WO2011145446A1 - Polyurethane resin forming composition - Google Patents

Polyurethane resin forming composition Download PDF

Info

Publication number
WO2011145446A1
WO2011145446A1 PCT/JP2011/060299 JP2011060299W WO2011145446A1 WO 2011145446 A1 WO2011145446 A1 WO 2011145446A1 JP 2011060299 W JP2011060299 W JP 2011060299W WO 2011145446 A1 WO2011145446 A1 WO 2011145446A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
terminated prepolymer
isocyanate group
polyurethane resin
catalyst
Prior art date
Application number
PCT/JP2011/060299
Other languages
French (fr)
Japanese (ja)
Inventor
裕章 西村
Original Assignee
日本ポリウレタン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリウレタン工業株式会社 filed Critical 日本ポリウレタン工業株式会社
Priority to JP2012515806A priority Critical patent/JP5482892B2/en
Publication of WO2011145446A1 publication Critical patent/WO2011145446A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic

Definitions

  • the present invention relates to a solventless polyurethane resin-forming composition formed on a substrate to be coated, for example.
  • the polyurethane resin field covers a wide range of fields such as electronic / electrical materials, automobile / railway vehicle materials, civil engineering / building materials, clothing materials, food materials, and medical materials.
  • Polyurethane resin paints are often used in the fields of architecture, civil engineering, vehicles, and clothing, and have excellent coating appearance, good coating film performance, and excellent durability.
  • Polyurethane resin paints are often used in combination with organic solvents from the viewpoints of workability, workability, and coating leveling.
  • organic solvents has been scattered to the outside during the processing process and has become a cause of photochemical oxidants as volatile organic compounds (VOCs).
  • VOC emissions have been restricted and regulatory measures have been taken. It has been.
  • the design when used outdoors, the design may be deteriorated due to external enemy factors such as ultraviolet rays, moisture, heat, etc., and the improvement is desired.
  • Patent Document 1 discusses the use of a solvent-free resin by using a water-based resin.
  • Patent Documents 2 and 3 as a method of achieving both pot life and curability, a polyurethane polyol obtained by reacting a polyol having a side chain with an organic diisocyanate, an organic solvent, an organic tin compound, and acetylacetone A configured urethane resin composition has been proposed.
  • a urethane coating composition for repairing automobiles contains tin or zirconium and a metal compound other than these and an excess chelating agent. It has been proposed to use reaction control agents.
  • Patent Document 5 proposes a catalyst system in which a weight ratio of metal acetylacetonate to acetylacetone is 2: 1 in a polyurethane foam production method. .
  • Patent Document 6 proposes a system that uses an organometallic catalyst for curing reaction in a fine powder form at room temperature and a curing reaction inhibitor. Has been.
  • Patent Document 7 proposes a system using dibutyltin dilaurate in combination with acetylacetone as a cast molded film composition and a film using the composition.
  • the polyurethane resin-forming composition formed on the substrate is a solvent-free two-component system, sufficient pot life and curability in a shorter time are obtained from the viewpoint of workability and workability. Desired.
  • the polyurethane resin-forming composition is required to have design properties such as yellowing resistance and high appearance on the formed coating film.
  • the formed coating film is yellowed, or has characteristics such as wear and durability. Tend to decrease.
  • the present invention has been made based on the above circumstances.
  • the present invention provides a solvent-free polyurethane that is formed on a substrate that has both pot life and curability and is excellent in design properties such as wear resistance, stability over time, yellowing resistance of coating film, and appearance.
  • An object is to provide a resin-forming composition.
  • the present invention is a polyurethane resin-forming composition
  • a polyol (A), an isocyanate group-terminated prepolymer (B), a catalyst (C), and a reaction inhibitor (D) wherein the polyol (A) , Polycarbonate polyol (a1), polycaprolactone polyol (a2) and aliphatic glycol (a3) are obtained by transesterification reaction, and the isocyanate group-terminated prepolymer (B) contains polytetramethylene glycol (b1) and fat.
  • the catalyst (C) is dibutylbis (2,4-pentanedionato) tin, and the reaction inhibitor (D) is 2,4-pentanedione.
  • the polyol (A) and the isocyanate group-terminated prepolymer (B) are liquid at room temperature.
  • a solvent-free type that is formed on a substrate that has both pot life and curability and is excellent in design properties such as abrasion resistance, temporal stability, yellowing resistance, and appearance of a coating film.
  • the polyurethane resin-forming composition can be provided.
  • the polyurethane resin-forming composition of the present invention contains a polyol (A), an isocyanate group-terminated prepolymer (B), a catalyst (C), and a reaction inhibitor (D).
  • the polyurethane resin-forming composition according to this embodiment comprises a polyol (A) obtained by transesterification of a polycarbonate polyol (a1), a polycaprolactone polyol (a2) and an aliphatic glycol (a3), and a polytetramethylene glycol ( It is obtained by blending an isocyanate group-terminated prepolymer (B) obtained by reaction of b1) and an aliphatic organic diisocyanate (b2), a catalyst (C), and a reaction inhibitor (D).
  • the polyol (A) is obtained by a transesterification reaction between the polycarbonate polyol (a1), the polycaprolactone polyol (a2) and the aliphatic glycol (a3).
  • the ratio [(a1) + (a3)] / (a2)] of the polycarbonate polyol (a1) and the aliphatic glycol (a3) to the polycaprolactone polyol (a2) is preferably 65/35 or more. Further, there is no particular upper limit for the mass ratio [(a1) + (a3)] / (a3), and (a1) may be nearly 100% by mass. Since it is preferable to handle the polyol (A) as a liquid at room temperature, the total amount of (a1) and (a3) is preferably 75% by mass (mass ratio 75/25) or less.
  • ⁇ Method for producing polyol (A)> First, a polycarbonate polyol (a1), a polycaprolactone polyol (a2) and an aliphatic glycol (a3) are blended and dissolved at 60 ° C. until uniform while bubbling nitrogen gas. Thereafter, the ester exchange reaction is performed at 190 ° C. until the target hydroxyl value is reached.
  • the polycarbonate polyol (a1) which is one of the raw materials of the polyol, is not particularly limited in type, for example, a dehydrochlorination reaction of a short chain polyol and phosgene, or a short chain polyol, a dialkyl carbonate, an alkylene carbonate, It is suitably obtained by a transesterification condensation reaction with a low molecular carbonate such as diaryl carbonate.
  • Examples of the short-chain polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5- Pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, dimethylolheptane, Polyols having a molecular weight of less than 500 such as diethylene glycol, dipropylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, glycerin, trimethylol
  • dialkyl carbonate examples include dimethyl carbonate and diethyl carbonate.
  • alkylene carbonate examples include ethylene carbonate and propylene carbonate. These can be used individually or in mixture of 2 or more types.
  • a polycarbonate polyol using a linear aliphatic glycol (a3) that contributes to the mechanical strength through the development of crystallinity is preferable, and 1,6-hexanediol is particularly preferable. It is preferable that it is a thing obtained by reaction with dialkyl carbonate.
  • the number average molecular weight of the polycarbonate polyol is preferably 500 to 5000, and more preferably 1000 to 3000.
  • polycaprolactone polyol (a2) examples include those obtained by ring-opening addition of either or both of ⁇ -caprolactone and alkyl-substituted ⁇ -caprolactone using the short-chain polyol used in the above polycarbonate as an initiator. Can be used. Further, from the viewpoint of mechanical strength and workability, the number average molecular weight of the polycaprolactone polyol is preferably 500 to 5,000, more preferably 500 to 2,000.
  • Aliphatic glycol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, di- Mention may be made of methylol heptane, diethylene glycol, dipropylene glycol and neopentyl glycol.
  • the aliphatic glycol (a3) preferably has a molecular weight of 200 or less, and particularly preferably 1,6-hexanediol, from the viewpoint of further increasing the mechanical strength of the resulting poly
  • the isocyanate group-terminated prepolymer (B) is obtained by a reaction between polytetramethylene glycol (b1) and an aliphatic organic diisocyanate (b2).
  • the isocyanate group-terminated prepolymer (B) preferably has an isocyanate group content of 4 to 12% by mass and an unreacted organic diisocyanate content of 1% by mass or less.
  • the isocyanate group content is less than 4%, the amount mixed with the polyol increases, and the mechanical strength of the polyurethane resin film may be lowered.
  • the isocyanate group content exceeds 12%, the storage stability may be reduced due to the reaction with moisture, or lumps and aggregates may be generated due to poor mixing with the polyol.
  • the content of unreacted organic diisocyanate exceeds 1% by mass, odor problems and storage stability may be deteriorated.
  • ⁇ Method for producing isocyanate group-terminated prepolymer> First, polytetramethylene glycol (b1) and aliphatic organic diisocyanate (b2) are blended, and a urethanization reaction is performed at 80 ° C. to the desired isocyanate group content while bubbling nitrogen gas. Thereafter, thin film distillation is performed at 140 ° C. and 0.3 Torr until the content of unreacted organic diisocyanate is 1% by mass or less.
  • polytetramethylene glycol (b1) is not particularly limited, but the number average molecular weight is preferably 250 to 1000, and preferably 500 to 800 from the viewpoint of the appearance and handling properties of the resulting polyurethane resin film. Is more preferable.
  • Aliphatic organic diisocyanate As the aliphatic organic diisocyanate (b2), linear or branched aliphatic diisocyanates and alicyclic diisocyanates are preferable from the viewpoint of compatibility between pot life and curability and yellowing resistance.
  • linear or branched aliphatic diisocyanates examples include hexamethylene diisocyanate, tetramethylene diisocyanate, 2-methyl-pentane-1,5-diisocyanate, 3-methyl-pentane-1,5-diisocyanate, lysine diisocyanate and And trioxyethylene diisocyanate.
  • alicyclic diisocyanate examples include isophorone diisocyanate, cyclohexyl diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, and hydrogenated tetramethylxylene diisocyanate.
  • aliphatic organic diisocyanates can be used alone or in combination of two or more.
  • adduct-modified products burette-modified products, uretdione-modified products, uretoimine-modified products, isocyanurate-modified products, and carbodiimide-modified products of the above aliphatic organic diisocyanates can also be used.
  • linear aliphatic diisocyanate is preferable from the viewpoint of ease of blending with polyol at the time of polyurethane film production, appearance of the resulting polyurethane resin film, and mechanical strength, and hexamethylene diisocyanate is most preferable. preferable.
  • Either one or both of the polyol and the isocyanate group-terminated prepolymer may be solid at room temperature. From the viewpoint of excellent handling properties when storing or transporting the polyol and the isocyanate group-terminated prepolymer, or when the polyol and the isocyanate group-terminated prepolymer are mixed and subjected to a curing reaction in order to form a film, no heat-melting treatment is required. From the viewpoint, it is preferable that both the polyol and the isocyanate group-terminated prepolymer are liquid at room temperature.
  • the blending ratio of the polyol and the isocyanate group-terminated prepolymer in forming the film is not particularly limited, but the molar ratio of the isocyanate group in the isocyanate group-terminated prepolymer and the hydroxyl group in the polyol (isocyanate group / (Hydroxyl group) is preferably blended so as to be 0.90 to 1.30. When outside this range, performance such as wear resistance may be deteriorated.
  • the polyurethane resin-forming composition according to this embodiment can be used by separately managing a polyol and an isocyanate group-terminated prepolymer and blending it together with a curing catalyst during film formation. Thereby, it is excellent in the storage stability when storing for a long time before using a polyol and an isocyanate group terminal prepolymer.
  • the amount of the catalyst to be added is not particularly limited, but from the viewpoint of processing time, it is preferably blended in the range of 300 ppm to 4000 ppm based on the total amount of polyol (A) and isocyanate group-terminated prepolymer.
  • the addition amount is less than 300 ppm, the resin is uncured and may deteriorate in appearance and wear resistance. Moreover, when the addition amount exceeds 4000 ppm, the pot life may not be satisfied.
  • reaction inhibitor (D) is useful for making the pot life and coating film appearance of the polyurethane resin-forming composition set formed on the substrate of the present invention practical. It is indispensable.
  • the addition amount of the reaction inhibitor is preferably 1.5 to 20% by mass based on the total amount of the polyol (A) and the isocyanate group-terminated prepolymer.
  • the addition amount of the reaction inhibitor is less than 1.5% by mass, it may be difficult to satisfy the pot life.
  • the addition amount exceeds 20% by mass, repelling occurs when the resin film is formed, and the appearance is May be worse.
  • the mass ratio (D) / (C) of the reaction inhibitor to the catalyst is preferably 50 to 667.
  • the ratio of the reaction inhibitor to 1 part by mass of the catalyst is less than 50 parts by mass, it becomes difficult to satisfy a practical pot life, and when it exceeds 667 parts by mass, repelling occurs when forming the resin film, Appearance may deteriorate.
  • the curing reaction proceeds as the temperature increases, so that a resin film is formed with air bubbles mixed inside.
  • the polyurethane resin-forming composition according to this embodiment exhibits the activity of the catalyst for the first time when the reaction inhibitor 2,4-pentanedione coordinated to the catalyst is vaporized at 140 ° C. For this reason, when the catalyst is lower than the vaporization temperature, the viscosity of the resin decreases, and at this time, bubbles present in the resin film are removed. Thereafter, 2,4-pentanedione is vaporized and the urethanization reaction proceeds rapidly, so that a resin film with high smoothness and excellent design can be formed.
  • the polyurethane resin-forming composition includes, as necessary, an antioxidant, an ultraviolet absorber, a pigment, a dye, a flame retardant, a hydrolysis inhibitor, a lubricant, a plasticizer, a filler, an antistatic agent, and a dispersant.
  • an antioxidant an ultraviolet absorber
  • a pigment a pigment
  • a dye a dye
  • the polyurethane resin-forming composition according to the present embodiment is not aqueous, it can reduce the generation of aggregates and sedimentation over time, and can reduce energy and time for drying the film, Both pot life and curability can be achieved. Moreover, since the aliphatic isocyanate is used, the formed coating film is excellent in yellowing resistance. Furthermore, since the polyol is obtained from the polycarbonate polyol, the wear resistance and durability of the formed coating film can be sufficiently improved. In addition, by using a specific catalyst, the formation and sedimentation of catalyst aggregates over time can be reduced, and discoloration, swelling and foaming of the coating film can be sufficiently suppressed, so that a coating film having a good appearance can be formed. .
  • a solvent-free polyurethane resin-forming composition that has both pot life and curability and is excellent in design properties such as wear resistance, stability over time, yellowing resistance of coating film and appearance. Is obtained.
  • the polyurethane resin-forming composition according to this embodiment can be used for forming a polyurethane resin film on a substrate, and for example, can form a paint film on a substrate to be coated as a paint.
  • Example 1 (1) Preparation of polyol 44 g of 1,6-hexanediol, 1,6-hexanediol and diethyl carbonate were added to a 2-liter four-necked flask equipped with a stirrer, thermometer, cooling pipe and oxygen gas introduction pipe. Is charged with 656 g of a polycarbonate diol having a number average molecular weight of 2000 obtained by deethanol reaction of 1, and 300 g of a bifunctional polycaprolactone diol having a number average molecular weight of 1000 obtained by ring-opening addition reaction of ⁇ -caprolactone with 1,4-butanediol.
  • the obtained isocyanate group-terminated prepolymer had an NCO content of 8% by mass. Moreover, when it measured by GPC (gel permeation chromatography), unreacted HDI was 0.1 mass%.
  • the GPC measurement conditions are as follows.
  • polyurethane resin-forming composition (polyol / isocyanate group-terminated prepolymer mixed solution) 100 g of polyol (1), dibutylbis (2,4-pentanedionato) tin (hereinafter referred to as “catalyst (1)”) 0.06 g and 2,4-pentanedione (hereinafter referred to as “reaction inhibitor (1)”) 3.1 g were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes.
  • polyol / isocyanate group-terminated prepolymer mixed solution 100 g of polyol (1), dibutylbis (2,4-pentanedionato) tin (hereinafter referred to as “catalyst (1)”) 0.06 g and 2,4-pentanedione (hereinafter referred to as “reaction inhibitor (1)”) 3.1 g were added, and the mixture was stirred with a three-one motor at
  • Example 2 100 g of the polyol (1) obtained in Example 1, 0.11 g of the catalyst (1) and 43.2 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 116 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
  • Example 3 100 g of the polyol (1) obtained in Example 1, 0.07 g of the catalyst (1) and 46.7 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 137 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
  • Example 4 100 g of the polyol (1) obtained in Example 1, 0.86 g of the catalyst (1) and 43.2 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 116 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
  • Catalyst (2) dioctyltin dilaurate
  • Example 2 Thereafter, 105 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
  • reaction inhibitor (2) a mixture of mono (2-ethylhexyl acid phosphate) and bis (2-ethylhexyl acid phosphate
  • Example 2 Thereafter, 116 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
  • Table 1 summarizes the blending ratio (unit: “g”) of the polyurethane resin-forming compositions (polyol / isocyanate group-terminated prepolymer mixed solution) prepared in Examples 1 to 4 and Comparative Examples 1 to 6. Show.
  • non-woven fabric / polyurethane film sheet A polyol / isocyanate group-terminated prepolymer mixed solution is poured onto release paper, applied to a thickness of 50 ⁇ m with a bar coater, cured at 140 ° C. for 10 minutes, and first polyurethane A film layer was obtained. A mixed solution is poured onto the first polyurethane film layer, a second polyurethane film layer is applied to a thickness of 100 ⁇ m with a bar coater, and a nylon nonwoven fabric having a thickness of 2 mm is further applied to the second polyurethane film layer. Combined and cured at 140 ° C. for 10 minutes to prepare a nonwoven fabric / polyurethane film sheet. This nonwoven fabric / polyurethane film sheet was used for the following evaluation.
  • Abrasion resistance Using a Taber abrasion tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the abrasion amount of the polyurethane film on the non-woven fabric / polyurethane film sheet was measured under the conditions of a load of 1 kg, a disk rotation speed of 500 rpm and a wear wheel H-22. .
  • the polyurethane resin-forming compositions of Examples 1 to 4 have both pot life and curability, and are excellent in abrasion resistance, aging stability, yellowing resistance and appearance of the coating film. Are better.
  • Comparative Example 1 and Comparative Example 2 are inferior in pot life and curability. Moreover, in the comparative example 3, the repellency of a urethane film is remarkable and it is inferior to smoothness. Comparative Example 4 and Comparative Example 5 are inferior in compatibility between pot life and curability, yellowing resistance and appearance. In Comparative Example 6, the pot life was significantly decreased in the test after storage stability, and the performance was not satisfied.
  • a solvent-free type that is formed on a substrate that has both pot life and curability and is excellent in design properties such as abrasion resistance, temporal stability, yellowing resistance, and appearance of a coating film.
  • the polyurethane resin-forming composition can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a polyurethane resin forming composition comprising a polyol (A), an isocyanate terminated prepolymer (B), a catalyst (C), and a reaction inhibitor (D), wherein: the polyol (A) is obtained by means of the transesterification of a polycarbonate polyol (a1), a polycaprolactone polyol (a2), and an aliphatic glycol (a3); the isocyanate terminated prepolymer (B) is obtained from the reaction between a poly(tetramethylene glycol) (b1) and an aliphatic organic diisocyanate (b2); the catalyst (C) is a dibutyl bis(2,4-pentanedionato) tin; the reaction inhibitor (D) is a 2,4-pentanedione; and the mass ratio of the catalyst in relation to the reaction inhibitor is 50 to 667 ((D)/(C)). The polyurethane resin forming composition has an excellent pot life and curing properties, and exhibits an excellent appearance, long-term stability, yellowing resistance, and wear resistance as a coating film.

Description

ポリウレタン樹脂形成性組成物Polyurethane resin-forming composition
 本発明は、例えば、被塗装基材の上に形成される無溶剤型ポリウレタン樹脂形成性組成物に関するものである。 The present invention relates to a solventless polyurethane resin-forming composition formed on a substrate to be coated, for example.
 ポリウレタン樹脂の分野は、電子・電気材料、自動車・鉄道車両材料、土木・建築材料、衣料材料、食品材料、医療材料等の多岐にわたっている。 The polyurethane resin field covers a wide range of fields such as electronic / electrical materials, automobile / railway vehicle materials, civil engineering / building materials, clothing materials, food materials, and medical materials.
 このようなポリウレタン樹脂の利用分野のなかに、例えば、塗料がある。ポリウレタン樹脂塗料は、建築、土木、車両及び衣料分野で多く用いられ、塗装外観に優れ、塗膜性能がよく、かつ耐久性に優れる。 Among the application fields of such polyurethane resins, for example, there are paints. Polyurethane resin paints are often used in the fields of architecture, civil engineering, vehicles, and clothing, and have excellent coating appearance, good coating film performance, and excellent durability.
 ポリウレタン樹脂塗料は、作業性、加工性及び塗膜のレベリング性の観点から、有機溶剤を併用することが多い。しかしながら、近年、有機溶剤の使用は、加工工程中に外部へ飛散をし、揮発性有機化合物(VOC)として、光化学オキシダントの原因となっており、VOCの排出量の制限や規制の対策が講じられている。 Polyurethane resin paints are often used in combination with organic solvents from the viewpoints of workability, workability, and coating leveling. However, in recent years, the use of organic solvents has been scattered to the outside during the processing process and has become a cause of photochemical oxidants as volatile organic compounds (VOCs). VOC emissions have been restricted and regulatory measures have been taken. It has been.
 また、ポリウレタン樹脂塗料の性能を維持するためには、例えば、ポリオールと有機ポリイソシアネートとの二液化が図られる。しかしながら、塗布又は塗装の可使時間(ポットライフ)と、可使時間と相反する硬化性とを両立することは困難であり、このバランスを取ることが望まれている。 Also, in order to maintain the performance of the polyurethane resin paint, for example, a two-component solution of a polyol and an organic polyisocyanate is achieved. However, it is difficult to achieve both the usable life (pot life) of coating or painting and the curability opposite to the usable time, and it is desired to balance this.
 また、ポリウレタン樹脂塗料の無溶剤化に伴い、レベリング性の低下や塗膜に気泡の混入によって、塗膜の耐摩耗性や、意匠性の低下が問題となっており、その改善が望まれている。 In addition, due to the absence of solvents in polyurethane resin paints, the leveling properties are reduced and air bubbles are mixed into the paint film, resulting in problems with the wear resistance and design of the paint film. Yes.
 また、屋外暴露で使用される場合には、紫外線、水分、熱等の外敵要因によって意匠性が低下する場合があり、その改善が望まれている。 In addition, when used outdoors, the design may be deteriorated due to external enemy factors such as ultraviolet rays, moisture, heat, etc., and the improvement is desired.
 このような背景の中で、これらの課題を解決するために、例えば、特許文献1では、使用する樹脂の水系化による無溶剤化が検討されている。 In such a background, in order to solve these problems, for example, Patent Document 1 discusses the use of a solvent-free resin by using a water-based resin.
 ポットライフと硬化性との両立手法として、例えば、特許文献2及び3では、側鎖を持ったポリオールと有機ジイソシアネートとを反応させたポリウレタンポリオールと、有機溶剤と、有機スズ化合物と、アセチルアセトンとで構成されたウレタン樹脂組成物が提案されている。 For example, in Patent Documents 2 and 3, as a method of achieving both pot life and curability, a polyurethane polyol obtained by reacting a polyol having a side chain with an organic diisocyanate, an organic solvent, an organic tin compound, and acetylacetone A configured urethane resin composition has been proposed.
 また、ポットライフと硬化性との両立手法として、例えば、特許文献4では、自動車補修用のウレタン塗料組成物において、スズ又はジルコニウム及びこれら以外の金属化合物と、過剰のキレート化剤とを含有する反応制御剤を用いることが提案されている。 Moreover, as a technique for achieving both pot life and curability, for example, in Patent Document 4, a urethane coating composition for repairing automobiles contains tin or zirconium and a metal compound other than these and an excess chelating agent. It has been proposed to use reaction control agents.
 さらに、ポットライフと硬化性との両立手法として、例えば、特許文献5では、ポリウレタンフォームの製造方法において、金属アセチルアセトネートとアセチルアセトンとの重量比を2:1とする触媒システムが提案されている。 Furthermore, as a technique for achieving both pot life and curability, for example, Patent Document 5 proposes a catalyst system in which a weight ratio of metal acetylacetonate to acetylacetone is 2: 1 in a polyurethane foam production method. .
 無溶剤型のポリウレタン樹脂皮膜材料のポットライフと硬化性との両立手法として、例えば、特許文献6では、常温で微粉末状の硬化反応用有機金属触媒と硬化反応抑制剤を併用したシステムが提案されている。 As a method for achieving both pot life and curability of a solvent-free polyurethane resin film material, for example, Patent Document 6 proposes a system that uses an organometallic catalyst for curing reaction in a fine powder form at room temperature and a curing reaction inhibitor. Has been.
 キャスト成形フィルム用組成物及びそれを用いてなるフィルムとして、例えば、特許文献7では、ジブチル錫ジラウレートとアセチルアセトンとを併用したシステムが提案されている。 For example, Patent Document 7 proposes a system using dibutyltin dilaurate in combination with acetylacetone as a cast molded film composition and a film using the composition.
特開2008-303250号公報JP 2008-303250 A 特開平6-100851号公報JP-A-6-1000085 特開2000-167085号公報JP 2000-167085 A 特開2002-173639号公報JP 2002-173639 A 特開2008-285681号公報JP 2008-285681 A 特開2010-215679号公報JP 2010-215679 A 国際公開第08/026751号パンフレットInternational Publication No. 08/026751 Pamphlet
 基材上に形成されるポリウレタン樹脂形成性組成物は、無溶剤型の2液システムであるため、作業性及び加工性の観点から、十分なポットライフと、より短時間での硬化性とが求められる。また、建築、土木、車両及び衣料分野で多く用いられることから、ポリウレタン樹脂形成性組成物には、形成した塗膜に耐黄変性、高外観等の意匠性が求められる。 Since the polyurethane resin-forming composition formed on the substrate is a solvent-free two-component system, sufficient pot life and curability in a shorter time are obtained from the viewpoint of workability and workability. Desired. In addition, since it is frequently used in the fields of architecture, civil engineering, vehicles and clothing, the polyurethane resin-forming composition is required to have design properties such as yellowing resistance and high appearance on the formed coating film.
 しかしながら、従来のポリウレタン樹脂形成性組成物では、ポットライフと硬化性とを両立することが難しく、これらを両立しようとすると、形成される塗膜が黄変したり、摩耗性や耐久性といった特性が低下したりする傾向にある。 However, in the conventional polyurethane resin-forming composition, it is difficult to achieve both pot life and curability, and when trying to achieve both, the formed coating film is yellowed, or has characteristics such as wear and durability. Tend to decrease.
 本発明は、以上のような事情に基づいてなされたものである。本発明は、ポットライフと硬化性とを両立するとともに、耐摩耗性、経時安定性、塗膜の耐黄変性及び外観等の意匠性に優れた基材の上に形成される無溶剤型ポリウレタン樹脂形成性組成物を提供することを目的とする。 The present invention has been made based on the above circumstances. The present invention provides a solvent-free polyurethane that is formed on a substrate that has both pot life and curability and is excellent in design properties such as wear resistance, stability over time, yellowing resistance of coating film, and appearance. An object is to provide a resin-forming composition.
 本発明は、ポリオール(A)と、イソシアネート基末端プレポリマー(B)と、触媒(C)と、反応抑制剤(D)とを含むポリウレタン樹脂形成性組成物であって、ポリオール(A)が、ポリカーボネートポリオール(a1)、ポリカプロラクトンポリオール(a2)及び脂肪族グリコール(a3)のエステル交換反応により得られるものであり、イソシアネート基末端プレポリマー(B)が、ポリテトラメチレングリコール(b1)と脂肪族有機ジイソシアネート(b2)との反応により得られるものであり、触媒(C)が、ジブチルビス(2,4-ペンタンジオナト)スズであり、反応抑制剤(D)が、2,4-ペンタンジオンであり、触媒に対する反応抑制剤の質量比(D)/(C)が50~667である、ポリウレタン樹脂形成性組成物を提供する。 The present invention is a polyurethane resin-forming composition comprising a polyol (A), an isocyanate group-terminated prepolymer (B), a catalyst (C), and a reaction inhibitor (D), wherein the polyol (A) , Polycarbonate polyol (a1), polycaprolactone polyol (a2) and aliphatic glycol (a3) are obtained by transesterification reaction, and the isocyanate group-terminated prepolymer (B) contains polytetramethylene glycol (b1) and fat. Obtained by a reaction with an aromatic organic diisocyanate (b2), the catalyst (C) is dibutylbis (2,4-pentanedionato) tin, and the reaction inhibitor (D) is 2,4-pentanedione. A polyurethane resin-forming property, wherein the mass ratio (D) / (C) of the reaction inhibitor to the catalyst is 50 to 667 To provide a Narubutsu.
 また、上記ポリウレタン樹脂形成性組成物において、ポリオール(A)及びイソシアネート基末端プレポリマー(B)が、常温で液体状であることが好ましい。 In the polyurethane resin-forming composition, it is preferable that the polyol (A) and the isocyanate group-terminated prepolymer (B) are liquid at room temperature.
 本発明によれば、ポットライフと硬化性とを両立するとともに、塗膜の耐摩耗性、経時安定性、耐黄変性及び外観等の意匠性に優れた基材上に形成される無溶剤型のポリウレタン樹脂形成性組成物を提供することができる。 According to the present invention, a solvent-free type that is formed on a substrate that has both pot life and curability and is excellent in design properties such as abrasion resistance, temporal stability, yellowing resistance, and appearance of a coating film. The polyurethane resin-forming composition can be provided.
 本発明の好適な実施形態について、以下に説明する。 A preferred embodiment of the present invention will be described below.
 本発明のポリウレタン樹脂形成性組成物は、ポリオール(A)と、イソシアネート基末端プレポリマー(B)と、触媒(C)と、反応抑制剤(D)とを含む。本実施形態に係るポリウレタン樹脂形成性組成物は、ポリカーボネートポリオール(a1)、ポリカプロラクトンポリオール(a2)及び脂肪族グリコール(a3)のエステル交換反応により得られるポリオール(A)と、ポリテトラメチレングリコール(b1)及び脂肪族有機ジイソシアネート(b2)の反応により得られるイソシアネート基末端プレポリマー(B)と、触媒(C)と、反応抑制剤(D)とを配合することによって得られる。 The polyurethane resin-forming composition of the present invention contains a polyol (A), an isocyanate group-terminated prepolymer (B), a catalyst (C), and a reaction inhibitor (D). The polyurethane resin-forming composition according to this embodiment comprises a polyol (A) obtained by transesterification of a polycarbonate polyol (a1), a polycaprolactone polyol (a2) and an aliphatic glycol (a3), and a polytetramethylene glycol ( It is obtained by blending an isocyanate group-terminated prepolymer (B) obtained by reaction of b1) and an aliphatic organic diisocyanate (b2), a catalyst (C), and a reaction inhibitor (D).
<(A)ポリオール>
 ポリオール(A)は、ポリカーボネートポリオール(a1)、ポリカプロラクトンポリオール(a2)及び脂肪族グリコール(a3)のエステル交換反応により得られるものである。
<(A) polyol>
The polyol (A) is obtained by a transesterification reaction between the polycarbonate polyol (a1), the polycaprolactone polyol (a2) and the aliphatic glycol (a3).
 ポリカプロラクトンポリオール(a2)に対するポリカーボネートポリオール(a1)及び脂肪族グリコール(a3)の比率[(a1)+(a3)〕/(a2)]は、質量比で65/35以上が好ましい。また、質量比[(a1)+(a3)]/(a3)の上限は特になく、(a1)がほぼ100質量%に近いものであってもよい。ポリオール(A)を常温で液体として取り扱うことが好ましいことから、(a1)及び(a3)の総量が、75質量%(質量比75/25)以下であることが好ましい。 The ratio [(a1) + (a3)] / (a2)] of the polycarbonate polyol (a1) and the aliphatic glycol (a3) to the polycaprolactone polyol (a2) is preferably 65/35 or more. Further, there is no particular upper limit for the mass ratio [(a1) + (a3)] / (a3), and (a1) may be nearly 100% by mass. Since it is preferable to handle the polyol (A) as a liquid at room temperature, the total amount of (a1) and (a3) is preferably 75% by mass (mass ratio 75/25) or less.
<ポリオール(A)の製造方法>
 最初に、ポリカーボネートポリオール(a1)、ポリカプロラクトンポリオール(a2)及び脂肪族グリコール(a3)を配合し、窒素ガスをバブリングしながら、60℃で均一になるまで溶解する。その後、190℃で、目的の水酸基価になるまでエステル交換反応を行う。
<Method for producing polyol (A)>
First, a polycarbonate polyol (a1), a polycaprolactone polyol (a2) and an aliphatic glycol (a3) are blended and dissolved at 60 ° C. until uniform while bubbling nitrogen gas. Thereafter, the ester exchange reaction is performed at 190 ° C. until the target hydroxyl value is reached.
<(a1)ポリカーボネートポリオール>
 ポリオールの原料の1つであるポリカーボネートポリオール(a1)は、種類を特に限定するものではなく、例えば、短鎖ポリオールとホスゲンとの脱塩酸反応、又は、短鎖ポリオールと、ジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネート等の低分子カーボネートとのエステル交換縮合反応によって好適に得られる。
<(A1) Polycarbonate polyol>
The polycarbonate polyol (a1), which is one of the raw materials of the polyol, is not particularly limited in type, for example, a dehydrochlorination reaction of a short chain polyol and phosgene, or a short chain polyol, a dialkyl carbonate, an alkylene carbonate, It is suitably obtained by a transesterification condensation reaction with a low molecular carbonate such as diaryl carbonate.
 短鎖ポリオールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、グリセリン、トリメチロールプロパン等の分子量500未満のポリオールが挙げられる。ポリオールは、単独又は2種以上を混合して使用することができる。 Examples of the short-chain polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5- Pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, dimethylolheptane, Polyols having a molecular weight of less than 500 such as diethylene glycol, dipropylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, glycerin, trimethylolpropane Can be mentioned. A polyol can be used individually or in mixture of 2 or more types.
 ジアルキルカーボネートとしては、例えば、ジメチルカーボネート及びジエチルカーボネートが挙げられる。アルキレンカーボネートとしては、例えば、エチレンカーボネート及びプロピレンカーボネートが挙げられる。これらは、単独又は2種以上を混合して使用することができる。 Examples of the dialkyl carbonate include dimethyl carbonate and diethyl carbonate. Examples of the alkylene carbonate include ethylene carbonate and propylene carbonate. These can be used individually or in mixture of 2 or more types.
 得られるポリウレタン樹脂皮膜の機械的強度をより高める観点から、結晶性発現により機械的強度に寄与する直鎖状の脂肪族グリコール(a3)を用いたポリカーボネートポリオールが好ましく、特に1,6-ヘキサンジオールとジアルキルカーボネートとの反応により得られるものであることが好ましい。同様に、機械的強度及び作業性の観点から、ポリカーボネートポリオールの数平均分子量は、500~5000であることが好ましく、1000~3000であることがより好ましい。 From the viewpoint of further increasing the mechanical strength of the resulting polyurethane resin film, a polycarbonate polyol using a linear aliphatic glycol (a3) that contributes to the mechanical strength through the development of crystallinity is preferable, and 1,6-hexanediol is particularly preferable. It is preferable that it is a thing obtained by reaction with dialkyl carbonate. Similarly, from the viewpoint of mechanical strength and workability, the number average molecular weight of the polycarbonate polyol is preferably 500 to 5000, and more preferably 1000 to 3000.
<(a2)ポリカプロラクトンポリオール>
 ポリカプロラクトンポリオール(a2)としては、例えば、前述のポリカーボネートに用いられる短鎖ポリオールを開始剤として、ε-カプロラクトンやアルキル置換ε-カプロラクトンのいずれか一方又は両方を開環付加させて得られるものを用いることができる。また、機械的強度及び作業性の観点から、ポリカプロラクトンポリオールの数平均分子量は、500~5000であることが好ましく、500~2000であることがより好ましい。
<(A2) Polycaprolactone polyol>
Examples of the polycaprolactone polyol (a2) include those obtained by ring-opening addition of either or both of ε-caprolactone and alkyl-substituted ε-caprolactone using the short-chain polyol used in the above polycarbonate as an initiator. Can be used. Further, from the viewpoint of mechanical strength and workability, the number average molecular weight of the polycaprolactone polyol is preferably 500 to 5,000, more preferably 500 to 2,000.
<(a3)脂肪族グリコール>
 脂肪族グリコール(a3)としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール及びネオペンチルグリコールを挙げることができる。脂肪族グリコール(a3)は、得られるポリウレタン樹脂皮膜の機械的強度をより高める観点からは、分子量200以下のものが好ましく、特に1,6-ヘキサンジオールが好ましい。
<(A3) Aliphatic glycol>
Examples of the aliphatic glycol (a3) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, di- Mention may be made of methylol heptane, diethylene glycol, dipropylene glycol and neopentyl glycol. The aliphatic glycol (a3) preferably has a molecular weight of 200 or less, and particularly preferably 1,6-hexanediol, from the viewpoint of further increasing the mechanical strength of the resulting polyurethane resin film.
<(B)イソシアネート基末端プレポリマー>
 イソシアネート基末端プレポリマー(B)は、ポリテトラメチレングリコール(b1)と脂肪族有機ジイソシアネート(b2)との反応により得られるものである。
<(B) Isocyanate group-terminated prepolymer>
The isocyanate group-terminated prepolymer (B) is obtained by a reaction between polytetramethylene glycol (b1) and an aliphatic organic diisocyanate (b2).
 イソシアネート基末端プレポリマー(B)は、イソシアネート基含有量が4~12質量%であり、未反応の有機ジイソシアネートの含有量が1質量%以下であることが好ましい。イソシアネート基含有量が4%未満の場合には、ポリオールと混合量が多くなり、ポリウレタン樹脂皮膜の機械的強度の低下を生じる場合がある。また、イソシアネート基含有量が12%を超える場合には、水分との反応による貯蔵安定性の低下やポリオールとの混合不良によるダマや凝集物を生成することがある。更に、未反応の有機ジイソシアネートの含有量が1質量%を超えると、臭気の問題や貯蔵安定性の低下が生ずることがある。 The isocyanate group-terminated prepolymer (B) preferably has an isocyanate group content of 4 to 12% by mass and an unreacted organic diisocyanate content of 1% by mass or less. When the isocyanate group content is less than 4%, the amount mixed with the polyol increases, and the mechanical strength of the polyurethane resin film may be lowered. In addition, when the isocyanate group content exceeds 12%, the storage stability may be reduced due to the reaction with moisture, or lumps and aggregates may be generated due to poor mixing with the polyol. Furthermore, if the content of unreacted organic diisocyanate exceeds 1% by mass, odor problems and storage stability may be deteriorated.
<イソシアネート基末端プレポリマーの製造方法>
 最初に、ポリテトラメチレングリコール(b1)及び脂肪族有機ジイソシアネート(b2)を配合し、窒素ガスをバブリングしながら、80℃で目的のイソシアネート基含有量までウレタン化反応を行う。その後、140℃、0.3Torrにて薄膜蒸留を行い、未反応の有機ジイソシアネートを含有量が1質量%以下になるまで行う。
<Method for producing isocyanate group-terminated prepolymer>
First, polytetramethylene glycol (b1) and aliphatic organic diisocyanate (b2) are blended, and a urethanization reaction is performed at 80 ° C. to the desired isocyanate group content while bubbling nitrogen gas. Thereafter, thin film distillation is performed at 140 ° C. and 0.3 Torr until the content of unreacted organic diisocyanate is 1% by mass or less.
<(b1)ポリテトラメチレングリコール>
 ポリテトラメチレングリコール(b1)の分子量は、特に限定されないが、得られるポリウレタン樹脂皮膜の外観やハンドリング性の観点からは、数平均分子量が250~1000であることが好ましく、500~800であることがより好ましい。
<(B1) Polytetramethylene glycol>
The molecular weight of polytetramethylene glycol (b1) is not particularly limited, but the number average molecular weight is preferably 250 to 1000, and preferably 500 to 800 from the viewpoint of the appearance and handling properties of the resulting polyurethane resin film. Is more preferable.
<(b2)脂肪族有機ジイソシアネート>
 脂肪族有機ジイソシアネート(b2)としては、ポットライフと硬化性を両立性及び耐黄変性の点から、直鎖状又は分岐状の脂肪族ジイソシアネート及び脂環族ジイソシアネートが好ましい。
<(B2) Aliphatic organic diisocyanate>
As the aliphatic organic diisocyanate (b2), linear or branched aliphatic diisocyanates and alicyclic diisocyanates are preferable from the viewpoint of compatibility between pot life and curability and yellowing resistance.
 直鎖状又は分岐状の脂肪族ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、2-メチル-ペンタン-1,5-ジイソシアネート、3-メチル-ペンタン-1,5-ジイソシアネート、リジンジイソシアネート及びトリオキシエチレンジイソシアネートが挙げられる。脂環族ジイソシアネートとしては、例えば、イソホロンジイソシアネート、シクロヘキシルジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート及び水素添加テトラメチルキシレンジイソシアネートが挙げられる。これらの脂肪族有機ジイソシアネートは、単独で又は2種以上を組み合わせて使用することができる。また、上記脂肪族有機ジイソシアネートのアダクト変性体、ビュレット変性体、ウレトジオン変性体、ウレトイミン変性体、イソシアヌレート変性体、カルボジイミド変性体等も使用することができる。本実施形態では、ポリウレタン皮膜製造時におけるポリオールとの配合のしやすさ、得られるポリウレタン樹脂皮膜の外観、機械的強度の観点から、直鎖状の脂肪族ジイソシアネートが好ましく、特にヘキサメチレンジイソシアネートが最も好ましい。 Examples of linear or branched aliphatic diisocyanates include hexamethylene diisocyanate, tetramethylene diisocyanate, 2-methyl-pentane-1,5-diisocyanate, 3-methyl-pentane-1,5-diisocyanate, lysine diisocyanate and And trioxyethylene diisocyanate. Examples of the alicyclic diisocyanate include isophorone diisocyanate, cyclohexyl diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, and hydrogenated tetramethylxylene diisocyanate. These aliphatic organic diisocyanates can be used alone or in combination of two or more. In addition, adduct-modified products, burette-modified products, uretdione-modified products, uretoimine-modified products, isocyanurate-modified products, and carbodiimide-modified products of the above aliphatic organic diisocyanates can also be used. In the present embodiment, linear aliphatic diisocyanate is preferable from the viewpoint of ease of blending with polyol at the time of polyurethane film production, appearance of the resulting polyurethane resin film, and mechanical strength, and hexamethylene diisocyanate is most preferable. preferable.
 ポリオール及びイソシアネート基末端プレポリマーのうち、いずれか一方又は双方が常温で固体状であってもよい。ポリオール及びイソシアネート基末端プレポリマーを貯蔵又は運搬する際の取扱性に優れる観点や、皮膜を形成するためにポリオール及びイソシアネート基末端プレポリマーを混合して硬化反応させる際に加熱溶融処理を不要とする観点からは、ポリオール及びイソシアネート基末端プレポリマーは、いずれも常温で液体状であることが好ましい。 Either one or both of the polyol and the isocyanate group-terminated prepolymer may be solid at room temperature. From the viewpoint of excellent handling properties when storing or transporting the polyol and the isocyanate group-terminated prepolymer, or when the polyol and the isocyanate group-terminated prepolymer are mixed and subjected to a curing reaction in order to form a film, no heat-melting treatment is required. From the viewpoint, it is preferable that both the polyol and the isocyanate group-terminated prepolymer are liquid at room temperature.
 皮膜を形成する際のポリオール及びイソシアネート基末端プレポリマーの配合割合は、特に厳密に限定するものではないが、イソシアネート基末端プレポリマー中のイソシアネート基とポリオール中の水酸基とのモル比(イソシアネート基/水酸基)が、0.90~1.30となるように配合することが好ましい。この範囲を外れる場合、耐摩耗性等の性能が低下することがある。 The blending ratio of the polyol and the isocyanate group-terminated prepolymer in forming the film is not particularly limited, but the molar ratio of the isocyanate group in the isocyanate group-terminated prepolymer and the hydroxyl group in the polyol (isocyanate group / (Hydroxyl group) is preferably blended so as to be 0.90 to 1.30. When outside this range, performance such as wear resistance may be deteriorated.
 本実施形態に係るポリウレタン樹脂形成性組成物は、ポリオールとイソシアネート基末端プレポリマーとを分別管理し、皮膜形成時に硬化用触媒とともに配合して用いることができる。これにより、ポリオール及びイソシアネート基末端プレポリマーを使用するまでに長期間保管するときの貯蔵安定性に優れる。 The polyurethane resin-forming composition according to this embodiment can be used by separately managing a polyol and an isocyanate group-terminated prepolymer and blending it together with a curing catalyst during film formation. Thereby, it is excellent in the storage stability when storing for a long time before using a polyol and an isocyanate group terminal prepolymer.
<(C)触媒>
 触媒(C)として用いるジブチルビス(2,4-ペンタンジオナト)スズは、ポリウレタン樹脂形成性組成物を硬化せしめる上で促進剤の役割を果たし、必要不可欠のものである。
<(C) Catalyst>
Dibutylbis (2,4-pentanedionato) tin used as the catalyst (C) serves as an accelerator in curing the polyurethane resin-forming composition and is indispensable.
 触媒の添加量は、特に限定されるものではないが、加工工程時間の観点から、ポリオール(A)及びイソシアネート基末端プレポリマーの総量を基準として、300ppm~4000ppmの範囲で配合することが好ましい。添加量が300ppm未満である場合には、未硬化状態となり、外観や耐摩耗性の低下を生ずることがある。また、添加量が4000ppmを超える場合には、ポットライフが満足しない場合がある。 The amount of the catalyst to be added is not particularly limited, but from the viewpoint of processing time, it is preferably blended in the range of 300 ppm to 4000 ppm based on the total amount of polyol (A) and isocyanate group-terminated prepolymer. When the addition amount is less than 300 ppm, the resin is uncured and may deteriorate in appearance and wear resistance. Moreover, when the addition amount exceeds 4000 ppm, the pot life may not be satisfied.
<(D)反応抑制剤>
 反応抑制剤(D)として用いる2,4-ペンタンジオンは、本発明の基材上に形成されるポリウレタン樹脂形成性組成物セットのポットライフと塗膜外観を実用的なものとする上で、必要不可欠のものである。
<(D) Reaction inhibitor>
The 2,4-pentanedione used as the reaction inhibitor (D) is useful for making the pot life and coating film appearance of the polyurethane resin-forming composition set formed on the substrate of the present invention practical. It is indispensable.
 反応抑制剤の添加量は、ポリオール(A)及びイソシアネート基末端プレポリマーの総量を基準として、1.5~20質量%であることが好ましい。反応抑制剤の添加量が、1.5質量%未満の場合には、ポットライフを満足し難くなることがあり、20質量%を超える場合には、樹脂皮膜を形成時にハジキを生じ、外観が悪くなることがある。 The addition amount of the reaction inhibitor is preferably 1.5 to 20% by mass based on the total amount of the polyol (A) and the isocyanate group-terminated prepolymer. When the addition amount of the reaction inhibitor is less than 1.5% by mass, it may be difficult to satisfy the pot life. When the addition amount exceeds 20% by mass, repelling occurs when the resin film is formed, and the appearance is May be worse.
 また、触媒に対する反応抑制剤の質量比(D)/(C)は、50~667であるこことが好ましい。触媒1質量部に対する反応抑制剤の比率が、50質量部未満の場合には、実用的なポットライフを満足し難くなり、667質量部を超える場合には、樹脂皮膜を形成時にハジキを生じ、外観が悪くなることがある。 The mass ratio (D) / (C) of the reaction inhibitor to the catalyst is preferably 50 to 667. When the ratio of the reaction inhibitor to 1 part by mass of the catalyst is less than 50 parts by mass, it becomes difficult to satisfy a practical pot life, and when it exceeds 667 parts by mass, repelling occurs when forming the resin film, Appearance may deteriorate.
 一般のジブチル錫ジラウレート等の触媒と遅延剤とを併用した硬化システムの場合は、温度が高くなるに従い硬化反応が進行するために内部に気泡が混入したまま樹脂皮膜を形成する。一方、本実施形態に係るポリウレタン樹脂形成性組成物は、触媒に配位している反応抑制剤の2,4-ペンタンジオンが140℃で気化することによって、初めて触媒の活性を発現する。このため、触媒が、気化温度より低い状態では樹脂の粘度が低下し、その際、樹脂皮膜の中に存在する気泡が取り除かれる。その後、2,4-ペンタンジオンが気化し、ウレタン化反応が急激に進行することで、高い平滑性を持った意匠性の優れる樹脂皮膜を形成することができる。 In the case of a curing system in which a catalyst such as general dibutyltin dilaurate and a retarder are used in combination, the curing reaction proceeds as the temperature increases, so that a resin film is formed with air bubbles mixed inside. On the other hand, the polyurethane resin-forming composition according to this embodiment exhibits the activity of the catalyst for the first time when the reaction inhibitor 2,4-pentanedione coordinated to the catalyst is vaporized at 140 ° C. For this reason, when the catalyst is lower than the vaporization temperature, the viscosity of the resin decreases, and at this time, bubbles present in the resin film are removed. Thereafter, 2,4-pentanedione is vaporized and the urethanization reaction proceeds rapidly, so that a resin film with high smoothness and excellent design can be formed.
 上記ポリウレタン樹脂形成性組成物には、必要に応じて、酸化防止剤、紫外線吸収剤、顔料、染料、難燃剤、加水分解抑制剤、潤滑剤、可塑剤、充填材、帯電防止剤、分散剤、貯蔵安定剤等の添加剤を適宜配合することができる。 The polyurethane resin-forming composition includes, as necessary, an antioxidant, an ultraviolet absorber, a pigment, a dye, a flame retardant, a hydrolysis inhibitor, a lubricant, a plasticizer, a filler, an antistatic agent, and a dispersant. In addition, additives such as storage stabilizers can be appropriately blended.
 本実施形態に係るポリウレタン樹脂形成性組成物は、水系ではないため、経時的な凝集物の生成や沈降の発生を低減できると共に、皮膜を乾燥するためのエネルギー及び時間を軽減することができ、ポットライフと硬化性とを両立できる。また、脂肪族イソシアネートを使用していることから、形成した塗膜は耐黄変性に優れるものとなる。さらに、ポリオールがポリカーボネートポリオールから得られことから、形成した塗膜の耐摩耗性及び耐久性を十分に向上することができる。また、特定の触媒を用いることにより、経時的な触媒の凝集物の生成・沈降を低減し、塗膜の変色、膨れ及び発泡を十分に抑制できるため、良好な外観を有する塗膜を形成できる。 Since the polyurethane resin-forming composition according to the present embodiment is not aqueous, it can reduce the generation of aggregates and sedimentation over time, and can reduce energy and time for drying the film, Both pot life and curability can be achieved. Moreover, since the aliphatic isocyanate is used, the formed coating film is excellent in yellowing resistance. Furthermore, since the polyol is obtained from the polycarbonate polyol, the wear resistance and durability of the formed coating film can be sufficiently improved. In addition, by using a specific catalyst, the formation and sedimentation of catalyst aggregates over time can be reduced, and discoloration, swelling and foaming of the coating film can be sufficiently suppressed, so that a coating film having a good appearance can be formed. .
 すなわち、本発明によれば、ポットライフと硬化性とを両立するとともに、耐摩耗性、経時安定性、塗膜の耐黄変性及び外観等の意匠性に優れる無溶剤型ポリウレタン樹脂形成性組成物が得られる。 That is, according to the present invention, a solvent-free polyurethane resin-forming composition that has both pot life and curability and is excellent in design properties such as wear resistance, stability over time, yellowing resistance of coating film and appearance. Is obtained.
 本実施形態に係るポリウレタン樹脂形成性組成物は、基材上にポリウレタン樹脂皮膜を形成するために用いることができ、例えば、塗料として被塗装基材上に塗装皮膜を形成することができる。 The polyurethane resin-forming composition according to this embodiment can be used for forming a polyurethane resin film on a substrate, and for example, can form a paint film on a substrate to be coated as a paint.
 以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
<実施例1>
(1)ポリオールの調製
 攪拌機、温度計、冷却管及び酸素ガス導入管を備えた容量2リットルの四つ口フラスコに、1,6-ヘキサンジオールを44g、1,6-ヘキサンジオールとジエチルカーボネートとを脱エタノール反応させて得られる数平均分子量2000のポリカーボネートジオールを656g、1,4-ブタンジオールにε-カプロラクトンを開環付加反応させて得られる数平均分子量1000の2官能ポリカプロラクトンジオールを300g仕込み、これらを撹拌しながら窒素ガスバブリングし、190℃で24時間エステル交換を行い、常温液状のポリオール(1)を得た。ポリオール(1)の水酸基含有量をJIS K1557に準じた方法により測定したところ、112mgKOH/であり、数平均分子量は1000であった。
<Example 1>
(1) Preparation of polyol 44 g of 1,6-hexanediol, 1,6-hexanediol and diethyl carbonate were added to a 2-liter four-necked flask equipped with a stirrer, thermometer, cooling pipe and oxygen gas introduction pipe. Is charged with 656 g of a polycarbonate diol having a number average molecular weight of 2000 obtained by deethanol reaction of 1, and 300 g of a bifunctional polycaprolactone diol having a number average molecular weight of 1000 obtained by ring-opening addition reaction of ε-caprolactone with 1,4-butanediol. These were stirred and nitrogen gas was bubbled and subjected to transesterification at 190 ° C. for 24 hours to obtain a normal temperature liquid polyol (1). When the hydroxyl group content of the polyol (1) was measured by a method according to JIS K1557, it was 112 mgKOH /, and the number average molecular weight was 1000.
(2)イソシアネート基末端プレポリマーの調製
 攪拌機、温度計、冷却管及び酸素ガス導入管を備えた容量2リットルの四つ口フラスコに、ヘキサメチレンジイソシアネート(日本ポリウレタン工業社製、NCO含有量:49.9質量%、以下、「HDI」という)を700g、数平均分子量650のポリテトラメチレングリコールを300g仕込み、これらを撹拌しながら窒素ガスバブリングし、80℃で4時間ウレタン化反応を行った。その後、140℃、0.3Torr条件下で薄膜蒸留を行い、未反応のHDIを取り除くことによってイソシアネート基末端プレポリマーを得た。得られたイソシアネート基末端プレポリマーは、NCO含有量が8質量%であった。また、GPC(ゲルパーミエーションクロマトグラフィー)により測定したところ、未反応のHDIは、0.1質量%であった。GPC測定条件は、下記のとおりである。
(2) Preparation of isocyanate group-terminated prepolymer Hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO content: 49) was added to a 2-liter four-necked flask equipped with a stirrer, thermometer, cooling tube and oxygen gas introduction tube. (9 mass%, hereinafter referred to as “HDI”) was charged with 700 g of polytetramethylene glycol having a number average molecular weight of 650, and nitrogen gas was bubbled while stirring, followed by urethanization reaction at 80 ° C. for 4 hours. Thereafter, thin film distillation was performed under conditions of 140 ° C. and 0.3 Torr, and unreacted HDI was removed to obtain an isocyanate group-terminated prepolymer. The obtained isocyanate group-terminated prepolymer had an NCO content of 8% by mass. Moreover, when it measured by GPC (gel permeation chromatography), unreacted HDI was 0.1 mass%. The GPC measurement conditions are as follows.
・測定器:「HLC-8120」(東ソー(株)製)
・カラム:「TSKguardcolumn HXL-L」(東ソー(株)製)、粒径6μm、サイズ6mmID×30cm×4本
・キャリア:テトラヒドロフラン(THF)
・検出器:視差屈折
・サンプル:0.1質量%THF溶液
・検量線:ポリスチレン
-Measuring instrument: "HLC-8120" (manufactured by Tosoh Corporation)
Column: “TSKguardcolumn HXL-L” (manufactured by Tosoh Corporation), particle size 6 μm, size 6 mm ID × 30 cm × 4, carrier: tetrahydrofuran (THF)
・ Detector: parallax refraction ・ Sample: 0.1 mass% THF solution ・ Calibration curve: polystyrene
(3)ポリウレタン樹脂形成性組成物(ポリオール/イソシアネート基末端プレポリマー混合溶液)の調製
 ポリオール(1)を100g、ジブチルビス(2,4-ペンタンジオナト)スズ(以下、「触媒(1)」とする)を0.06g、2,4-ペンタンジオン(以下、「反応抑制剤(1)」とする)を3.1g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、イソシアネート基末端プレポリマーを105g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行い、ポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
(3) Preparation of polyurethane resin-forming composition (polyol / isocyanate group-terminated prepolymer mixed solution) 100 g of polyol (1), dibutylbis (2,4-pentanedionato) tin (hereinafter referred to as “catalyst (1)”) 0.06 g and 2,4-pentanedione (hereinafter referred to as “reaction inhibitor (1)”) 3.1 g were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 105 g of the isocyanate group-terminated prepolymer was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<実施例2>
 実施例1で得られたポリオール(1)を100g、触媒(1)を0.11g、反応抑制剤(1)を43.2g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを116g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Example 2>
100 g of the polyol (1) obtained in Example 1, 0.11 g of the catalyst (1) and 43.2 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 116 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<実施例3>
 実施例1で得られたポリオール(1)を100g、触媒(1)を0.07g、反応抑制剤(1)を46.7g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを137g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Example 3>
100 g of the polyol (1) obtained in Example 1, 0.07 g of the catalyst (1) and 46.7 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 137 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<実施例4>
 実施例1で得られたポリオール(1)を100g、触媒(1)を0.86g、反応抑制剤(1)を43.2g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを116g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Example 4>
100 g of the polyol (1) obtained in Example 1, 0.86 g of the catalyst (1) and 43.2 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 116 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<比較例1>
 実施例1で得られたポリオール(1)を100g、触媒(1)を0.11g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを116g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Comparative Example 1>
100 g of the polyol (1) obtained in Example 1 and 0.11 g of the catalyst (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 116 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<比較例2>
 実施例1で得られたポリオール(1)を100g、触媒(1)を0.06g、反応抑制剤(1)を1.2g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを105g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Comparative Example 2>
100 g of the polyol (1) obtained in Example 1, 0.06 g of the catalyst (1) and 1.2 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 105 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<比較例3>
 実施例1で得られたポリオール(1)を100g、触媒(1)を0.06g、反応抑制剤(1)を48g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを105g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Comparative Example 3>
100 g of the polyol (1) obtained in Example 1, 0.06 g of the catalyst (1) and 48 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 105 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<比較例4>
 実施例1で得られたポリオール(1)を100g、ジオクチルチンジラウレート(以下、「触媒(2)」とする)を0.06g、反応抑制剤(1)を3.1g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを105g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Comparative Example 4>
100 g of the polyol (1) obtained in Example 1, 0.06 g of dioctyltin dilaurate (hereinafter referred to as “catalyst (2)”), and 3.1 g of the reaction inhibitor (1) were added. Stirring was performed at a stirring speed of 300 rpm for 3 minutes. Thereafter, 105 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<比較例5>
 1,6-ヘキサンジオールとイソフタル酸とを反応させて得られる数平均分子量1000のポリオール(2)を100gと、ビス(2,4-ペンタンジオナト)ニッケル(以下、「触媒(3)」とする)を0.06g、反応抑制剤(1)を3.1g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを105g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Comparative Example 5>
100 g of polyol (2) having a number average molecular weight of 1000 obtained by reacting 1,6-hexanediol and isophthalic acid, bis (2,4-pentanedionato) nickel (hereinafter referred to as “catalyst (3)”) 0.06 g and 3.1 g of the reaction inhibitor (1) were added, and the mixture was stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes. Thereafter, 105 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
<比較例6>
 実施例1で得られたポリオール(1)を100g、ジ-n-オクチルスズマレート・ポリマー〔商品名:KS-1010A-1、共同薬品社製、以下、触媒(4)とする〕を0.22g、モノ(2-エチルヘキシルアシッドホスフェート)およびビス(2-エチルヘキシルアシッドホスフェート)の混合物(商品名:JP-508、城北化学工業社製、以下、「反応抑制剤(2)」とする)を0.07g添加し、スリーワンモータで撹拌速度300rpmで3分間攪拌を行った。その後、実施例1で得られたイソシアネート基末端プレポリマーを116g配合し、更にスリーワンモータで撹拌速度300rpmで3分間攪拌を行いポリオール/イソシアネート基末端プレポリマー混合溶液を調製した。
<Comparative Example 6>
100 g of polyol (1) obtained in Example 1 and di-n-octyltin maleate polymer [trade name: KS-1010A-1, manufactured by Kyodo Pharmaceutical Co., Ltd., hereinafter referred to as catalyst (4)] .22 g, a mixture of mono (2-ethylhexyl acid phosphate) and bis (2-ethylhexyl acid phosphate) (trade name: JP-508, manufactured by Johoku Chemical Co., Ltd., hereinafter referred to as “reaction inhibitor (2)”) 0.07g was added and it stirred for 3 minutes with the stirring speed of 300 rpm with the three one motor. Thereafter, 116 g of the isocyanate group-terminated prepolymer obtained in Example 1 was blended, and further stirred with a three-one motor at a stirring speed of 300 rpm for 3 minutes to prepare a polyol / isocyanate group-terminated prepolymer mixed solution.
 実施例1~4及び比較例1~6で作製したポリウレタン樹脂形成性組成物(ポリオール/イソシアネート基末端プレポリマー混合溶液)の配合割合(単位は「g」である。)を下記表1にまとめて示す。 Table 1 below summarizes the blending ratio (unit: “g”) of the polyurethane resin-forming compositions (polyol / isocyanate group-terminated prepolymer mixed solution) prepared in Examples 1 to 4 and Comparative Examples 1 to 6. Show.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[ポリウレタン樹脂形成性組成物の評価]
 実施例1~4及び比較例1~6で得られたポリオール/イソシアネート基末端プレポリマー混合溶液をそれぞれ使用し、以下の項目について評価をした。
[Evaluation of polyurethane resin-forming composition]
The polyol / isocyanate group-terminated prepolymer mixed solutions obtained in Examples 1 to 4 and Comparative Examples 1 to 6 were used, and the following items were evaluated.
(1)ポットライフ
 ポリオール/イソシアネート基末端プレポリマー混合溶液をアルミニウム製サンプルパンに約13g採取し、ブルックフィールド粘度計(ブルックフィールド社製)を用い、45℃で5rpmの条件で粘度が10000mPa・sになる時間を測定した。下記の評価基準に基づいてポットライフを評価した。
(1) Pot life About 13 g of the polyol / isocyanate-terminated prepolymer mixed solution was collected in an aluminum sample pan, and the viscosity was 10000 mPa · s at 45 ° C. and 5 rpm using a Brookfield viscometer (manufactured by Brookfield). The time to become was measured. Pot life was evaluated based on the following evaluation criteria.
(評価基準)
・120分以上:合格(評価:A)
・60分以上~120分未満:合格(実用上問題ないレベル、評価:B)
・60分未満:不合格(評価:C)
(Evaluation criteria)
・ 120 minutes or more: Pass (Evaluation: A)
・ 60 minutes or more and less than 120 minutes: Pass (a level where there is no practical problem, evaluation: B)
-Less than 60 minutes: Fail (Evaluation: C)
(2)硬化性
 ポリオール/イソシアネート基末端プレポリマー混合溶液を剥離紙上に流し、バーコーターにて厚さ50μmになるように塗布し、140℃で硬化させ、タックフリーになる時間を測定した。下記の評価基準に基づいて硬化性を評価した。
(2) Curability The polyol / isocyanate group-terminated prepolymer mixed solution was poured onto release paper, applied to a thickness of 50 μm with a bar coater, cured at 140 ° C., and the time for tack-free was measured. The curability was evaluated based on the following evaluation criteria.
(評価基準)
・3分未満:合格(評価:A)
・3分以上~10分未満:合格(実用上問題ないレベル、評価:B)
・10分以上:不合格(評価:C)
(Evaluation criteria)
-Less than 3 minutes: Pass (Evaluation: A)
・ 3 minutes or more to less than 10 minutes: Passed (practical problem level, evaluation: B)
・ 10 minutes or more: Fail (Evaluation: C)
 (3)平滑性(平均表面粗さ)
 ポリオール/イソシアネート基末端プレポリマー混合溶液を剥離紙上に流し、バーコーターにて厚さ50μmになるように塗布し、140℃で硬化させた試料を、レーザー顕微鏡LEXT OLS4000(オリンパス社製)を用いて、線平均粗さ(Ra)を測定した。下記の評価基準に基づいて平滑性を評価した。
(3) Smoothness (average surface roughness)
The polyol / isocyanate group-terminated prepolymer mixed solution was poured onto release paper, applied to a thickness of 50 μm with a bar coater, and cured at 140 ° C. using a laser microscope LEXT OLS4000 (manufactured by Olympus). The line average roughness (Ra) was measured. The smoothness was evaluated based on the following evaluation criteria.
(評価基準)
・1μm未満:合格(評価:A)
・1μm以上~3μm未満:合格(実用上問題ないレベル、評価:B)
・3μm以上:不合格(評価:C)
(Evaluation criteria)
・ Less than 1 μm: Pass (Evaluation: A)
・ 1 μm or more and less than 3 μm: Pass (Level of practical problems, evaluation: B)
・ 3 μm or more: Fail (Evaluation: C)
(4)不織布/ポリウレタン皮膜シートの作製
 ポリオール/イソシアネート基末端プレポリマー混合溶液を剥離紙上に流し、バーコーターにて厚さ50μmになるように塗布し、140℃で10分間硬化させ、第1ポリウレタン皮膜層を得た。この第1ポリウレタン皮膜層の上に、混合溶液を流し、バーコーターにて厚さ100μmになるように第2ポリウレタン皮膜層を塗布し、更に2mm厚のナイロン製不織布を第2ポリウレタン皮膜層に貼り合わせ、140℃で10分間硬化させ、不織布/ポリウレタン皮膜シートを作製した。この不織布/ポリウレタン皮膜シートは、以下の評価に使用した。
(4) Preparation of non-woven fabric / polyurethane film sheet A polyol / isocyanate group-terminated prepolymer mixed solution is poured onto release paper, applied to a thickness of 50 μm with a bar coater, cured at 140 ° C. for 10 minutes, and first polyurethane A film layer was obtained. A mixed solution is poured onto the first polyurethane film layer, a second polyurethane film layer is applied to a thickness of 100 μm with a bar coater, and a nylon nonwoven fabric having a thickness of 2 mm is further applied to the second polyurethane film layer. Combined and cured at 140 ° C. for 10 minutes to prepare a nonwoven fabric / polyurethane film sheet. This nonwoven fabric / polyurethane film sheet was used for the following evaluation.
(5)耐摩耗性:
 テーバー磨耗試験機(安田精機製作所社製)を用い、荷重1kg、円板回転速度60rpmで500回転、磨耗輪H-22の条件で、上記不織布/ポリウレタン皮膜シートにおけるポリウレタン皮膜の磨耗量を測定した。
(5) Abrasion resistance:
Using a Taber abrasion tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the abrasion amount of the polyurethane film on the non-woven fabric / polyurethane film sheet was measured under the conditions of a load of 1 kg, a disk rotation speed of 500 rpm and a wear wheel H-22. .
(6)耐黄変性:
 スーパーキセノンウェザーメーターSX75(スガ試験機社製)を用い、放射照度160W/mで、168時間試験した後の上記不織布/ポリウレタン皮膜シートにおけるポリウレタン皮膜の黄変の有無を確認した。
(6) Yellowing resistance:
Using a super xenon weather meter SX75 (manufactured by Suga Test Instruments Co., Ltd.), the presence or absence of yellowing of the polyurethane film in the nonwoven fabric / polyurethane film sheet after 168 hours of irradiance of 160 W / m 2 was confirmed.
(7)貯蔵安定性試験:
 ポリオールと、触媒と、反応抑制剤とを混合した溶液を50℃で168時間放置し、析出物の有無、ポットライフ及び硬化性を評価した。
以上の結果を、下記表2に示す。
(7) Storage stability test:
A solution in which a polyol, a catalyst, and a reaction inhibitor were mixed was allowed to stand at 50 ° C. for 168 hours, and the presence or absence of precipitates, pot life, and curability were evaluated.
The above results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、実施例1~4のポリウレタン樹脂形成性組成物は、ポットライフと硬化性とを両立するとともに、塗膜の耐摩耗性、経時安定性、耐黄変性及び外観に優れている。 As shown in Table 2 above, the polyurethane resin-forming compositions of Examples 1 to 4 have both pot life and curability, and are excellent in abrasion resistance, aging stability, yellowing resistance and appearance of the coating film. Are better.
 これに対して、比較例1及び比較例2では、ポットライフと硬化性との両立に劣るものである。また、比較例3では、ウレタン皮膜のハジキが著しく、平滑性に劣るものである。比較例4及び比較例5は、ポットライフと硬化性との両立、耐黄変性及び外観に劣るものである。また、比較例6は、貯蔵安定性後の試験でポットライフの低下が著しく、性能を満足しないものであった。 In contrast, Comparative Example 1 and Comparative Example 2 are inferior in pot life and curability. Moreover, in the comparative example 3, the repellency of a urethane film is remarkable and it is inferior to smoothness. Comparative Example 4 and Comparative Example 5 are inferior in compatibility between pot life and curability, yellowing resistance and appearance. In Comparative Example 6, the pot life was significantly decreased in the test after storage stability, and the performance was not satisfied.
 本発明によれば、ポットライフと硬化性とを両立するとともに、塗膜の耐摩耗性、経時安定性、耐黄変性及び外観等の意匠性に優れた基材上に形成される無溶剤型のポリウレタン樹脂形成性組成物を提供することができる。 According to the present invention, a solvent-free type that is formed on a substrate that has both pot life and curability and is excellent in design properties such as abrasion resistance, temporal stability, yellowing resistance, and appearance of a coating film. The polyurethane resin-forming composition can be provided.

Claims (2)

  1.  ポリオール(A)と、イソシアネート基末端プレポリマー(B)と、触媒(C)と、反応抑制剤(D)と、を含むポリウレタン樹脂形成性組成物であって、
     前記ポリオール(A)が、ポリカーボネートポリオール(a1)、ポリカプロラクトンポリオール(a2)及び脂肪族グリコール(a3)のエステル交換反応により得られるものであり、
     前記イソシアネート基末端プレポリマー(B)が、ポリテトラメチレングリコール(b1)と脂肪族有機ジイソシアネート(b2)との反応により得られるものであり、
     前記触媒(C)が、ジブチルビス(2,4-ペンタンジオナト)スズであり、前記反応抑制剤(D)が、2,4-ペンタンジオンであり、前記触媒に対する前記反応抑制剤の質量比(D)/(C)が50~667である、ポリウレタン樹脂形成性組成物。
    A polyurethane resin-forming composition comprising a polyol (A), an isocyanate group-terminated prepolymer (B), a catalyst (C), and a reaction inhibitor (D),
    The polyol (A) is obtained by a transesterification reaction of a polycarbonate polyol (a1), a polycaprolactone polyol (a2) and an aliphatic glycol (a3).
    The isocyanate group-terminated prepolymer (B) is obtained by reaction of polytetramethylene glycol (b1) and aliphatic organic diisocyanate (b2),
    The catalyst (C) is dibutylbis (2,4-pentanedionato) tin, the reaction inhibitor (D) is 2,4-pentanedione, and the mass ratio of the reaction inhibitor to the catalyst ( A polyurethane resin-forming composition, wherein D) / (C) is 50 to 667.
  2.  前記ポリオール(A)及び前記イソシアネート基末端プレポリマー(B)が、常温で液体状である、請求項1に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to claim 1, wherein the polyol (A) and the isocyanate group-terminated prepolymer (B) are liquid at room temperature.
PCT/JP2011/060299 2010-05-20 2011-04-27 Polyurethane resin forming composition WO2011145446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012515806A JP5482892B2 (en) 2010-05-20 2011-04-27 Polyurethane resin-forming composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-116434 2010-05-20
JP2010116434 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011145446A1 true WO2011145446A1 (en) 2011-11-24

Family

ID=44991557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060299 WO2011145446A1 (en) 2010-05-20 2011-04-27 Polyurethane resin forming composition

Country Status (2)

Country Link
JP (1) JP5482892B2 (en)
WO (1) WO2011145446A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339260B2 (en) 2019-08-01 2022-05-24 Covestro Llc Pultrusion processes for producing fiber reinforced polyurethane compositions and polyurethane-forming reaction mixtures suitable for use in such processes
US11724458B2 (en) 2016-12-06 2023-08-15 Hochland Se Manufacture of three dimensional objects from thermosets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314834A (en) * 1962-12-14 1967-04-18 United Aircraft Corp Method of pot life extension for polyurethane propellants
JPH0931151A (en) * 1995-07-20 1997-02-04 Rogers Corp Production of polyurethane utilizing catalyst system containing metal acetylacetonate and acetylacetone and product produced thereby
JPH09151230A (en) * 1995-11-29 1997-06-10 Nippon Polyurethane Ind Co Ltd Two-pack casting polyurethane elastomer composition and preparation of polyurethane elastomer using the same
JP2004323680A (en) * 2003-04-24 2004-11-18 Inoac Corp Rotational molding and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314834A (en) * 1962-12-14 1967-04-18 United Aircraft Corp Method of pot life extension for polyurethane propellants
JPH0931151A (en) * 1995-07-20 1997-02-04 Rogers Corp Production of polyurethane utilizing catalyst system containing metal acetylacetonate and acetylacetone and product produced thereby
JPH09151230A (en) * 1995-11-29 1997-06-10 Nippon Polyurethane Ind Co Ltd Two-pack casting polyurethane elastomer composition and preparation of polyurethane elastomer using the same
JP2004323680A (en) * 2003-04-24 2004-11-18 Inoac Corp Rotational molding and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11724458B2 (en) 2016-12-06 2023-08-15 Hochland Se Manufacture of three dimensional objects from thermosets
US12036738B2 (en) 2016-12-06 2024-07-16 Chromatic 3D Materials, Inc. Manufacture of three dimensional objects from thermosets
US11339260B2 (en) 2019-08-01 2022-05-24 Covestro Llc Pultrusion processes for producing fiber reinforced polyurethane compositions and polyurethane-forming reaction mixtures suitable for use in such processes

Also Published As

Publication number Publication date
JP5482892B2 (en) 2014-05-07
JPWO2011145446A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5452794B2 (en) Aqueous polyurethane resin emulsion coating composition and method for producing the same
KR101791283B1 (en) Aqueous anionic polyurethane dispersions
EP2102286B1 (en) Blocked isocyanate silicone resins
JP4110397B2 (en) Polyisocyanate solution and adhesive and paint using the same
JP5429608B2 (en) Polyurethane resin film material set formed on substrate
CN105793327A (en) Synthesis and use of metalized polyhedral oligomeric silsequioxane catalyst compositions
CN104745061A (en) Polycarbonate diol containing carbonate compound
WO2006104111A1 (en) Modified water-based resin composition
JP5891126B2 (en) Polyurethane resin-forming composition for spray coating and polyurethane resin
TW202210582A (en) Polyol compositions and methods
JP5877131B2 (en) Polyurethane resin-forming composition and polyurethane resin
JP2022143014A (en) Reaction curable polyurethane resin formative composition, and molding and coating agent using the resin formative composition
WO2019093219A1 (en) Heat-curable urethane resin composition, film, and article
KR101313713B1 (en) compositions of polyurethane resin has anti-hydrolysis property, Manufacturing method of polyurethane resin using the same and polyurethane adhesive with polyurethane resin
JP5482892B2 (en) Polyurethane resin-forming composition
JP2003113237A (en) Polycarbonate and method for producing polyurethane using the same
WO2018212334A1 (en) Polyisocyanate composition
CN1789364A (en) Binder mixtures containing bicyclo orthoester (boe) and/or polyorthoester groups
CN105131802B (en) A kind of high-flexibility UV coating and preparation method thereof
JP2011162643A (en) Aqueous polyurethane composition
CN115926105A (en) Reactive polyurethane anionic-nonionic emulsifier and preparation method and application thereof
JP2006316127A (en) Solventless curable urethane resin composition and sheet-like product obtained using the same
JP7328400B2 (en) polyurethane beads
JP7552962B1 (en) Coating film, molded body, and coating agent containing polyurethane resin
US20240043602A1 (en) Polyester polyol, urethane prepolymer and polyurethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515806

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783383

Country of ref document: EP

Kind code of ref document: A1