WO2011142461A1 - Antibody for diagnosing amyotrophic lateral sclerosis (als) - Google Patents

Antibody for diagnosing amyotrophic lateral sclerosis (als) Download PDF

Info

Publication number
WO2011142461A1
WO2011142461A1 PCT/JP2011/061069 JP2011061069W WO2011142461A1 WO 2011142461 A1 WO2011142461 A1 WO 2011142461A1 JP 2011061069 W JP2011061069 W JP 2011061069W WO 2011142461 A1 WO2011142461 A1 WO 2011142461A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
sod1
mutated
Prior art date
Application number
PCT/JP2011/061069
Other languages
French (fr)
Japanese (ja)
Inventor
秀憲 一條
英起 西頭
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2012514849A priority Critical patent/JP5828521B2/en
Publication of WO2011142461A1 publication Critical patent/WO2011142461A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90283Oxidoreductases (1.) acting on superoxide radicals as acceptor (1.15)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders

Definitions

  • the present invention relates to an antibody that can be used for diagnosis of amyotrophic lateral sclerosis (ALS).
  • the present invention also relates to a method for detecting the risk of developing amyotrophic lateral sclerosis (ALS) using such an antibody.
  • ALS Amyotrophic lateral sclerosis
  • motor nerves are selectively impaired, with approximately 7,000 patients in Japan and 40,000 patients in the United States. There is. This disease mainly develops in the middle period, muscle atrophy gradually spreads throughout the body, difficult to walk, speech disorder, dysphagia, respiratory disorder, and after the onset 3 It is a very serious disease that will die in 5 years. Since the disease progresses while the patient is conscious, the physical and mental damage to the patient and the caregiver is extremely large.
  • ⁇ Although ALS has been designated as a “target disease for overcoming intractable diseases,” efforts to develop therapeutic agents have been delayed.
  • the current treatment is only the prevention of muscle weakness through moderate rehabilitation and the temporary delay in the progression of disease due to riluzole (suppressing the release of glutamate to nerve endings), which is the only insurance indication, and is based on the molecular mechanism of ALS pathology. There is no effective treatment.
  • Breakthrough in elucidating the cause of ALS is a mutation in Cu / Zn superoxide dismutase 1 (SOD1) identified by Rosen et al. In 1993 as a causative gene for familial ALS. About 10% of all ALS patients are familial, of which about 20% (ie, about 2% of all ALS patients) are due to SOD1 gene mutations. In ALS, it is known that mutant SOD1 protein accumulates abnormally.
  • SOD1 Cu / Zn superoxide dismutase 1
  • endoplasmic reticulum stress is deeply involved as a molecular mechanism of neuronal cell death by mutant SOD1 protein in ALS (Japanese Patent Laid-Open No. 2007-151478; Nishitohshitet al. Genes Dev. 2008). That is, as one of the target proteins to which the mutant SOD1 protein specifically binds, the endoplasmic reticulum membrane protein Derlin-1, which plays an important role in the quality control of the endoplasmic reticulum, was identified, and the mutant SOD1 protein and Derlin-1 It was found that the binding causes the breakdown of the endoplasmic reticulum quality control mechanism of nerve cells and induces endoplasmic reticulum stress.
  • An object of the present invention is to elucidate a part of the molecular mechanism of the onset of amyotrophic lateral sclerosis (ALS) and to detect the risk of ALS using the elucidated molecular mechanism of the onset of ALS. To do.
  • ALS amyotrophic lateral sclerosis
  • the present invention has solved the above problems by providing a method for detecting the risk of ALS by detecting mutant SOD1 protein. That is, in order to detect mutant SOD1 protein, the present invention solves the above problem by providing an antibody that does not bind to wild-type (ie, normal) SOD1 protein but binds to mutant SOD1 protein. did.
  • the present invention relates to SEQ ID NO: 4 amino acid sequence, SEQ ID NO: 4 amino acid sequence, SEQ 1ID NO: 5, compared to a protein consisting of the amino acid sequence of SEQ ID NO: 2.
  • a three-dimensional structure of a polypeptide region comprising an amino acid sequence, an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 5, an amino acid sequence in SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 Changes have been completed based on the fact that the changes have been shown to be associated with the risk of amyotrophic lateral sclerosis (ALS).
  • ALS amyotrophic lateral sclerosis
  • a cell-containing sample collected from a subject is screened with an antibody that binds to a mutant SOD1 protein, and the By detecting the protein that binds to the antibody, except for the protein consisting of the amino acid sequence of SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 2, the amino acid sequence of SEQ ID NO: 4, the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, SEQ ID ⁇ ⁇ NO: 5 amino acid sequence, SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 5 amino acid sequence mutated, SEQ ID NO: ⁇ ⁇ ⁇ 6 amino acid sequence, or SEQ ID NO: ⁇ ⁇ 6 amino acid sequence mutated
  • a method for detecting the risk of ALS is provided by detecting peptides.
  • the mutant SOD1 protein is detected by detecting only the mutant SOD1 protein using an antibody that does not bind to the wild-type (ie, normal) SOD1 protein but binds to the mutant SOD1 protein.
  • antibodies include the amino acid sequence of Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4), the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, Lys Val Trp Gly Ser
  • the amino acid sequence of Ile Lys Gly Leu Thr Glu SEQ ID NO: 5
  • the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 5 the amino acid of Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: 6)
  • Mention may be made of antibodies that bind to a sequence or a polypeptide comprising an amino acid sequence in which one amino acid has been mutated in SEQ ID NO: 6.
  • This detection method did not detect the wild-type SOD1 protein consisting of the amino acid sequence of SEQ ID NO: 2, but one amino acid was mutated in SEQ ID NO: 4 in the mutant SOD1 protein, SEQ ⁇ ID NO: 4.
  • Amino acid sequence, SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 5 amino acid sequence, SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 5 amino acid sequence mutated, SEQ ID NO: 6 amino acid sequence, or SEQ ID NO: 6 amino acid sequence If a conformational change of the polypeptide region containing the sequence is detected, it is determined that the individual who is the source of the sample is at risk of developing ALS.
  • an amino acid sequence of Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4), an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5) amino acid sequence, SEQ ID NO: 5 amino acid sequence mutated, Arg ⁇ ⁇ ⁇ ⁇ Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: 6)
  • antibodies themselves that bind to an amino acid sequence or a polypeptide comprising an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6.
  • the substance to which the antibody binds is the amino acid sequence of SEQ ID NO: 4, the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, SEQ ID ID NO: Mutant SOD1 protein with a conformational change in a polypeptide region comprising an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 That is, the antibody of the present invention can detect a mutant SOD1 protein.
  • the antibody of the present invention has amino acid numbers 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 22, 29, 37 in the amino acid sequence of SEQ ID NO: 2.
  • any one amino acid residue selected from the group consisting of 1 amino acid substitution, deletion or addition can be detected.
  • the mutant SOD1 protein produced by the mutation is SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 4 amino acid sequence, SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 4 amino acid sequence, ID ⁇ ⁇ NO: 5 amino acid sequence, SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 5 amino acid sequence mutated, SEQ ID NO: ⁇ ⁇ ⁇ ⁇ 6 amino acid sequence, or SEQ ID NO: ⁇ ⁇ 6 amino acid sequence mutated It is possible to detect whether or not it is accompanied by a change in the three-dimensional structure of the peptide region.
  • the amino acid sequence of SEQ ID NO: ⁇ 4 to which the above antibody binds was mutated Conformational changes in the polypeptide region containing the amino acid sequence, the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence in which 1 amino acid is mutated in SEQ ID NO: X6 is associated with amyotrophic lateral sclerosis (ALS) It was shown that it has the feature of.
  • ALS amyotrophic lateral sclerosis
  • the antibody produced and used in the present invention may be a monoclonal antibody or a polyclonal antibody, but is preferably a monoclonal antibody.
  • # 406, # 659, or # 785 (Deposit numbers NITE P-941, NITE BP-942, and NITE BP-943 (the deposit date is May 12, 2010)) or # 27 (deposit number NITE BP-1100) (the deposit date is 2011)
  • # 27 deposit number NITE BP-1100
  • an amino acid when “mutated” in a specific sequence, it means that the amino acid is deleted, the amino acid is substituted, or the amino acid is added. To do.
  • antibody also includes antibody fragments or modified antibodies that bind to mutant SOD1 protein.
  • an antibody fragment for example, Fab, F (ab ′) 2 , Fv of the above-described monoclonal antibody, or single chain Fv derived from the above-described antibody (H chain Fv and L chain Fv are bound by a linker) Stuff, scFv).
  • an antibody fragment is treated with an enzyme such as papain or pepsin, or a gene encoding the antibody fragment is constructed, incorporated into an expression vector, and the vector in an appropriate host cell. It can also be prepared recombinantly by expressing.
  • an antibody bound to various molecules such as polyethylene glycol (PEG) can be used.
  • a method for detecting the risk of ALS can be newly provided by detecting a mutant SOD1 protein.
  • the present invention further provides an antibody that does not bind to wild-type (ie, normal) SOD1 protein but binds to mutant SOD1 protein, which can be used to detect mutant SOD1 protein in the above method. You can also. With these effects, it is possible to reliably detect ALS or the risk of ALS that has been difficult to differentiate clinically until now.
  • Figure 1 shows the amino acid sequence of wild-type SOD1 protein (identical to SEQ ID NO: 2) and its specific mutations that are known to be involved in familial amyotrophic lateral sclerosis (ALS) It is a figure which shows the variation
  • FIG. 2 shows that among the antibodies of the present invention, five antibodies derived from hybridomas # 242, # 406, # 659, # 785, and # 1175 were able to detect Flag-SOD1 (G93A).
  • FIG. FIG. 3 shows that among the antibodies of the present invention, three types of antibodies derived from hybridomas # 406, # 659, and # 785 can detect Flag-SOD1 (G85R) in addition to Flag-SOD1 (G93A).
  • FIG. 4-1 shows that various mutant SOD1 proteins can be precipitated (ie, detected) by an antibody obtained from a # 785 hybridoma selected as one of the antibodies of the present invention. It is.
  • FIG. 4-2 shows that various mutant SOD1s can be precipitated (ie, detected) by the antibody obtained from the # 785 hybridoma selected as one of the antibodies of the present invention. is there.
  • FIG. 4-3 is a diagram showing that various mutant SOD1s can be precipitated (ie, detected) by an antibody obtained from the # 785 hybridoma selected as one of the antibodies of the present invention. is there.
  • FIG. 4-1 shows that various mutant SOD1 proteins can be precipitated (ie, detected) by an antibody obtained from a # 785 hybridoma selected as one of the antibodies of the present invention. It is.
  • FIG. 4-2 shows that various mutant SOD1s can be precipitated (ie, detected) by the antibody obtained from the # 785 hybridoma selected as one of the antibodies of the present
  • FIG. 5 shows that antibodies derived from the # 27 hybridoma of the present invention were able to detect Flag-SOD1 (A4V), Flag-SOD1 (G93A) and Flag-SOD1 (G85R) (FIG. 5). 5A), and in addition to these, various mutant SOD1 proteins having mutations in the region corresponding to SEQ ID NO: 4 in the amino acid sequence of SEQ ID NO: 2 (peptide region consisting of the 6th to 16th amino acid sequences)
  • FIG. 5 shows that immunoprecipitation is possible (FIG. 5B).
  • FIG. 6 shows that the antibody obtained from the # 406 hybridoma selected as one of the antibodies of the present invention also shows the conformational change (exposed to the Derlin-1 binding site) associated with the mutation of SOD1 protein in cell immunostaining. It is a figure which shows that it can detect.
  • FIG. 7 shows that an antibody obtained from the # 785 hybridoma selected as one of the antibodies of the present invention is a mutant SOD1 protein in the cytoplasm of B cells in the blood of an amyotrophic lateral sclerosis (ALS) individual. It is a figure which shows that an immunoprecipitation is possible.
  • ALS amyotrophic lateral sclerosis
  • Amyotrophic lateral sclerosis is known as a conformational disease, and the causative protein of familial ALS among these diseases is SOD1 protein.
  • the amino acid sequence of the wild-type human SOD1 (superoxide dismutase 1) protein and the nucleotide sequence of the gene encoding it are available as GenBank Accession No. NM_000454.
  • the protein The amino acid sequence is described as SEQ ID NO: 2 and the nucleotide sequence encoding it is described as SEQ ID NO: 1.
  • SEQ ID NO: 2 it is common in the art to exclude the first methionine of the wild-type SOD1 protein when counting the amino acid number of the SOD1 protein.
  • the amino acid sequence of SEQ ID NO: 2 is described as the amino acid sequence disclosed in GenBank Accession No. NM_000454 excluding the first methionine.
  • SEQ AIDV based on the amino acid sequence number of SEQ ID NO: X 2) G85R, G93A, and L126stop
  • CT4 Derlin-1
  • the mutant SOD1 protein can be combined with Derlin-1, depending on the mutant SOD1 protein, each mutant amino acid site. It was unlikely that this was due to the formation of a Derlin-1 binding site in the vicinity, and it was thought that a Derlin-1 binding region originally existed in the amino acid sequence of the wild-type SOD1 protein.
  • the peptide region consisting of the 5th to 18th amino acid sequence (SEQ ID NO: 3) hidden in the 3D structure is 3D structurally exposed in the mutant SOD1 protein involved in familial ALS.
  • an antibody capable of binding to a peptide region consisting of amino acids 5 to 18 (SEQ ID NO: 3) in the amino acid sequence of the mutant SOD1 protein (SEQ ID NO: 2) is prepared. It was decided to.
  • the N-terminal Val and the C-terminal two Ile are hydrophobic, which may reduce the water solubility of the immunogen.
  • the peptide region consisting of the amino acid sequence (Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4)) was used as an immunogen.
  • the resulting antibody binds to the mutant SOD1 protein actually produced in the cell (eg, G85R and G93A), but does not bind to the wild-type SOD1 protein (SEQ ID NO: 2) Using these as indicators, screening was performed and candidate antibodies were selected. At that time, as described above, it was suggested that binding between Derlin-1 and mutant SOD1 protein may result from a change in conformation based on mutation in SOD1 protein. Screening was performed below (ie, without destroying the SOD1 protein conformation).
  • an amino acid sequence of Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4) or an amino acid in which one amino acid is mutated in SEQ ID NO: 4
  • Antibodies that bind to a polypeptide comprising the sequence are provided.
  • an antibody having the characteristics of binding to a mutant SOD1 protein (eg, G85R and G93A) but not to a wild type SOD1 protein (SEQ ID NO: 2) is further searched. did.
  • the 5-18th amino acid sequence (SEQ ID NO: 3) of the wild-type SOD1 protein (SEQ ID NO: 2) formed a ⁇ -strand structure.
  • ⁇ -strand structure formed by peptide region (Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5)) consisting of amino acids 30-40 amino acids on the N-terminal side or C-terminal side 143- It is clear that the ⁇ -strand structure formed by the peptide region consisting of the 151st amino acid (Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: ⁇ 6)) is located in close proximity to each other became. And by having such a structure, all of the three ⁇ -strand structures described above are concealed in the three-dimensional structure in the wild-type SOD1 protein, but are three-dimensionally exposed in the mutant SOD1 protein, It was expected to be detectable by the antibody
  • the three-dimensional structure is hidden in the wild-type SOD1 protein, but as a candidate polypeptide region that is three-dimensionally exposed in the mutant-type SOD1 protein, among the wild-type SOD1 protein (SEQ ID NO: 2), Two peptide regions that are three-dimensionally close to the 5th to 18th amino acid sequence that changes its structure due to mutation, a peptide region consisting of amino acids 30 to 40 on the N-terminal side (Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5)) or a peptide region consisting of amino acids 143 to 151 on the C-terminal side (Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: 6)) was selected and used as an immunogen ( (Double underlined part in Fig. 1)
  • the resulting antibody binds to the mutant SOD1 protein actually produced in the cell (eg, G85R and G93A), but does not bind to the wild-type SOD1 protein (SEQ ID NO: 2) Using these as indicators, screening was performed under non-denaturing conditions (ie, without destroying the three-dimensional structure of the SOD1 protein), and candidate antibodies were selected. As a result, it was possible to obtain one type of hybridoma cell line, # 27 (NITE BP-1100; the date of entrustment was May 12, 2011) that produced an antibody having the desired characteristics.
  • the amino acid sequence of Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5) or Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NOle)
  • An antibody that binds to a polypeptide comprising: 6) is provided.
  • the antibody of the present invention does not bind to a protein consisting of the amino acid sequence of SEQ ID NO: 2 (ie, wild type SOD1 protein), but the other amino acid sequence of SEQ ID NO: 4, SEQ ID NO: 4 1 amino acid sequence mutated in SEQ ID NO: 5 amino acid sequence, SEQ ID ⁇ ⁇ NO: amino acid sequence mutated in 1 amino acid in SEQ ID NO: ⁇ ⁇ ⁇ 6 amino acid sequence, or in SEQ ID NO: 6 A polypeptide comprising an amino acid sequence in which one amino acid is mutated can be bound.
  • amino acid sequence of SEQ ID NO: 4 to which these antibodies are bound the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, the amino acid sequence of SEQ ID ⁇ ⁇ ⁇ NO: 5, SEQ ID NO: 5
  • a polypeptide comprising an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 includes a mutant SOD1 protein, and more Specifically, among the amino acid sequences of SEQ ID NO: 2, for example, amino acid numbers 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 22, 29, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 57, 59, 65, 66, 72, 76, 80, 84, 85, 86, 87, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 111, 112, 113, 114, 115, 116,
  • mutant SOD1 protein for example, but not limited to, for example, G85R and G93A
  • wild-type SOD1 protein By using an antibody that does not bind to SEQ ID NO: 2), screening for a cell-containing sample taken from a subject and detecting the protein that binds to that antibody, the sequence of SEQ ID NO: 2
  • Example 1 Production of antibody against mutant SOD1 protein (1)
  • the purpose was to produce an antibody that does not bind to the wild-type SOD1 protein but can bind to the mutant SOD1 protein.
  • the peptide consisting of amino acids 6 to 16 of this SOD1 protein was complexed with keyhole limpet hemocyanin (KLH; Operon) and prepared to 1 mg / mL. 400 ⁇ L of a peptide solution of a peptide consisting of amino acids 6 to 16 of SOD1 protein and 800 ⁇ L of Freund's complete adjuvant (Sigma) were stirred and emulsified with a Luer syringe to obtain an antigen. The prepared antigen was intradermally injected into 3 rats (WKY / Izm female, 8 weeks old at the time of immunization; Japan Marie) in an amount of 100 ⁇ L per leg from the hindlimb paws.
  • KLH keyhole limpet hemocyanin
  • This mouse myeloma cell line arose from the stock 4 days before the scheduled fusion date with cells collected from the immunized mouse, and on the day of cell fusion, 6 10 cm dishes per rat were confluent with myeloma cells. Sowed.
  • the GIT medium was removed by aspiration, and 4 ⁇ mL of DMEM high glucose (this culture medium is simply referred to as “DMEM”; Sigma Aldrich) was added to each dish to remove SP2.
  • the suspension was collected in a 50-mL Falcon tube, centrifuged at 1000-rpm for 3 minutes, and the supernatant was removed by suction. Further, the cells were suspended in 20 mL of DMEM and centrifuged again at 1000 rpm for 3 minutes, and the supernatant was removed by suction. Finally, the cells were suspended in 5 mL DMEM to prepare SP2 cell solution used for fusion.
  • the rat immunized in (1) was deeply anesthetized with ether, and blood was collected from the heart. Then, after cervical dislocation and lethal death, the abdomen was opened and the iliac lymph nodes were removed. Using a cell strainer (Becton, “Dickinson” and “Company”), lymph node tissue cells containing antibody-producing B cells were recovered from 2 lymph nodes in 2 mL of DMEM.
  • a cell strainer Becton, “Dickinson” and “Company”
  • the lymph node cell solution was added to the SP2 cell solution, suspended in DMEM to a total volume of 40 mL, and then centrifuged at 1200 rpm for 10 minutes. The supernatant was removed by aspiration, and the precipitate was loosened by tapping. Then, it was held by hand and incubated at body temperature for 2 minutes. 1 mL of polyethylene glycol (PEG) prepared in advance was slowly added dropwise over 1 minute while shaking the falcon tube. The Falcon tube was shaken and rotated to perform a cell fusion reaction for 2 minutes.
  • PEG polyethylene glycol
  • HAT medium For HAT medium, dissolve 6 ml of thymidine (Wako Pure Chemical Industries) and hypoxanthine (Wako Pure Chemical Industries) solution at 60 °C, stir with aminopterin (Wako Pure Chemical Industries) 0.6 ml, and filter with 0.22 ⁇ m filter (Millipore). Of these, 6 ml is prepared by dissolving in 555 ml of GIT medium (Wako Pure Chemicals) containing 10% FBS.
  • the cell solution of the lymph node tissue cells described above was seeded at 100 ⁇ L / well in four 96-well plates and cultured in HAT medium for about 7 to 10 days to obtain hybridoma cells.
  • Hybridomas cultured in 24-well plates were suspended by pipetting, and the cells were diluted in an appropriate amount of culture solution (HAT medium) and the number of cells was counted.
  • HAT medium culture solution
  • This cell solution was added to 30 mL of HAT medium supplemented with 10% BM condimed H1 so as to be 0.5 cells / 150 ⁇ L / well and 1.5 cells / 150 ⁇ L / well, and seeded on two 96-well plates at 200 ⁇ L / well.
  • each of the obtained hybridomas was further grown in a culture solution (HAT medium), and further screening was performed using the culture supernatant of the well in which colonies were formed. .
  • a circular vector pcDNA3 treated with a BamHI-EcoRI restriction enzyme from a nucleotide sequence (ggatccaccg ccatggacta caaggacgat gatgacaagg gcgaattc; SEQ ID NO: 8) encoding Flag (Asp Tyr Lys Asp Asp Asp Lys; SEQ ID NO: 9). It was introduced into the multicloning site of 0 vector (Invitrogen) (pcDNA3-Flag vector).
  • nucleotides encoding SOD1 (G93A) (SEQ ID NO: 11) are obtained by performing PCR using primers (gaattcgcga cgaaggccg (SEQ ID NO: 14) and ggatccttgg gcgatcccaa tt (SEQ ID NO: 15)).
  • the sequence (SEQ ID NO: 10) was amplified while introducing EcoRI and XhoI restriction enzyme sites at both ends.
  • This PCR product is treated with EcoRI-XhoI, and then introduced into the cloning site of pcDNA3-Flag vector treated with EcoRI-XhoI, so that the nucleotide sequence encoding SEQ ID NO: 8 and SOD1 (G93A)
  • a pcDNA3-Flag-SOD1 (G93A) vector containing Flag-SOD1 (G93A) fused with the encoding nucleotide sequence (SEQ ID NO: 10) was prepared.
  • the pcDNA3-Flag-SOD1 (G93A) vector having this nucleotide sequence was introduced into HEK293A cells using FuGENE6 (Roche).
  • the cell lysate prepared as described above was immunoprecipitated with the hybridoma culture supernatant.
  • Detection was performed by a highly sensitive chemiluminescence method (enhanced chemiluminescence; ECL) (GE Healthcare).
  • primary antibodies include anti-Flag antibody (M2; Sigma), anti-SOD1 antibody (SOD-100; Stressgen), secondary antibodies include anti-mouse IgG antibody (GE Healthcare), and anti-rat IgG antibody (Cell signaling).
  • Anti-rabbit IgG antibody (Cell signaling) both HRP-labeled were used.
  • Flag-SOD1 (G93A) could be detected in the hybridoma supernatants # 242, # 406, # 659, # 785, and # 1175 (FIG. 2).
  • Flag-SOD1 (G85R) transgenic cells are also cultured in the same manner, and Flag-SOD1 (G85R) is The cells were overexpressed, the cell lysate was immunoprecipitated with the above five hybridoma supernatants, and immunoprecipitated Flag-SOD1 (G85R) was further examined by Western blotting.
  • the nucleotide sequence of the gene encoding Flag-SOD1 (G85R) was introduced into the pcDNA3-Flag vector prepared in (5) and formed in the pcDNA3-Flag-SOD1 (G85R) vector as follows. . PCR using primers (gaattcgcga cgaaggccg (SEQ ID NO: 14) and ggatccttgg gcgatcccaa tt (SEQ ID NO: 15)) allows nucleotide sequence encoding SOD1 (G85R) (SEQ ID NO: 13) ID NO: 12) was amplified while introducing EcoRI restriction enzyme sites and XhoI restriction enzyme sites at both ends.
  • This PCR product is treated with EcoRI-XhoI, and then introduced into the cloning site of pcDNA3-Flag vector treated with EcoRI-XhoI, so that the nucleotide sequence coding for Flag (SEQ ID NO: 8) and SOD1 (G85R)
  • a pcDNA3-Flag-SOD1 (G85R) vector containing Flag-SOD1 (G85R) fused with a nucleotide sequence encoding SEQ ID NO: SEQ ID NO: 12 was prepared.
  • the pcDNA3-Flag-SOD1 (G85R) vector having this nucleotide sequence was introduced into HEK293A cells using FuGENE6 (Roche) in the same manner as in (5). Further, immunoprecipitation and western blotting for examination were performed as described above in (5).
  • Flag-SOD1 (G85R) was detected in the hybridoma supernatants of # 406, # 659, and # 785 (FIG. 3).
  • hybridomas # 406, # 659, and # 785 that were able to bind to both SOD1 (G93A) and SOD1 (G85R) were selected as preferred, and these Cell lines were deposited with the National Institute of Technology and Evaluation (NITE) and the Patent Microorganism Depositary Center (NPMD) (the deposit numbers of # 406, # 659, and # 785 were NITE P-941 and NITE BP-, respectively) 942 and NITE BP-943; the date of entrustment is May 12, 2010).
  • NITE National Institute of Technology and Evaluation
  • NPMD Patent Microorganism Depositary Center
  • Example 2 Examination of antibody antigen recognizability
  • the culture supernatants of the three hybridoma cells # 406, # 659, and # 785 obtained in Example 1 did not recognize wild-type SOD1 protein, and SOD1 (G85R ) And SOD1 (G93A), in this example, it was examined whether or not other various mutant SOD1 proteins are also commonly recognized.
  • mutant SOD1 protein can be recognized regardless of the mutation site (Fig. 4a) to i)).
  • “del” is described in place of the notation “ ⁇ ” in FIG. 1 to indicate deletion
  • “ins” is described in place of the notation “+” in FIG. 1 to indicate insertion
  • “Z” or “stop” may be used instead of “*” in FIG.
  • Example 3 Production of antibody against mutant SOD1 protein (2)
  • the aim was to produce additional antibodies that did not bind to the wild-type SOD1 protein but could bind to the mutant SOD1 protein.
  • Peptide consisting of amino acids 30-40 of wild-type SOD1 protein (Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5)) peptide for the purpose of producing an antibody having such characteristics Were used as immunogens to generate antibodies.
  • Peptide consisting of amino acids 30-40 of wild type SOD1 protein is prepared to 1 mg / mL, and 400 ⁇ L of peptide solution and Freund's complete adjuvant (Sigma) 800 ⁇ L are emulsified by stirring with a Luer syringe, and the antigen It was.
  • the prepared antigen was intradermally injected into 3 rats (WKY / Izm female, 8 weeks old at the time of immunization; Japan Marie) in an amount of 100 ⁇ L per leg from the hindlimb paws.
  • the subsequent antibody production step and antibody screening step were carried out as described in Example 1.
  • the hybridoma supernatant of # 27 did not detect the wild type SOD1 protein, but detected the mutant SOD1 protein of Flag-SOD1 (A4V), Flag-SOD1 (G85R) and Flag-SOD1 (G93A) (Fig. 5A).
  • the cell line was deposited with the National Institute for Product Evaluation and Technology (NITE) and the Patent Microorganism Depositary Center (NPMD) with the obtained # 27 hybridoma as preferred (the deposit number of # 27 is NITE BP -1100; contract date is May 12, 2011).
  • the culture supernatant of the obtained # 27 hybridoma cells was further transformed into various mutant SOD1 proteins other than SOD1 (A4V), SOD1 (G85R), and SOD (G93A), particularly SEQ ID Whether or not to recognize a mutant SOD1 protein having a mutation in the part corresponding to SEQ ID NO: NO4 in the amino acid sequence of NO: 2 is determined using an antibody obtained from the hybridoma of Example 27. As described in.
  • the antibodies obtained from the # 27 hybridoma were SOD1 (A4V), SOD1 (L8Q), SOD1 (L8V), SOD1 (G10R), SOD1 (G10V), SOD1 (G12R), SOD1 (V14G), SOD1 (V14M), SOD1 (G85R), and SOD1 (G93A) are capable of immunoprecipitation of all 10 mutant SOD1 proteins, that is, the antibody obtained from the # 27 hybridoma is an immunogen It was revealed that the mutant SOD1 protein can be recognized regardless of the mutation site of the mutant SOD1 protein other than the peptide region consisting of amino acids 30 to 40 of the wild-type SOD1 protein used as (FIG. 5B).
  • Example 4 Cellular immunostaining with mutant SOD1 antibody
  • the mutant SOD1 antibody of the present invention can detect mutant SOD1 protein even in cell immunostaining.
  • Flag-SOD1 Flag-encoding nucleotide sequence (SEQ ID NO: 8) and nucleotide sequence encoding wild-type SOD1 protein (SEQ ID NO: 1) or nucleotide sequence encoding Flag-SOD1 (G93A) (SEQ ID NO: 10)
  • WT Flag-encoding nucleotide sequence
  • G93A wild-type SOD1 protein
  • SEQ ID NO: 10 nucleotide sequence encoding Flag-SOD1 (G93A)
  • the cover glass was washed by immersing it in about 5 ml of PBS three times, and the cells were fixed with 4% paraformaldehyde. After fixation, the cover glass was subjected to 3 times with about 5 mL of PBS and subjected to cell membrane permeabilization with 0.2% Triton® X-100. After the Triton® X-100 treatment, the cover glass was treated with about 5 ⁇ mL of PBS three times, and the cover glass was placed on 500 ⁇ L of sodium borohydride and incubated at room temperature for 1 minute to prevent discoloration.
  • cover glass was washed 3 times with about 5 ml of PBS, blocked with 5% FBS, and cell immunostaining was performed using # 406 hybridoma culture supernatant as a primary antibody, followed by anti-Flag antibody (M2 antibody). Recognized Flag. Secondary antibodies were incubated with Alexa 488 anti-rat IgG and Alexa 633 anti-mouse IgG.
  • Example 5 Detection of mutant SOD1 protein present in cytoplasm of human blood-derived B cells by mutant SOD1 antibody
  • the antibody of the present invention was used to detect human amyotrophic lateral sclerosis (ALS).
  • ALS amyotrophic lateral sclerosis
  • the cell lysate prepared as described above was then immunoprecipitated with the culture supernatant obtained from the # 785 hybridoma as described below, and the immunoprecipitated antibody-SOD1 complex was then purified using an anti-SOD1 antibody. Immunoblotting was performed.
  • Detection was performed by a highly sensitive chemiluminescence method (enhanced chemiluminescence; ECL) (GE Healthcare).
  • ECL enhanced chemiluminescence
  • an anti-SOD1 antibody SOD-100; Stressgen
  • an HRP-labeled anti-rabbit IgG antibody Cell signaling
  • a method for detecting the risk of ALS can be newly provided by detecting a mutant SOD1 protein.
  • the present invention further provides an antibody that does not bind to wild-type (ie, normal) SOD1 protein but binds to mutant SOD1 protein, which can be used in the above method to detect mutant SOD1 protein. You can also With these effects, it is possible to reliably detect ALS or the risk of ALS that has been difficult to differentiate clinically until now.
  • SEQ ID NO: 1 Nucleotide sequence of DNA encoding human wild-type SOD1 protein
  • SEQ ID NO: 2 Amino acid sequence of human wild-type SOD1 protein
  • SEQ ID NO: 3 Amino acid sequence of a polypeptide consisting of amino acids 5 to 18 of SEQ ID NO: 2
  • SEQ ID NO: 4 Amino acid sequence of a polypeptide consisting of amino acids 6 to 16 of SEQ ID NO: 2.
  • SEQ ID NO: 5 Amino acid sequence of a polypeptide consisting of amino acids 30 to 40 of SEQ ID NO: 2
  • SEQ ID NO: 6 Amino acid sequence of a polypeptide consisting of amino acids 143 to 151 of SEQ ID NO: 2
  • SEQ ID NO: 7 Amino acid sequence of Derlin-1 (CT4)
  • SEQ ID NO: 8 Nucleotide sequence encoding the Flag tag
  • SEQ ID NO: 9 Amino acid sequence of Flag tag
  • SEQ ID NO: 10 nucleotide sequence encoding SOD1 (G93A) protein
  • SEQ ID NO: 11 SOD1 (G93A) protein amino acid sequence
  • SEQ ID NO: 12 Nucleotide sequence encoding SOD1 (G85R) protein
  • SEQ ID NO: 13 Amino acid sequence of SOD1 (G85R) protein
  • SEQ ID NO: 14 SOD1 amplification primer
  • SEQ ID NO: 15 SOD1 amplification primer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Neurology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The issues addressed by this invention are the determination of part of the molecular mechanism behind the pathogenesis of amyotrophic lateral sclerosis (ALS) and the use of said molecular mechanism to investigate ALS risks. Said issues are addressed by the provision of a method for detecting ALS risks by detecting mutant SOD1 protein. Namely, said issues are addressed by the provision of an antibody for detecting mutant SOD1 protein, where said antibody binds to mutant SOD1 protein but not to wild-type (i.e., normal) SOD1 protein.

