WO2011143813A1 - Object projection method and object projection sysytem - Google Patents

Object projection method and object projection sysytem Download PDF

Info

Publication number
WO2011143813A1
WO2011143813A1 PCT/CN2010/072907 CN2010072907W WO2011143813A1 WO 2011143813 A1 WO2011143813 A1 WO 2011143813A1 CN 2010072907 W CN2010072907 W CN 2010072907W WO 2011143813 A1 WO2011143813 A1 WO 2011143813A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
target
dimensional coordinates
matching point
matching
Prior art date
Application number
PCT/CN2010/072907
Other languages
French (fr)
Chinese (zh)
Inventor
吴迪
陈�光
Original Assignee
深圳泰山在线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳泰山在线科技有限公司 filed Critical 深圳泰山在线科技有限公司
Priority to PCT/CN2010/072907 priority Critical patent/WO2011143813A1/en
Priority to CN201080066634.7A priority patent/CN102939562B/en
Publication of WO2011143813A1 publication Critical patent/WO2011143813A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording

Definitions

  • the present invention relates to a target projection method and a target projection system using the same, and more particularly to a target projection method having a verification process and a target projection system using the same. Background technique
  • the technical problem to be solved by the present invention is that it is difficult to verify the correctness of the three-dimensional coordinate recognition, matching and establishment of the target projection system of the prior art, and provides an affine transformation between the target and the single camera by using the dual camera. Relationship, a target projection method that verifies the recognition, matching and reconstruction of the target onto the projected image, verifies the three-dimensional coordinate recognition, matching and establishing the correctness according to the projected image, and the target projection system using the method.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a target projection method, which includes:
  • the target projection method according to the present invention wherein the matching point pairs are obtained by a calibration process and a three-dimensional coordinate establishment process by corresponding three-dimensional coordinates:
  • a calibration process using a calibration parameter of the first camera and the second camera, obtaining a first correction matrix of the first camera that corrects the first camera and the second camera to a parallel camera, and the a second correction matrix of the second camera;
  • a three-dimensional coordinate establishing process matching pairs of the target objects in the first camera and the second camera by matching target recognition of the first camera and the second camera; using the first The correction matrix, the second correction matrix, and the matching point pair calculate three-dimensional coordinates corresponding to the matching point pair.
  • the calibration parameter includes an internal parameter and an external matching parameter
  • the internal parameter is obtained by a stereo calibration plate calibration method
  • the external matching parameter matches the first camera and the fixed order in a fixed order.
  • the coordinate data collected by the second camera is then obtained by performing a nonlinear least squares optimization using the Levenberg-Marquard algorithm to match the coordinate data acquired by the first camera and the second camera.
  • the target projection method according to the present invention, wherein the internal parameter includes A 0 ⁇ ⁇ ⁇ 0 .
  • the target projection method of the present invention wherein the affine projection matrix is obtained by: acquiring at least 6 sets of different positions of the matching point pairs corresponding to the three-dimensional coordinates and the matching point pairs corresponding to the third Two-dimensional coordinates projected on the camera;
  • the affine projection matrix is calculated by a linear least squares method according to the corresponding three-dimensional coordinates of the matching points of the at least six different sets of positions and the two-dimensional coordinates of the matching point pairs projected on the third camera.
  • a third camera as a coordinate system, and taking at least 6 sets of two-dimensional coordinates of different positions from the coordinate system;
  • a target projection system comprising a processing unit, an imaging unit, further comprising a verification unit, the imaging system comprising a first camera and a second camera, the verification unit comprising a verification module and a third camera:
  • the processing unit is configured to acquire a three-dimensional coordinate corresponding to a matching point pair of the target in the first camera and the second camera; and acquire an affine projection matrix of the third camera;
  • the verification module is configured to calculate the target object in the third according to an affine projection matrix of the third camera and a matching point pair of the target in the first camera and the second camera Theoretical center of gravity coordinates on the camera;
  • the target projection system of the present invention wherein the processing unit comprises a calibration module and a three-dimensional coordinate creation module:
  • the calibration module configured to use the calibration parameters of the first camera and the second camera to obtain a first correction of the first camera that corrects the first camera and the second camera into parallel cameras a matrix and a second correction matrix of the second camera;
  • the three-dimensional coordinate establishing module is configured to obtain a matching point pair of the target object in the first camera and the second camera by matching target recognition of the first camera and the second camera;
  • the first correction matrix, the second correction matrix, and the matching point pair calculate three-dimensional coordinates corresponding to the matching point pair.
  • the target projection system of the present invention wherein the calibration parameter includes an internal parameter and an external matching parameter, the internal parameter is obtained by a stereo calibration plate calibration method, and the external matching parameter matches the first camera and the fixed order
  • the coordinate data collected by the second camera is then obtained by performing a nonlinear least squares optimization using the Levenberg-Marquard algorithm to match the coordinate data acquired by the first camera and the second camera.
  • the target projection system of the present invention wherein the internal parameters include A 0 a y v 0
  • the target projection system of the present invention wherein the affine projection matrix is obtained by the following method: Collecting corresponding three-dimensional coordinates of the matching point pairs of at least 6 different sets of positions and corresponding two-dimensional coordinates of the matching point pairs projected on the third camera;
  • the affine projection matrix is calculated by a linear least squares method according to the corresponding three-dimensional coordinates of the matching points of the at least six different sets of positions and the two-dimensional coordinates of the matching point pairs projected on the third camera.
  • the target projection system of the present invention wherein the matching three-dimensional coordinates of the matching point pairs of at least six sets of different positions and the two-dimensional coordinates of the matching point pairs corresponding to the projection on the third camera pass the following Method obtained:
  • a third camera as a coordinate system, and taking at least 6 sets of two-dimensional coordinates of different positions from the coordinate system;
  • the target projection system of the present invention wherein the first camera and the second camera are equipped with an infrared transmission filter.
  • the verification unit comprises at least two of the third target imaging systems of the present invention, wherein the imaging unit further comprises at least one imaging camera.
  • the target projection method embodying the present invention and the target projection system using the same have the following beneficial effects: Adding a third camera with a verification module based on the original target projection system, using the established three-dimensional coordinates and the two-dimensional coordinates The mapping, verifying the accuracy of 3D coordinate recognition, matching and establishing results.
  • the calibration parameters acquired in advance make the target projection process simpler and more accurate; the acquisition of the internal parameters and the external matching parameters makes the first correction matrix of the first camera and the second correction matrix of the second camera more accurate, the first camera and the second camera Parallel correction is more efficient; the calculation of the affine projection matrix makes it possible to accurately calculate the first projection size on the third camera; and the affine projection matrix can Obtained by a plurality of methods; the first camera and the second camera are equipped with an infrared transmission filter, which eliminates interference of visible light, and the three-dimensional coordinates are more accurately established; and the verification by the multi-camera with the verification module is further increased. The correctness of the identification, matching and establishment of the dual cameras is judged; the verification unit can also be used in a target projection imaging system of multiple cameras (three or more).
  • FIG. 1 is a schematic structural view of a preferred embodiment of a target projection system of the present invention
  • FIG. 2A is an image for calibration of internal parameters and external matching parameters of a calibration camera of a preferred embodiment of the target projection system of the present invention
  • 2B is an image for calibration of internal parameters and external matching parameters of another sub-calibration camera of the preferred embodiment of the target projection system of the present invention
  • 3 is a two-dimensional coordinate arrangement and coordinate value diagram of matching points of eight sets of different positions for calculating an affine projection matrix of a preferred embodiment of the target projection system of the present invention.
  • a calibration process As shown in FIG. 1 , in the target projection method of the present invention, a calibration process, a three-dimensional coordinate establishment process, and a verification process are included, wherein the calibration parameters of the first camera 21 and the second camera 22 utilized in the three-dimensional coordinate establishment process are as follows Obtained:
  • the calibration parameters of the camera include internal parameters and external matching parameters.
  • the internal parameters of the camera are fixed for the fixed focus camera system. Internal parameters include:
  • the pixel spacing in the horizontal direction and the vertical direction is the optical center of the camera, which is the non-vertical factor of the U-axis and the V-axis; the radial distortion parameters kl, k2 ; the tangential distortion parameters pl, p2.
  • the meter uses the stereo calibration plate calibration method to calibrate the internal parameters of all cameras. Calibration image as shown
  • 2A, 2B are shown. After all the cameras have acquired the calibration image, the connectivity of the connected domain is used to obtain the coordinates of the center of gravity of all the calibration blocks. Then use these data information to calibrate the camera's internal parameters according to the plate calibration method.
  • the calibration method is currently used and can be implemented with different calibration methods.
  • the external camera is mainly the relative positional relationship between the cameras, including
  • the center of gravity coordinates of the block imaging are calibrated using the first camera 21 and the second camera 22 acquired as described above.
  • the coordinate data acquired by the two cameras is matched in a fixed order.
  • the fixed order matches the coordinate data acquired by the first camera 21 and the second camera 22 to obtain the final camera calibration parameters.
  • the final parameters include internal parameters of the respective cameras of the first camera 21 and the second camera 22 and external matching parameters between the two cameras. The implementation method of this step is not unique.
  • the column vectors in the first correction matrix are calculated separately. Obtaining the first positive matrix of the first camera 21 according to the formula (2): 2
  • the column vectors in the second correction matrix are calculated separately.
  • the second correction matrix of the second camera 22 is obtained according to the formula (5):
  • the three-dimensional coordinate establishing process by matching the target recognition of the first camera 21 and the second imaging; 22, the corresponding matching point pairs of the target are obtained:
  • a circular reflective object is used as the target identifier.
  • the target camera is identified by the support vector machine classifier trained by the circular reflective object sample in the first camera 21 and the second camera 22, respectively, and the target is calculated to be imaged in the first camera 21 and the second camera 22. Match the pair of points (the barycentric coordinates) and then use the polar constraint and the order consistency constraint to achieve the correct match of the target.
  • Pixel point coordinate distortion correction and the matching point will be P. And becomes undistorted image coordinates and one.
  • the iterative calculation is used here to correct the coordinates.
  • the three-dimensional coordinate establishing process obtains the corresponding three-dimensional coordinate P of the matching point pair; according to the affine projection matrix of the third camera 32 and the target in the first camera 21 and the second camera
  • the matching point in machine 22 is P.
  • the three-dimensional coordinate P corresponding to Pi counts the matching point pair P.
  • the method is a known target identifier size, here is a circular target Object diameter D, third camera
  • the affine projection matrix used in the verification process is obtained by the following method: At least 6 sets (8 sets in FIG. 3) of the matching point pairs and corresponding three-dimensional coordinates Q and the matching point pairs P are collected at different positions. And corresponding to the two-dimensional coordinates projected on the third camera 32:
  • the third camera 32 is set to be a coordinate system, and two sets of two-dimensional coordinates of different positions in the coordinate system are taken; when the target moves to the matching point pair P. And when the two-dimensional coordinates projected on the third camera 32 and the two-dimensional coordinates of the eight different positions in the coordinate system of the third camera 32 are coincident, the two-dimensional coordinates corresponding to the eight sets of different positions are obtained. 8 pairs of different positions of the matching point pairs Po and corresponding three-dimensional coordinates ⁇
  • the affine projection matrix parameter is where (14) can be abbreviated as
  • x ⁇ A T Ay l A T b ( 16 ).
  • the method corresponding to the two-dimensional coordinates projected on the third camera 32 can also be realized by correct matching recognition, establishing at least 6 sets of corresponding three-dimensional coordinates and two-dimensional coordinates.
  • the implementation of the present invention requires at least three cameras and maintains the synchronism of the captured images of the camera.
  • the first camera 21 and the second camera 22 for three-dimensional coordinate establishment are equipped with infrared transmission filters. Camera through the first camera 21 and the second camera 22
  • the three-dimensional coordinates of the captured image can effectively eliminate the interference of visible light, and the three-dimensional coordinates are more accurate. This setting can be selected according to actual needs.
  • the verification unit 3 comprises at least two third cameras 32 for verifying the established three-dimensional coordinates.
  • the verification of multiple cameras with a verification module further increases the correctness of the identification, matching and establishment of the dual cameras. You can choose the number of cameras to use for verification based on actual accuracy.
  • the imaging unit 2 may be a multi-camera (greater than or equal to three) target projection imaging system, which may increase the accuracy of judging the recognition, matching and establishment of the multi-camera.

