WO2011145565A1 - Control device for flow control valve - Google Patents

Control device for flow control valve Download PDF

Info

Publication number
WO2011145565A1
WO2011145565A1 PCT/JP2011/061203 JP2011061203W WO2011145565A1 WO 2011145565 A1 WO2011145565 A1 WO 2011145565A1 JP 2011061203 W JP2011061203 W JP 2011061203W WO 2011145565 A1 WO2011145565 A1 WO 2011145565A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
amount
neutral position
valve body
control valve
Prior art date
Application number
PCT/JP2011/061203
Other languages
French (fr)
Japanese (ja)
Inventor
嘉丈 武井
山本 康
阿部 誠
晋 福永
公幸 河西
智久 窄
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2011145565A1 publication Critical patent/WO2011145565A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0209Control by fluid pressure characterised by fluid valves having control pistons, e.g. spools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0221Valves for clutch control systems; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0227Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices
    • F16D2048/0233Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices by rotary pump actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0269Single valve for switching between fluid supply to actuation cylinder or draining to the sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3022Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5018Calibration or recalibration of the actuator

Definitions

  • the present invention relates to a flow rate control valve control device, and more particularly to a flow rate control valve control device that learns a neutral position of the flow rate control valve and corrects a learned value.
  • a clutch device is provided between the engine and the mechanical automatic transmission.
  • the clutch device is connected and disconnected by movement of a piston of a clutch actuator that operates by air pressure or hydraulic pressure.
  • the operation of the clutch actuator is performed by supplying or discharging the working fluid in the clutch actuator by a flow rate control valve provided with an electromagnetic solenoid.
  • An air supply passage communicating with the clutch actuator, a pressure source passage communicating with a working fluid pressure source such as an air tank, and an exhaust passage discharging the working fluid from the clutch actuator are connected to the flow control valve.
  • a valve body is loosely fitted in the hollow portion of the flow control valve, and the above-described air supply port, pressure source port, and exhaust port are communicated and cut off as the valve body moves. Has been.
  • the valve body when the clutch device is disengaged (completely closed), the valve body is moved to an air supply position where the air supply port communicates with the pressure source port and the exhaust port is shut off. Fluid is supplied into the clutch actuator.
  • the clutch device When the clutch device is connected (completely connected), the valve body is moved to an exhaust position where the air supply port and the exhaust port communicate with each other and the pressure source port is shut off, and the working fluid is transferred from within the clutch actuator. Discharge.
  • the engagement of the clutch device is held at a predetermined disengagement position (disengagement retention)
  • the valve body is moved to a neutral position where the air supply port is shut off, and the working fluid is retained in the clutch actuator. Yes.
  • Patent Document 1 discloses a clutch control device to which this type of flow control valve is applied.
  • the clutch device is quickly connected and disconnected when shifting the vehicle. Therefore, in order to realize quick control, the ECU that controls the flow rate control valve stores in advance a flow rate characteristic indicating the relationship between the energization amount of the electromagnetic solenoid and the flow rate of the working fluid. Accordingly, the flow rate control valve is controlled so that the actual stroke amount becomes the target stroke. In order to realize accurate control, the neutral position of the flow control valve is learned, and the flow control valve is controlled based on the learned value.
  • the flow characteristics of the flow control valve may change due to the influence of aging of the flow control valve.
  • there is a slight difference in the neutral position of the flow control valve between when the valve body of the flow control valve moves from the supply position to the neutral position and when it moves from the exhaust position to the neutral position.
  • the stroke amount overshoots or undershoots with respect to the target stroke amount, and it is difficult to control the flow control valve quickly and accurately. There is a problem.
  • the present invention has been made in view of such a problem, and provides a control device for a flow rate control valve capable of accurately correcting a learned value while learning a neutral position of the flow rate control valve with a simple configuration. For the purpose.
  • a control device for a flow control valve of the present invention includes an actuator that is operated by a working fluid, a working fluid supply source that supplies the working fluid, and a stroke sensor that detects a stroke amount of the actuator.
  • a flow control valve that has a valve body that can move through the hollow portion, and that communicates with or is disconnected from the actuator by the movement of the valve body, and controls the amount of movement of the valve body according to the detection value of the stroke sensor
  • learning to learn the amount of movement of the valve body when it is determined that the neutral position is cut off from the actuator by the movement of the valve body based on the detection value of the stroke sensor.
  • a deviation amount between a detected value of the stroke sensor at the neutral position and a target stroke amount at the neutral position Previously prepared based on the map, and having a learning value correcting unit for correcting the learning value by the learning section Te.
  • the map is set so that the correction amount for correcting the learning value decreases as the deviation amount increases, and the correction amount for correcting the learning value increases as the deviation amount decreases. You may make it do.
  • the correction amount for correcting the learning value decreases in a predetermined step, and as the deviation amount decreases, the correction amount for correcting the learning value becomes a predetermined amount. You may make it set so that it may increase in a step.
  • an upper limit value and a lower limit value are provided for a correction amount for correcting the learning value in accordance with a range in which the valve body is disconnected from the actuator at the neutral position. Also good.
  • control unit may determine that the valve body is in a neutral position when the amount of change in the detection value of the stroke sensor continues for a predetermined time and becomes a predetermined value or less.
  • the flow rate control valve includes a supply unit that communicates with the working fluid supply source, a discharge unit that discharges the working fluid from the actuator, and a communication unit that communicates with the actuator, and the learning unit includes the stroke
  • the learning unit includes the stroke
  • the learned value can be corrected accurately while learning the neutral position of the flow control valve with a simple configuration.
  • FIG. 1 to 10 illustrate one embodiment of the present invention.
  • the same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
  • the drive system of the vehicle 1 includes an engine (drive source) 100, a clutch device (clutch mechanism) 200, and a mechanical automatic transmission (transmission) 300.
  • Engine 100 is subjected to combustion control by an engine ECU (not shown) so as to generate torque according to the operating state of vehicle 1. Further, the output shaft 110 of the engine 100 is configured to be connectable to and disconnectable from the transmission input side 310 of the mechanical automatic transmission 300 by a clutch device 200 described later.
  • the clutch device 200 is a dry single-plate clutch device, and includes a flywheel 210, a clutch disk 220, and a return spring 230.
  • the flywheel 210 is fixed to the output shaft 110 of the engine 100 by bolts and nuts (not shown).
  • the clutch disk 220 is provided with a wear plate (not shown) in the periphery thereof, and is slidably splined to a transmission input shaft 310 of a mechanical automatic transmission 300 described later. Further, one end of a release fork 13 described later is attached to the clutch disk 220.
  • the return spring 230 is provided between one end of the clutch disk 220 and the mechanical automatic transmission 300, and is attached so as to urge the clutch disk 220 in the direction of the engine 100 (the arrow X direction in FIG. 1). Yes.
  • the mechanical automatic transmission 300 adjusts the torque of the engine 100 transmitted through the flywheel 210 and the clutch disc 220 to a desired rotational speed by engaging the flywheel 210 and the clutch disc 220. After that, it is configured to transmit to a propeller shaft or the like (not shown).
  • a control device 10 for a flow control valve includes a pressure supply source (working fluid supply source) 11, a clutch actuator (actuator) 12, a release fork 13, and a stroke sensor 14.
  • a flow control valve 15, an air supply passage 16, a pressure source passage 17, an exhaust passage 18, and a clutch control ECU (control unit) 20.
  • the pressure supply source 11 is a pneumatic tank or the like, and supplies the working fluid to the flow control valve 15 as shown in FIG.
  • the pressure supply source 11 is connected to a pressure source passage 17 that communicates with a pressure source port 17a of a flow rate control valve 15 described later.
  • the clutch actuator 12 has a cylinder body 12a having a cylinder chamber and a piston 12b slidably fitted in the cylinder chamber.
  • An exhaust passage 18 communicating with the exhaust port 18 a of the flow control valve 15 is connected to the side surface of the cylinder body 12 a, and the working fluid in the cylinder chamber is discharged through the flow control valve 15.
  • An air supply passage 16 communicating with the air supply port 16a of the flow control valve 15 is connected to the side surface of the cylinder body 12a, and the working fluid fed from the pressure supply source 11 via the flow control valve 15 is connected.
  • the piston 12b is configured to be moved in the arrow X direction in FIG. 1 by the pressure.
  • the release fork 13 has one end supported by the tip of the piston 12 b of the clutch actuator 12 and the other end attached to the clutch disc 220. Further, the release fork 13 is pivotally supported at its center by a support shaft 13a. That is, when the working fluid is supplied into the cylinder chamber of the clutch actuator 12 and the piston 12b moves in front of the vehicle 1 (in the direction of the arrow X in FIG. 1), the release fork 13 is moved in front of the vehicle 1 (in FIG. 1). Energized in the direction of arrow X). And the release fork 13 is comprised so that the engagement of the clutch apparatus 200 may be cut
  • the release fork 13 When the working fluid in the cylinder chamber of the clutch actuator 12 is discharged, the release fork 13 is urged rearward (in the direction of arrow Y in FIG. 1) by the urging force of the return spring 230, and the support shaft It is configured to connect the engagement of the clutch device 200 by turning clockwise about the position 13a in FIG.
  • the stroke sensor 14 detects the stroke amount of the clutch actuator 12, and the detected value S is output to a clutch control ECU 20 described later.
  • the air supply passage 16 has one end connected to the cylinder chamber of the clutch actuator 12 and the other end connected to an air supply port 16a of a flow control valve 15 described later.
  • the pressure source passage 17 has one end connected to the pressure supply source 11 and the other end connected to a pressure source port 17a of a flow control valve 15 described later.
  • the discharge passage 18 has one end connected to the cylinder chamber of the clutch actuator 12 and the other end connected to an exhaust port 18a of the flow control valve 15 described later.
  • the flow control valve 15 includes a control valve body 15a having a hollow portion therein, a valve body 19 slidably inserted into the hollow portion, an electromagnetic solenoid 15b, a spring 15c,
  • an air supply port (communication portion) 16a, a pressure source port (supply portion) 17a, connected to the above-described air supply passage 16, pressure source passage 17, and discharge passage 18 are provided.
  • Exhaust ports (discharge portions) 18a are formed at a predetermined interval.
  • the air supply port 16a is disposed so as to be positioned between the pressure source port 17a and the exhaust port 18a.
  • the valve body 19 has three lands, that is, an air supply shut-off portion 19a, a pressure source shut-off portion 19b, and the air supply port 16a, the pressure source port 17a, and the exhaust port 18a. Discharge blocking portions 19c are provided at predetermined intervals. Further, one end of the valve body 19 is connected to the movable yoke of the electromagnetic solenoid 15b, and the other end is urged by the spring 15c in the direction of the arrow X in FIG.
  • the position of the valve body 19 is determined by the balance between the magnetic force acting on the movable yoke of the electromagnetic solenoid 15b and the urging force of the spring 15c. For example, when energization to the electromagnetic solenoid 15b is stopped (the energization amount is 0%), the valve body 19 is urged by the spring 15c to the position (exhaust position) of FIG. As a result, the air supply port 16a and the exhaust port 18a communicate with each other, and the working fluid in the cylinder chamber of the clutch actuator 12 is discharged, whereby the engagement of the clutch device 200 is connected (completely connected).
  • the valve body 19 compresses the spring 15c to the position (supply position) of FIG. 3B, and the supply port 16a and the pressure source port 17a And communicate. Thereby, the working fluid of the pressure supply source 11 is sent into the cylinder chamber of the clutch actuator 12 from the air supply port 16a, and the engagement of the clutch device 200 is disconnected (completely cut).
  • the valve element 19 is in the position (neutral position) shown in FIG. The connection amount of 200 is held at a predetermined amount (cut off).
