WO2011145430A1 - Plasma device - Google Patents

Plasma device Download PDF

Info

Publication number
WO2011145430A1
WO2011145430A1 PCT/JP2011/059923 JP2011059923W WO2011145430A1 WO 2011145430 A1 WO2011145430 A1 WO 2011145430A1 JP 2011059923 W JP2011059923 W JP 2011059923W WO 2011145430 A1 WO2011145430 A1 WO 2011145430A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
substrate
window
transparent body
ultraviolet light
Prior art date
Application number
PCT/JP2011/059923
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 庄司
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011145430A1 publication Critical patent/WO2011145430A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma

Definitions

  • the present invention relates to a plasma apparatus for plasma processing a workpiece such as a substrate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-48882 is a prior art document that discloses the presence or absence of plasma discharge and a plasma apparatus that can monitor discharge abnormality.
  • a window portion for visually confirming the inside of the processing chamber is provided.
  • FIG. 5 is a perspective view showing an external appearance of a conventional plasma apparatus.
  • a plasma CVD (Chemical Vapor Deposition) apparatus 100 that is a conventional plasma apparatus, a casing including an opening / closing part 110 and a main body part 120 is placed on a base 140.
  • a window portion (not shown) is provided on the back surface 130 of the housing.
  • the opening / closing part 110 is opened and closed in the direction indicated by the arrow, and the substrate as the object to be processed is taken in and out.
  • FIG. 6 is a cross-sectional view showing a configuration of a conventional plasma apparatus. As shown in FIG. 6, an electrode portion including a pair of electrodes is arranged in a processing chamber 190 inside the housing.
  • the electrode unit includes a lower electrode 150 on which the substrate 200 is placed on an upper surface, and an upper electrode 160 disposed to face the lower electrode 150 with a predetermined distance L therebetween.
  • the lower electrode 150 is placed so as to straddle the shelf 151 formed of a plurality of pins attached to the inner wall of the main body 120 of the housing.
  • a heater 170 is provided inside the lower electrode 150.
  • the lower electrode 150 is grounded.
  • the upper electrode 160 has openings (not shown) formed in the inside and the lower surface, and plasma generating gas is discharged from the openings.
  • a gas pipe 161 to which a plasma generating gas is supplied is connected to the side surface of the upper electrode 160.
  • the upper electrode 160 is connected to a wiring (not shown) to which high frequency power is supplied.
  • the upper electrode 160 is placed so as to straddle the shelf 162 made of a plurality of pins attached to the inner wall of the main body 120 of the housing.
  • the plasma generation gas is discharged from the upper electrode 160 while the inside of the processing chamber 190 is exhausted by an exhaust unit (not shown), so that the pressure inside the processing chamber 190 is kept constant.
  • Plasma is generated between the upper electrode 160 and the lower electrode 150 by applying a voltage between the upper electrode 160 and the lower electrode 150 while being heated by the heater 170.
  • the distance L between the upper electrode 160 and the lower electrode 150 needs to be constant over the entire surface of the electrode.
  • plasma may not be generated in a part between the electrodes. In this case, the processing of the substrate 200 becomes uneven, and the processed substrate 200 becomes a defective product.
  • the pins may be broken during the processing of the substrate 200. In that case, the fixing of the upper electrode 160 or the lower electrode 150 becomes unstable, and the distance L between the upper electrode 160 and the lower electrode 150 changes locally.
  • FIG. 7 is a perspective view showing a state of a substrate put into a conventional plasma apparatus. As shown in FIG. 7, the substrate 200 put into the plasma CVD apparatus 100 is covered with a substrate support plate made of ceramics.
  • the upper substrate support plate 210 is disposed on the upper surface side of the substrate 200 and the lower substrate support plate 220 is disposed on the lower surface side of the substrate 200 on both opposing sides constituting the edge of the substrate 200. Is done. Upper substrate support plate 210 and lower substrate support plate 220 are fixed by bolts 250 and nuts (not shown).
  • the upper substrate support plate 230 is disposed on the upper surface side of the substrate 200 and the lower substrate support plate 240 is disposed on the lower surface side of the substrate 200 in both of the other opposing sides constituting the edge of the substrate 200.
  • Upper substrate support plate 230 and lower substrate support plate 240 are fixed by bolts 250 and nuts (not shown).
  • the substrate 200 In order to process the substrate 200 uniformly in the plasma CVD apparatus 100, it is necessary to fix the substrate 200 horizontally. When the vertical position of the substrate 200 varies, the distance between the electrode and the substrate 200 varies, and the plasma reaction state cannot be made constant over the entire surface of the substrate 200.
  • the bolts and nuts fixing the substrate support plate may be damaged because they are exposed to plasma in a high temperature state.
  • the substrate 200 is not sufficiently fixed, and the substrate 200 is displaced or deflected.
  • the processing of the substrate 200 becomes uneven, and the processed substrate 200 becomes a defective product.
  • arcing may occur during plasma processing due to various factors such as insulation failure, voltage application failure, and vacuum degree failure. In this case, a by-product generated by arcing may adhere to the substrate 200 and become a defective product.
  • FIG. 8 is a side view of a conventional plasma apparatus as viewed from the back side. As shown in FIG. 8, a window portion 180 made of transparent glass for visually recognizing the processing chamber is provided on the lower surface 130 side of the conventional plasma CVD apparatus 100.
  • the window portion made of transparent glass provided in the conventional plasma apparatus has a place other than between the electrodes in the processing chamber in order to suppress the ultraviolet rays emitted from the window portion to the outside. It could be visually recognized.
  • the present invention has been made in view of the above-described problems, and provides a plasma device that can visually recognize between electrodes on which an object to be processed is processed while suppressing ultraviolet rays from being emitted outside the device.
  • the purpose is to provide.
  • the plasma apparatus is a plasma apparatus for plasma processing an object to be processed.
  • the plasma apparatus includes a housing and an electrode portion including a pair of electrodes that are disposed to face each other with a workpiece interposed therebetween in the housing.
  • the housing has a window part on the side surface, through which at least a pair of electrodes can be visually recognized from the outside.
  • the window part is impermeable to ultraviolet rays generated from the plasma.
  • the window portion includes a transparent body that transmits visible light and an ultraviolet light transmission preventing member applied to the transparent body.
  • the window portion includes a transparent body that transmits visible light, and an ultraviolet transmission preventing member that is dispersed and contained in the transparent body.
  • the transparent body includes fine ceramics.
  • a transparent body contains AlON.
  • the ultraviolet light transmission preventing member includes a photosensitive material that develops color upon receiving ultraviolet light.
  • the photosensitive material is a photochromic compound.
  • the said ultraviolet-ray transmission prevention member contains the wavelength conversion material which light-emits visible light in response to an ultraviolet-ray.
  • the wavelength conversion material is a nanoparticle phosphor.
  • the present invention it is possible to visually recognize between the electrodes where the object to be processed is processed while suppressing the emission of ultraviolet rays to the outside of the apparatus.
  • a plasma CVD apparatus is described as a plasma apparatus; however, the plasma apparatus is not limited to this, and the present invention can be applied to a plasma apparatus that processes an object to be processed using plasma.
  • FIG. 1 is a side view of a plasma CVD apparatus according to an embodiment of the present invention as seen from the back side.
  • a window 380 is formed on the back surface 330 of the main body 320 of the housing. Since other configurations are similar to those of conventional plasma CVD apparatus 100, description thereof will not be repeated.