Description

筋萎縮性側索硬化症(ALS)の診断のための抗体Antibodies for the diagnosis of amyotrophic lateral sclerosis (ALS)
 本発明は、筋萎縮性側索硬化症(ALS)の診断に使用することができる抗体に関するものである。本発明はまた、そのような抗体を使用して、筋萎縮性側索硬化症(ALS)の発症リスクを検出する方法に関するものである。 The present invention relates to an antibody that can be used for diagnosis of amyotrophic lateral sclerosis (ALS). The present invention also relates to a method for detecting the risk of developing amyotrophic lateral sclerosis (ALS) using such an antibody.
 筋萎縮性側索硬化症(Amyotrophic lateral sclerosis;ALS)は、運動神経が選択的に障害される進行性の神経変性疾患であり、日本国内には約7000人、米国には4万人の患者がいる。この疾患は、主に壮年期に発症し、筋萎縮が徐々に全身に広がり、歩行困難、言語障害、嚥下障害、呼吸障害におよび、気管切開/人工呼吸器装着などを施さなければ発症後3~5年で死に至るきわめて重篤な疾患である。患者は意識が明瞭なまま病気が進行していくため、患者および介助家族の肉体的、精神的ダメージは極めて大きい。 Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease in which motor nerves are selectively impaired, with approximately 7,000 patients in Japan and 40,000 patients in the United States. There is. This disease mainly develops in the middle period, muscle atrophy gradually spreads throughout the body, difficult to walk, speech disorder, dysphagia, respiratory disorder, and after the onset 3 It is a very serious disease that will die in 5 years. Since the disease progresses while the patient is conscious, the physical and mental damage to the patient and the caregiver is extremely large.
 ALSは、「難病性疾患克服研究事業対象疾患」に指定されているにもかかわらず、治療薬開発への取り組みが遅れている。現在の治療法は、適度なリハビリテーションによる筋力低下予防と、唯一の保険適応薬剤であるリルゾール(グルタミン酸の神経終末放出を抑制)による一時的な病態進行遅延だけであり、ALS病態分子メカニズムに基づく根本的な治療法は皆無である。 ¡Although ALS has been designated as a “target disease for overcoming intractable diseases,” efforts to develop therapeutic agents have been delayed. The current treatment is only the prevention of muscle weakness through moderate rehabilitation and the temporary delay in the progression of disease due to riluzole (suppressing the release of glutamate to nerve endings), which is the only insurance indication, and is based on the molecular mechanism of ALS pathology. There is no effective treatment.
 ALSの原因を解明する上でのブレイクスルーは、家族性ALSの原因遺伝子として1993年Rosenらによって同定されたCu/Zn superoxide dismutase 1(SOD1)の遺伝子変異である。全ALS患者のうち約10%が家族性であり、そのうちの約20%(すなわち、全ALS患者のうち約2%)がSOD1遺伝子変異による。そして、ALSでは変異型SOD1タンパク質が、異常蓄積することが知られている。 Breakthrough in elucidating the cause of ALS is a mutation in Cu / Zn superoxide dismutase 1 (SOD1) identified by Rosen et al. In 1993 as a causative gene for familial ALS. About 10% of all ALS patients are familial, of which about 20% (ie, about 2% of all ALS patients) are due to SOD1 gene mutations. In ALS, it is known that mutant SOD1 protein accumulates abnormally.
 家族性アルツハイマー病の場合、その原因としてのAPPやPS-1遺伝子変異の発見が、その後の孤発性アルツハイマー病分子メカニズム解明に大きく貢献していることから類推して、ALSの場合にも、原因遺伝子SOD1の発見は、家族性ALSのみならず孤発性ALSの病態解明にも飛躍的な進歩をもたらすものと期待された。しかしながら、未だALSに共通する病態を説明しうる分子メカニズムは明らかにされていない。 In the case of familial Alzheimer's disease, the discovery of APP and PS-1 gene mutations as the cause of this greatly contributed to the elucidation of the molecular mechanism of sporadic Alzheimer's disease. The discovery of the causative gene SOD1 was expected to bring about dramatic progress not only in familial ALS but also in elucidating the pathology of sporadic ALS. However, the molecular mechanism that can explain the pathological condition common to ALS has not yet been clarified.
 SOD1遺伝子上には、これまで122種類もの点変異が報告されており、それらの変異のいずれかについて作出された幾つかのトランスジェニックマウスがALSと類似した症状を呈すること、ならびにSOD1タンパク質の機能喪失によっては病態を発症しないことなどが示されている。これらの知見から、SOD1タンパク質の変異によりALSが発症する原因は、遺伝子の変異に基づくSOD活性の低下(loss of function)ではなく、現在ではその病態発症機構は、変異型SOD1タンパク質が何らかの獲得性神経細胞毒性を発揮し、運動神経細胞死とそれに伴う個体の神経症状をもたらすものと考えられている。 So far, 122 types of point mutations have been reported on the SOD1 gene, and several transgenic mice created for any of these mutations have symptoms similar to ALS, and the function of the SOD1 protein. It has been shown that, depending on the loss, the condition does not develop. Based on these findings, the cause of ALS due to mutations in the SOD1 protein is not due to a decrease in SOD activity (loss of function) based on gene mutations. It is believed to exert neurotoxicity and cause motor neuron cell death and associated neurological symptoms.
 現在までに家族性ALSにおけるSOD1遺伝子の変異は100種類以上が報告されているが、それによって起こるALS発症のメカニズムは、変異型SOD1タンパク質が細胞内に発現し、細胞内に変異型SOD1タンパク質が蓄積した結果、何らかの細胞毒性を発揮し、運動神経が変性を来すことによるものと考えられている。 To date, more than 100 mutations in the SOD1 gene in familial ALS have been reported, but the mechanism of ALS development that occurs is that the mutant SOD1 protein is expressed in the cell, and the mutant SOD1 protein is expressed in the cell. As a result of accumulation, it is considered that some cytotoxicity is exerted, and the motor nerve is degenerated.
 しかし、その際に変異型SOD1タンパク質が細胞内でどのようなシグナルを発信し、どのようなメカニズムで細胞を傷害するかというALSの発病機序については未だに不明であり、そのため適切な治療法も存在しなかった。 However, at that time, the pathogenesis of ALS, such as what signal the mutant SOD1 protein emits in the cell and what mechanism damages the cell, is still unknown. Did not exist.
 我々はこれまでに、ALSにおける変異型SOD1タンパク質による神経細胞死の分子メカニズムとして、小胞体ストレスが深く関与していることを明らかにしてきた(特開2007-151478;Nishitoh et al. Genes Dev. 2008)。すなわち、変異型SOD1タンパク質が特異的に結合する標的タンパク質のひとつとして、小胞体の品質管理に重要な役割を担う小胞体膜タンパク質Derlin-1を同定し、変異型SOD1タンパク質とDerlin-1との結合が神経細胞の小胞体品質管理機構の破綻をきたし、小胞体ストレスを惹起することを見出した。 We have previously clarified that endoplasmic reticulum stress is deeply involved as a molecular mechanism of neuronal cell death by mutant SOD1 protein in ALS (Japanese Patent Laid-Open No. 2007-151478; Nishitohshitet al. Genes Dev. 2008). That is, as one of the target proteins to which the mutant SOD1 protein specifically binds, the endoplasmic reticulum membrane protein Derlin-1, which plays an important role in the quality control of the endoplasmic reticulum, was identified, and the mutant SOD1 protein and Derlin-1 It was found that the binding causes the breakdown of the endoplasmic reticulum quality control mechanism of nerve cells and induces endoplasmic reticulum stress.
 しかしながら、ALSの患者の神経細胞内に変異型SOD1タンパク質が発現した結果、何故Derlin-1との結合を引き起こすのか、実際にどのような分子機構によって細胞が傷害され、変性していくのかという一連のメカニズムについては我々独自の発見であり、世界的にはまだまだ研究が進んでおらず、その全体像を明らかにするには至っていない。 However, as a result of the expression of mutant SOD1 protein in neurons of ALS patients, a series of reasons why it causes binding to Derlin-1 and what molecular mechanism actually damages and denatures cells This mechanism is our original discovery, and research has not yet progressed globally, and the whole picture has not yet been clarified.
特開2007-151478JP2007-151478
 本発明は、筋萎縮性側索硬化症(ALS)の発症の分子機構の一端を解明し、また、解明されたALS発症の分子機構を利用して、ALSのリスクを検出することを課題とする。 An object of the present invention is to elucidate a part of the molecular mechanism of the onset of amyotrophic lateral sclerosis (ALS) and to detect the risk of ALS using the elucidated molecular mechanism of the onset of ALS. To do.
 本発明は、変異型SOD1タンパク質を検出することにより、ALSのリスクを検出する方法を提供することにより、上記課題を解決した。すなわち、変異型SOD1タンパク質を検出するために、本発明においては、野生型(すなわち正常な)SOD1タンパク質は結合しないが、変異型SOD1タンパク質には結合する抗体を提供することにより、上記課題を解決した。 The present invention has solved the above problems by providing a method for detecting the risk of ALS by detecting mutant SOD1 protein. That is, in order to detect mutant SOD1 protein, the present invention solves the above problem by providing an antibody that does not bind to wild-type (ie, normal) SOD1 protein but binds to mutant SOD1 protein. did.
 本発明は、SEQ ID NO: 2のアミノ酸配列からなるタンパク質と比較して、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチド領域の立体構造変化が、筋萎縮性側索硬化症(ALS)のリスクと関連することが示されたことに基づいて完成されるに至ったものである。従って、具体的には、本発明の一態様において、上記の事実に基づいて、被検体から採取された細胞含有サンプルについて、変異型SOD1タンパク質に対して結合する抗体を用いてスクリーニングし、そしてその抗体に結合するタンパク質を検出することにより、SEQ ID NO: 2のアミノ酸配列からなるタンパク質以外の、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドを検出することを通じて、ALSのリスクを検出する方法を提供する。 The present invention relates to SEQ ID NO: 4 amino acid sequence, SEQ ID NO: 4 amino acid sequence, SEQ 1ID NO: 5, compared to a protein consisting of the amino acid sequence of SEQ ID NO: 2. A three-dimensional structure of a polypeptide region comprising an amino acid sequence, an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 5, an amino acid sequence in SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 Changes have been completed based on the fact that the changes have been shown to be associated with the risk of amyotrophic lateral sclerosis (ALS). Therefore, specifically, in one embodiment of the present invention, based on the above fact, a cell-containing sample collected from a subject is screened with an antibody that binds to a mutant SOD1 protein, and the By detecting the protein that binds to the antibody, except for the protein consisting of the amino acid sequence of SEQ ID NO: ア ミ ノ 酸 2, the amino acid sequence of SEQ ID NO: 4, the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, SEQ ID 含 む NO: 5 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence mutated, SEQ ID NO: ア ミ ノ 6 amino acid sequence, or SEQ ID NO: ポ リ 6 amino acid sequence mutated A method for detecting the risk of ALS is provided by detecting peptides.
 上記の態様において、変異型SOD1タンパク質の検出は、野生型(すなわち正常な)SOD1タンパク質には結合しないが、変異型SOD1タンパク質には結合する抗体を用いて、変異型SOD1タンパク質のみを検出することによって実現することができる。そのような抗体の例として、Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly(SEQ ID NO: 4)のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu(SEQ ID NO: 5)のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、Arg Leu Ala Cys Gly Val Ile Gly Ile(SEQ ID NO: 6)のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドと結合する抗体を挙げることができる。この検出方法により、SEQ ID NO: 2のアミノ酸配列からなる野生型SOD1タンパク質は検出されないが、変異型SOD1タンパク質におけるSEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチド領域の立体構造変化が検出される場合、そのサンプルの起源である個体は、ALSの発病リスクを有していると判断される。 In the above embodiment, the mutant SOD1 protein is detected by detecting only the mutant SOD1 protein using an antibody that does not bind to the wild-type (ie, normal) SOD1 protein but binds to the mutant SOD1 protein. Can be realized. Examples of such antibodies include the amino acid sequence of Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4), the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, Lys Val Trp Gly Ser The amino acid sequence of Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5), the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 5, the amino acid of Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: 6) Mention may be made of antibodies that bind to a sequence or a polypeptide comprising an amino acid sequence in which one amino acid has been mutated in SEQ ID NO: 6. This detection method did not detect the wild-type SOD1 protein consisting of the amino acid sequence of SEQ ID NO: 2, but one amino acid was mutated in SEQ ID NO: 4 in the mutant SOD1 protein, SEQ 、 ID NO: 4. Amino acid sequence, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence mutated, SEQ ID NO: 6 amino acid sequence, or SEQ ID NO: 6 amino acid sequence If a conformational change of the polypeptide region containing the sequence is detected, it is determined that the individual who is the source of the sample is at risk of developing ALS.
 本発明の別の一態様において、Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly(SEQ ID NO: 4)のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu(SEQ ID NO: 5)のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、Arg Leu Ala Cys Gly Val Ile Gly Ile(SEQ ID NO: 6)のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドと結合する抗体自体を提供する。 In another embodiment of the present invention, an amino acid sequence of Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4), an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5) amino acid sequence, SEQ ID NO: 5 amino acid sequence mutated, Arg ア ミ ノ 酸 Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: 6) Provided are antibodies themselves that bind to an amino acid sequence or a polypeptide comprising an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6.
 これらの態様において、上記抗体が結合する物質は、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチド領域の立体構造変化を伴う変異型SOD1タンパク質であり、すなわち、本願発明の抗体は、変異型SOD1タンパク質を検出することができる。具体的には本願発明の抗体は、SEQ ID NO: 2のアミノ酸配列のうち、アミノ酸番号3、4、5、6、8、10、12、14、16、19、20、22、29、37、38、40、41、43、45、46、47、48、49、57、59、65、66、72、76、80、84、85、86、87、89、90、93、95、97、99、100、101、104、105、106、108、111、112、113、114、115、116、117、118、124、125、126、127、132、133、134、139、140、141、144、145、146、147、148、149、および151からなる群から選択されるいずれか1つのアミノ酸残基に、1アミノ酸の置換、欠失または付加を有するものを検出することができる。また、未だ発見されていないSOD1遺伝子変異についても、その変異により産生される変異型SOD1タンパク質が、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチド領域の立体構造変化を伴うものであるか否かを検出することが出来る。 In these embodiments, the substance to which the antibody binds is the amino acid sequence of SEQ ID NO: 4, the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, SEQ ID ID NO: Mutant SOD1 protein with a conformational change in a polypeptide region comprising an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 That is, the antibody of the present invention can detect a mutant SOD1 protein. Specifically, the antibody of the present invention has amino acid numbers 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 22, 29, 37 in the amino acid sequence of SEQ ID NO: 2. , 38,40,41,43,45,46,47,48,49,57,59,65,66,72,76,80,84,85,86,87,89,90,93,95,97 99, 100, 101, 104, 105, 106, 108, 111, 112, 113, 114, 115, 116, 117, 118, 124, 125, 126, 127, 132, 133, 134, 139, 140, 141 , 144, 145, 146, 147, 148, 149, and 151, any one amino acid residue selected from the group consisting of 1 amino acid substitution, deletion or addition can be detected. In addition, for SOD1 gene mutations that have not been discovered yet, the mutant SOD1 protein produced by the mutation is SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, ID 含 む NO: 5 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence mutated, SEQ ID NO: ア ミ ノ 酸 6 amino acid sequence, or SEQ ID NO: ポ リ 6 amino acid sequence mutated It is possible to detect whether or not it is accompanied by a change in the three-dimensional structure of the peptide region.
 上記抗体が結合するSEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチド領域の立体構造変化は、筋萎縮性側索硬化症(ALS)と関連する、という特徴を有していることが示された。 The amino acid sequence of SEQ ID NO: 結合 4 to which the above antibody binds, the amino acid sequence in which one amino acid was mutated in SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, and one amino acid in SEQ ID NO: 5 was mutated Conformational changes in the polypeptide region containing the amino acid sequence, the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence in which 1 amino acid is mutated in SEQ ID NO: X6 is associated with amyotrophic lateral sclerosis (ALS) It was shown that it has the feature of.
