 계 1 재조합 발현백터, b) 인터페론 베타 (IFNP) 프로 모터와 이에 작동가능하게 연결되며 인터페론 베타 (IFN|3) 프로모터의 활성을 측정 하기 위한 리포터 유전자를 포함하는 제 2 재조합 발현백터 및 c) 인터페론생성 촉 진물질과 인터페론 생성자극인자를 코딩하는 유전자를 포함하는 제 3 발현백터로 구 성되는 군으로부터 선택되는 어느 하나 이상의 물질을 트랜스펙션 (transfection)하 는 단계 ; (1) In an animal cell having an interferon-producing ability during virus infection, a) a sequence encoding a HBV polymerase sequence 1 recombinant expression vector, b) an interferon beta (IFNP) promoter and operably linked thereto. (IFN | 3) a second recombinant expression vector comprising a reporter gene for measuring promoter activity and c) a third expression vector comprising an interferon-producing promoter and a gene encoding an interferon-producing stimulating factor. Transfecting any one or more substances selected from the group;
(2) 상기 동물세포에 후보물질을 첨가하여 인터페론 베타 (IFN3) 프로모터의 활성을 측정하는 단계 ; 및  (2) measuring the activity of the interferon beta (IFN3) promoter by adding candidates to the animal cells; And
(3) 상기 후보물질을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 IFNp 프로모터의 활성이 증가한 후보물질을 선별하는 단계.  (3) selecting a candidate substance whose activity of the IFNp promoter is increased when the candidate substance is added as compared with the case where the candidate substance is not added.
【청구항 8】  [Claim 8]
제 6항 또는 게 7항에 있어서,  The method according to claim 6 or 7,
상기 인터페론생성 촉진물질은 폴리 (I:C)인 것올 특징으로 하는 방법.  The interferon production promoter is characterized in that the poly (I: C).
【청구항 9】  [Claim 9]
제 6항에 있어서,  The method of claim 6,
상기 (1) 단계에서, 인터페론 생성자극인자를 코딩하는 유전자를 포함하는 제 3 재조합 발현백터를 더 포함하는 것을 특징으로 하는 방법 .  In the step (1), further comprising a third recombinant expression vector comprising a gene encoding the interferon production stimulating factor.
【청구항 10】  [Claim 10]
제 7항 또는 제 9항에 있어서,  The method according to claim 7 or 9,
상기 인터페론 생성자극인자는 TRIF, RIG- I /MDA-5, IPS-1, ΤΒ Ι/ΙΚΚε 분자 로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 방법.  The interferon production stimulating factor is any one or more selected from the group consisting of TRIF, RIG- I / MDA-5, IPS-1, ΤΒΙ / ΙΚΚε molecules.
【청구항 11】 [Claim 11]
제 6항 또는 제 7항에 있어서, 상기 리포터 유전자는 E. coli β-갈락토시다아제 (galactosidase), 루시퍼라 아제 (lucif erase), 알칼라인 포스파타아제 (alkal ine phosphatase), 분비성 태반 알 칼라인 포스파타아제 (secreted placental alkaline phosphatase) 또는 클로람페니 콜 아세틸트랜스퍼라아제 (chloramphenicol acetyltransferase, CAT)인 방법 . The method according to claim 6 or 7, The reporter gene is E. coli β-galactosidase, luciferase, alkaline ine phosphatase, secreted placental alkaline phosphatase Or chloramphenicol acetyltransferase (CAT).
【청구항 12]  [Claim 12]