  • the plasma CVD apparatus 300 has a housing in which a processing chamber 390 in which a substrate 200 as an object to be processed is subjected to plasma processing is formed.
  • the processing chamber 390 in the housing is provided with an electrode portion including a pair of the upper electrode 160 and the lower electrode 150 which are arranged to face each other with a space therebetween with the substrate 200 interposed therebetween.
  • the electrode part includes a pair of electrodes, but the number of electrode pairs is not limited to this, and the electrode part may include a plurality of electrode pairs.
  • a window portion 380 that can visually recognize at least a pair of electrodes of the electrode portion from the outside is formed on the side surface on the back surface 330 side of the main body portion 320 constituting the housing.
  • the window portion 380 is provided in the entire portion other than the peripheral portion of the back surface 330 in order to make the entire electrode portion visible.
  • the window portion 380 is provided at a position corresponding to the position between the upper electrode 160 and the lower electrode 150 so that only the region between the upper electrode 160 and the lower electrode 150 where the substrate 200 is processed can be visually recognized. May be.
  • the opening / closing part of the housing and the main body part 320 are made of metal such as iron.
  • the window 380 is made of a material that is impermeable to ultraviolet rays generated from plasma and is transmissive to visible light. Moreover, the material which comprises the window part 380 has heat resistance which endures the high temperature during plasma processing.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the window portion 380 of the present embodiment.
  • the window portion 380 of the present embodiment includes a transparent body 381 that transmits visible light, and an ultraviolet light transmission preventing member 382 applied to the transparent body 381.
  • a heat-resistant fine ceramic that can be used up to 1700 ° C. was used.
  • the transparent body 381 is made of fine ceramics containing AlON (aluminum oxynitride). With this configuration, since the window portion 380 has sufficient heat resistance and strength, it can be used as a part of the casing of the plasma CVD apparatus 300.
  • the transparent body 381 is a structure of the window portion 380, and an ultraviolet transmission preventing member 382 is applied to one main surface of the transparent body 381 disposed on the outer surface side of the housing.
  • an ultraviolet transmission preventing member 382 is applied to one main surface of the transparent body 381 disposed on the outer surface side of the housing.
  • a cinnamic acid derivative such as octyl methoxycinnamate that absorbs ultraviolet light is applied as the ultraviolet light transmission preventing member 382.
  • the transparent body 381 is formed to have a predetermined thickness or more so as not to rise to a temperature at which the applied ultraviolet light transmission preventing member 382 is chemically decomposed.
  • the window part 380 is not limited to the transparent body 381 coated with the ultraviolet light transmission preventing member 382.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the window portion of the first modification of the present embodiment.
  • the window portion 480 of the first modified example of the present embodiment is formed by dispersing and containing an ultraviolet transmission preventing member 483 in a transparent body 481 that transmits visible light. Even when such a window portion 480 is formed, it is possible to form a window portion 480 that is opaque to ultraviolet rays and transparent to visible light.
  • the window portion may be formed only of a transparent body made of a material that is opaque to ultraviolet rays and transparent to visible light.
  • FIG. 4 is a side view of the plasma CVD apparatus according to the present embodiment as seen from the back side in a state where the plasma treatment is performed.
  • a region 400 where plasma is generated is shown with hatching.
  • various plasma generating gases are used in a thin film forming process such as when forming a semiconductor layer and when forming an electrode layer.
  • the plasma generating gas contains SiNx, silane and ammonia, and phosphorus, visible light having different colors is generated in each case.
  • the window 380 transmits visible light, visible light generated from the plasma can be visually recognized from the outside. Therefore, when an abnormality occurs in the support state of the electrode part or the substrate, it can be easily confirmed from the outside.
  • the window 380 does not transmit ultraviolet rays, the ultraviolet rays generated from the plasma are not emitted to the outside. Therefore, a person in the vicinity of the plasma CVD apparatus 300 can be prevented from being exposed to ultraviolet rays generated from the plasma.
  • the window portion 380 so as to be visible between the pair of electrodes, it is possible to easily confirm that some abnormality has occurred in the region where the visible light is not emitted.
  • the processing of the substrate 200 is immediately stopped and the plasma CVD apparatus 300 is inspected.
  • the conventional plasma CVD apparatus 100 even when an abnormality occurs during the processing of the substrate 200, the abnormality occurs until the opening / closing part 110 is opened and the inside of the plasma CVD apparatus 100 is confirmed after the processing of the substrate 200 is completed. It was difficult to confirm that. Since the plasma CVD apparatus 100 at the end of the substrate processing is at a high temperature of about 300 ° C., a cooling time of half a day or more is required to take out the substrate 200. For this reason, the time lag from the occurrence of abnormality of the device to the discovery is large. In addition, when a discharge detection sensor as described in the prior art is used, a complicated control device is required and the device cost is greatly increased.
  • the window portion 380 By providing the window portion 380, it is possible to detect and deal with the occurrence of an abnormality of the apparatus at an early stage, thereby improving the maintainability of the plasma CVD apparatus 300 and reducing the wasteful operation time of the plasma CVD apparatus 300. can do.
  • the ultraviolet light transmission preventing member includes a photosensitive material that develops color upon receiving ultraviolet light.
  • the ultraviolet light transmission preventing member contains a photochromic compound.
  • Photochromic compounds change color when exposed to ultraviolet rays and develop color. For this reason, the window portion of the portion that has received the ultraviolet rays generated from the plasma develops color, and the other window portions do not develop color. By visually recognizing this color difference from the outside, it can be confirmed whether or not an abnormality has occurred in the plasma CVD apparatus.
  • the photochromic compound stops generating ultraviolet rays from the plasma, it returns to its original molecular structure due to its own thermal motion and becomes colorless. Thus, it can be confirmed that an abnormality has occurred at that location.
  • the ultraviolet light transmission preventing member includes a wavelength conversion material that emits visible light upon receiving ultraviolet light.
  • the ultraviolet light transmission preventing member includes a nanoparticle phosphor.
  • the nanoparticle phosphor Since the nanoparticle phosphor is less likely to scatter visible light when the particle diameter is 50 nm or less, the nanoparticle phosphor is almost transparent to visible light.
  • the nanoparticle phosphor is excited by receiving ultraviolet rays and emits visible light having a wavelength longer than that of the ultraviolet rays. Therefore, the window part of the part which received the ultraviolet-ray generated from plasma emits light, and the other window part does not light-emit. By visually recognizing the difference in light emission from the outside, it can be confirmed whether or not an abnormality has occurred in the plasma CVD apparatus.
  • a monitor that constantly monitors changes in the window 380 during operation of the plasma CVD apparatus is installed, and a controller that automatically stops the plasma CVD apparatus when a change in the window 380 is detected when an abnormality occurs is provided.
  • the monitor since the monitor can be disposed outside the plasma CVD apparatus, an expensive discharge detection sensor having heat resistance attached to the plasma CVD apparatus itself is not required as described in the prior art. Therefore, a normal monitor having no heat resistance can be used as the monitor, and an increase in device cost can be suppressed.