 本発明において作製され、そして使用される抗体は、モノクローナル抗体であってもポリクローナル抗体であってもよいが、モノクローナル抗体であることが好ましく、本発明においては、#406、#659、または#785(それぞれ、寄託番号NITE P-941、NITE BP-942、およびNITE BP-943(受託日はいずれも2010年5月12日))または#27(寄託番号NITE BP-1100)(受託日は2011年5月12日)のハイブリドーマのいずれかにより産生される上記抗体を提供することができる。 The antibody produced and used in the present invention may be a monoclonal antibody or a polyclonal antibody, but is preferably a monoclonal antibody. In the present invention, # 406, # 659, or # 785 (Deposit numbers NITE P-941, NITE BP-942, and NITE BP-943 (the deposit date is May 12, 2010)) or # 27 (deposit number NITE BP-1100) (the deposit date is 2011) The above-mentioned antibody produced by any of the hybridomas of May 12, 2011) can be provided.
 本明細書において、特定の配列においてアミノ酸が「変異」されたという場合、アミノ酸が欠失されたもの、アミノ酸が置換されたもの、またはアミノ酸が付加されたもの、のいずれかであることを意味する。 In this specification, when an amino acid is “mutated” in a specific sequence, it means that the amino acid is deleted, the amino acid is substituted, or the amino acid is added. To do.
 本発明において、「抗体」には、変異型SOD1タンパク質に対して結合性の抗体フラグメントまたは修飾抗体もまた含まれる。この様な抗体フラグメントには、例えば、上述したモノクローナル抗体のFab、F(ab')2、Fv、または上述した抗体に由来する一本鎖Fv(H鎖FvおよびL鎖Fvがリンカーで結合したもの、scFv)、が含まれる。また、このような抗体フラグメントは、例えばパパイン、ペプシン等の酵素により処理することにより、または抗体フラグメントをコードする遺伝子を構築し、それを発現ベクター中に組み込み、そして適切な宿主細胞中でこのベクターを発現することにより組換え的に、調製することもできる。修飾抗体としては、ポリエチレングリコール(PEG)などの様々な分子に結合させた抗体などを使用することができる。 In the present invention, “antibody” also includes antibody fragments or modified antibodies that bind to mutant SOD1 protein. To such an antibody fragment, for example, Fab, F (ab ′) 2 , Fv of the above-described monoclonal antibody, or single chain Fv derived from the above-described antibody (H chain Fv and L chain Fv are bound by a linker) Stuff, scFv). In addition, such an antibody fragment is treated with an enzyme such as papain or pepsin, or a gene encoding the antibody fragment is constructed, incorporated into an expression vector, and the vector in an appropriate host cell. It can also be prepared recombinantly by expressing. As the modified antibody, an antibody bound to various molecules such as polyethylene glycol (PEG) can be used.
 本発明により、変異型SOD1タンパク質を検出することにより、ALSのリスクを検出する方法を新たに提供することができた。本発明においてはさらに、上記の方法において変異型SOD1タンパク質を検出するために使用することができる、野生型(すなわち正常な)SOD1タンパク質は結合しないが、変異型SOD1タンパク質に結合する抗体を提供することもできる。これらの効果により、これまでは臨床的に鑑別が難しかったALSまたはALSのリスクを、確実に検出することができる。 According to the present invention, a method for detecting the risk of ALS can be newly provided by detecting a mutant SOD1 protein. The present invention further provides an antibody that does not bind to wild-type (ie, normal) SOD1 protein but binds to mutant SOD1 protein, which can be used to detect mutant SOD1 protein in the above method. You can also. With these effects, it is possible to reliably detect ALS or the risk of ALS that has been difficult to differentiate clinically until now.
図1は、野生型SOD1タンパク質のアミノ酸配列(SEQ ID NO: 2と同一)およびその点変異のうち家族性筋萎縮性側索硬化症(ALS)に関与することが知られている具体的なSOD1タンパク質の変異を示す図である。Figure 1 shows the amino acid sequence of wild-type SOD1 protein (identical to SEQ ID NO: 2) and its specific mutations that are known to be involved in familial amyotrophic lateral sclerosis (ALS) It is a figure which shows the variation | mutation of SOD1 protein. 図2は、本発明の抗体のうち#242、#406、#659、#785、#1175のハイブリドーマに由来する5種類の抗体が、Flag-SOD1(G93A)を検出することができたことを示す図である。FIG. 2 shows that among the antibodies of the present invention, five antibodies derived from hybridomas # 242, # 406, # 659, # 785, and # 1175 were able to detect Flag-SOD1 (G93A). FIG. 図3は、本発明の抗体のうち#406、#659、#785のハイブリドーマに由来する3種類の抗体が、Flag-SOD1(G93A)に加えて、Flag-SOD1(G85R)も検出することができたことを示す図である。FIG. 3 shows that among the antibodies of the present invention, three types of antibodies derived from hybridomas # 406, # 659, and # 785 can detect Flag-SOD1 (G85R) in addition to Flag-SOD1 (G93A). It is a figure which shows having been made. 図4-1は、本発明の抗体の一つとして選択された#785ハイブリドーマから得られた抗体により、様々な変異型SOD1タンパク質を沈降可能である(すなわち、検出可能である)ことを示す図である。FIG. 4-1 shows that various mutant SOD1 proteins can be precipitated (ie, detected) by an antibody obtained from a # 785 hybridoma selected as one of the antibodies of the present invention. It is. 図4-2は、本発明の抗体の一つとして選択された#785ハイブリドーマから得られた抗体により、様々な変異型SOD1を沈降可能である(すなわち、検出可能である)ことを示す図である。FIG. 4-2 shows that various mutant SOD1s can be precipitated (ie, detected) by the antibody obtained from the # 785 hybridoma selected as one of the antibodies of the present invention. is there. 図4-3は、本発明の抗体の一つとして選択された#785ハイブリドーマから得られた抗体により、様々な変異型SOD1を沈降可能である(すなわち、検出可能である)ことを示す図である。FIG. 4-3 is a diagram showing that various mutant SOD1s can be precipitated (ie, detected) by an antibody obtained from the # 785 hybridoma selected as one of the antibodies of the present invention. is there. 図5は、本発明の抗体のうち#27のハイブリドーマに由来する抗体が、Flag-SOD1(A4V)、Flag-SOD1(G93A)およびFlag-SOD1(G85R)を検出することができたこと(図5A)、そしてそれらに加えてSEQ ID NO: 2のアミノ酸配列のうちSEQ ID NO: 4に対応する領域(6~16番目アミノ酸配列からなるペプチド領域)中に変異を有する様々な変異型SOD1タンパク質を免疫沈降可能であること(図5B)を示す図である。FIG. 5 shows that antibodies derived from the # 27 hybridoma of the present invention were able to detect Flag-SOD1 (A4V), Flag-SOD1 (G93A) and Flag-SOD1 (G85R) (FIG. 5). 5A), and in addition to these, various mutant SOD1 proteins having mutations in the region corresponding to SEQ ID NO: 4 in the amino acid sequence of SEQ ID NO: 2 (peptide region consisting of the 6th to 16th amino acid sequences) FIG. 5 shows that immunoprecipitation is possible (FIG. 5B). 図6は、本発明の抗体の一つとして選択された#406ハイブリドーマから得られた抗体が、SOD1タンパク質の変異に伴う立体構造変化(Derlin-1結合部位が露出する)を細胞免疫染色においても検出することができることを示す図である。FIG. 6 shows that the antibody obtained from the # 406 hybridoma selected as one of the antibodies of the present invention also shows the conformational change (exposed to the Derlin-1 binding site) associated with the mutation of SOD1 protein in cell immunostaining. It is a figure which shows that it can detect. 図7は、本発明の抗体の一つとして選択された#785ハイブリドーマから得られた抗体が、筋萎縮性側索硬化症(ALS)の個体の血液中B細胞の細胞質中の変異型SOD1タンパク質を免疫沈降可能であることを示す図である。FIG. 7 shows that an antibody obtained from the # 785 hybridoma selected as one of the antibodies of the present invention is a mutant SOD1 protein in the cytoplasm of B cells in the blood of an amyotrophic lateral sclerosis (ALS) individual. It is a figure which shows that an immunoprecipitation is possible.
 筋萎縮性側索硬化症(ALS)は、コンフォメーション病の一つとして知られており、この疾患のうち家族性ALSの原因タンパク質は、SOD1タンパク質である。野生型のヒトSOD1(スーパーオキシドジスムターゼ1)タンパク質のアミノ酸配列およびそれをコードする遺伝子のヌクレオチド配列は、GenBank Accession No. NM_000454として、入手可能なものであり、本件明細書中においては、そのタンパク質のアミノ酸配列をSEQ ID NO: 2として、そしてそれをコードするヌクレオチド配列をSEQ ID NO: 1として、それぞれ記載する。このSEQ ID NO: 2のアミノ酸配列に関して、当該技術分野においては、SOD1タンパク質のアミノ酸番号をカウントする際、野生型SOD1タンパク質の第1メチオニンを除くことが一般的であり、従って、本件明細書中のSEQ ID NO: 2のアミノ酸配列は、GenBank Accession No. NM_000454において開示されるアミノ酸配列のうち第1メチオニンを除いたものとして記載している。 Amyotrophic lateral sclerosis (ALS) is known as a conformational disease, and the causative protein of familial ALS among these diseases is SOD1 protein. The amino acid sequence of the wild-type human SOD1 (superoxide dismutase 1) protein and the nucleotide sequence of the gene encoding it are available as GenBank Accession No. NM_000454. In this specification, the protein The amino acid sequence is described as SEQ ID NO: 2 and the nucleotide sequence encoding it is described as SEQ ID NO: 1. Regarding the amino acid sequence of this SEQ ID NO: 2, it is common in the art to exclude the first methionine of the wild-type SOD1 protein when counting the amino acid number of the SOD1 protein. The amino acid sequence of SEQ ID NO: 2 is described as the amino acid sequence disclosed in GenBank Accession No. NM_000454 excluding the first methionine.
 SOD1タンパク質には、現在までに122種類もの点変異が報告されており、これらのうち、現段階において100種以上の変異型SOD1タンパク質が実際に家族性ALSに関与することが知られている(家族性ALSに関与することが知られている具体的なSOD1タンパク質の変異については、図1を参照)。図1において、「WT」で示した行が野生型SOD1タンパク質のアミノ酸配列を示し、その上側に記載したアミノ酸はそれぞれの変異型SOD1タンパク質の変異アミノ酸を示す。変異アミノ酸の表示のうち、Δは欠失を示し、+は挿入を示し、*は停止コドンを示す。 To date, 122 types of point mutations have been reported in the SOD1 protein, and of these, it is known that more than 100 types of mutant SOD1 proteins are actually involved in familial ALS at this stage ( (See Figure 1 for specific SOD1 protein mutations known to be involved in familial ALS). In FIG. 1, the row indicated by “WT” indicates the amino acid sequence of the wild-type SOD1 protein, and the amino acids described above indicate the mutant amino acids of the respective mutant SOD1 proteins. Among the mutant amino acid designations, Δ indicates a deletion, + indicates an insertion, and * indicates a stop codon.
 これまでの研究より、これらの家族性ALSに関与することが知られている変異型SOD1タンパク質のうち4種類の変異型SOD1タンパク質(SEQ ID NO: 2のアミノ酸配列の番号に基づいて、A4V、G85R、G93A、およびL126stop)に関して、Derlin-1のC末端12アミノ酸であるDerlin-1(CT4)(Phe Leu Tyr Arg Trp Leu Pro Ser Arg Arg Gly Gly(SEQ ID NO: 7))と特異的に結合することが明らかにされている(Nishitoh et al. Genes Dev. 2008)。 From previous studies, four of the mutant SOD1 proteins known to be involved in these familial ALS proteins (SEQ AIDV, based on the amino acid sequence number of SEQ ID NO: X 2) G85R, G93A, and L126stop), specifically with Derlin-1 (CT4) (Phe Leu Tyr Arg Trp Leu Pro Ser Arg Grg Gly (SEQ ID NO: 7)) It has been shown to combine (Nishitoh et al. Genes Dev. 2008).
 家族性ALSに関与する様々な変異型SOD1タンパク質とDerlin-1(CT4)との結合から、変異型SOD1タンパク質のDerlin-1との結合様式は、それぞれの変異型SOD1タンパク質が、各変異アミノ酸部位近傍でDerlin-1結合部位を形成していることによるとは考えにくく、野生型SOD1タンパク質のアミノ酸配列中にDerlin-1結合領域がもともと存在すると考えられた。 Based on the binding between various mutant SOD1 proteins involved in familial ALS and Derlin-1 (CT4), the mutant SOD1 protein can be combined with Derlin-1, depending on the mutant SOD1 protein, each mutant amino acid site. It was unlikely that this was due to the formation of a Derlin-1 binding site in the vicinity, and it was thought that a Derlin-1 binding region originally existed in the amino acid sequence of the wild-type SOD1 protein.
 そこで、次に、SOD1タンパク質側のDerlin-1との相互作用部位を検討したところ、SEQ ID NO: 2(第1メチオニンを除いたアミノ酸配列から構成されるもの)により示されるアミノ酸配列で規定される野生型SOD1タンパク質のうち、N末端側5~18番アミノ酸からなるペプチド領域(Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile(SEQ ID NO: 3))がDerlin-1との結合部位であることが明らかになった(図1の一重下線部分)。 Next, when the interaction site with Derlin-1 on the SOD1 protein side was examined, it was defined by the amino acid sequence shown by SEQ ID NO: 2 (consisting of the amino acid sequence excluding the first methionine). Of the wild-type SOD1 protein consisting of amino acids 5 to 18 on the N-terminal side (Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile (SEQ ID NO: 3)) binds to Derlin-1 It became clear that it was a region (single underlined portion in FIG. 1).
 この結果から、野生型では、立体構造上隠されている5~18番目アミノ酸配列からなるペプチド領域(SEQ ID NO: 3)が、家族性ALSに関与する変異型SOD1タンパク質では立体構造的に露出し、その結果Derlin-1と結合することを通じて、家族性ALSの発症の原因となっていることが予想された。そこで、本発明においては、変異型SOD1タンパク質のアミノ酸配列(SEQ ID NO: 2)のうちの、5~18番目アミノ酸からなるペプチド領域(SEQ ID NO: 3)と結合することができる抗体を作製することとした。 From this result, in the wild type, the peptide region consisting of the 5th to 18th amino acid sequence (SEQ ID NO: 3) hidden in the 3D structure is 3D structurally exposed in the mutant SOD1 protein involved in familial ALS. As a result, it was expected to cause familial ALS through binding to Derlin-1. Therefore, in the present invention, an antibody capable of binding to a peptide region consisting of amino acids 5 to 18 (SEQ ID NO: 3) in the amino acid sequence of the mutant SOD1 protein (SEQ ID NO: 2) is prepared. It was decided to.
 SEQ ID NO: 3のアミノ酸配列のうち、N末端のValとC末端の2つのIleが疎水性であり、免疫原の水溶性を低下させる可能性が考えられたため、実際には、6~16番目アミノ酸配列からなるペプチド領域(Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly(SEQ ID NO: 4))を免疫原として使用した。 Of the amino acid sequences of SEQ ID NO: 3, the N-terminal Val and the C-terminal two Ile are hydrophobic, which may reduce the water solubility of the immunogen. The peptide region consisting of the amino acid sequence (Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4)) was used as an immunogen.
 得られた抗体について、実際に細胞内で産生された変異型SOD1タンパク質(例えば、G85RおよびG93A)に対して結合するが、野生型SOD1タンパク質(SEQ ID NO: 2)に対しては結合しないことを指標にして、スクリーニングを行い、候補抗体を選択した。その際、上述したように、Derlin-1と変異型SOD1タンパク質との結合が、SOD1タンパク質での変異に基づく立体構造の変化の結果生じる可能性があることが示唆されたことから、非変性条件下において(すなわち、SOD1タンパク質の立体構造を破壊することなく)スクリーニングを行った。その結果、目的とする特徴を有する抗体を産生する3種類のハイブリドーマ細胞株、#406、#659、および#785(それぞれ、千葉県木更津市かずさ鎌足2-5-8、独立行政法人製品評価技術基盤機構(National Institute of Technology and Evaluation:NITE)、特許微生物寄託センター(NITE Patent Microorganisms Depositary:NPMD)において、NITE P-941、NITE BP-942、およびNITE BP-943として寄託;受託日はいずれも2010年5月12日)を得ることができた。 The resulting antibody binds to the mutant SOD1 protein actually produced in the cell (eg, G85R and G93A), but does not bind to the wild-type SOD1 protein (SEQ ID NO: 2) Using these as indicators, screening was performed and candidate antibodies were selected. At that time, as described above, it was suggested that binding between Derlin-1 and mutant SOD1 protein may result from a change in conformation based on mutation in SOD1 protein. Screening was performed below (ie, without destroying the SOD1 protein conformation). As a result, three hybridoma cell lines producing antibodies with the desired characteristics, # 406, # 659, and # 785 (respectively 2-5-8, Kazusa Kamashichi, Kisarazu, Chiba Prefecture, product evaluation Deposited as NITE P-941, NITE BP-942, and NITE 技術 BP-943 at the National Institute of Technology (NITE) and Patent Microorganisms Depository (NPMD); Could also get on May 12, 2010).
 このような知見に基づいて、本発明の一態様において、Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly(SEQ ID NO: 4)のアミノ酸配列またはSEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドと結合する抗体を提供する。 Based on such findings, in one embodiment of the present invention, an amino acid sequence of Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4) or an amino acid in which one amino acid is mutated in SEQ ID NO: 4 Antibodies that bind to a polypeptide comprising the sequence are provided.
 本発明の一態様においてさらに、変異型SOD1タンパク質(例えば、G85RおよびG93A)に対して結合するが、野生型SOD1タンパク質(SEQ ID NO: 2)に対しては結合しないという特徴を有する抗体を検索した。 In one embodiment of the present invention, an antibody having the characteristics of binding to a mutant SOD1 protein (eg, G85R and G93A) but not to a wild type SOD1 protein (SEQ ID NO: 2) is further searched. did.
 野生型SOD1タンパク質の立体構造を解析したところ、野生型SOD1タンパク質(SEQ ID NO: 2)の5~18番目アミノ酸配列(SEQ ID NO: 3)はβストランド構造を形成しており、このβストランド構造に対して、N末端側30~40番アミノ酸からなるペプチド領域(Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu(SEQ ID NO: 5))により形成されるβストランド構造またはC末端側143~151番アミノ酸からなるペプチド領域(Arg Leu Ala Cys Gly Val Ile Gly Ile(SEQ ID NO: 6))により形成されるβストランド構造とが、相対するように近接して配置されていることが明らかになった。そして、その様な構造を有することにより、上述する3つのβストランド構造は、いずれも、野生型SOD1タンパク質では立体構造上隠されているが、変異型SOD1タンパク質では立体構造的に露出されて、抗体により検出可能になることが予想された。 When the three-dimensional structure of the wild-type SOD1 protein was analyzed, the 5-18th amino acid sequence (SEQ ID NO: 3) of the wild-type SOD1 protein (SEQ ID NO: 2) formed a β-strand structure. Β-strand structure formed by peptide region (Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5)) consisting of amino acids 30-40 amino acids on the N-terminal side or C-terminal side 143- It is clear that the β-strand structure formed by the peptide region consisting of the 151st amino acid (Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: し て 6)) is located in close proximity to each other became. And by having such a structure, all of the three β-strand structures described above are concealed in the three-dimensional structure in the wild-type SOD1 protein, but are three-dimensionally exposed in the mutant SOD1 protein, It was expected to be detectable by the antibody.