Abstract

An object projection method includes: acquiring the three-dimensional coordinates corresponding to the matching point-pair (P0 and P1) of the object in the first video camera (21) and the second video camera (22); acquiring the affine projection matrix of the third video camera (32); calculating the theoretical barycentric coordinates of the object in the third video camera (32); calculating the theoretical projection size of the object in the third video camera (32); acquiring the actual barycentric coordinates of the projection of the object in the third video camera (32); acquiring the actual projection size of the object in the third video camera (32); and judging whether the three-dimensional coordinates corresponding to the matching point-pair (P0 and P1) is right or not. An object projection system using the method is also provided.

Description

说 明 书 目标投影方法以及系统 技术领域  Description book projection method and system
本发明涉及一种目标投影方法以及运用该方法的目标投影系统,更具体地 说, 涉及一种具有验证过程的目标投影方法以及运用该方法的目标投影系统。 背景技术  The present invention relates to a target projection method and a target projection system using the same, and more particularly to a target projection method having a verification process and a target projection system using the same. Background technique
在以摄像机为获取信息的系统中,从图像中正确的提取可利用的信息是关 键。 对目标识别正确性的判断主要依靠的是目标的形状, 颜色和尺寸等信息, 对两个摄像机间识别目标的匹配主要依靠的就是极线约束和顺序一致性约束。 在采用双目摄像机的系统中,采用视差原理来实现三维目标的建立。这种系统 的缺点是目标的识别, 匹配和建立的正确性验证较为困难。 发明内容  In systems where cameras are used to obtain information, it is critical to extract the correct information from the image. The judgment of the correctness of the target recognition mainly depends on the shape, color and size of the target. The matching of the recognition targets between the two cameras mainly depends on the polar constraint and the order consistency constraint. In a system using a binocular camera, the principle of parallax is used to establish a three-dimensional object. The disadvantage of such a system is that it is more difficult to identify, match and establish correctness of the target. Summary of the invention
本发明要解决的技术问题在于,针对现有技术的目标投影系统的三维坐标 识别, 匹配和建立的正确性验证较为困难的缺陷, 提供一种利用双摄像机建立 目标与单摄像机间的仿射变换关系,将目标的识别, 匹配和重建的信息集中到 投影图像上, 根据投影图像来验证三维坐标识别, 匹配和建立的正确性的目标 投影方法以及运用该方法的目标投影系统。  The technical problem to be solved by the present invention is that it is difficult to verify the correctness of the three-dimensional coordinate recognition, matching and establishment of the target projection system of the prior art, and provides an affine transformation between the target and the single camera by using the dual camera. Relationship, a target projection method that verifies the recognition, matching and reconstruction of the target onto the projected image, verifies the three-dimensional coordinate recognition, matching and establishing the correctness according to the projected image, and the target projection system using the method.
本发明解决其技术问题所采用的技术方案是: 构造一种目标投影方法, 其 中, 包括:  The technical solution adopted by the present invention to solve the technical problem thereof is: constructing a target projection method, which includes:
获取目标物在第一摄像机和第二摄像机中的匹配点对对应的三维坐标; 获取第三摄像机的仿射投影矩阵;  Obtaining a corresponding three-dimensional coordinate of the matching point pair of the target in the first camera and the second camera; acquiring an affine projection matrix of the third camera;
验证过程:  Verification process:
根据所述第三摄像机的仿射投影矩阵和所述目标物在第一摄像机和第二 摄像机中的匹配点对对应的三维坐标计算所述目标物在所述第三摄像机上的 理论重心坐标; Calculating the target object on the third camera according to an affine projection matrix of the third camera and a matching point pair of the target in the first camera and the second camera Theoretical center of gravity coordinates;
根据所述匹配点对对应的三维坐标计算所述目标物在第三摄像机上的理 论投影大小;  Calculating a theoretical projection size of the target on the third camera according to the matching point to the corresponding three-dimensional coordinates;
获得所述目标物在所述第三摄像机上投影的实际重心坐标;  Obtaining an actual center of gravity coordinate of the target projected on the third camera;
获得所述目标物在所述第三摄像机上的实际投影大小;  Obtaining an actual projected size of the target on the third camera;
根据所述理论重心坐标和所述实际重心坐标的比较结果以及所述理论投 影大小和所述实际投影大小的比较结果共同判断所述匹配点对对应的三维坐 标是否正确。  And determining, according to the comparison result of the theoretical barycentric coordinates and the actual barycentric coordinates, and the comparison result of the theoretical projection size and the actual projection size, whether the corresponding three-dimensional coordinates of the matching point pair are correct.
本发明所述的目标投影方法, 其中,所述匹配点对对应的三维坐标通过标 定过程和三维坐标建立过程获得:  The target projection method according to the present invention, wherein the matching point pairs are obtained by a calibration process and a three-dimensional coordinate establishment process by corresponding three-dimensional coordinates:
标定过程: 利用所述第一摄像机和所述第二摄像机的标定参数, 得到将所 述第一摄像机和所述第二摄像机校正成平行摄像机的所述第一摄像机的第一 校正矩阵和所述第二摄像机的第二校正矩阵;  a calibration process: using a calibration parameter of the first camera and the second camera, obtaining a first correction matrix of the first camera that corrects the first camera and the second camera to a parallel camera, and the a second correction matrix of the second camera;
三维坐标建立过程:通过对所述第一摄像机和所述第二摄像机的目标识别 匹配得到所述目标物在所述第一摄像机和所述第二摄像机中的匹配点对;利用 所述第一校正矩阵、所述第二校正矩阵以及所述匹配点对计算出所述匹配点对 对应的三维坐标。  a three-dimensional coordinate establishing process: matching pairs of the target objects in the first camera and the second camera by matching target recognition of the first camera and the second camera; using the first The correction matrix, the second correction matrix, and the matching point pair calculate three-dimensional coordinates corresponding to the matching point pair.
本发明所述的目标投影方法, 其中, 所述标定参数包括内部参数和外部匹 配参数, 所述内部参数通过立体标定板标定方法获得, 所述外部匹配参数采用 固定顺序匹配所述第一摄像机和所述第二摄像机采集的坐标数据,然后利用利 文贝格-马夸特算法进行非线性最小二乘优化所述固定顺序匹配所述第一摄像 机和所述第二摄像机采集的坐标数据来获得。  According to the target projection method of the present invention, the calibration parameter includes an internal parameter and an external matching parameter, and the internal parameter is obtained by a stereo calibration plate calibration method, and the external matching parameter matches the first camera and the fixed order in a fixed order. The coordinate data collected by the second camera is then obtained by performing a nonlinear least squares optimization using the Levenberg-Marquard algorithm to match the coordinate data acquired by the first camera and the second camera.
a ϊ "0 本发明所述的目标投影方法, 其中, 所述内部参数包括 A 0 αγ ν0 a ϊ "0" the target projection method according to the present invention, wherein the internal parameter includes A 0 α γ ν 0
0 0 1 ax = fl dx, ay = fl dy, 其中 /是摄像机焦距, dx、 ^分别是水平方向和竖直方 向的像元间距, 、 是摄像机的光心, 是 u轴和 V轴的不垂直因子; 径向 畸变参数 kl、 k2 ; 切向畸变参数 pl、 p2; 所述外部匹配参数包括旋转矩阵参
Figure imgf000005_0001
和平移矩阵参数
0 0 1 a x = fl dx, a y = fl dy, where / is the camera focal length, dx, ^ are the pixel spacing in the horizontal and vertical directions, respectively, is the optical center of the camera, is the u-axis and the V-axis Non-vertical factor; radial distortion parameters kl, k2 ; tangential distortion parameters pl, p2 ; the external matching parameters include rotation matrix parameters
Figure imgf000005_0001
And translation matrix parameters
本发明所述的目标投影方法,其中,所述仿射投影矩阵通过以下方法获得: 采集至少 6 组不同位置的所述匹配点对对应的三维坐标以及所述匹配点 对对应在所述第三摄像机上投影的二维坐标;  The target projection method of the present invention, wherein the affine projection matrix is obtained by: acquiring at least 6 sets of different positions of the matching point pairs corresponding to the three-dimensional coordinates and the matching point pairs corresponding to the third Two-dimensional coordinates projected on the camera;
根据所述至少 6 组不同位置的所述匹配点对对应的三维坐标以及所述匹 配点对对应在所述第三摄像机上投影的二维坐标,采用线性最小二乘法算出仿 射投影矩阵。  The affine projection matrix is calculated by a linear least squares method according to the corresponding three-dimensional coordinates of the matching points of the at least six different sets of positions and the two-dimensional coordinates of the matching point pairs projected on the third camera.
本发明所述的目标投影方法, 其中,所述采集至少 6组不同位置的所述匹 配点对对应的三维坐标以及所述匹配点对对应在所述第三摄像机上投影的二 维坐标通过以下方法获得:  The target projection method according to the present invention, wherein the capturing three-dimensional coordinates of the matching point pairs of at least 6 sets of different positions and the two-dimensional coordinates of the matching point pairs corresponding to the projection on the third camera pass the following Method obtained:
设置第三摄像机为坐标系, 从所述坐标系取至少 6 组不同位置的二维坐 标;  Setting a third camera as a coordinate system, and taking at least 6 sets of two-dimensional coordinates of different positions from the coordinate system;
当所述目标物的运动至所述匹配点对在所述第三摄像机上投影的二维坐 标与所述从所述坐标系取至少 6组不同位置的二维坐标重合时,得到与所述至 少 6组不同位置的二维坐标对应的至少 6组不同位置的所述匹配点对对应的三 维坐标。  Obtaining and comparing the two-dimensional coordinates projected by the target to the matching point on the third camera and the two-dimensional coordinates of the at least six different positions from the coordinate system Corresponding three-dimensional coordinates of the matching point pairs of at least 6 different positions corresponding to at least 6 sets of different positions of the two-dimensional coordinates.
构造一种目标投影系统, 包括处理单元、 成像单元, 其中, 还包括验证单 元,所述成像系统包括第一摄像机和第二摄像机,所述验证单元包括验证模块 和第三摄像机:  Constructing a target projection system, comprising a processing unit, an imaging unit, further comprising a verification unit, the imaging system comprising a first camera and a second camera, the verification unit comprising a verification module and a third camera:
所述处理单元:用于获取目标物在第一摄像机和第二摄像机中的匹配点对 对应的三维坐标; 和获取第三摄像机的仿射投影矩阵;  The processing unit is configured to acquire a three-dimensional coordinate corresponding to a matching point pair of the target in the first camera and the second camera; and acquire an affine projection matrix of the third camera;
所述验证模块:用于根据所述第三摄像机的仿射投影矩阵和所述目标物在 第一摄像机和第二摄像机中的匹配点对对应的三维坐标计算所述目标物在所 述第三摄像机上的理论重心坐标;  The verification module is configured to calculate the target object in the third according to an affine projection matrix of the third camera and a matching point pair of the target in the first camera and the second camera Theoretical center of gravity coordinates on the camera;
根据所述匹配点对对应的三维坐标计算所述目标物在第三摄像机上的理 论投影大小;  Calculating a theoretical projection size of the target on the third camera according to the matching point to the corresponding three-dimensional coordinates;
获得所述目标物在所述第三摄像机上投影的实际重心坐标; 获得所述目标物在所述第三摄像机上的实际投影大小; Obtaining an actual center of gravity coordinate of the target projected on the third camera; Obtaining an actual projected size of the target on the third camera;
根据所述理论重心坐标和所述实际重心坐标的比较结果以及所述理论投 影大小和所 222述实际投影大小的比较结果共同判断所述匹配点对对应的三维坐 标是否正确。 333  And determining, according to the comparison result of the theoretical barycentric coordinates and the actual barycentric coordinates, and the comparison result of the theoretical projection size and the actual projected size of the 222, whether the corresponding three-dimensional coordinates of the matching point pair are correct. 333
本发明所述的目标投影系统, 其中,所述处理单元包括标定模块和三维坐 标建立模块:  The target projection system of the present invention, wherein the processing unit comprises a calibration module and a three-dimensional coordinate creation module:
所述标定模块: 用于利用所述第一摄像机和所述第二摄像机的标定参数, 得到将所述第一摄像机和所述第二摄像机校正成平行摄像机的所述第一摄像 机的第一校正矩阵和所述第二摄像机的第二校正矩阵;  The calibration module: configured to use the calibration parameters of the first camera and the second camera to obtain a first correction of the first camera that corrects the first camera and the second camera into parallel cameras a matrix and a second correction matrix of the second camera;
所述三维坐标建立模块:用于通过对所述第一摄像机和所述第二摄像机的 目标识别匹配得到所述目标物在所述第一摄像机和所述第二摄像机中的匹配 点对; 利用所述第一校正矩阵、所述第二校正矩阵以及所述匹配点对计算出所 述匹配点对对应的三维坐标。  The three-dimensional coordinate establishing module is configured to obtain a matching point pair of the target object in the first camera and the second camera by matching target recognition of the first camera and the second camera; The first correction matrix, the second correction matrix, and the matching point pair calculate three-dimensional coordinates corresponding to the matching point pair.
本发明所述的目标投影系统, 其中,所述标定参数包括内部参数和外部匹 配参数, 所述内部参数通过立体标定板标定方法获得, 所述外部匹配参数采用 固定顺序匹配所述第一摄像机和所述第二摄像机采集的坐标数据,然后利用利 文贝格-马夸特算法进行非线性最小二乘优化所述固定顺序匹配所述第一摄像 机和所述第二摄像机采集的坐标数据来获得。  The target projection system of the present invention, wherein the calibration parameter includes an internal parameter and an external matching parameter, the internal parameter is obtained by a stereo calibration plate calibration method, and the external matching parameter matches the first camera and the fixed order The coordinate data collected by the second camera is then obtained by performing a nonlinear least squares optimization using the Levenberg-Marquard algorithm to match the coordinate data acquired by the first camera and the second camera.
a ϊ "0 本发明所述的目标投影系统, 其中, 所述内部参数包括 A 0 ay v0 a ϊ "0" the target projection system of the present invention, wherein the internal parameters include A 0 a y v 0
0 0 1 ax = fl dx, ay = fl dy , 其中 /是摄像机焦距, dx、 分别是水平方向和竖直方 向的像元间距, 、 是摄像机的光心, 是 u轴和 V轴的不垂直因子; 径向 畸变参数 kl、 k2 ; 切向畸变参数 pl、 p2; 所述外部匹配参数包括旋转矩阵参 0 0 1 a x = fl dx, a y = fl dy , where / is the focal length of the camera, dx, the pixel spacing in the horizontal and vertical directions, respectively, is the optical center of the camera, is the u-axis and the V-axis Non-vertical factor; radial distortion parameters kl, k2 ; tangential distortion parameters pl, p2 ; the external matching parameters include rotation matrix parameters
和平移矩阵参数 And translation matrix parameters
本发明所述的目标投影系统,其中,所述仿射投影矩阵通过以下方法获得: 采集至少 6 组不同位置的所述匹配点对对应的三维坐标以及所述匹配点 对对应在所述第三摄像机上投影的二维坐标; The target projection system of the present invention, wherein the affine projection matrix is obtained by the following method: Collecting corresponding three-dimensional coordinates of the matching point pairs of at least 6 different sets of positions and corresponding two-dimensional coordinates of the matching point pairs projected on the third camera;
根据所述至少 6 组不同位置的所述匹配点对对应的三维坐标以及所述匹 配点对对应在所述第三摄像机上投影的二维坐标,采用线性最小二乘法算出仿 射投影矩阵。  The affine projection matrix is calculated by a linear least squares method according to the corresponding three-dimensional coordinates of the matching points of the at least six different sets of positions and the two-dimensional coordinates of the matching point pairs projected on the third camera.
本发明所述的目标投影系统, 其中,所述采集至少 6组不同位置的所述匹 配点对对应的三维坐标以及所述匹配点对对应在所述第三摄像机上投影的二 维坐标通过以下方法获得:  The target projection system of the present invention, wherein the matching three-dimensional coordinates of the matching point pairs of at least six sets of different positions and the two-dimensional coordinates of the matching point pairs corresponding to the projection on the third camera pass the following Method obtained:
设置第三摄像机为坐标系, 从所述坐标系取至少 6 组不同位置的二维坐 标;  Setting a third camera as a coordinate system, and taking at least 6 sets of two-dimensional coordinates of different positions from the coordinate system;
当所述目标物的运动至所述匹配点对在所述第三摄像机上投影的二维坐 标与所述从所述坐标系取至少 6组不同位置的二维坐标重合时,得到与所述至 少 6组不同位置的二维坐标对应的至少 6组不同位置的所述匹配点对对应的三 维坐标。  Obtaining and comparing the two-dimensional coordinates projected by the target to the matching point on the third camera and the two-dimensional coordinates of the at least six different positions from the coordinate system Corresponding three-dimensional coordinates of the matching point pairs of at least 6 different positions corresponding to at least 6 sets of different positions of the two-dimensional coordinates.
本发明所述的目标投影系统, 其中,所述第一摄像机和所述第二摄像机安 装有红外透射滤光片。  The target projection system of the present invention, wherein the first camera and the second camera are equipped with an infrared transmission filter.
本发明所述的目标投影系统, 其中,所述验证单元包括至少两个所述第三 本发明所述的目标投影系统, 其中,所述成像单元还进一步包括至少一个 成像用摄像机。  The object projection system of the present invention, wherein the verification unit comprises at least two of the third target imaging systems of the present invention, wherein the imaging unit further comprises at least one imaging camera.
实施本发明的目标投影方法以及运用该方法的目标投影系统,具有以下有 益效果: 在原有的目标投影系统的基础上增加一个具有验证模块的第三摄像 机, 利用建立的三维坐标与二维坐标间的映射, 验证三维坐标识别、 匹配和建 立的结果的准确性。  The target projection method embodying the present invention and the target projection system using the same have the following beneficial effects: Adding a third camera with a verification module based on the original target projection system, using the established three-dimensional coordinates and the two-dimensional coordinates The mapping, verifying the accuracy of 3D coordinate recognition, matching and establishing results.