Abstract

A plasma device is provided with: a housing, and an electrode part that contains a pair of electrodes (150, 160), between which a substrate (200) is sandwiched, said electrodes being disposed so as to face each other with a space therebetween. The housing has a window (380) on a side through which at least the substrate between the pair of electrodes (150, 160) of the electrode part can be viewed from the outside. The window (380) is impermeable to ultraviolet rays generated by plasma. With this configuration, the release of ultraviolet rays outside of the device can be minimized, and the substrate (200) being processed between the electrodes can be viewed.

Description

プラズマ装置Plasma device
 本発明は、基板などの被処理物をプラズマ処理するプラズマ装置に関する。 The present invention relates to a plasma apparatus for plasma processing a workpiece such as a substrate.
 プラズマ放電の有無および放電異常を監視可能なプラズマ装置を開示した先行文献として、特開2009-48882号公報(特許文献1)がある。特開2009-48882号公報(特許文献1)に記載のプラズマ装置においては、処理室内を視認するための窓部が設けられている。 Japanese Patent Application Laid-Open No. 2009-48882 (Patent Document 1) is a prior art document that discloses the presence or absence of plasma discharge and a plasma apparatus that can monitor discharge abnormality. In the plasma apparatus described in Japanese Patent Laid-Open No. 2009-48882 (Patent Document 1), a window portion for visually confirming the inside of the processing chamber is provided.
 図5は、従来のプラズマ装置の外観を示す斜視図である。図5に示すように、従来のプラズマ装置であるプラズマCVD(Chemical Vapor Deposition)装置100においては、開閉部110および本体部120からなる筐体が、土台140上に載置されている。筐体の背面130に図示しない窓部が設けられている。開閉部110が矢印で示す方向に開閉されて、被処理物である基板が出し入れされる。 FIG. 5 is a perspective view showing an external appearance of a conventional plasma apparatus. As shown in FIG. 5, in a plasma CVD (Chemical Vapor Deposition) apparatus 100 that is a conventional plasma apparatus, a casing including an opening / closing part 110 and a main body part 120 is placed on a base 140. A window portion (not shown) is provided on the back surface 130 of the housing. The opening / closing part 110 is opened and closed in the direction indicated by the arrow, and the substrate as the object to be processed is taken in and out.
 図6は、従来のプラズマ装置の構成を示す断面図である。図6に示すように、筐体の内部の処理室190に1対の電極を含む電極部が配置されている。電極部は、基板200が上面に載置される下部電極150と、下部電極150に所定の間隔Lを置いて対向配置された上部電極160とを含む。 FIG. 6 is a cross-sectional view showing a configuration of a conventional plasma apparatus. As shown in FIG. 6, an electrode portion including a pair of electrodes is arranged in a processing chamber 190 inside the housing. The electrode unit includes a lower electrode 150 on which the substrate 200 is placed on an upper surface, and an upper electrode 160 disposed to face the lower electrode 150 with a predetermined distance L therebetween.
 下部電極150は、筐体の本体部120の内壁に取付けられた複数のピンからなる棚部151上に跨るように載置されている。下部電極150の内部には、ヒータ170が設けられている。下部電極150は接地されている。 The lower electrode 150 is placed so as to straddle the shelf 151 formed of a plurality of pins attached to the inner wall of the main body 120 of the housing. A heater 170 is provided inside the lower electrode 150. The lower electrode 150 is grounded.
 上部電極160は、内部および下面に図示しない開口部が形成されており、その開口部からプラズマ発生用ガスが吐出されるようになっている。上部電極160の側面に、プラズマ発生用ガスが供給されるガス配管161が接続されている。また、上部電極160には、高周波電力が供給される図示しない配線が接続されている。上部電極160は、筐体の本体部120の内壁に取付けられた複数のピンからなる棚部162上に跨るように載置されている。 The upper electrode 160 has openings (not shown) formed in the inside and the lower surface, and plasma generating gas is discharged from the openings. A gas pipe 161 to which a plasma generating gas is supplied is connected to the side surface of the upper electrode 160. The upper electrode 160 is connected to a wiring (not shown) to which high frequency power is supplied. The upper electrode 160 is placed so as to straddle the shelf 162 made of a plurality of pins attached to the inner wall of the main body 120 of the housing.
 図示しない排気部により処理室190の内部が排気されつつ、上部電極160からプラズマ発生用ガスが吐出されることにより、処理室190の内部の圧力が一定に保たれる。ヒータ170により加熱された状態において、上部電極160と下部電極150との間に電圧が印加されることにより、上部電極160と下部電極150との間においてプラズマが発生される。 The plasma generation gas is discharged from the upper electrode 160 while the inside of the processing chamber 190 is exhausted by an exhaust unit (not shown), so that the pressure inside the processing chamber 190 is kept constant. Plasma is generated between the upper electrode 160 and the lower electrode 150 by applying a voltage between the upper electrode 160 and the lower electrode 150 while being heated by the heater 170.
 基板200を均一に処理するためには、上部電極160と下部電極150との間隔Lが、電極の全面において一定であることが必要である。間隔Lにばらつきがある場合には、電極間の一部においてプラズマが発生しないことがある。この場合、基板200の処理が不均一となり、処理された基板200は不良品となる。 In order to process the substrate 200 uniformly, the distance L between the upper electrode 160 and the lower electrode 150 needs to be constant over the entire surface of the electrode. When the interval L varies, plasma may not be generated in a part between the electrodes. In this case, the processing of the substrate 200 becomes uneven, and the processed substrate 200 becomes a defective product.
 間隔Lにばらつきが生じる原因の一つとして、棚部151または棚部162を構成する複数のピンの一部における変形または折損などの破壊がある。プラズマCVD装置100内は、高温状態でプラズマに曝されるため、基板200の処理中に上記ピンが破壊することがある。その場合、上部電極160または下部電極150の固定が不安定となり、上部電極160と下部電極150との間隔Lが局所的に変化する。 As one of the causes of the variation in the interval L, there is a breakage such as deformation or breakage in a part of the plurality of pins constituting the shelf 151 or the shelf 162. Since the inside of the plasma CVD apparatus 100 is exposed to plasma at a high temperature, the pins may be broken during the processing of the substrate 200. In that case, the fixing of the upper electrode 160 or the lower electrode 150 becomes unstable, and the distance L between the upper electrode 160 and the lower electrode 150 changes locally.
 図7は、従来のプラズマ装置に投入される基板の状態を示す斜視図である。図7に示すように、プラズマCVD装置100に投入される基板200は、周囲をセラミックスで形成された基板支持板により覆われている。 FIG. 7 is a perspective view showing a state of a substrate put into a conventional plasma apparatus. As shown in FIG. 7, the substrate 200 put into the plasma CVD apparatus 100 is covered with a substrate support plate made of ceramics.
 具体的には、基板200の縁を構成する一の対向する辺の両方において、基板200の上面側に上側基板支持板210が配置され、基板200の下面側に下側基板支持板220が配置される。上側基板支持板210と下側基板支持板220とは、ボルト250と図示しないナットにより固定されている。 Specifically, the upper substrate support plate 210 is disposed on the upper surface side of the substrate 200 and the lower substrate support plate 220 is disposed on the lower surface side of the substrate 200 on both opposing sides constituting the edge of the substrate 200. Is done. Upper substrate support plate 210 and lower substrate support plate 220 are fixed by bolts 250 and nuts (not shown).
 また、基板200の縁を構成する他の対向する辺の両方において、基板200の上面側に上側基板支持板230が配置され、基板200の下面側に下側基板支持板240が配置される。上側基板支持板230と下側基板支持板240とは、ボルト250および図示しないナットにより固定されている。 Also, the upper substrate support plate 230 is disposed on the upper surface side of the substrate 200 and the lower substrate support plate 240 is disposed on the lower surface side of the substrate 200 in both of the other opposing sides constituting the edge of the substrate 200. Upper substrate support plate 230 and lower substrate support plate 240 are fixed by bolts 250 and nuts (not shown).
