WO2011145832A2 - 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치 - Google Patents

다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2011145832A2
WO2011145832A2 PCT/KR2011/003506 KR2011003506W WO2011145832A2 WO 2011145832 A2 WO2011145832 A2 WO 2011145832A2 KR 2011003506 W KR2011003506 W KR 2011003506W WO 2011145832 A2 WO2011145832 A2 WO 2011145832A2
Authority
WO
WIPO (PCT)
Prior art keywords
control information
uplink control
modulation order
codewords
mapped
Prior art date
Application number
PCT/KR2011/003506
Other languages
English (en)
French (fr)
Other versions
WO2011145832A3 (ko
Inventor
장지웅
정재훈
이현우
고현수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/698,949 priority Critical patent/US9054844B2/en
Priority to KR1020127027294A priority patent/KR101422041B1/ko
Publication of WO2011145832A2 publication Critical patent/WO2011145832A2/ko
Publication of WO2011145832A3 publication Critical patent/WO2011145832A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication system. Specifically, the present invention relates to a method and apparatus for determining modulation order of uplink control information in a multi-antenna wireless communication system.
  • a user equipment may receive information from a base station through downlink, and the user equipment may also transmit information through uplink.
  • the information transmitted or received by the user device includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the user device.
  • FIG. 1 is a diagram illustrating physical channels used in a 3rd generation partnership project (3GPP) long term evolution (LTE) system, which is an example of a mobile communication system, and a general signal transmission method using the same.
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • the user equipment which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the user equipment may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the user equipment After the initial cell search, the user equipment receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S102. More specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the user equipment that has not completed the connection with the base station may perform a random access procedure such as step S103 to step S106 thereafter to complete the connection to the base station.
  • the user equipment transmits a feature sequence as a preamble through a physical random access channel (PRACH) (S103), through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • the response message for the random access may be received (S104).
  • collision resolution such as transmission of additional physical random access channel (S105) and physical downlink control channel and corresponding physical downlink shared channel reception (S106) thereafter. You can perform a Content Resolution Resolution Procedure.
  • the user equipment which has performed the above-described procedure is then subjected to a physical downlink control channel / physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a physical Uplink Control Channel (PUCCH) transmission (S108) may be performed.
  • FIG. 2 is a diagram for describing a signal processing procedure for transmitting an uplink signal by a user equipment.
  • the scrambling module 210 of the user device may scramble the transmission signal using the user device specific scrambling signal.
  • the scrambled signal is input to the modulation mapper 220 and complexed according to the type and / or channel state of the transmission signal in the manner of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or quadrature amplitude modulation (16QAM). Modulated into a complex symbol.
  • the modulated complex symbol is processed by the transform precoder 230, and then input to the resource element mapper 240, where the resource element mapper 240 transmits the complex symbol to the time-frequency resource element to be used for actual transmission. Can be mapped to
  • the signal thus processed may be transmitted to the base station through the antenna via the SC-FDMA signal generator 250.
  • 3 is a diagram for describing a signal processing procedure for transmitting a downlink signal by a base station.
  • the base station may transmit one or more code words in downlink.
  • one or more codewords may each be processed as a complex symbol through the scrambling module 301 and the modulation mapper 302 as in the uplink of FIG. 2, after which the complex symbol is plural by the layer mapper 303.
  • Each layer is mapped to a layer of, and each layer may be multiplied with a predetermined precoding matrix selected according to the channel state by the precoding module 304 and assigned to each transmit antenna.
  • the transmission signal for each antenna thus processed is mapped to a time-frequency resource element to be used for transmission by the resource element mapper 305, and then each antenna is passed through an orthogonal frequency division multiple access (OFDM) signal generator 306. Can be transmitted through.
  • OFDM orthogonal frequency division multiple access
  • the uplink signal transmission uses the Single Carrier-Frequency Division Multiple Access (SC-FDMA) scheme differently from the OFDMA scheme used for the downlink signal transmission.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • FIG. 4 is a diagram for describing an SC-FDMA scheme for uplink signal transmission and an OFDMA scheme for downlink signal transmission in a mobile communication system.
  • Both the user equipment for uplink signal transmission and the base station for downlink signal transmission include a serial-to-parallel converter (401), a subcarrier mapper (403), an M-point IDFT module (404), and a CP ( Cyclic Prefix) is identical in that it includes an additional module 406.
  • the user equipment for transmitting signals in the SC-FDMA scheme further includes a parallel-to-serial converter (405) and an N-point DFT module (402), and the N-point DFT module (402). ) Offsets the influence of the IDFT processing of the M-point IDFT module 404 to some extent so that the transmitted signal has a single carrier property.
  • FIG. 5 is a diagram illustrating a signal mapping method in a frequency domain for satisfying a single carrier characteristic in the frequency domain.
  • (a) shows a localized mapping method and (b) shows a distributed mapping method.
  • 3GPP LTE system defines a local mapping method.
  • Clustered SC-FDMA which is a modified form of SC-FDMA will be described.
  • Clustered SC-FDMA divides the DFT process output samples into sub-groups in the subcarrier mapping process sequentially between the DFT process and the IFFT process, separated from each other by subgroups at the IFFT sample input.
  • the method may be configured to map to a subcarrier region, and may include a filtering process and a cyclic extension process in some cases.
  • the subgroup may be referred to as a cluster
  • cyclic extension means a delay spread of a channel between successive symbols to prevent intersymbol interference (ISI) while each symbol of a subcarrier is transmitted through a multipath channel. This means inserting a longer guard interval.
  • ISI intersymbol interference
  • the present invention provides a method and apparatus for determining a modulation order of uplink control information in a multi-antenna wireless communication system.
  • a method for transmitting uplink control information by a terminal having multiple antennas includes: generating a plurality of codewords using data information and the uplink control information; Modulating each of the generated codewords based on a preset modulation order; And transmitting the modulated signal to a base station through the multiple antennas, wherein the first uplink control information of the uplink control information is mapped to a specific codeword of the plurality of codewords, and the second uplink The control information is copied and mapped to each of the plurality of codewords, and the modulation order for the second uplink control information may be a modulation order corresponding to the specific codeword.
  • the first uplink control information is a channel quality indicator (CQI)
  • the second uplink control information is at least one of Acknowledgment / Negative Acknowledgment (ACK / NACK) or Rank Indicator (RI). It is characterized by that.
  • a method of transmitting uplink control information by a terminal having multiple antennas in a wireless communication system includes: generating a plurality of codewords using data information and the uplink control information;
  • the uplink control information may be at least one of ACK / NACK (Acknowledgment / Negative Acknowledgment) or Rank Indicator (RI).
  • a terminal device having multiple antennas in a wireless communication system includes a wireless communication module for transmitting and receiving a signal with a base station using the multiple antennas; And a processor for processing the signal, wherein the processor generates a plurality of codewords using data information and uplink control information, modulates each of the generated codewords based on a preset modulation order, A channel quality indicator (CQI) of the uplink control information is mapped to a specific codeword among the plurality of codewords, and includes at least one of ACK / NACK (Acknowledgment / Negative Acknowledgment) or Rank Indicator (RI).
  • CQI channel quality indicator
  • RI Rank Indicator
  • the terminal device having a multi-antenna in a wireless communication system a wireless communication module for transmitting and receiving a signal with a base station using the multi-antenna; And a processor for processing the signal, wherein the processor generates a plurality of codewords using data information and uplink control information, modulates each of the generated codewords based on a preset modulation order,
  • the uplink control information is copied and mapped to each of the plurality of codewords, and the modulation order for the uplink control information is a minimum modulation order among modulation orders set in each of the plurality of codewords.
  • the uplink control information is preferably at least one of ACK / NACK (Acknowledgment / Negative Acknowledgment) or Rank Indicator (RI).
  • the preset modulation order means a modulation order set by the base station for data information included in each of the codewords.
  • a terminal can efficiently determine a modulation order of uplink control information according to the present invention.
  • FIG. 1 is a diagram for describing physical channels used in an 3GPP LTE system, which is an example of a mobile communication system, and a general signal transmission method using the same.
  • FIG. 2 is a diagram for describing a signal processing procedure for transmitting an uplink signal by a user equipment.
  • 3 is a diagram for describing a signal processing procedure for transmitting a downlink signal by a base station.
  • FIG. 4 is a diagram for describing an SC-FDMA scheme for uplink signal transmission and an OFDMA scheme for downlink signal transmission in a mobile communication system.
  • FIG. 5 is a diagram illustrating a signal mapping method in a frequency domain for satisfying a single carrier characteristic in the frequency domain.
  • FIG. 6 is a diagram illustrating a signal processing procedure in which DFT process output samples are mapped to a single carrier in cluster SC-FDMA according to an embodiment of the present invention.
  • FIG. 7 and 8 illustrate a signal processing procedure in which DFT process output samples are mapped to multi-carriers in cluster SC-FDMA according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a signal processing procedure in a segment SC-FDMA system according to an embodiment of the present invention.
  • FIG. 10 is a diagram for describing a signal processing procedure for transmitting a reference signal (hereinafter, referred to as RS) in uplink.
  • RS reference signal
  • FIG. 11 is a diagram illustrating the structure of a subframe for transmitting an RS in the case of a normal cyclic prefix.
  • FIG. 12 is a diagram illustrating a structure of a subframe for transmitting an RS in the case of an extended CP.
  • FIG. 13 is a block diagram illustrating a process of a transport channel for an uplink shared channel.
  • 14 is a diagram illustrating a mapping method of physical resources for uplink data and control channel transmission.
  • 15 is a flowchart illustrating a method of efficiently multiplexing data and control channels on an uplink shared channel.
  • 16 is a block diagram illustrating a method of generating transmission signals of data and control channels.
  • 17 is a diagram for explaining a codeword to layer mapping method.
  • FIG. 18 is a diagram illustrating a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a signal processing procedure in which DFT process output samples are mapped to a single carrier in cluster SC-FDMA according to an embodiment of the present invention.
  • 7 and 8 are diagrams illustrating a signal processing procedure in which DFT process output samples are mapped to multi-carriers in cluster SC-FDMA according to an embodiment of the present invention.
  • FIG. 6 illustrates an example of applying a cluster SC-FDMA in an intra-carrier
  • FIGS. 7 and 8 correspond to an example of applying a cluster SC-FDMA in an inter-carrier
  • FIG. 7 illustrates a case in which a signal is generated through a single IFFT block when subcarrier spacing between adjacent component carriers is aligned in a case where contiguous component carriers are allocated in the frequency domain
  • FIG. 8 illustrates a case in which signals are generated through a plurality of IFFT blocks because component carriers are not adjacent in a situation in which component carriers are allocated non-contiguous in the frequency domain.