事先获取的标定参数使得目标投影过程更加简单准确;内部参数和外部匹 配参数的获得使得第一摄像机的第一校正矩阵和第二摄像机的第二校正矩阵 更加准确,第一摄像机和第二摄像机的平行校正更加有效; 仿射投影矩阵的计 算使得可以准确的计算第三摄像机上的第一投影大小;并且仿射投影矩阵可以 通过多种方法获得; 所述第一摄像机和所述第二摄像机安装有红外透射滤光 片, 排除了可见光的干扰, 三维坐标建立更加准确; 采用带有验证模块的多摄 像机的验证, 进一步增加了判断双摄像机的识别、 匹配和建立的正确性; 所述 验证单元也可使用在多摄像机 (大于等于三个) 的目标投影成像系统中。 附图说明 The calibration parameters acquired in advance make the target projection process simpler and more accurate; the acquisition of the internal parameters and the external matching parameters makes the first correction matrix of the first camera and the second correction matrix of the second camera more accurate, the first camera and the second camera Parallel correction is more efficient; the calculation of the affine projection matrix makes it possible to accurately calculate the first projection size on the third camera; and the affine projection matrix can Obtained by a plurality of methods; the first camera and the second camera are equipped with an infrared transmission filter, which eliminates interference of visible light, and the three-dimensional coordinates are more accurately established; and the verification by the multi-camera with the verification module is further increased. The correctness of the identification, matching and establishment of the dual cameras is judged; the verification unit can also be used in a target projection imaging system of multiple cameras (three or more). DRAWINGS
下面将结合附图及实施例对本发明作进一步说明, 附图中:  The present invention will be further described below in conjunction with the accompanying drawings and embodiments, in which:
图 1是本发明目标投影系统的较佳实施例的结构示意图;  1 is a schematic structural view of a preferred embodiment of a target projection system of the present invention;
图 2A是本发明目标投影系统的较佳实施例的一副标定摄像机的内部参数 和外部匹配参数的标定用图像;  2A is an image for calibration of internal parameters and external matching parameters of a calibration camera of a preferred embodiment of the target projection system of the present invention; FIG.
图 2B是本发明目标投影系统的较佳实施例的另一副标定摄像机的内部参 数和外部匹配参数的标定用图像;  2B is an image for calibration of internal parameters and external matching parameters of another sub-calibration camera of the preferred embodiment of the target projection system of the present invention;
图 3是本发明目标投影系统的较佳实施例的计算仿射投影矩阵的 8组不同 位置的匹配点的二维坐标排列及坐标值图。 具体实施方式  3 is a two-dimensional coordinate arrangement and coordinate value diagram of matching points of eight sets of different positions for calculating an affine projection matrix of a preferred embodiment of the target projection system of the present invention. detailed description
下面结合图示, 对本发明的优选实施例作详细介绍。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail in conjunction with the drawings.
如图 1所示, 在本发明的目标投影方法中, 包括标定过程、 三维坐标建立 过程以及验证过程, 其中三维坐标建立过程中利用的第一摄像机 21和第二摄 像机 22的标定参数通过以下方法获得:  As shown in FIG. 1 , in the target projection method of the present invention, a calibration process, a three-dimensional coordinate establishment process, and a verification process are included, wherein the calibration parameters of the first camera 21 and the second camera 22 utilized in the three-dimensional coordinate establishment process are as follows Obtained:
摄像机的标定参数包括内部参数和外部匹配参数。  The calibration parameters of the camera include internal parameters and external matching parameters.
内部参数标定:  Internal parameter calibration:
摄像机内部参数, 对于定焦式摄像机系统是固定不变的。 内部参数包括:  The internal parameters of the camera are fixed for the fixed focus camera system. Internal parameters include:
A-
Figure imgf000008_0001
ax = fl dx, a = fl dy , 其中 "是摄像机焦距, dx、 分别是
A-
Figure imgf000008_0001
a x = fl dx, a = fl dy , where "is the camera focal length, dx, respectively
0 0 1 水平方向和竖直方向的像元间距, , 是摄像机的光心, 是 U轴和 V轴的 不垂直因子; 径向畸变参数 k l、 k2 ; 切向畸变参数 p l、 p2。 米用立体标定板标定方法标定所有摄像机的内部参数。 标定用图像如图0 0 1 The pixel spacing in the horizontal direction and the vertical direction is the optical center of the camera, which is the non-vertical factor of the U-axis and the V-axis; the radial distortion parameters kl, k2 ; the tangential distortion parameters pl, p2. The meter uses the stereo calibration plate calibration method to calibrate the internal parameters of all cameras. Calibration image as shown
2A、 2B所示。 所有摄像机采集到标定图像后, 采用连通域的连通性分析获得 所有标定块成像的重心坐标。然后利用这些数据信息, 按照平板标定方法对摄 像机内部参数进行标定。标定方法为目前常用方法, 可以有不同的标定方法实 现。 2A, 2B are shown. After all the cameras have acquired the calibration image, the connectivity of the connected domain is used to obtain the coordinates of the center of gravity of all the calibration blocks. Then use these data information to calibrate the camera's internal parameters according to the plate calibration method. The calibration method is currently used and can be implemented with different calibration methods.
外部匹配参数标定:  External matching parameter calibration:
摄像机外部匹 主要是摄像机间相对位置关系信息, 包括  The external camera is mainly the relative positional relationship between the cameras, including
旋转矩阵参数
Figure imgf000009_0001
Rotation matrix parameter
Figure imgf000009_0001
利用上述中所采集第一摄像机 21和第二摄像机 22标定块成像的重心坐 标。 采用固定顺序匹配两个摄像机采集的坐标数据。 然后利用利文贝格 -马夸 特 (Levenberg-Marquardt ) 算法进行非线性最小优化所述固定顺序匹配第一 摄像机 21和第二摄像机 22采集的坐标数据, 获得最终的摄像机标定参数。最 终参数包括第一摄像机 21和第二摄像机 22各自的摄像机的内部参数和两摄像 机间的外部匹配参数。 本步骤地实现方法并不唯一。  The center of gravity coordinates of the block imaging are calibrated using the first camera 21 and the second camera 22 acquired as described above. The coordinate data acquired by the two cameras is matched in a fixed order. Then, using the Levenberg-Marquardt algorithm for nonlinear minimum optimization, the fixed order matches the coordinate data acquired by the first camera 21 and the second camera 22 to obtain the final camera calibration parameters. The final parameters include internal parameters of the respective cameras of the first camera 21 and the second camera 22 and external matching parameters between the two cameras. The implementation method of this step is not unique.
标定过程: 利用第一摄像机 21和第二摄像机 22的标定参数,将两个摄像 机采集图像校正成平行摄像机; 本步骤实现方法并不唯一。  Calibration process: Using the calibration parameters of the first camera 21 and the second camera 22, the two camera acquisition images are corrected to parallel cameras; the implementation method of this step is not unique.
a.计算第一摄像机 21的第一校正矩阵 : 设定第一摄像机 21坐标系下标定用虚拟点 = (Q 0 2000) , a. Calculating the first correction matrix of the first camera 21: setting the virtual point of the calibration in the coordinate system of the first camera 21 = ( Q 0 2000 ),
按照公式:
Figure imgf000009_0002
According to the formula:
Figure imgf000009_0002
计算出第一摄像机 21坐标系下虚拟点坐标( 按照公式:
Figure imgf000010_0001
Calculate the coordinates of the virtual point in the coordinate system of the first camera 21 (according to the formula:
Figure imgf000010_0001
R、 +R  R, +R
p 17 oi +p【p 17 oi +p【
Figure imgf000010_0002
分别计算第一校正矩阵内列向量。根据 (2)式得到第一摄像机 21的第一? 正矩阵: 2
Figure imgf000010_0002
The column vectors in the first correction matrix are calculated separately. Obtaining the first positive matrix of the first camera 21 according to the formula (2): 2
Figure imgf000010_0003
Figure imgf000010_0003
b.计算第二摄像机 22的第二校正矩阵 : 设定第二摄像机 22坐标系下标定用虚拟点 =(Q 0 2000) b. Calculating the second correction matrix of the second camera 22: setting the virtual point for calibration in the coordinate system of the second camera 22 = ( Q 0 2000 )
按照公式:  According to the formula:
Pn=RPu + T (4) 计算出第二摄像机 22坐标系下虚拟点坐标。 按照公式:  Pn=RPu + T (4) Calculate the coordinates of the virtual point in the coordinate system of the second camera 22. According to the formula:
Figure imgf000010_0004
分别计算第二校正矩阵内列向量。根据 (5)式得到第二摄像机 22的第二校 正矩阵:
Figure imgf000010_0004
The column vectors in the second correction matrix are calculated separately. The second correction matrix of the second camera 22 is obtained according to the formula (5):
Η、Oh,
Figure imgf000010_0005
(6) 。
Figure imgf000010_0005
(6).
三维坐标建立过程:通过对第- 像机 21和第二摄像; 22的目标识别匹 配得到目标物相应的匹配点对: 采用圆形反光物体作为目标识别物。 在第一摄像机 21和第二摄像机 22 中分别采用经过圆形反光物体样本训练过的支持向量机分类器对目标物进行 识别,并计算出目标物在第一摄像机 21和第二摄像机 22中成像的匹配点对 (重 心坐标对) 和 ,然后利用极线约束和顺序一致性约束实现目标的正确匹配。 The three-dimensional coordinate establishing process: by matching the target recognition of the first camera 21 and the second imaging; 22, the corresponding matching point pairs of the target are obtained: A circular reflective object is used as the target identifier. The target camera is identified by the support vector machine classifier trained by the circular reflective object sample in the first camera 21 and the second camera 22, respectively, and the target is calculated to be imaged in the first camera 21 and the second camera 22. Match the pair of points (the barycentric coordinates) and then use the polar constraint and the order consistency constraint to achieve the correct match of the target.