 プラズマCVD装置100において、基板200を均一に処理するためには、基板200を水平に固定することが必要である。基板200の上下方向の位置にばらつきがある場合、電極と基板200との間の距離がばらつくため、基板200上の全面においてプラズマによる反応状態を一定にすることができない。 In order to process the substrate 200 uniformly in the plasma CVD apparatus 100, it is necessary to fix the substrate 200 horizontally. When the vertical position of the substrate 200 varies, the distance between the electrode and the substrate 200 varies, and the plasma reaction state cannot be made constant over the entire surface of the substrate 200.
 基板支持板を固定しているボルトおよびナットは、プラズマCVD装置100内において基板200が処理されている際に、高温状態でプラズマに曝されるため破損することがある。この場合、基板200の固定が不十分となり、基板200の位置ずれまたはたわみが発生する。その結果、基板200の処理が不均一となり、処理された基板200は不良品となる。 When the substrate 200 is processed in the plasma CVD apparatus 100, the bolts and nuts fixing the substrate support plate may be damaged because they are exposed to plasma in a high temperature state. In this case, the substrate 200 is not sufficiently fixed, and the substrate 200 is displaced or deflected. As a result, the processing of the substrate 200 becomes uneven, and the processed substrate 200 becomes a defective product.
 また、プラズマ処理装置においては、プラズマ処理中に絶縁不良、電圧印加不良および真空度不良などの様々な要因によりアーキングが発生することがある。この場合、基板200にアーキングによって生成した副生成物が付着して不良品となる場合がある。 In the plasma processing apparatus, arcing may occur during plasma processing due to various factors such as insulation failure, voltage application failure, and vacuum degree failure. In this case, a by-product generated by arcing may adhere to the substrate 200 and become a defective product.
 図8は、従来のプラズマ装置を背面側から見た側面図である。図8に示すように、従来のプラズマCVD装置100の背面130側には、下部に処理室内を視認するための透明ガラスからなる窓部180が設けられている。 FIG. 8 is a side view of a conventional plasma apparatus as viewed from the back side. As shown in FIG. 8, a window portion 180 made of transparent glass for visually recognizing the processing chamber is provided on the lower surface 130 side of the conventional plasma CVD apparatus 100.
特開2009-48882号公報JP 2009-48882 A
 上記のように、プラズマ装置においては、プラズマ処理中に、位置ずれなど視認することにより異常を確認することが可能な状況が発生する。ただし、プラズマから紫外線が発生するため、従来のプラズマ装置に設けられた透明ガラスからなる窓部は、窓部から外部に放出される紫外線を抑制するために、処理室内の電極間以外の場所を視認することができるものであった。 As described above, in the plasma apparatus, a situation in which an abnormality can be confirmed by visually recognizing a positional deviation or the like occurs during plasma processing. However, since ultraviolet rays are generated from the plasma, the window portion made of transparent glass provided in the conventional plasma apparatus has a place other than between the electrodes in the processing chamber in order to suppress the ultraviolet rays emitted from the window portion to the outside. It could be visually recognized.
 本発明は上記の問題点に鑑みてなされたものであって、紫外線が装置外に放出されることを抑制しつつ、被処理物が処理される電極間を視認することができる、プラズマ装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and provides a plasma device that can visually recognize between electrodes on which an object to be processed is processed while suppressing ultraviolet rays from being emitted outside the device. The purpose is to provide.
 本発明の基づくプラズマ装置は、被処理物をプラズマ処理するプラズマ装置である。プラズマ装置は、筐体と、筐体内において、被処理物を間に挟んで互いに間隔を置いて対向配置された一対の電極を含む電極部とを備えている。筐体は、側面に、外部から電極部の少なくとも一対の電極間を視認可能な窓部を有している。窓部は、プラズマから発生した紫外線に対して非透過性を有している。 The plasma apparatus according to the present invention is a plasma apparatus for plasma processing an object to be processed. The plasma apparatus includes a housing and an electrode portion including a pair of electrodes that are disposed to face each other with a workpiece interposed therebetween in the housing. The housing has a window part on the side surface, through which at least a pair of electrodes can be visually recognized from the outside. The window part is impermeable to ultraviolet rays generated from the plasma.
 本発明の一形態においては、窓部は、可視光線を透過させる透明体と、この透明体に塗布された紫外線透過防止部材とを含む。 In one embodiment of the present invention, the window portion includes a transparent body that transmits visible light and an ultraviolet light transmission preventing member applied to the transparent body.
 本発明の一形態においては、窓部は、可視光線を透過させる透明体と、この透明体に分散含有された紫外線透過防止部材とを含む。 In one embodiment of the present invention, the window portion includes a transparent body that transmits visible light, and an ultraviolet transmission preventing member that is dispersed and contained in the transparent body.
 好ましくは、透明体がファインセラミックスを含む。
 本発明の一形態においては、透明体がAlONを含む。
Preferably, the transparent body includes fine ceramics.
In one form of this invention, a transparent body contains AlON.
 本発明の一形態においては、上記紫外線透過防止部材が、紫外線を受けて発色する感光材料を含む。 In one embodiment of the present invention, the ultraviolet light transmission preventing member includes a photosensitive material that develops color upon receiving ultraviolet light.
 好ましくは、上記感光材料が、フォトクロミック化合物である。
 本発明の一形態においては、上記紫外線透過防止部材が、紫外線を受けて可視光線を発光する波長変換材料を含む。
Preferably, the photosensitive material is a photochromic compound.
In one form of this invention, the said ultraviolet-ray transmission prevention member contains the wavelength conversion material which light-emits visible light in response to an ultraviolet-ray.
 好ましくは、上記波長変換材料がナノ粒子蛍光体である。 Preferably, the wavelength conversion material is a nanoparticle phosphor.
 本発明によれば、紫外線が装置外に放出されることを抑制しつつ、被処理物が処理される電極間を視認することができる。 According to the present invention, it is possible to visually recognize between the electrodes where the object to be processed is processed while suppressing the emission of ultraviolet rays to the outside of the apparatus.
本発明の一実施形態に係るプラズマCVD装置を背面側から見た側面図である。It is the side view which looked at the plasma CVD apparatus which concerns on one Embodiment of this invention from the back side. 同実施形態の窓部の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the window part of the embodiment. 同実施形態の第1の変形例の窓部の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the window part of the 1st modification of the embodiment. 同実施形態に係るプラズマCVD装置において、プラズマ処理している状態を背面側から見た側面図である。In the plasma CVD apparatus which concerns on the embodiment, it is the side view which looked at the state which is plasma-processing from the back side. 従来のプラズマ装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the conventional plasma apparatus. 従来のプラズマ装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional plasma apparatus. 従来のプラズマ装置に投入される基板の状態を示す斜視図である。It is a perspective view which shows the state of the board | substrate thrown into the conventional plasma apparatus. 従来のプラズマ装置を背面側から見た側面図である。It is the side view which looked at the conventional plasma apparatus from the back side.
 以下、本発明に係るプラズマ装置の一実施形態について図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰返さない。なお、プラズマ装置としてプラズマCVD装置について説明するが、プラズマ装置はこれに限られず、プラズマを用いて被処理物を処理するプラズマ装置について本発明を適用することができる。 Hereinafter, an embodiment of a plasma apparatus according to the present invention will be described with reference to the drawings. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. Note that a plasma CVD apparatus is described as a plasma apparatus; however, the plasma apparatus is not limited to this, and the present invention can be applied to a plasma apparatus that processes an object to be processed using plasma.
 図1は、本発明の一実施形態に係るプラズマCVD装置を背面側から見た側面図である。図1に示すように、本発明の一実施形態に係るプラズマCVD装置300においては、筐体の本体部320の背面330に窓部380が形成されている。他の構成については、従来のプラズマCVD装置100と同様であるため説明を繰返さない。 FIG. 1 is a side view of a plasma CVD apparatus according to an embodiment of the present invention as seen from the back side. As shown in FIG. 1, in the plasma CVD apparatus 300 according to one embodiment of the present invention, a window 380 is formed on the back surface 330 of the main body 320 of the housing. Since other configurations are similar to those of conventional plasma CVD apparatus 100, description thereof will not be repeated.