 そこで、野生型SOD1タンパク質では立体構造上隠されているが、変異型SOD1タンパク質では立体構造的に露出されているポリペプチド領域の候補として、野生型SOD1タンパク質(SEQ ID NO: 2)のうち、変異によって構造変化する5~18番目アミノ酸配列部分に立体構造的に近接した2つのペプチド領域、N末端側30~40番アミノ酸からなるペプチド領域(Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu(SEQ ID NO: 5))またはC末端側143~151番アミノ酸からなるペプチド領域(Arg Leu Ala Cys Gly Val Ile Gly Ile(SEQ ID NO: 6))を選択し、免疫原として使用することとした(図1の二重下線部分)。 Therefore, in the wild-type SOD1 protein, the three-dimensional structure is hidden in the wild-type SOD1 protein, but as a candidate polypeptide region that is three-dimensionally exposed in the mutant-type SOD1 protein, among the wild-type SOD1 protein (SEQ ID NO: 2), Two peptide regions that are three-dimensionally close to the 5th to 18th amino acid sequence that changes its structure due to mutation, a peptide region consisting of amino acids 30 to 40 on the N-terminal side (Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5)) or a peptide region consisting of amino acids 143 to 151 on the C-terminal side (Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: 6)) was selected and used as an immunogen ( (Double underlined part in Fig. 1)
 得られた抗体について、実際に細胞内で産生された変異型SOD1タンパク質(例えば、G85RおよびG93A)に対して結合するが、野生型SOD1タンパク質(SEQ ID NO: 2)に対しては結合しないことを指標にして、非変性条件下において(すなわち、SOD1タンパク質の立体構造を破壊することなく)スクリーニングを行い、候補抗体を選択した。その結果、目的とする特徴を有する抗体を産生する1種類のハイブリドーマ細胞株、#27(NITE BP-1100;受託日は2011年5月12日)を得ることができた。 The resulting antibody binds to the mutant SOD1 protein actually produced in the cell (eg, G85R and G93A), but does not bind to the wild-type SOD1 protein (SEQ ID NO: 2) Using these as indicators, screening was performed under non-denaturing conditions (ie, without destroying the three-dimensional structure of the SOD1 protein), and candidate antibodies were selected. As a result, it was possible to obtain one type of hybridoma cell line, # 27 (NITE BP-1100; the date of entrustment was May 12, 2011) that produced an antibody having the desired characteristics.
 このような知見に基づいて、本発明の一態様において、Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu(SEQ ID NO: 5)のアミノ酸配列またはArg Leu Ala Cys Gly Val Ile Gly Ile(SEQ ID NO: 6)を含むポリペプチドと結合する抗体を提供する。 Based on such findings, in one embodiment of the present invention, the amino acid sequence of Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5) or Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NOle) An antibody that binds to a polypeptide comprising: 6) is provided.
 実際に家族性ALSとの関連性が知られている上述した122種の変異型SOD1タンパク質の一部を選択し、これらの抗体と結合することができるか否かを検出したところ、これらの抗体はいずれも、非変性条件下にて、試験した全ての変異型SOD1タンパク質と結合することが示された。従って、本発明の抗体は、SEQ ID NO: 2のアミノ酸配列からなるタンパク質(すなわち、野生型SOD1タンパク質)には結合しないが、それ以外のSEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドに対しては結合することができる。 We selected some of the 122 mutant SOD1 proteins that are actually known to be related to familial ALS and detected whether they could bind to these antibodies. All have been shown to bind to all mutant SOD1 proteins tested under non-denaturing conditions. Therefore, the antibody of the present invention does not bind to a protein consisting of the amino acid sequence of SEQ ID NO: 2 (ie, wild type SOD1 protein), but the other amino acid sequence of SEQ ID NO: 4, SEQ ID NO: 4 1 amino acid sequence mutated in SEQ ID NO: 5 amino acid sequence, SEQ ID 配 列 NO: amino acid sequence mutated in 1 amino acid in SEQ ID NO: ア ミ ノ 酸 6 amino acid sequence, or in SEQ ID NO: 6 A polypeptide comprising an amino acid sequence in which one amino acid is mutated can be bound.
 ここで、これらの抗体が結合する対象であるSEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドには、変異型SOD1タンパク質が含まれ、より具体的にはSEQ ID NO: 2のアミノ酸配列のうち、例えばアミノ酸番号3、4、5、6、8、10、12、14、16、19、20、22、29、37、38、40、41、43、45、46、47、48、49、57、59、65、66、72、76、80、84、85、86、87、89、90、93、95、97、99、100、101、104、105、106、108、111、112、113、114、115、116、117、118、124、125、126、127、132、133、134、139、140、141、144、145、146、147、148、149、または151のいずれか1つのアミノ酸残基に、1アミノ酸の置換、欠失または付加を有するものなどが含まれる。 Here, the amino acid sequence of SEQ ID NO: 4 to which these antibodies are bound, the amino acid sequence in which one amino acid is mutated in SEQ ID NO: 4, the amino acid sequence of SEQ ID ア ミ ノ 酸 NO: 5, SEQ ID NO: 5 A polypeptide comprising an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 includes a mutant SOD1 protein, and more Specifically, among the amino acid sequences of SEQ ID NO: 2, for example, amino acid numbers 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 22, 29, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 57, 59, 65, 66, 72, 76, 80, 84, 85, 86, 87, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 111, 112, 113, 114, 115, 116, 117, 118, 124, 125, 126, 127, 132, 133, 134, 139, 140, 141, 144, 145, One of 146, 147, 148, 149, or 151 One amino acid residue includes those having one amino acid substitution, deletion or addition.
 これらの結果から、SEQ ID NO: 2のアミノ酸配列からなるタンパク質以外の、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチド領域の立体構造変化の存在が、筋萎縮性側索硬化症(ALS)の発症と関連するリスク因子であることが示された。 From these results, except for the protein consisting of the amino acid sequence of SEQ ID NO: 2, the amino acid sequence of SEQ ID 、 NO: 4, the amino acid sequence in which one amino acid was mutated in SEQ ID NO: 4, the amino acid of SEQ ID NO: 5 3D structural change of a polypeptide region comprising the sequence, an amino acid sequence mutated by 1 amino acid in SEQ ID NO: 5, an amino acid sequence of SEQ ID NO: 6, or an amino acid sequence mutated by 1 amino acid in SEQ ID NO: 6 Has been shown to be a risk factor associated with the development of amyotrophic lateral sclerosis (ALS).
 このような知見に基づいて、本発明の別の一態様においてはさらに、変異型SOD1タンパク質(限定的ではない例として、例えば、G85RおよびG93A)に対しては結合するが、野生型SOD1タンパク質(SEQ ID NO: 2)に対しては結合しない抗体を使用して、被検体から採取された細胞含有サンプルについてスクリーニングし、そしてその抗体に結合するタンパク質を検出することにより、SEQ ID NO: 2のアミノ酸配列からなるタンパク質以外の、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドを検出する方法、そしてその方法を通じて、家族性ALSの発症に関連するリスクを検出する方法を提供する。 Based on such findings, in another embodiment of the present invention, it further binds to mutant SOD1 protein (for example, but not limited to, for example, G85R and G93A), but wild-type SOD1 protein ( By using an antibody that does not bind to SEQ ID NO: 2), screening for a cell-containing sample taken from a subject and detecting the protein that binds to that antibody, the sequence of SEQ ID NO: 2 Other than proteins consisting of amino acid sequences, SEQ ID NO: 4 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence mutated, SEQ ID NO: 5 amino acid sequence, SEQ ID NO: 5 A method for detecting a polypeptide comprising a mutated amino acid sequence, the amino acid sequence of SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6, and Through this method, a method for detecting a risk associated with the development of familial ALS is provided.
 実施例1:変異型SOD1タンパク質に対する抗体の作製(1)
 この実施例においては、野生型SOD1タンパク質に対しては結合しないが、変異型SOD1タンパク質に対して結合することができる抗体を産生することを目的にして行った。
Example 1: Production of antibody against mutant SOD1 protein (1)
In this example, the purpose was to produce an antibody that does not bind to the wild-type SOD1 protein but can bind to the mutant SOD1 protein.
 (1)ラットの免疫
 SOD1(5~18 a.a.)(Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile(SEQ ID NO: 3))のうち、N末端およびC末端に存在する疎水性アミノ酸(VおよびI)が水溶性を低下させる可能性が考えられたため、SOD1タンパク質の6~16番アミノ酸からなるペプチド(Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly(SEQ ID NO: 4))のペプチドを免疫原として作製した。
(1) Immunity of rats Hydrophobic amino acids present at the N-terminus and C-terminus of SOD1 (5-18 aa) (Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile (SEQ ID NO: 3)) (V and I) may reduce water solubility, so the peptide consisting of amino acids 6 to 16 of SOD1 protein (Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4)) Peptides were made as immunogens.
 このSOD1タンパク質の6~16番アミノ酸からなるペプチドを、キーホールリンペットヘモシアニン(KLH;Operon社)と複合化した後、1 mg/mLに調製した。SOD1タンパク質の6~16番アミノ酸からなるペプチドのペプチド溶液400μLとFreundの完全アジュバント(Sigma)800μLとを、ルアー式注射筒で攪拌してエマルジョン化し、抗原とした。調製した抗原は一匹当たり200μLをラット(WKY/Izmメス、免疫時8週齢;日本クレア)3匹に後肢肉球より片足100μLずつ皮内注射した。 The peptide consisting of amino acids 6 to 16 of this SOD1 protein was complexed with keyhole limpet hemocyanin (KLH; Operon) and prepared to 1 mg / mL. 400 μL of a peptide solution of a peptide consisting of amino acids 6 to 16 of SOD1 protein and 800 μL of Freund's complete adjuvant (Sigma) were stirred and emulsified with a Luer syringe to obtain an antigen. The prepared antigen was intradermally injected into 3 rats (WKY / Izm female, 8 weeks old at the time of immunization; Japan Claire) in an amount of 100 μL per leg from the hindlimb paws.
 (2)ミエローマ細胞の調製、リンパ節細胞の調製、細胞融合
 マウスミエローマ細胞株SP2/0-Ag14(SP2)(DSファーマメディカル)を、10%ウシ胎児血清(biowest)を含むGIT培地(和光純薬)中で37℃、5%CO2の条件下で培養した。
(2) Preparation of myeloma cells, preparation of lymph node cells, cell fusion Mouse myeloma cell line SP2 / 0-Ag14 (SP2) (DS Pharma Medical), GIT medium containing 10% fetal bovine serum (biowest) (Wako Jun) In the drug), the cells were cultured under the conditions of 37 ° C. and 5% CO 2 .
 このマウスミエローマ細胞株は、免疫したマウスから採取する細胞との融合予定日から数えて4日前にストックより起こし、細胞融合の当日にはラット1匹当たり10 cmディッシュ6枚がミエローマ細胞によりコンフルエントになるように播いた。細胞融合の当日、GIT培地を吸引除去し、ディッシュ一枚あたりDMEM高グルコース(この培養液を以下において単に「DMEM」という;シグマアルドリッチ)4 mLを加えてSP2を剥がした。 This mouse myeloma cell line arose from the stock 4 days before the scheduled fusion date with cells collected from the immunized mouse, and on the day of cell fusion, 6 10 cm dishes per rat were confluent with myeloma cells. Sowed. On the day of cell fusion, the GIT medium was removed by aspiration, and 4 μmL of DMEM high glucose (this culture medium is simply referred to as “DMEM”; Sigma Aldrich) was added to each dish to remove SP2.
 浮遊液を50 mLファルコンチューブに集め、1000 rpm、3分間遠心して上清を吸引除去した。さらにDMEM 20 mLで細胞を浮遊させ、再度1000 rpm、3分間遠心し上清を吸引除去した。最後に5 mL DMEMで細胞を浮遊させ融合に用いるSP2細胞液とした。 The suspension was collected in a 50-mL Falcon tube, centrifuged at 1000-rpm for 3 minutes, and the supernatant was removed by suction. Further, the cells were suspended in 20 mL of DMEM and centrifuged again at 1000 rpm for 3 minutes, and the supernatant was removed by suction. Finally, the cells were suspended in 5 mL DMEM to prepare SP2 cell solution used for fusion.
 (1)において免疫されたラットを、エーテルで深麻酔し、心臓より採血を行った。その後、頸椎脱臼させて確実に致死させた後、開腹し腸骨リンパ節を摘出した。セルストレイナー(Becton, Dickinson and Company)を用いて、リンパ節から抗体産生B細胞を含むリンパ節組織細胞をDMEM 2 mL中に回収した。 The rat immunized in (1) was deeply anesthetized with ether, and blood was collected from the heart. Then, after cervical dislocation and lethal death, the abdomen was opened and the iliac lymph nodes were removed. Using a cell strainer (Becton, “Dickinson” and “Company”), lymph node tissue cells containing antibody-producing B cells were recovered from 2 lymph nodes in 2 mL of DMEM.
 リンパ節細胞液をSP2細胞液中に加え、DMEMで全量40 mLとして懸濁後、1200 rpm、10分間遠心した。上清を吸引除去し沈殿をタッピングでほぐした後、手で握って体温にて2分間インキュベートした。そこに予め調製しておいたポリエチレングリコール(PEG)1 mLを、ファルコンチューブを振りながら1分間かけてゆっくり滴下した。ファルコンチューブを震盪、回転させ2分間細胞融合反応を行った。 The lymph node cell solution was added to the SP2 cell solution, suspended in DMEM to a total volume of 40 mL, and then centrifuged at 1200 rpm for 10 minutes. The supernatant was removed by aspiration, and the precipitate was loosened by tapping. Then, it was held by hand and incubated at body temperature for 2 minutes. 1 mL of polyethylene glycol (PEG) prepared in advance was slowly added dropwise over 1 minute while shaking the falcon tube. The Falcon tube was shaken and rotated to perform a cell fusion reaction for 2 minutes.
 反応終了後、まずファルコンチューブを震盪させながら、DMEM 4.5 mLを3分間かけて滴下した。続けてDMEM 4.5 mLを同様に2分間かけて滴下し、900rpm、5分間遠心した。上清を吸引除去し、BM-Condimed H1(Roche)4 mLとHAT培地36 mLを加えて細胞を浮遊させた。HAT培地は、チミジン(和光純薬)、ヒポキサンチン(和光純薬)溶液6 mlを60℃で溶解し、アミノプテリン(和光純薬)0.6 mlと撹拌し、0.22μmのフィルター(ミリポア)で濾過し、このうち6 mlを10%FBS含有GIT培地(和光純薬)555 mlに溶解することにより調製する。 After completion of the reaction, 4.5 μmL of DMEM was added dropwise over 3 minutes while shaking the falcon tube. Subsequently, 4.5 μmL of DMEM was similarly added dropwise over 2 minutes and centrifuged at 900 rpm for 5 minutes. The supernatant was removed by aspiration, and BM-Condimed-H1 (Roche) 4 mL and HAT medium 36 mL were added to suspend the cells. For HAT medium, dissolve 6 ml of thymidine (Wako Pure Chemical Industries) and hypoxanthine (Wako Pure Chemical Industries) solution at 60 ℃, stir with aminopterin (Wako Pure Chemical Industries) 0.6 ml, and filter with 0.22μm filter (Millipore). Of these, 6 ml is prepared by dissolving in 555 ml of GIT medium (Wako Pure Chemicals) containing 10% FBS.
 上述したリンパ節組織細胞の細胞液を96ウェルプレート4枚に100μL/wellで播き、HAT培地中で約7~10日間培養を行い、ハイブリドーマ細胞を得た。 The cell solution of the lymph node tissue cells described above was seeded at 100 μL / well in four 96-well plates and cultured in HAT medium for about 7 to 10 days to obtain hybridoma cells.
 (3)ELISAによる一次スクリーニング
 一次スクリーニングとしてSOD1タンパク質の6~16番アミノ酸からなるペプチド(SEQ ID NO: 4)によるELISAを行った。
(3) Primary screening by ELISA As a primary screening, ELISA using a peptide consisting of amino acids 6 to 16 of SOD1 protein (SEQ ID NO: 4) was performed.
 96ウェルMaxisorp ELISAプレート(Nunc)に、3μg/mLのKLH複合化されたSOD1タンパク質の6~16番アミノ酸からなるペプチドもしくはKLHを含むPBSを100μL/ウェルで分注し、4℃で一晩インキュベートして、プレートウェル表面に対して抗原を吸着させた。抗原液を捨て、1%ウシ血清アルブミンを含むPBSを100μL/ウェルで分注して37℃で1時間インキュベートしてブロッキングした後、ハイブリドーマ培養上清を40μL/ウェルで分注し37℃で1時間インキュベートした。 In a 96-well Maxisorp ELISA plate (Nunc), dispense 3 μg / mL KLH-conjugated SOD1 protein peptide consisting of amino acids 6 to 16 or PBS containing KLH at 100 μL / well and incubate overnight at 4 ° C. Then, the antigen was adsorbed to the surface of the plate well. After discarding the antigen solution and dispensing PBS containing 1% bovine serum albumin at 100 μL / well and incubating at 37 ° C. for 1 hour for blocking, the hybridoma culture supernatant was dispensed at 40 μL / well and 1 at 37 ° C. Incubated for hours.
 培養上清を捨ててPBSでウェルを2回洗い、HRP標識抗ラットIgG抗体(GE Healthcare)原液を1000倍希釈した0.1%ウシ血清アルブミンを含むPBSを100μL/ウェルで分注し、37℃で1時間インキュベートした。二次抗体液を捨ててウェルをPBSで3回洗い、0.4 mg/mL o-フェニレンジアミン(OPD)を含むPBSに発色直前に30%H2O2を0.4μL/mLの割合で加えて作った発色基質液を100μL/ウェルで分注して室温で1時間放置し発色させた。 Discard the culture supernatant, wash the wells twice with PBS, dispense PBS containing 0.1% bovine serum albumin diluted 1000-fold with an HRP-labeled anti-rat IgG antibody (GE Healthcare) stock solution at 100 μL / well at 37 ° C Incubated for 1 hour. Discard the secondary antibody solution and wash the wells 3 times with PBS, and add 30% H 2 O 2 at a rate of 0.4 μL / mL to PBS containing 0.4 mg / mL o-phenylenediamine (OPD) just before color development. The chromogenic substrate solution was dispensed at 100 μL / well and allowed to stand at room temperature for 1 hour for color development.
 その結果、266個の陽性クローンを得た(データは示さず)。 As a result, 266 positive clones were obtained (data not shown).