利用所述第一校正矩阵、所述第二校正矩阵以及所述匹配点对计算所述匹 配点对对应的三维坐标;  Calculating corresponding three-dimensional coordinates of the pair of matching points by using the first correction matrix, the second correction matrix, and the matching point pair;
a.像素点坐标畸变校正, 同时将匹配点对 P。和 变为无畸变图像坐标 和 一。 这里使用迭代计算对坐标进行矫正。  a. Pixel point coordinate distortion correction, and the matching point will be P. And becomes undistorted image coordinates and one. The iterative calculation is used here to correct the coordinates.
b.校正图像坐标计算按照公式:  b. Correct the image coordinate calculation according to the formula:
Figure imgf000011_0001
Figure imgf000011_0001
Po  Po
Figure imgf000011_0002
c.目标三维坐标建立按照公式:
Figure imgf000011_0002
c. The target three-dimensional coordinates are established according to the formula:
Disparity = Pl[l] - 1], 其中 和 为图像 x坐标 (9) Disparity = Pl [l] - 1 ], where sum is the image x coordinate (9)
Β ξ + ζ Zc=B氺 1.0 /Disparity; Xc=B氺 pQ[l] /Disparity; (10) Yc=Zc * 70[1]/1.0; 本步骤地实现方法并不唯一。 Β ξ + ζ Zc=B氺1.0 /Disparity; Xc=B氺p Q [l] /Disparity; (10) Yc=Zc * 7 0 [1]/1.0; The implementation method of this step is not unique.
验证过程: 三维坐标建立过程得到了所述匹配点对对应的三维坐标 P; 根据第三摄像机 32的仿射投影矩阵和目标物在第一摄像机 21和第二摄像 机 22中的匹配点对 P。和 Pi对应的三维坐标 P计 所述匹配点对 P。和 在第三 摄像机 32上的坐标 The verification process: the three-dimensional coordinate establishing process obtains the corresponding three-dimensional coordinate P of the matching point pair; according to the affine projection matrix of the third camera 32 and the target in the first camera 21 and the second camera The matching point in machine 22 is P. The three-dimensional coordinate P corresponding to Pi counts the matching point pair P. And coordinates on the third camera 32
Figure imgf000012_0001
Figure imgf000012_0001
/ / (12); / / (12);
根据所述目标物的所述匹配点对第三摄像机 32上的坐标 Q计算所述目标 物在第三摄像机 32上的理论重心坐标: 本方法是已知目标识别物尺寸, 这里为圆形目标物的直径 D , 第三摄像机  Calculating the theoretical center of gravity coordinates of the target on the third camera 32 according to the coordinate Q on the third camera 32 according to the matching point of the target: The method is a known target identifier size, here is a circular target Object diameter D, third camera
32的焦距 f和目标物三维坐标 P, 然后按照公式计算圆目标物的投影圆半径: The focal length f of 32 and the three-dimensional coordinate P of the target, and then calculate the projected circle radius of the circular target according to the formula:
Radius = Dx f I Pz (13) · 根据所述匹配点对在第三摄像机 32上的坐标计算所述目标物在第三摄像 机 32上的理论投影大小: Radius = Dx f IP z (13) · Calculate the theoretical projection size of the object on the third camera 32 based on the coordinates of the matching point on the third camera 32:
在第三摄像机 32的图像上画以理论重心坐标为中心, Radius为半径的实 心圆;  Drawing on the image of the third camera 32 is centered on the theoretical center of gravity coordinates, and Radius is a solid circle of radius;
获得所述目标物在第三摄像机 32上投影的实际重心坐标;  Obtaining an actual center of gravity coordinate of the target projected on the third camera 32;
根据所述匹配点对在第三摄像机 32上的坐标获得所述目标物在第三摄像 机 32上的实际投影大小:  Obtaining the actual projected size of the object on the third camera 32 based on the coordinates of the matching point on the third camera 32:
根据所述理论重心坐标和所述目标物在第三摄像机 32上投影的实际重心 坐标之差是否小于第一设定值以及所述理论投影大小和所述实际投影大小之 差是否小于第二设定值共同判断所述匹配点对 P。和 对应的三维坐标是否正 确。 当两种判断都小于设定值时则认为所述匹配点对对应的三维坐标的识别、 匹配和建立是正确的。  Whether the difference between the theoretical barycentric coordinates and the actual barycentric coordinates projected by the target on the third camera 32 is less than a first set value and whether the difference between the theoretical projection size and the actual projection size is smaller than the second setting The fixed values jointly determine the matching point pair P. And the corresponding 3D coordinates are correct. When both judgments are smaller than the set value, it is considered that the matching point is correct for the recognition, matching and establishment of the corresponding three-dimensional coordinates.
如图 3所示(图 3采用的是 640*480解析度, 其他解析度的话坐标做相应 的修改即可), 验证过程中利用的仿射投影矩阵通过以下方法获得: 采集至少 6组 (图 3中为 8组) 不同位置的所述匹配点对 和 对应的 三维坐标 Q以及所述匹配点对 P。和 对应在所述第三摄像机 32上投影的二维 坐标: As shown in Figure 3 (Figure 3 uses 640 * 480 resolution, other resolutions can be modified accordingly), the affine projection matrix used in the verification process is obtained by the following method: At least 6 sets (8 sets in FIG. 3) of the matching point pairs and corresponding three-dimensional coordinates Q and the matching point pairs P are collected at different positions. And corresponding to the two-dimensional coordinates projected on the third camera 32:
设置第三摄像机 32为坐标系,取所述坐标系中 8组不同位置的二维坐标; 当所述目标物的运动至所述匹配点对 P。和 在所述第三摄像机 32上投影 的二维坐标与以第三摄像机 32为坐标系的所述 8组不同位置的二维坐标重合 时,得到与所述 8组不同位置的二维坐标对应的 8组不同位置的所述匹配点对 Po和 对应的三维坐标^  The third camera 32 is set to be a coordinate system, and two sets of two-dimensional coordinates of different positions in the coordinate system are taken; when the target moves to the matching point pair P. And when the two-dimensional coordinates projected on the third camera 32 and the two-dimensional coordinates of the eight different positions in the coordinate system of the third camera 32 are coincident, the two-dimensional coordinates corresponding to the eight sets of different positions are obtained. 8 pairs of different positions of the matching point pairs Po and corresponding three-dimensional coordinates ^
建立方程公式:  Establish the equation formula:
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0001
Figure imgf000013_0002
Ax= b (15) Ax= b (15)
其中仿射投影矩阵参数为 其中 式(14)可简写为 The affine projection matrix parameter is where (14) can be abbreviated as
¾o ¾i a12 式(15) ; 采用线性最小二乘法计算参数 X: 3⁄4o 3⁄4i a 12 (15) ; Calculate the parameter X using linear least squares:
x= {ATAyl ATb ( 16) 。 采集至少 6组不同位置的所述匹配点对 P。和 Pi对应的三维坐标以及所述 匹配点对 P。和 对应在所述第三摄像机 32上投影的二维坐标的方法也可以通 过正确的匹配识别, 建立至少 6组对应的三维坐标和二维坐标来实现。 x= {A T Ay l A T b ( 16 ). Collecting at least 6 sets of the matching point pairs P at different positions. The three-dimensional coordinates corresponding to Pi and the matching point pair P. And the method corresponding to the two-dimensional coordinates projected on the third camera 32 can also be realized by correct matching recognition, establishing at least 6 sets of corresponding three-dimensional coordinates and two-dimensional coordinates.
作为本发明的优选实施例, 本发明的实现至少需要三台摄像机, 并保持摄 像机拍摄图像的同步性, 用于三维坐标建立的第一摄像机 21和第二摄像机 22 为安装有红外透射滤光片的摄像机, 使得通过第一摄像机 21和第二摄像机 22 的拍摄的图像进行的三维坐标建立可以有效地排除可见光的干扰,三维坐标建 立更加准确, 这种设置可以根据实际需要选用。 As a preferred embodiment of the present invention, the implementation of the present invention requires at least three cameras and maintains the synchronism of the captured images of the camera. The first camera 21 and the second camera 22 for three-dimensional coordinate establishment are equipped with infrared transmission filters. Camera through the first camera 21 and the second camera 22 The three-dimensional coordinates of the captured image can effectively eliminate the interference of visible light, and the three-dimensional coordinates are more accurate. This setting can be selected according to actual needs.
作为本发明的优选实施例,验证单元 3包括至少两个用于验证建立的三维 坐标的第三摄像机 32。 采用带有验证模块的多摄像机的验证, 进一步增加了 判断双摄像机的识别、匹配和建立的正确性。可以根据实际精度需要选择使用 验证用摄像机的数量。  As a preferred embodiment of the invention, the verification unit 3 comprises at least two third cameras 32 for verifying the established three-dimensional coordinates. The verification of multiple cameras with a verification module further increases the correctness of the identification, matching and establishment of the dual cameras. You can choose the number of cameras to use for verification based on actual accuracy.
作为本发明的优选实施例, 成像单元 2可以是多摄像机 (大于等于三个) 的目标投影成像系统,可以增加了判断多摄像机的识别、匹配和建立的正确性。  As a preferred embodiment of the present invention, the imaging unit 2 may be a multi-camera (greater than or equal to three) target projection imaging system, which may increase the accuracy of judging the recognition, matching and establishment of the multi-camera.
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相 关的技术领域, 均同理包括在本发明的专利保护范围内。  The above is only the embodiment of the present invention, and thus does not limit the scope of the patent of the present invention. The equivalent structural transformation made by using the specification and the drawings of the present invention, or directly or indirectly applied to other related technical fields, is the same. The scope of the invention is included in the scope of the patent protection of the present invention.