 プラズマCVD装置300は、被処理物である基板200がプラズマ処理される処理室390が内部に形成される筐体を有している。筐体内の処理室390には、基板200を間に挟んで互いに間隔を置いて対向配置された一対の上部電極160と下部電極150とを含む電極部が設けられている。本実施形態のプラズマCVD装置300においては、電極部は一対の電極を含んでいるが、電極対の数はこれに限られず、電極部が複数の電極対を含んでいてもよい。 The plasma CVD apparatus 300 has a housing in which a processing chamber 390 in which a substrate 200 as an object to be processed is subjected to plasma processing is formed. The processing chamber 390 in the housing is provided with an electrode portion including a pair of the upper electrode 160 and the lower electrode 150 which are arranged to face each other with a space therebetween with the substrate 200 interposed therebetween. In the plasma CVD apparatus 300 of this embodiment, the electrode part includes a pair of electrodes, but the number of electrode pairs is not limited to this, and the electrode part may include a plurality of electrode pairs.
 筐体を構成する本体部320の背面330側の側面に、外部から電極部の少なくとも一対の電極間を視認可能な窓部380が形成されている。本実施形態においては、電極部の全体を視認可能にするために、窓部380を背面330の周縁部以外の部分全体に設けた。 A window portion 380 that can visually recognize at least a pair of electrodes of the electrode portion from the outside is formed on the side surface on the back surface 330 side of the main body portion 320 constituting the housing. In the present embodiment, the window portion 380 is provided in the entire portion other than the peripheral portion of the back surface 330 in order to make the entire electrode portion visible.
 ただし、基板200が処理される上部電極160と下部電極150との間の領域のみを視認可能なように、上部電極160と下部電極150との間の位置に対応した位置に窓部380を設けてもよい。 However, the window portion 380 is provided at a position corresponding to the position between the upper electrode 160 and the lower electrode 150 so that only the region between the upper electrode 160 and the lower electrode 150 where the substrate 200 is processed can be visually recognized. May be.
 筐体の開閉部および本体部320は、鉄などの金属で形成されている。窓部380は、プラズマから発生した紫外線に対して非透過性を有し、かつ、可視光線に対して透過性を有する材料で形成されている。また、窓部380を構成する材料は、プラズマ処理中の高温に耐える耐熱性を有している。 The opening / closing part of the housing and the main body part 320 are made of metal such as iron. The window 380 is made of a material that is impermeable to ultraviolet rays generated from plasma and is transmissive to visible light. Moreover, the material which comprises the window part 380 has heat resistance which endures the high temperature during plasma processing.
 図2は、本実施形態の窓部380の構成を模式的に示す断面図である。本実施形態の窓部380は、可視光線を透過させる透明体381と、透明体381に塗布された紫外線透過防止部材382とを含む。透明体381として、1700℃まで使用可能な耐熱性を有するファインセラミックスを用いた。具体的には、透明体381は、AlON(酸窒化アルミニウム)を含むファインセラミックスで形成されている。この構成により、窓部380が十分な耐熱性及び強度を有するため、プラズマCVD装置300の筐体の一部として使用することが可能になる。 FIG. 2 is a cross-sectional view schematically showing the configuration of the window portion 380 of the present embodiment. The window portion 380 of the present embodiment includes a transparent body 381 that transmits visible light, and an ultraviolet light transmission preventing member 382 applied to the transparent body 381. As the transparent body 381, a heat-resistant fine ceramic that can be used up to 1700 ° C. was used. Specifically, the transparent body 381 is made of fine ceramics containing AlON (aluminum oxynitride). With this configuration, since the window portion 380 has sufficient heat resistance and strength, it can be used as a part of the casing of the plasma CVD apparatus 300.
 透明体381は、窓部380の構造体であり、筐体の外表面側に配置される透明体381の一方の主面に、紫外線透過防止部材382が塗布されている。本実施形態においては、紫外線透過防止部材382として、紫外線を吸収するメトキシケイ皮酸オクチルなどのケイ皮酸誘導体を塗布した。透明体381は、塗布された紫外線透過防止部材382が化学的に分解する温度まで上昇しないように、所定の厚さ以上に形成されている。窓部380としては、透明体381に紫外線透過防止部材382を塗布したものに限られない。 The transparent body 381 is a structure of the window portion 380, and an ultraviolet transmission preventing member 382 is applied to one main surface of the transparent body 381 disposed on the outer surface side of the housing. In this embodiment, a cinnamic acid derivative such as octyl methoxycinnamate that absorbs ultraviolet light is applied as the ultraviolet light transmission preventing member 382. The transparent body 381 is formed to have a predetermined thickness or more so as not to rise to a temperature at which the applied ultraviolet light transmission preventing member 382 is chemically decomposed. The window part 380 is not limited to the transparent body 381 coated with the ultraviolet light transmission preventing member 382.
 図3は、本実施形態の第1の変形例の窓部の構成を模式的に示す断面図である。図3に示すように、本実施形態の第1の変形例の窓部480は、可視光線を透過させる透明体481に紫外線透過防止部材483が分散含有されて形成されている。このような窓部480を形成した場合にも、紫外線に対して非透過性を有し、かつ、可視光線に対して透過性を有する窓部480を形成することができる。または、窓部は、紫外線に対して非透過性を有し、かつ、可視光線に対して透過性を有する材料からなる透明体のみから形成されていてもよい。 FIG. 3 is a cross-sectional view schematically showing the configuration of the window portion of the first modification of the present embodiment. As shown in FIG. 3, the window portion 480 of the first modified example of the present embodiment is formed by dispersing and containing an ultraviolet transmission preventing member 483 in a transparent body 481 that transmits visible light. Even when such a window portion 480 is formed, it is possible to form a window portion 480 that is opaque to ultraviolet rays and transparent to visible light. Alternatively, the window portion may be formed only of a transparent body made of a material that is opaque to ultraviolet rays and transparent to visible light.
 図4は、本実施形態に係るプラズマCVD装置において、プラズマ処理している状態を背面側から見た側面図である。図4においては、プラズマが発生している領域400をハッチングを入れて示している。 FIG. 4 is a side view of the plasma CVD apparatus according to the present embodiment as seen from the back side in a state where the plasma treatment is performed. In FIG. 4, a region 400 where plasma is generated is shown with hatching.
 図4に示すように、プラズマCVD装置300のプラズマ処理時には、プラズマが生成される電極間において、特定の色を有する可視光線および紫外線が発生する。可視光線の色は、プラズマ発生に用いられるガス種に含まれる原子によって異なる。 As shown in FIG. 4, when the plasma processing is performed by the plasma CVD apparatus 300, visible light and ultraviolet rays having specific colors are generated between electrodes where plasma is generated. The color of visible light varies depending on the atoms contained in the gas species used for plasma generation.
 基板200上に薄膜太陽電池を製造する場合には、半導体層を形成する際および電極層を形成する際などの薄膜形成工程において、種々のプラズマ発生用ガスが用いられる。たとえば、プラズマ発生用ガスに、SiNxが含まれる場合、シランおよびアンモニアが含まれる場合、および、燐が含まれる場合など、それぞれの場合において色の異なる可視光線が発生する。 When a thin film solar cell is manufactured on the substrate 200, various plasma generating gases are used in a thin film forming process such as when forming a semiconductor layer and when forming an electrode layer. For example, when the plasma generating gas contains SiNx, silane and ammonia, and phosphorus, visible light having different colors is generated in each case.
 窓部380は可視光線を透過させるため、プラズマから発生した可視光線を外部から視認することができる。そのため、電極部または基板の支持状態に異常が発生した場合には、外部から容易に確認することができる。 Since the window 380 transmits visible light, visible light generated from the plasma can be visually recognized from the outside. Therefore, when an abnormality occurs in the support state of the electrode part or the substrate, it can be easily confirmed from the outside.