 (4)限界希釈
 24ウェルプレートで培養していたハイブリドーマをピペッティングで浮遊させ、適当量の培養液(HAT培地)に細胞を希釈して細胞数をカウントした。この細胞液を10%BM condimed H1を加えたHAT培地30 mL中に0.5細胞/150μL/ウェルと1.5細胞/150μL/ウェルとなるように加え、96ウェルプレート2枚に200μL/ウェルで播いた。
(4) Limiting dilution Hybridomas cultured in 24-well plates were suspended by pipetting, and the cells were diluted in an appropriate amount of culture solution (HAT medium) and the number of cells was counted. This cell solution was added to 30 mL of HAT medium supplemented with 10% BM condimed H1 so as to be 0.5 cells / 150 μL / well and 1.5 cells / 150 μL / well, and seeded on two 96-well plates at 200 μL / well.
 このようにして限界希釈を行った後、得られたハイブリドーマのそれぞれを、さらに培養液(HAT培地)中で増殖させ、コロニーが形成されたウェルの培養上清を用いて、さらにスクリーニングを行った。 After limiting dilution in this manner, each of the obtained hybridomas was further grown in a culture solution (HAT medium), and further screening was performed using the culture supernatant of the well in which colonies were formed. .
 (5)免疫沈降による二次スクリーニング
 二次スクリーニングとして、非変性状態でSOD1タンパク質を認識するか否かを評価するため、免疫沈降法(IP)によりハイブリドーマ上清を評価した。
(5) Secondary screening by immunoprecipitation As a secondary screening, the hybridoma supernatant was evaluated by immunoprecipitation (IP) in order to evaluate whether or not SOD1 protein was recognized in a non-denaturing state.
 まず、10%ウシ胎児血清、100 unit/mLペニシリンGを含むDMEM高グルコース中で37℃、5%CO2の条件下で培養したHEK293A細胞に対して、変異型SOD1を過剰発現させるため、Flag-SOD1(G93A)をコードする遺伝子を、pcDNA3-Flag-SOD1(G93A)ベクターを用いて、導入した。Flag-SOD1(G93A)をコードする遺伝子のヌクレオチド配列は、以下の様にしてpcDNA3-Flag-SOD1(G93A)ベクター中に形成した。まず、Flag(Asp Tyr Lys Asp Asp Asp Asp Lys;SEQ ID NO: 9)をコードするヌクレオチド配列(ggatccaccg ccatggacta caaggacgat gatgacaagg gcgaattc;SEQ ID NO: 8)を、BamHI-EcoRI制限酵素処理した環状ベクターpcDNA3.0ベクター(Invitrogen)のマルチクローニングサイトに導入した(pcDNA3-Flagベクター)。次に、プライマー(gaattcgcga cgaaggccg(SEQ ID NO: 14)およびggatccttgg gcgatcccaa tt(SEQ ID NO: 15))を用いてPCRを行うことにより、SOD1(G93A)(SEQ ID NO: 11)をコードするヌクレオチド配列(SEQ ID NO: 10)を、両端にEcoRI制限酵素部位およびXhoI制限酵素部位を導入しつつ増幅した。このPCR産物をEcoRI-XhoIで処理した後、EcoRI-XhoIで処理したpcDNA3-Flagベクターのクローニングサイトに導入することにより、Flagをコードするヌクレオチド配列(SEQ ID NO: 8)とSOD1(G93A)をコードするヌクレオチド配列(SEQ ID NO: 10)とを融合したFlag-SOD1(G93A)を含む、pcDNA3-Flag-SOD1(G93A)ベクターを調製した。このヌクレオチド配列を有するpcDNA3-Flag-SOD1(G93A)ベクターを、FuGENE6(Roche)を用いてHEK293A細胞に対して導入した。 First, to overexpress mutant SOD1 in HEK293A cells cultured at 37 ° C in 5% CO 2 in DMEM high glucose containing 10% fetal bovine serum and 100 unit / mL penicillin G. A gene encoding -SOD1 (G93A) was introduced using a pcDNA3-Flag-SOD1 (G93A) vector. The nucleotide sequence of the gene encoding Flag-SOD1 (G93A) was formed in the pcDNA3-Flag-SOD1 (G93A) vector as follows. First, a circular vector pcDNA3 treated with a BamHI-EcoRI restriction enzyme from a nucleotide sequence (ggatccaccg ccatggacta caaggacgat gatgacaagg gcgaattc; SEQ ID NO: 8) encoding Flag (Asp Tyr Lys Asp Asp Asp Asp Lys; SEQ ID NO: 9). It was introduced into the multicloning site of 0 vector (Invitrogen) (pcDNA3-Flag vector). Next, nucleotides encoding SOD1 (G93A) (SEQ ID NO: 11) are obtained by performing PCR using primers (gaattcgcga cgaaggccg (SEQ ID NO: 14) and ggatccttgg gcgatcccaa tt (SEQ ID NO: 15)). The sequence (SEQ ID NO: 10) was amplified while introducing EcoRI and XhoI restriction enzyme sites at both ends. This PCR product is treated with EcoRI-XhoI, and then introduced into the cloning site of pcDNA3-Flag vector treated with EcoRI-XhoI, so that the nucleotide sequence encoding SEQ ID NO: 8 and SOD1 (G93A) A pcDNA3-Flag-SOD1 (G93A) vector containing Flag-SOD1 (G93A) fused with the encoding nucleotide sequence (SEQ ID NO: 10) was prepared. The pcDNA3-Flag-SOD1 (G93A) vector having this nucleotide sequence was introduced into HEK293A cells using FuGENE6 (Roche).
 6ウェルプレートに播種したFlag-SOD1(G93A)遺伝子導入細胞を、10% FBS含有DMEM中で48時間培養した後、1ウェル当たり1 mLのIP溶解バッファー(20 mM Tris-HCl pH 7.5、150 mM NaCl、10 mM EDTA pH 8.0、1%デオキシコール酸ナトリウム、1%Triton-X 100、1 mMフッ化フェニルメチルスルホニル、5μg/mLロイペプチン)で4℃にて30分間細胞をインキュベートすることにより細胞を溶解し、4℃、15000 rpm、10分間遠心して上清を回収した。 After culturing Flag-SOD1 (G93A) transfected cells seeded in a 6-well plate for 48 hours in DMEM containing 10% FBS, 1 μmL of IP lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM) Cells by incubating the cells for 30 minutes at 4 ° C with NaCl, 10 mM EDTA pH 8.0, 1% sodium deoxycholate, 1% Triton- X 100, 1 mM mM phenylmethylsulfonyl fluoride, 5 μg / mL leupeptin) After dissolution, the supernatant was collected by centrifugation at 4 ° C., 15000 rpm for 10 minutes.
 次いで、上述したように調製した細胞溶解液を、ハイブリドーマ培養上清により免疫沈降した。免疫沈降を行う(1)~(4)において調製した本発明の抗体を含む培養上清500μL、そして対照抗体として野生型SOD1タンパク質を認識する抗SOD1抗体(Stressgen)または抗Flag抗体(Sigma;M2抗体)をそれぞれ1μg/500μLのIP溶解バッファー(上述したもの)を細胞溶解液500μLに加え、4℃にて一晩転倒混和し反応させた。 Next, the cell lysate prepared as described above was immunoprecipitated with the hybridoma culture supernatant. 500 μL of culture supernatant containing the antibody of the present invention prepared in (1) to (4) for immunoprecipitation, and anti-SOD1 antibody (Stressgen) or anti-Flag antibody (Sigma; M2) that recognizes wild-type SOD1 protein as a control antibody 1 μg / 500 μL of IP lysis buffer (as described above) was added to 500 μL of the cell lysate, and the mixture was mixed by inversion overnight at 4 ° C. for reaction.
 反応後、プロテインGセファロースおよびM2アフィニティーアガロースゲル(Sigma)を液量で20μL加え、さらに2時間4℃にて転倒混和し反応させた。反応後、上清を除去し1 mLのIP溶解バッファーで4回洗浄して、最後に20 mMのジチオスレイトールを含む50μLの2×SDSサンプルバッファーを加えて98℃で3分間ボイルし、SDS-PAGEへと供した。 After the reaction, 20 μL of protein G sepharose and M2 affinity agarose gel (Sigma) were added in a liquid amount, and the mixture was further mixed by inversion at 4 ° C. for 2 hours to react. After the reaction, the supernatant is removed and washed 4 times with 1 mL of IP lysis buffer.Finally, 50 μL of 2 × SDS sample buffer containing 20 μM dithiothreitol is added and boiled at 98 ° C. for 3 minutes. -Used for PAGE.
 電気泳動後、ゲルから2フッ化ポリビニリデンメンブレン(0.45μm、Pall)にタンパク質を転写し、1%スキムミルクを含むTBS-T(150 mM NaCl、50 mM Tris-HCl pH 8.0、0.05%Tween 20)で室温にて2時間ブロッキングした後、5%ウシ血清アルブミンと0.1%NaN3を含むTBS-Tで希釈した一次抗体で4℃にて一晩反応させた。TBS-Tで2回洗浄した後、1%スキムミルクを含むTBS-Tで希釈した二次抗体で室温にて1時間反応、TBS-Tで2時間洗浄した。 After electrophoresis, transfer the protein from the gel to polyvinylidene difluoride membrane (0.45μm, Pall), and TBS-T containing 1% skim milk (150 mM NaCl, 50 mM Tris-HCl pH 8.0, 0.05% Tween 20) After blocking at room temperature for 2 hours, the mixture was reacted at 4 ° C. overnight with a primary antibody diluted with TBS-T containing 5% bovine serum albumin and 0.1% NaN 3 . After washing twice with TBS-T, the mixture was reacted with a secondary antibody diluted with TBS-T containing 1% skim milk at room temperature for 1 hour and washed with TBS-T for 2 hours.
 検出は高感度ケミルミネッセンス法(enhanced chemiluminescence;ECL)(GE Healthcare)にて行った。ウェスタンブロッティングにおいては、一次抗体として、抗Flag抗体(M2;Sigma)、抗SOD1抗体(SOD-100;Stressgen)、二次抗体として抗マウスIgG抗体(GE Healthcare)、抗ラットIgG抗体(Cell signaling)、抗ウサギIgG抗体(Cell signaling)、いずれもHRP標識したものを用いた。 Detection was performed by a highly sensitive chemiluminescence method (enhanced chemiluminescence; ECL) (GE Healthcare). In Western blotting, primary antibodies include anti-Flag antibody (M2; Sigma), anti-SOD1 antibody (SOD-100; Stressgen), secondary antibodies include anti-mouse IgG antibody (GE Healthcare), and anti-rat IgG antibody (Cell signaling). , Anti-rabbit IgG antibody (Cell signaling), both HRP-labeled were used.
 その結果、#242、#406、#659、#785、#1175のハイブリドーマ上清で、Flag-SOD1(G93A)を検出することができた(図2)。 As a result, Flag-SOD1 (G93A) could be detected in the hybridoma supernatants # 242, # 406, # 659, # 785, and # 1175 (FIG. 2).
 (6)抗体のさらなる検討
 さらに、他の変異型SOD1タンパク質も検出可能か否かを評価するために、Flag-SOD1(G85R)遺伝子導入細胞も同様に培養して、Flag-SOD1(G85R)を過剰発現させ、細胞溶解液を上記5種類のハイブリドーマ上清により免疫沈降し、免疫沈降したFlag-SOD1(G85R)をウェスタンブロッティングよりさらに検討した。
(6) Further examination of antibodies In addition, in order to evaluate whether other mutant SOD1 proteins can also be detected, Flag-SOD1 (G85R) transgenic cells are also cultured in the same manner, and Flag-SOD1 (G85R) is The cells were overexpressed, the cell lysate was immunoprecipitated with the above five hybridoma supernatants, and immunoprecipitated Flag-SOD1 (G85R) was further examined by Western blotting.
 Flag-SOD1(G85R)をコードする遺伝子のヌクレオチド配列は、(5)で調製したpcDNA3-Flagベクターに対して導入して、以下の様にしてpcDNA3-Flag-SOD1(G85R)ベクター中に形成した。プライマー(gaattcgcga cgaaggccg(SEQ ID NO: 14)およびggatccttgg gcgatcccaa tt(SEQ ID NO: 15))を用いてPCRを行うことにより、SOD1(G85R)(SEQ ID NO: 13)をコードするヌクレオチド配列(SEQ ID NO: 12)を、両端にEcoRI制限酵素部位およびXhoI制限酵素部位を導入しつつ増幅した。このPCR産物をEcoRI-XhoIで処理した後、EcoRI-XhoIで処理したpcDNA3-Flagベクターのクローニングサイトにを導入することにより、Flagをコードするヌクレオチド配列(SEQ ID NO: 8)とSOD1(G85R)をコードするヌクレオチド配列(SEQ ID NO: 12)とを融合したFlag-SOD1(G85R)を含む、pcDNA3-Flag-SOD1(G85R)ベクターを調製した。このヌクレオチド配列を有するpcDNA3-Flag-SOD1(G85R)ベクターを、(5)の場合と同様にしてFuGENE6(Roche)を用いてHEK293A細胞に対して導入した。また、検討のための免疫沈降およびウェスタンブロッティングも、(5)において上述したように行った。 The nucleotide sequence of the gene encoding Flag-SOD1 (G85R) was introduced into the pcDNA3-Flag vector prepared in (5) and formed in the pcDNA3-Flag-SOD1 (G85R) vector as follows. . PCR using primers (gaattcgcga cgaaggccg (SEQ ID NO: 14) and ggatccttgg gcgatcccaa tt (SEQ ID NO: 15)) allows nucleotide sequence encoding SOD1 (G85R) (SEQ ID NO: 13) ID NO: 12) was amplified while introducing EcoRI restriction enzyme sites and XhoI restriction enzyme sites at both ends. This PCR product is treated with EcoRI-XhoI, and then introduced into the cloning site of pcDNA3-Flag vector treated with EcoRI-XhoI, so that the nucleotide sequence coding for Flag (SEQ ID NO: 8) and SOD1 (G85R) A pcDNA3-Flag-SOD1 (G85R) vector containing Flag-SOD1 (G85R) fused with a nucleotide sequence encoding SEQ ID NO: SEQ ID NO: 12 was prepared. The pcDNA3-Flag-SOD1 (G85R) vector having this nucleotide sequence was introduced into HEK293A cells using FuGENE6 (Roche) in the same manner as in (5). Further, immunoprecipitation and western blotting for examination were performed as described above in (5).
 その結果、#406、#659、#785のハイブリドーマ上清でFlag-SOD1(G85R)を検出することができた(図3)。 As a result, Flag-SOD1 (G85R) was detected in the hybridoma supernatants of # 406, # 659, and # 785 (FIG. 3).
 これらの結果から、本発明において、SOD1(G93A)およびSOD1(G85R)の両方ともと結合することができた、#406、#659、#785の3種のハイブリドーマを好ましいものとして選択し、これらの細胞株を独立行政法人製品評価技術基盤機構(NITE)、特許微生物寄託センター(NPMD)に寄託した(#406、#659、および#785の寄託番号はそれぞれ、NITE P-941、NITE BP-942、およびNITE BP-943;受託日はいずれも2010年5月12日)。 From these results, in the present invention, three types of hybridomas # 406, # 659, and # 785 that were able to bind to both SOD1 (G93A) and SOD1 (G85R) were selected as preferred, and these Cell lines were deposited with the National Institute of Technology and Evaluation (NITE) and the Patent Microorganism Depositary Center (NPMD) (the deposit numbers of # 406, # 659, and # 785 were NITE P-941 and NITE BP-, respectively) 942 and NITE BP-943; the date of entrustment is May 12, 2010).
 実施例2:抗体の抗原認識性の検討
 実施例1において得られた#406、#659、#785の3種のハイブリドーマ細胞の培養上清が、野生型SOD1タンパク質を認識せず、SOD1(G85R)とSOD1(G93A)を認識したことから、本実施例においては、他の様々な変異型SOD1タンパク質をも共通に認識するか否かを検討した。
Example 2: Examination of antibody antigen recognizability The culture supernatants of the three hybridoma cells # 406, # 659, and # 785 obtained in Example 1 did not recognize wild-type SOD1 protein, and SOD1 (G85R ) And SOD1 (G93A), in this example, it was examined whether or not other various mutant SOD1 proteins are also commonly recognized.
 実験は、#785ハイブリドーマから得られた細胞上清を用いて、実施例1(5)および(6)と同様に様々な変異型SOD1タンパク質を発現する細胞を調製し、それぞれの細胞溶解液と#785ハイブリドーマから得られた細胞上清とを混合することにより免疫沈降を行い、さらに得られたそれぞれのFlag-変異SOD1タンパク質を、一次抗体として、抗Flag抗体(M2;Sigma)、二次抗体としてはいずれもHRP標識した抗マウスIgG抗体(GE Healthcare)、抗ラットIgG抗体(Cell signaling)、抗ウサギIgG抗体(Cell signaling)を用いた。 In the experiment, using the cell supernatant obtained from the # 785 hybridoma, cells expressing various mutant SOD1 proteins were prepared in the same manner as in Example 1 (5) and (6). Immunoprecipitation is performed by mixing the cell supernatant obtained from # 785 hybridoma, and each of the obtained Flag-mutant SOD1 proteins is used as a primary antibody for anti-Flag antibody (M2; Sigma), secondary antibody. As these, anti-mouse IgG antibodies labeled with HRP (GE Healthcare), anti-rat IgG antibodies (Cell signaling), and anti-rabbit IgG antibodies (Cell signaling) were used.
 その結果、今回検討を行ったSOD1(K3E)、SOD1(A4S)、SOD1(A4T)、SOD1(A4V)、SOD1(V5L)、SOD1(C6F)、SOD1(C6G)、SOD1(C6Y)、SOD1(G16A)、SOD1(G16S)、SOD1(F20C)、SOD1(V29A)、SOD1(G37R)、SOD1(L38R)、SOD1(L38V)、SOD1(E40G)、SOD1(G41D)、SOD1(G41S)、SOD1(H43R)、SOD1(F45C)、SOD1(H46R)、SOD1(V47A)、SOD1(V47F)、SOD1(H48Q)、SOD1(H48R)、SOD1(C57R)、SOD1(S59I)、SOD1(N65S)、SOD1(P66A)、SOD1(G72C)、SOD1(G72S)、SOD1(D76V)、SOD1(D76Y)、SOD1(H80R)、SOD1(L84F)、SOD1(L84V)、SOD1(G85R)、SOD1(G85S)、SOD1(N86D)、SOD1(N86I)、SOD1(N86K)、SOD1(N86S)、SOD1(V87A)、SOD1(V87M)、SOD1(T88Δ)(T88、A89およびD90の3アミノ酸の欠損を意味する)、SOD1(A89T)、SOD1(A89V)、SOD1(D90A)、SOD1(D90V)、SOD1(G93A)、SOD1(G93C)、SOD1(G93D)、SOD1(G93R)、SOD1(G93S)、SOD1(G93V)、SOD1(A95T)、SOD1(A95V)、SOD1(V97L)、SOD1(V97M)、SOD1(I99V)、SOD1(E100G)、SOD1(E100K)、SOD1(D101G)、SOD1(D101H)、SOD1(D101N)、SOD1(D101Y)、SOD1(I104F)、SOD1(S105L)、SOD1(S105Δ)、SOD1(L106V)、SOD1(G108V)、SOD1(C111Y)、SOD1(I112M)、SOD1(I112T)、SOD1(I113F)、SOD1(I113T)、SOD1(G114A)、SOD1(R115G)、SOD1(T116R)、SOD1(L117V)、SOD1(V118L)、SOD1(V118+)、SOD1(D124G)、SOD1(D124V)、SOD1(D125H)、SOD1(L126S)、SOD1(L126*)、SOD1(L126Δ)、SOD1(E132+)、SOD1(E133V)、SOD1(E133Δ)、SOD1(S134N)、SOD1(N139D)、SOD1(N139H)、SOD1(N139K)、SOD1(A140G)、SOD1(G141E)、SOD1(G141*)、SOD1(L144F1)、SOD1(L144F2)、SOD1(L144S)、SOD1(A145G)、SOD1(A145T)、SOD1(C146R)、SOD1(C146*)、SOD1(G147D)、SOD1(G147R)、SOD1(V148G)、SOD1(I149T)、SOD1(I151S)、およびSOD1(I151T)の、107種類全てについて、本発明の抗体により免疫沈降可能であること、すなわち程度の差はあるものの、本発明の抗体が、変異型SOD1タンパク質の変異の部位に関わらず、変異型SOD1タンパク質を認識できることが明らかとなった(図4a)~i))。図4において、欠失を示すために図1における表記「Δ」に代えて「del」と記載され、挿入を示しために図1における表記「+」に代えて「ins」と記載され、そして停止コドンを示すために図1における表記「*」に代えて「Z」または「stop」と記載される場合がある。 As a result, SOD1 (K3E), SOD1 (A4S), SOD1 (A4T), SOD1 (A4V), SOD1 (V5L), SOD1 (C6F), SOD1 (C6G), SOD1 (C6Y), SOD1 ( G16A), SOD1 (G16S), SOD1 (F20C), SOD1 (V29A), SOD1 (G37R), SOD1 (L38R), SOD1 (L38V), SOD1 (E40G), SOD1 (G41D), SOD1 (G41S), SOD1 ( H43R), SOD1 (F45C), SOD1 (H46R), SOD1 (V47A), SOD1 (V47F), SOD1 (H48Q), SOD1 (H48R), SOD1 (C57R), SOD1 (S59I), SOD1 (N65S), SOD1 ( P66A), SOD1 (G72C), SOD1 (G72S), SOD1 (D76V), SOD1 (D76Y), SOD1 (H80R), SOD1 (L84F), SOD1 (L84V), SOD1 (G85R), SOD1 (G85S), SOD1 ( N86D), SOD1 (N86I), SOD1 (N86K), SOD1 (N86S), SOD1 (V87A), SOD1 (V87M), SOD1 (T88Δ) (meaning a deletion of three amino acids T88, A89 and D90), SOD1 ( A89T), SOD1 (A89V), SOD1 (D90A), SOD1 (D90V), SOD1 (G93A), SOD1 (G93C), SOD1 (G93D), SOD1 (G93R) , SOD1 (G93S), SOD1 (G93V), SOD1 (A95T), SOD1 (A95V), SOD1 (V97L), SOD1 (V97M), SOD1 (I99V), SOD1 (E100G), SOD1 (E100K), SOD1 (D101G) , SOD1 (D101H), SOD1 (D101N), SOD1 (D101Y), SOD1 (I104F), SOD1 (S105L), SOD1 (S105Δ), SOD1 (L106V), SOD1 (G108V), SOD1 (C111Y), SOD1 (I112M) , SOD1 (I112T), SOD1 (I113F), SOD1 (I113T), SOD1 (G114A), SOD1 (R115G), SOD1 (T116R), SOD1 (L117V), SOD1 (V118L), SOD1 (V118 +), SOD1 (D124G) , SOD1 (D124V), SOD1 (D125H), SOD1 (L126S), SOD1 (L126 *), SOD1 (L126Δ), SOD1 (E132 +), SOD1 (E133V), SOD1 (E133Δ), SOD1 (S134N), SOD1 (N139D ), SOD1 (N139H), SOD1 (N139K), SOD1 (A140G), SOD1 (G141E), SOD1 (G141 *), SOD1 (L144F1), SOD1 (L144F2), SOD1 (L144S), SOD1 (A145G), SOD1 ( A145T), SOD1 (C146R), SOD1 (C146 *), SOD1 (G147D), SOD1 (G147R), SOD1 (V148G), SOD1 (I1 49T), SOD1 (I151S), and SOD1 (I151T), all 107 types can be immunoprecipitated by the antibody of the present invention, that is, although there is a difference in degree, the antibody of the present invention is a mutant SOD1 protein. It was revealed that the mutant SOD1 protein can be recognized regardless of the mutation site (Fig. 4a) to i)). In FIG. 4, “del” is described in place of the notation “Δ” in FIG. 1 to indicate deletion, “ins” is described in place of the notation “+” in FIG. 1 to indicate insertion, and In order to indicate a stop codon, “Z” or “stop” may be used instead of “*” in FIG.
 実施例3:変異型SOD1タンパク質に対する抗体の作製(2)
 この実施例においては、野生型SOD1タンパク質に対しては結合しないが、変異型SOD1タンパク質に対して結合することができるさらなる抗体を産生することを目的にして行った。
Example 3: Production of antibody against mutant SOD1 protein (2)
In this example, the aim was to produce additional antibodies that did not bind to the wild-type SOD1 protein but could bind to the mutant SOD1 protein.
 この様な特徴を有する抗体を作製することを目的として、野生型SOD1タンパク質の30~40番アミノ酸からなるペプチド(Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu(SEQ ID NO: 5))のペプチドを、免疫原として使用して、抗体を作製した。 Peptide consisting of amino acids 30-40 of wild-type SOD1 protein (Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu (SEQ ID NO: 5)) peptide for the purpose of producing an antibody having such characteristics Were used as immunogens to generate antibodies.
 野生型SOD1タンパク質の30~40番アミノ酸からなるペプチドを、1 mg/mLに調製し、ペプチド溶液400μLとFreundの完全アジュバント(Sigma)800μLとを、ルアー式注射筒で攪拌してエマルジョン化し、抗原とした。調製した抗原は一匹当たり200μLをラット(WKY/Izmメス、免疫時8週齢;日本クレア)3匹に後肢肉球より片足100μLずつ皮内注射した。 Peptide consisting of amino acids 30-40 of wild type SOD1 protein is prepared to 1 mg / mL, and 400 µL of peptide solution and Freund's complete adjuvant (Sigma) 800 µL are emulsified by stirring with a Luer syringe, and the antigen It was. The prepared antigen was intradermally injected into 3 rats (WKY / Izm female, 8 weeks old at the time of immunization; Japan Claire) in an amount of 100 μL per leg from the hindlimb paws.
 この後の抗体を産生する工程ならびに抗体をスクリーニングする工程は、いずれも実施例1に記載される様に行った。 The subsequent antibody production step and antibody screening step were carried out as described in Example 1.
 その結果、#27のハイブリドーマ上清により、野生型SOD1タンパク質は検出されなかったが、Flag-SOD1(A4V)、Flag-SOD1(G85R)およびFlag-SOD1(G93A)の変異型SOD1タンパク質を検出することができた(図5A)。そして、得られた#27のハイブリドーマを好ましいものとして、この細胞株を独立行政法人製品評価技術基盤機構(NITE)、特許微生物寄託センター(NPMD)に寄託した(#27の寄託番号は、NITE BP-1100;受託日は2011年5月12日)。 As a result, the hybridoma supernatant of # 27 did not detect the wild type SOD1 protein, but detected the mutant SOD1 protein of Flag-SOD1 (A4V), Flag-SOD1 (G85R) and Flag-SOD1 (G93A) (Fig. 5A). The cell line was deposited with the National Institute for Product Evaluation and Technology (NITE) and the Patent Microorganism Depositary Center (NPMD) with the obtained # 27 hybridoma as preferred (the deposit number of # 27 is NITE BP -1100; contract date is May 12, 2011).
 本実施例においてはさらに、得られた#27のハイブリドーマ細胞の培養上清が、SOD1(A4V)、SOD1(G85R)、およびSOD(G93A)以外の他の様々な変異型SOD1タンパク質、特にSEQ ID NO: 2のアミノ酸配列のうちSEQ ID NO: 4に対応する部分に変異を有する変異型SOD1タンパク質を認識するか否かを、#27のハイブリドーマから得られた抗体を使用して、実施例2に記載される様に検討した。 In this example, the culture supernatant of the obtained # 27 hybridoma cells was further transformed into various mutant SOD1 proteins other than SOD1 (A4V), SOD1 (G85R), and SOD (G93A), particularly SEQ ID Whether or not to recognize a mutant SOD1 protein having a mutation in the part corresponding to SEQ ID NO: NO4 in the amino acid sequence of NO: 2 is determined using an antibody obtained from the hybridoma of Example 27. As described in.
 その結果、#27のハイブリドーマから得られた抗体は、今回検討を行ったSOD1(A4V)、SOD1(L8Q)、SOD1(L8V)、SOD1(G10R)、SOD1(G10V)、SOD1(G12R)、SOD1(V14G)、SOD1(V14M)、SOD1(G85R)、およびSOD1(G93A)の10種類の変異SOD1タンパク質全てを免疫沈降可能であること、すなわち、#27のハイブリドーマから得られた抗体が、免疫源として使用した野生型SOD1タンパク質の30~40番アミノ酸からなるペプチド領域以外の変異型SOD1タンパク質の変異部位に関わらず、変異型SOD1タンパク質を認識できることが明らかとなった(図5B)。 As a result, the antibodies obtained from the # 27 hybridoma were SOD1 (A4V), SOD1 (L8Q), SOD1 (L8V), SOD1 (G10R), SOD1 (G10V), SOD1 (G12R), SOD1 (V14G), SOD1 (V14M), SOD1 (G85R), and SOD1 (G93A) are capable of immunoprecipitation of all 10 mutant SOD1 proteins, that is, the antibody obtained from the # 27 hybridoma is an immunogen It was revealed that the mutant SOD1 protein can be recognized regardless of the mutation site of the mutant SOD1 protein other than the peptide region consisting of amino acids 30 to 40 of the wild-type SOD1 protein used as (FIG. 5B).
 実施例4:変異型SOD1抗体による細胞免疫染色
 本実施例においては、本発明の変異型SOD1抗体が、細胞免疫染色においても変異型SOD1タンパク質を検出可能か否かを検討した。
Example 4: Cellular immunostaining with mutant SOD1 antibody In this example, it was examined whether the mutant SOD1 antibody of the present invention can detect mutant SOD1 protein even in cell immunostaining.
 コラーゲンコートしたφ12 mmカバーグラスを1枚入れた24ウェルプレートにHEK293A細胞を0.4×105細胞/ウェルで播種12~16時間後に、Flag-SOD1(WT)(Flagをコードするヌクレオチド配列(SEQ ID NO: 8)と野生型SOD1タンパク質をコードするヌクレオチド配列(SEQ ID NO: 1)とを連結させたもの)またはFlag-SOD1(G93A)をコードするヌクレオチド配列(SEQ ID NO: 10)を、0.5μg/ウェルで遺伝子導入し、Flag-SOD1(WT)とFlag-SOD1(G93A)を過剰発現させた。 12 to 16 hours after seeding HEK293A cells at 0.4 × 10 5 cells / well in a 24-well plate containing a collagen-coated φ12 mm cover glass, Flag-SOD1 (WT) (Flag-encoding nucleotide sequence (SEQ ID NO: 8) and nucleotide sequence encoding wild-type SOD1 protein (SEQ ID NO: 1) or nucleotide sequence encoding Flag-SOD1 (G93A) (SEQ ID NO: 10), 0.5 Gene transfer was performed at μg / well, and Flag-SOD1 (WT) and Flag-SOD1 (G93A) were overexpressed.
 遺伝子導入後24時間後にカバーグラスをPBS 約5 mLに3回浸して洗い、4%パラフォルムアルデヒドにて細胞を固定した。固定後、カバーグラスをPBS 約5 mLで3回行い、0.2%Triton X-100にて細胞膜透過処理を行った。Triton X-100処理後、カバーグラスをPBS約5 mLで3回行い、水素化ホウ素ナトリウム500μL上にカバーグラスをかぶせて1分間室温でインキュベートして退色防止処理を行った。その後、カバーグラスをPBS約5 mLで3回洗い、5%FBSにてブロッキング後、一次抗体として#406ハイブリドーマ培養上清を用いて細胞免疫染色を行った後、抗Flag抗体(M2抗体)でFlagを認識した。二次抗体としてAlexa 488抗-ラットIgG、Alexa 633抗-マウスIgGでインキュベートした。  24 hours after the gene transfer, the cover glass was washed by immersing it in about 5 ml of PBS three times, and the cells were fixed with 4% paraformaldehyde. After fixation, the cover glass was subjected to 3 times with about 5 mL of PBS and subjected to cell membrane permeabilization with 0.2% Triton® X-100. After the Triton® X-100 treatment, the cover glass was treated with about 5 μmL of PBS three times, and the cover glass was placed on 500 μL of sodium borohydride and incubated at room temperature for 1 minute to prevent discoloration. Thereafter, the cover glass was washed 3 times with about 5 ml of PBS, blocked with 5% FBS, and cell immunostaining was performed using # 406 hybridoma culture supernatant as a primary antibody, followed by anti-Flag antibody (M2 antibody). Recognized Flag. Secondary antibodies were incubated with Alexa 488 anti-rat IgG and Alexa 633 anti-mouse IgG.
 抗Flag抗体の蛍光強度がほぼ同じ細胞で、変異型SOD1抗体の蛍光強度を比較したところ、Flag-SOD1(G93A)においてFlag-SOD1(WT)よりも蛍光強度が強かった(図5)。これより#406は、SOD1タンパク質の変異型特異的な立体構造変化(Derlin-1結合部位が露出する)を細胞免疫染色においても検出できると考えられる。 When the fluorescence intensity of the mutant SOD1 antibody was compared in cells with approximately the same fluorescence intensity of the anti-Flag antibody, the fluorescence intensity of Flag-SOD1 (G93A) was stronger than that of Flag-SOD1 (WT) (FIG. 5). From this, it is considered that # 406 can detect a mutation-specific three-dimensional structural change (exposing the Derlin-1 binding site) of the SOD1 protein even in cell immunostaining.
 実施例5:変異型SOD1抗体によるヒト血液由来B細胞の細胞質中に存在する変異型SOD1タンパク質の検出
 本実施例においては、本発明の抗体により、ヒト筋萎縮性側索硬化症(ALS)の個体の血液中B細胞の細胞質中に存在する変異型SOD1タンパク質を検出可能か否かを検討した。この実施例は、東京大学大学院医学系研究科の「ヒトゲノム・遺伝子解析研究倫理審査委員会」、および東京大学大学院薬学系研究科・薬学部の「ヒトを対象とする研究倫理審査委員会」における承認に基づいて行った。
Example 5: Detection of mutant SOD1 protein present in cytoplasm of human blood-derived B cells by mutant SOD1 antibody In this example, the antibody of the present invention was used to detect human amyotrophic lateral sclerosis (ALS). We examined whether mutant SOD1 protein present in the cytoplasm of B cells in the blood of individuals can be detected. This example was approved by the “Human Genome / Gene Analysis Research Ethics Review Committee” at the University of Tokyo Graduate School of Medicine and the “Research Ethics Review Committee for Humans” at the University of Tokyo Graduate School of Pharmaceutical Sciences. Based on.
 ALSのヒトの患者から、静脈血10 mlを採血し、SRL社においてエプスタイン・バー・ウィルス感染により不死化されたB細胞を使用して、各サンプルB細胞を、1チューブ当たり2×107個ずつに分注し、そして1チューブ当たり500μLのIP溶解バッファー(20 mM Tris-HCl pH 7.5、150 mM NaCl、10 mM EDTA pH 8.0、1%デオキシコール酸ナトリウム、1%Triton-X 100、1 mMフッ化フェニルメチルスルホニル、5μg/mLロイペプチン)で4℃にて30分間、細胞をインキュベートすることにより細胞を溶解し、4℃、15000 rpm、10分間遠心して上清を回収した。 From a human patient with ALS, 10 ml of venous blood was collected and 2 x 10 7 cells per tube were used for each sample B cell using B cells immortalized by Epstein-Barr virus infection at SRL. Aliquot and 500 μL IP lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM EDTA pH 8.0, 1% sodium deoxycholate, 1% Triton- X 100, 1 mM per tube The cells were lysed by incubating the cells with phenylmethylsulfonyl fluoride (5 μg / mL leupeptin) at 4 ° C. for 30 minutes, and centrifuged at 4 ° C., 15000 rpm for 10 minutes to collect the supernatant.
 次いで、上述したように調製した細胞溶解液を、#785のハイブリドーマから得られる培養上清により、下記のように免疫沈降した後、免疫沈降した抗体-SOD1複合体を、抗SOD1抗体を用いて免疫ブロッティングした。 The cell lysate prepared as described above was then immunoprecipitated with the culture supernatant obtained from the # 785 hybridoma as described below, and the immunoprecipitated antibody-SOD1 complex was then purified using an anti-SOD1 antibody. Immunoblotting was performed.
 免疫沈降を行う#785のハイブリドーマから得られる抗体を含む培養上清500μLを、1μg/500μLのIP溶解バッファー(上述したもの)を細胞溶解液500μLに加え、4℃にて一晩転倒混和し反応させた。 Add 500 μL of the culture supernatant containing the antibody obtained from the # 785 hybridoma that undergoes immunoprecipitation, add 1 μg / 500 μL of IP lysis buffer (as described above) to 500 μL of the cell lysate, and mix by inverting at 4 ° C overnight. I let you.
 反応後、プロテインGセファロースアガロースゲル(Sigma)を液量で20μL加え、さらに2時間4℃にて転倒混和し反応させた。反応後、上清を除去し1 mLのIP溶解バッファーで4回洗浄して、最後に20 mMのジチオスレイトールを含む50μLの2×SDSサンプルバッファーを加えて98℃で3分間ボイルし、SDS-PAGEへと供した。 After the reaction, 20 μL of protein G Sepharose agarose gel (Sigma) was added in a liquid amount, and the mixture was further mixed by inversion at 4 ° C. for 2 hours to react. After the reaction, the supernatant is removed and washed 4 times with 1 mL of IP lysis buffer.Finally, 50 μL of 2 × SDS sample buffer containing 20 μM dithiothreitol is added and boiled at 98 ° C. for 3 minutes. -Used for PAGE.
 電気泳動後、ゲルから2フッ化ポリビニリデンメンブレン(0.45μm、Pall)にタンパク質を転写し、1%スキムミルクを含むTBS-T(150 mM NaCl、50 mM Tris-HCl pH 8.0、0.05%Tween 20)で室温にて2時間ブロッキングした後、5%ウシ血清アルブミンと0.1%NaN3を含むTBS-Tで希釈した一次抗体で4℃にて一晩反応させた。TBS-Tで2回洗浄した後、1%スキムミルクを含むTBS-Tで希釈した二次抗体で室温にて1時間反応、TBS-Tで2時間洗浄した。 After electrophoresis, transfer the protein from the gel to polyvinylidene difluoride membrane (0.45μm, Pall), and TBS-T containing 1% skim milk (150 mM NaCl, 50 mM Tris-HCl pH 8.0, 0.05% Tween 20) After blocking at room temperature for 2 hours, the mixture was reacted at 4 ° C. overnight with a primary antibody diluted with TBS-T containing 5% bovine serum albumin and 0.1% NaN 3 . After washing twice with TBS-T, the mixture was reacted with a secondary antibody diluted with TBS-T containing 1% skim milk at room temperature for 1 hour and washed with TBS-T for 2 hours.
 検出は高感度ケミルミネッセンス法(enhanced chemiluminescence;ECL)(GE Healthcare)にて行った。ウェスタンブロッティングにおいては、一次抗体として、抗SOD1抗体(SOD-100;Stressgen)、二次抗体としてHRP標識抗ウサギIgG抗体(Cell signaling)を用いた。 Detection was performed by a highly sensitive chemiluminescence method (enhanced chemiluminescence; ECL) (GE Healthcare). In Western blotting, an anti-SOD1 antibody (SOD-100; Stressgen) was used as the primary antibody, and an HRP-labeled anti-rabbit IgG antibody (Cell signaling) was used as the secondary antibody.
 その結果、本発明の抗体(例えば、#785)のハイブリドーマから得られた抗体を使用することにより、ヒトALS患者から採取された種々のSOD1変異を検出可能であることが示された(図7)。 As a result, it was shown that various SOD1 mutations collected from human ALS patients can be detected by using an antibody obtained from a hybridoma of the antibody of the present invention (for example, # 785) (FIG. 7). ).
 本発明により、変異型SOD1タンパク質を検出することにより、ALSのリスクを検出する方法を新たに提供することができる。本発明においてはさらに、上記の方法において変異型SOD1タンパク質を検出するために使用することができる、野生型(すなわち正常な)SOD1タンパク質は結合しないが、変異型SOD1タンパク質には結合する抗体を提供することもできる。これらの効果により、これまでは臨床的に鑑別が難しかったALSまたはALSのリスクを、確実に検出することができる。 According to the present invention, a method for detecting the risk of ALS can be newly provided by detecting a mutant SOD1 protein. The present invention further provides an antibody that does not bind to wild-type (ie, normal) SOD1 protein but binds to mutant SOD1 protein, which can be used in the above method to detect mutant SOD1 protein. You can also With these effects, it is possible to reliably detect ALS or the risk of ALS that has been difficult to differentiate clinically until now.
SEQ ID NO: 1:ヒト野生型SOD1タンパク質をコードするDNAのヌクレオチド配列
SEQ ID NO: 2:ヒト野生型SOD1タンパク質のアミノ酸配列
SEQ ID NO: 3:SEQ ID NO: 2の5~18番アミノ酸からなるポリペプチドのアミノ酸配列
SEQ ID NO: 4:SEQ ID NO: 2の6~16番アミノ酸からなるポリペプチドのアミノ酸配列
SEQ ID NO: 5:SEQ ID NO: 2の30~40番アミノ酸からなるポリペプチドのアミノ酸配列
SEQ ID NO: 6:SEQ ID NO: 2の143~151番アミノ酸からなるポリペプチドのアミノ酸配列
SEQ ID NO: 7:Derlin-1(CT4)のアミノ酸配列
SEQ ID NO: 8:Flagタグをコードするヌクレオチド配列
SEQ ID NO: 9:Flagタグのアミノ酸配列
SEQ ID NO: 10:SOD1(G93A)タンパク質をコードするヌクレオチド配列
SEQ ID NO: 11:SOD1(G93A)タンパク質のアミノ酸配列
SEQ ID NO: 12:SOD1(G85R)タンパク質をコードするヌクレオチド配列
SEQ ID NO: 13:SOD1(G85R)タンパク質のアミノ酸配列
SEQ ID NO: 14:SOD1増幅用プライマー
SEQ ID NO: 15:SOD1増幅用プライマー
SEQ ID NO: 1: Nucleotide sequence of DNA encoding human wild-type SOD1 protein
SEQ ID NO: 2: Amino acid sequence of human wild-type SOD1 protein
SEQ ID NO: 3: Amino acid sequence of a polypeptide consisting of amino acids 5 to 18 of SEQ ID NO: 2
SEQ ID NO: 4: Amino acid sequence of a polypeptide consisting of amino acids 6 to 16 of SEQ ID NO: 2.
SEQ ID NO: 5: Amino acid sequence of a polypeptide consisting of amino acids 30 to 40 of SEQ ID NO: 2
SEQ ID NO: 6: Amino acid sequence of a polypeptide consisting of amino acids 143 to 151 of SEQ ID NO: 2
SEQ ID NO: 7: Amino acid sequence of Derlin-1 (CT4)
SEQ ID NO: 8: Nucleotide sequence encoding the Flag tag
SEQ ID NO: 9: Amino acid sequence of Flag tag
SEQ ID NO: 10: nucleotide sequence encoding SOD1 (G93A) protein
SEQ ID NO: 11: SOD1 (G93A) protein amino acid sequence
SEQ ID NO: 12: Nucleotide sequence encoding SOD1 (G85R) protein
SEQ ID NO: 13: Amino acid sequence of SOD1 (G85R) protein
SEQ ID NO: 14: SOD1 amplification primer
SEQ ID NO: 15: SOD1 amplification primer

Claims (10)

  1.  Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly(SEQ ID NO: 4)のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu(SEQ ID NO: 5)のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、Arg Leu Ala Cys Gly Val Ile Gly Ile(SEQ ID NO: 6)のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドと結合する抗体。 Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly (SEQ ID NO: 4), SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence mutated, Lys Val Trp Gly Ser Ile Lys Gly Leu Thr Glu ID NO: 5) amino acid sequence, SEQ ID NO: 5 amino acid sequence mutated, Arg Leu Ala Cys Gly Val Ile Gly Ile (SEQ ID NO: 6) amino acid sequence, or SEQ ID NO: 6 An antibody that binds to a polypeptide comprising an amino acid sequence in which one amino acid has been mutated.
  2.  SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドが、変異型SOD1タンパク質である、請求項1に記載の抗体。 SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, SEQ ID ア ミ ノ 酸 NO: ア ミ ノ 酸 4 amino acid sequence mutated, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence, SEQ ID NO: 5 amino acid sequence mutated, SEQ ID 2. The antibody according to claim 1, wherein the polypeptide comprising an amino acid sequence of NO: 6 or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 is a mutant SOD1 protein.
  3.  SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドが、SEQ ID NO: 2のアミノ酸配列のうち、アミノ酸番号3、4、5、6、8、10、12、14、16、19、20、22、29、37、38、40、41、43、45、46、47、48、49、57、59、65、66、72、76、80、84、85、86、87、89、90、93、95、97、99、100、101、104、105、106、108、111、112、113、114、115、116、117、118、124、125、126、127、132、133、134、139、140、141、144、145、146、147、148、149、および151からなる群から選択されるいずれか1つのアミノ酸残基に、1アミノ酸の置換、欠失または付加を有するものである、請求項1または2に記載の抗体。 SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, SEQ ID ア ミ ノ 酸 NO: ア ミ ノ 酸 4 amino acid sequence mutated, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence, SEQ ID NO: 5 amino acid sequence mutated, SEQ ID A polypeptide comprising an amino acid sequence of NO: 6 or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 is amino acid number 3, 4, 5, 6, 8 of the amino acid sequence of SEQ ID NO: 2. , 10, 12, 14, 16, 19, 20, 22, 29, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 57, 59, 65, 66, 72, 76, 80 , 84, 85, 86, 87, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 111, 112, 113, 114, 115, 116, 117, 118, 124 , 125, 126, 127, 132, 133, 134, 139, 140, 141, 144, 145, 146, 147, 148, 149, and 151 in any one amino acid residue, 1 Have amino acid substitutions, deletions or additions The antibody of claim 1 or 2.
  4.  SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドが、筋萎縮性側索硬化症(ALS)と関連する、請求項1~3のいずれか1項に記載の抗体。 SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, SEQ ID ア ミ ノ 酸 NO: ア ミ ノ 酸 4 amino acid sequence mutated, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence, SEQ ID NO: 5 amino acid sequence mutated, SEQ ID The amino acid sequence of NO: 6 or a polypeptide comprising an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6 is associated with amyotrophic lateral sclerosis (ALS) The antibody according to item 1.
  5.  SEQ ID NO: 2のアミノ酸配列からなるタンパク質には結合しない、請求項1~4のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 4, which does not bind to a protein consisting of the amino acid sequence of SEQ ID NO: 2.
  6.  モノクローナル抗体である、請求項1~5のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 5, which is a monoclonal antibody.
  7.  NITE P-941、NITE BP-942、NITE BP-943、およびNITE BP-1100のハイブリドーマのいずれかにより産生される、請求項6に記載の抗体。 7. The antibody according to claim 6, which is produced by any one of NITE® P-941, NITE® BP-942, NITE® BP-943, and NITE® BP-1100 hybridomas.
  8.  被検体から採取された細胞含有サンプルについて、請求項1~7のいずれか1項に記載の抗体を用いてスクリーニングし、そしてその抗体に結合するタンパク質を検出することを含む、SEQ ID NO: 2のアミノ酸配列からなるタンパク質以外の、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドの検出方法。 A cell-containing sample collected from a subject is screened using the antibody of any one of claims 1 to 7 and detecting a protein that binds to the antibody, SEQ ID NO: 2 SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, SEQ ID NO: amino acid sequence mutated in 4, SEQ ID NO: 配 列 5 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence A method for detecting a polypeptide comprising an amino acid sequence mutated in SEQ ID NO: 6, or an amino acid sequence in which one amino acid is mutated in SEQ ID NO: 6.
  9.  SEQ ID NO: 2のアミノ酸配列からなるタンパク質以外の、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドが、SEQ ID NO: 2のアミノ酸配列のうち、アミノ酸番号3、4、5、6、8、10、12、14、16、19、20、22、29、37、38、40、41、43、45、46、47、48、49、57、59、65、66、72、76、80、84、85、86、87、89、90、93、95、97、99、100、101、104、105、106、108、111、112、113、114、115、116、117、118、124、125、126、127、132、133、134、139、140、141、144、145、146、147、148、149、および151からなる群から選択されるいずれか1つのアミノ酸残基に、1アミノ酸の置換、欠失または付加を有する物である、請求項8に記載の検出方法。 SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, SEQ ID NO: 4 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence, SEQ ID NO, SEQ ID NO : Amino acid sequence mutated by 1 amino acid in 5, SEQ ID NO: ア ミ ノ 酸 6 amino acid sequence, or a polypeptide comprising an amino acid sequence mutated by 1 amino acid in SEQ ID NO: 6, SEQ ID NO: ア ミ ノ 酸 2 amino acid sequence Of these, amino acid numbers 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 22, 29, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49 57, 59, 65, 66, 72, 76, 80, 84, 85, 86, 87, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 111, 112 , 113, 114, 115, 116, 117, 118, 124, 125, 126, 127, 132, 133, 134, 139, 140, 141, 144, 145, 146, 147, 148, 149, and 151 Any one amino acid residue selected from 9. The detection method according to claim 8, wherein the detection method has one amino acid substitution, deletion or addition.
  10.  SEQ ID NO: 2のアミノ酸配列からなるタンパク質以外の、SEQ ID NO: 4のアミノ酸配列、SEQ ID NO: 4において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 5のアミノ酸配列、SEQ ID NO: 5において1アミノ酸が変異されたアミノ酸配列、SEQ ID NO: 6のアミノ酸配列、またはSEQ ID NO: 6において1アミノ酸が変異されたアミノ酸配列を含むポリペプチドの存在が、筋萎縮性側索硬化症(ALS)のリスクと関連する、請求項8または9に記載の検出方法。 SEQ ID NO: ア ミ ノ 酸 4 amino acid sequence, SEQ ID NO: 4 amino acid sequence, SEQ ID NO: ア ミ ノ 酸 5 amino acid sequence, SEQ ID NO, SEQ ID NO : Amino acid sequence mutated by 1 amino acid in 5, SEQ ID NO: ア ミ ノ 酸 6 amino acid sequence, or the presence of a polypeptide comprising an amino acid sequence mutated by 1 amino acid in SEQ ID NO: 6 is atrophic lateral sclerosis 10. The detection method according to claim 8 or 9, wherein the detection method is associated with a risk of illness (ALS).
PCT/JP2011/061069 2010-05-13 2011-05-13 Antibody for diagnosing amyotrophic lateral sclerosis (als) WO2011142461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012514849A JP5828521B2 (en) 2010-05-13 2011-05-13 Antibodies for diagnosis of amyotrophic lateral sclerosis (ALS)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010111375 2010-05-13
JP2010-111375 2010-05-13