Claims

权 利 要 求 书 Claim
1、 一种目标投影方法, 其特征在于, 包括: A target projection method, comprising:
获取目标物在第一摄像机 (21 ) 和第二摄像机 (22 ) 中的匹配点对 ( 和 对应的三维坐标;  Obtaining a matching point pair (and corresponding three-dimensional coordinates of the object in the first camera (21) and the second camera (22);
获取第三摄像机 (32 ) 的仿射投影矩阵;  Obtaining an affine projection matrix of the third camera (32);
验证过程:  Verification process:
根据所述第三摄像机(32 )的仿射投影矩阵和所述目标物在第一摄像 机(21 )和第二摄像机(22 ) 中的匹配点对 (P。和 P 对应的三维坐标计算 所述目标物在所述第三摄像机 (32 ) 上的理论重心坐标;  Calculating according to the affine projection matrix of the third camera (32) and the matching point pair (P. and P corresponding to the three-dimensional coordinates of the target in the first camera (21) and the second camera (22) The theoretical center of gravity coordinates of the target on the third camera (32);
根据所述匹配点对 (P。和 P 对应的三维坐标计算所述目标物在第三 摄像机 (32 ) 上的理论投影大小;  Calculating a theoretical projection size of the target on the third camera (32) according to the matching point pair (P. and P corresponding to the three-dimensional coordinates;
获得所述目标物在所述第三摄像机 (32 ) 上投影的实际重心坐标; 获得所述目标物在所述第三摄像机 (32 ) 上的实际投影大小; 根据所述理论重心坐标和所述实际重心坐标的比较结果以及所述理 论投影大小和所述实际投影大小的比较结果共同判断所述匹配点对 (P。和 对应的三维坐标是否正确。  Obtaining an actual barycentric coordinate projected by the target on the third camera (32); obtaining an actual projected size of the target on the third camera (32); according to the theoretical barycentric coordinates and the The comparison result of the actual barycentric coordinates and the comparison result of the theoretical projection size and the actual projection size jointly determine whether the matching point pair (P. and the corresponding three-dimensional coordinates are correct).
2、 根据权利要求 1所述的目标投影方法, 其特征在于, 所述匹配点对 (Ρ。 和 P 对应的三维坐标通过标定过程和三维坐标建立过程获得:  2. The target projection method according to claim 1, wherein the matching point pairs (Ρ, and P correspond to three-dimensional coordinates obtained by a calibration process and a three-dimensional coordinate establishment process:
标定过程: 利用所述第一摄像机 (21)和所述第二摄像机 (22)的标定参数, 得到将所述第一摄像机 (21)和所述第二摄像机 (22)校正成平行摄像机的所述 第一摄像机 (21)的第一校正矩阵和所述第二摄像机 (22)的第二校正矩阵;  Calibration process: using the calibration parameters of the first camera (21) and the second camera (22), obtaining the correction of the first camera (21) and the second camera (22) into parallel cameras a first correction matrix of the first camera (21) and a second correction matrix of the second camera (22);
三维坐标建立过程: 通过对所述第一摄像机 (21)和所述第二摄像机 (22) 的目标识别匹配得到所述目标物在所述第一摄像机 (21 ) 和所述第二摄像机 (22 ) 中的匹配点对 (P。和 PJ ; 利用所述第一校正矩阵、 所述第二校正矩阵以 及所述匹配点对 (P。和 P 计算出所述匹配点对 (P。和 P 对应的三维坐标。  a three-dimensional coordinate establishing process: the object is obtained by the target recognition of the first camera (21) and the second camera (22) at the first camera (21) and the second camera (22) Matching point pairs (P. and PJ; using the first correction matrix, the second correction matrix, and the matching point pair (P. and P calculate the matching point pair (P. and P corresponding) The three-dimensional coordinates.
3、 根据权利要求 2所述的目标投影方法, 其特征在于, 所述标定参数包括 内部参数和外部匹配参数,所述内部参数通过立体标定板标定方法获得,所述 外部匹配参数米用固定顺序匹配所述第一摄像机 (21)和所述第二摄像机 (22) 采集的坐标数据, 然后利用利文贝格 -马夸特算法进行非线性最小二乘优化所 述固定顺序匹配所述第一摄像机 (21)和所述第二摄像机 (22)采集的坐标数据 来获得。 The target projection method according to claim 2, wherein the calibration parameter comprises an internal parameter and an external matching parameter, and the internal parameter is obtained by a stereo calibration plate calibration method, The external matching parameter meters match the coordinate data acquired by the first camera (21) and the second camera (22) in a fixed order, and then perform the nonlinear least squares optimization by the Levenberg-Marquard algorithm. The coordinate data acquired by the first camera (21) and the second camera (22) are sequentially matched to obtain.
4、 根据权利要求 3所述的目标投影方法, 其特征在于, 所述内部参数包 ax γ "o The target projection method according to claim 3, wherein the internal parameter package a x γ "o
括^ = 0 ay v0 a fl dx、 a = fl dy , 其中 "是摄像机焦距, dx、 dy^ Including ^ = 0 a y v 0 a fl dx, a = fl dy , where "is the camera focal length, dx, dy^
0 0 1 别是水平方向和竖直方向的像元间距, 、 是摄像机的光心, 是 u轴和 V 轴的不垂直因子; 径向畸 kl、 k2; 切向畸变参数 pl、 p2; 所述外部匹 0 0 1 is not the pixel spacing between the horizontal direction and the vertical direction, is the optical center of the camera, is the non-vertical factor of the u-axis and the V-axis; radial distortion kl, k2 ; tangential distortion parameters pl, p2 ; External
配参数包括旋转矩阵参数
Figure imgf000016_0001
Matching parameters including rotation matrix parameters
Figure imgf000016_0001
5、 根据权利要求 1所述的目标投影方法, 其特征在于, 所述仿射投影矩 阵通过以下方法获得:  The target projection method according to claim 1, wherein the affine projection matrix is obtained by the following method:
采集至少 6组不同位置的所述匹配点对 。和 P 对应的三维坐标以及所述 匹配点对 (P。和 PJ对应在所述第三摄像机 (32 ) 上投影的二维坐标;  Collecting at least 6 sets of matching point pairs at different locations. Three-dimensional coordinates corresponding to P and the pair of matching points (P. and PJ correspond to two-dimensional coordinates projected on the third camera (32);
根据所述至少 6组不同位置的所述匹配点对 (P。和 P 对应的三维坐标以及 所述匹配点对 (P。和 P 对应在所述第三摄像机(32 )上投影的二维坐标, 采用 线性最小二乘法算出仿射投影矩阵。  According to the matching point pair of the at least 6 sets of different positions (the three-dimensional coordinates corresponding to P and P and the matching point pair (P. and P correspond to the two-dimensional coordinates projected on the third camera (32)) The affine projection matrix is calculated by linear least squares method.
6、 根据权利要求 5所述的目标投影方法, 其特征在于, 所述采集至少 6 组不同位置的所述匹配点对 (P。和 PJ对应的三维坐标以及所述匹配点对 (P。和 PJ对应在所述第三摄像机 (32 ) 上投影的二维坐标通过以下方法获得:  The target projection method according to claim 5, wherein the acquiring at least 6 sets of different pairs of matching point pairs (P. and PJ corresponding three-dimensional coordinates and the matching point pair (P. and The two-dimensional coordinates of the PJ corresponding to the projection on the third camera (32) are obtained by the following methods:
设置第三摄像机(32 )为坐标系, 从所述坐标系取至少 6组不同位置的二 维坐标;  Setting a third camera (32) as a coordinate system, and taking at least 6 sets of two-dimensional coordinates of different positions from the coordinate system;
当所述目标物的运动至所述匹配点对 (P。和 P 在所述第三摄像机(32 )上 投影的二维坐标与所述从所述坐标系取至少 6组不同位置的二维坐标重合时, 得到与所述至少 6组不同位置的二维坐标对应的至少 6组不同位置的所述匹配 点对 (P。和 PJ对应的三维坐标。 Movement of the target to the pair of matching points (P. and P. 2D coordinates projected on the third camera (32) and 2D from the coordinate system taking at least 6 different positions When the coordinates coincide, the matching of at least 6 different sets of positions corresponding to the two-dimensional coordinates of the at least 6 different positions is obtained Point pair (P. and PJ corresponding to the three-dimensional coordinates.
7、 一种目标投影系统, 包括处理单元(1)、 成像单元 (2), 其特征在于, 还包括验证单元 (3), 所述成像系统(2)包括第一摄像机 (21)和第二摄像机 (22), 所述验证单元 (3) 包括验证模块 (31) 和第三摄像机 (32):  7. A target projection system, comprising a processing unit (1), an imaging unit (2), further comprising a verification unit (3), the imaging system (2) comprising a first camera (21) and a second a camera (22), the verification unit (3) comprising a verification module (31) and a third camera (32):
所述处理单元( 1 ):用于获取目标物在第一摄像机(21)和第二摄像机( 22 ) 中的匹配点对 (P。和 P 对应的三维坐标; 和获取第三摄像机(32) 的仿射投影 矩阵;  The processing unit (1) is configured to acquire a matching point pair (P. and P corresponding to the three-dimensional coordinates of the object in the first camera (21) and the second camera (22); and acquire the third camera (32) Affine projection matrix;
所述验证模块 (31): 用于根据所述第三摄像机 (32) 的仿射投影矩阵和 所述目标物在第一摄像机 (21) 和第二摄像机 (22) 中的匹配点对 ( 和 对应的三维坐标计算所述目标物在所述第三摄像机 (32) 上的理论重心坐标; 根据所述匹配点对 (P。和 P 对应的三维坐标计算所述目标物在第三摄像 机 (32) 上的理论投影大小;  The verification module (31): configured to match a pair of points according to the affine projection matrix of the third camera (32) and the target in the first camera (21) and the second camera (22) (and Calculating a theoretical center of gravity coordinate of the target on the third camera (32) according to the corresponding three-dimensional coordinates; calculating the target in the third camera according to the matching point pair (the three-dimensional coordinates corresponding to P and P) Theoretical projection size;
获得所述目标物在所述第三摄像机 (32) 上投影的实际重心坐标; 获得所述目标物在所述第三摄像机 (32) 上的实际投影大小;  Obtaining an actual barycentric coordinate projected by the target on the third camera (32); obtaining an actual projected size of the target on the third camera (32);
根据所述理论重心坐标和所述实际重心坐标的比较结果以及所述理论投 影大小和所述实际投影大小的比较结果共同判断所述匹配点对 (P。和 P 对应 的三维坐标是否正确。  And determining, according to a comparison result of the theoretical barycentric coordinates and the actual barycentric coordinates, and a comparison result of the theoretical projection size and the actual projection size, whether the three-dimensional coordinates corresponding to the matching point pair (P. and P) are correct.
8、 根据权利要求 7所述的目标投影系统, 其特征在于, 所述处理单元(1) 包括标定模块 (11) 和三维坐标建立模块 (12):  8. The target projection system according to claim 7, wherein the processing unit (1) comprises a calibration module (11) and a three-dimensional coordinate creation module (12):
所述标定模块( 11 ):用于利用所述第一摄像机 (21)和所述第二摄像机 (22) 的标定参数,得到将所述第一摄像机 (21)和所述第二摄像机 (22)校正成平行摄 像机的所述第一摄像机 (21)的第一校正矩阵和所述第二摄像机 (22)的第二校 正矩阵;  The calibration module (11) is configured to obtain the first camera (21) and the second camera (22) by using calibration parameters of the first camera (21) and the second camera (22) Correcting a first correction matrix of the first camera (21) of the parallel camera and a second correction matrix of the second camera (22);
所述三维坐标建立模块 (12): 用于通过对所述第一摄像机 (21)和所述第 二摄像机 (22)的目标识别匹配得到所述目标物在所述第一摄像机(21 )和所述 第二摄像机(22) 中的匹配点对 (P。和 PJ; 利用所述第一校正矩阵、 所述第二 校正矩阵以及所述匹配点对 (P。和 P 计算出所述匹配点对 (P。和 P 对应的三维 坐标。 The three-dimensional coordinate establishing module (12): configured to obtain the target object in the first camera (21) by matching target recognition of the first camera (21) and the second camera (22) Matching point pairs (P. and PJ in the second camera (22); calculating the matching points by using the first correction matrix, the second correction matrix, and the matching point pair (P. and P) The three-dimensional coordinates corresponding to (P. and P).
9、 根据权利要求 8所述的目标投影系统, 其特征在于, 所述标定参数包 括内部参数和外部匹配参数,所述内部参数通过立体标定板标定方法获得, 所 述外部匹配参数采用固定顺序匹配所述第一摄像机 (21)和所述第二摄像机 (22) 采集的坐标数据, 然后利用利文贝格 -马夸特算法进行非线性最小二乘优化所 述固定顺序匹配所述第一摄像机 (21)和所述第二摄像机 (22)采集的坐标数据 来获得。 9. The target projection system according to claim 8, wherein the calibration parameter comprises an internal parameter and an external matching parameter, the internal parameter is obtained by a stereo calibration plate calibration method, and the external matching parameter is matched by a fixed order. The coordinate data collected by the first camera (21) and the second camera (22) are then subjected to nonlinear least squares optimization using the Levinberg-Marquard algorithm to match the first camera to the fixed sequence ( 21) and coordinate data acquired by the second camera (22) are obtained.
10、根据权利要求 9所述的目标投影系统, 其特征在于, 所述内部参数包 ax γ "o The target projection system according to claim 9, wherein said internal parameter package a x γ "o
括 = 0 ay v0 a fl dx、 a = fl dy , 其中 /是摄像机焦距, ώ:、 dy^ Include = 0 a y v 0 a fl dx, a = fl dy , where / is the camera focal length, ώ:, dy^
0 0 1 别是水平方向和竖直方向的像元间距, 、 是摄像机的光心, 是 u轴和 V 轴的不垂直因子; 径向畸 kl、 k2; 切向畸变参数 pl、 p2; 所述外部匹 0 0 1 is not the pixel spacing between the horizontal direction and the vertical direction, is the optical center of the camera, is the non-vertical factor of the u-axis and the V-axis; radial distortion kl, k2 ; tangential distortion parameters pl, p2 ; External
配参数包括旋转矩阵参数
Figure imgf000018_0001
Matching parameters including rotation matrix parameters
Figure imgf000018_0001
11、根据权利要求 7所述的目标投影系统, 其特征在于, 所述仿射投影矩 阵通过以下方法获得:  The target projection system according to claim 7, wherein the affine projection matrix is obtained by the following method:
采集至少 6组不同位置的所述匹配点对 (P。和 P 对应的三维坐标以及所述 匹配点对 (P。和 P 对应在所述第三摄像机 (32 ) 上投影的二维坐标;  Collecting at least 6 sets of different pairs of matching point pairs (P. and P corresponding to the three-dimensional coordinates and the matching point pair (P. and P corresponding to the two-dimensional coordinates projected on the third camera (32);
根据所述至少 6组不同位置的所述匹配点对 (P。和 P 对应的三维坐标以及 所述匹配点对 (P。和 P 对应在所述第三摄像机(32 )上投影的二维坐标, 采用 线性最小二乘法算出仿射投影矩阵。  According to the matching point pair of the at least 6 sets of different positions (the three-dimensional coordinates corresponding to P and P and the matching point pair (P. and P correspond to the two-dimensional coordinates projected on the third camera (32)) The affine projection matrix is calculated by linear least squares method.
12、 根据权利要求 11所述的目标投影系统, 其特征在于, 所述采集至少 6 组不同位置的所述匹配点对 (P。和 P 对应的三维坐标以及所述匹配点对 (P。 和 P 对应在所述第三摄像机 (32 ) 上投影的二维坐标通过以下方法获得: 设置第三摄像机(32 )为坐标系, 从所述坐标系取至少 6组不同位置的二 维坐标;  12. The target projection system according to claim 11, wherein the acquiring at least 6 sets of different pairs of matching point pairs (P. and P corresponding to three-dimensional coordinates and the matching point pair (P. and P corresponding to the two-dimensional coordinates projected on the third camera (32) is obtained by: setting a third camera (32) as a coordinate system, and taking at least 6 sets of two-dimensional coordinates of different positions from the coordinate system;
当所述目标物的运动至所述匹配点对 (P。和 P 在所述第三摄像机(32 )上 投影的二维坐标与所述从所述坐标系取至少 6组不同位置的二维坐标重合时, 得到与所述至少 6组不同位置的二维坐标对应的至少 6组不同位置的所述匹配 点对(P。和 P 对应的三维坐标。 When the target moves to the matching point pair (P. and P on the third camera (32) When the two-dimensional coordinates of the projection coincide with the two-dimensional coordinates of the at least six different positions from the coordinate system, the matching of at least six different positions corresponding to the two-dimensional coordinates of the at least six different positions is obtained. Point pair (P. and P corresponding to the three-dimensional coordinates.
13、根据权利要求 7所述的目标投影系统, 其特征在于, 所述第一摄像机 (21 ) 和所述第二摄像机 (22 ) 安装有红外透射滤光片。  The target projection system according to claim 7, wherein the first camera (21) and the second camera (22) are mounted with an infrared transmission filter.
14、根据权利要求 7所述的目标投影系统,其特征在于,所述验证单元(3 ) 包括至少两个所述第三摄像机 (32 )。  14. Target projection system according to claim 7, characterized in that the verification unit (3) comprises at least two of the third cameras (32).
15、根据权利要求 7所述的目标投影系统,其特征在于,所述成像单元(2 ) 还进一步包括至少一个成像用摄像机。  The target projection system according to claim 7, characterized in that the imaging unit (2) further comprises at least one imaging camera.
PCT/CN2010/072907 2010-05-19 2010-05-19 Object projection method and object projection sysytem WO2011143813A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/072907 WO2011143813A1 (en) 2010-05-19 2010-05-19 Object projection method and object projection sysytem
CN201080066634.7A CN102939562B (en) 2010-05-19 2010-05-19 Object projection method and object projection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072907 WO2011143813A1 (en) 2010-05-19 2010-05-19 Object projection method and object projection sysytem

Publications (1)

Publication Number Publication Date
WO2011143813A1 true WO2011143813A1 (en) 2011-11-24

Family

ID=44991160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072907 WO2011143813A1 (en) 2010-05-19 2010-05-19 Object projection method and object projection sysytem

Country Status (2)

Country Link
CN (1) CN102939562B (en)
WO (1) WO2011143813A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754434A (en) * 2018-12-27 2019-05-14 歌尔科技有限公司 Camera calibration method, apparatus, user equipment and storage medium
CN110728715A (en) * 2019-09-06 2020-01-24 南京工程学院 Camera angle self-adaptive adjusting method of intelligent inspection robot
CN110827196A (en) * 2018-09-05 2020-02-21 天目爱视(北京)科技有限公司 Device capable of simultaneously acquiring 3D information of multiple regions of target object
CN111127560A (en) * 2019-11-11 2020-05-08 江苏濠汉信息技术有限公司 Calibration method and system for three-dimensional reconstruction binocular vision system
CN112509035A (en) * 2020-11-26 2021-03-16 江苏集萃未来城市应用技术研究所有限公司 Double-lens image pixel point matching method for optical lens and thermal imaging lens
CN112651427A (en) * 2020-12-03 2021-04-13 中国科学院西安光学精密机械研究所 Image point fast and efficient matching method for wide-base-line optical intersection measurement
CN113610931A (en) * 2021-08-13 2021-11-05 南京航空航天大学 Machine vision method for measuring parachute-shaped state parameters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699274B (en) * 2013-12-27 2017-02-15 三星电子(中国)研发中心 Information input device and method based on projection and infrared sensing
CN109887002A (en) * 2019-02-01 2019-06-14 广州视源电子科技股份有限公司 Matching process, device, computer equipment and the storage medium of image characteristic point

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333880A (en) * 2003-05-08 2004-11-25 Sony Corp Apparatus for making holographic stereogram
JP2005017262A (en) * 2003-06-27 2005-01-20 Pasuko:Kk Three-dimensional surveying system and three-dimensional space object restoring method
CN1946195A (en) * 2006-10-26 2007-04-11 上海交通大学 Scene depth restoring and three dimension re-setting method for stereo visual system
CN101571953A (en) * 2009-05-20 2009-11-04 深圳泰山在线科技有限公司 Object detection method, system and stereoscopic vision system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991501B2 (en) * 1999-04-16 2007-10-17 コニカミノルタセンシング株式会社 3D input device
US6606406B1 (en) * 2000-05-04 2003-08-12 Microsoft Corporation System and method for progressive stereo matching of digital images
JP2001320652A (en) * 2000-05-11 2001-11-16 Nec Corp Projector
US7103212B2 (en) * 2002-11-22 2006-09-05 Strider Labs, Inc. Acquisition of three-dimensional images by an active stereo technique using locally unique patterns
DE602004015799D1 (en) * 2003-07-24 2008-09-25 Cognitens Ltd METHOD AND SYSTEM FOR THE THREE-DIMENSIONAL SURFACE RECONSTRUCTION OF AN OBJECT
US20100220932A1 (en) * 2007-06-20 2010-09-02 Dong-Qing Zhang System and method for stereo matching of images
JP2009047498A (en) * 2007-08-17 2009-03-05 Fujifilm Corp Stereoscopic imaging device, control method of stereoscopic imaging device, and program
CN101706957B (en) * 2009-10-30 2012-06-06 无锡景象数字技术有限公司 Self-calibration method for binocular stereo vision device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333880A (en) * 2003-05-08 2004-11-25 Sony Corp Apparatus for making holographic stereogram
JP2005017262A (en) * 2003-06-27 2005-01-20 Pasuko:Kk Three-dimensional surveying system and three-dimensional space object restoring method
CN1946195A (en) * 2006-10-26 2007-04-11 上海交通大学 Scene depth restoring and three dimension re-setting method for stereo visual system
CN101571953A (en) * 2009-05-20 2009-11-04 深圳泰山在线科技有限公司 Object detection method, system and stereoscopic vision system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110827196A (en) * 2018-09-05 2020-02-21 天目爱视(北京)科技有限公司 Device capable of simultaneously acquiring 3D information of multiple regions of target object
CN109754434A (en) * 2018-12-27 2019-05-14 歌尔科技有限公司 Camera calibration method, apparatus, user equipment and storage medium
CN109754434B (en) * 2018-12-27 2023-08-29 歌尔科技有限公司 Camera calibration method, device, user equipment and storage medium
CN110728715A (en) * 2019-09-06 2020-01-24 南京工程学院 Camera angle self-adaptive adjusting method of intelligent inspection robot
CN111127560A (en) * 2019-11-11 2020-05-08 江苏濠汉信息技术有限公司 Calibration method and system for three-dimensional reconstruction binocular vision system
CN112509035A (en) * 2020-11-26 2021-03-16 江苏集萃未来城市应用技术研究所有限公司 Double-lens image pixel point matching method for optical lens and thermal imaging lens
CN112651427A (en) * 2020-12-03 2021-04-13 中国科学院西安光学精密机械研究所 Image point fast and efficient matching method for wide-base-line optical intersection measurement
CN112651427B (en) * 2020-12-03 2024-04-12 中国科学院西安光学精密机械研究所 Image point rapid and efficient matching method for wide-baseline optical intersection measurement
CN113610931A (en) * 2021-08-13 2021-11-05 南京航空航天大学 Machine vision method for measuring parachute-shaped state parameters

Also Published As

Publication number Publication date
CN102939562A (en) 2013-02-20
CN102939562B (en) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2011143813A1 (en) Object projection method and object projection sysytem
CN109272570B (en) Space point three-dimensional coordinate solving method based on stereoscopic vision mathematical model
CN111243033B (en) Method for optimizing external parameters of binocular camera
TWI555378B (en) An image calibration, composing and depth rebuilding method of a panoramic fish-eye camera and a system thereof
US8897502B2 (en) Calibration for stereoscopic capture system
WO2018209968A1 (en) Camera calibration method and system
WO2018049843A1 (en) Three-dimensional sensor system and three-dimensional data acquisition method
WO2012039043A1 (en) Stereo image generating unit, method of generating stereo image, and stereo image generating computer program
CN112734863B (en) Crossed binocular camera calibration method based on automatic positioning
EP1087336A3 (en) Apparatus and method for stereoscopic image processing
CN113256730A (en) System and method for dynamic calibration of an array camera
CN111383194B (en) Polar coordinate-based camera distortion image correction method
CN1801953A (en) Video camera reference method only using plane reference object image
CN106952219B (en) Image generation method for correcting fisheye camera based on external parameters
CN111080709A (en) Multispectral stereo camera self-calibration algorithm based on track feature registration
CN106886976B (en) Image generation method for correcting fisheye camera based on internal parameters
CN111435539A (en) Multi-camera system external parameter calibration method based on joint optimization
WO2007007924A1 (en) Method for calibrating distortion of multi-view image
CN116957987A (en) Multi-eye polar line correction method, device, computer equipment and storage medium
CN114219866A (en) Binocular structured light three-dimensional reconstruction method, reconstruction system and reconstruction equipment
CN111292380B (en) Image processing method and device
CN108322730A (en) A kind of panorama depth camera system acquiring 360 degree of scene structures
CN109990756B (en) Binocular ranging method and system
JP7033294B2 (en) Imaging system, imaging method
CN115393555A (en) Three-dimensional image acquisition method, terminal device and storage medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066634.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851572

Country of ref document: EP

Kind code of ref document: A1