 一方、窓部380は紫外線を透過しないため、プラズマから発生した紫外線は外部に放出されない。よって、プラズマCVD装置300の近傍にいる人が、プラズマから発生した紫外線に曝されることを防止することができる。 On the other hand, since the window 380 does not transmit ultraviolet rays, the ultraviolet rays generated from the plasma are not emitted to the outside. Therefore, a person in the vicinity of the plasma CVD apparatus 300 can be prevented from being exposed to ultraviolet rays generated from the plasma.
 上述の通り、電極間の間隔、真空度および印加電圧が電極の全面において一定である場合には、電極間において均一にプラズマが発生する。その場合には、電極間の全体から可視光線が発生する。図4においては、電極対の一部において、可視光線が発光していない領域がある。この可視光線が発光していない領域では、電極間の間隔、真空度および印加電圧などの条件のうちのいずれかが、所定の条件を満たしていない。 As described above, when the distance between the electrodes, the degree of vacuum, and the applied voltage are constant over the entire surface of the electrodes, plasma is uniformly generated between the electrodes. In that case, visible light is generated from the whole between the electrodes. In FIG. 4, there is a region where visible light is not emitted in a part of the electrode pair. In the region where no visible light is emitted, any of the conditions such as the distance between the electrodes, the degree of vacuum, and the applied voltage does not satisfy the predetermined condition.
 窓部380を設けて一対の電極間を視認可能にしたことにより、この可視光線が発光していない領域において、何らかの異常が発生していることを容易に確認することができる。異常が確認された場合には、基板200の処理を即時に停止して、プラズマCVD装置300の点検を行なう。 By providing the window portion 380 so as to be visible between the pair of electrodes, it is possible to easily confirm that some abnormality has occurred in the region where the visible light is not emitted. When an abnormality is confirmed, the processing of the substrate 200 is immediately stopped and the plasma CVD apparatus 300 is inspected.
 従来のプラズマCVD装置100においては、基板200の処理途中に異常が発生した場合においても、基板200の処理終了後に開閉部110を開けてプラズマCVD装置100の内部を確認するまで、異常が発生したことを確認することは難しかった。基板処理終了時のプラズマCVD装置100は300℃程度の高温になっているため、基板200を取出すためには半日以上の冷却時間が必要となる。そのため、装置の異常発生から発見までのタイムラグが大きい。また、先行文献に記載されているような放電検出センサを用いた場合には、複雑な制御装置が必要となり装置コストが大幅に増加する。 In the conventional plasma CVD apparatus 100, even when an abnormality occurs during the processing of the substrate 200, the abnormality occurs until the opening / closing part 110 is opened and the inside of the plasma CVD apparatus 100 is confirmed after the processing of the substrate 200 is completed. It was difficult to confirm that. Since the plasma CVD apparatus 100 at the end of the substrate processing is at a high temperature of about 300 ° C., a cooling time of half a day or more is required to take out the substrate 200. For this reason, the time lag from the occurrence of abnormality of the device to the discovery is large. In addition, when a discharge detection sensor as described in the prior art is used, a complicated control device is required and the device cost is greatly increased.
 窓部380を設けたことにより、装置の異常発生を早期に発見して対処することができるため、プラズマCVD装置300のメンテナンス性が向上されるとともに、プラズマCVD装置300の無駄な稼働時間を短縮することができる。 By providing the window portion 380, it is possible to detect and deal with the occurrence of an abnormality of the apparatus at an early stage, thereby improving the maintainability of the plasma CVD apparatus 300 and reducing the wasteful operation time of the plasma CVD apparatus 300. can do.
 本実施形態の第2の変形例の窓部においては、紫外線透過防止部材が、紫外線を受けて発色する感光材料を含む。具体的には、紫外線透過防止部材がフォトクロミック化合物を含んでいる。 In the window portion of the second modification of the present embodiment, the ultraviolet light transmission preventing member includes a photosensitive material that develops color upon receiving ultraviolet light. Specifically, the ultraviolet light transmission preventing member contains a photochromic compound.
 フォトクロミック化合物は、紫外線を受けると分子構造が変化して発色する。そのため、プラズマから発生した紫外線を受けた部分の窓部は発色し、それ以外の窓部は発色しない。この発色の違いを外部から視認することにより、プラズマCVD装置に異常が発生していないかどうかを確認することができる。 Photochromic compounds change color when exposed to ultraviolet rays and develop color. For this reason, the window portion of the portion that has received the ultraviolet rays generated from the plasma develops color, and the other window portions do not develop color. By visually recognizing this color difference from the outside, it can be confirmed whether or not an abnormality has occurred in the plasma CVD apparatus.
 なお、フォトクロミック化合物は、プラズマからの紫外線の発生が停止すると、自らの熱運動によって元の分子構造に戻り無色となるため、窓部の発色していた箇所が無色に変わったことを視認することにより、その箇所において異常が発生したことを確認することができる。 When the photochromic compound stops generating ultraviolet rays from the plasma, it returns to its original molecular structure due to its own thermal motion and becomes colorless. Thus, it can be confirmed that an abnormality has occurred at that location.
 本実施形態の第3の変形例においては、紫外線透過防止部材が、紫外線を受けて可視光線を発光する波長変換材料を含む。具体的には、紫外線透過防止部材がナノ粒子蛍光体を含む。 In the third modification of the present embodiment, the ultraviolet light transmission preventing member includes a wavelength conversion material that emits visible light upon receiving ultraviolet light. Specifically, the ultraviolet light transmission preventing member includes a nanoparticle phosphor.
 ナノ粒子蛍光体は、粒子径が50nm以下の場合、可視光線を散乱しにくくなるため、ナノ粒子蛍光体は可視光線に対してほぼ透明になる。ナノ粒子蛍光体は、紫外線を受けて励起されて、紫外線より波長の長い可視光線を発光する。そのため、プラズマから発生した紫外線を受けた部分の窓部は発光し、それ以外の窓部は発光しない。この発光の違いを外部から視認することにより、プラズマCVD装置に異常が発生していないかどうかを確認することができる。 Since the nanoparticle phosphor is less likely to scatter visible light when the particle diameter is 50 nm or less, the nanoparticle phosphor is almost transparent to visible light. The nanoparticle phosphor is excited by receiving ultraviolet rays and emits visible light having a wavelength longer than that of the ultraviolet rays. Therefore, the window part of the part which received the ultraviolet-ray generated from plasma emits light, and the other window part does not light-emit. By visually recognizing the difference in light emission from the outside, it can be confirmed whether or not an abnormality has occurred in the plasma CVD apparatus.
 また、上記の窓部380の変化をプラズマCVD装置の稼動中に常時監視するモニターを設置し、異常発生時に窓部380の変化を探知した場合に、プラズマCVD装置を自動停止する制御部を設けてもよい。この場合、モニターはプラズマCVD装置の外部に配置できるため、先行文献に記載されているように、プラズマCVD装置自体に取付けられる耐熱性を有する高価な放電検出センサが必要ない。そのため、モニターとしては耐熱性を有さない通常のものを使用することが可能となり、装置コストの増加を抑制することができる。 In addition, a monitor that constantly monitors changes in the window 380 during operation of the plasma CVD apparatus is installed, and a controller that automatically stops the plasma CVD apparatus when a change in the window 380 is detected when an abnormality occurs is provided. May be. In this case, since the monitor can be disposed outside the plasma CVD apparatus, an expensive discharge detection sensor having heat resistance attached to the plasma CVD apparatus itself is not required as described in the prior art. Therefore, a normal monitor having no heat resistance can be used as the monitor, and an increase in device cost can be suppressed.
 なお、今回開示した上記実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It does not become the basis of a limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. In addition, meanings equivalent to the claims and all modifications within the scope are included.
 100,300 プラズマCVD装置、110 開閉部、150 下部電極、160 上部電極、200 基板、120,320 本体部、330 背面、380,480 窓部、381,481 透明体、382,483 紫外線透過防止部材、190,390 処理室、400 プラズマが発生している領域。 100, 300 plasma CVD apparatus, 110 opening / closing part, 150 lower electrode, 160 upper electrode, 200 substrate, 120, 320 main body part, 330 rear surface, 380, 480 window part, 381, 481 transparent body, 382, 483 ultraviolet light transmission preventing member , 190,390 processing chamber, 400 plasma generating area.