하기의 단계를 포함하는 B형 간염 치료활성 물질을 스크리닝하는 방법. A method for screening a hepatitis B therapeutically active substance comprising the following steps.
(1) 바이러스 감염 시 인터페론의 생성능을 갖는 동물세포에, HBV 폴리머라 제를 코딩하는 염기서열을 제 1 재조합 발현백터, IRF3-GAL4 융합단백질을 코딩하는 염기서열을 포함하는 제 2 재조합 발현백터 및 pFR 프로모터와 이에 작동가능하게 연결되며 pFR 루시퍼라제를 코딩하는 염기서열을 포함하는 제 3 재조합 발현백터 및 인터페론 생성자극인자를 코딩하는 유전자를 포함하는 제 4 발현백터를 트랜스펙션 (transfect ion)하는 단계; (1) a second recombinant expression vector comprising a base sequence encoding an HBV polymerase, a first recombinant expression vector, a base sequence encoding an IRF3-GAL4 fusion protein, in an animal cell having an interferon-producing ability during virus infection; transfecting a third recombinant expression vector comprising a pFR promoter and a nucleotide sequence encoding pFR luciferase and a fourth expression vector comprising a gene encoding an interferon stimulating factor step;
(2) 상기 동물세포에 후보물질을 첨가하여 pFR 프로모터의 활성을 측정하는 단계 ; 및  (2) measuring the activity of the pFR promoter by adding a candidate to the animal cells; And
(3) 상기 후보물질을 첨가하지 않은 경우에 비해 후보물질을 첨가한 경우 ΙΡΝβ 프로모터의 활성이 증가한후보물질을 선별하는 단계.  (3) selecting the candidate material having increased activity of the ΙΡΝβ promoter when the candidate material is added as compared with the case where the candidate material is not added.
【청구항 13]  [Claim 13]
제 12항에 있어서,  The method of claim 12,
상기 인터페론 생성자극인자는 TRIF, RIG- I /MDA-5, IPS-1, ΤΒΚΙ/Ι Κε 분자 로 구 되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 방법.  The interferon generation stimulating factor is at least one selected from the group consisting of TRIF, RIG- I / MDA-5, IPS-1, ΤΒΚΙ / Ιε molecule.
【청구항 14] [Claim 14]
HBV폴리머라제를 발현하는 동물세포에 후보물질을 첨가하여 HBV 폴리머라제 와 DDX3의 결합을 저해하는 후보물질을 선별하는 Β형 간염 치료활성 물질스크리닝 시스템  Screening system for treatment of hepatitis B therapeutic activity by adding candidates to HBV polymerase-expressing animal cells to select candidates that inhibit binding of HBV polymerase and DDX3
【청구항 15】  [Claim 15]
HBV 폴리머라제를 발현하는 동물세포에 후보물질을 첨가하여 HBV 폴리머라제 와 DDX3의 결합을 저해하여 DDX3와 ΤΒΚΙ/Ι Κε와의 결합을 유도하는 후보물질을 선 별하는 Β형 간염 치료활성 물질스크리닝 시스템 .  A screening system for treating hepatitis B therapeutics, which selects candidates that inhibit the binding of HBV polymerase to DDX3 by adding candidates to animal cells expressing HBV polymerase, thereby inducing binding of DDX3 to ΤΒΚΙ / ΙΚε.
PCT/KR2011/003685 2010-05-18 2011-05-18 Composition for screening and a screening method for substances active in treating hepatitis b WO2011145885A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0046484 2010-05-18
KR20100046484 2010-05-18