  • Segment SC-FDMA uses the same number of IFFTs as any number of DFTs, so the relationship between DFT and IFFT has a one-to-one relationship. Therefore, the segment SC-FDMA simply adopts DFT spreading and frequency subcarrier mapping of IFFT. It is sometimes referred to as NxSC-FDMA or NxDFT-s-OFDMA. In the present invention, the generic expression will be referred to as segmented SC-FDMA.
  • 9 is a diagram illustrating a signal processing procedure in a segment SC-FDMA system according to an embodiment of the present invention. As shown in FIG. 9, the segment SC-FDMA performs a DFT process in groups by grouping all time-domain modulation symbols into N (N is an integer greater than 1) groups to alleviate a single carrier characteristic condition. It features.
  • FIG. 10 is a diagram for describing a signal processing procedure for transmitting a reference signal (hereinafter, referred to as RS) in uplink.
  • RS reference signal
  • data is generated in the time domain and transmitted through the IFFT after frequency mapping through the DFT precoder, while RS omits the process through the DFT precoder, and the frequency domain.
  • S11 After being immediately generated (S11) in, it is transmitted after passing through the localization mapping (S12), IFFT (S13) process and the cyclic prefix (CP) attachment process (S14) sequentially.
  • S12 localization mapping
  • S13 IFFT
  • CP cyclic prefix
  • FIG. 11 illustrates a structure of a subframe for transmitting an RS in the case of a normal CP
  • FIG. 12 illustrates a structure of a subframe for transmitting an RS in the case of an extended CP. It is a figure which shows a structure.
  • RS is transmitted through 4th and 11th OFDM symbols
  • RS is transmitted through 3rd and 9th OFDM symbols.
  • FIG. 13 is a block diagram illustrating a process of a transport channel for an uplink shared channel.
  • data information multiplexed together with the control information is attached to a TB (Cyclic Redundancy Check) for TB to a transport block (hereinafter referred to as "TB") to be transmitted uplink (130).
  • TB Transport block
  • CBs Code Blocks
  • the channel-coded data undergoes rate matching (133), and then the combination between the CBs is performed again (S134), and the combined CBs are CQI / PMI (Channel Quality Information / Precoding Matrix Index). And multiplexed (135).
  • channel coding is performed separately from the data in CQI / PMI (136).
  • the channel coded CQI / PMI is multiplexed with the data (135).
  • RI Rank Indication
  • channel coding is performed separately from the data (137).
  • ACK / NACK channel encoding is performed separately from data, CQI / PMI, and RI (138).
  • the multiplexed data, CQI / PMI, separately channel-coded RI, and ACK / NACK are channel interleaved to generate an output signal (139).
  • RE physical resource element
  • 14 is a diagram illustrating a mapping method of physical resources for uplink data and control channel transmission.
  • CQI / PMI and data are mapped onto the RE in a time-first manner.
  • the encoded ACK / NACK is punctured around the demodulation reference signal (DM RS) symbol and inserted, and the RI is mapped to the RE next to the RE where the ACK / NACK is located.
  • Resources for RI and ACK / NACK may occupy up to four SC-FDMA symbols.
  • the concatenation of the CQI / PMI and the data is mapped to the remaining REs except for the RE to which the RI is mapped in a time-first manner.
  • the ACK / NACK is mapped while puncturing the concatenation of data with the already mapped CQI / PMI.
  • uplink control information such as data and CQI / PMI. Therefore, uplink transmission maintaining a low cubic metric (CM) can be achieved.
  • At least one of two transmission schemes of SC-FDMA and cluster DFTs OFDMA on each component carrier for uplink transmission is performed for each user equipment.
  • UL-MIMO Uplink-MIMO
  • 15 is a flowchart illustrating a method of efficiently multiplexing data and control channels on an uplink shared channel.
  • the user equipment recognizes a rank for data of a Physical Uplink Shared Channel (PUSCH) (S150). Then, the user equipment is an uplink control channel in the same rank as the rank for the data (the control channel means uplink control information (UCI) such as CQI, ACK / NACK and RI). A rank is set (S151).
  • the user device multiplexes the data with the first control information, that is, the CQI in a concatenated manner (S152). Then, the RI is mapped to the designated RE, the concatenated data and the CQI are mapped in a time-first manner, and then the ACK / NACK is punched and mapped to the RE around the DM-RS. Interleaving may be performed (S153).
  • the data and the control channel may be modulated with QPSK, 16QAM, 64QAM, etc. according to the MCS table (S154).
  • the modulation step may be moved to another position (for example, the modulation block may be moved before the multiplexing step of data and control channel).
  • channel interleaving may be performed in units of codewords or may be performed in units of layers.
  • 16 is a block diagram illustrating a method of generating transmission signals of data and control channels. The position of each block can be changed in the application manner.
  • channel coding is performed for each codeword (160) and rate matching is performed according to the given MCS level and resource size (161).
  • the encoded bits may then be scrambled in a cell-specific or UE-specific or codeword-specific manner (162).
  • codeword to layer mapping is performed (163).
  • an operation of layer shift or permutation may be included.
  • FIG. 17 is a diagram for explaining a codeword to layer mapping method.
  • the codeword to layer mapping may be performed using the rule illustrated in FIG. 17.
  • the precoding position in FIG. 17 may be different from the position of the precoding in FIG. 13.
  • Control information such as CQI, RI, and ACK / NACK
  • CQI, RI, and ACK / NACK is channel coded 165 according to a given specification.
  • the CQI, RI, and ACK / NACK may be encoded by using the same channel code for all codewords, or may be encoded by using a different channel code for each codeword.
  • the number of encoded bits can then be changed by the bit size control (166).
  • the bit size control unit may be unified with the channel coding block 165.
  • the signal output from the bit size controller is scrambled (167). In this case, scrambling may be performed cell-specifically, layer-specifically, codeword-specifically, or UE-specifically.
  • the bit size control unit may operate as follows.
  • the controller recognizes a rank n_rank_pusch of data for the PUSCH.
  • the encoded bits may be generated by applying channel coding and rate matching defined in the existing system (eg, LTE Rel-8).
  • bit level interleaving may be performed to further randomize each layer. Or equivalently, interleaving may be performed at the modulation symbol level.
  • Data for the CQI / PMI channel and the two codewords may be multiplexed by a data / control multiplexer (164). Then, while allowing the ACK / NACK information to be mapped to the RE around the uplink DM-RS in both slots in the subframe, the channel interleaver maps the CQI / PMI according to a time-first mapping method (168).
  • Modulation is performed on each layer (169), DFT precoding 170, MIMO precoding 171, RE mapping 172, and the like are sequentially performed. Then, the SC-FDMA signal is generated and transmitted through the antenna port (173).
  • the functional blocks are not limited to the position shown in FIG. 16 and may be changed in some cases.
  • the scrambling blocks 162 and 167 may be located after the channel interleaving block.
  • the codeword to layer mapping block 163 may be located after the channel interleaving block 168 or after the modulation mapper block 169.
  • the present invention proposes a method of setting a modulation order when UCI is copied and mapped to all or part of codewords (or layers).
  • the present invention can be applied when the number of codewords (or the number of layers) is N.
  • the present invention is limited to the case where UCI is mapped to two codewords (or layers).
  • the modulation order of the UCI may follow the same modulation order as the specific codeword designated by the base station.
  • a specific codeword designated by the base station may be changed for every uplink transmission unit. For example, when the ACK / NACK (or RI) is copied and mapped to the first codeword and the second codeword, the base station designates the first codeword in the nth uplink transmission, and the ACK / NACK (or RI). ) May use the modulation order set in the first codeword.
  • the base station may designate a second codeword, and ACK / NACK (or RI) may use a modulation order set in the second codeword.
  • the modulation order of UCI may use the modulation order of a specific codeword requested or notified by the terminal to a base station in a previous uplink transmission. It is preferable that the terminal designates or requests or notifies a specific codeword in an uplink transmission unit before transmitting the UCI. For example, when ACK / NACK (or RI) is copied and mapped to the first codeword and the second codeword, the terminal designates the first codeword in the nth uplink transmission, and transmits n + 1 uplink. In UE, a modulation order set in the first codeword may be used for ACK / NACK (or RI).
  • the modulation order of UCI may use the highest modulation order among modulation orders of codewords to which the UCI is copied and mapped. For example, if the modulation order of the first codeword is higher than the modulation order of the second codeword, the modulation order of the first codeword is used for ACK / NACK (or RI).
  • the modulation order of UCI may use the lowest modulation order among modulation orders of codewords to which the UCI is copied and mapped. For example, if the modulation order of the first codeword is lower than the modulation order of the second codeword, the modulation order of the first codeword is used for ACK / NACK (or RI).
  • a modulation order of UCI it may also be considered to use the modulation order of the codeword of the last index or the starting index among the codewords to which the UCI is copied and mapped.
  • the ACK / NACK (or RI) is copied and mapped to the first codeword and the second codeword
  • the ACK / NACK (or RI) includes the modulation order of the second codeword, which is the codeword of the last index. Is to use.
  • the modulation order of the UCI may use the modulation order of the specific codeword to which the UCI is mapped. For example, if the CQI is mapped only to the first codeword and the ACK / NACK (or RI) is copied and mapped to both the first and second codewords, then the modulation order of the ACK / NACK (or RI) is the CQI. Uses the modulation order of the first codeword to which is mapped. Of course, the CQI also uses the modulation order of the first codeword.
  • the modulation order of UCI may use the modulation order of codewords to which some of the UCIs are not mapped. For example, if the CQI is mapped only to the first codeword and the ACK / NACK (or RI) is copied and mapped to both the first and second codewords, then the modulation order of the ACK / NACK (or RI) is the CQI. Uses the modulation order of the second codeword that is not mapped.
  • the modulation order of the UCI can also be considered to use a fixed modulation order set in advance. That is, when CQI, ACK / NACK, and RI are transmitted at the same time, regardless of the modulation order of the codeword, CQI can be modulated by 64QAM, ACK / NACK by 16QAM, and RI by QPSK. That is, the modulation order set in the UCI may be set individually for each UCI, or the same modulation order may be applied to all UCIs.
  • FIG. 18 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1800 includes a processor 1810, a memory 1820, an RF module 1830, a display module 1840, and a user interface module 1850.
  • the communication device 1800 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1800 may further include necessary modules. In addition, some modules in the communication device 1800 may be classified into more granular modules.
  • the processor 1810 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1810 may refer to the contents described with reference to FIGS. 1 to 17.
  • the memory 1820 is connected to the processor 1810 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1830 is connected to the processor 1810 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. For this purpose, the RF module 1830 performs analog conversion, amplification, filtering and frequency up conversion, or a reverse process thereof.
  • the display module 1840 is connected to the processor 1810 and displays various information.
  • the display module 1840 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1850 is connected to the processor 1810 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • 'Base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the term "terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be applied to a wireless communication system. Specifically, the present invention can be applied to a wireless mobile communication device used for a cellular system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 다중 안테나를 구비한 단말이 상향링크 제어 정보를 전송하는 방법이 개시된다. 구체적으로, 데이터 정보와 상기 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하는 단계, 상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하는 단계, 및 상기 변조된 신호를 상기 다중 안테나를 통하여 기지국으로 전송하는 단계를 포함하고, 상기 상향링크 제어 정보 중 제 1 상향링크 제어 정보는 상기 복수의 코드워드 중 특정 코드워드에 맵핑되고, 제 2 상향링크 제어 정보는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며, 상기 제 2 상향링크 제어 정보를 위한 변조 차수는 상기 특정 코드워드에 대응하는 변조 차수인 것을 특징으로 한다.

Description

다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치에 관한 것이다.
이동통신 시스템에서 사용자 기기(User Equipment)는 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 사용자 기기는 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 사용자 기기가 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 사용자 기기가 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
도 1은 이동통신 시스템의 일례인 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 사용자 기기는 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 사용자 기기는 기지국으로부터 주 동기 채널(P-SCH: Primary Synchronization Channel) 및 부 동기 채널(S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 사용자 기기는 기지국으로부터 물리방송채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 사용자 기기는 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal: DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 사용자 기기는 단계 S102에서 물리 하향링크제어채널(PDCCH: Physical Downlink Control Channel) 및 상기 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(PDSCH: Physical Downlink Control Channel)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
한편, 기지국과 접속을 완료하지 않은 사용자 기기는 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 사용자 기기는 물리임의접속채널(PRACH: Physical Random Access Channel)를 통해 특징 시퀀스를 프리엠블(preamble)로서 전송하고(S103), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 상기 임의접속에 대한 응답 메시지를 수신할 수 있다(S104). 핸드오버(Handover)의 경우를 제외한 경쟁 기반 임의접속의 경우 그 후 추가적인 물리임의접속채널의 전송(S105) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S106)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 사용자 기기는 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S107) 및 물리상향링크공유채널(PUSCH: Physical Uplink Shared Channel)/물리상향링크제어채널(PUCCH: Physical Uplink Control Channel) 전송(S108)을 수행할 수 있다.
도 2는 사용자 기기가 상향링크 신호를 전송하기 위한 신호 처리 과정을 설명하기 위한 도면이다.
상향링크 신호를 전송하기 위해 사용자 기기의 스크램블링(scrambling) 모듈(210)은 사용자 기기 특정 스크램블링 신호를 이용하여 전송 신호를 스크램블링할 수 있다. 이와 같이 스크램블링된 신호는 변조 맵퍼(220)에 입력되어 전송 신호의 종류 및/또는 채널 상태에 따라 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying) 또는 16QAM(Quadrature Amplitude Modulation) 방식으로 복소 심볼(complex symbol)로 변조된다. 그 후, 변조된 복소 심볼은 변환 프리코더(230)에 의해 처리된 후, 자원 요소 맵퍼(240)에 입력되며, 자원 요소 맵퍼(240)는 복소 심볼을 실제 전송에 이용될 시간-주파수 자원 요소에 맵핑할 수 있다. 이와 같이 처리된 신호는 SC-FDMA 신호 생성기(250)를 거쳐 안테나를 통해 기지국으로 전송될 수 있다.
도 3은 기지국이 하향링크 신호를 전송하기 위한 신호 처리 과정을 설명하기 위한 도면이다.
3GPP LTE 시스템에서 기지국은 하향링크로 하나 이상의 코드워드(Code Word)를 전송할 수 있다. 따라서 하나 이상의 코드워드는 각각 도 2의 상향링크에서와 마찬가지로 스크램블링 모듈(301) 및 변조 맵퍼(302)를 통해 복소 심볼로서 처리될 수 있다, 그 후, 복소 심볼은 레이어 맵퍼(303)에 의해 복수의 레이어(Layer)에 맵핑되며, 각 레이어는 프리코딩 모듈(304)에 의해 채널 상태에 따라 선택된 소정 프리코딩 행렬과 곱해져 각 전송 안테나에 할당될 수 있다. 이와 같이 처리된 각 안테나 별 전송 신호는 각각 자원 요소 맵퍼(305)에 의해 전송에 이용될 시간-주파수 자원 요소에 맵핑되며, 이후 OFDM(Orthogonal Frequency Division Multiple Access) 신호 생성기(306)를 거쳐 각 안테나를 통해 전송될 수 있다.
이동통신 시스템에서 사용자 기기가 상향링크로 신호를 전송하는 경우에는 기지국이 하향링크로 신호를 전송하는 경우에 비해 PAPR(Peak-to-Average Ratio)이 더욱 문제될 수 있다. 따라서, 도 2 및 도 3과 관련하여 상술한 바와 같이 상향링크 신호 전송은 하향링크 신호 전송에 이용되는 OFDMA 방식과 달리 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 방식이 이용되고 있다.
도 4는 이동통신 시스템에서 상향링크 신호 전송을 위한 SC-FDMA 방식과 하향링크 신호 전송을 위한 OFDMA 방식을 설명하기 위한 도면이다.
상향링크 신호 전송을 위한 사용자 기기 및 하향링크 신호 전송을 위한 기지국 모두 직렬-병렬 변환기(Serial-to-Parallel Converter; 401), 서브캐리어 맵퍼(403), M-포인트 IDFT 모듈(404) 및 CP(Cyclic Prefix) 추가 모듈(406)을 포함하는 점에 있어서는 동일하다.
다만, SC-FDMA 방식으로 신호를 전송하기 위한 사용자 기기는 병렬-직렬 변환기(Parallel-to- Serial Converter; 405)와 N-포인트 DFT 모듈(402)을 추가적으로 포함하고, N-포인트 DFT 모듈(402)은 M-포인트 IDFT 모듈(404)의 IDFT 처리 영향을 일정 부분 상쇄함으로써 전송 신호가 단일 반송파 특성(single carrier property)을 가지도록 하는 것을 특징으로 한다.
도 5는 주파수 영역에서 단일 반송파 특성을 만족하기 위한 주파수 영역상의 신호 맵핑 방식을 설명하는 도면이다. 상기 도 5에서 (a)는 로컬형 맵핑(localized mapping) 방식을 나타내며 (b)는 분산형 맵핑(distributed mapping) 방식을 나타낸다. 현재 3GPP LTE 시스템에서는 로컬형 맵핑 방식을 정의하고 있다.
한편, SC-FDMA의 수정된 형태인 클러스터(clustered) SC-FDMA에 대해 설명하기로 한다. 클러스터(clustered) SC-FDMA는 DFT 프로세스와 IFFT 프로세스 사이에 순차적으로, 부반송파 맵핑(mapping) 과정에 있어 DFT 프로세스 출력 샘플들을 부 그룹(sub-group)으로 나누어 IFFT 샘플 입력 부에서 부 그룹 별로 서로 떨어진 부반송파 영역에 맵핑하는 것을 특징으로 하며 경우에 따라 필터링(filtering) 과정 및 순환 확장(cyclic extension) 과정을 포함할 수 있다.
이때, 부 그룹을 클러스터로 명명할 수 있고 순환 확장이란 부반송파 각 심볼이 다중경로 채널을 통해 전송되는 동안 상호 심볼간 간섭(ISI)을 방지하기 위해 연속된 심볼 사이에 채널의 최대 지연확산(Delay Spread) 보다 긴 보호구간(Guard Interval)을 삽입하는 것을 의미한다.
본 발명은 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치를 제공하기 위한 것이다
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상인 무선 통신 시스템에서 다중 안테나를 구비한 단말이 상향링크 제어 정보를 전송하는 방법은, 데이터 정보와 상기 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하는 단계; 상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하는 단계; 및 상기 변조된 신호를 상기 다중 안테나를 통하여 기지국으로 전송하는 단계를 포함하고, 상기 상향링크 제어 정보 중 제 1 상향링크 제어 정보는 상기 복수의 코드워드 중 특정 코드워드에 맵핑되고, 제 2 상향링크 제어 정보는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며, 상기 제 2 상향링크 제어 정보를 위한 변조 차수는 상기 특정 코드워드에 대응하는 변조 차수인 것을 특징으로 한다.
여기서 상기 제 1 상향링크 제어 정보는 채널 품질 지시자(Channel Quality Indicator; CQI)이고, 상기 제 2 상향링크 제어 정보는 ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나인 것을 특징으로 한다.
또한 본 발명의 다른 양상인 무선 통신 시스템에서 다중 안테나를 구비한 단말이 상향링크 제어 정보를 전송하는 방법은, 데이터 정보와 상기 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하는 단계;
상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하는 단계; 및 상기 변조된 신호를 상기 다중 안테나를 통하여 기지국으로 전송하는 단계를 포함하고, 상기 상향링크 제어 정보는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며, 상기 상향링크 제어 정보를 위한 변조 차수는 상기 복수의 코드워드 각각에 설정된 변조 차수들 중 최소 변조 차수인 것을 특징으로 한다. 여기서 상기 상향링크 제어 정보는 ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나인 것이 바람직하다.
본 발명의 또 다른 양상인 무선 통신 시스템에서의 다중 안테나를 구비한 단말 장치는, 상기 다중 안테나를 이용하여 기지국과 신호를 송수신하기 위한 무선 통신 모듈; 및 상기 신호를 처리하기 위한 프로세서를 포함하고, 상기 프로세서는 데이터 정보와 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하고, 상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하며, 상기 상향링크 제어 정보 중 채널 품질 지시자(Channel Quality Indicator; CQI)는 상기 복수의 코드워드 중 특정 코드워드에 맵핑되고, ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며, 상기 ACK/NACK 또는 랭크 지시자 중 적어도 하나를 위한 변조 차수는 상기 특정 코드워드에 대응하는 변조 차수인 것을 특징으로 한다.
또한, 본 발명의 또 다른 양상인 무선 통신 시스템에서의 다중 안테나를 구비한 단말 장치는, 상기 다중 안테나를 이용하여 기지국과 신호를 송수신하기 위한 무선 통신 모듈; 및 상기 신호를 처리하기 위한 프로세서를 포함하고, 상기 프로세서는 데이터 정보와 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하고, 상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하며, 상기 상향링크 제어 정보는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며, 상기 상향링크 제어 정보를 위한 변조 차수는 상기 복수의 코드워드 각각에 설정된 변조 차수들 중 최소 변조 차수인 것을 특징으로 하며, 여기서 상기 상향링크 제어 정보는, ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나인 것이 바람직하다.
여기서, 상기 기 설정된 변조 차수는 상기 코드워드 각각에 포함되는 데이터 정보에 대하여 상기 기지국에 의하여 설정된 변조 차수를 의미한다.
다중 안테나 무선 통신 시스템에서 단말은 본 발명에 따라 상향링크 제어 정보의 변조 차수를 효율적으로 결정할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 이동통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 사용자 기기가 상향링크 신호를 전송하기 위한 신호 처리 과정을 설명하기 위한 도면이다.
도 3은 기지국이 하향링크 신호를 전송하기 위한 신호 처리 과정을 설명하기 위한 도면이다.
도 4는 이동통신 시스템에서 상향링크 신호 전송을 위한 SC-FDMA 방식과 하향링크 신호 전송을 위한 OFDMA 방식을 설명하기 위한 도면이다.
도 5는 주파수 영역에서 단일 반송파 특성을 만족하기 위한 주파수 영역상의 신호 맵핑 방식을 설명하는 도면이다.
도 6은 본 발명의 일 실시예에 따른 클러스터 SC-FDMA에 있어서, DFT 프로세스 출력 샘플들이 단일 캐리어에 맵핑되는 신호 처리 과정을 도시하는 도면이다.
도 7과 도 8은 본 발명의 일 실시예에 따른 클러스터 SC-FDMA에 있어서, DFT 프로세스 출력 샘플들이 다중 캐리어(multi-carrier)에 맵핑되는 신호 처리 과정을 도시하는 도면이다.
도 9는 본 발명의 일 실시예에 따른 세그먼트 SC-FDMA시스템에 있어서, 신호 처리 과정을 도시하는 도면이다.
도 10은 상향링크로 참조신호(Reference Signal, 이하, RS라 하기로 한다)를 전송하기 위한 신호 처리 과정을 설명하기 위한 도면이다.
도 11은 표준 순환 전치(normal CP)의 경우에 RS를 전송하기 위한 서브프레임의 구조를 도시한 도면이다.
도 12는 확장 순환 전치(extended CP)의 경우에, RS를 전송하기 위한 서브프레임의 구조를 도시한 도면이다.
도 13 상향링크 공유 채널에 대한 전송 채널의 처리과정을 설명하는 블록도이다.
도 14는 상향링크 데이터와 제어채널 전송을 위한 물리 자원의 맵핑(mapping) 방법을 설명하기 위한 도면이다.
도 15는 상향링크 공유 채널 상에서 데이터와 제어 채널을 효율적으로 다중화하는 방법을 설명하는 순서도이다.
도 16은 데이터와 제어 채널의 전송 신호를 생성하는 방법을 설명하는 블록도이다.
도 17은 코드워드 대 레이어 맵핑 방법을 설명하는 도면이다.
도 18은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시하는 도면이다.
첨부된 도면을 참조하여 설명되는 본 발명의 바람직한 실시예에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예는 본 발명의 기술적 특징이 복수의 직교 부반송파를 사용하는 시스템에 적용된 예들이다. 편의상, 본 발명은 IEEE 802.16 시스템을 이용하여 설명되지만, 이는 예시로서 본 발명은 3GPP(3rd Generation Partnership Project) 시스템을 포함한 다양한 무선 통신 시스템에 적용될 수 있다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 6은 본 발명의 일 실시예에 따른 클러스터 SC-FDMA에 있어서, DFT 프로세스 출력 샘플들이 단일 캐리어에 맵핑되는 신호 처리 과정을 도시하는 도면이다. 또한, 도 7과 도 8은 본 발명의 일 실시예에 따른 클러스터 SC-FDMA에 있어서, DFT 프로세스 출력 샘플들이 다중 캐리어(multi-carrier)에 맵핑되는 신호 처리 과정을 도시하는 도면이다.
상기 도 6은 인트라 캐리어(intra-carrier)에서 클러스터 SC-FDMA를 적용하는 예이며, 상기 도 7과 도 8은 인터 캐리어(inter-carrier)에서 클러스터 SC-FDMA를 적용하는 예에 해당한다. 또한, 상기 도 7은 주파수 영역 에서 연속한(contiguous) 컴포넌트 캐리어(component carrier)가 할당된 상황에서 인접한 컴포넌트 캐리어 간 서브캐리어 간격(spacing)이 정렬된 경우 단일 IFFT 블록을 통해 신호를 생성하는 경우를 나타내고, 도 8은 주파수 영역에서 비연속적(non-contiguous)으로 컴포넌트 캐리어가 할당된 상황에서 컴포넌트 캐리어 들이 인접하지 않기 때문에, 복수의 IFFT 블록을 통해 신호를 생성하는 경우를 나타낸다.
세그먼트 SC-FDMA는 임의의 개수의 DFT와 같은 개수의 IFFT가 적용되면서 DFT와 IFFT간의 관계 구성이 일대일 관계를 가짐에 따라 단순히 기존 SC-FDMA의 DFT 확산(spreading)과 IFFT의 주파수 부반송파 맵핑 구성을 확장한 것으로 NxSC-FDMA 또는 NxDFT-s-OFDMA라고 표현하기도 한다. 본 발명에서는 이를 포괄하는 표현으로 세그먼트(segmented) SC-FDMA라고 명명하기로 한다. 도 9는 본 발명의 일 실시예에 따른 세그먼트 SC-FDMA시스템에 있어서, 신호 처리 과정을 도시하는 도면이다. 상기 도 9에 도시된 바와 같이, 세그먼트 SC-FDMA는 단일 반송파 특성 조건을 완화하기 위하여 전체 시간 영역 변조 심볼들을 N(N은 1보다 큰 정수)개의 그룹으로 묶어 그룹단위로 DFT 프로세스를 수행하는 것을 특징으로 한다.
도 10은 상향링크로 참조신호(Reference Signal, 이하, RS라 하기로 한다)를 전송하기 위한 신호 처리 과정을 설명하기 위한 도면이다. 상기 도 10에 도시된 바와 같이, 데이터는 시간영역에서 신호를 생성하고 DFT 프리코더(precoder)를 통한 주파수 맵핑 후 IFFT를 통해 전송되는 반면, RS는 DFT 프리코더를 통하는 과정을 생략하고, 주파수 영역에서 바로 생성(S11)된 후에, 로컬화 맵핑(S12), IFFT(S13) 과정 및 순환 전치(Cyclic Prefix; CP) 부착 과정(S14)을 순차적으로 거친 뒤에 전송된다.
도 11은 표준 순환 전치(normal CP)의 경우에 RS를 전송하기 위한 서브프레임의 구조를 도시한 도면이고, 도 12는 확장 순환 전치(extended CP)의 경우에, RS를 전송하기 위한 서브프레임의 구조를 도시한 도면이다. 상기 도 11에서는 4번째와 11번째 OFDM 심볼을 통해 RS가 전송되며, 상기 도 12에서는 3번째와 9번째 OFDM 심볼을 통해 RS가 전송된다.
한편, 전송 채널로서 상향링크 공유 채널의 처리 구조를 설명하면 다음과 같다. 도 13 상향링크 공유 채널에 대한 전송 채널의 처리과정을 설명하는 블록도이다. 상기 도 13에 도시된 바와 같이, 제어정보와 함께 다중화되는 데이터 정보는 상향링크로 전송해야 하는 전송 블록(Transport Block; 이하 "TB")에 TB용 CRC(Cyclic Redundancy Check)를 부착한 후(130), TB 크기에 따라 여러 개의 코드 블록(Code block; 이하 "CB")로 나뉘어지고 여러 개의 CB들에는 CB용 CRC가 부착된다(131). 이 결과값에 채널 부호화가 수행되게 된다(132). 아울러, 채널 부호화된 데이터들은 레이트 매칭(Rate Matching)(133)을 거친 후, 다시 CB들 간의 결합이 수행되며(S134), 이와 같이 결합된 CB들은 CQI/PMI(Channel Quality Information/Precoding Matrix Index)와 다중화(multiplexing)된다(135).
한편, CQI/PMI는 데이터와 별도로 채널 부호화가 수행된다(136). 채널 부호화된 CQI/PMI는 데이터와 다중화된다(135).
또한, RI(Rank Indication)도 데이터와 별도로 채널 부호화가 수행된다(137). ACK/NACK(Acknowledgment/Negative Acknowledgment)의 경우 데이터, CQI/PMI 및 RI와 별도로 채널 부호화가 수행되며(138). 다중화된 데이터와 CQI/PMI, 별도로 채널 부호화된 RI, ACK/NACK은 채널 인터리빙되어 출력 신호가 생성된다(139).
한편, LTE 상향링크 시스템에 있어서, 데이터와 제어채널을 위한 물리 자원 요소(Resource Element, 이하, RE라 하기로 한다)에 대해서 설명하기로 한다.
도 14는 상향링크 데이터와 제어채널 전송을 위한 물리 자원의 맵핑(mapping) 방법을 설명하기 위한 도면이다.
상기 도 14에 도시된 바와 같이, CQI/PMI와 데이터는 시간 우선 방식(time-first)으로 RE상에 맵핑된다. 인코딩된 ACK/NACK은 복조용 참조 신호(Demodulation Reference Signal; DM RS)심볼 주변에 펑처링(puncturing)되어 삽입되고, RI는 ACK/NACK이 위치한 RE 옆의 RE에 맵핑된다. RI와 ACK/NACK을 위한 자원은 최대 4개의 SC-FDMA심볼을 점유할 수 있다. 상향 공유 채널에 데이터와 제어정보가 동시에 전송되는 경우 맵핑의 순서는 RI, CQI/PMI와 데이터의 연접 그리고 ACK/NACK의 순서이다. 즉, RI가 먼저 맵핑된 후, CQI/PMI와 데이터의 연접이 시간 우선 방식으로 RI가 맵핑되어 있는 RE를 제외한 나머지 RE에 맵핑된다. ACK/NACK은 이미 맵핑된 CQI/PMI와 데이터의 연접을 펑처링하면서 맵핑되게 된다.
상기와 같이 데이터와 CQI/PMI등의 상향링크 제어 정보(Uplink Control Information; UCI)를 다중화함으로써 단일 반송파 특성을 만족시킬 수 있다. 따라서, 낮은 CM(Cubic Metric)을 유지하는 상향링크 전송을 달성할 수가 있다.
기존 시스템을 개선한 시스템(예를 들어, LTE Rel-10)에서는, 각 사용자 기기에 대하여 각 컴포넌트 캐리어 상에서 SC-FDMA와 클러스터 DFTs OFDMA의 두 개의 전송 방식 중 적어도 하나의 전송 방식이 상향링크 전송을 위해 적용될 수 있으며 UL-MIMO(Uplink-MIMO) 전송과 더불어서 같이 적용될 수 있다.
도 15는 상향링크 공유 채널 상에서 데이터와 제어 채널을 효율적으로 다중화하는 방법을 설명하는 순서도이다.
상기 도 15에 도시된 바와 같이, 사용자 기기는 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)의 데이터에 대한 랭크를 인식한다(S150). 그리고 나서, 사용자 기기는 상기 데이터에 대한 랭크와 동일한 랭크로 상향링크 제어 채널(제어 채널이라 함은, CQI, ACK/NACK 및 RI등의 상향링크 제어정보(Uplink Control Information; UCI)를 의미한다)의 랭크를 설정한다(S151). 또한 사용자 기기는 데이터와 제 1 제어 정보, 즉 CQI를 연접하는 방식으로 다중화한다(S152). 그리고 나서, RI를 지정된 RE에 맵핑하고, 연접된 데이터와 CQI를 시간-우선(time-first) 방식으로 맵핑(mapping)한 후, ACK/NACK 을 DM-RS 주위의 RE를 천공하여 맵핑함으로써 채널 인터리빙(channel interleaving)이 수행될 수 있다(S153).
이후, 데이터와 제어채널은 MCS테이블에 따라 QPSK, 16QAM, 64QAM 등으로 변조될 수 있다(S154). 이때, 상기 변조단계는 다른 위치로 이동할 수 있다(예를 들어, 상기 변조 블록은 데이터와 제어 채널의 다중화 단계 전으로 이동 가능하다). 또한 채널 인터리빙은 코드워드 단위로 수행될 수 있으며 또는 레이어 단위로 수행될 수도 있다.
도 16은 데이터와 제어 채널의 전송 신호를 생성하는 방법을 설명하는 블록도이다. 각 블록의 위치는 적용 방식에 변경될 수 있다.
두 개의 코드워드를 가정하면, 채널 코딩은 각 코드워드에 대해 수행되고(160) 주어진 MCS 레벨과 자원의 크기에 따라 레이트 매칭(rate matching)이 수행된다(161). 그리고 나서, 인코딩된 비트(bit)들은 셀 고유(cell-specific) 또는 사용자 기기 고유(UE-specific) 또는 코드워드 고유(codeword-specific)의 방식으로 스크램블링될 수 있다(162).
그리고 나서, 코드워드 대 레이어 맵핑(codeword to layer)이 수행된다(163). 이 과정에서 레이어 시프트(layer shift) 또는 퍼뮤테이션(permutation)의 동작이 포함될 수 있다.
도 17은 코드워드 대 레이어 맵핑 방법을 설명하는 도면이다. 상기 코드워드 대 레이어 맵핑은 상기 도 17에 도시된 규칙을 이용하여 수행될 수 있다. 상기 도 17에서 프리코딩 위치는 상기 도 13에서의 프리코딩의 위치와는 상이할 수 있다.
CQI, RI 및 ACK/NACK과 같은 제어 정보는 주어진 조건(specification)에 따라, 채널 부호화된다(165). 이때, CQI와 RI 및 ACK/NACK은 모든 코드워드에 대하여 동일한 채널부호를 사용하여 부호화될 수 있고, 코드워드 별로 다른 채널 부호를 사용하여 부호화될 수도 있다.
그리고 나서, 인코딩된 비트의 수는 비트 사이즈 제어부에 의해 변경될 수 있다(166). 비트 사이즈 제어부는 채널 코딩 블록(165)과 단일화될 수 있다. 상기 비트 사이즈 제어부에서 출력된 신호는 스크램블링된다(167). 이때, 스크램블링은 셀-특정하거나(cell-specific), 레이어 특정하거나(layer-specific), 코드워드-특정하거나(codeword-specific) 또는 사용자 기기 특정(UE-specific)하게 수행될 수 있다
비트 사이즈 제어부는 다음과 같이 동작할 수 있다.
(1) 상기 제어부는 PUSCH에 대한 데이터의 랭크(n_rank_pusch)를 인식한다.
(2) 제어 채널의 랭크(n_rank_control)는 상기 데이터의 랭크와 동일하도록(즉, n_rank_control=n_rank_pusch) 설정되고, 제어 채널에 대한 비트의 수(n_bit_ctrl)는 상기 제어 채널의 랭크가 곱해져서 그 비트 수가 확장된다.
이를 수행하는 하나의 방법은 제어채널을 단순히 복사하여 반복하는 것이다. 이 때 이 제어채널은 채널코딩 전의 정보 레벨 일 수 있거나, 채널 코딩 후의 부호화된 비트 레벨일 수 있다. 즉, 예를 들어, n_bit_ctrl=4인 제어 채널 [a0, a1, a2, a3]와 n_rank_pusch=2의 경우에, 확장된 비트 수(n_ext_ctrl)은 [a0, a1, a2, a3, a0, a1, a2, a3]로 8비트가 될 수 있다.
비트 사이즈 제어부와 채널 부호화부가 하나로 구성된 경우에, 부호화된 비트는 기존 시스템(예를 들어, LTE Rel-8)에서 정의된 채널 코딩과 레이트 매칭을 적용하여 생성할 수 있다.
상기 비트 사이즈 제어부에 추가하여, 레이어 별로 더욱 랜덤화를 주기 위하여 비트 레벨 인터리빙이 수행될 수 있다. 혹은 이와 등가적으로 변조 심볼 레벨에서 인터리빙이 수행될 수도 있다.
CQI/PMI 채널과 2 개의 코드워드에 대한 데이터는 데이터/제어 다중화기(multiplexer)에 의해 다중화될 수 있다(164). 그리고 나서, 서브프레임 내에서 양 슬롯에 ACK/NACK 정보가 상향링크 DM-RS 주위의 RE에 맵핑되도록 하면서, 채널 인터리버는 시간 우선 맵핑 방식에 따라 CQI/PMI를 맵핑한다(168).
그리고, 각 레이어에 대하여 변조가 수행되고(169), DFT 프리코딩(170), MIMO 프리코딩(171), RE 맵핑(172) 등이 순차적으로 수행된다. 그리고 나서, SC-FDMA 신호가 생성되어 안테나 포트를 통해 전송된다(173).
상기 기능 블록들은 상기 도 16에 도시된 위치로 제한되는 것은 아니며, 경우에 따라 그 위치가 변경될 수 있다. 예를 들어, 상기 스크램블링 블록(162,167)은 채널 인터리빙 블록 다음에 위치할 수 있다. 또한, 상기 코드워드 대 레이어 맵핑 블록(163)은 채널 인터리빙 블록(168) 다음 또는 변조 매퍼 블록(169) 다음에 위치할 수 있다.
한편, 상향링크 제어 정보(UCI)가 복수의 레이어에 복사되어 맵핑되는 경우, 변조 차수(modulation order)를 어떻게 설정할 지에 관하여 정의된 바가 없다. 따라서, 본 발명에서는 UCI가 전체 혹은 일부의 코드워드 (또는 레이어)에 복사되어 맵핑되는 경우 변조 차수를 설정하는 방법에 관하여 제안한다. 본 발명은 코드워드의 개수 (혹은 레이어의 개수)가 N개일 경우 적용할 수 있으나, 설명의 편의를 위하여 UCI가 2개의 코드워드(혹은 레이어)로 맵핑되는 경우로 한정하여 설명한다.
(1) 우선, UCI의 변조 차수는 기지국에서 지정한 특정 코드워드와 동일한 변조 차수를 따를 수 있다. 이 때, 기지국에서 지정하는 특정 코드워드는 매 상향링크 전송 단위마다 변경될 수 있다. 예를 들어, ACK/NACK (또는 RI)이 제 1 코드워드와 제 2 코드워드에 복사되어 맵핑되는 경우, n번째 상향링크 전송에서는 기지국이 제 1 코드워드를 지정하고, ACK/NACK (또는 RI)은 제 1 코드워드에 설정된 변조 차수를 사용할 수 있다. 또한, n+1번째 상향링크 전송에서는 기지국이 제 2 코드워드를 지정하고, ACK/NACK (또는 RI)은 제 2 코드워드에 설정된 변조 차수를 사용할 수 있다.
(2) UCI의 변조 차수는 단말이 이전 상향링크 전송에서 기지국으로 요청 또는 통보한 특정 코드워드의 변조 차수를 사용할 수 있다. 단말이 특정 코드워드를 지정하여 요청 또는 통보하는 것은, UCI를 전송하기 이전의 상향링크 전송 단위에서 이루어지는 것이 바람직하다. 예를 들어, ACK/NACK (또는 RI)이 제 1 코드워드와 제 2 코드워드에 복사되어 맵핑되는 경우, n번째 상향링크 전송에서 단말이 제 1 코드워드를 지정하고, n+1 상향링크 전송에서 단말이 ACK/NACK (또는 RI)에 대하여 상기 제 1 코드워드에 설정된 변조 차수를 사용할 수 있다.
(3) UCI의 변조 차수는 상기 UCI가 복사되어 맵핑되는 코드워드들의 변조 차수들 중 가장 높은 변조 차수를 사용할 수 있다. 예를 들어, 제 1 코드워드의 변조 차수가 제 2 코드워드의 변조 차수보다 높다면, ACK/NACK (또는 RI)에는 제 1 코드워드의 변조 차수를 사용하는 것이다.
(4) UCI의 변조 차수는 상기 UCI가 복사되어 맵핑되는 코드워드들의 변조 차수들 중 가장 낮은 변조 차수를 사용할 수 있다. 예를 들어, 제 1 코드워드의 변조 차수가 제 2 코드워드의 변조 차수보다 낮다면, ACK/NACK (또는 RI)에는 제 1 코드워드의 변조 차수를 사용하는 것이다.
(5) UCI의 변조 차수로서, 상기 UCI가 복사되어 맵핑되는 코드워드들 중 마지막 인덱스 또는 시작 인덱스의 코드워드의 변조 차수를 사용하는 것도 고려할 수 있다. 예를 들어, ACK/NACK (또는 RI)이 제 1 코드워드와 제 2 코드워드에 복사되어 맵핑되는 경우, ACK/NACK (또는 RI)에는 마지막 인덱스의 코드워드인 제 2 코드워드의 변조 차수를 사용하는 것이다.
(6) 일부의 UCI는 특정 코드워드에 맵핑되고, 다른 UCI는 모든 코드워드에 복사되어 맵핑되는 경우, UCI의 변조 차수는 상기 일부의 UCI가 맵핑되는 특정 코드워드의 변조 차수를 사용할 수 있다. 예를 들어, CQI는 제 1 코드워드에만 맵핑되고 ACK/NACK (또는 RI)는 제 1 코드워드 및 제 2 코드워드 모두에 복사되어 맵핑되는 경우, ACK/NACK (또는 RI)의 변조 차수는 CQI가 맵핑되는 제 1 코드워드의 변조 차수를 사용한다. 물론, CQI도 제 1 코드워드의 변조 차수를 사용한다.
(7) 일부의 UCI는 특정 코드워드에 맵핑되고, 다른 UCI는 모든 코드워드에 복사되어 맵핑되는 경우, UCI의 변조 차수는 상기 일부의 UCI가 맵핑되지 않는 코드워드의 변조 차수를 사용할 수 있다. 예를 들어, CQI는 제 1 코드워드에만 맵핑되고 ACK/NACK (또는 RI)는 제 1 코드워드 및 제 2 코드워드 모두에 복사되어 맵핑되는 경우, ACK/NACK (또는 RI)의 변조 차수는 CQI가 맵핑되지 않는 제 2 코드워드의 변조 차수를 사용한다.
(8) UCI의 변조 차수는 미리 설정된 고정 변조 차수를 사용하는 것도 고려할 수 있다. 즉, CQI와 ACK/NACK, RI가 동시에 전송되는 경우, 코드워드의 변조 차수와 무관하게, CQI는 64QAM, ACK/NACK은 16QAM, RI는 QPSK 로 변조하여 전송할 수 있다. 즉, UCI에 설정되는 변조 차수는 각각의 UCI 마다 개별적으로 설정될 수 있고, 혹은 동일한 변조 차수가 모든 UCI에 적용될 수도 있다.
(9) 동일한 UCI라도 특정 조건에 따라 다른 변조 차수를 설정하는 것도 고려할 수 있다. 즉, ACK/NACK과 RI의 크기가 2 비트 이내라면, 성좌도 상의 네 모서리만을 사용하여 QPSK와 같은 성상을 갖도록 부호화되지만, 3 비트 이상이라면, RM 코딩(Reed-Muller coding)을 수행하여 데이터와 같은 성좌도에 의하여 부호화되도록 정의되어 있다. 이 경우, 성좌도 상의 네 모서리만을 사용하여 QPSK와 같은 성상을 사용하도록 하면, 변조 차수가 높을 수록 강건한 전송이 가능하나, RM 코딩을 사용하여 데이터와 같은 성좌도에 의하는 경우 변조 차수가 낮을수록 강건한 전송이 가능하다. 따라서, ACK/NACK (또는 RI)의 경우 부호화 이전의 정보 비트 사이즈 또는 코딩의 종류, 혹은 성좌도 상의 어떠한 지점을 사용하는지에 따라 변조 차수를 다르게 설정할 수 있다.
도 18은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 18을 참조하면, 통신 장치(1800)는 프로세서(1810), 메모리(1820), RF 모듈(1830), 디스플레이 모듈(1840) 및 사용자 인터페이스 모듈(1850)을 포함한다.
통신 장치(1800)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1800)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1800)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1810)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1810)의 자세한 동작은 도 1 내지 도 17에 기재된 내용을 참조할 수 있다.
메모리(1820)는 프로세서(1810)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1830)은 프로세서(1810)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1830)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1840)은 프로세서(1810)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1840)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1850)은 프로세서(1810)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, '단말'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 통신 시스템에 적용될 수 있다. 구체적으로, 본 발명은 셀룰라 시스템을 위하여 사용되는 무선 이동 통신 장치에 적용될 수 있다.

Claims (11)

  1. 무선 통신 시스템에서 다중 안테나를 구비한 단말이 상향링크 제어 정보를 전송하는 방법으로서,
    데이터 정보와 상기 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하는 단계;
    상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하는 단계; 및
    상기 변조된 신호를 상기 다중 안테나를 통하여 기지국으로 전송하는 단계를 포함하고,
    상기 상향링크 제어 정보 중 제 1 상향링크 제어 정보는 상기 복수의 코드워드 중 특정 코드워드에 맵핑되고, 제 2 상향링크 제어 정보는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며,
    상기 제 2 상향링크 제어 정보를 위한 변조 차수는,
    상기 특정 코드워드에 대응하는 변조 차수인 것을 특징으로 하는,
    상향링크 제어 정보 전송 방법.
  2. 제 1 항에 있어서,
    상기 기 설정된 변조 차수는,
    상기 코드워드 각각에 포함되는 데이터 정보에 대하여 상기 기지국에 의하여 설정된 변조 차수인 것을 특징으로 하는,
    상향링크 제어 정보 전송 방법.
  3. 제 1 항에 있어서,
    상기 제 1 상향링크 제어 정보는,
    채널 품질 지시자(Channel Quality Indicator; CQI)인 것을 특징으로 하는,
    상향링크 제어 정보 전송 방법.
  4. 제 1 항에 있어서,
    상기 제 2 상향링크 제어 정보는,
    ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나인 것을 특징으로 하는,
    상향링크 제어 정보 전송 방법.
  5. 무선 통신 시스템에서 다중 안테나를 구비한 단말이 상향링크 제어 정보를 전송하는 방법으로서,
    데이터 정보와 상기 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하는 단계;
    상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하는 단계; 및
    상기 변조된 신호를 상기 다중 안테나를 통하여 기지국으로 전송하는 단계를 포함하고,
    상기 상향링크 제어 정보는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며,
    상기 상향링크 제어 정보를 위한 변조 차수는 상기 복수의 코드워드 각각에 설정된 변조 차수들 중 최소 변조 차수인 것을 특징으로 하는,
    상향링크 제어 정보 전송 방법.
  6. 제 1 항에 있어서,
    상기 기 설정된 변조 차수는,
    상기 코드워드 각각에 포함되는 데이터 정보에 대하여 상기 기지국에 의하여 설정된 변조 차수인 것을 특징으로 하는,
    상향링크 제어 정보 전송 방법.
  7. 제 1 항에 있어서,
    상기 상향링크 제어 정보는,
    ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나인 것을 특징으로 하는,
    상향링크 제어 정보 전송 방법.
  8. 무선 통신 시스템에서의 다중 안테나를 구비한 단말 장치로서,
    상기 다중 안테나를 이용하여 기지국과 신호를 송수신하기 위한 무선 통신 모듈; 및
    상기 신호를 처리하기 위한 프로세서를 포함하고,
    상기 프로세서는 데이터 정보와 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하고, 상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하며,
    상기 상향링크 제어 정보 중 채널 품질 지시자(Channel Quality Indicator; CQI)는 상기 복수의 코드워드 중 특정 코드워드에 맵핑되고, ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며,
    상기 ACK/NACK 또는 랭크 지시자 중 적어도 하나를 위한 변조 차수는 상기 특정 코드워드에 대응하는 변조 차수인 것을 특징으로 하는,
    단말 장치.
  9. 제 8 항에 있어서,
    상기 기 설정된 변조 차수는,
    상기 코드워드 각각에 포함되는 데이터 정보에 대하여 상기 기지국에 의하여 설정된 변조 차수인 것을 특징으로 하는,
    단말 장치.
  10. 무선 통신 시스템에서의 다중 안테나를 구비한 단말 장치로서,
    상기 다중 안테나를 이용하여 기지국과 신호를 송수신하기 위한 무선 통신 모듈; 및
    상기 신호를 처리하기 위한 프로세서를 포함하고,
    상기 프로세서는 데이터 정보와 상향링크 제어 정보를 이용하여 복수의 코드워드를 생성하고, 상기 생성된 코드워드 각각을 기 설정된 변조 차수에 기반하여 변조하며,
    상기 상향링크 제어 정보는 상기 복수의 코드워드 각각에 대하여 복사되어 맵핑되며,
    상기 상향링크 제어 정보를 위한 변조 차수는 상기 복수의 코드워드 각각에 설정된 변조 차수들 중 최소 변조 차수인 것을 특징으로 하는,
    단말 장치.
  11. 제 10 항에 있어서,
    상기 상향링크 제어 정보는,
    ACK/NACK(Acknowledgment/Negative Acknowledgment) 또는 랭크 지시자(Rank Indicator; RI) 중 적어도 하나인 것을 특징으로 하는,
    단말 장치.
PCT/KR2011/003506 2010-05-20 2011-05-12 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치 WO2011145832A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/698,949 US9054844B2 (en) 2010-05-20 2011-05-12 Method for determining modulation order of uplink control information in multiple antenna wireless communication system and device therefor
KR1020127027294A KR101422041B1 (ko) 2010-05-20 2011-05-12 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US34646910P 2010-05-20 2010-05-20
US61/346,469 2010-05-20
US37286610P 2010-08-12 2010-08-12
US61/372,866 2010-08-12

Publications (2)

Publication Number Publication Date
WO2011145832A2 true WO2011145832A2 (ko) 2011-11-24
WO2011145832A3 WO2011145832A3 (ko) 2012-03-01

Family

ID=44992179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003506 WO2011145832A2 (ko) 2010-05-20 2011-05-12 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US9054844B2 (ko)
KR (1) KR101422041B1 (ko)
WO (1) WO2011145832A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882124A4 (en) * 2012-07-31 2016-04-06 Nec Corp WIRELESS COMMUNICATION DEVICE, AND TRANSMISSION METHOD, AND HARQ REQUEST RESPONSE RECEIVING METHOD

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145832A2 (ko) * 2010-05-20 2011-11-24 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치
US8848557B2 (en) * 2010-08-25 2014-09-30 Samsung Electronics Co., Ltd. Multiplexing of control and data in UL MIMO system based on SC-FDM
US9337982B2 (en) * 2013-04-05 2016-05-10 Qualcomm Incorporated Adaptive antenna management in LTE
CN107210839B (zh) * 2015-09-11 2021-07-20 华为技术有限公司 一种控制信息发送、接收方法、用户设备及网络设备
US10225041B2 (en) 2016-01-15 2019-03-05 Qualcomm Incorporated Methods and apparatus for higher modulation support in LTE
CN107566100B (zh) 2016-06-30 2020-02-21 华为技术有限公司 一种信息发送、接收方法及设备
WO2018029363A1 (en) 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Uplink control signaling on pusch with shortened transmission time interval (tti)
WO2019143229A1 (ko) * 2018-01-22 2019-07-25 엘지전자 주식회사 무선 통신 시스템에서 물리 상향 링크 제어 채널 상에서 다수의 상향 링크 제어 정보를 전송하는 방법 및 이를 위한 장치
US11894921B2 (en) * 2020-04-03 2024-02-06 Qualcomm Incorporated Facilitating MCS use with varying features for UCI transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107577A (ko) * 2006-05-03 2007-11-07 한국전자통신연구원 이동 통신 시스템에서의 상향 링크 제어 정보 전송 방법
KR20070119958A (ko) * 2006-06-16 2007-12-21 엘지전자 주식회사 무선통신 시스템 상향링크에서의 제어정보 전송방법,제어정보 전송장치 및 dft-s-ofdm 방식 무선통신시스템의 사용자 기기
KR20080065493A (ko) * 2007-01-09 2008-07-14 엘지전자 주식회사 Mimo 통신 시스템에서 코드워드와 스트림의 조합 표시방법

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450948B1 (ko) * 2001-07-12 2004-10-02 삼성전자주식회사 통신시스템에서 변조방식 결정장치 및 방법
US7468967B2 (en) 2005-04-29 2008-12-23 General Dynamics C4 Systems, Inc. System and method for transmission of low rate data
US7889703B2 (en) * 2005-11-14 2011-02-15 Mediatek Inc. Adaptive modulation and coding method
KR100651202B1 (ko) * 2005-11-15 2006-11-29 한국전자통신연구원 연판정 복조 장치 및 그 방법
US7916775B2 (en) 2006-06-16 2011-03-29 Lg Electronics Inc. Encoding uplink acknowledgments to downlink transmissions
CN1921366B (zh) * 2006-09-25 2010-07-21 华为技术有限公司 一种编码符号对数似然比的实现方法和装置
FI20065689A0 (fi) * 2006-10-31 2006-10-31 Nokia Corp Datasekvenssirakenne ja tiedonsiirtomenetelmä
EP2100385A4 (en) * 2007-01-05 2012-07-25 Lg Electronics Inc METHODS OF LAYER MAPPING AND DATA TRANSMISSION FOR MIMO SYSTEM
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
KR101507785B1 (ko) * 2007-08-16 2015-04-03 엘지전자 주식회사 다중 입출력 시스템에서, 채널품질정보를 송신하는 방법
KR20090093800A (ko) * 2008-02-29 2009-09-02 엘지전자 주식회사 무선통신 시스템에서 ack/nack 신호 전송방법
KR101591086B1 (ko) 2008-05-21 2016-02-03 엘지전자 주식회사 다중 안테나 시스템에서 harq 수행 방법
US8718021B2 (en) * 2008-07-07 2014-05-06 Apple Inc. Uplink control signal design for wireless system
KR20100019946A (ko) * 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어정보 전송 방법
KR101513503B1 (ko) * 2008-08-11 2015-04-22 삼성전자주식회사 Dual-cell HSDPA 를 지원하는 이동통신 시스템에서 CQI전송 오버헤드를 감소시키는 방법 및 장치
US8897277B2 (en) * 2008-11-07 2014-11-25 Kyocera Corporation Device beacon for handoff management of handoffs to base stations
US8644409B2 (en) * 2009-02-11 2014-02-04 Qualcomm Incorporated Method and apparatus for modulation and layer mapping in a wireless communication system
WO2010093217A2 (ko) * 2009-02-16 2010-08-19 엘지전자주식회사 다중 안테나 시스템에서 데이터의 전송방법
CN102422583B (zh) * 2009-03-11 2015-02-18 三星电子株式会社 用于由用户设备发送与harq过程关联的确认位的方法和装置
TW201531048A (zh) * 2009-03-16 2015-08-01 Interdigital Patent Holdings 具再波聚合及叢集-dft上鏈mimo之資料及控制多工
US9264097B2 (en) * 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
CN102474495B (zh) * 2009-08-17 2016-01-20 Lg电子株式会社 在无线通信系统中对发送上行链路控制信息的上行链路载波进行分配的方法及装置
CN102215085B (zh) * 2010-04-07 2014-05-07 华为技术有限公司 传输上行控制信息的方法、系统、用户设备和基站
KR101813031B1 (ko) * 2010-04-13 2017-12-28 엘지전자 주식회사 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2011137408A2 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Determination of carriers and multiplexing for uplink control information transmission
US8879513B2 (en) * 2010-05-12 2014-11-04 Samsung Electronics Co., Ltd. Uplink transmission apparatus and method for mobile communication system supporting uplink MIMO
CN102884730B (zh) * 2010-05-12 2015-06-03 Lg电子株式会社 在多天线无线通信系统中执行信道交织的方法及其装置
WO2011145832A2 (ko) * 2010-05-20 2011-11-24 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치
EP3331183B1 (en) * 2011-02-15 2019-06-12 LG Electronics Inc. Method and apparatus for transmitting channel quality control information in wireless access system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107577A (ko) * 2006-05-03 2007-11-07 한국전자통신연구원 이동 통신 시스템에서의 상향 링크 제어 정보 전송 방법
KR20070119958A (ko) * 2006-06-16 2007-12-21 엘지전자 주식회사 무선통신 시스템 상향링크에서의 제어정보 전송방법,제어정보 전송장치 및 dft-s-ofdm 방식 무선통신시스템의 사용자 기기
KR20080065493A (ko) * 2007-01-09 2008-07-14 엘지전자 주식회사 Mimo 통신 시스템에서 코드워드와 스트림의 조합 표시방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882124A4 (en) * 2012-07-31 2016-04-06 Nec Corp WIRELESS COMMUNICATION DEVICE, AND TRANSMISSION METHOD, AND HARQ REQUEST RESPONSE RECEIVING METHOD

Also Published As

Publication number Publication date
US20130064228A1 (en) 2013-03-14
KR101422041B1 (ko) 2014-07-23
KR20130006483A (ko) 2013-01-16
US9054844B2 (en) 2015-06-09
WO2011145832A3 (ko) 2012-03-01

Similar Documents

Publication Publication Date Title
WO2011145832A2 (ko) 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치
US9325481B2 (en) Method for performing channel interleaving in a multi-antenna wireless communication system, and apparatus for same
KR101846167B1 (ko) 무선 통신 시스템에서 제어 정보를 송신하는 방법 및 이를 위한 장치
WO2010123267A2 (ko) 무선 통신 시스템에서 제어 신호 송신 방법 및 이를 위한 장치
WO2010126247A2 (ko) 무선 통신 시스템에서 상향링크 제어 신호 송신 방법 및 이를 위한 장치
WO2011078534A2 (ko) 다중 안테나를 지원하는 무선 이동 통신 시스템에 있어서, 상향링크 데이터와 제어정보를 전송하는 방법 및 장치
WO2011005040A2 (ko) 무선 통신 시스템에서 상향링크 제어 신호 송신 방법 및 이를 위한 장치
US9100954B2 (en) Method for transmitting response information in a wireless communication system, and apparatus for same
KR20110083459A (ko) 캐리어 집합을 지원하는 무선 이동 통신 시스템에 있어서, pucch 자원 또는 phich 자원 할당을 위한 방법 및 장치
KR20110066833A (ko) 캐리어 집합을 지원하는 무선 이동 통신 시스템에 있어서, ack/nack 신호를 전송하는 방법 및 장치
KR20110073217A (ko) 캐리어 집합을 지원하는 무선 이동 통신 시스템에 있어서, pucch 자원 또는 phich 자원 정의를 위한 방법 및 장치
WO2011162540A2 (ko) 무선 통신 시스템에서 복수의 구성 반송파를 지원하는 응답 정보 송신 방법 및 이를 위한 장치
WO2011162539A2 (ko) 응답 정보 송신 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127027294

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13698949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783714

Country of ref document: EP

Kind code of ref document: A2