Claims (9)

  1.  被処理物(200)をプラズマ処理するプラズマ装置(300)であって、
     筐体と、
     前記筐体内において、被処理物(200)を間に挟んで互いに間隔を置いて対向配置された一対の電極(150,160)を含む電極部と
    を備え、
     前記筐体は、側面に、外部から前記電極部の少なくとも前記一対の電極(150,160)間を視認可能な窓部(380,480)を有し、
     前記窓部(380,480)は、プラズマから発生した紫外線に対して非透過性を有する、プラズマ装置。
    A plasma apparatus (300) for plasma-treating an object (200) to be processed,
    A housing,
    An electrode unit including a pair of electrodes (150, 160) disposed to face each other with a space between the workpiece (200) in the casing;
    The housing has, on the side surface, window portions (380, 480) that can visually recognize at least the pair of electrodes (150, 160) of the electrode portions from the outside.
    The said window part (380,480) is a plasma apparatus which has an impermeability with respect to the ultraviolet-ray which generate | occur | produced from plasma.
  2.  前記窓部(380)は、可視光線を透過させる透明体(381)と、該透明体(381)に塗布された紫外線透過防止部材(382)とを含む、請求項1に記載のプラズマ装置。 The plasma device according to claim 1, wherein the window (380) includes a transparent body (381) that transmits visible light, and an ultraviolet light transmission preventing member (382) applied to the transparent body (381).
  3.  前記窓部(480)は、可視光線を透過させる透明体(481)と、該透明体(481)に分散含有された紫外線透過防止部材(483)とを含む、請求項1に記載のプラズマ装置。 The plasma device according to claim 1, wherein the window (480) includes a transparent body (481) that transmits visible light, and an ultraviolet light transmission preventing member (483) dispersedly contained in the transparent body (481). .
  4.  前記透明体(381,481)がファインセラミックスを含む、請求項2または3に記載のプラズマ装置。 The plasma device according to claim 2 or 3, wherein the transparent body (381, 481) contains fine ceramics.
  5.  前記透明体(381,481)がAlONを含む、請求項4に記載のプラズマ装置。 The plasma apparatus according to claim 4, wherein the transparent body (381, 481) contains AlON.
  6.  前記紫外線透過防止部材(382,483)が、紫外線を受けて発色する感光材料を含む、請求項2から5のいずれかに記載のプラズマ装置。 The plasma apparatus according to any one of claims 2 to 5, wherein the ultraviolet light transmission preventing member (382, 483) includes a photosensitive material that develops color upon receiving ultraviolet light.
  7.  前記感光材料が、フォトクロミック化合物である、請求項6に記載のプラズマ装置。 The plasma apparatus according to claim 6, wherein the photosensitive material is a photochromic compound.
  8.  前記紫外線透過防止部材(382,483)が、紫外線を受けて可視光線を発光する波長変換材料を含む、請求項2から5のいずれかに記載のプラズマ装置。 The plasma apparatus according to any one of claims 2 to 5, wherein the ultraviolet light transmission preventing member (382, 483) includes a wavelength conversion material that emits visible light upon receiving ultraviolet light.
  9.  前記波長変換材料がナノ粒子蛍光体である、請求項8に記載のプラズマ装置。 The plasma apparatus according to claim 8, wherein the wavelength conversion material is a nanoparticle phosphor.
PCT/JP2011/059923 2010-05-18 2011-04-22 Plasma device WO2011145430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-114218 2010-05-18
JP2010114218A JP2013152960A (en) 2010-05-18 2010-05-18 Plasma apparatus