  • the control ECU (control unit) 20 includes a known CPU, ROM, and the like, and includes an operation control unit 21, a neutral position learning unit (learning unit) 22, and a learning value correction unit 23 as functional elements. Yes.
  • control ECU20 which is integral hardware in this embodiment, any one of these can also be provided in separate hardware.
  • the operation control unit 21 outputs a control signal that is an energization amount to the electromagnetic solenoid 15b of the flow control valve 15 so that the clutch device 200 operates in a complete contact, complete disconnection, disconnection hold, and complete connection when the vehicle 1 is shifted. To do.
  • This control output value is set by a feedback control value (FB control value) + a feed forward control value (FF control value).
  • the operation control unit 21 stores a flow rate characteristic map (a map created in advance) indicated by a solid line A 0 in FIG. 5 representing the relationship between the energization amount to the electromagnetic solenoid 15b and the flow rate of the working fluid. Further, at the time of shifting of the vehicle 1, to realize a clutch stroke (connection weight) shown in solid line alpha 0 in FIG. 6, the target waveform shown in dashed beta 0 in FIG. 6 (a target stroke amount) is stored in advance. FB control value, using a target waveform shown in dashed beta 0 in FIG. 6, in accordance with the difference between the current stroke (detected value S) and the target stroke amount, for example, feed such as known PID control Calculated by the back control equation.
  • a flow rate characteristic map (a map created in advance) indicated by a solid line A 0 in FIG. 5 representing the relationship between the energization amount to the electromagnetic solenoid 15b and the flow rate of the working fluid.
  • the neutral position learning unit (learning unit) 22 is a neutral position where the valve body 19 blocks the flow of the working fluid of the flow control valve 15 when the engagement of the clutch device 200 is in the disconnected state (see FIG. 3C). )
  • This learned value is a value for correcting the initial value so that the stroke amount becomes the target stroke amount regardless of the individual difference or aging of the flow control valve 15 when the engagement of the clutch device 200 is in the disconnected state.
  • the initial value is calculated based on, for example, the flow rate characteristic map of FIG. 5 stored in advance in the operation control unit 21. Specifically, the learning value is learned by subtracting the initial value from the energization amount E 1 to the electromagnetic solenoid 15b when it is determined that the valve element 19 of the flow control valve 15 is in the neutral position. ing.
  • the energization amount (FF control value) is such that the valve body 19 of the flow control valve 15 is in the exhaust position, the supply position, and the neutral position (the clutch device 200 is completely connected).
  • the energization amount E 1 at the neutral position on the supply side (see FIG. 4 (a)) at the time of movement is used.
  • the valve body 19 of the flow control valve 15 is moved from the neutral position to the exhaust position.
  • neutral position - the exhaust position and the neutral position of the exhaust side as it moves see FIG. 4 (b)
  • energization amount E 2 also calculates the energization amount of the energization amount E 1 and the exhaust side of the air supply side E 2 May be used as the FF control value.
  • Whether or not the flow control valve 15 is in the neutral position is determined based on the detection value S output from the stroke sensor 14 when the stroke change speed is substantially zero. Judge that there is.
  • a plurality of differential value D calculation cycles are continuously provided during a predetermined time t, and all the differential values D are equal to or less than a predetermined value. Only the stroke change speed may be determined to be substantially zero.
  • the learned value correcting unit 23 is the actual stroke amount (detected value S) when the flow rate control valve 15 is controlled to the neutral position by the control signal (FF control value + FB control value) output from the operation control unit 21.
  • the deviation amount X which is the difference from the target stroke amount, is calculated, and the FF control value is corrected according to the deviation amount X.
  • the neutral position learning unit 22 stores a linear map of FIG. 8A that shows the relationship between the deviation amount X determined in advance by experiments or the like and the correction amount Y to the FF control value.
  • the FF control value is corrected by reading the correction amount Y corresponding to the shift amount X from the linear map. For example, when the deviation amount X shows a positive value (plus value), the stroke amount overshoots as shown by the solid line ⁇ 1 in FIG. 6, so the correction amount Y is a negative value (minus), That is, the correction amount Y is subtracted from the FF control value (FF control value ⁇ Y).
  • the correction amount Y is a positive value (plus), i.e.
  • the correction amount Y is added to the FF control value (FF control value + Y).
  • the relationship between the deviation amount X and the correction amount Y has been described using the linear map of FIG. 8A.
  • the neutral position of the flow control valve 15 is determined.
  • a map in which an upper limit value Y max and a lower limit value Y min of the correction amount Y are provided, and as shown in FIG. 8C, the deviation amount X and the correction amount Y are stepped within a predetermined range. It is also possible to use a non-linear map such as a map changed (increased or decreased in a predetermined step).
  • the learning value correction unit 23 outputs the corrected FF control value (FF control value ⁇ Y) to the output control unit 21 as a new FF control value. That is, the FF control value stored in the output control unit 21 is replaced with this corrected new FF control value (FF control value ⁇ Y). Thereafter, in accordance with the replaced new FF control value (FF control value ⁇ Y), the broken line B 1 in the flow characteristic map of FIG. 5 is corrected to the broken line B 2 and the broken line B 3 .
  • control device 10 of the flow control valve according to the embodiment of the present invention is configured as described above, the following control is performed according to the flowcharts shown in FIGS. Is called.
  • step S 100 a control signal output from the operation control unit 21 of the valve body 19 of the flow control valve 15 is shown. In response to this, it moves from an exhaust position to an air supply position to a neutral position (the clutch device 200 is connected, disconnected, and disconnected).
  • the neutral position learning unit 22 has the differential value D, which is the stroke change speed, based on the detection value S output from the stroke sensor 14 or less (the stroke change speed is substantially zero). It is determined whether or not. If the differential value D continues for a predetermined time and is equal to or less than the predetermined value, it is determined that the flow control valve 15 is in the neutral position, and the routine proceeds to step 120. On the other hand, if the differential value D continues for a predetermined time and is not less than the predetermined value, it is determined that the flow control valve 15 is not in the neutral position, and the neutral position learning control is returned.
  • D is the stroke change speed
  • the neutral position learning unit 22 the energization amount E 1 when it is determined that the neutral position in S110 described above it is read.
  • the operation control unit 21 corrects the solid line A 0 (initial value) of the flow characteristic map of FIG. 5 to the broken line B 1 according to the learned value, and the present control is returned.
  • control signals of the FF control value (learned value + initial value) and the FB control value are output to the flow rate control valve 15, and this output value ( In accordance with (FF control value + FB control value), the clutch device 200 operates in the connected, disconnected, and disconnected state.
  • the neutral position learning unit 22 determines that the differential value D, which is the stroke change speed, is equal to or less than a predetermined value (the stroke change speed is substantially zero) based on the detection value S output from the stroke sensor 14. It is determined whether or not. If the differential value D continues for a predetermined time and is equal to or less than the predetermined value, it is determined that the flow control valve 15 is in the neutral position on the supply side, and the process proceeds to S220. On the other hand, if the differential value D continues for a predetermined time and is not less than or equal to the predetermined value, it is determined that the flow control valve 15 is not in the neutral position, and the learning value correction control is returned.
  • a predetermined value the stroke change speed
  • the learning value correction unit 23 reads the actual stroke amount (detected value S) when determined to be in the neutral position, and the detected value S is compared with the target stroke. If the deviation amount X (absolute value) between the detection value S and the target stroke amount is equal to or greater than the threshold value, the process proceeds to S230. On the other hand, when the deviation amount X (absolute value) is less than the threshold value, it is determined that correction of the learning value is unnecessary, and this control is returned.
  • the threshold value can be set to an arbitrary value according to the characteristics of the clutch device 200.
  • the correction amount Y to be subtracted from the FF control value is read from the linear map of FIG. Correction is performed. That is, since the stroke amount is overshooting, the correction value (FF control value-Y) obtained by subtracting the correction amount Y from the FF control value is stored as a new FF control value, and the process proceeds to S250.
  • the operation control unit 21 is stored the new FF control value (FF control value -Y) is taken up in S250 described above, the flow rate characteristic map of FIG. 5 has been fixed to the broken line B 2, the control Returned.
  • step 230 if it is determined in step 230 that the deviation amount X is a negative value, the correction amount Y to be added to the FF control value is read from the linear map of FIG. Value correction is performed. That is, since the stroke amount is undershooting, the correction value (FF control value + Y) obtained by adding the correction amount Y to the FF control value is stored as a new FF control value, and the process proceeds to S270.
  • the flow rate control valve control device 10 according to the embodiment of the present invention has the following operations and effects.
  • the neutral position learning unit 22 learns the neutral position of the flow rate control valve 15 based on the detection value S output from the stroke sensor 14, it is determined that the stroke change speed is substantially zero. Done.
  • the neutral position learning unit 22 learns the neutral position of the flow control valve 15 by energization at the neutral position on the supply side when the valve body 19 of the flow control valve 15 moves from the exhaust position to the supply position to the neutral position.
  • amount E 1 the valve body 19 of the flow control valve 15 to calculate the average value E Ave between energization amount E 2 at the neutral position of the exhaust side in moving the neutral position and the exhaust position and the neutral position and the exhaust position
  • the average value E Ave may be learned as the FF control value corresponding to the neutral position of the flow control valve 15.
  • the diameter L 1 of the air supply blocking portion 19a of the valve body 19 is larger than the opening diameter L 2 of the air supply port 16a (L 1 > L 2 ). Even if there is a slight difference L between the neutral position on the supply side and the neutral position on the exhaust side, the neutral position of the flow control valve 15 can be learned accurately.
  • the learning value correction unit 23 is an actual stroke when the flow rate control valve 15 is controlled to the neutral position according to the FF control value (initial value + learning value) + FB control value output from the operation control unit 21.
  • a deviation amount X between the amount (detection value S) and the target stroke amount is calculated, and the FF control value (initial value + learning value) is corrected according to the deviation amount X.
  • the learning accuracy of the neutral position can be further improved by correcting the learning value of the neutral position learning unit 22 by the learning value correction unit 23.
  • clutch control is performed according to the corrected learning value, so that occurrence of a shift shock when the vehicle 1 is shifted can be effectively suppressed.
  • the learning value correction unit 23 subtracts the correction amount Y from the FF control value (FF control value ⁇ Y) to obtain the deviation amount X. Indicates a negative value (the stroke amount is undershoot), the correction amount Y is added to the FF control value (FF control value + Y).
  • the flow rate control valve control device 10 of the present invention has been described as being applied to the clutch device 200, but can be applied to all control systems controlled by a quantitative proportional valve. .
  • the flow control valve 15 is provided with an air supply port 16a, a pressure source port 17a, and an exhaust port 18a, and the air supply passage 16, the pressure source passage 17, and the exhaust passage are connected to the respective ports.
  • the flow control valve 15, the working fluid supply source 11, and the clutch actuator 12 are provided adjacent to each other, and the supply passage 16, the pressure source passage 17, and the exhaust passage 18 are omitted. You may comprise.
  • the supply port 16a has been described as being disposed between the pressure source port 17a and the exhaust port 18a.
  • the positional relationship between the ports is not limited to this, for example, The pressure source port 17a may be disposed between the air supply port 16a and the exhaust port 18a.
  • the fluid pressure of the working fluid that operates the clutch actuator 12 can be applied to the control device 10 of the flow control valve of the present invention regardless of whether it is pneumatic or hydraulic.
  • the flow control valve 15 has been described as being controlled by the amount of current supplied to the electromagnetic solenoid. However, for example, a flow control valve 15 that is controlled by using a pulse motor and changing the number of pulses is applied. You can also