Publications (2)

Publication Number Publication Date
WO2011145885A2 true WO2011145885A2 (en) 2011-11-24
WO2011145885A3 WO2011145885A3 (en) 2012-05-03

Family

ID=44992219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003685 WO2011145885A2 (en) 2010-05-18 2011-05-18 Composition for screening and a screening method for substances active in treating hepatitis b

Country Status (2)

Country Link
KR (1) KR20110127086A (en)
WO (1) WO2011145885A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884812B2 (en) 2014-03-12 2018-02-06 University Of Warwick Use of DDX3X inhibitors for the treatment of pneumovirus infections
CN111671749A (en) * 2020-06-12 2020-09-18 重庆医科大学 Application of dicoumarol in preparation of HBx protein stability inhibitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811338B2 (en) 2016-12-13 2021-01-13 エーエム サイエンシーズ インコーポレイテッド Pharmaceutical composition for the prevention or treatment of hepatitis B
CN113930451B (en) * 2021-09-29 2023-11-17 天津大学 Report system for screening negative regulatory factors of interferon signal path and construction method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MIZUKOSHI, E. ET AL.: 'Cellular immune responses to the hepatitis B virus polymerase' J. IMMUNOL. vol. 173, no. 9, 01 November 2004, pages 5863 - 5871 *
NIRO, G. A. ET AL.: 'Sequential treatment with lamivudine and alpha-interferon in anti-HBe- positive chronic hepatitis B patients: a pilot study' DIG. LIVER DIS. vol. 39, no. 9, September 2007, pages 857 - 863 *
ROBEK, M. D. ET AL.: 'Role ofimmunoproteasome catalytic subunits in the immune response to hepatitis B virus' J. VIROL. vol. 81, no. 2, January 2007, pages 483 - 491 *
WU, M. ET AL.: 'Hepatitis B virus polymerase inhibits the interferon-inducible MyD88 promoter by blocking nuclear translocation of Statl' J. GEN. VIROL. vol. 88, December 2007, pages 3260 - 3269 *
YU, S. ET AL.: 'Hepatitis B virus polymerase inhibits RIG-I-and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBKl/IKK epsilon and DDX3' J. GEN. VIROL. vol. 91, August 2010, pages 2080 - 2090 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884812B2 (en) 2014-03-12 2018-02-06 University Of Warwick Use of DDX3X inhibitors for the treatment of pneumovirus infections
CN111671749A (en) * 2020-06-12 2020-09-18 重庆医科大学 Application of dicoumarol in preparation of HBx protein stability inhibitor

Also Published As

Publication number Publication date
KR20110127086A (en) 2011-11-24
WO2011145885A3 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
Mitra et al. Hepatitis B virus precore protein p22 inhibits alpha interferon signaling by blocking STAT nuclear translocation
Reineke et al. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses
Bender et al. Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus
Yan et al. The interferon-inducible protein tetherin inhibits hepatitis B virus virion secretion
Arita et al. Valosin-containing protein (VCP/p97) is required for poliovirus replication and is involved in cellular protein secretion pathway in poliovirus infection
Backes et al. Role of annexin A2 in the production of infectious hepatitis C virus particles
Xu et al. Modification of nonstructural protein 1 of influenza A virus by SUMO1
Cai et al. Establishment of an inducible HBV stable cell line that expresses cccDNA-dependent epitope-tagged HBeAg for screening of cccDNA modulators
Hong et al. Type D retrovirus Gag polyprotein interacts with the cytosolic chaperonin TRiC
Ortiz-Riaño et al. Self-association of lymphocytic choriomeningitis virus nucleoprotein is mediated by its N-terminal region and is not required for its anti-interferon function
US11231416B2 (en) Virus-like particle (VLP) based small molecule-protein interaction trap
Dubé et al. Calcium-dependent rubella virus fusion occurs in early endosomes
US20100316989A1 (en) Method for screening an inhibitory agent of hbv proliferation by using the interaction between hbv capsid and surface proteins based on cellular imaging
EP3157944B1 (en) Tagged hepadnavirus e antigen and its use in screening antiviral substances
Liu et al. Amino acid residues at core protein dimer-dimer interface modulate multiple steps of hepatitis B virus replication and HBeAg biogenesis
WO2011145885A2 (en) Composition for screening and a screening method for substances active in treating hepatitis b
Wei et al. Identification of compounds targeting hepatitis B virus core protein dimerization through a split luciferase complementation assay
Huang et al. Nucleolar targeting of hepatitis delta antigen abolishes its ability to initiate viral antigenomic RNA replication
Choi et al. Nonstructural NS5A protein regulates LIM and SH3 domain protein 1 to promote hepatitis C virus propagation
JP6986263B2 (en) Antiviral drug
Kang et al. Association of Vpu with hepatitis C virus NS3/4A stimulates transcription of type 1 human immunodeficiency virus
Tyagarajan et al. Stability and function of JC virus large T antigen and T′ proteins are altered by mutation of their phosphorylated threonine 125 residues
Wang et al. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 gag assembly by downregulating human ADP-ribosylation factor 1
Shao et al. Biological characterization of conserved residues within the cytoplasmic tail of the pichinde arenaviral glycoprotein subunit 2 (GP2)
TW201326195A (en) Nuclear localization signal peptides derived from VP2 protein of chicken anemia virus and uses of said peptides

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783767

Country of ref document: EP

Kind code of ref document: A2