Publications (1)

Publication Number Publication Date
WO2011142461A1 true WO2011142461A1 (en) 2011-11-17

Family

ID=44914512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061069 WO2011142461A1 (en) 2010-05-13 2011-05-13 Antibody for diagnosing amyotrophic lateral sclerosis (als)

Country Status (2)

Country Link
JP (1) JP5828521B2 (en)
WO (1) WO2011142461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689394B2 (en) 2016-06-14 2020-06-23 The University Of Tokyo Thieno[2,3-b]pyridine derivative, quinoline derivative, and use thereof
WO2023033049A1 (en) * 2021-09-02 2023-03-09 国立大学法人滋賀医科大学 Antibody and antibody fragment having binding properties to mutant sod1 protein causing amyotrophic lateral sclerosis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025385A1 (en) * 2005-08-31 2007-03-08 Universite Laval Antibodies and their use in the treatment, prevention and diagnosis of a disease associated with sod1 abnormalities
WO2009100141A1 (en) * 2008-02-04 2009-08-13 The Curators Of The University Of Missouri Prediction and diagnosis of canine degenerative myelopathy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025385A1 (en) * 2005-08-31 2007-03-08 Universite Laval Antibodies and their use in the treatment, prevention and diagnosis of a disease associated with sod1 abnormalities
WO2009100141A1 (en) * 2008-02-04 2009-08-13 The Curators Of The University Of Missouri Prediction and diagnosis of canine degenerative myelopathy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAKOTO URUSHITANI: "ALS ni Taisuru Vaccine Kotai Ryoho no Tenbo", NANBYO TO ZAITAKU CARE, vol. 15, September 2009 (2009-09-01), pages 35 - 39 *
MAKOTO URUSHITANI: "Molecular targeting by immunotherapy in ALS", IGAKU NO AYUMI, vol. 235, 16 October 2010 (2010-10-16), pages 255 - 260 *
URUSHITANI MAKOTO. ET AL.: "Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis", PNAS, vol. 104, 2007, pages 2495 - 2500, XP002508784, DOI: doi:10.1073/PNAS.0606201104 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689394B2 (en) 2016-06-14 2020-06-23 The University Of Tokyo Thieno[2,3-b]pyridine derivative, quinoline derivative, and use thereof
WO2023033049A1 (en) * 2021-09-02 2023-03-09 国立大学法人滋賀医科大学 Antibody and antibody fragment having binding properties to mutant sod1 protein causing amyotrophic lateral sclerosis

Also Published As

Publication number Publication date
JP5828521B2 (en) 2015-12-09
JPWO2011142461A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
AU2018274932B2 (en) Cancer cell-specific antibody, anticancer drug and cancer testing method
CN108738323B (en) anti-TREM 2 antibodies and methods of use thereof
JP2022081543A (en) Anti-trem2 antibodies and methods of use thereof
US9272022B2 (en) Compositions and methods for treating cancer and modulating stress granule formation
CN102369436B (en) Methods for the detection of jc polyoma virus
CN109563169A (en) Anti- HLA-G specific antibody
CN101820910B (en) Antibodies binding to an intracellular prl-1 or prl-3 polypeptide
DK2443149T3 (en) BACE1 inhibitory ANTIBODIES
UA128035C2 (en) Antibodies that specifically bind pd-1 and methods of use
CN101778867A (en) Compositions and methods for treating pancreatic tumors
CN103282374A (en) Methods and compositions for treating neurodegenerative disorders and alzheimer's disease and improving normal memory
JP2018139530A (en) Humanized antibody for treating or preventing dementia and production method therefor and therapeutic agent or prophylactic agent for dementia using same
CN113906050B (en) anti-EphA 4 antibodies
CN110088131A (en) Anti- CHIKV antibody and application thereof
CN112119091A (en) Antibodies against sequence similarity family 19 member a5 and methods of use thereof
JP5828521B2 (en) Antibodies for diagnosis of amyotrophic lateral sclerosis (ALS)
CN107921084A (en) Protein 2 and inflammation containing motile sperm domain
WO2021142963A1 (en) Protein antigen combination for detecting alzheimer's disease autoantibody and application of protein antigen combination
JP2022036962A (en) Anti-ninj-1 antibodies and uses thereof
CN115443150A (en) Novel DDR1 antibodies and uses thereof
US10774143B1 (en) Modulation of T cell signaling via slat association with IP3R1
WO2016139941A1 (en) Antibody, fragment, molecule, and anti-hcv treatment agent
WO2022138707A1 (en) Pharmaceutical composition for treatment of amyotrophic lateral sclerosis
Qu et al. Antibody development and property analysis of RhBST2 for accurate cell biological and viral research
WO2007108557A1 (en) Control of intracellular target molecule by ip3 receptor-binding protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514849

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780717

Country of ref document: EP

Kind code of ref document: A1