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Multiple-Way Valves (AREA)
  • Flow Control (AREA)

Abstract

Provided is a control device for a flow control valve; the control device has a simple structure, is able to learn the location of a neutral position of the flow control valve, and corrects learned values. The control device comprises: an actuator (12) which is operated by means of a working fluid; a working fluid supply source (11) which supplies the working fluid; a stroke sensor (14) which detects the amount of strokes performed by the actuator (12); a flow control valve (15) which comprises a valve body (19) and is in communication with or is blocked from the actuator (12) in accordance with the movement of the valve body (19); and a control unit (20) which controls the valve body (19) in accordance with a detection value produced by the stroke sensor (14). The control unit (20) comprises: a learning unit (22) which learns the location of a neutral position; and a learned value correction unit (23) which corrects a learned value produced by the learning unit (22), said correction being performed on the basis of a map created in advance in accordance with the amount of deviation between the detection value produced by the stroke sensor (14) in the neutral position and the target stroke amount in the neutral position.

Description

流量制御弁の制御装置Control device for flow control valve
 本発明は、流量制御弁の制御装置において、特に流量制御弁の中立位置を学習するとともに、学習値を補正する流量制御弁の制御装置に関する。 The present invention relates to a flow rate control valve control device, and more particularly to a flow rate control valve control device that learns a neutral position of the flow rate control valve and corrects a learned value.
 一般的に、エンジンのトルクを機械式自動変速機に伝達するクラッチ装置の係合をクラッチアクチュエータによって制御する車両が開発・実用化されている。このような車両においては、エンジンと機械式自動変速機との間にクラッチ装置を設けている。クラッチ装置は、空気圧又は油圧で作動するクラッチアクチュエータのピストンの移動によって断接されるようになっている。また、クラッチアクチュエータの作動は、電磁ソレノイドを備えた流量制御弁により、クラッチアクチュエータ内の作動流体を供給又は排出することで行われる。 Generally, vehicles that control engagement of a clutch device that transmits engine torque to a mechanical automatic transmission using a clutch actuator have been developed and put into practical use. In such a vehicle, a clutch device is provided between the engine and the mechanical automatic transmission. The clutch device is connected and disconnected by movement of a piston of a clutch actuator that operates by air pressure or hydraulic pressure. The operation of the clutch actuator is performed by supplying or discharging the working fluid in the clutch actuator by a flow rate control valve provided with an electromagnetic solenoid.
 この流量制御弁には、クラッチアクチュエータに連通する給気通路と、エアタンク等の作動流体圧力源に連通する圧力源通路と、クラッチアクチュエータから作動流体を排出する排気通路とが接続され、それぞれの通路に開口する給気ポート,圧力源ポート,排気ポートの三個のポートが所定の間隔で形成されている。また、流量制御弁の中空部には弁体が遊嵌されており、この弁体が移動することによって、前述の給気ポート,圧力源ポート,排気ポートがそれぞれ連通・遮断されるように構成されている。 An air supply passage communicating with the clutch actuator, a pressure source passage communicating with a working fluid pressure source such as an air tank, and an exhaust passage discharging the working fluid from the clutch actuator are connected to the flow control valve. Three ports, an air supply port, a pressure source port, and an exhaust port, are formed at predetermined intervals. In addition, a valve body is loosely fitted in the hollow portion of the flow control valve, and the above-described air supply port, pressure source port, and exhaust port are communicated and cut off as the valve body moves. Has been.
 具体的には、クラッチ装置の係合を切断する場合(完断)は、給気ポートと圧力源ポートとを連通し、かつ、排気ポートを遮断する給気位置に弁体を移動させ、作動流体をクラッチアクチュエータ内へと供給する。また、クラッチ装置を接続する場合(完接)は、給気ポートと排気ポートとを連通し、かつ、圧力源ポートを遮断する排気位置に弁体を移動させて、作動流体をクラッチアクチュエータ内から排出する。また、クラッチ装置の係合を所定の断位置で保持する場合(断保持)は、給気ポートを遮断する中立位置に弁体を移動させ、作動流体をクラッチアクチュエータ内に保持するようになっている。 Specifically, when the clutch device is disengaged (completely closed), the valve body is moved to an air supply position where the air supply port communicates with the pressure source port and the exhaust port is shut off. Fluid is supplied into the clutch actuator. When the clutch device is connected (completely connected), the valve body is moved to an exhaust position where the air supply port and the exhaust port communicate with each other and the pressure source port is shut off, and the working fluid is transferred from within the clutch actuator. Discharge. Further, when the engagement of the clutch device is held at a predetermined disengagement position (disengagement retention), the valve body is moved to a neutral position where the air supply port is shut off, and the working fluid is retained in the clutch actuator. Yes.
 例えば、特許文献1には、この種の流量制御弁を適用したクラッチの制御装置が開示されている。 For example, Patent Document 1 discloses a clutch control device to which this type of flow control valve is applied.
特許第3417823号公報Japanese Patent No. 3417823
 ところで、車両の変速時には、迅速かつ変速ショックの少ないクラッチ装置の断接を実行することが好ましい。そのため、迅速な制御を実現すべく、流量制御弁をコントロールするECUに、電磁ソレノイドへの通電量と作動流体の流量との関係を示す流量特性等を予め記憶させておき、この流量特性等に応じて実際のストローク量が目標ストロークとなるように流量制御弁を制御することが行われている。また、正確な制御を実現すべく、流量制御弁の中立位置を学習し、係る学習値に基づいて流量制御弁を制御することも行われている。 By the way, it is preferable that the clutch device is quickly connected and disconnected when shifting the vehicle. Therefore, in order to realize quick control, the ECU that controls the flow rate control valve stores in advance a flow rate characteristic indicating the relationship between the energization amount of the electromagnetic solenoid and the flow rate of the working fluid. Accordingly, the flow rate control valve is controlled so that the actual stroke amount becomes the target stroke. In order to realize accurate control, the neutral position of the flow control valve is learned, and the flow control valve is controlled based on the learned value.
 しかしながら、流量制御弁の流量特性は、流量制御弁の経年変化等の影響により変化することがある。また、流量制御弁の中立位置には、流量制御弁の弁体が給気位置から中立位置へと移動した場合と、排気位置から中立位置へと移動した場合とに、僅かながら差異が生ずることがある。このように、流量特性や中立位置に変化や差異が生ずると、ストローク量が目標ストローク量に対してオーバーシュートやアンダーシュートしてしまい、流量制御弁を迅速かつ正確に制御することが困難であるといった課題がある。 However, the flow characteristics of the flow control valve may change due to the influence of aging of the flow control valve. In addition, there is a slight difference in the neutral position of the flow control valve between when the valve body of the flow control valve moves from the supply position to the neutral position and when it moves from the exhaust position to the neutral position. There is. As described above, when a change or difference occurs in the flow characteristics or the neutral position, the stroke amount overshoots or undershoots with respect to the target stroke amount, and it is difficult to control the flow control valve quickly and accurately. There is a problem.
 本発明のこのような課題に鑑みてなされたもので、簡素な構成で、流量制御弁の中立位置を学習しつつ、学習値を正確に補正することができる流量制御弁の制御装置を提供することを目的とする。 The present invention has been made in view of such a problem, and provides a control device for a flow rate control valve capable of accurately correcting a learned value while learning a neutral position of the flow rate control valve with a simple configuration. For the purpose.
 上述の目的を達成するため、本発明の流量制御弁の制御装置は、作動流体によって作動するアクチュエータと、前記作動流体を供給する作動流体供給源と、前記アクチュエータのストローク量を検出するストロークセンサと、中空部を移動可能な弁体を有するとともに、前記弁体の移動によって前記アクチュエータと連通もしくは遮断される流量制御弁と、前記ストロークセンサの検出値に応じて、前記弁体の移動量を制御する制御部とを備え、前記制御部は、前記ストロークセンサの検出値により、前記弁体の移動によって前記アクチュエータと遮断される中立位置と判断されたときの前記弁体の移動量を学習する学習部と、前記中立位置における前記ストロークセンサの検出値と前記中立位置における目標ストローク量とのずれ量に応じて予め作成したマップに基づいて、前記学習部による学習値を補正する学習値補正部とを有することを特徴とする。 In order to achieve the above-described object, a control device for a flow control valve of the present invention includes an actuator that is operated by a working fluid, a working fluid supply source that supplies the working fluid, and a stroke sensor that detects a stroke amount of the actuator. A flow control valve that has a valve body that can move through the hollow portion, and that communicates with or is disconnected from the actuator by the movement of the valve body, and controls the amount of movement of the valve body according to the detection value of the stroke sensor And learning to learn the amount of movement of the valve body when it is determined that the neutral position is cut off from the actuator by the movement of the valve body based on the detection value of the stroke sensor. And a deviation amount between a detected value of the stroke sensor at the neutral position and a target stroke amount at the neutral position. Previously prepared based on the map, and having a learning value correcting unit for correcting the learning value by the learning section Te.
 また、前記マップは、前記ずれ量が増加するにつれて、前記学習値を補正する補正量が減少するとともに、前記ずれ量が減少するにつれて、前記学習値を補正する補正量が増加するように設定されるようにしてもよい。 Further, the map is set so that the correction amount for correcting the learning value decreases as the deviation amount increases, and the correction amount for correcting the learning value increases as the deviation amount decreases. You may make it do.
 また、前記マップは、前記ずれ量が増加するにつれて、前記学習値を補正する補正量が所定のステップで減少するとともに、前記ずれ量が減少するにつれて、前記学習値を補正する補正量が所定のステップで増加するように設定されるようにしてもよい。 In the map, as the deviation amount increases, the correction amount for correcting the learning value decreases in a predetermined step, and as the deviation amount decreases, the correction amount for correcting the learning value becomes a predetermined amount. You may make it set so that it may increase in a step.
 また、前記マップには、前記中立位置において、前記弁体の移動によって前記アクチュエータと遮断される範囲に応じて、前記学習値を補正する補正量に上限値と下限値とが設けられるようにしてもよい。 In the map, an upper limit value and a lower limit value are provided for a correction amount for correcting the learning value in accordance with a range in which the valve body is disconnected from the actuator at the neutral position. Also good.
 また、前記制御部は、前記ストロークセンサの検出値の変化量が、一定時間継続して所定値以下となったときに、前記弁体が中立位置と判断するようにしてもよい。 In addition, the control unit may determine that the valve body is in a neutral position when the amount of change in the detection value of the stroke sensor continues for a predetermined time and becomes a predetermined value or less.
 また、前記流量制御弁は、前記作動流体供給源に連絡する供給部と前記アクチュエータから前記作動流体を排出する排出部と前記アクチュエータに連通する連通部とを有するとともに、前記学習部は、前記ストロークセンサの検出値により、前記弁体が前記排出部側から移動して前記連通部を遮断する中立位置と判断されたときの前記弁体の移動量と、前記弁体が前記供給部側から移動して前記連通部を遮断する中立位置と判断されたときの前記弁体の移動量とから、前記弁体の中立位置としての移動量を学習するようにしてもよい。 The flow rate control valve includes a supply unit that communicates with the working fluid supply source, a discharge unit that discharges the working fluid from the actuator, and a communication unit that communicates with the actuator, and the learning unit includes the stroke The amount of movement of the valve element when the valve element is determined to be a neutral position where the valve element moves from the discharge part side and shuts off the communication part according to the detection value of the sensor, and the valve element moves from the supply part side Then, the movement amount as the neutral position of the valve body may be learned from the movement amount of the valve body when it is determined that the neutral position blocks the communication portion.
 本発明の流量制御弁の制御装置によれば、簡素な構成で、流量制御弁の中立位置を学習しつつ、学習値を正確に補正することができる。 According to the control device for a flow control valve of the present invention, the learned value can be corrected accurately while learning the neutral position of the flow control valve with a simple configuration.
本発明の一実施形態に係る流量制御弁の制御装置と、車両の駆動系とを示すブロック図である。It is a block diagram which shows the control apparatus of the flow control valve concerning one Embodiment of this invention, and the drive system of a vehicle. 本発明の一実施形態に係る流量制御弁の詳細を示す断面図である。It is sectional drawing which shows the detail of the flow control valve concerning one Embodiment of this invention. 図2の流量制御弁が作動した状態を示す断面図である。It is sectional drawing which shows the state which the flow control valve of FIG. 2 act | operated. 図2の流量制御弁の中立位置を示す断面図である。It is sectional drawing which shows the neutral position of the flow control valve of FIG. 本発明の一実施形態に係る流量制御弁の流量特性を示す図である。It is a figure which shows the flow volume characteristic of the flow control valve which concerns on one Embodiment of this invention. 本発明の一実施形態に係る流量制御弁の制御装置によるストローク制御の一態様を示す図である。It is a figure which shows the one aspect | mode of the stroke control by the control apparatus of the flow control valve concerning one Embodiment of this invention. 本発明の一実施形態に係る流量制御弁の制御装置によるストローク制御のその他の態様を示す図である。It is a figure which shows the other aspect of the stroke control by the control apparatus of the flow control valve concerning one Embodiment of this invention. 本発明の一実施形態に係る流量制御弁の制御装置による学習値補正量を示す図である。It is a figure which shows the learning value correction amount by the control apparatus of the flow control valve concerning one Embodiment of this invention. 本発明の一実施形態に係る流量制御弁の制御装置による学習制御を示すフローチャートである。It is a flowchart which shows the learning control by the control apparatus of the flow control valve concerning one Embodiment of this invention. 本発明の一実施形態に係る流量制御弁の制御装置による学習値補正制御を示すフローチャートである。It is a flowchart which shows the learning value correction | amendment control by the control apparatus of the flow control valve concerning one Embodiment of this invention.
 以下、図面により、本発明に係る一実施形態について説明する。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
 図1~10は、本発明の一実施形態を説明するものである。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。 1 to 10 illustrate one embodiment of the present invention. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 まず、図1を用いて、本発明の一実施形態に係る流量制御弁の制御装置10が適用される車両1の駆動系を説明する。本実施形態に係る車両1の駆動系は、図1に示すように、エンジン(駆動源)100と、クラッチ装置(クラッチ機構)200と、機械式自動変速機(変速機)300とを有する。 First, a drive system of a vehicle 1 to which a control device 10 for a flow control valve according to an embodiment of the present invention is applied will be described with reference to FIG. As shown in FIG. 1, the drive system of the vehicle 1 according to the present embodiment includes an engine (drive source) 100, a clutch device (clutch mechanism) 200, and a mechanical automatic transmission (transmission) 300.
 エンジン100は、図示しないエンジンECUによって、車両1の運転状態に応じたトルクを発生させるように燃焼制御される。また、エンジン100の出力軸110は、後述するクラッチ装置200によって、機械式自動変速機300の変速機入力側310と断接可能に構成されている。 Engine 100 is subjected to combustion control by an engine ECU (not shown) so as to generate torque according to the operating state of vehicle 1. Further, the output shaft 110 of the engine 100 is configured to be connectable to and disconnectable from the transmission input side 310 of the mechanical automatic transmission 300 by a clutch device 200 described later.
 クラッチ装置200は、図1に示すように、乾式単板クラッチ装置であって、フライホイール210と、クラッチディスク220と、リターンスプリング230とを有する。 As shown in FIG. 1, the clutch device 200 is a dry single-plate clutch device, and includes a flywheel 210, a clutch disk 220, and a return spring 230.
 フライホイール210は、図示しないボルトとナットとによって、エンジン100の出力軸110に固定されている。クラッチディスク220は、その周辺部に図示しない摩耗板が設けられており、後述する機械式自動変速機300の変速機入力軸310に摺動可能にスプライン嵌合されている。また、クラッチディスク220には、後述するレリーズフォーク13の一端部が取り付けられている。リターンスプリング230は、クラッチディスク220の一端部と機械式自動変速機300との間に設けられ、クラッチディスク220をエンジン100の方向(図1の矢印X方向)に付勢するように取り付けられている。 The flywheel 210 is fixed to the output shaft 110 of the engine 100 by bolts and nuts (not shown). The clutch disk 220 is provided with a wear plate (not shown) in the periphery thereof, and is slidably splined to a transmission input shaft 310 of a mechanical automatic transmission 300 described later. Further, one end of a release fork 13 described later is attached to the clutch disk 220. The return spring 230 is provided between one end of the clutch disk 220 and the mechanical automatic transmission 300, and is attached so as to urge the clutch disk 220 in the direction of the engine 100 (the arrow X direction in FIG. 1). Yes.
 機械式自動変速機300は、フライホイール210とクラッチディスク220とが係合することにより、このフライホイール210,クラッチディスク220を介して伝達されるエンジン100のトルクを、所望の回転速度に変速調整した後に、図示しないプロペラシャフト等へと伝達するように構成されている。 The mechanical automatic transmission 300 adjusts the torque of the engine 100 transmitted through the flywheel 210 and the clutch disc 220 to a desired rotational speed by engaging the flywheel 210 and the clutch disc 220. After that, it is configured to transmit to a propeller shaft or the like (not shown).
 以下、図1~10を用いて、本発明の一実施形態に係る流量制御弁の制御装置10について説明する。 Hereinafter, a control device 10 for a flow control valve according to an embodiment of the present invention will be described with reference to FIGS.
 本実施形態に係る流量制御弁の制御装置10は、図1,2に示すとおり、圧力供給源(作動流体供給源)11と、クラッチアクチュエータ(アクチュエータ)12と、レリーズフォーク13と、ストロークセンサ14と、流量制御弁15と、給気通路16と、圧力源通路17と、排気通路18と、クラッチ制御ECU(制御部)20とを有する。 As shown in FIGS. 1 and 2, a control device 10 for a flow control valve according to this embodiment includes a pressure supply source (working fluid supply source) 11, a clutch actuator (actuator) 12, a release fork 13, and a stroke sensor 14. A flow control valve 15, an air supply passage 16, a pressure source passage 17, an exhaust passage 18, and a clutch control ECU (control unit) 20.
 圧力供給源11は、空圧タンク等であって、図1に示すように、作動流体を流量制御弁15へと供給する。また、圧力供給源11には、後述する流量制御弁15の圧力源ポート17aと連通する圧力源通路17が接続されている。 The pressure supply source 11 is a pneumatic tank or the like, and supplies the working fluid to the flow control valve 15 as shown in FIG. The pressure supply source 11 is connected to a pressure source passage 17 that communicates with a pressure source port 17a of a flow rate control valve 15 described later.
 クラッチアクチュエータ12は、図1に示すように、シリンダ室を備えたシリンダ本体12aと、このシリンダ室に摺動自在に嵌挿されたピストン12bとを有する。シリンダ本体12aの側面には、流量制御弁15の排気ポート18aと連通する排気通路18が接続されており、シリンダ室内の作動流体を流量制御弁15を介して排出するように構成されている。また、シリンダ本体12aの側面には、流量制御弁15の給気ポート16aと連通する給気通路16が接続されており、圧力供給源11から流量制御弁15を介して送り込まれる作動流体の流体圧よって、ピストン12bが図1の矢印X方向へと移動されるように構成されている。 As shown in FIG. 1, the clutch actuator 12 has a cylinder body 12a having a cylinder chamber and a piston 12b slidably fitted in the cylinder chamber. An exhaust passage 18 communicating with the exhaust port 18 a of the flow control valve 15 is connected to the side surface of the cylinder body 12 a, and the working fluid in the cylinder chamber is discharged through the flow control valve 15. An air supply passage 16 communicating with the air supply port 16a of the flow control valve 15 is connected to the side surface of the cylinder body 12a, and the working fluid fed from the pressure supply source 11 via the flow control valve 15 is connected. The piston 12b is configured to be moved in the arrow X direction in FIG. 1 by the pressure.
 レリーズフォーク13は、図1に示すように、一端部をクラッチアクチュエータ12のピストン12bの先端に支持され、他端部をクラッチディスク220に取り付けられている。また、レリーズフォーク13は、その中心部を支軸13aによって回動可能に軸支されている。すなわち、クラッチアクチュエータ12のシリンダ室内に作動流体が供給されて、ピストン12bが車両1の前方(図1の矢印X方向)へと移動すると、このレリーズフォーク13は、車両1の前方(図1の矢印X方向)へと付勢される。そして、レリーズフォーク13が、支軸13aを中心に図1中の左回りに回動することで、クラッチ装置200の係合を切断するように構成されている。また、レリーズフォーク13は、クラッチアクチュエータ12のシリンダ室内の作動流体が排出されると、リターンスプリング230の付勢力によって、車両1の後方(図1の矢印Y方向)へと付勢され、支軸13aを中心に図1中の右回りに回動することで、クラッチ装置200の係合を接続するように構成されている。 As shown in FIG. 1, the release fork 13 has one end supported by the tip of the piston 12 b of the clutch actuator 12 and the other end attached to the clutch disc 220. Further, the release fork 13 is pivotally supported at its center by a support shaft 13a. That is, when the working fluid is supplied into the cylinder chamber of the clutch actuator 12 and the piston 12b moves in front of the vehicle 1 (in the direction of the arrow X in FIG. 1), the release fork 13 is moved in front of the vehicle 1 (in FIG. 1). Energized in the direction of arrow X). And the release fork 13 is comprised so that the engagement of the clutch apparatus 200 may be cut | disconnected by rotating counterclockwise in FIG. 1 centering on the spindle 13a. When the working fluid in the cylinder chamber of the clutch actuator 12 is discharged, the release fork 13 is urged rearward (in the direction of arrow Y in FIG. 1) by the urging force of the return spring 230, and the support shaft It is configured to connect the engagement of the clutch device 200 by turning clockwise about the position 13a in FIG.
 ストロークセンサ14は、図1に示すように、クラッチアクチュエータ12のストローク量を検出するもので、その検出値Sは、後述するクラッチ制御ECU20に出力される。 As shown in FIG. 1, the stroke sensor 14 detects the stroke amount of the clutch actuator 12, and the detected value S is output to a clutch control ECU 20 described later.
 給気通路16は、図1,2に示すように、一端をクラッチアクチュエータ12のシリンダ室に接続され、他端を後述する流量制御弁15の給気ポート16aに接続されている。 As shown in FIGS. 1 and 2, the air supply passage 16 has one end connected to the cylinder chamber of the clutch actuator 12 and the other end connected to an air supply port 16a of a flow control valve 15 described later.
 圧力源通路17は、図1,2に示すように、一端を圧力供給源11に接続され、他端を後述する流量制御弁15の圧力源ポート17aに接続されている。 As shown in FIGS. 1 and 2, the pressure source passage 17 has one end connected to the pressure supply source 11 and the other end connected to a pressure source port 17a of a flow control valve 15 described later.
 排出通路18は、図1,2に示すように、一端をクラッチアクチュエータ12のシリンダ室に、他端を後述する流量制御弁15の排気ポート18aに接続されている。 As shown in FIGS. 1 and 2, the discharge passage 18 has one end connected to the cylinder chamber of the clutch actuator 12 and the other end connected to an exhaust port 18a of the flow control valve 15 described later.
 流量制御弁15は、図2に示すように、内部に中空部を備えた制御弁本体15aと、この中空部に摺動可能に嵌挿される弁体19と、電磁ソレノイド15bと、スプリング15cとを有する。また、制御弁本体15aの側部には、前述の給気通路16,圧力源通路17,排出通路18と接続される、給気ポート(連通部)16a,圧力源ポート(供給部)17a,排気ポート(排出部)18aが所定の間隔で形成されている。本実施形態において、給気ポート16aは、圧力源ポート17aと排気ポート18aとの間に位置するように配置されている。 As shown in FIG. 2, the flow control valve 15 includes a control valve body 15a having a hollow portion therein, a valve body 19 slidably inserted into the hollow portion, an electromagnetic solenoid 15b, a spring 15c, Have Further, on the side of the control valve main body 15a, an air supply port (communication portion) 16a, a pressure source port (supply portion) 17a, connected to the above-described air supply passage 16, pressure source passage 17, and discharge passage 18 are provided. Exhaust ports (discharge portions) 18a are formed at a predetermined interval. In the present embodiment, the air supply port 16a is disposed so as to be positioned between the pressure source port 17a and the exhaust port 18a.
 弁体19には、所定の移動位置で前述の給気ポート16a,圧力源ポート17a,排気ポート18aをそれぞれ遮断すべく、三個のランド、すなわち給気遮断部19a,圧力源遮断部19b,排出遮断部19cが所定の間隔で設けられている。また、弁体19は、一端を電磁ソレノイド15bの可動ヨークに連結され、他端をスプリング15cによって図2の矢印X方向に付勢されている。 The valve body 19 has three lands, that is, an air supply shut-off portion 19a, a pressure source shut-off portion 19b, and the air supply port 16a, the pressure source port 17a, and the exhaust port 18a. Discharge blocking portions 19c are provided at predetermined intervals. Further, one end of the valve body 19 is connected to the movable yoke of the electromagnetic solenoid 15b, and the other end is urged by the spring 15c in the direction of the arrow X in FIG.
 すなわち、弁体19は、電磁ソレノイド15bの可動ヨークに作用する磁力とスプリング15cの付勢力とのバランスによってその位置が決定されるように構成されている。例えば、電磁ソレノイド15bへの通電を停止(通電量0%)したときは、弁体19は、スプリング15cに付勢されて図3(a)の位置(排気位置)となる。これにより、給気ポート16aと排気ポート18aとが連通して、クラッチアクチュエータ12のシリンダ室内の作動流体が排出されることで、クラッチ装置200の係合を接続(完接)する。ソレノイド15bへの通電量を最大値(100%)とすると、弁体19は、スプリング15cを圧縮して図3(b)の位置(給気位置)となり、給気ポート16aと圧力源ポート17aとが連通する。これにより、圧力供給源11の作動流体が給気ポート16aからクラッチアクチュエータ12のシリンダ室内に送り込まれ、クラッチ装置200の係合を切断(完断)する。電磁ソレノイド15bへの通電量を50%とすると、弁体19が図3(c)の位置(中立位置)となり、給気ポート16aが圧力源ポート17a及び排気ポート18aと遮断されて、クラッチ装置200の接続量を所定量に保持(断保持)する。 That is, the position of the valve body 19 is determined by the balance between the magnetic force acting on the movable yoke of the electromagnetic solenoid 15b and the urging force of the spring 15c. For example, when energization to the electromagnetic solenoid 15b is stopped (the energization amount is 0%), the valve body 19 is urged by the spring 15c to the position (exhaust position) of FIG. As a result, the air supply port 16a and the exhaust port 18a communicate with each other, and the working fluid in the cylinder chamber of the clutch actuator 12 is discharged, whereby the engagement of the clutch device 200 is connected (completely connected). When the energization amount to the solenoid 15b is the maximum value (100%), the valve body 19 compresses the spring 15c to the position (supply position) of FIG. 3B, and the supply port 16a and the pressure source port 17a And communicate. Thereby, the working fluid of the pressure supply source 11 is sent into the cylinder chamber of the clutch actuator 12 from the air supply port 16a, and the engagement of the clutch device 200 is disconnected (completely cut). When the energization amount to the electromagnetic solenoid 15b is 50%, the valve element 19 is in the position (neutral position) shown in FIG. The connection amount of 200 is held at a predetermined amount (cut off).
 制御ECU(制御部)20は、公知のCPUやROM等から構成されており、作動制御部21と、中立位置学習部(学習部)22と、学習値補正部23とを機能要素として備えている。 The control ECU (control unit) 20 includes a known CPU, ROM, and the like, and includes an operation control unit 21, a neutral position learning unit (learning unit) 22, and a learning value correction unit 23 as functional elements. Yes.
 なお、これら各機能要素は、本実施形態では一体のハードウェアである制御ECU20に設けられているが、これらのいずれか一部を別体のハードウェアに設けることもできる。 In addition, although each of these functional elements is provided in control ECU20 which is integral hardware in this embodiment, any one of these can also be provided in separate hardware.
 作動制御部21は、車両1の変速時にクラッチ装置200が完接~完断~断保持~完接と作動するように、流量制御弁15の電磁ソレノイド15bへの通電量である制御信号を出力する。この制御出力値は、フィード・バック制御値(FB制御値)+フィード・フォワード制御値(FF制御値)で設定される。 The operation control unit 21 outputs a control signal that is an energization amount to the electromagnetic solenoid 15b of the flow control valve 15 so that the clutch device 200 operates in a complete contact, complete disconnection, disconnection hold, and complete connection when the vehicle 1 is shifted. To do. This control output value is set by a feedback control value (FB control value) + a feed forward control value (FF control value).
 作動制御部21には、電磁ソレノイド15bへの通電量と作動流体の流量との関係を表す図5の実線A0に示す流量特性マップ(予め作成したマップ)が記憶されている。また、車両1の変速時において、図6の実線α0に示すクラッチストローク(接続量)を実現すべく、図6の破線β0に示す目標波形(目標ストローク量)が予め記憶されている。FB制御値は、この図6の破線β0に示す目標波形を用いて、現在のストローク量(検出値S)と目標ストローク量との差に応じて、例えば、公知のPID制御などのフィード・バック制御式により算出される。 The operation control unit 21 stores a flow rate characteristic map (a map created in advance) indicated by a solid line A 0 in FIG. 5 representing the relationship between the energization amount to the electromagnetic solenoid 15b and the flow rate of the working fluid. Further, at the time of shifting of the vehicle 1, to realize a clutch stroke (connection weight) shown in solid line alpha 0 in FIG. 6, the target waveform shown in dashed beta 0 in FIG. 6 (a target stroke amount) is stored in advance. FB control value, using a target waveform shown in dashed beta 0 in FIG. 6, in accordance with the difference between the current stroke (detected value S) and the target stroke amount, for example, feed such as known PID control Calculated by the back control equation.
 また、FF制御値は、後述する中立位置学習部22から出力される学習値に、図5の流量特性マップを用いて初期値を加算することで算出される(FF制御値=学習値+初期値)。 The FF control value is calculated by adding an initial value to the learning value output from the neutral position learning unit 22 described later using the flow rate characteristic map of FIG. 5 (FF control value = learning value + initial value). value).
 中立位置学習部(学習部)22は、クラッチ装置200の係合が断保持にある時、すなわち弁体19が流量制御弁15の作動流体の流れを遮断する中立位置(図3(c)参照)にある時の学習値を算出する。この学習値は、クラッチ装置200の係合が断保持にある時に、流量制御弁15の固体差や経年変化に関わらず、ストローク量が目標ストローク量となるように初期値を修正する値である。また、初期値は、例えば作動制御部21に予め記憶されている図5の流量特性マップ等に基づいて算出される。具体的には、学習値は流量制御弁15の弁体19が中立位置にあると判断された際の電磁ソレノイド15bへの通電量E1から初期値を減算することで学習されるようになっている。 The neutral position learning unit (learning unit) 22 is a neutral position where the valve body 19 blocks the flow of the working fluid of the flow control valve 15 when the engagement of the clutch device 200 is in the disconnected state (see FIG. 3C). ) To calculate the learning value. This learned value is a value for correcting the initial value so that the stroke amount becomes the target stroke amount regardless of the individual difference or aging of the flow control valve 15 when the engagement of the clutch device 200 is in the disconnected state. . The initial value is calculated based on, for example, the flow rate characteristic map of FIG. 5 stored in advance in the operation control unit 21. Specifically, the learning value is learned by subtracting the initial value from the energization amount E 1 to the electromagnetic solenoid 15b when it is determined that the valve element 19 of the flow control valve 15 is in the neutral position. ing.
 なお、本実施形態において、この通電量(FF制御値)は、図6に示すように、流量制御弁15の弁体19が排気位置~給気位置~中立位置(クラッチ装置200は完接~完断~断保持)と移動する際の、給気側の中立位置(図4(a)参照)における通電量E1を用いているが、例えば、図7に示すように、流量制御弁15の弁体19を排気位置~給気位置~中立位置と移動させ、次いで中立位置~排気位置~中立位置~排気位置と移動させる場合は、流量制御弁15の弁体19が中立位置~排気位置~中立位置~排気位置と移動する際の排気側の中立位置(図4(b)参照)における通電量E2も算出し、これら給気側の通電量E1と排気側の通電量E2との平均値EAveをFF制御値として用いてもよい。 In this embodiment, as shown in FIG. 6, the energization amount (FF control value) is such that the valve body 19 of the flow control valve 15 is in the exhaust position, the supply position, and the neutral position (the clutch device 200 is completely connected). The energization amount E 1 at the neutral position on the supply side (see FIG. 4 (a)) at the time of movement is used. For example, as shown in FIG. When the valve body 19 is moved from the exhaust position to the air supply position to the neutral position and then moved from the neutral position to the exhaust position to the neutral position to the exhaust position, the valve body 19 of the flow control valve 15 is moved from the neutral position to the exhaust position. ~ neutral position - the exhaust position and the neutral position of the exhaust side as it moves (see FIG. 4 (b)) energization amount E 2 also calculates the energization amount of the energization amount E 1 and the exhaust side of the air supply side E 2 May be used as the FF control value.
 流量制御弁15が中立位置にあるか否かの判断は、ストロークセンサ14から出力される検出値Sに基づき、ストロークの変化速度が実質的にゼロである場合に流量制御弁15が中立位置にあると判定する。本実施形態において、この中立位置の判定は、ストローク量の微分値に基づいて行われる。具体的には、ストロークS1と、このストロークS1が検出された時から一定時間tが経過した後のストロークS2を検出し、この一定時間tの経過時におけるストロークの変化速度である微分値D(D=(S1-S2)/t)が所定値以下であれば、ストロークの変化速度は実質的にゼロであると判定する。なお、よりストロークの変化速度が安定した状態を判定すべく、微分値Dの演算周期を、所定時間tの間に継続して複数設け、その全ての微分値Dが所定値以下である場合にのみ、ストロークの変化速度が実質的にゼロであると判定するようにしてもよい。 Whether or not the flow control valve 15 is in the neutral position is determined based on the detection value S output from the stroke sensor 14 when the stroke change speed is substantially zero. Judge that there is. In this embodiment, the neutral position is determined based on the differential value of the stroke amount. Specifically, the stroke S 1 and the stroke S 2 after a certain time t has elapsed from the time when the stroke S 1 was detected are detected, and the differential that is the stroke change rate when the certain time t has elapsed. If the value D (D = (S 1 −S 2 ) / t) is equal to or less than a predetermined value, it is determined that the stroke change speed is substantially zero. In addition, in order to determine a state in which the change speed of the stroke is more stable, a plurality of differential value D calculation cycles are continuously provided during a predetermined time t, and all the differential values D are equal to or less than a predetermined value. Only the stroke change speed may be determined to be substantially zero.
 中立位置学習部22は、上述のように学習した学習値を作動制御部21に出力する。また、作動制御部21は、この出力された学習値に初期値を加算してFF制御値を算出(FF制御値=初期値+学習値)して記憶する。具体的には、図5の流量特性マップの実線A0(初期値)を、この学習値に応じて移動させた破線B1に修正して記憶する。 The neutral position learning unit 22 outputs the learned value learned as described above to the operation control unit 21. Further, the operation control unit 21 calculates an FF control value by adding an initial value to the output learning value (FF control value = initial value + learning value) and stores it. Specifically, the solid line A 0 (initial value) of the flow rate characteristic map of FIG. 5 is corrected and stored as a broken line B 1 moved according to the learning value.
 学習値補正部23は、流量制御弁15が作動制御部21から出力される制御信号(FF制御値+FB制御値)によって中立位置へと制御された際の実際のストローク量(検出値S)と、目標ストローク量との差であるずれ量Xを算出し、このずれ量Xに応じてFF制御値を補正する。 The learned value correcting unit 23 is the actual stroke amount (detected value S) when the flow rate control valve 15 is controlled to the neutral position by the control signal (FF control value + FB control value) output from the operation control unit 21. The deviation amount X, which is the difference from the target stroke amount, is calculated, and the FF control value is corrected according to the deviation amount X.
 具体的には、中立位置学習部22には、実験等によって予め定められたずれ量XとFF制御値への補正量Yとの関係を示した図8(a)の線形マップが記憶されており、この線形マップから、ずれ量Xに応じた補正量Yを読み取ることでFF制御値を補正する。例えば、ずれ量Xが正の値(プラス値)を示した場合は、ストローク量は図6の実線α1に示すようにオーバーシュートしているため、補正量Yは負の値(マイナス)、すなわちFF制御値から補正量Yを減算することになる(FF制御値-Y)。一方、ずれ量Xが負の値(マイナス)を示した場合は、ストローク量は図6の実線α2に示すようにアンダーシュートしているため、補正量Yは正の値(プラス)、すなわちFF制御値に補正量Yを加算することになる(FF制御値+Y)。本実施形態において、ずれ量Xと補正量Yとの関係は図8(a)の線形マップを用いて説明したが、例えば図8(b)に示すように、流量制御弁15の中立位置の範囲に応じて、補正量Yの上限値Ymaxと下限値Yminとを設けたマップや、図8(c)に示すように、ずれ量Xと補正量Yとを所定の範囲で段階的に変化(所定のステップで増減)させたマップ等、非線形マップを用いることもできる。 Specifically, the neutral position learning unit 22 stores a linear map of FIG. 8A that shows the relationship between the deviation amount X determined in advance by experiments or the like and the correction amount Y to the FF control value. The FF control value is corrected by reading the correction amount Y corresponding to the shift amount X from the linear map. For example, when the deviation amount X shows a positive value (plus value), the stroke amount overshoots as shown by the solid line α 1 in FIG. 6, so the correction amount Y is a negative value (minus), That is, the correction amount Y is subtracted from the FF control value (FF control value−Y). On the other hand, when the shift amount X showed a negative value (minus), the stroke volume is undershoots as shown by the solid line alpha 2 in FIG. 6, the correction amount Y is a positive value (plus), i.e. The correction amount Y is added to the FF control value (FF control value + Y). In the present embodiment, the relationship between the deviation amount X and the correction amount Y has been described using the linear map of FIG. 8A. For example, as shown in FIG. 8B, the neutral position of the flow control valve 15 is determined. Depending on the range, a map in which an upper limit value Y max and a lower limit value Y min of the correction amount Y are provided, and as shown in FIG. 8C, the deviation amount X and the correction amount Y are stepped within a predetermined range. It is also possible to use a non-linear map such as a map changed (increased or decreased in a predetermined step).
 また、学習値補正部23は、この補正されたFF制御値(FF制御値±Y)を、新たなFF制御値として出力制御部21に出力する。すなわち、出力制御部21に記憶されているFF制御値は、この補正された新たなFF制御値(FF制御値±Y)に置き換えられる。その後、置き換えられた新たなFF制御値(FF制御値±Y)に応じて、図5の流量特性マップの破線B1が、破線B2や破線B3へと修正される。 Further, the learning value correction unit 23 outputs the corrected FF control value (FF control value ± Y) to the output control unit 21 as a new FF control value. That is, the FF control value stored in the output control unit 21 is replaced with this corrected new FF control value (FF control value ± Y). Thereafter, in accordance with the replaced new FF control value (FF control value ± Y), the broken line B 1 in the flow characteristic map of FIG. 5 is corrected to the broken line B 2 and the broken line B 3 .
 本発明の一実施形態に係る流量制御弁の制御装置10は、以上のように構成されているので、車両1の変速操作時には、例えば図9,10に示すフローチャートに従って以下のような制御が行われる。 Since the control device 10 of the flow control valve according to the embodiment of the present invention is configured as described above, the following control is performed according to the flowcharts shown in FIGS. Is called.
 まず、図9のフローに従って、本発明の一実施形態に係る流量制御弁の制御装置10による中立位置の学習制御を説明する。 First, according to the flow of FIG. 9, the neutral position learning control by the control device 10 of the flow control valve according to the embodiment of the present invention will be described.
 操作者によって、車両1の変速操作がなされると、まず、ステップ(以下、ステップを単にSと記載する)100では、流量制御弁15の弁体19が作動制御部21から出力される制御信号に応じて、排気位置~給気位置~中立位置(クラッチ装置200は、接続~切断~断保持)と移動する。 When a shift operation of the vehicle 1 is performed by the operator, first, in step (hereinafter, step is simply referred to as S) 100, a control signal output from the operation control unit 21 of the valve body 19 of the flow control valve 15 is shown. In response to this, it moves from an exhaust position to an air supply position to a neutral position (the clutch device 200 is connected, disconnected, and disconnected).
 S110では、中立位置学習部22が、ストロークセンサ14から出力される検出値Sに基づいて、ストロークの変化速度である微分値Dが所定値以下(ストロークの変化速度は実質的にゼロ)であるか否を判定する。微分値Dが一定時間継続して所定値以下であれば、流量制御弁15は中立位置にあると判定し、ステップ120へと進む。一方、微分値Dが一定時間継続して所定値以下でない場合は、流量制御弁15は中立位置にないと判定し、中立位置学習制御はリターンされる。 In S110, the neutral position learning unit 22 has the differential value D, which is the stroke change speed, based on the detection value S output from the stroke sensor 14 or less (the stroke change speed is substantially zero). It is determined whether or not. If the differential value D continues for a predetermined time and is equal to or less than the predetermined value, it is determined that the flow control valve 15 is in the neutral position, and the routine proceeds to step 120. On the other hand, if the differential value D continues for a predetermined time and is not less than the predetermined value, it is determined that the flow control valve 15 is not in the neutral position, and the neutral position learning control is returned.
 S120では、中立位置学習部22によって、前述のS110で中立位置にあると判定した際の通電量E1が読み込まれる。 In S120, the neutral position learning unit 22, the energization amount E 1 when it is determined that the neutral position in S110 described above it is read.
 S130では、前述のS120で読み込まれた通電量E1から初期値を減算した学習値が記憶される。 In S130, the learning value obtained by subtracting the initial value from the power supply amount E 1 read in S120 described above are stored.
 S140では、作動制御部21によって、図5の流量特性マップの実線A0(初期値)が、この学習値に応じて破線B1に修正されて本制御はリターンされる。 In S140, the operation control unit 21 corrects the solid line A 0 (initial value) of the flow characteristic map of FIG. 5 to the broken line B 1 according to the learned value, and the present control is returned.
 次いで、図10のフローに従って、本発明の一実施形態に係る流量制御弁の制御装置10による学習値補正制御を説明する。 Next, learning value correction control by the control device 10 of the flow control valve according to the embodiment of the present invention will be described according to the flow of FIG.
 操作者によって、車両1の変速操作がなされると、まず、S200では、流量制御弁15にFF制御値(学習値+初期値)とFB制御値との制御信号が出力され、この出力値(FF制御値+FB制御値)に応じてクラッチ装置200が接続~切断~断保持と作動する。 When the speed change operation of the vehicle 1 is performed by the operator, first, in S200, control signals of the FF control value (learned value + initial value) and the FB control value are output to the flow rate control valve 15, and this output value ( In accordance with (FF control value + FB control value), the clutch device 200 operates in the connected, disconnected, and disconnected state.
 S210では、中立位置学習部22が、ストロークセンサ14から出力される検出値Sに基づいて、ストロークの変化速度である微分値Dが所定値以下(ストロークの変化速度は実質的にゼロ)であるか否を判定する。微分値Dが一定時間継続して所定値以下であれば、流量制御弁15は給気側の中立位置にあると判定し、S220へと進む。一方、微分値Dが一定時間継続して所定値以下でない場合は、流量制御弁15は中立位置にないと判定し、学習値補正制御はリターンされる。 In S210, the neutral position learning unit 22 determines that the differential value D, which is the stroke change speed, is equal to or less than a predetermined value (the stroke change speed is substantially zero) based on the detection value S output from the stroke sensor 14. It is determined whether or not. If the differential value D continues for a predetermined time and is equal to or less than the predetermined value, it is determined that the flow control valve 15 is in the neutral position on the supply side, and the process proceeds to S220. On the other hand, if the differential value D continues for a predetermined time and is not less than or equal to the predetermined value, it is determined that the flow control valve 15 is not in the neutral position, and the learning value correction control is returned.
 S220では、学習値補正部23によって、中立位置にあると判定した際の実際のストローク量(検出値S)が読み込まれ、この検出値Sと目標ストロークとの比較が行われる。検出値Sと目標ストローク量とのずれ量X(絶対値)が閾値以上である場合は、S230へと進む。一方、ずれ量X(絶対値)が閾値未満である場合は、学習値の補正は不要と判定され本制御はリターンされる。なお、ここで閾値はクラッチ装置200の特性に応じて、任意の値に設定することができる。 In S220, the learning value correction unit 23 reads the actual stroke amount (detected value S) when determined to be in the neutral position, and the detected value S is compared with the target stroke. If the deviation amount X (absolute value) between the detection value S and the target stroke amount is equal to or greater than the threshold value, the process proceeds to S230. On the other hand, when the deviation amount X (absolute value) is less than the threshold value, it is determined that correction of the learning value is unnecessary, and this control is returned. Here, the threshold value can be set to an arbitrary value according to the characteristics of the clutch device 200.
 S230では、ずれ量Xが正の値であるか、もしくは、負の値であるかが判定される。ずれ量Xが正の値である場合はS240へ進む。一方、ずれ量Xが負の値である場合はS260へと進む。 In S230, it is determined whether the deviation amount X is a positive value or a negative value. When the deviation amount X is a positive value, the process proceeds to S240. On the other hand, if the deviation amount X is a negative value, the process proceeds to S260.
 S240では、前述のS230で算出されたずれ量Xが正の値であることに基づいて、図8(a)の線形マップから、FF制御値から減算する補正量Yが読み込まれ、学習値の補正が行われる。すなわち、ストローク量がオーバーシュートしている場合なので、FF制御値から補正量Yを減算した補正値(FF制御値-Y)が、新たなFF制御値として記憶されて、S250へと進む。 In S240, based on the fact that the deviation amount X calculated in S230 is a positive value, the correction amount Y to be subtracted from the FF control value is read from the linear map of FIG. Correction is performed. That is, since the stroke amount is overshooting, the correction value (FF control value-Y) obtained by subtracting the correction amount Y from the FF control value is stored as a new FF control value, and the process proceeds to S250.
 S250では、作動制御部21に、前述のS250で記憶された新たなFF制御値(FF制御値-Y)が取り込まれ、図5の流量特性マップが破線B2へと修正され、本制御はリターンされる。 In S250, the operation control unit 21, is stored the new FF control value (FF control value -Y) is taken up in S250 described above, the flow rate characteristic map of FIG. 5 has been fixed to the broken line B 2, the control Returned.
 一方、前述のステップ230で、ずれ量Xが負の値と判定された場合は、S260にて、図8(a)の線形マップから、FF制御値に加算する補正量Yが読み込まれ、学習値の補正が行われる。すなわち、ストローク量がアンダーシュートしている場合なので、FF制御値に補正量Yを加算した補正値(FF制御値+Y)が、新たなFF制御値として記憶されて、S270へと進む。 On the other hand, if it is determined in step 230 that the deviation amount X is a negative value, the correction amount Y to be added to the FF control value is read from the linear map of FIG. Value correction is performed. That is, since the stroke amount is undershooting, the correction value (FF control value + Y) obtained by adding the correction amount Y to the FF control value is stored as a new FF control value, and the process proceeds to S270.
 S270では、作動制御部21に、前述のS260で記憶された新たなFF制御値(FF制御値+Y)が取り込まれ、図5の流量特性マップが破線B3へと修正され、本制御はリターンされる。 In S270, the operation control unit 21, a new FF control value stored in S260 described above (FF control value + Y) is taken, the flow rate characteristic map of FIG. 5 has been fixed to the broken line B 3, the control returns Is done.
 上述のような制御により、本発明の一実施形態に係る流量制御弁の制御装置10によれば以下のような作用・効果を奏する。 According to the control as described above, the flow rate control valve control device 10 according to the embodiment of the present invention has the following operations and effects.
 すなわち、中立位置学習部22による流量制御弁15の中立位置の学習は、ストロークセンサ14から出力される検出値Sに基づいて、ストロークの変化速度が実質的にゼロであると判定された場合に行われる。 That is, when the neutral position learning unit 22 learns the neutral position of the flow rate control valve 15 based on the detection value S output from the stroke sensor 14, it is determined that the stroke change speed is substantially zero. Done.
 したがって、ストロークが変化せず、クラッチ装置200の挙動が安定した状態で、流量制御弁15の中立位置を学習するので、学習値のばらつきを低減することができる。 Therefore, since the neutral position of the flow rate control valve 15 is learned in a state where the stroke does not change and the behavior of the clutch device 200 is stable, the variation in the learned value can be reduced.
 また、中立位置学習部22による流量制御弁15の中立位置の学習は、流量制御弁15の弁体19が排気位置~給気位置~中立位置と移動する際の給気側の中立位置における通電量E1と、流量制御弁15の弁体19が中立位置~排気位置~中立位置~排気位置と移動する際の排気側の中立位置における通電量E2との平均値EAveを算出して、この平均値EAveを流量制御弁15の中立位置に対応するFF制御値として学習してもよい。 Further, the neutral position learning unit 22 learns the neutral position of the flow control valve 15 by energization at the neutral position on the supply side when the valve body 19 of the flow control valve 15 moves from the exhaust position to the supply position to the neutral position. amount E 1, the valve body 19 of the flow control valve 15 to calculate the average value E Ave between energization amount E 2 at the neutral position of the exhaust side in moving the neutral position and the exhaust position and the neutral position and the exhaust position The average value E Ave may be learned as the FF control value corresponding to the neutral position of the flow control valve 15.
 したがって、図4(a),(b)に示すように、弁体19の給気遮断部19aの径L1が給気ポート16aの開口径L2よりも大径(L1>L2)であり、給気側の中立位置と排気側の中立位置とに僅かながら差異Lが生ずる場合であっても、流量制御弁15の中立位置を正確に学習することができる。 Therefore, as shown in FIGS. 4A and 4B, the diameter L 1 of the air supply blocking portion 19a of the valve body 19 is larger than the opening diameter L 2 of the air supply port 16a (L 1 > L 2 ). Even if there is a slight difference L between the neutral position on the supply side and the neutral position on the exhaust side, the neutral position of the flow control valve 15 can be learned accurately.
 また、学習値補正部23は、流量制御弁15が作動制御部21から出力されるFF制御値(初期値+学習値)+FB制御値に応じて中立位置へと制御された際の実際のストローク量(検出値S)と、目標ストローク量とのずれ量Xを算出し、このずれ量Xに応じてFF制御値(初期値+学習値)を補正する。 Further, the learning value correction unit 23 is an actual stroke when the flow rate control valve 15 is controlled to the neutral position according to the FF control value (initial value + learning value) + FB control value output from the operation control unit 21. A deviation amount X between the amount (detection value S) and the target stroke amount is calculated, and the FF control value (initial value + learning value) is corrected according to the deviation amount X.
 したがって、学習値補正部23によって、中立位置学習部22の学習値を補正することで、中立位置の学習精度を更に向上できる。当然ながら、補正後は、この補正された学習値に応じてクラッチ制御がなされるので、車両1の変速時の変速ショック発生を効果的に抑制することができる。 Therefore, the learning accuracy of the neutral position can be further improved by correcting the learning value of the neutral position learning unit 22 by the learning value correction unit 23. Naturally, after correction, clutch control is performed according to the corrected learning value, so that occurrence of a shift shock when the vehicle 1 is shifted can be effectively suppressed.
 また、学習値補正部23は、ずれ量Xが正の値を示した場合(ストローク量がオーバーシュート)は、FF制御値から補正量Yを減算(FF制御値-Y)し、ずれ量Xが負の値を示した場合(ストローク量がアンダーシュート)は、FF制御値に補正量Yを加算(FF制御値+Y)する。 Further, when the deviation amount X shows a positive value (the stroke amount is overshoot), the learning value correction unit 23 subtracts the correction amount Y from the FF control value (FF control value−Y) to obtain the deviation amount X. Indicates a negative value (the stroke amount is undershoot), the correction amount Y is added to the FF control value (FF control value + Y).
 したがって、補正後の学習値に基づいて制御を実行することにより、ストローク量のアンダーシュートやオーバーシュートを効果的に低減することができるとともに、当然ながら、変速時の変速ショックの発生を効果的に抑制することができる。 Therefore, by executing the control based on the corrected learning value, it is possible to effectively reduce the stroke amount undershoot and overshoot, and naturally, the shift shock during the shift is effectively generated. Can be suppressed.
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present invention.
 例えば、上述の実施形態において、本発明の流量制御弁の制御装置10はクラッチ装置200に適用されるものとして説明したが、定量比例弁で制御される制御系全般に適用することが可能である。 For example, in the above-described embodiment, the flow rate control valve control device 10 of the present invention has been described as being applied to the clutch device 200, but can be applied to all control systems controlled by a quantitative proportional valve. .
 また、本実施形態において、流量制御弁15には、給気ポート16a,圧力源ポート17a,排気ポート18aが設けられ、ぞれぞれのポートに給気通路16,圧力源通路17,排気通路18が接続されるものとして説明したが、例えば、流量制御弁15と作動流体供給源11とクラッチアクチュエータ12とを隣接して設け、これら給気通路16や圧力源通路17、排気通路18を省略して構成してもよい。 Further, in the present embodiment, the flow control valve 15 is provided with an air supply port 16a, a pressure source port 17a, and an exhaust port 18a, and the air supply passage 16, the pressure source passage 17, and the exhaust passage are connected to the respective ports. However, for example, the flow control valve 15, the working fluid supply source 11, and the clutch actuator 12 are provided adjacent to each other, and the supply passage 16, the pressure source passage 17, and the exhaust passage 18 are omitted. You may comprise.
 また、本実施形態において、給気ポート16aは、圧力源ポート17aと排気ポート18aとの間に配置されるものとして説明したが、各ポートの位置関係はこれに限定されるものではなく、例えば、圧力源ポート17aを給気ポート16aと排気ポート18aとの間に位置するように配置してもよい。 In the present embodiment, the supply port 16a has been described as being disposed between the pressure source port 17a and the exhaust port 18a. However, the positional relationship between the ports is not limited to this, for example, The pressure source port 17a may be disposed between the air supply port 16a and the exhaust port 18a.
 また、クラッチアクチュエータ12を作動させる作動流体の流体圧は、空気圧であるか油圧であるかを問わず、本発明の流量制御弁の制御装置10に適用することができる。 The fluid pressure of the working fluid that operates the clutch actuator 12 can be applied to the control device 10 of the flow control valve of the present invention regardless of whether it is pneumatic or hydraulic.
 また、本実施形態において、流量制御弁15は電磁ソレノイドへの通電量によって制御されるものとして説明したが、例えば、パルスモータを使用し、パルス数を変更することで制御されるものを適用することもできる。 In the present embodiment, the flow control valve 15 has been described as being controlled by the amount of current supplied to the electromagnetic solenoid. However, for example, a flow control valve 15 that is controlled by using a pulse motor and changing the number of pulses is applied. You can also
 1 車両
 10 流量制御弁の制御装置
 11 圧力供給源(作動流体供給源)
 12 クラッチアクチュエータ(アクチュエータ)
 14 ストロークセンサ
 15 流量制御弁
 16a 給気ポート(連通部)
 17a 圧力源ポート(供給部)
 18a 排気ポート(排出部)
 19 弁体
 20 制御ECU(制御部)
 21 作動制御部
 22 中立位置学習部(学習部)
 23 学習値補正部
DESCRIPTION OF SYMBOLS 1 Vehicle 10 Control apparatus of flow control valve 11 Pressure supply source (working fluid supply source)
12 Clutch actuator (actuator)
14 Stroke sensor 15 Flow control valve 16a Air supply port (communication part)
17a Pressure source port (supply part)
18a Exhaust port (exhaust part)
19 Valve body 20 Control ECU (control part)
21 Operation control unit 22 Neutral position learning unit (learning unit)
23 Learning value correction unit

Claims (6)

  1.  作動流体によって作動するアクチュエータと、
     前記作動流体を供給する作動流体供給源と、
     前記アクチュエータのストローク量を検出するストロークセンサと、
     中空部を移動可能な弁体を有するとともに、前記弁体の移動によって前記アクチュエータと連通もしくは遮断される流量制御弁と、
     前記ストロークセンサの検出値に応じて、前記弁体の移動量を制御する制御部とを備え、
     前記制御部は、前記ストロークセンサの検出値により、前記弁体の移動によって前記アクチュエータと遮断される中立位置と判断されたときの前記弁体の移動量を学習する学習部と、
     前記中立位置における前記ストロークセンサの検出値と前記中立位置における目標ストローク量とのずれ量に応じて予め作成したマップに基づいて、前記学習部による学習値を補正する学習値補正部とを有する
     ことを特徴とする流量制御弁の制御装置。
    An actuator actuated by a working fluid;
    A working fluid supply source for supplying the working fluid;
    A stroke sensor for detecting a stroke amount of the actuator;
    A flow control valve having a valve body capable of moving through the hollow portion, and being in communication with or cut off from the actuator by movement of the valve body;
    A control unit for controlling the amount of movement of the valve body according to the detection value of the stroke sensor;
    The control unit learns the amount of movement of the valve body when it is determined that the neutral position is cut off from the actuator by the movement of the valve body, based on the detection value of the stroke sensor;
    A learning value correction unit that corrects a learning value by the learning unit based on a map created in advance according to a deviation amount between a detection value of the stroke sensor at the neutral position and a target stroke amount at the neutral position. A control device for a flow rate control valve.
  2.  前記マップは、前記ずれ量が増加するにつれて、前記学習値を補正する補正量が減少するとともに、
     前記ずれ量が減少するにつれて、前記学習値を補正する補正量が増加するように設定される
     ことを特徴とする請求項1記載の流量制御弁の制御装置。
    In the map, as the deviation amount increases, the correction amount for correcting the learning value decreases,
    The control device for a flow control valve according to claim 1, wherein the correction amount for correcting the learning value is set to increase as the deviation amount decreases.
  3.  前記マップは、前記ずれ量が増加するにつれて、前記学習値を補正する補正量が所定のステップで減少するとともに、
     前記ずれ量が減少するにつれて、前記学習値を補正する補正量が所定のステップで増加するように設定される
     ことを特徴とする請求項1記載の流量制御弁の制御装置。
    In the map, as the shift amount increases, the correction amount for correcting the learning value decreases in a predetermined step, and
    The control device for a flow control valve according to claim 1, wherein the correction amount for correcting the learning value is set to increase in a predetermined step as the deviation amount decreases.
  4.  前記マップには、前記中立位置において、前記弁体の移動によって前記アクチュエータと遮断される範囲に応じて、前記学習値を補正する補正量に上限値と下限値とが設けられる
     ことを特徴とする請求項1~3のいずれか1項に記載の流量制御弁の制御装置。
    The map is provided with an upper limit value and a lower limit value for a correction amount for correcting the learning value according to a range in which the valve body is disconnected from the actuator at the neutral position. The flow rate control valve control device according to any one of claims 1 to 3.
  5.  前記制御部は、前記ストロークセンサの検出値の変化量が、一定時間継続して所定値以下となったときに、前記弁体が中立位置と判断する
     ことを特徴とする請求項1~4のいずれか1項に記載の流量制御弁の制御装置。
    The control unit according to any one of claims 1 to 4, wherein when the amount of change in the detection value of the stroke sensor is continuously equal to or less than a predetermined value, the valve body is determined to be in a neutral position. The control apparatus of the flow control valve of any one of Claims.
  6.  前記流量制御弁は、前記作動流体供給源に連絡する供給部と前記アクチュエータから前記作動流体を排出する排出部と前記アクチュエータに連通する連通部とを有するとともに、
     前記学習部は、前記ストロークセンサの検出値により、前記弁体が前記排出部側から移動して前記連通部を遮断する中立位置と判断されたときの前記弁体の移動量と、前記弁体が前記供給部側から移動して前記連通部を遮断する中立位置と判断されたときの前記弁体の移動量とから、前記弁体の中立位置としての移動量を学習する
     ことを特徴とする請求項1~5のいずれか1項に記載の流量制御弁の制御装置。
    The flow rate control valve includes a supply unit that communicates with the working fluid supply source, a discharge unit that discharges the working fluid from the actuator, and a communication unit that communicates with the actuator.
    The learning unit detects, based on a detection value of the stroke sensor, a movement amount of the valve body when the valve body is determined to be a neutral position where the valve body moves from the discharge unit side and blocks the communication unit, and the valve body The amount of movement as the neutral position of the valve body is learned from the amount of movement of the valve body when it is determined as a neutral position that moves from the supply section side and blocks the communication section. The flow rate control valve control device according to any one of claims 1 to 5.
PCT/JP2011/061203 2010-05-17 2011-05-16 Control device for flow control valve WO2011145565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010113736 2010-05-17
JP2010-113736 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011145565A1 true WO2011145565A1 (en) 2011-11-24

Family

ID=44991668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061203 WO2011145565A1 (en) 2010-05-17 2011-05-16 Control device for flow control valve

Country Status (2)

Country Link
JP (1) JP5625492B2 (en)
WO (1) WO2011145565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091211A1 (en) * 2016-11-21 2018-05-24 GETRAG B.V. & Co. KG Hydraulic valve switchover point detection method and controller for a motor vehicle powertrain

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150033935A (en) * 2013-09-25 2015-04-02 삼성전기주식회사 Fluid injection chip
JP6949580B2 (en) * 2017-06-27 2021-10-13 日立Astemo株式会社 Hydraulic control device
JP7127311B2 (en) 2018-03-19 2022-08-30 いすゞ自動車株式会社 clutch controller
JP7144126B1 (en) 2022-05-16 2022-09-29 東フロコーポレーション株式会社 Flow controller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596432A (en) * 1982-07-02 1984-01-13 Diesel Kiki Co Ltd Clutch control device
JPS63106430A (en) * 1986-10-21 1988-05-11 Isuzu Motors Ltd Clutch control device
JPH02248725A (en) * 1989-03-23 1990-10-04 Diesel Kiki Co Ltd Automatic clutch control device
JPH10115329A (en) * 1996-10-09 1998-05-06 Mitsubishi Motors Corp Clutch control device
JP2008232245A (en) * 2007-03-20 2008-10-02 Isuzu Motors Ltd Flow control valve of clutch control device
JP2010071414A (en) * 2008-09-19 2010-04-02 Isuzu Motors Ltd Control device for stroke of actuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159419A (en) * 1988-12-13 1990-06-19 Isuzu Motors Ltd Clutch control device for automatic transmission
JP3417823B2 (en) * 1997-12-10 2003-06-16 アイシン精機株式会社 Control method of clutch in vehicle
JPH11171492A (en) * 1997-12-15 1999-06-29 Toyota Autom Loom Works Ltd Industrial vehicular data setting device and industrial vehicle
JP4552399B2 (en) * 2003-08-07 2010-09-29 トヨタ自動車株式会社 Tank system comprising multiple tanks and control method thereof
JP5707664B2 (en) * 2008-09-19 2015-04-30 いすゞ自動車株式会社 Flow control valve of clutch control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596432A (en) * 1982-07-02 1984-01-13 Diesel Kiki Co Ltd Clutch control device
JPS63106430A (en) * 1986-10-21 1988-05-11 Isuzu Motors Ltd Clutch control device
JPH02248725A (en) * 1989-03-23 1990-10-04 Diesel Kiki Co Ltd Automatic clutch control device
JPH10115329A (en) * 1996-10-09 1998-05-06 Mitsubishi Motors Corp Clutch control device
JP2008232245A (en) * 2007-03-20 2008-10-02 Isuzu Motors Ltd Flow control valve of clutch control device
JP2010071414A (en) * 2008-09-19 2010-04-02 Isuzu Motors Ltd Control device for stroke of actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091211A1 (en) * 2016-11-21 2018-05-24 GETRAG B.V. & Co. KG Hydraulic valve switchover point detection method and controller for a motor vehicle powertrain

Also Published As

Publication number Publication date
JP2012002236A (en) 2012-01-05
JP5625492B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5386902B2 (en) Actuator stroke controller
AU2008233813B2 (en) Flow rate control valve for clutch control device
WO2011145565A1 (en) Control device for flow control valve
JP5608964B2 (en) Flow control valve of clutch control device
JP5707664B2 (en) Flow control valve of clutch control device
JP5625491B2 (en) Control device for flow control valve
US10316960B2 (en) Method and device for controlling automatic transmission
JP2018040429A (en) Clutch control device
WO2019181725A1 (en) Control device in clutch system and clutch control apparatus provided with control device
JP2010156429A (en) Clutch control device
JP2018080736A (en) Clutch control device
JP2018040430A (en) Clutch control device
JP2015052372A (en) Control device of lockup clutch
JP2019163785A (en) Control device in clutch system, and clutch control device including the same
JP2018080784A (en) Clutch control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783499

Country of ref document: EP

Kind code of ref document: A1