Publications (1)

Publication Number Publication Date
WO2011145430A1 true WO2011145430A1 (en) 2011-11-24

Family

ID=44991545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059923 WO2011145430A1 (en) 2010-05-18 2011-04-22 Plasma device

Country Status (2)

Country Link
JP (1) JP2013152960A (en)
WO (1) WO2011145430A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339816B2 (en) * 2014-02-10 2018-06-06 株式会社Fuji Plasma processing judgment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330285A (en) * 1995-06-01 1996-12-13 Dainippon Screen Mfg Co Ltd Plasma treatment device
JP2001028365A (en) * 1999-07-15 2001-01-30 Nihon Ceratec Co Ltd Plasma-monitoring window
JP2005053846A (en) * 2003-08-05 2005-03-03 L'oreal Sa Cosmetic composition containing porous particle internally containing optically active substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330285A (en) * 1995-06-01 1996-12-13 Dainippon Screen Mfg Co Ltd Plasma treatment device
JP2001028365A (en) * 1999-07-15 2001-01-30 Nihon Ceratec Co Ltd Plasma-monitoring window
JP2005053846A (en) * 2003-08-05 2005-03-03 L'oreal Sa Cosmetic composition containing porous particle internally containing optically active substance

Also Published As

Publication number Publication date
JP2013152960A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
TWI724057B (en) Plasma processing systems and methods employing detection of plasma instability by optical diagnosis
KR100786887B1 (en) Method and apparatus for monitoring an effluent from a chamber, and a chamber cleaning apparatus
US7718930B2 (en) Loading table and heat treating apparatus having the loading table
TWI387666B (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR101204160B1 (en) Vacuum processing apparatus
US20110297321A1 (en) Substrate support stage of plasma processing apparatus
KR100666040B1 (en) Gas supplying device and film forming device
US10633737B2 (en) Device for atomic layer deposition
JP6524753B2 (en) PLASMA PROCESSING APPARATUS, PLASMA PROCESSING METHOD, AND STORAGE MEDIUM
WO2018042756A1 (en) Atomic layer growth apparatus and atomic layer growth method
WO2011145430A1 (en) Plasma device
WO2021178049A1 (en) Capacitive sensors and capacitive sensing locations for plasma chamber condition monitoring
CN109136879A (en) A kind of mask plate
KR20080012125A (en) Safety features for semiconductor processing apparatus using pyrophoric precursor
KR101464207B1 (en) Flat panel display manufacturing apparatus and ir heater used in manufacturing flat panel display
KR101410296B1 (en) window contaminating delay apparatus for semiconductor process
JP2018125114A (en) Microwave plasma source, microwave plasma processing device, and plasma processing method
CN111373520B (en) Substrate processing apparatus and method of processing substrate and manufacturing processed workpiece
JP7223631B2 (en) Detection device and vacuum processing device
JP4666205B2 (en) Gate valve and vacuum chamber provided with the same
JP2006165424A (en) O-ring structure of plasma generator
CN103460812A (en) Substrate processing apparatus
JP7316863B2 (en) Joining structure and joining method of first conductive member and second conductive member, and substrate processing apparatus
KR102030927B1 (en) Apparatus for drying flexible film having air distribution function
JP2010053393A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP