WO2011142283A1 - Method for producing polylactic acid microparticles, polylactic acid microparticles, and crystal nucleation agent, molded article, and surface modifier using the same - Google Patents

Method for producing polylactic acid microparticles, polylactic acid microparticles, and crystal nucleation agent, molded article, and surface modifier using the same Download PDF

Info

Publication number
WO2011142283A1
WO2011142283A1 PCT/JP2011/060469 JP2011060469W WO2011142283A1 WO 2011142283 A1 WO2011142283 A1 WO 2011142283A1 JP 2011060469 W JP2011060469 W JP 2011060469W WO 2011142283 A1 WO2011142283 A1 WO 2011142283A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
fine particles
polymer compound
solvent
crystal
Prior art date
Application number
PCT/JP2011/060469
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 上原
健 山延
Original Assignee
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学 filed Critical 国立大学法人群馬大学
Priority to JP2012514770A priority Critical patent/JP5652831B2/en
Publication of WO2011142283A1 publication Critical patent/WO2011142283A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a method for producing polylactic acid fine particles, polylactic acid fine particles, and a crystal nucleating agent, a molded product, and a surface modifier using the same.
  • biomass resins using plant components as raw materials have attracted attention, and various studies have been conducted on conventional synthetic resins synthesized from petroleum. Even if such a plant-derived resin is incinerated at the time of disposal, the plant again photosynthesizes the carbon dioxide generated and is carbon neutral in that it becomes a raw material, and replacing this with a conventional synthetic resin is a global warming It is a material that is expected to lead to prevention.
  • biological resin for example, polyhydroxybutyrate and polylactic acid are known.
  • polylactic acid is attracting attention because it has advantages such as the ability to use lactic acid or lactide obtained from plant raw materials such as corn as a raw material and the fact that it is thermoplastic and can be melt-molded.
  • the ⁇ crystal obtained from plant-derived poly-L-lactic acid (hereinafter sometimes referred to as “PLLA”) has a melting point as low as 170 ° C., so that it can be applied as a resin molding or synthetic fiber. There is a need for improved heat resistance. Further, the ⁇ crystal is a problem when used as a member because of its high hydrolyzability.
  • polylactic acid there are the above-mentioned PLLA consisting only of L-lactic acid units which are optical isomers, and poly-D-lactic acid consisting only of D-lactic acid units (hereinafter sometimes referred to as “PDLA”).
  • PDLA poly-D-lactic acid consisting only of D-lactic acid units
  • a stereocomplex crystal in which PLLA and PDLA are alternately packed at 1: 1 (hereinafter sometimes referred to as “Sc crystal”) has a remarkably high melting point of 230 ° C. and has hydrolysis resistance. It has the potential as an engineering plastic.
  • the Sc crystal is formed, for example, by mixing PLLA and PDLA in a solution or in a molten state (see Patent Document 1, Non-Patent Documents 1 and 2). Attempts have also been made to use the Sc crystal as a crystal nucleating agent that promotes crystallization of poly-L-lactic acid (see, for example, Patent Document 2).
  • polylactic acid stereocomplex crystal particles as a crystal nucleating agent
  • the particle size is small, and It is desirable to use polylactic acid particles having a high stereocomplex crystal ratio as a crystal nucleating agent.
  • polylactic acid particles having a high stereocomplex crystal ratio for example, in a method of obtaining a stereocomplex crystal by dropping a solution in which poly-L-lactic acid and poly-D-lactic acid are dissolved in equal amounts into a poor solvent for polylactic acid (described later), In addition to having a particle size of 1 ⁇ m or more, it is difficult to directly obtain particles having a high ratio of the stereocomplex crystals. As described above, it is difficult to obtain polylactic acid fine particles having a small particle diameter and a high ratio of the stereocomplex crystal by the conventional method.
  • the present invention requires a method for producing polylactic acid microparticles, which can produce polylactic acid microparticles having a small particle size and containing a large amount of poly-L-lactic acid and poly-D-lactic acid stereocomplex crystals.
  • polylactic acid fine particles that can be obtained by using polylactic acid fine particles containing a stereocomplex crystal of poly-L-lactic acid and poly-D-lactic acid as a raw material, and polylactic acid fine particles having high transparency and strength, and crystals using the same
  • nucleating agents, compacts, and surface modifiers are examples of polylactic acid microparticles having a small particle size and containing a large amount of poly-L-lactic acid and poly-D-lactic acid stereocomplex crystals.
  • the above problem is solved by the following means. That is, The invention according to claim 1 In a permeation device having two liquid containing portions partitioned by a permeable membrane having pores having a diameter of 0.5 nm or more and 1000 nm or less, a structural unit derived from L-lactic acid and D-lactic acid are provided in one liquid containing portion. A polymer compound solution obtained by dissolving a polymer compound containing a derived structural unit in a first solvent is accommodated, and a second solvent that is a poor solvent for the polymer compound is accommodated in the other liquid container.
  • a preparation process The polymer solution accommodated in the liquid accommodating portion of the one, 1 ⁇ 10 -3 mL / ( min ⁇ cm 2) or more 10000mL / (min ⁇ cm 2) be transmitted through said permeable membrane at a flow rate not less than And a permeation step for bringing the polymer compound solution into contact with the second solvent. It is.
  • the invention according to claim 2 2.
  • the invention according to claim 3 3.
  • the invention according to claim 4 Including a stereocomplex crystal component of poly-L-lactic acid and poly-D-lactic acid, wherein the ratio of the stereocomplex crystal component to the total crystal component of polylactic acid is 50% or more and 100% or less, and the number average Polylactic acid fine particles having a particle size of 0.5 nm or more and less than 1000 nm.
  • the invention according to claim 5 The polylactic acid fine particles according to claim 4, wherein the ratio of the total crystal component to the total of the amorphous component of polylactic acid and the total crystal component is 10% or more.
  • the invention according to claim 6 A crystal nucleating agent comprising the polylactic acid fine particles according to claim 4 or 5.
  • the invention according to claim 7 provides: A molded article comprising the polylactic acid fine particles according to claim 4 or 5.
  • the invention according to claim 8 provides: A surface modifier comprising the polylactic acid fine particles according to claim 4 or 5.
  • the present invention there is provided a method for producing polylactic acid fine particles, which can produce fine particles of polylactic acid having a small particle size and containing a large amount of poly-L-lactic acid and poly-D-lactic acid stereocomplex crystals. Furthermore, according to the present invention, the polylactic acid fine particles can be obtained by using polylactic acid fine particles containing a stereocomplex crystal of poly-L-lactic acid and poly-D-lactic acid as a raw material. And a crystal nucleating agent, a molded body, and a surface modifier using the same.
  • FIG. 1 is a schematic view schematically showing an example of an apparatus used in a method for producing polylactic acid fine particles.
  • FIG. 2 is a conceptual diagram showing an example of a method for producing a film made of polylactic acid fine particles.
  • FIG. 3 is an SEM image of the polylactic acid microparticles obtained in Example 1.
  • FIG. 4 a is an SEM image of the polylactic acid microparticles obtained in Example 2.
  • FIG. 4 b is an SEM image of the polylactic acid microparticles obtained in Example 2.
  • FIG. 4 c is an SEM image of the polylactic acid microparticles obtained in Example 2.
  • FIG. 4d is a bar graph showing the particle size distribution of the polylactic acid microparticles obtained in Example 2.
  • FIG. 5 a is an SEM image of the polylactic acid microparticles obtained in Example 3.
  • FIG. 5 b is an SEM image of the polylactic acid microparticles obtained in Example 3.
  • FIG. 5 c is a bar graph showing the particle size distribution of the polylactic acid fine particles obtained in Example 3.
  • 6a is an SEM image of the polylactic acid fine particles obtained in Comparative Example 1.
  • FIG. 6 b is an SEM image of the polylactic acid microparticles obtained in Comparative Example 1.
  • FIG. 6 c is an SEM image of the polylactic acid microparticles obtained in Comparative Example 1.
  • FIG. 7 a is an SEM image of the polylactic acid microparticles obtained in Example 4.
  • FIG. 7 b is an SEM image of the polylactic acid microparticles obtained in Example 4.
  • FIG. 7 c is a bar graph showing the particle size distribution of the polylactic acid fine particles obtained in Example 4.
  • FIG. 8 a is an SEM image of the polylactic acid microparticles obtained in Example 5.
  • FIG. 8 b is an SEM image of the polylactic acid microparticles obtained in Example 5.
  • FIG. 8 c is an SEM image of the polylactic acid microparticles obtained in Example 5.
  • FIG. 8d is a bar graph showing the particle size distribution of the polylactic acid fine particles obtained in Example 5.
  • FIG. 9 is an SEM image of the polylactic acid microparticles obtained in Example 6.
  • FIG. 10 is an SEM image of the polylactic acid fine particles obtained in Example 7.
  • FIG. 11 is an SEM image of the polylactic acid fine particles obtained in Example 8.
  • FIG. 9 is an SEM image of the polylactic acid microparticles obtained in Example 6.
  • FIG. 12 is an SEM image of the polylactic acid microparticles obtained in Example 9.
  • FIG. 13 is a DSC melting curve of the film 1 obtained in Example 2 and the polylactic acid fine particles obtained in Example 5.
  • FIG. 14 is a WAXD curve of the surface coat layer obtained in Example 10.
  • one liquid container of the permeation device having two liquid containers separated by a permeable membrane having pores having a diameter of 0.5 nm or more and 1000 nm or less is added to L- A polymer compound comprising a structural unit derived from lactic acid (hereinafter sometimes referred to as “L-lactic acid unit”) and a structural unit derived from D-lactic acid (hereinafter sometimes referred to as “D-lactic acid unit”)
  • L-lactic acid unit a polymer compound comprising a structural unit derived from lactic acid
  • D-lactic acid unit a structural unit derived from D-lactic acid
  • a preparatory step of containing a second solvent, which is a poor solvent for the polymer compound, in the other liquid container and the one liquid container the polymer solution which is housed in part, 1 ⁇ 10 -3 mL / ( min ⁇ cm 2) or more 10000mL / (min ⁇ cm 2) by transmitting said permeable membrane at a flow rate not less than, the polymer Compound solution It includes
  • the particle size is small, and poly-L-lactic acid (hereinafter sometimes referred to as “PLLA”) and poly-D-lactic acid (hereinafter referred to as “PDLA”).
  • PLLA poly-L-lactic acid
  • PDLA poly-D-lactic acid
  • Sc crystals polylactic acid fine particles containing a large amount of stereocomplex crystals
  • fine particles having a small particle diameter have a larger specific surface area per unit volume (or unit mass) than particles having a large particle diameter, and the ratio of the crystal component tends to be small.
  • the polymer compound in the polymer compound solution partitioned in the pores of the permeable membrane that is, in the space having the diameter in the above range, passes through the permeable membrane at a permeation rate in the above range. Crystallized upon contact with a poor solvent. For this reason, it is considered that molecules of the polymer compound are confined in a narrow pore space, and the L-lactic acid unit and the D-lactic acid unit contained in the polymer compound are likely to come into contact with each other. Then, it is presumed that when the crystallization starts in a state where the L-lactic acid unit and the D-lactic acid unit are in contact in the narrow space, an Sc crystal of PLLA and PDLA is easily formed.
  • the manufacturing method of the present invention preferably further includes a step of bringing the permeable membrane into contact with a liquid in advance and replacing the gas in the pores of the permeable membrane with the liquid prior to the preparation step. By replacing the gas in the pores of the permeable membrane with a liquid in advance, the polymer compound solution and the second solution come into contact from the beginning of the permeation step, so that polylactic acid fine particles can be obtained efficiently.
  • Examples of the polymer compound containing an L-lactic acid unit and a D-lactic acid unit include a polymer compound containing a polylactic acid molecule containing an L-lactic acid unit and a D-lactic acid unit in one molecule, Examples include a polylactic acid molecule containing an L-lactic acid unit and no D-lactic acid unit, and a polylactic acid molecule containing a D-lactic acid unit and no L-lactic acid unit in one molecule.
  • Examples of the polymer compound containing an L-lactic acid unit and a D-lactic acid unit in one molecule include, for example, a copolymer of PLLA and PDLA, or a copolymer of PLLA, PDLA, and a polymer compound other than polylactic acid. Examples include coalescence. Examples of the polymer compound containing an L-lactic acid unit in one molecule and not containing a D-lactic acid unit include, for example, a homopolymer of PLLA and a copolymer of PLLA and a polymer compound other than polylactic acid (hereinafter referred to as “PLA”).
  • PLA polymer compound other than polylactic acid
  • a polymer compound that contains a D-lactic acid unit in one molecule and does not contain an L-lactic acid unit includes, for example, a single weight of PDLA.
  • a copolymer of PDLA and a polymer compound other than polylactic acid hereinafter sometimes referred to as “PDLA copolymer”.
  • the polymer compound containing an L-lactic acid unit and a D-lactic acid unit is preferably a mixture of a PLLA homopolymer and a PDLA homopolymer.
  • a mixture of a homopolymer of PLLA and a homopolymer of PDLA to produce polylactic acid fine particles by the production method of the present invention, for example, the ratio of Sc crystals in all crystal components is 100%. It is also possible to produce polylactic acid microparticles that do not contain ⁇ crystals. And as above-mentioned, if the manufacturing method of this invention is used, although the particle size is small, the polylactic acid microparticles
  • ⁇ Preparation process> In the preparation step, an L-lactic acid unit and D-lactic acid are added to one liquid container of the permeation device having two liquid containers separated by a permeable membrane having pores having a diameter of 0.5 nm to 1000 nm. A polymer compound solution obtained by dissolving a polymer compound containing a unit in a first solvent is accommodated, and a second solvent that is a poor solvent for the polymer compound is accommodated in the other liquid accommodating portion.
  • the polymer compound containing an L-lactic acid unit and a D-lactic acid unit is not particularly limited as long as the polymer compound contains an L-lactic acid unit and a D-lactic acid unit.
  • the PLLA is a polymer mainly composed of L-lactic acid units, and is preferably a polymer composed of 100% L-lactic acid units excluding inevitable impurities (that is, a homopolymer of PLLA).
  • the PDLA is a polymer having a D-lactic acid unit as a main component, like the PLLA, and is preferably a polymer composed of 100% D-lactic acid units excluding inevitable impurities (that is, a PDLA homopolymer). It is.
  • the ends of PLLA and PDLA may be sealed with a terminal blocking group. Examples of such end capping groups include acetyl groups, ester groups, ether groups, amide groups, urethane groups, hydroxyl groups, and the like.
  • PLLA and PDLA can be produced by a known polylactic acid polymerization method.
  • the production method include lactide ring-opening polymerization, lactic acid dehydration condensation, or a combination of these with solid-phase polymerization. And a method of melting and solidifying.
  • a more specific production method Makromol. Chem. Volume 191, P481-488 (1990) or as described in JP-A-1-225622, a living step polymerization method of lactide, which is a cyclic dimer of lactic acid, as described in JP-A-2003-64174.
  • PLLA and PDLA may contain a catalyst involved in polymerization as long as thermal stability is not impaired.
  • the catalyst include various aluminum compounds, lithium compounds, tin compounds, titanium compounds, calcium compounds, organic acids, inorganic acids and the like, and a stabilizer for inactivating these may be present together.
  • the mixing ratio of PLLA and PDLA is appropriately selected in a mass ratio ranging from 1:99 to 99: 1. From the viewpoint of Sc crystal production efficiency Is preferably in the range of 10:90 to 90:10, and more preferably prepared so that both are equivalent (50 ⁇ 5: 50 ⁇ 5).
  • the above-mentioned mixture of PLLA and PDLA may contain other polymer compounds in addition to PLLA and PDLA, but it is preferable not to contain other polymer compounds except for inevitable impurities.
  • a polylactic acid copolymer may be used as the polymer compound.
  • the copolymer of polylactic acid is not particularly limited as long as it contains at least one of an L-lactic acid unit and a D-lactic acid unit.
  • a copolymer of PLLA and PDLA, a PLLA copolymer, and the like examples thereof include a polymer and a PDLA copolymer.
  • a copolymer of PLLA and PDLA a copolymer of PLLA and PDLA, a mixture of PLLA copolymer and PDLA homopolymer, a mixture of PLLA homopolymer and PDLA copolymer, or a PLLA homopolymer and a PDLA homopolymer.
  • a form using a mixture with a coalescence is preferable from the viewpoint of producing polylactic acid fine particles having many Sc crystals.
  • a form using a block copolymer as a copolymer or a form using a mixture of a PLLA homopolymer and a PDLA homopolymer is more preferable, and a mixture of a PLLA homopolymer and a PDLA homopolymer is used.
  • a form is further preferred.
  • the weight average molecular weight of the polymer compound other than the polylactic acid is preferably 10,000 or more and 1,000,000 or less, and more preferably 10,000 or more and 500,000 or less.
  • the molecular weight distribution is preferably 1 or more and 10 or less, more preferably 1 or more and 2 or less, and further preferably 1 or more and 1.5 or less.
  • the content ratio of the PLLA and the polymer compound other than polylactic acid in the block copolymer of the PLLA and the polymer compound other than polylactic acid is appropriately selected in the range of 1:99 to 99: 1 by mass ratio.
  • the range of 10:90 to 90:10 is preferable in that more Sc crystals can be included in the member.
  • the content ratio of PDLA and a polymer compound other than polylactic acid in the block copolymer of PDLA and a polymer compound other than polylactic acid is the same as described above.
  • the block copolymer can be synthesized by a conventional method. Specifically, for example, these polymers are produced by melt-mixing or solution-mixing at a predetermined ratio according to the block copolymer to be obtained, and then solidifying and further solid-phase polymerization. can do. Alternatively, it can be produced by previously synthesizing a PLLA polymer and sequentially polymerizing and growing a monomer of a polymer compound other than polylactic acid at the molecular terminal. Conversely, it can be produced by synthesizing a polymer compound other than polylactic acid in advance and sequentially polymerizing and growing L-lactic acid units at the molecular ends.
  • the polymer compound used for the polylactic acid fine particles has a weight average molecular weight of preferably 10,000 or more and 1,000,000 or less, and more preferably 10,000 or more and 500,000 or less.
  • the molecular weight distribution (value of weight average molecular weight / number average molecular weight) is preferably 1 or more, 10 or less, more preferably 1 or more and 5 or less, and further preferably 1 or more and 3 or less.
  • the weight average molecular weight may be 20,000 or more and 2,000,000 or less.
  • values obtained by an exclusion chromatography method using chloroform as a solvent are employed for the weight average molecular weight and molecular weight distribution of the polymer.
  • the first solvent is not particularly limited as long as it dissolves the polymer compound to be used, but is preferably a good solvent for the polymer compound to be used.
  • the good solvent for the polymer compound means a solvent having a solubility parameter value close to that of the polymer compound.
  • the combination whose difference is 1 or less is mentioned.
  • the solubility parameter in a homopolymer of PLLA is 19.0
  • the solubility parameter of chloroform is 19.0
  • so chloroform is a good solvent for the polylactic acid (Japanese Patent Laid-Open No. 2007-332187). See the official gazette).
  • Good solvents for polymer compounds containing L-lactic acid units and D-lactic acid units include, for example, chloroform, tetrahydrofuran, xylene, toluene, benzene, ethylbenzene, dichloroethane, carbon tetrachloride, trichloroethane, dichloromethane, chlorobenzene, methyl ethyl ketone, dichlorobenzene. , Trichlorobenzene and the like are preferable. One of these may be used, or two or more may be mixed and used as a mixed solvent according to the purpose.
  • the polymer compound solution is a solution in which the polymer compound is dissolved in the first solvent.
  • “dissolved” refers to a state where the solid content of the polymer compound contained in the polymer compound solution cannot be visually confirmed.
  • the concentration of the polymer compound in the polymer compound solution is appropriately set according to the types of the polymer compound used, the first solvent and the second solvent, the type of permeable membrane used, the permeation rate, and the like. For example, when a mixture of PLLA homopolymer and PDLA homopolymer is used as the polymer compound, the concentration of the polymer compound is in the range of 0.01% by mass to 50% by mass with respect to the entire polymer compound solution. It is preferable that it is in a range of 0.01% by mass or more and 20% by mass or less.
  • the polymer compound solution is prepared, for example, by adding the polymer compound to the first solvent at room temperature (25 ° C.) and dissolving the polymer compound in the first solvent by stirring or the like.
  • each polymer compound may be mixed after being dissolved in a solvent, or one may be mixed with the solvent and then the other may be added and dissolved.
  • the solution may be prepared at room temperature (25 ° C.), but if desired, the solution may be heated from 25 ° C. to the boiling point of the solvent used.
  • the second solvent is not particularly limited as long as it is a poor solvent for the polymer compound used.
  • the poor solvent for the polymer compound refers to a solvent whose solubility parameter is far from that of the polymer compound.
  • the combination whose difference is 5 or more is mentioned.
  • the solubility parameter in a homopolymer of PLLA is 19.0
  • methanol is 29.7
  • methanol is a poor solvent for the polylactic acid (see Japanese Patent Application Laid-Open No. 2007-332187). .
  • the second solvent is mixed with the first solvent and used for the polymer compound used.
  • a solvent that is a poor solvent is preferable, and specific examples include methanol, ethanol, 2-propanol, and the like. One of these may be used, or two or more may be mixed and used as a mixed solvent according to the purpose.
  • an antioxidant is added to either one of the first solvent and the second solvent, or both the first solvent and the second solvent, if necessary.
  • Various additives such as a lubricant, a flame retardant, a compatibilizer, a dispersant, and a surfactant may be added. These additives may be used in combination.
  • the same additive may be added or different additives may be added.
  • the addition amount of the additive added to the 1st solvent and the 2nd solvent may be the same, or may differ.
  • the permeable membrane is a membrane having pores having a diameter in the above-described range, which partitions two liquid storage portions in the permeable device.
  • the permeable membrane is not particularly limited as long as the polymer compound solution permeates the permeable membrane through the pores. That is, in the permeable membrane, for example, the pores may penetrate perpendicularly to the film thickness direction in the permeation direction, which is the direction through which the polymer compound solution permeates, or the pores are mesh-like in the permeable membrane. It may be spread in the direction of film thickness, or may be communicated in the film thickness direction by being bent or branched. Further, the shape of the membrane may be a flat planar membrane, a cylindrical hollow fiber membrane or a tubular membrane. Further, they may be laminated or integrated (bundled).
  • the diameter of the pores means the diameter of a circle having the same area as that of the cross section having the smallest area among the cross sections of the pores in the cross section perpendicular to the permeation direction of the polymer compound solution.
  • the diameter of the pores present in the permeable membrane is in the above range, Sc crystals can be efficiently formed and smaller polylactic acid microparticles can be formed than in the case where the diameter is larger than the above range.
  • the pore diameter is in the above range, clogging due to crystallization of the polymer compound is less likely to occur than in the case where the diameter is smaller than the above range.
  • the diameter of the pores present in the permeable membrane is preferably 0.5 nm or more and 1000 nm or less, and more preferably 1 nm or more and 500 nm or less.
  • the hole whose diameter is larger than the above range does not exist or has a structure in which the polymer compound solution cannot permeate.
  • the density of the pores existing in the permeable membrane is not particularly limited, and examples thereof include a range in which the porosity (ratio of pores to the total membrane volume) is 10% or more and 90% or less.
  • the shape of the pore is not particularly limited, and may be a shape penetrating linearly in a direction in which the polymer compound solution permeates, may be spread in a mesh shape, or the pore may be bent. Or may be branched.
  • the material of the permeable membrane does not have to be dissolved or swelled in the solvent used.
  • fluororesins such as PTFE (polytetrafluoroethylene) and polyvinylidene fluoride
  • organic materials such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate.
  • inorganic materials such as materials, alumina, silica and glass, and filter paper made of cellulose.
  • the thickness of a permeable film is not specifically limited, Specifically, the range of 0.1 micrometer or more and 1000 micrometers or less is mentioned, for example, The range of 1 micrometer or more and 500 micrometers or less is more preferable.
  • the method may further include a permeable membrane wetting step of bringing the permeable membrane into contact with a liquid in advance and replacing the gas in the pores of the permeable membrane with the liquid.
  • the liquid is not particularly limited, and may be any of the polymer compound solution, the first solvent, the second solvent, and other solvents, preferably the polymer compound solution or the second solvent, A second solvent is more preferred.
  • the polymer compound solution is permeated through the permeation membrane through the pores at a flow rate in the above range.
  • the flow rate is in the above range
  • the polylactic acid microparticles are less likely to aggregate than in the case where the flow rate is larger than the above range, so that the micron size is difficult to be formed, and polylactic acid microparticles having a large proportion of Sc crystals are easily formed.
  • the flow rate is in the above range
  • clogging or the like caused by the polymer compound particles growing too much in the pores is less likely to occur than in the case where the flow rate is smaller than the above range.
  • the flow rate 1 ⁇ 10 -3 mL / ( min ⁇ cm 2) or more 10000mL / (min ⁇ cm 2) or less are preferred, 1 ⁇ 10 -2 mL / ( min ⁇ cm 2) or more 1000mL / (min ⁇ cm 2 ) The following is more preferable.
  • Examples of the permeation method include a method in which a pressure difference is provided between one surface and the other surface of the permeable membrane.
  • the polymer compound solution side can be obtained by physical pressurization or pressurization using centrifugal force. May be applied to the permeable membrane, and the second solvent side may be depressurized.
  • the pressure difference is selected according to the thickness of the permeable membrane, the diameter and density of pores existing in the permeable membrane, the porosity, and the like.
  • it is preferable that the second solvent is in contact with the surface of the permeable membrane on the other liquid container side.
  • both or either one of the polymer compound solution and the second solvent are continuously or intermittently flowed into or out of the respective liquid storage units, thereby continuously or intermittently flowing out of the liquid storage units.
  • polylactic acid fine particles may be produced intermittently. Through the above steps, polylactic acid fine particles having a large proportion of Sc crystals are formed despite the small particle size. At this time, the shape of the obtained fine particles is preferably spherical, but may be oval or thread-like.
  • the polylactic acid Sc crystal fine particles for example, after forming Sc crystal polylactic acid particles having a large particle diameter, the polylactic acid is dissolved in a good solvent known as a fine particle method of a polymer compound, and then a poor solvent is added thereto.
  • a good solvent known as a fine particle method of a polymer compound
  • a reprecipitation method Japanese Patent Laid-Open No. 6-79168
  • fine-particles in this invention may have another process as needed other than the said process.
  • steps for example, a step of synthesizing a polymer compound, a step of purifying raw materials (that is, a first solvent, a polymer compound, and a second solvent) performed prior to the preparation step,
  • a step of antioxidation treatment or hydrolysis resistance treatment by mixing vitamin E or carbodiimide with purified polylactic acid may be mentioned.
  • a fractionation step such as centrifugation for separating the polylactic acid fine particles obtained by the permeation step according to size performed after the permeation step, ultrasonic treatment for dispersing the polylactic acid fine particles, and polylactic acid fine particles
  • a fractionation step such as centrifugation for separating the polylactic acid fine particles obtained by the permeation step according to size performed after the permeation step, ultrasonic treatment for dispersing the polylactic acid fine particles, and polylactic acid fine particles
  • examples include a known process such as freeze-drying for drying without agglomeration, and a process for subjecting the obtained polylactic acid fine particles to an antioxidant treatment or an antibacterial treatment.
  • the process of surface-treating the surface of the obtained polylactic acid fine particle with chemical modifiers, such as a silane coupling agent is also mentioned.
  • hydrophilic molecule such as polyethylene glycol is physically adsorbed on the surface of the polylactic acid fine particles to make it hydrophilic (“hydrophobization” when a hydrophobic molecule is used instead of a hydrophilic molecule), etc.
  • hydrophobization when a hydrophobic molecule is used instead of a hydrophilic molecule
  • the process etc. which perform the surface treatment of polylactic acid microparticles
  • FIG. 1 is a schematic view schematically showing an example of an apparatus used in the method for producing the polylactic acid fine particles.
  • the manufacturing apparatus 100 of FIG. 1 includes a first reservoir 12 (one liquid storage unit) that stores the polymer compound solution 10 and a second reservoir 22 (the other liquid storage unit) that stores the second solvent 20. And adjusting the pressure in the manufacturing apparatus 100, the permeable membrane 30 having the above-mentioned diameter of the pores, the third reservoir 40 storing the second solvent 20 discharged from the second reservoir 22, and Pressure adjusting means 50 for reducing pressure and pressure reducing means 60 for reducing the pressure inside the manufacturing apparatus 100.
  • the first reservoir 12 and the second reservoir 22 are partitioned by a permeable membrane 30, and the first reservoir 12, the second reservoir 22, and the permeable membrane 30 constitute a permeation device.
  • the polymer solution 10 stored in the first reservoir 12 and the second solvent 20 stored from the second reservoir 22 through the discharge pipe 44 to the lower portion of the third reservoir 40 (the liquid level shown in FIG. 1) are stored in direct contact with one surface and the other surface of the permeable membrane 30, respectively.
  • the polymer compound solution 10 and the second solvent 20 are in direct contact inside the pores of the permeable membrane 30.
  • the inside of the manufacturing apparatus 100 is decompressed to a pressure adjusted by the pressure adjustment means 50, and the polymer compound solution 10 permeates the permeable membrane 30.
  • the air in the third reservoir 40 is discharged from the discharge port 46 to the discharge pipe 54, whereby the pressure in the third reservoir 40 is reduced.
  • the first reservoir 12 is provided with an opening 16, and the outside air is taken into the first reservoir 12 through the opening 16 so as to be the same as the atmospheric pressure. Due to the pressure difference, the second solvent 20 in the second reservoir 22 is introduced into the third reservoir 40 through the discharge pipe 44 and the polymer compound solution 10 permeates the permeable membrane 30.
  • the crystallized polymer compound becomes the first. 2 Extruded into the reservoir 22 to form crystallized polylactic acid microparticles.
  • the first reservoir 12 and the second reservoir 22 are provided with temperature adjusting means 18 and 28, respectively, and stored by flowing a liquid inside the temperature adjusting means 18 and 28.
  • the temperature of the polymer compound 10 and the second liquid 20 can be adjusted.
  • polylactic acid fine particles are produced using the production apparatus 100 of FIG.
  • the present invention is not limited to the manufacturing method using the manufacturing apparatus 100.
  • the polylactic acid microparticles of the present invention include ScLA components of PLLA and PDLA, the ratio of the stereocomplex crystal component to the total crystal component of polylactic acid is 50% or more and 100% or less, and the number average particle Polylactic acid fine particles having a diameter of 0.5 nm or more and less than 1000 nm.
  • the polylactic acid fine particles of the present invention have the above-described configuration, they are highly transparent. That is, since the polylactic acid fine particles have a small particle size and a large proportion of Sc crystals, for example, in a molded body (for example, a film) manufactured using polylactic acid fine particles, light caused by light scattering at the particle interface is used. A decrease in permeability is suppressed. Moreover, since the polylactic acid microparticles
  • the polymer compound is uniformly crystallized by promoting the crystallization of the polymer compound by using the above-mentioned polylactic acid fine particles of the present invention having a small particle size and a large percentage of Sc crystal as a crystal nucleating agent.
  • a tough and highly transparent molded article of a polymer compound can be produced.
  • the polylactic acid fine particles of the present invention are preferably a homopolymer of polylactic acid fine particles.
  • the polylactic acid homopolymer means that all the structural units constituting the polymer are structural units derived from lactic acid (L-lactic acid and D-lactic acid). That is, the polylactic acid fine particles of the present invention preferably contain a mixture of a PLLA homopolymer and a PDLA homopolymer, and in addition to unavoidable impurities, other components other than the PLLA homopolymer and the PDLA homopolymer It is preferable not to contain.
  • the mass ratio of the homopolymer of PLLA and the homopolymer of PDLA contained in the polylactic acid fine particles is preferably in the range of 10:90 to 90:10.
  • the number average particle diameter of the polylactic acid fine particles is in the above range, preferably in the range of 0.5 nm to less than 1000 nm, and more preferably in the range of 1 nm to 500 nm.
  • the number average particle size is determined by observing the polylactic acid fine particles with an SEM (scanning electron microscope), measuring the particle size of 100 polylactic acid fine particles, and classifying every 100 nm (0 to 100 nm, 100 to 200 nm, 200 to 200 nm). This is a value obtained by measuring the number of particles corresponding to 300 nm,... Further, the particle diameter means the diameter of a circle when the shape of the projection surface of one polylactic acid fine particle obtained by SEM observation is circular.
  • the particle diameter means the short axis of the ellipse when the shape of the projection surface is distorted in an ellipse, and the thickest part of the fiber when the polylactic acid fine particles are in the form of fibers (fibrous). (That is, the width of the widest portion on the projection plane).
  • the polylactic acid fine particles are not limited to those having a circular projection surface, an elliptical shape, and a fiber shape as described above, and may be a combination of these. In that case, the diameter of the circle, the minor axis of the ellipse, and the thickness of the fiber are used to obtain the “particle size” as described above.
  • polylactic acid fine particles of the present invention are not limited as long as they contain Sc crystals, but the ratio of Sc crystals in all crystal components is preferably 50 to 100%.
  • polylactic acid crystals may include Sc crystals of PLLA and PDLA, and ⁇ crystals crystallized by PLLA or PDLA alone, and among all the crystal components, Sc crystals are 100 crystals. % (That is, ⁇ -crystals are not included) is particularly preferable.
  • the ratio of Sc crystals in all the crystal components is 50 to 100%, the heat resistance and hydrolysis resistance of the polylactic acid fine particles are improved.
  • the polylactic acid fine particles of the present invention are suitable, for example, as raw materials for members that require heat resistance and hydrolysis resistance, and when the polylactic acid fine particles of the present invention are used as a crystal nucleating agent, the melting point ( There is an advantage that post-treatment such as melt kneading at a high temperature of 170 ° C. or higher becomes possible.
  • the ratio of the Sc crystal is the total value (crystallinity) of the weight fraction (Sc crystal fraction) occupied by the Sc crystal and the weight fraction ( ⁇ crystal fraction) occupied by the ⁇ crystal in the sample. It is a value obtained by dividing the crystal fraction.
  • the ⁇ crystal fraction is determined by DSC measurement (differential scanning calorimetry) of polylactic acid fine particles, and the melting peak area (heat of fusion) due to ⁇ crystals appearing from 150 ° C. to 180 ° C. is the heat of fusion of 100% ⁇ crystal. It is a% value divided by (94 J / g), and the Sc crystal fraction is the melting peak area (heat of fusion) due to the Sc crystal appearing from 190 ° C. to 230 ° C. The heat of fusion of the 100% ⁇ crystal (155 J / g) The percentage value divided by.
  • the ratio of the crystal component to the total component is preferably 10% or more. That is, in general, polylactic acid may contain amorphous components including PLLA and PDLA in addition to the above-mentioned crystal components (that is, Sc crystal component and ⁇ crystal component). It is preferable that the ratio of the crystal component is in the above range with respect to the total of Polylactic acid fine particles with a high degree of crystallinity, such as polylactic acid fine particles within the above-mentioned range, are more suitable as crystal nucleating agents. By crystallization using this, the strength and transparency can be further increased. It is possible to produce a molded body having a high height.
  • the proportion of the crystal component is more preferably 10% or more and 100% or less, and further preferably 20% or more and 100% or less.
  • the method for producing the polylactic acid fine particles of the present invention is not particularly limited.
  • the Sc crystal is more concentrated as described above.
  • Polylactic acid fine particles containing a large amount and having a small particle diameter cannot be produced.
  • the polylactic acid microparticle production method of the present invention described above can produce polylactic acid microparticles having a small particle size and a large proportion of Sc crystals as described above, This is a manufacturing method suitable for manufacturing.
  • the ratio of the Sc crystal is 100%. It is possible to produce polylactic acid fine particles having a high degree of crystallinity and thus suitable for producing the polylactic acid fine particles of the present invention. Therefore, it is preferable that the polylactic acid microparticles of the present invention are those produced by the production method of the present invention.
  • the crystal nucleating agent of the present invention is composed of the above-mentioned polylactic acid fine particles of the present invention and has a function of promoting the crystallization of the polymer compound.
  • the polylactic acid fine particles of the present invention are suitable as a crystal nucleating agent, and tough and highly transparent crystals are formed when used as a crystal nucleating agent.
  • the polymer compound that promotes crystallization using the crystal nucleating agent of the present invention is not particularly limited, and examples thereof include poly-L-lactic acid, poly-D-lactic acid, poly-L-lactic acid, and poly Examples thereof include -D-lactic acid copolymers, copolymers and derivatives containing one or both of poly-L-lactic acid and poly-D-lactic acid as constituents, and mixtures thereof.
  • a mixture of the crystal nucleating agent of the present invention and a target polymer compound may be used at a temperature equal to or higher than the melting point of the polymer compound.
  • a method of mixing the dispersion of the crystal nucleating agent of the present invention and the polymer compound into a dispersion, fine particles or powder by the method of the present invention or other methods can be mentioned.
  • additives such as an antioxidant, a stabilizer, a light-resistant agent, a static eliminating agent, a lubricant, a flame retardant, a compatibilizer, a dispersant, and a surfactant may be added as necessary.
  • a molded body may be formed by a drying process, a casting process, a fiberizing process, a film forming process, a uniaxial stretching process, a biaxial stretching process, a heat treatment process, or the like. Good.
  • additives such as antioxidants, stabilizers, light proofing agents, static eliminators, lubricants, flame retardants, compatibilizers, dispersants, surfactants, etc. may be added,
  • the molded product may be subjected to post-treatment such as surface treatment.
  • the molded product of the present invention contains the polylactic acid fine particles of the present invention.
  • the polylactic acid fine particles of the present invention may be used alone as a molding resin, or a polymer compound crystallized using a crystal nucleating agent comprising the polylactic acid fine particles may be used as the molding resin.
  • a mixture of the polylactic acid fine particles of the invention and another polymer compound may be used as the molding resin.
  • the molded object of this invention may contain other components, such as an additive other than the polylactic acid microparticles
  • the other polymer compound is not particularly limited, and examples thereof include a thermoplastic resin, a thermosetting resin, and a soft thermoplastic resin.
  • Inorganic fillers include glass fiber, graphite fiber, carbon fiber, carbon nanotube, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, zonolite, elestadite, zeolite, gypsum Fiber, silica fiber, silica-alumina fiber, zirconia fiber, silicon nitride fiber, boron fiber, glass flake, non-swellable mica, graphite, metal foil, talc, clay, mica, sericite, bentonite, kaolin, magnesium carbonate, sulfuric acid Examples include barium, magnesium sulfate, aluminum hydroxide, magnesium oxide, hydrotalcite, magnesium hydroxide, gypsum, and dawsonite.
  • the organic filler examples include natural fiber, para-type aramid fiber, polyazole fiber, polyarylate, polyoxybenzoic acid whisker, polyoxynaphthoyl whisker, and cellulose whisker. These fillers can be used in the form of fibers, plates or needles. Among these fillers, fibrous inorganic fillers are preferable, and glass fibers are particularly preferable.
  • the aspect ratio of the filler is preferably 5 or more, and more preferably 10 or more. Particularly preferred is 100 or more. In the case of a fibrous filler, the aspect ratio refers to the fiber length divided by the fiber diameter, and in the case of a plate shape, the aspect ratio refers to the length in the long period direction divided by the thickness.
  • the elastic modulus of the filler is preferably 50 GPa or more.
  • the strength as a single fiber is preferably 200 MPa or more, and more preferably 300 MPa or more. If it is within this range, the obtained molded body has sufficient mechanical properties, and even if the amount of filler to be mixed is small, a sufficient reinforcing effect can be obtained, so the surface of the molded body can be reduced by reducing the amount of filler added. It can be made not to impair the appearance.
  • the fibrous filler examples include those having a fiber diameter in the range of 0.1 ⁇ m to 1 mm, and preferably in the range of 1 ⁇ m to 500 ⁇ m. It is preferable that the aspect ratio (length / diameter) comprising the ratio of the fiber and the diameter is 50 or more. If it is this range, mixing of resin and a fiber can be performed favorably, and also a molded article with a favorable physical property can be obtained by compositing. A more preferred aspect ratio is 100 to 500, and even more preferably 100 to 300.
  • the molded body may contain known additives such as plasticizers, antioxidants, light stabilizers, ultraviolet absorbers, heat stabilizers, lubricants, mold release agents, antistatic agents, One type or two or more types of a colorant including a flame retardant, a foaming agent, a filler, an antibacterial / antifungal agent, a nucleating agent, a dye and a pigment can be contained depending on the purpose.
  • a colorant including a flame retardant, a foaming agent, a filler, an antibacterial / antifungal agent, a nucleating agent, a dye and a pigment can be contained depending on the purpose.
  • the molded body when used as an ion conductor, it may contain a material having ion conductivity, for example, a metal such as lithium or an oxide thereof, a chloride, a fluoride or a complex, together with polylactic acid. Good.
  • the obtained molded body may be further subjected to a heat treatment step.
  • the heat treatment may be performed in a DSC measurement sample pan and in a DSC furnace, and if it can be set to a constant temperature, it is performed using an oven, press molding machine, air thermostat, oil bath, etc. May be.
  • the heat treatment temperature can be 100 ° C. or higher and 300 ° C. or lower, and more preferably 150 ° C. or higher and 250 ° C. or lower.
  • the heat treatment time is preferably 1 minute to 72 hours, more preferably 1 hour to 24 hours.
  • Examples of the molding method include molded products such as press molded products, injection molded products, extrusion molded products, vacuum / pressure molded products, and blow molded products.
  • molded products such as press molded products, injection molded products, extrusion molded products, vacuum / pressure molded products, and blow molded products.
  • a molded object a composite body with a film, a sheet
  • Examples of uses of the molded body include agricultural materials, fishing materials, civil engineering / building materials, stationery, medical supplies, various containers, and other molded bodies.
  • the obtained polylactic acid molded body and another member may be combined to form a composite.
  • the composite include a laminate in which film-shaped members such as a film and a sheet are stacked on the molded body of the present invention.
  • a lamination method of the molded body of the present invention and another member in the form of a film a laminate method in which both are bonded by heating and pressing, or the molded body of the present invention and another member in the form of a film are bonded together. The method etc. are mentioned.
  • an adhesive may be applied to at least one of the molded body of the present invention and the other film-shaped member.
  • the shape of the other member used for compounding with the molded article of the present invention is not limited to a film shape, and may be a lump shape such as a pellet shape or a block shape.
  • the shape of the molded body of the present invention is not particularly limited, and may be a film shape such as a film shape or a sheet shape, or may be a lump shape such as a pellet shape or a block shape.
  • the shape of the molded body of the present invention and the shape of other members may be the same or different.
  • Molding can be performed by a conventional method, but the molding method is not particularly limited.
  • the forming method a specific example of the method for producing a film comprising the polylactic acid fine particles of the present invention will be described below, but the method is not limited thereto.
  • a method for producing a film comprising polylactic acid fine particles Specifically, for example, first, a methanol dispersion of polylactic acid fine particles at room temperature (25 ° C.) Cast on a Teflon petri dish and dry to remove the solvent. Furthermore, it is dried under reduced pressure for 24 hours to obtain an aggregate of polylactic acid fine particles (reduced pressure condition: 1 Pa). Next, as shown in FIG. 2, a mold release polyimide film 2 with a thickness of 125 ⁇ m is placed on a disk-shaped stainless steel plate 1 with a diameter of 110 m ⁇ ⁇ 2 mm, and then a disk with a diameter of 110 mm ⁇ ⁇ 0.1 mm in thickness.
  • a 30 mm ⁇ 30 mm rectangular window 3 (a stainless steel thin plate with a rectangular window) 3 is placed on a stainless steel plate, and 0.2 g of the polylactic acid fine particle aggregate is placed in the rectangular window.
  • a polyimide film 5 for release having a thickness of 125 ⁇ m is placed thereon, and a disk-shaped stainless steel plate 6 having a diameter of 110 mm ⁇ ⁇ 2 mm is further placed thereon.
  • These entire laminates were placed between upper and lower plates in a press machine (manufactured by Baldwin Co., Ltd.) installed in a vacuum chamber at room temperature (25 ° C.), and reduced in pressure with a rotary pump to 1.33 ⁇ 10 ⁇ 1 Pa.
  • the molded body may be, for example, directly rolled (stretched) the aggregate of the polylactic acid fine particles, or the molded body obtained by the above method is uniaxially stretched or simultaneously biaxially stretched, sequentially biaxially stretched, You may perform the extending
  • Examples of uses of the molded body include structural members, building materials, joinery materials, construction temporary materials, various automobile parts, interior materials, sheets, mats, and the like that require strength and heat resistance, in addition to the above uses.
  • the molded body of the present invention is suitably used for a wide range of applications, and its application range is wide. Hereinafter, particularly preferred embodiments of the molded body of the present invention will be described.
  • the molded body of the present invention is easily formed into a single fiber by melt spinning or the like, and can be directly processed into a fiber by a general-purpose apparatus. Furthermore, a modified cross-section fiber can be easily formed by selecting a spinning die. Moreover, you may perform the extending
  • the diameter of the synthetic fiber of the present invention is arbitrarily selected in the range of 0.1 ⁇ m to 1 mm, preferably in the range of 1 ⁇ m to 500 ⁇ m. Moreover, you may manufacture a new molded object using the said synthetic fiber. Examples of this embodiment include a woven fabric obtained from the synthetic fiber of the present invention, a molded body using a nonwoven fabric, and the like.
  • the molded body of the present invention may be a polymer mixture containing polylactic acid, a molded body, or a porous body obtained by decomposing and removing components other than polylactic acid from synthetic fibers.
  • the porous body is prepared / manufactured by the molded body of the present invention, and then at least its components other than polylactic acid contained in the molded body are subjected to acid etching treatment or ultrasonic treatment in a solvent. It is obtained by removing a part. A portion where components other than polylactic acid are removed becomes voids, and a porous body of polylactic acid having a large number of fine voids inside is formed.
  • either the acid etching treatment or the ultrasonic treatment may be used, or a combination thereof may be performed.
  • the order is arbitrary. Moreover, you may perform these several processes simultaneously. Moreover, you may perform the extending
  • the surface modifier of the present invention comprises the polylactic acid fine particles of the present invention.
  • a layer also referred to as “surface modified layer” that covers all or part of the surface of various substrates
  • surface modification is performed.
  • the quality layer functions as a protective layer, and the surface of the base material can be modified to a surface excellent in wear resistance and scratch resistance.
  • the polylactic acid fine particles of the present invention have a large proportion of Sc crystals. Therefore, many Sc crystals of polylactic acid are attached to the substrate surface. It is known that the Sc crystal of polylactic acid is superior in hydrolysis resistance compared to normal ⁇ crystal and amorphous [H.
  • the surface modified layer functions as a protective layer excellent in hydrolysis resistance in addition to abrasion resistance and scratch resistance.
  • the substrate surface can be modified to a surface excellent in hydrolysis resistance. Since the polylactic acid fine particles of the present invention contain Sc crystals at a high rate, they can be suitably used as such a surface modifier.
  • the polylactic acid fine particles of the present invention have a small particle size and are nano-order less than 1000 nm. Therefore, a surface-modified layer having a thinner layer thickness than the conventional surface-modified layer formed of micro-order polylactic acid particles containing Sc crystals but having a particle size of 1 ⁇ m or more is formed on the substrate surface. can do. By making the surface modification layer formed on the substrate surface thinner, it is possible to make the layer difficult to peel off from the substrate surface.
  • the base material to which the surface modifier is applied is a thin film member such as a film or sheet containing polylactic acid, it has better affinity with polylactic acid than the surface modifier. A protective layer adhered more firmly can be formed.
  • silicone coatings used to modify the surface of polyethylene terephthalate are used as coating agents for polylactic acid films and sheets. It has the problem that it ends up.
  • the polylactic acid fine particles of the present invention can be more suitably used as a surface modifier that is difficult to peel off.
  • the layer formed using the surface modifier of the present invention has heat resistance and scratch resistance. Furthermore, it becomes an excellent surface protective layer.
  • the entire polylactic acid molded body is made to be Sc crystals. It is possible to impart excellent performance unique to Sc crystal such as hydrolysis resistance, heat resistance, scratch resistance, etc. to the base material in a much smaller amount, and it is industrially useful from the viewpoint of manufacturing cost. .
  • the surface modifier of the present invention is not particularly limited as long as it comprises the polylactic acid fine particles of the present invention, It may be a fine particle aggregate composed only of the polylactic acid fine particles of the present invention, or may be a polylactic acid fine particle dispersion composition comprising a dispersion medium in which the polylactic acid fine particles of the present invention are further dispersed.
  • the dispersion medium for dispersing the polylactic acid fine particles of the present invention may be a liquid, a gel, or an aerosol. When the dispersion medium is a liquid or a gel, examples of the liquid and the liquid constituting the gel include the first solvent and the second solvent.
  • the first solvent is a good solvent for a polymer compound containing an L-lactic acid unit and a D-lactic acid unit.
  • the second solvent is a poor solvent for a polymer compound containing an L-lactic acid unit and a D-lactic acid unit.
  • These solvents may be used alone or in combination of two or more. Among these, from the viewpoint of maintaining the function of the polylactic acid fine particles of the present invention and improving the dispersibility of the polylactic acid fine particles, it is preferable to use the second solvent.
  • the surface modifier of the present invention may contain a surfactant in order to improve the dispersibility of the polylactic acid fine particles
  • the adhesive may be used so that the polylactic acid fine particles easily adhere to the substrate surface.
  • an adhesive, a solvent, and the like may contain various additives such as an ultraviolet absorber and an antioxidant.
  • the method of using the surface modifier of the present invention is not particularly limited, and for example, a method of directly spreading the polylactic acid fine particles of the present invention on the surface of a substrate may be used, or the polylactic acid fine particles of the present invention may be dispersed in a dispersion medium. Alternatively, the dispersion may be applied (coated) to the substrate surface. Examples of the method of applying (coating) the dispersion onto the substrate surface include spin coating, wire bar coating, blade coating, dip coating, and spray coating.
  • the form of the surface modifier of the present invention may be a fine particle aggregate, a spraying agent such as an aerosol, or a surface coating agent such as a fine particle dispersion or a fine particle dispersion gel.
  • the base material comprised using the following compound is mentioned.
  • poly-L-lactic acid, poly-D-lactic acid, a copolymer of poly-L-lactic acid and poly-D-lactic acid, a copolymer containing at least one of poly-L-lactic acid and poly-D-lactic acid as a constituent component examples include polymers or derivatives thereof, and compounds derived from polylactic acid such as a mixture thereof.
  • polylactic acid-derived compounds poly-3-hydroxybutyrate, poly ⁇ -caprolactam, polybutylene succinate, polyethylene succinate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, and other fats
  • Polyester aromatic polyester, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyethylene adipate, poly-p-vinylphenol, polyvinyl acetate, polyethylene oxide, polyacrylonitrile, polyethylene glycol, polypropylene glycol, polyethylene, polypropylene, poly-1-butene
  • Polyolefins such as poly-4-methyl-1-pentene, polydimethylsiloxane, polytrimethyl - silicones such as silphenylene siloxanes, fluorinated polymers such as poly fluoride vinylidene polystyrene, may be used polybutylene adipate terephthalate.
  • the shape of the substrate is not particularly limited as long as the surface modifier of the present invention can be attached, and may be a film shape, a film shape such as a sheet shape, a pellet shape, a block shape, or the like. Any shape such as a lump shape may be used.
  • the surface of the substrate is subjected to plasma treatment, corona discharge treatment, chemical modification treatment before application of the surface modifier so that the polylactic acid fine particles of the present invention contained in the surface modifier are easily attached to the substrate surface.
  • surface modification treatment such as acid etching treatment or ultrasonic treatment may be performed.
  • the surface can be covered with polylactic acid fine particles by bringing the powder into contact with the surface of the substrate.
  • a solvent or an adhesive may be appropriately applied.
  • the polylactic acid fine particles of the present invention may be previously formed into a film shape such as a film shape or a sheet shape and laminated on a substrate.
  • various known materials such as roll molding, injection molding, blow molding, etc., in addition to the press molding used for the above film molding, are applied to the molded body in which the surface modifier of the present invention is adhered to various base materials.
  • a molding method may be applied.
  • Example 1 Using the production apparatus 100 shown in FIG. 1, polylactic acid fine particles were produced as follows.
  • the above PLLA and PDLA are dissolved in dichloromethane, reprecipitated with methanol to remove oligomers, and then subjected to an antioxidant treatment (specifically, treatment with addition of vitamin E or carbodiimide) and purified PLLA and Purified PDLA was obtained.
  • Purified PLLA and purified PDLA are dissolved in chloroform so that each concentration is 0.5% by mass (that is, purified PLLA and purified PDLA are in equal amounts), and a chloroform solution of PLLA and PDLA (polymer compound solution) 1) was obtained. Methanol was used as the second solvent.
  • the solubility parameters of polylactic acid, chloroform and methanol are 19.0, 19.0 and 29.7 (Japanese Patent Laid-Open No. 2007-332187).
  • a membrane filter having a pore diameter (pore diameter) of 100 nm (manufactured by Advantech, product name: hydrophilic PTFE type membrane filter (product number H010A), material: PTFE, film thickness: 35 ⁇ m, porosity: 71% ) was used. Note that the pores in the membrane filter are not linear but have a network-like shape in the membrane filter.
  • the decompression means 60 was operated. At this time, the pressure in the manufacturing measure 100 was adjusted by the pressure adjusting means 50 so that the polymer compound solution 1 permeates the permeable membrane 30 at a flow rate of 0.41 mL / (min ⁇ cm 2 ). Thus, polylactic acid fine particles 1 were obtained.
  • Table 2 shows the results obtained by the above method for the number average particle diameter of the polylactic acid fine particles 1, the ratio of Sc crystals in all crystal components, and the ratio of all crystal components in all components.
  • fine-particles 1 was dried (drying temperature 25 degreeC), and a DSC measuring apparatus (made by Perkin Elmer Co., Ltd.). , Model number: Pyris 1 DSC), and the temperature was increased from 100 ° C. to 240 ° C. at a rate of temperature increase of 10 ° C./min.
  • Example 2 Polylactic acid microparticles 2 were obtained in the same manner as polylactic acid microparticles 1 except that the flow rate was 0.82 mL / (min ⁇ cm 2 ). The obtained polylactic acid fine particles 2 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. 4a. Also, a low-magnification SEM image at a position different from that in FIG. 4a is shown in FIG. 4b, and a high-magnification SEM image is shown in FIG. 4c.
  • the number average particle diameter of the polylactic acid fine particles 2 the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 2 is shown in FIG.
  • a film 1 was obtained by the same method as in one example of a method for producing a film composed of the polylactic acid microparticles (FIG. 2).
  • the obtained film 1 was a self-supporting film, and had practical strength without being broken even if it was held in the hand.
  • the film 1 was measured for haze (cloudiness, unit:%) at room temperature (25 ° C.) according to JIS K7105 “Testing method for optical properties of plastics”. As a result, it was 12.5. Further, the film 1 was placed on the optical path of Hitachi U-1800, and the transmittance was measured in the range of 250 to 800 nm at room temperature. Table 1 shows the measured values.
  • an alumina porous membrane (manufactured by Whatman, product name: Anodisc Membrane Filter 25, material: alumina, film thickness: 60 ⁇ m, porosity: 25 to 50%) is used instead of a membrane filter, and the flow rate is 2
  • Polylactic acid microparticles 3 were obtained in the same manner as polylactic acid microparticles 1 except that ⁇ 10 ⁇ 2 mL / (min ⁇ cm 2 ).
  • the pores of the alumina porous membrane have a diameter of 200 nm on the surface on the first reservoir 12 side and a diameter of 20 nm on the surface on the second reservoir 22 side, and the second from the surface on the first reservoir 12 side. The diameter decreases toward the surface on the reservoir 22 side.
  • the pores of the alumina porous membrane have a shape that penetrates linearly in the direction in which the polymer compound solution permeates.
  • the obtained polylactic acid fine particles 3 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. Moreover, the SEM image in the position different from FIG. 5a is shown in FIG. 5b. Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 3, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 3 is shown in FIG.
  • FIG. 6a is shown in FIG. 6b, and a high magnification SEM image is shown in FIG. 6c.
  • the number average particle diameter of the polylactic acid fine particles 4 the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2.
  • Polylactic acid microparticles 5 were obtained in the same manner as the polylactic acid microparticles 1 except that the flow rate was 4 mL / (min ⁇ cm 2 ).
  • the obtained polylactic acid fine particles 5 were observed by SEM in the same manner as the polylactic acid fine particles 1.
  • An image obtained as a result of the observation is shown in FIG. Further, a low-magnification SEM image at a position different from that in FIG. 7a is shown in FIG. 7b, and a high-magnification SEM image is shown in FIG. 7c.
  • the number average particle diameter of the polylactic acid fine particles 5 the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 5 is shown in FIG. 7d.
  • Example 5 Polylactic acid microparticles 6 were obtained in the same manner as the polylactic acid microparticles 1 except that the flow rate was 0.28 mL / (min ⁇ cm 2 ). The obtained polylactic acid fine particles 6 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. 8a. Further, a low-magnification SEM image at a position different from that in FIG. 8a is shown in FIG. 8b, and a high-magnification SEM image is shown in FIG. 8c.
  • the number average particle diameter of the polylactic acid fine particles 6 the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 6 is shown in FIG.
  • a membrane filter having a pore diameter (pore diameter) of 500 nm (manufactured by Advantech, product name: hydrophilic PTFE type membrane filter (product number H050A), material: PTFE, film thickness: Polylactic acid microparticles 7 were obtained in the same manner as polylactic acid microparticles 1 except that 35 ⁇ m and porosity: 79%) were used, and the flow rate was 0.41 mL / (min ⁇ cm 2 ).
  • the obtained polylactic acid fine particles 7 were observed by SEM. An image obtained as a result of the observation is shown in FIG. Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 7, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2.
  • Example 7 Purified PLLA and purified PDLA are dissolved in chloroform so that each concentration is 0.1% by mass (that is, purified PLLA and purified PDLA are in equal amounts), and a chloroform solution of PLLA and PDLA (polymer compound solution) Polylactic acid microparticles 8 were obtained in the same manner as the polylactic acid microparticles 5 except that 2) was obtained. In the same manner as the polylactic acid fine particles 1, the obtained polylactic acid fine particles 8 were observed by SEM. An image obtained as a result of the observation is shown in FIG. The number average particle diameter of the polylactic acid fine particles 8 was determined in the same manner as the polylactic acid fine particles 1. The results are shown in Table 2.
  • Example 8 Polylactic acid fine particles 9 were obtained in the same manner as the polylactic acid fine particles 8, except that the flow rate was 0.82 mL / (min ⁇ cm 2 ). In the same manner as the polylactic acid fine particles 1, the obtained polylactic acid fine particles 9 were observed by SEM. An image obtained as a result of the observation is shown in FIG. The number average particle size of the polylactic acid fine particles 9 was determined in the same manner as the polylactic acid fine particles 1. The results are shown in Table 2.
  • Polylactic acid microparticles 10 were obtained in the same manner as the polylactic acid microparticles 8 except that the flow rate was 0.21 mL / (min ⁇ cm 2 ). In the same manner as the polylactic acid fine particles 1, the obtained polylactic acid fine particles 10 were observed with an SEM. An image obtained as a result of the observation is shown in FIG. The number average particle diameter of the polylactic acid fine particles 10 was determined in the same manner as the polylactic acid fine particles 1. The results are shown in Table 2.
  • the ratio of the Sc crystal is small although the particle diameter is small as compared with the comparative example. It can be seen that large polylactic acid fine particles are formed. That is, it can be seen that the polylactic acid fine particles obtained in the examples have a Sc crystal ratio of 100%, and both a small particle size and a high Sc crystal ratio are compatible. Moreover, it turns out that the polylactic acid microparticles
  • the SEM images of Examples 1 to 9 and Comparative Example 1 are all observed by casting the solution that permeated the membrane onto a mica plate.
  • the metal vapor deposition treatment used in normal SEM observation was not performed. Therefore, in order to prevent damage to the sample during sample observation, the acceleration voltage was lowered to 500 V for observation.
  • the SEM images of Examples 1 to 9 and Comparative Example 1 were taken at 10,000 times at low magnification and 70,000 times at high magnification.
  • DSC differential scanning calorimetry
  • the DSC measurement was performed on the film 1 obtained in Example 2 and the polylactic acid fine particles 6 obtained in Example 5.
  • the measurement conditions were a temperature increase rate of 10 ° C./min and a scanning temperature range of 30 to 250 ° C. in a nitrogen stream.
  • DSC melting curve was obtained.
  • the temperature and heat quantity were corrected by measuring the melting point and heat of fusion of standard samples (indium and tin).
  • the obtained DSC melting curve is shown in FIG. Of the two curves shown in FIG. 13, the lower curve (curve A) is the DSC melting curve for film 1 of Example 2, and the upper curve (curve B) is the polylactic acid microparticles of Example 5. 6 is a DSC melting curve for 6.
  • this PLLA film 2 On the surface of this PLLA film 2, 5 mL of a dispersion of polylactic acid fine particles 6 was uniformly applied to the entire surface of the film (front side) little by little and dried, and a surface coat layer was formed. The drying temperature was 25 ° C.
  • the crystal structure of the obtained surface coat layer was analyzed with a surface X-ray measurement device, Ultimate III, manufactured by Rigaku Corporation.
  • the oblique X-ray incident angle with respect to the film surface at the time of measurement was 0.05 °, which is a total reflection angle (critical angle) of 0.17 ° or less of the polylactic acid crystal.
  • the surface coat layer of Sc crystal is formed by applying the polylactic acid fine particles of the present invention to the surface of the single PLLA film. This indicates that the polylactic acid fine particles of the present invention are suitable as a surface modifier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Provided is a method for producing polylactic acid microparticles, which comprises: a preliminary step in which a polymer compound solution, which is obtained by dissolving in a first solvent a polymer compound containing structural units derived from l-lactic acid and structural units derived from d-lactic acid, is retained in a first liquid retaining part while a second solvent, which is a poor solvent of the polymer compound, is retained in a second liquid retaining part of a permeation device having two liquid retaining parts separated by a permeation membrane having pores with a diameter of 0.5 nm to 1,000 nm; and a permeation step in which the polymer compound solution retained in the first liquid retaining part is brought into contact with the second solvent by causing the polymer compound solution to permeate through the permeation membrane at a flow rate of 1×10-3 mL/(min·cm2) to 10,000 mL/(min·cm2).

Description

ポリ乳酸微粒子の製造方法、ポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤Method for producing polylactic acid fine particles, polylactic acid fine particles, and crystal nucleating agent, molded article, and surface modifier using the same
 本発明は、ポリ乳酸微粒子の製造方法、ポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤に関する。 The present invention relates to a method for producing polylactic acid fine particles, polylactic acid fine particles, and a crystal nucleating agent, a molded product, and a surface modifier using the same.
 近年、石油から合成される従来の合成樹脂に対して、植物成分を原料としたバイオマス樹脂が注目され、種々の検討が行われている。このような植物由来樹脂は廃棄時に焼却しても、発生する二酸化炭素を再び植物が光合成し、原料となる点でカーボンニュートラルであり、これを従来の合成樹脂に置き換えていくことは地球温暖化の防止に繋がると期待される材料である。このような生物由来樹脂としては、例えば、ポリヒドロキシブチレートやポリ乳酸等が知られている。なかでもポリ乳酸は、トウモロコシ等の植物原料から得られる乳酸あるいはラクチドなどを原料にできる点、熱可塑性であるので溶融成形が可能である点などの利点があり、注目されている。 In recent years, biomass resins using plant components as raw materials have attracted attention, and various studies have been conducted on conventional synthetic resins synthesized from petroleum. Even if such a plant-derived resin is incinerated at the time of disposal, the plant again photosynthesizes the carbon dioxide generated and is carbon neutral in that it becomes a raw material, and replacing this with a conventional synthetic resin is a global warming It is a material that is expected to lead to prevention. As such biological resin, for example, polyhydroxybutyrate and polylactic acid are known. Of these, polylactic acid is attracting attention because it has advantages such as the ability to use lactic acid or lactide obtained from plant raw materials such as corn as a raw material and the fact that it is thermoplastic and can be melt-molded.
 しかしながら、植物原料由来のポリ-L-乳酸(以下、「PLLA」と称する場合がある)から得られるα晶は、融点が170℃と低温であり、樹脂成形体や合成繊維として応用するために耐熱性の向上が求められている。また、α晶は、加水分解性が高いことからも、部材として用いる際の課題となっている。 However, the α crystal obtained from plant-derived poly-L-lactic acid (hereinafter sometimes referred to as “PLLA”) has a melting point as low as 170 ° C., so that it can be applied as a resin molding or synthetic fiber. There is a need for improved heat resistance. Further, the α crystal is a problem when used as a member because of its high hydrolyzability.
 一方、ポリ乳酸としては、光学異性体であるL-乳酸単位のみからなる上記PLLAと、D-乳酸単位のみからなるポリ-D-乳酸(以下、「PDLA」と称する場合がある)が存在する。そして、PLLAとPDLAとが1:1で交互にパッキングしたステレオコンプレックス晶(以下、「Sc晶」と称する場合がある)は、融点230℃と顕著に高く、耐加水分解性を有しており、エンジニアリングプラスチックとしての可能性を有している。上記Sc晶は、例えば、PLLAとPDLAとを、溶液あるいは溶融状態で混合することにより形成されることが知られている(特許文献1、非特許文献1および2参照)。また、上記Sc晶を、ポリ-L-乳酸の結晶化を促進する結晶核剤として用いる試みもなされている(例えば特許文献2参照)。 On the other hand, as polylactic acid, there are the above-mentioned PLLA consisting only of L-lactic acid units which are optical isomers, and poly-D-lactic acid consisting only of D-lactic acid units (hereinafter sometimes referred to as “PDLA”). . A stereocomplex crystal in which PLLA and PDLA are alternately packed at 1: 1 (hereinafter sometimes referred to as “Sc crystal”) has a remarkably high melting point of 230 ° C. and has hydrolysis resistance. It has the potential as an engineering plastic. It is known that the Sc crystal is formed, for example, by mixing PLLA and PDLA in a solution or in a molten state (see Patent Document 1, Non-Patent Documents 1 and 2). Attempts have also been made to use the Sc crystal as a crystal nucleating agent that promotes crystallization of poly-L-lactic acid (see, for example, Patent Document 2).
特開昭63-241024号公報JP 63-241024 特開2005-290257公報JP 2005-290257 A
 上記のように、ポリ乳酸のステレオコンプレックス晶の粒子を結晶核剤として用いる場合、均一に結晶化され、強靭で、かつ、透明度の高い結晶を形成するためには、粒径が小さく、かつ、上記ステレオコンプレックス晶の割合が高いポリ乳酸粒子を結晶核剤として用いることが望まれる。しかしながら、例えばポリ-L-乳酸及びポリ-D-乳酸を等量で溶解させた溶液を、ポリ乳酸に対する貧溶媒(後述)中に滴下してステレオコンプレックス晶を得る方法では、形成された粒子の粒径は1μm以上となってしまう上に、上記ステレオコンプレックス晶の割合が高い粒子を直接得ることは難しい。このように、従来の方法では粒径の小さく、かつ、上記ステレオコンプレックス晶の割合が高いポリ乳酸微粒子を得ることが困難であった。 As described above, when using polylactic acid stereocomplex crystal particles as a crystal nucleating agent, in order to form crystals that are uniformly crystallized, tough, and highly transparent, the particle size is small, and It is desirable to use polylactic acid particles having a high stereocomplex crystal ratio as a crystal nucleating agent. However, for example, in a method of obtaining a stereocomplex crystal by dropping a solution in which poly-L-lactic acid and poly-D-lactic acid are dissolved in equal amounts into a poor solvent for polylactic acid (described later), In addition to having a particle size of 1 μm or more, it is difficult to directly obtain particles having a high ratio of the stereocomplex crystals. As described above, it is difficult to obtain polylactic acid fine particles having a small particle diameter and a high ratio of the stereocomplex crystal by the conventional method.
 本発明は、粒径が小さく、かつ、ポリ-L-乳酸及びポリ-D-乳酸のステレオコンプレックス晶を多く含むポリ乳酸の微粒子を製造できるポリ乳酸微粒子の製造方法が求められる。また、ポリ-L-乳酸及びポリ-D-乳酸のステレオコンプレックス晶を含むポリ乳酸微粒子を原料とすることにより透明度や強度が高いポリ乳酸成形体が得られるポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤を提供することが求められる。 The present invention requires a method for producing polylactic acid microparticles, which can produce polylactic acid microparticles having a small particle size and containing a large amount of poly-L-lactic acid and poly-D-lactic acid stereocomplex crystals. In addition, polylactic acid fine particles that can be obtained by using polylactic acid fine particles containing a stereocomplex crystal of poly-L-lactic acid and poly-D-lactic acid as a raw material, and polylactic acid fine particles having high transparency and strength, and crystals using the same There is a need to provide nucleating agents, compacts, and surface modifiers.
 上記課題は、以下の手段によって解決される。すなわち、
 請求項1に係る発明は、
 直径が0.5nm以上1000nm以下の細孔を有する透過膜で区画された2つの液体収容部を有する透過装置の、一方の液体収容部に、L-乳酸に由来する構造単位及びD-乳酸に由来する構造単位を含む高分子化合物を第1の溶媒に溶解してなる高分子化合物溶液を収容し、他方の液体収容部に、前記高分子化合物に対する貧溶媒である第2の溶媒を収容する準備工程と、
 前記一方の液体収容部に収納された前記高分子化合物溶液を、1×10-3mL/(min・cm)以上10000mL/(min・cm)以下の流速で前記透過膜を透過させることで、前記高分子化合物溶液を前記第2の溶媒に接触させる透過工程と、を有するポリ乳酸微粒子の製造方法。
である。
The above problem is solved by the following means. That is,
The invention according to claim 1
In a permeation device having two liquid containing portions partitioned by a permeable membrane having pores having a diameter of 0.5 nm or more and 1000 nm or less, a structural unit derived from L-lactic acid and D-lactic acid are provided in one liquid containing portion. A polymer compound solution obtained by dissolving a polymer compound containing a derived structural unit in a first solvent is accommodated, and a second solvent that is a poor solvent for the polymer compound is accommodated in the other liquid container. A preparation process;
The polymer solution accommodated in the liquid accommodating portion of the one, 1 × 10 -3 mL / ( min · cm 2) or more 10000mL / (min · cm 2) be transmitted through said permeable membrane at a flow rate not less than And a permeation step for bringing the polymer compound solution into contact with the second solvent.
It is.
 請求項2に係る発明は、
 さらに、前記準備工程に先立って、前記透過膜を予め液体に接触させ、前記透過膜の前記細孔内の気体を液体に置換する透過膜湿潤工程を有する、請求項1に記載のポリ乳酸微粒子の製造方法である。
 請求項3に係る発明は、
 前記高分子化合物が、ポリ-L-乳酸の単独重合体とポリ-D-乳酸の単独重合体との混合物である、請求項1又は請求項2に記載のポリ乳酸微粒子の製造方法である。
The invention according to claim 2
2. The polylactic acid fine particles according to claim 1, further comprising a permeation membrane wetting step of bringing the permeation membrane into contact with a liquid in advance and substituting the gas in the pores of the permeation membrane with the liquid prior to the preparation step. It is a manufacturing method.
The invention according to claim 3
3. The method for producing polylactic acid microparticles according to claim 1, wherein the polymer compound is a mixture of a poly-L-lactic acid homopolymer and a poly-D-lactic acid homopolymer.
 請求項4に係る発明は、
 ポリ-L-乳酸とポリ-D-乳酸とのステレオコンプレックス結晶の成分を含み、ポリ乳酸の全結晶成分に対する前記ステレオコンプレックス結晶の成分の割合が50%以上100%以下であり、かつ、個数平均粒径が0.5nm以上1000nm未満である、ポリ乳酸微粒子である。
The invention according to claim 4
Including a stereocomplex crystal component of poly-L-lactic acid and poly-D-lactic acid, wherein the ratio of the stereocomplex crystal component to the total crystal component of polylactic acid is 50% or more and 100% or less, and the number average Polylactic acid fine particles having a particle size of 0.5 nm or more and less than 1000 nm.
 請求項5に係る発明は、
 ポリ乳酸の非晶成分及び前記全結晶成分の合計に対する前記全結晶成分の割合が10%以上である、請求項4に記載のポリ乳酸微粒子である。
The invention according to claim 5
The polylactic acid fine particles according to claim 4, wherein the ratio of the total crystal component to the total of the amorphous component of polylactic acid and the total crystal component is 10% or more.
 請求項6に係る発明は、
 請求項4又は請求項5に記載のポリ乳酸微粒子からなる結晶核剤である。
The invention according to claim 6
A crystal nucleating agent comprising the polylactic acid fine particles according to claim 4 or 5.
 請求項7に係る発明は、
 請求項4又は請求項5に記載のポリ乳酸微粒子を含む成形体である。
The invention according to claim 7 provides:
A molded article comprising the polylactic acid fine particles according to claim 4 or 5.
 請求項8に係る発明は、
 請求項4又は請求項5に記載のポリ乳酸微粒子を含む表面改質剤である。
The invention according to claim 8 provides:
A surface modifier comprising the polylactic acid fine particles according to claim 4 or 5.
 本発明によれば、粒径が小さく、かつ、ポリ-L-乳酸及びポリ-D-乳酸のステレオコンプレックス晶を多く含むポリ乳酸の微粒子を製造できるポリ乳酸微粒子の製造方法が提供される。さらに、本発明によれば、ポリ-L-乳酸及びポリ-D-乳酸のステレオコンプレックス晶を含むポリ乳酸微粒子を原料とすることにより、強度や透明度が高いポリ乳酸成形体が得られるポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤が提供される。 According to the present invention, there is provided a method for producing polylactic acid fine particles, which can produce fine particles of polylactic acid having a small particle size and containing a large amount of poly-L-lactic acid and poly-D-lactic acid stereocomplex crystals. Furthermore, according to the present invention, the polylactic acid fine particles can be obtained by using polylactic acid fine particles containing a stereocomplex crystal of poly-L-lactic acid and poly-D-lactic acid as a raw material. And a crystal nucleating agent, a molded body, and a surface modifier using the same.
図1は、ポリ乳酸微粒子の製造方法に用いる装置の一例を模式的に示す模式図である。FIG. 1 is a schematic view schematically showing an example of an apparatus used in a method for producing polylactic acid fine particles. 図2は、ポリ乳酸微粒子からなるフィルムの製造方法の一例を表す概念図である。FIG. 2 is a conceptual diagram showing an example of a method for producing a film made of polylactic acid fine particles. 図3は、実施例1で得られたポリ乳酸微粒子のSEM画像である。FIG. 3 is an SEM image of the polylactic acid microparticles obtained in Example 1. 図4aは、実施例2で得られたポリ乳酸微粒子のSEM画像である。FIG. 4 a is an SEM image of the polylactic acid microparticles obtained in Example 2. 図4bは、実施例2で得られたポリ乳酸微粒子のSEM画像である。FIG. 4 b is an SEM image of the polylactic acid microparticles obtained in Example 2. 図4cは、実施例2で得られたポリ乳酸微粒子のSEM画像である。FIG. 4 c is an SEM image of the polylactic acid microparticles obtained in Example 2. 図4dは、実施例2で得られたポリ乳酸微粒子の粒度分布を表す棒グラフである。FIG. 4d is a bar graph showing the particle size distribution of the polylactic acid microparticles obtained in Example 2. 図5aは、実施例3で得られたポリ乳酸微粒子のSEM画像である。FIG. 5 a is an SEM image of the polylactic acid microparticles obtained in Example 3. 図5bは、実施例3で得られたポリ乳酸微粒子のSEM画像である。FIG. 5 b is an SEM image of the polylactic acid microparticles obtained in Example 3. 図5cは、実施例3で得られたポリ乳酸微粒子の粒度分布を表す棒グラフである。FIG. 5 c is a bar graph showing the particle size distribution of the polylactic acid fine particles obtained in Example 3. 図6aは、比較例1で得られたポリ乳酸微粒子のSEM画像である。6a is an SEM image of the polylactic acid fine particles obtained in Comparative Example 1. FIG. 図6bは、比較例1で得られたポリ乳酸微粒子のSEM画像である。FIG. 6 b is an SEM image of the polylactic acid microparticles obtained in Comparative Example 1. 図6cは、比較例1で得られたポリ乳酸微粒子のSEM画像である。FIG. 6 c is an SEM image of the polylactic acid microparticles obtained in Comparative Example 1. 図7aは、実施例4で得られたポリ乳酸微粒子のSEM画像である。FIG. 7 a is an SEM image of the polylactic acid microparticles obtained in Example 4. 図7bは、実施例4で得られたポリ乳酸微粒子のSEM画像である。FIG. 7 b is an SEM image of the polylactic acid microparticles obtained in Example 4. 図7cは、実施例4で得られたポリ乳酸微粒子の粒度分布を表す棒グラフである。FIG. 7 c is a bar graph showing the particle size distribution of the polylactic acid fine particles obtained in Example 4. 図8aは、実施例5で得られたポリ乳酸微粒子のSEM画像である。FIG. 8 a is an SEM image of the polylactic acid microparticles obtained in Example 5. 図8bは、実施例5で得られたポリ乳酸微粒子のSEM画像である。FIG. 8 b is an SEM image of the polylactic acid microparticles obtained in Example 5. 図8cは、実施例5で得られたポリ乳酸微粒子のSEM画像である。FIG. 8 c is an SEM image of the polylactic acid microparticles obtained in Example 5. 図8dは、実施例5で得られたポリ乳酸微粒子の粒度分布を表す棒グラフである。FIG. 8d is a bar graph showing the particle size distribution of the polylactic acid fine particles obtained in Example 5. 図9は、実施例6で得られたポリ乳酸微粒子のSEM画像である。FIG. 9 is an SEM image of the polylactic acid microparticles obtained in Example 6. 図10は、実施例7で得られたポリ乳酸微粒子のSEM画像である。FIG. 10 is an SEM image of the polylactic acid fine particles obtained in Example 7. 図11は、実施例8で得られたポリ乳酸微粒子のSEM画像である。FIG. 11 is an SEM image of the polylactic acid fine particles obtained in Example 8. 図12は、実施例9で得られたポリ乳酸微粒子のSEM画像である。FIG. 12 is an SEM image of the polylactic acid microparticles obtained in Example 9. 図13は、実施例2で得られたフィルム1及び実施例5で得られたポリ乳酸微粒子のDSC融解曲線である。FIG. 13 is a DSC melting curve of the film 1 obtained in Example 2 and the polylactic acid fine particles obtained in Example 5. 図14は、実施例10で得られた表面コート層のWAXD曲線である。FIG. 14 is a WAXD curve of the surface coat layer obtained in Example 10.
 以下、本発明を詳細に説明する。
[ポリ乳酸微粒子の製造方法]
 本発明におけるポリ乳酸微粒子の製造方法は、直径が0.5nm以上1000nm以下の細孔を有する透過膜で区画された2つの液体収容部を有する透過装置の、一方の液体収容部に、L-乳酸に由来する構造単位(以下、「L-乳酸単位」と称する場合がある)及びD-乳酸に由来する構造単位(以下、「D-乳酸単位」と称する場合がある)を含む高分子化合物を第1の溶媒に溶解してなる高分子化合物溶液を収容し、他方の液体収容部に、前記高分子化合物に対する貧溶媒である第2の溶媒を収容する準備工程と、前記一方の液体収容部に収納された前記高分子化合物溶液を、1×10-3mL/(min・cm)以上10000mL/(min・cm)以下の流速で前記透過膜を透過させることで、前記高分子化合物溶液を前記第2の溶媒に接触させる透過工程と、を有し、必要に応じてその他の工程を有していてもよい。
Hereinafter, the present invention will be described in detail.
[Production method of polylactic acid fine particles]
In the method for producing polylactic acid fine particles in the present invention, one liquid container of the permeation device having two liquid containers separated by a permeable membrane having pores having a diameter of 0.5 nm or more and 1000 nm or less is added to L- A polymer compound comprising a structural unit derived from lactic acid (hereinafter sometimes referred to as “L-lactic acid unit”) and a structural unit derived from D-lactic acid (hereinafter sometimes referred to as “D-lactic acid unit”) A preparatory step of containing a second solvent, which is a poor solvent for the polymer compound, in the other liquid container, and the one liquid container the polymer solution which is housed in part, 1 × 10 -3 mL / ( min · cm 2) or more 10000mL / (min · cm 2) by transmitting said permeable membrane at a flow rate not less than, the polymer Compound solution It includes a transmission step of contacting the serial second solvent, and may have other steps as necessary.
 上記本発明の製造方法を用いることにより、粒径が小さく、かつ、ポリ-L-乳酸(以下、「PLLA」と称する場合がある)及びポリ-D-乳酸(以下、「PDLA」と称する場合がある)のステレオコンプレックス晶(以下、「Sc晶」と称する場合がある)を多く含むポリ乳酸の微粒子が形成される。そして、一般的に粒径の小さな微粒子は、粒径の大きな粒子に比べて単位体積(又は単位質量)当たりの比表面積が大きく、結晶成分の割合が小さくなりやすいものである。しかし本発明の製造方法を用いれば、粒径が小さいにもかかわらず、結晶成分の割合(すなわち、非晶成分及び結晶成分の合計に対する結晶成分の割合)が高いポリ乳酸微粒子を製造できる。その理由は定かではないが、以下のように推測される。 When the production method of the present invention is used, the particle size is small, and poly-L-lactic acid (hereinafter sometimes referred to as “PLLA”) and poly-D-lactic acid (hereinafter referred to as “PDLA”). In other words, polylactic acid fine particles containing a large amount of stereocomplex crystals (hereinafter sometimes referred to as “Sc crystals”) are formed. In general, fine particles having a small particle diameter have a larger specific surface area per unit volume (or unit mass) than particles having a large particle diameter, and the ratio of the crystal component tends to be small. However, by using the production method of the present invention, it is possible to produce polylactic acid fine particles having a high ratio of crystal components (that is, a ratio of crystal components with respect to the total of the amorphous component and the crystal components) despite the small particle size. The reason is not clear, but is presumed as follows.
 上記透過工程では、透過膜の細孔内、すなわち、直径が上記範囲の空間内に仕切られた高分子化合物溶液中の上記高分子化合物が、上記範囲の透過速度で透過膜を透過することで貧溶媒に接触し、結晶化される。そのため、細孔の狭い空間内に上記高分子化合物の分子が閉じ込められ、上記高分子化合物に含まれるL-乳酸単位とD-乳酸単位とが接触しやすくなると考えられる。そして、上記狭い空間内でL-乳酸単位とD-乳酸単位とが接触した状態で結晶化が開始することにより、PLLAとPDLAとのSc晶が形成しやすくなると推測される。また、それに加えて、上記のように細孔の狭い空間内に上記高分子化合物の分子が閉じ込められた状態で結晶化が開始されることにより、細孔の直径が反映された小さな粒径のポリ乳酸微粒子が形成されると推測される。以上のような理由により、本発明の製造方法を用いることで、粒径が小さく、かつ、Sc晶を多く含むポリ乳酸の微粒子が形成されると考えられる。そして、上記のように効率的にSc晶が形成されることにより、結晶成分の割合も高いポリ乳酸微粒子が形成される。 In the permeation step, the polymer compound in the polymer compound solution partitioned in the pores of the permeable membrane, that is, in the space having the diameter in the above range, passes through the permeable membrane at a permeation rate in the above range. Crystallized upon contact with a poor solvent. For this reason, it is considered that molecules of the polymer compound are confined in a narrow pore space, and the L-lactic acid unit and the D-lactic acid unit contained in the polymer compound are likely to come into contact with each other. Then, it is presumed that when the crystallization starts in a state where the L-lactic acid unit and the D-lactic acid unit are in contact in the narrow space, an Sc crystal of PLLA and PDLA is easily formed. In addition, since the crystallization is started in a state where the molecules of the polymer compound are confined in the narrow space as described above, a small particle diameter reflecting the diameter of the pores is obtained. Presumably, polylactic acid fine particles are formed. For the reasons described above, it is considered that fine particles of polylactic acid having a small particle diameter and containing a large amount of Sc crystals are formed by using the production method of the present invention. Then, by efficiently forming Sc crystals as described above, polylactic acid fine particles having a high ratio of crystal components are formed.
 特に、透過工程において、透過膜における他方の液体収容部側の面に第2の溶媒が接触している場合、高分子化合物溶液が第2の溶媒に接触しながら透過するため、高分子化合物溶液が上記空間内に仕切られた状態で高分子化合物の結晶化が開始され、Sc晶を多く含み、かつ、細孔の直径が反映された小さな粒径のポリ乳酸微粒子が、より形成されやすいと考えられる。
 上記本発明の製造方法では、さらに、前記準備工程に先立って、前記透過膜を予め液体に接触させ、前記透過膜の前記細孔内の気体を液体に置換する工程を有することが好ましい。予め透過膜の細孔内の気体を液体に置換することで、透過工程の初めから前記高分子化合物溶液と第2の溶液が接触するので、効率よくポリ乳酸微粒子が得られる。
In particular, in the permeation step, when the second solvent is in contact with the surface of the permeable membrane on the side of the other liquid container, the polymer compound solution permeates while contacting the second solvent. When the polymer compound is crystallized in a state of being partitioned into the space, polylactic acid fine particles having a small particle size that contains a large amount of Sc crystals and reflects the diameter of the pores are more easily formed. Conceivable.
The manufacturing method of the present invention preferably further includes a step of bringing the permeable membrane into contact with a liquid in advance and replacing the gas in the pores of the permeable membrane with the liquid prior to the preparation step. By replacing the gas in the pores of the permeable membrane with a liquid in advance, the polymer compound solution and the second solution come into contact from the beginning of the permeation step, so that polylactic acid fine particles can be obtained efficiently.
 L-乳酸単位及びD-乳酸単位を含む高分子化合物としては、例えば、1分子中にL-乳酸単位及びD-乳酸単位を含むポリ乳酸の分子を含有する高分子化合物や、1分子中にL-乳酸単位を含みD-乳酸単位を含まないポリ乳酸の分子と1分子中にD-乳酸単位を含みL-乳酸単位を含まないポリ乳酸の分子とを含有する形態が挙げられる。 Examples of the polymer compound containing an L-lactic acid unit and a D-lactic acid unit include a polymer compound containing a polylactic acid molecule containing an L-lactic acid unit and a D-lactic acid unit in one molecule, Examples include a polylactic acid molecule containing an L-lactic acid unit and no D-lactic acid unit, and a polylactic acid molecule containing a D-lactic acid unit and no L-lactic acid unit in one molecule.
 また、1分子中にL-乳酸単位及びD-乳酸単位を含む高分子化合物としては、例えば、PLLAとPDLAとの共重合体や、PLLAとPDLAとポリ乳酸以外の高分子化合物との共重合体等が挙げられる。
 そして、1分子中にL-乳酸単位を含みD-乳酸単位を含まない高分子化合物としては、例えば、PLLAの単独重合体や、PLLAとポリ乳酸以外の高分子化合物との共重合体(以下、「PLLA共重合体」と称する場合がある)等が挙げられ、同様に、1分子中にD-乳酸単位を含みL-乳酸単位を含まない高分子化合物としては、例えば、PDLAの単独重合体や、PDLAとポリ乳酸以外の高分子化合物との共重合体(以下、「PDLA共重合体」と称する場合がある)等が挙げられる。
Examples of the polymer compound containing an L-lactic acid unit and a D-lactic acid unit in one molecule include, for example, a copolymer of PLLA and PDLA, or a copolymer of PLLA, PDLA, and a polymer compound other than polylactic acid. Examples include coalescence.
Examples of the polymer compound containing an L-lactic acid unit in one molecule and not containing a D-lactic acid unit include, for example, a homopolymer of PLLA and a copolymer of PLLA and a polymer compound other than polylactic acid (hereinafter referred to as “PLA”). Similarly, a polymer compound that contains a D-lactic acid unit in one molecule and does not contain an L-lactic acid unit includes, for example, a single weight of PDLA. And a copolymer of PDLA and a polymer compound other than polylactic acid (hereinafter sometimes referred to as “PDLA copolymer”).
 L-乳酸単位及びD-乳酸単位を含む高分子化合物としては、上記の中でも特に、PLLAの単独重合体とPDLAの単独重合体との混合物であることが好ましい。
 PLLAの単独重合体とPDLAの単独重合体との混合物を用いて、上記本発明の製造方法によりポリ乳酸微粒子を製造することにより、例えば、全結晶成分中におけるSc晶の割合が100%であり、α晶を含まないポリ乳酸微粒子を製造することも可能になる。そして、上記の通り、本発明の製造方法を用いれば粒径が小さいにもかかわらず、結晶成分の割合が高いポリ乳酸微粒子を製造できる。
Among the above, the polymer compound containing an L-lactic acid unit and a D-lactic acid unit is preferably a mixture of a PLLA homopolymer and a PDLA homopolymer.
By using a mixture of a homopolymer of PLLA and a homopolymer of PDLA to produce polylactic acid fine particles by the production method of the present invention, for example, the ratio of Sc crystals in all crystal components is 100%. It is also possible to produce polylactic acid microparticles that do not contain α crystals. And as above-mentioned, if the manufacturing method of this invention is used, although the particle size is small, the polylactic acid microparticles | fine-particles with a high ratio of a crystal component can be manufactured.
 以下、本発明におけるポリ乳酸微粒子の製造方法の各工程について、詳細に説明する。
<準備工程>
 準備工程においては、直径が0.5nm以上1000nm以下の細孔を有する透過膜で区画された2つの液体収容部を有する透過装置の、一方の液体収容部に、L-乳酸単位及びD-乳酸単位を含む高分子化合物を第1の溶媒に溶解してなる高分子化合物溶液を収容し、他方の液体収容部に、前記高分子化合物に対する貧溶媒である第2の溶媒を収容する。
Hereafter, each process of the manufacturing method of the polylactic acid microparticles | fine-particles in this invention is demonstrated in detail.
<Preparation process>
In the preparation step, an L-lactic acid unit and D-lactic acid are added to one liquid container of the permeation device having two liquid containers separated by a permeable membrane having pores having a diameter of 0.5 nm to 1000 nm. A polymer compound solution obtained by dissolving a polymer compound containing a unit in a first solvent is accommodated, and a second solvent that is a poor solvent for the polymer compound is accommodated in the other liquid accommodating portion.
-L-乳酸単位及びD-乳酸単位を含む高分子化合物-
 L-乳酸単位及びD-乳酸単位を含む高分子化合物は、高分子化合物中にL-乳酸単位及びD-乳酸単位が含まれていれば特に限定されず、上記の通り、高分子化合物1分子中にL-乳酸単位及びD-乳酸単位の両方を含む形態であってもよいし、L-乳酸単位のみを含む分子とD-乳酸単位のみを含む分子との混合物であってもよい。
 すなわち、上記高分子化合物は、L-乳酸とD-乳酸の両方のモノマー単位を共重合したポリ乳酸でもよいし、PLLA又はPDLAのいずれか一方のみでもよいし、上記のようにPLLA及びPDLAの混合物であってもよい。
-Polymer compound containing L-lactic acid unit and D-lactic acid unit-
The polymer compound containing an L-lactic acid unit and a D-lactic acid unit is not particularly limited as long as the polymer compound contains an L-lactic acid unit and a D-lactic acid unit. There may be a form containing both L-lactic acid units and D-lactic acid units, or a mixture of molecules containing only L-lactic acid units and molecules containing only D-lactic acid units.
That is, the polymer compound may be polylactic acid obtained by copolymerization of both L-lactic acid and D-lactic acid monomer units, or may be either PLLA or PDLA, or may be PLLA or PDLA as described above. It may be a mixture.
 上記PLLAは、L-乳酸単位を主成分とする重合体であり、好ましくは、不可避の不純物をのぞいてL-乳酸単位100%からなる重合体(すなわちPLLAの単独重合体)である。
 上記PDLAは、PLLAと同様に、D-乳酸単位を主成分とする重合体であり、好ましくは、不可避の不純物をのぞいてD-乳酸単位100%からなる重合体(すなわちPDLAの単独重合体)である。
 PLLA及びPDLAは、その末端が末端封止基で封止されたものであってもよい。このような末端封止基としては、アセチル基、エステル基、エーテル基、アミド基、ウレタン基、ヒドロキシル基などが挙げられる。
The PLLA is a polymer mainly composed of L-lactic acid units, and is preferably a polymer composed of 100% L-lactic acid units excluding inevitable impurities (that is, a homopolymer of PLLA).
The PDLA is a polymer having a D-lactic acid unit as a main component, like the PLLA, and is preferably a polymer composed of 100% D-lactic acid units excluding inevitable impurities (that is, a PDLA homopolymer). It is.
The ends of PLLA and PDLA may be sealed with a terminal blocking group. Examples of such end capping groups include acetyl groups, ester groups, ether groups, amide groups, urethane groups, hydroxyl groups, and the like.
 PLLA及びPDLAは、公知のポリ乳酸の重合方法により製造することができ、製造方法としては、例えば、ラクチドの開環重合、乳酸の脱水縮合、又はこれらと固相重合とを組み合わせて行い、その後、溶融固化させる方法等を挙げることができる。より具体的な製造方法としては、Makromol.Chem.第191巻,P481-488(1990年)或いは、特開平1-225622号公報に記載の如き、乳酸の環状二量体であるラクチドのリビング段階重合法、特開2003-64174号公報記載の如き、特定の立体選択重合触媒を用いたラセミ体ラクチドの直接開環重合法、又は乳酸からの溶融重合法やラクチドの開環重合法等が挙げられる。 PLLA and PDLA can be produced by a known polylactic acid polymerization method. Examples of the production method include lactide ring-opening polymerization, lactic acid dehydration condensation, or a combination of these with solid-phase polymerization. And a method of melting and solidifying. As a more specific production method, Makromol. Chem. Volume 191, P481-488 (1990) or as described in JP-A-1-225622, a living step polymerization method of lactide, which is a cyclic dimer of lactic acid, as described in JP-A-2003-64174. And a direct ring-opening polymerization method of racemic lactide using a specific stereoselective polymerization catalyst, a melt polymerization method from lactic acid, a ring-opening polymerization method of lactide, and the like.
 また、PLLA及びPDLAは、熱安定性を損なわない範囲で、重合に関わる触媒を含有していてもよい。該触媒としては、各種のアルミ化合物、リチウム化合物、スズ化合物、チタン化合物、カルシウム化合物、有機酸類、無機酸類などを挙げることができ、さらにこれらを不活性化する安定剤を共存させていてもよい。 Moreover, PLLA and PDLA may contain a catalyst involved in polymerization as long as thermal stability is not impaired. Examples of the catalyst include various aluminum compounds, lithium compounds, tin compounds, titanium compounds, calcium compounds, organic acids, inorganic acids and the like, and a stabilizer for inactivating these may be present together. .
 高分子化合物としてPLLA及びPDLAの混合物を用いる場合、PLLA及びPDLAの混合比としては、質量比で、1:99から99:1までの範囲で適宜選択されるが、Sc晶の製造効率の観点からは、10:90から90:10の範囲が好ましく、両者が等量(50±5:50±5)となるように調製することがより好ましい。
 上記PLLA及びPDLAの混合物は、PLLA及びPDLA以外にその他の高分子化合物を含んでもよいが、不可避の不純物を除きその他の高分子化合物が含まない方が好ましい。
When a mixture of PLLA and PDLA is used as the polymer compound, the mixing ratio of PLLA and PDLA is appropriately selected in a mass ratio ranging from 1:99 to 99: 1. From the viewpoint of Sc crystal production efficiency Is preferably in the range of 10:90 to 90:10, and more preferably prepared so that both are equivalent (50 ± 5: 50 ± 5).
The above-mentioned mixture of PLLA and PDLA may contain other polymer compounds in addition to PLLA and PDLA, but it is preferable not to contain other polymer compounds except for inevitable impurities.
 前記の通り、高分子化合物としてポリ乳酸の共重合体を用いてもよい。ポリ乳酸の共重合体としては、L-乳酸単位及びD-乳酸単位の少なくとも一方を含むものであれば特に限定されないが、具体的には、例えば、PLLAとPDLAとの共重合体、PLLA共重合体、PDLA共重合体が挙げられる。
 また高分子化合物として、PLLAとPDLAとの共重合体、PLLA共重合体とPDLA単独重合体との混合物、PLLA単独重合体とPDLA共重合体との混合物、又はPLLA単独重合体とPDLA単独重合体との混合物を用いる形態が、Sc晶の多いポリ乳酸微粒子を製造する観点で好ましい。上記の中でも特に、共重合体としてブロック共重合体を用いる形態又はPLLA単独重合体とPDLA単独重合体との混合物を用いる形態がより好ましく、PLLA単独重合体とPDLA単独重合体との混合物を用いる形態がさらに好ましい。
As described above, a polylactic acid copolymer may be used as the polymer compound. The copolymer of polylactic acid is not particularly limited as long as it contains at least one of an L-lactic acid unit and a D-lactic acid unit. Specifically, for example, a copolymer of PLLA and PDLA, a PLLA copolymer, and the like. Examples thereof include a polymer and a PDLA copolymer.
Moreover, as a polymer compound, a copolymer of PLLA and PDLA, a mixture of PLLA copolymer and PDLA homopolymer, a mixture of PLLA homopolymer and PDLA copolymer, or a PLLA homopolymer and a PDLA homopolymer. A form using a mixture with a coalescence is preferable from the viewpoint of producing polylactic acid fine particles having many Sc crystals. Among these, a form using a block copolymer as a copolymer or a form using a mixture of a PLLA homopolymer and a PDLA homopolymer is more preferable, and a mixture of a PLLA homopolymer and a PDLA homopolymer is used. A form is further preferred.
 上記PLLA共重合体又はPDLA共重合体に含まれる「ポリ乳酸以外の高分子化合物」としては、例えば、ポリ乳酸と共通の溶媒に溶解することのできるものが挙げられる。具体的には、例えば、ポリスチレン、ポリスチレンスルホン酸、ポリメチルメタクリレート、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリプロピレンオキシド、ポリε-カプロラクトン、ポリブタジエン、ポリジメチルシロキサン、ポリエチレン、ポリノルボルネニルエチルスチレン、ポリノルボルネニルエチルスチレン-s-スチレン、ポリノルボルネン、ポリヘキサメチルカーボネート、ポリヘキシルノルボルネン、ポリ-n-プロピル-p-スチレンスルホン酸、ポリブチルサクシネート、ポリジシクロペンタジエン、ポリジメチルアクリルアミド、ポリシクロヘキシルエチレン、ポリ-1,5-ジオキセパン-2-オン、ポリメンチド、ポリアクリルアミド、ポリ4-ビニルピリジン、ポリジメチルアクリルアミド、ポリN-イソプロピルアクリルアミド、ポリイソプレン、ポリ3-アルキルチオフェン、ポリジオキサノン、ポリN,N-ジメチルアミノ-2-エチルメタルリレート、ポリ3-ヒロドキシブチレート、ポリ-2-ヒドロキシメタクリレートおよびこれらの誘導体などが挙げられる。 Examples of the “polymer compound other than polylactic acid” contained in the PLLA copolymer or PDLA copolymer include those that can be dissolved in a solvent common to polylactic acid. Specifically, for example, polystyrene, polystyrene sulfonic acid, polymethyl methacrylate, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, poly ε-caprolactone, polybutadiene, polydimethylsiloxane, polyethylene, polynorbornenyl ethyl styrene, poly Norbornenyl ethyl styrene-s-styrene, polynorbornene, polyhexamethyl carbonate, polyhexyl norbornene, poly-n-propyl-p-styrene sulfonic acid, polybutyl succinate, polydicyclopentadiene, polydimethylacrylamide, polycyclohexylethylene , Poly-1,5-dioxepan-2-one, polymentide, polyacrylamide, poly-4-vinylpyridine, polydimethyla Rilamide, poly-N-isopropylacrylamide, polyisoprene, poly-3-alkylthiophene, polydioxanone, poly-N, N-dimethylamino-2-ethylmetallate, poly-3-hydroxybutyrate, poly-2-hydroxymethacrylate and these And derivatives thereof.
 上記ポリ乳酸以外の高分子化合物の重量平均分子量は、10,000以上1,000,000以下であることが好ましく、10,000以上500,000以下であることがより好ましい。また、分子量分布は、1以上10以下であることが好ましく、1以上2以下であることがより好ましく、1以上1.5以下であることがさらに好ましい。
 前記PLLAとポリ乳酸以外の高分子化合物とのブロック共重合体におけるPLLAとポリ乳酸以外の高分子化合物との含有比率は、質量比で、1:99から99:1までの範囲で適宜選択され、好ましくは、10:90から90:10の範囲であることがSc晶をより多く部材中に含ませることができる点で好ましい。前記PDLAとポリ乳酸以外の高分子化合物とのブロック共重合体におけるPDLAとポリ乳酸以外の高分子化合物との含有比率についても、上記と同様である。
The weight average molecular weight of the polymer compound other than the polylactic acid is preferably 10,000 or more and 1,000,000 or less, and more preferably 10,000 or more and 500,000 or less. The molecular weight distribution is preferably 1 or more and 10 or less, more preferably 1 or more and 2 or less, and further preferably 1 or more and 1.5 or less.
The content ratio of the PLLA and the polymer compound other than polylactic acid in the block copolymer of the PLLA and the polymer compound other than polylactic acid is appropriately selected in the range of 1:99 to 99: 1 by mass ratio. Preferably, the range of 10:90 to 90:10 is preferable in that more Sc crystals can be included in the member. The content ratio of PDLA and a polymer compound other than polylactic acid in the block copolymer of PDLA and a polymer compound other than polylactic acid is the same as described above.
 ブロック共重合体の合成は常法により、行うことができる。具体的には、例えば、これら重合体を、得ようとするブロック共重合体に応じた、予め定められた割合で、溶融混合または溶液混合した後、固化させ、さらに固相重合することにより製造することができる。または、PLLA重合体をあらかじめ合成し、その分子末端にポリ乳酸以外の高分子化合物のモノマーを逐次的に重合成長させることにより製造することができる。逆に、ポリ乳酸以外の高分子化合物をあらかじめ合成し、その分子末端にL-乳酸単位を逐次的に重合成長させることにより製造することができる。 The block copolymer can be synthesized by a conventional method. Specifically, for example, these polymers are produced by melt-mixing or solution-mixing at a predetermined ratio according to the block copolymer to be obtained, and then solidifying and further solid-phase polymerization. can do. Alternatively, it can be produced by previously synthesizing a PLLA polymer and sequentially polymerizing and growing a monomer of a polymer compound other than polylactic acid at the molecular terminal. Conversely, it can be produced by synthesizing a polymer compound other than polylactic acid in advance and sequentially polymerizing and growing L-lactic acid units at the molecular ends.
 ポリ乳酸微粒子に用いる前記高分子化合物の重量平均分子量は、10,000以上1,000,000以下であることが好ましく、10,000以上500,000以下であることがより好ましい。また、分子量分布(重量平均分子量/数平均分子量の値)は、1以上10以下であることが好ましく、1以上5以下であることがより好ましく、1以上3以下であることがさらに好ましい。また前記高分子化合物が共重合体である場合は、重量平均分子量が20,000以上2,000,000以下であってもよい。
 なお、本発明においてポリマーの重量平均分子量及び分子量分布は、溶媒としてクロロホルムを用いた排除クロマトグラフィー法により求めた値を採用している。
The polymer compound used for the polylactic acid fine particles has a weight average molecular weight of preferably 10,000 or more and 1,000,000 or less, and more preferably 10,000 or more and 500,000 or less. The molecular weight distribution (value of weight average molecular weight / number average molecular weight) is preferably 1 or more, 10 or less, more preferably 1 or more and 5 or less, and further preferably 1 or more and 3 or less. When the polymer compound is a copolymer, the weight average molecular weight may be 20,000 or more and 2,000,000 or less.
In the present invention, values obtained by an exclusion chromatography method using chloroform as a solvent are employed for the weight average molecular weight and molecular weight distribution of the polymer.
-第1の溶媒-
 第1の溶媒としては、用いる前記高分子化合物を溶解させるものであれば特に限定されないが、用いる高分子化合物に対する良溶媒であることが好ましい。ここで、高分子化合物に対する良溶媒とは、溶解度パラメーターの値が該高分子化合物のそれに近いものを言う。好ましくは、それらの差が1以下である組み合わせが挙げられる。例えば、ポリ乳酸のうち、PLLAの単独重合体における溶解度パラメーターは19.0であり、クロロホルムの溶解度パラメーターは19.0であるため、クロロホルムは前記ポリ乳酸に対する良溶媒である(特開2007-332187公報参照)。
-First solvent-
The first solvent is not particularly limited as long as it dissolves the polymer compound to be used, but is preferably a good solvent for the polymer compound to be used. Here, the good solvent for the polymer compound means a solvent having a solubility parameter value close to that of the polymer compound. Preferably, the combination whose difference is 1 or less is mentioned. For example, among polylactic acids, the solubility parameter in a homopolymer of PLLA is 19.0, and the solubility parameter of chloroform is 19.0, so chloroform is a good solvent for the polylactic acid (Japanese Patent Laid-Open No. 2007-332187). See the official gazette).
 L-乳酸単位及びD-乳酸単位を含む高分子化合物に対する良溶媒としては、例えば、クロロホルム、テトラヒドロフラン、キシレン、トルエン、ベンゼン、エチルベンゼン、ジクロロエタン、四塩化炭素、トリクロロエタン、ジクロロメタン、クロロベンゼン、メチルエチルケトン、ジクロロベンゼン、トリクロロベンゼンなどが好適なものとして挙げられる。これらは1種を用いてもよく、目的に応じて2種以上混合し、混合溶媒として用いることもできる。また、混合溶媒とする場合には、上記溶媒に加えて、例えば、メタノールやエタノールなどの第1の溶媒と混和する貧溶媒を混合してもよい。ここで言う「混和」とは、長時間静置しても1相のままで分離しないことを示す。 Good solvents for polymer compounds containing L-lactic acid units and D-lactic acid units include, for example, chloroform, tetrahydrofuran, xylene, toluene, benzene, ethylbenzene, dichloroethane, carbon tetrachloride, trichloroethane, dichloromethane, chlorobenzene, methyl ethyl ketone, dichlorobenzene. , Trichlorobenzene and the like are preferable. One of these may be used, or two or more may be mixed and used as a mixed solvent according to the purpose. Moreover, when setting it as a mixed solvent, in addition to the said solvent, you may mix the poor solvent mixed with 1st solvents, such as methanol and ethanol, for example. The term “mixing” as used herein means that even if left for a long time, it remains in one phase and does not separate.
-高分子化合物溶液-
 高分子化合物溶液は、前記高分子化合物が前記第1の溶媒に溶解した溶液である。ここで「溶解した」とは、高分子化合物溶液に含まれる高分子化合物の固形分が目視により確認できない状態をいう。
 高分子化合物溶液中における高分子化合物の濃度は、用いる高分子化合物、第1の溶媒、及び第2の溶媒の種類、用いる透過膜の種類、並びに透過速度等に応じて適宜設定される。例えば、高分子化合物としてPLLA単独重合体及びPDLA単独重合体の混合物を用いる場合、高分子化合物の濃度としては、高分子化合物溶液全体に対し、0.01質量%以上50質量%以下の範囲であることが好ましく、より好ましくは、0.01質量%以上20質量%以下の範囲である。
-Polymer compound solution-
The polymer compound solution is a solution in which the polymer compound is dissolved in the first solvent. Here, “dissolved” refers to a state where the solid content of the polymer compound contained in the polymer compound solution cannot be visually confirmed.
The concentration of the polymer compound in the polymer compound solution is appropriately set according to the types of the polymer compound used, the first solvent and the second solvent, the type of permeable membrane used, the permeation rate, and the like. For example, when a mixture of PLLA homopolymer and PDLA homopolymer is used as the polymer compound, the concentration of the polymer compound is in the range of 0.01% by mass to 50% by mass with respect to the entire polymer compound solution. It is preferable that it is in a range of 0.01% by mass or more and 20% by mass or less.
 高分子化合物溶液の調製は、例えば、室温(25℃)において、第1の溶媒に高分子化合物を添加し、撹拌等により高分子化合物を第1の溶媒に溶解させることで行う。
 高分子化合物が混合物である場合、それぞれの高分子化合物をそれぞれ溶媒に溶解した後に混合してもよく、まず一方を溶媒に混合した後、他方を加えて溶解させてもよい。溶液の調製は室温(25℃)で行ってもよいが、所望により25℃から用いる溶媒の沸点まで加熱してもよい。
The polymer compound solution is prepared, for example, by adding the polymer compound to the first solvent at room temperature (25 ° C.) and dissolving the polymer compound in the first solvent by stirring or the like.
When the polymer compound is a mixture, each polymer compound may be mixed after being dissolved in a solvent, or one may be mixed with the solvent and then the other may be added and dissolved. The solution may be prepared at room temperature (25 ° C.), but if desired, the solution may be heated from 25 ° C. to the boiling point of the solvent used.
-第2の溶媒-
 第2の溶媒としては、用いる高分子化合物に対する貧溶媒であれば特に限定されない。ここで、高分子化合物に対する貧溶媒とは、溶解度パラメーターの値が該高分子化合物のそれから遠いものを言う。好ましくは、それらの差が5以上である組み合わせが挙げられる。例えば、ポリ乳酸のうち、PLLAの単独重合体における溶解度パラメーターは19.0であり、メタノールは29.7であるため、メタノールは前記ポリ乳酸に対する貧溶媒である(特開2007-332187公報参照)。
 高分子化合物としてPLLA単独重合体及びPDLA単独重合体の混合物を用い、第1の溶媒としてクロロホルムを用いる場合、第2の溶媒としては、第1の溶媒と混和し、かつ、用いる高分子化合物に対する貧溶媒である溶媒が好適なものとして挙げられ、具体的には、例えば、メタノール、エタノール、2-プロパノールなどが挙げられる。これらは1種を用いてもよく、目的に応じて2種以上混合し、混合溶媒として用いることもできる。
-Second solvent-
The second solvent is not particularly limited as long as it is a poor solvent for the polymer compound used. Here, the poor solvent for the polymer compound refers to a solvent whose solubility parameter is far from that of the polymer compound. Preferably, the combination whose difference is 5 or more is mentioned. For example, among polylactic acids, the solubility parameter in a homopolymer of PLLA is 19.0, and methanol is 29.7, so methanol is a poor solvent for the polylactic acid (see Japanese Patent Application Laid-Open No. 2007-332187). .
When a mixture of PLLA homopolymer and PDLA homopolymer is used as the polymer compound, and chloroform is used as the first solvent, the second solvent is mixed with the first solvent and used for the polymer compound used. A solvent that is a poor solvent is preferable, and specific examples include methanol, ethanol, 2-propanol, and the like. One of these may be used, or two or more may be mixed and used as a mixed solvent according to the purpose.
 なお、上記の第1の溶媒および第2の溶媒のいずれか一方、または第1の溶媒および第2の溶媒の両方に、必要に応じて、酸化防止剤、安定剤、耐光剤、静電気除去剤、滑剤、難燃剤、相容化剤、分散剤、界面活性剤などの各種の添加剤を加えてもよい。これらの添加剤は、複数を組み合わせて用いてもよい。
 第1の溶媒と、第2の溶媒とに、添加剤を加える場合、同じ添加剤を加えてもよいし、互いに異なる添加剤を加えてもよい。また、第1の溶媒と、第2の溶媒とに、加える添加剤の添加量は同じであっても、異なっていてもよい。
In addition, an antioxidant, a stabilizer, a light-proofing agent, a static eliminating agent is added to either one of the first solvent and the second solvent, or both the first solvent and the second solvent, if necessary. Various additives such as a lubricant, a flame retardant, a compatibilizer, a dispersant, and a surfactant may be added. These additives may be used in combination.
When an additive is added to the first solvent and the second solvent, the same additive may be added or different additives may be added. Moreover, the addition amount of the additive added to the 1st solvent and the 2nd solvent may be the same, or may differ.
-透過膜-
 透過膜は、透過装置における2つの液体収容部を区画する、直径が前記範囲の細孔を有する膜である。透過膜は、高分子化合物溶液が前記細孔を通じて透過膜を透過するものであれば特に限定されない。すなわち透過膜においては、例えば、高分子化合物溶液が透過する方向である透過方向に、前記細孔が膜厚方向に垂直に貫通していてもよいし、透過膜内において前記細孔が網目状に広がっていてもよいし、屈曲したり枝分かれしたりしていることで膜厚方向に連通してもよい。
 また、膜の形状は平面状の平面膜であってもよいし、筒状の中空糸膜あるいはチューブ状膜であってもよい。また、これらを積層または集積した(束ねた)ものであってもよい。
-Permeation membrane-
The permeable membrane is a membrane having pores having a diameter in the above-described range, which partitions two liquid storage portions in the permeable device. The permeable membrane is not particularly limited as long as the polymer compound solution permeates the permeable membrane through the pores. That is, in the permeable membrane, for example, the pores may penetrate perpendicularly to the film thickness direction in the permeation direction, which is the direction through which the polymer compound solution permeates, or the pores are mesh-like in the permeable membrane. It may be spread in the direction of film thickness, or may be communicated in the film thickness direction by being bent or branched.
Further, the shape of the membrane may be a flat planar membrane, a cylindrical hollow fiber membrane or a tubular membrane. Further, they may be laminated or integrated (bundled).
 ここで細孔の直径とは、高分子化合物溶液の透過方向と垂直な断面における細孔の断面のうち、最も面積の小さな断面において、当該面積と同じ面積を有する円の直径を意味する。
 透過膜に存在する細孔の直径が前記範囲であると、前記範囲よりも大きい場合に比べて、Sc晶を効率よく形成し、かつ、より小さなポリ乳酸の微粒子を形成することができる。そして、細孔の直径が前記範囲であると、前記範囲よりも小さい場合に比べて高分子化合物の結晶化に起因する目詰まり等が起こりにくい。
 また、透過膜に存在する細孔の直径は、0.5nm以上1000nm以下が好ましく、1nm以上500nm以下がさらに好ましい。なお、直径が前記範囲よりも大きな孔は、存在しないか、又は高分子化合物溶液が透過できない構造になっていることが好ましい。
Here, the diameter of the pores means the diameter of a circle having the same area as that of the cross section having the smallest area among the cross sections of the pores in the cross section perpendicular to the permeation direction of the polymer compound solution.
When the diameter of the pores present in the permeable membrane is in the above range, Sc crystals can be efficiently formed and smaller polylactic acid microparticles can be formed than in the case where the diameter is larger than the above range. When the pore diameter is in the above range, clogging due to crystallization of the polymer compound is less likely to occur than in the case where the diameter is smaller than the above range.
The diameter of the pores present in the permeable membrane is preferably 0.5 nm or more and 1000 nm or less, and more preferably 1 nm or more and 500 nm or less. In addition, it is preferable that the hole whose diameter is larger than the above range does not exist or has a structure in which the polymer compound solution cannot permeate.
 透過膜に存在する細孔の密度は特に限定されないが、例えば空隙率(空孔が全膜体積に占める割合)が10%以上90%以下の範囲が挙げられる。前記細孔の形状は、特に限定されず、高分子化合物溶液が透過する方向に直線的に貫通した形状であってもよく、網目状に広がっていてもよいし、細孔が屈曲していてもよいし、分岐していてもよい。
 透過膜の材質は用いる溶媒に溶解あるいは膨潤しなければよく、具体的には、例えば、PTFE(ポリテトラフルオロエチレン)、ポリフッ化ビニリデンなどのフッ素樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート等の有機材料、アルミナ、シリカ、ガラス等の無機材料、セルロース製ろ紙などが挙げられる。
 透過膜の厚さは特に限定されないが、具体的には、例えば、0.1μm以上1000μm以下の範囲が挙げられ、1μm以上500μm以下の範囲がより好ましい。
The density of the pores existing in the permeable membrane is not particularly limited, and examples thereof include a range in which the porosity (ratio of pores to the total membrane volume) is 10% or more and 90% or less. The shape of the pore is not particularly limited, and may be a shape penetrating linearly in a direction in which the polymer compound solution permeates, may be spread in a mesh shape, or the pore may be bent. Or may be branched.
The material of the permeable membrane does not have to be dissolved or swelled in the solvent used. Specifically, for example, fluororesins such as PTFE (polytetrafluoroethylene) and polyvinylidene fluoride, organic materials such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate. Examples thereof include inorganic materials such as materials, alumina, silica and glass, and filter paper made of cellulose.
Although the thickness of a permeable film is not specifically limited, Specifically, the range of 0.1 micrometer or more and 1000 micrometers or less is mentioned, for example, The range of 1 micrometer or more and 500 micrometers or less is more preferable.
<透過膜湿潤工程>
 上記の通り、さらに、前記準備工程に先立って、前記透過膜を予め液体に接触させ、前記透過膜の前記細孔内の気体を液体に置換する透過膜湿潤工程を有していてもよい。
 前記液体は、特に限定されず、前記高分子化合物溶液、前記第1の溶媒、前記第2の溶媒、その他の溶媒いずれでもよいが、前記高分子化合物溶液又は前記第2の溶媒が好ましく、前記第2の溶媒がより好ましい。
<Permeation membrane wetting process>
As described above, prior to the preparation step, the method may further include a permeable membrane wetting step of bringing the permeable membrane into contact with a liquid in advance and replacing the gas in the pores of the permeable membrane with the liquid.
The liquid is not particularly limited, and may be any of the polymer compound solution, the first solvent, the second solvent, and other solvents, preferably the polymer compound solution or the second solvent, A second solvent is more preferred.
<透過工程>
 透過工程においては、高分子化合物溶液を、前記範囲の流速で前記細孔を通じて透過膜を透過させる。流速が前記範囲であることにより、前記範囲よりも大きい場合に比べて、ポリ乳酸微粒子が凝集しにくいためμmサイズになりにくく、かつSc晶の割合が多いポリ乳酸の微粒子が形成されやすい。また流速が前記範囲であることにより、前記範囲よりも小さい場合に比べて、高分子化合物粒子が細孔内で成長しすぎることに起因する目詰まり等が起こりにくい。また流速は、1×10-3mL/(min・cm)以上10000mL/(min・cm)以下が好ましく、1×10-2mL/(min・cm)以上1000mL/(min・cm)以下がより好ましい。
<Transmission process>
In the permeation step, the polymer compound solution is permeated through the permeation membrane through the pores at a flow rate in the above range. When the flow rate is in the above range, the polylactic acid microparticles are less likely to aggregate than in the case where the flow rate is larger than the above range, so that the micron size is difficult to be formed, and polylactic acid microparticles having a large proportion of Sc crystals are easily formed. Further, when the flow rate is in the above range, clogging or the like caused by the polymer compound particles growing too much in the pores is less likely to occur than in the case where the flow rate is smaller than the above range. The flow rate, 1 × 10 -3 mL / ( min · cm 2) or more 10000mL / (min · cm 2) or less are preferred, 1 × 10 -2 mL / ( min · cm 2) or more 1000mL / (min · cm 2 ) The following is more preferable.
 透過方法としては、例えば、透過膜の一方の面と他方の面との間に圧力差を設ける方法が挙げられ、物理的な加圧や遠心力を用いた加圧等によって高分子化合物溶液側に圧力をかけて透過膜を透過させてもよく、第2の溶媒側を減圧してもよい。圧力差は、透過膜の厚さ、透過膜に存在する細孔の径や密度、空隙率等に応じて選択する。
 透過工程においては、上記の通り、透過膜における他方の液体収容部側の面に第2の溶媒が接触していることが好ましい。
 このとき、高分子化合物溶液および第2の溶媒の両方あるいはいずれか片方をそれぞれの液体収容部に連続的あるいは間欠的に流入あるいは液体収容部から連続的あるいは間欠的に流出させることで、連続的あるいは間欠的にポリ乳酸微粒子を製造してもよい。
 以上の工程を経ることにより、粒径が小さいにもかかわらず、Sc晶の割合が大きなポリ乳酸微粒子が形成される。この際、得られる微粒子の形状は、球状であることが望ましいが、楕円状あるいは糸状であってもよい。
Examples of the permeation method include a method in which a pressure difference is provided between one surface and the other surface of the permeable membrane. The polymer compound solution side can be obtained by physical pressurization or pressurization using centrifugal force. May be applied to the permeable membrane, and the second solvent side may be depressurized. The pressure difference is selected according to the thickness of the permeable membrane, the diameter and density of pores existing in the permeable membrane, the porosity, and the like.
In the permeation step, as described above, it is preferable that the second solvent is in contact with the surface of the permeable membrane on the other liquid container side.
At this time, both or either one of the polymer compound solution and the second solvent are continuously or intermittently flowed into or out of the respective liquid storage units, thereby continuously or intermittently flowing out of the liquid storage units. Alternatively, polylactic acid fine particles may be produced intermittently.
Through the above steps, polylactic acid fine particles having a large proportion of Sc crystals are formed despite the small particle size. At this time, the shape of the obtained fine particles is preferably spherical, but may be oval or thread-like.
 さらにポリ乳酸のSc晶の微粒子については、例えば粒径の大きなSc晶のポリ乳酸粒子を形成した後に、高分子化合物の微粒子化法として知られている良溶媒に溶解した後にこれに貧溶媒を混合して高分子化合物の微粒子を得る方法(特開2004-67883公報)や高分子化合物溶液を激しく撹拌した貧溶媒中に滴下する再沈殿法(特開平6-79168号公報)により微細化しようとすると、せっかく製造したSc晶を再び分解してしまうことになり、効率が悪く、Sc晶の割合を維持できないという問題がある。しかしながら前記本発明の製造方法を用いると、小さな粒径と大きなSc晶の割合とを両立したポリ乳酸微粒子が得られる。 Further, for the polylactic acid Sc crystal fine particles, for example, after forming Sc crystal polylactic acid particles having a large particle diameter, the polylactic acid is dissolved in a good solvent known as a fine particle method of a polymer compound, and then a poor solvent is added thereto. Use a method of mixing to obtain fine particles of a polymer compound (Japanese Patent Laid-Open No. 2004-67883) or a reprecipitation method (Japanese Patent Laid-Open No. 6-79168) of dropping a polymer compound solution into a poorly stirred poor solvent. Then, the produced Sc crystal will be decomposed again, and there is a problem that the efficiency is poor and the ratio of the Sc crystal cannot be maintained. However, when the production method of the present invention is used, polylactic acid fine particles having both a small particle size and a large Sc crystal ratio can be obtained.
<その他の工程>
 本発明におけるポリ乳酸微粒子の製造方法は、上記工程のほかに、必要に応じてその他の工程を有していてもよい。
 その他の工程としては、例えば、前記準備工程に先立って行われる、高分子化合物を合成する工程、原料(すなわち、第1の溶媒、高分子化合物、及び第2の溶媒)を精製する工程、高分子化合物としてポリ乳酸を用いる場合において、精製されたポリ乳酸にビタミンEやカルボジイミドを混合することで抗酸化処理あるいは耐加水分解処理する工程等が挙げられる。また、前記透過工程の後に行われる、透過工程によって得られたポリ乳酸微粒子をサイズ別に分別するための遠心分離等の分画工程や、ポリ乳酸微粒子を分散させる超音波処理や、ポリ乳酸微粒子を凝集させることなく乾燥させる凍結乾燥等の公知の工程等や、得られたポリ乳酸微粒子に抗酸化処理や抗菌処理を施す工程が挙げられる。さらに、得られたポリ乳酸微粒子の表面をシランカップリング剤等の化学修飾剤によって表面処理を施す工程も挙げられる。あるいは、ポリ乳酸物微粒子の表面にポリエチレングリコール等の親水性の分子を物理吸着させることで、親水化(親水性の分子の代わりに疎水性の分子を用いる場合は「疎水化」)する工程等が挙げられる。また、これら両成分(すなわち親水性の成分及び疎水性の成分)を含む界面活性剤や分散剤でポリ乳酸微粒子の表面処理を行う工程等も挙げられる。
<Other processes>
The manufacturing method of the polylactic acid microparticles | fine-particles in this invention may have another process as needed other than the said process.
As other steps, for example, a step of synthesizing a polymer compound, a step of purifying raw materials (that is, a first solvent, a polymer compound, and a second solvent) performed prior to the preparation step, In the case where polylactic acid is used as the molecular compound, a step of antioxidation treatment or hydrolysis resistance treatment by mixing vitamin E or carbodiimide with purified polylactic acid may be mentioned. In addition, a fractionation step such as centrifugation for separating the polylactic acid fine particles obtained by the permeation step according to size performed after the permeation step, ultrasonic treatment for dispersing the polylactic acid fine particles, and polylactic acid fine particles Examples include a known process such as freeze-drying for drying without agglomeration, and a process for subjecting the obtained polylactic acid fine particles to an antioxidant treatment or an antibacterial treatment. Furthermore, the process of surface-treating the surface of the obtained polylactic acid fine particle with chemical modifiers, such as a silane coupling agent, is also mentioned. Alternatively, a hydrophilic molecule such as polyethylene glycol is physically adsorbed on the surface of the polylactic acid fine particles to make it hydrophilic (“hydrophobization” when a hydrophobic molecule is used instead of a hydrophilic molecule), etc. Is mentioned. Moreover, the process etc. which perform the surface treatment of polylactic acid microparticles | fine-particles with surfactant and a dispersing agent containing both these components (namely, a hydrophilic component and a hydrophobic component) are also mentioned.
<ポリ乳酸微粒子の製造装置>
 図1は、上記ポリ乳酸微粒子の製造方法に用いる装置の一例を模式的に示す模式図である。
 図1の製造装置100は、高分子化合物溶液10を貯留する第1貯留器12(一方の液体収容部)と、第2の溶媒20を貯留する第2貯留器22(他方の液体収容部)と、前述した直径が前記範囲の細孔を有する透過膜30と、第2貯留器22から排出された第2の溶媒20を貯留する第3貯留器40と、製造装置100内の圧力を調整する圧力調整手段50と、製造装置100の内部を減圧する減圧手段60と、で構成されている。
 上記第1貯留器12と第2貯留器22とは、透過膜30により区画されており、第1貯留器12、第2貯留器22、及び透過膜30で透過装置を構成している。
<Polylactic acid microparticle production equipment>
FIG. 1 is a schematic view schematically showing an example of an apparatus used in the method for producing the polylactic acid fine particles.
The manufacturing apparatus 100 of FIG. 1 includes a first reservoir 12 (one liquid storage unit) that stores the polymer compound solution 10 and a second reservoir 22 (the other liquid storage unit) that stores the second solvent 20. And adjusting the pressure in the manufacturing apparatus 100, the permeable membrane 30 having the above-mentioned diameter of the pores, the third reservoir 40 storing the second solvent 20 discharged from the second reservoir 22, and Pressure adjusting means 50 for reducing pressure and pressure reducing means 60 for reducing the pressure inside the manufacturing apparatus 100.
The first reservoir 12 and the second reservoir 22 are partitioned by a permeable membrane 30, and the first reservoir 12, the second reservoir 22, and the permeable membrane 30 constitute a permeation device.
 第1貯留器12に貯留された高分子化合物溶液10及び第2貯留器22から排出管44を通して第3貯留器40の下部(図1に示す液面)まで貯留された第2の溶媒20は、それぞれ透過膜30の一方の面及び他方の面に直接接触した状態で貯留されている。そして透過膜30における細孔の内部において、高分子化合物溶液10と第2の溶媒20とが直接接触している。 The polymer solution 10 stored in the first reservoir 12 and the second solvent 20 stored from the second reservoir 22 through the discharge pipe 44 to the lower portion of the third reservoir 40 (the liquid level shown in FIG. 1) These are stored in direct contact with one surface and the other surface of the permeable membrane 30, respectively. The polymer compound solution 10 and the second solvent 20 are in direct contact inside the pores of the permeable membrane 30.
 減圧手段60が作動すると、圧力調整手段50によって調整された圧力まで製造装置100の内部が減圧され、高分子化合物溶液10が透過膜30を透過する。具体的には、まず第3貯留器40内の空気が排出口46から排出管54に排出されることで、第3貯留器40内が減圧される。一方、第1貯留器12には開口部16が設けられており、開口部16から第1貯留器12の内部に外気が取り込まれることで外気圧と同じになっている。その圧力差によって、第2貯留器22内の第2の溶媒20が排出管44を通じて第3貯留器40内に導入されると共に、高分子化合物溶液10が透過膜30を透過する。そして、透過膜30の細孔における仕切られた空間の中で高分子化合物溶液10に溶解した高分子化合物が第2の溶媒20と接触して結晶化した後に、結晶化した高分子化合物が第2貯留器22に押し出され、結晶化したポリ乳酸の微粒子が形成される。 When the decompression means 60 is operated, the inside of the manufacturing apparatus 100 is decompressed to a pressure adjusted by the pressure adjustment means 50, and the polymer compound solution 10 permeates the permeable membrane 30. Specifically, first, the air in the third reservoir 40 is discharged from the discharge port 46 to the discharge pipe 54, whereby the pressure in the third reservoir 40 is reduced. On the other hand, the first reservoir 12 is provided with an opening 16, and the outside air is taken into the first reservoir 12 through the opening 16 so as to be the same as the atmospheric pressure. Due to the pressure difference, the second solvent 20 in the second reservoir 22 is introduced into the third reservoir 40 through the discharge pipe 44 and the polymer compound solution 10 permeates the permeable membrane 30. Then, after the polymer compound dissolved in the polymer compound solution 10 comes into contact with the second solvent 20 in the partitioned space in the pores of the permeable membrane 30 and crystallizes, the crystallized polymer compound becomes the first. 2 Extruded into the reservoir 22 to form crystallized polylactic acid microparticles.
 なお、製造装置100では、第1貯留器12及び第2貯留器22にそれぞれ温度調整手段18及び28が設けられており、温度調整手段18及び28の内部に液体を流すことで、貯留された高分子化合物10及び第2の液体20温度をそれぞれ調整することができる。
 以上のようにして、図1の製造装置100を用いたポリ乳酸微粒子の製造が行われる。ただし本発明は、上記製造装置100を用いた製造方法に限定されるものではない。
In the manufacturing apparatus 100, the first reservoir 12 and the second reservoir 22 are provided with temperature adjusting means 18 and 28, respectively, and stored by flowing a liquid inside the temperature adjusting means 18 and 28. The temperature of the polymer compound 10 and the second liquid 20 can be adjusted.
As described above, polylactic acid fine particles are produced using the production apparatus 100 of FIG. However, the present invention is not limited to the manufacturing method using the manufacturing apparatus 100.
[ポリ乳酸微粒子]
 本発明のポリ乳酸微粒子は、PLLAとPDLAとのSc晶の成分を含み、ポリ乳酸の全結晶成分に対する前記ステレオコンプレックス結晶の成分の割合が50%以上100%以下であり、かつ、個数平均粒径が0.5nm以上1000nm未満のポリ乳酸微粒子である。
[Polylactic acid fine particles]
The polylactic acid microparticles of the present invention include ScLA components of PLLA and PDLA, the ratio of the stereocomplex crystal component to the total crystal component of polylactic acid is 50% or more and 100% or less, and the number average particle Polylactic acid fine particles having a diameter of 0.5 nm or more and less than 1000 nm.
 本発明のポリ乳酸微粒子は、上記構成であるため、透明性が高い。すなわち、ポリ乳酸微粒子の粒径が小さく、かつ、Sc晶の割合が多いため、例えばポリ乳酸微粒子を用いて製造された成形体(例えばフィルム等)においては、粒子界面における光散乱に起因する光透過性の低下が抑制される。また本発明のポリ乳酸微粒子は、上記構成であるため、結晶核剤として用いることに適している。すなわち、粒径が小さく、かつSc晶の割合が大きな上記本発明のポリ乳酸微粒子を結晶核剤として用いて高分子化合物の結晶化を促進させることで、高分子化合物が均一に結晶化されることにより、強靭で、かつ透明性の高い高分子化合物の成形体が製造できる。 Since the polylactic acid fine particles of the present invention have the above-described configuration, they are highly transparent. That is, since the polylactic acid fine particles have a small particle size and a large proportion of Sc crystals, for example, in a molded body (for example, a film) manufactured using polylactic acid fine particles, light caused by light scattering at the particle interface is used. A decrease in permeability is suppressed. Moreover, since the polylactic acid microparticles | fine-particles of this invention are the said structures, they are suitable for using as a crystal nucleating agent. That is, the polymer compound is uniformly crystallized by promoting the crystallization of the polymer compound by using the above-mentioned polylactic acid fine particles of the present invention having a small particle size and a large percentage of Sc crystal as a crystal nucleating agent. As a result, a tough and highly transparent molded article of a polymer compound can be produced.
 本発明のポリ乳酸微粒子は、ポリ乳酸微粒子の単独重合体であることが好ましい。ここでポリ乳酸単独重合体とは、重合体を構成する構成単位がすべて乳酸(L-乳酸及びD-乳酸)に由来する構成単位であることをいう。すなわち本発明のポリ乳酸微粒子は、PLLAの単独重合体及びPDLAの単独重合体の混合物を含むものであることが好ましく、不可避の不純物以外にPLLAの単独重合体及びPDLAの単独重合体以外のその他の成分を含まないことが好ましい。また、ポリ乳酸微粒子に含まれるPLLAの単独重合体とPDLAの単独重合体との質量比が10:90~90:10の範囲であることが好ましい。 The polylactic acid fine particles of the present invention are preferably a homopolymer of polylactic acid fine particles. Here, the polylactic acid homopolymer means that all the structural units constituting the polymer are structural units derived from lactic acid (L-lactic acid and D-lactic acid). That is, the polylactic acid fine particles of the present invention preferably contain a mixture of a PLLA homopolymer and a PDLA homopolymer, and in addition to unavoidable impurities, other components other than the PLLA homopolymer and the PDLA homopolymer It is preferable not to contain. The mass ratio of the homopolymer of PLLA and the homopolymer of PDLA contained in the polylactic acid fine particles is preferably in the range of 10:90 to 90:10.
 ポリ乳酸微粒子の個数平均粒径は、上記範囲であり、0.5nm以上1000nm未満の範囲が好ましく、1nm以上500nm以下の範囲がより好ましい。上記個数平均粒径は、ポリ乳酸微粒子をSEM(走査型電子顕微鏡)で観察して100個のポリ乳酸微粒子について粒径を測定し、100nm毎の区分(0~100nm、100~200nm、200~300nm、・・・・これ以上も同様)に対応する粒子の数を計測して棒グラフにし、そのうち、最も出現頻度の高い3つの区分について粒径を平均した値である。また前記粒径は、SEMの観察で得られた1個のポリ乳酸微粒子の投影面の形状が円形の場合、その円形の直径を意味する。また前記粒径は、前記投影面の形状が楕円状にひずんでいる場合はその楕円の短軸を意味し、ポリ乳酸微粒子が糸状(繊維状)である場合は繊維の太さが最も太い部分の径(すなわち、投影面における幅が最も広い部分の幅)を意味する。なお、ポリ乳酸微粒子は、上記のように投影面が円形のもの、楕円形のもの、及び繊維状のものに限定されず、これらが組み合わさった形状でもよい。その場合、円形の直径、楕円の短軸、及び繊維の太さのうち最も距離の大きなものを採用して上記「粒径」とする。 The number average particle diameter of the polylactic acid fine particles is in the above range, preferably in the range of 0.5 nm to less than 1000 nm, and more preferably in the range of 1 nm to 500 nm. The number average particle size is determined by observing the polylactic acid fine particles with an SEM (scanning electron microscope), measuring the particle size of 100 polylactic acid fine particles, and classifying every 100 nm (0 to 100 nm, 100 to 200 nm, 200 to 200 nm). This is a value obtained by measuring the number of particles corresponding to 300 nm,... Further, the particle diameter means the diameter of a circle when the shape of the projection surface of one polylactic acid fine particle obtained by SEM observation is circular. The particle diameter means the short axis of the ellipse when the shape of the projection surface is distorted in an ellipse, and the thickest part of the fiber when the polylactic acid fine particles are in the form of fibers (fibrous). (That is, the width of the widest portion on the projection plane). In addition, the polylactic acid fine particles are not limited to those having a circular projection surface, an elliptical shape, and a fiber shape as described above, and may be a combination of these. In that case, the diameter of the circle, the minor axis of the ellipse, and the thickness of the fiber are used to obtain the “particle size” as described above.
 本発明のポリ乳酸微粒子は、Sc晶を含んでいれば限定されないが、全結晶成分におけるSc晶の割合が50~100%であることが好ましい。具体的には、ポリ乳酸の結晶は一般的に、PLLA及びPDLAのSc晶と、PLLA又はPDLAが単独で結晶化したα晶とが存在しうるが、その全結晶成分のうちSc晶が100%である(すなわちα晶を含まない)ことが特に好ましい。上記全結晶成分におけるSc晶の割合が50~100%であることにより、ポリ乳酸微粒子の耐熱性及び耐加水分解性が向上する。そのため本発明のポリ乳酸微粒子は、例えば、耐熱性や耐加水分解性が要求される部材の原料として適しているほか、本発明のポリ乳酸微粒子を結晶核剤として用いる場合、α晶の融点(170℃)以上の高温下における溶融混練などの後処理が可能となるという利点等がある。 The polylactic acid fine particles of the present invention are not limited as long as they contain Sc crystals, but the ratio of Sc crystals in all crystal components is preferably 50 to 100%. Specifically, in general, polylactic acid crystals may include Sc crystals of PLLA and PDLA, and α crystals crystallized by PLLA or PDLA alone, and among all the crystal components, Sc crystals are 100 crystals. % (That is, α-crystals are not included) is particularly preferable. When the ratio of Sc crystals in all the crystal components is 50 to 100%, the heat resistance and hydrolysis resistance of the polylactic acid fine particles are improved. Therefore, the polylactic acid fine particles of the present invention are suitable, for example, as raw materials for members that require heat resistance and hydrolysis resistance, and when the polylactic acid fine particles of the present invention are used as a crystal nucleating agent, the melting point ( There is an advantage that post-treatment such as melt kneading at a high temperature of 170 ° C. or higher becomes possible.
 ここで、上記Sc晶の割合は、試料中でSc晶が占める重量分率(Sc晶分率)とα晶が占める重量分率(α晶分率)の合計値(結晶化度)でSc晶分率を割った値である。なお、α晶分率は、ポリ乳酸微粒子のDSC測定(示差走査熱量測定)を行い、150℃から180℃にかけて現れるα晶に起因する融解ピーク面積(融解熱)を100%α結晶の融解熱(94J/g)で割った%値であり、Sc晶分率は190℃から230℃にかけて現れるSc晶に起因する融解ピーク面積(融解熱)を100%α結晶の融解熱(155J/g)で割った%値である。 Here, the ratio of the Sc crystal is the total value (crystallinity) of the weight fraction (Sc crystal fraction) occupied by the Sc crystal and the weight fraction (α crystal fraction) occupied by the α crystal in the sample. It is a value obtained by dividing the crystal fraction. The α crystal fraction is determined by DSC measurement (differential scanning calorimetry) of polylactic acid fine particles, and the melting peak area (heat of fusion) due to α crystals appearing from 150 ° C. to 180 ° C. is the heat of fusion of 100% α crystal. It is a% value divided by (94 J / g), and the Sc crystal fraction is the melting peak area (heat of fusion) due to the Sc crystal appearing from 190 ° C. to 230 ° C. The heat of fusion of the 100% α crystal (155 J / g) The percentage value divided by.
 また本発明のポリ乳酸微粒子は、全成分に対する結晶成分の割合が10%以上であることが好ましい。すなわちポリ乳酸は一般的に、上記結晶の成分(すなわち、Sc晶の成分及びα晶の成分)のほか、PLLA及びPDLAを含む非晶の成分が存在しうるが、結晶成分及び非晶性分の合計に対し、結晶成分の割合が上記範囲であることが好ましい。結晶成分の割合が上記範囲のポリ乳酸微粒子のように、結晶化度の高いポリ乳酸微粒子は、より結晶核剤として適しており、これを用いて結晶化を行うことにより、さらに強度や透明性の高い成形体の製造が可能となる。また上記結晶成分の割合は、10%以上100%以下がより好ましく、20%以上100%以下がさらに好ましい。 In the polylactic acid fine particles of the present invention, the ratio of the crystal component to the total component is preferably 10% or more. That is, in general, polylactic acid may contain amorphous components including PLLA and PDLA in addition to the above-mentioned crystal components (that is, Sc crystal component and α crystal component). It is preferable that the ratio of the crystal component is in the above range with respect to the total of Polylactic acid fine particles with a high degree of crystallinity, such as polylactic acid fine particles within the above-mentioned range, are more suitable as crystal nucleating agents. By crystallization using this, the strength and transparency can be further increased. It is possible to produce a molded body having a high height. The proportion of the crystal component is more preferably 10% or more and 100% or less, and further preferably 20% or more and 100% or less.
 本発明のポリ乳酸微粒子の製造方法としては、特に限定されないが、例えば従来のように、ポリ乳酸溶液をポリ乳酸溶液に対する貧溶媒に滴下して撹拌する方法では、前記のようにSc晶をより多く含み、かつ、粒径が小さいポリ乳酸微粒子を製造することはできない。
 一方、前述した本発明のポリ乳酸微粒子の製造方法は、前記の通り粒径が小さく、かつSc晶の割合が多いポリ乳酸微粒子を製造することが可能であるため、本発明のポリ乳酸微粒子の製造に適した製造方法である。また前記の通り、前述した本発明のポリ乳酸微粒子の製造方法を用い、高分子化合物としてPLLAの単独重合体とPDLAの単独重合体との混合物を用いることで、前記Sc晶の割合が100%のポリ乳酸微粒子が形成され、また結晶化度の高いポリ乳酸微粒子を製造することも可能であるため、本発明のポリ乳酸微粒子の製造に適している。そのため、本発明のポリ乳酸微粒子は、上記本発明の製造方法により製造されたものであることが好ましい。
The method for producing the polylactic acid fine particles of the present invention is not particularly limited. For example, in the conventional method in which the polylactic acid solution is dropped into a poor solvent for the polylactic acid solution and stirred, the Sc crystal is more concentrated as described above. Polylactic acid fine particles containing a large amount and having a small particle diameter cannot be produced.
On the other hand, since the polylactic acid microparticle production method of the present invention described above can produce polylactic acid microparticles having a small particle size and a large proportion of Sc crystals as described above, This is a manufacturing method suitable for manufacturing. In addition, as described above, by using the above-described method for producing polylactic acid fine particles of the present invention and using a mixture of a homopolymer of PLLA and a homopolymer of PDLA as a polymer compound, the ratio of the Sc crystal is 100%. It is possible to produce polylactic acid fine particles having a high degree of crystallinity and thus suitable for producing the polylactic acid fine particles of the present invention. Therefore, it is preferable that the polylactic acid microparticles of the present invention are those produced by the production method of the present invention.
[結晶核剤]
 本発明の結晶核剤は、上記本発明のポリ乳酸微粒子からなるものであり、高分子化合物の結晶を促進する働きを有する。前記の通り、上記本発明のポリ乳酸微粒子は結晶核剤に適しており、結晶核剤として用いることで、強靭で透明性の高い結晶が形成される。
[Crystal nucleating agent]
The crystal nucleating agent of the present invention is composed of the above-mentioned polylactic acid fine particles of the present invention and has a function of promoting the crystallization of the polymer compound. As described above, the polylactic acid fine particles of the present invention are suitable as a crystal nucleating agent, and tough and highly transparent crystals are formed when used as a crystal nucleating agent.
 本発明の結晶核剤を用いて結晶化を促進させる上記高分子化合物は、特に限定されるものではないが、例えば、ポリ-L-乳酸、ポリ-D-乳酸、ポリ-L-乳酸及びポリ-D-乳酸の共重合体、ポリ-L-乳酸またはポリ-D-乳酸の片方あるいは両方を構成成分に含む共重合体や誘導体、およびこれらの混合物等が挙げられる。また、ポリ-3-ヒドロキシブチレート、ポリε-カプロラクタム、ポリブチレンサクシネート、ポリエチレンサクシネート、あるいは他の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、あるいは他の芳香族ポリエステル、およびこれらを片方あるいは両方を構成成分に含む共重合体や誘導体、およびこれらの混合物等が挙げられる。また、その他、ポリビニルアルコール、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンアジペート、ポリ-p-ビニルフェノール、ポリビニルアセテート、ポリエチレンオキサイド、ポリアクリロニトリル、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテンあるいは他のポリオレフィン、ポリジメチルシロキサン、ポリトリメチル-p-シルフェニレンシロキサンあるいは他のシリコーン類、ポリフッビニリデン等のフッ素系高分子、ポリスチレン、ポリブチレンアジぺートテレフタレートおよびこれらを片方あるいは両方を構成成分に含む共重合体や誘導体、およびこれらの混合物等が挙げられる。 The polymer compound that promotes crystallization using the crystal nucleating agent of the present invention is not particularly limited, and examples thereof include poly-L-lactic acid, poly-D-lactic acid, poly-L-lactic acid, and poly Examples thereof include -D-lactic acid copolymers, copolymers and derivatives containing one or both of poly-L-lactic acid and poly-D-lactic acid as constituents, and mixtures thereof. Also, poly-3-hydroxybutyrate, polyε-caprolactam, polybutylene succinate, polyethylene succinate, or other aliphatic polyester, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, or other Examples thereof include aromatic polyesters, copolymers and derivatives containing one or both of these as constituents, and mixtures thereof. In addition, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyethylene adipate, poly-p-vinylphenol, polyvinyl acetate, polyethylene oxide, polyacrylonitrile, polyethylene glycol, polypropylene glycol, polyethylene, polypropylene, poly-1-butene, poly- 4-methyl-1-pentene or other polyolefins, polydimethylsiloxane, polytrimethyl-p-sylphenylenesiloxane or other silicones, fluorine-based polymers such as polyvinylidene, polystyrene, polybutylene adipate terephthalate and the like Examples thereof include copolymers and derivatives containing one or both as constituents, and mixtures thereof.
 本発明の結晶核剤を用いて高分子化合物の結晶化を促進させる方法としては、例えば、本発明の結晶核剤と目的の高分子化合物との混合物を、前記高分子化合物の融点以上前記結晶核剤の融点未満の温度に加熱しながら、混錬する方法や、前記高分子化合物を本発明の方法あるいは他の方法で微粒子あるいは粉末にしたものと該結晶核剤をこれら両方の融点以下でドライ・ブレンド(微粒子あるいは粉末状態で混ぜ合わせる)する方法等が挙げられる。あるいは、本発明の結晶核剤の分散液と前記高分子化合物を本発明の方法あるいは他の方法で分散液や微粒子あるいは粉末にしたものを混合する方法が挙げられる。この際、必要に応じて、酸化防止剤、安定剤、耐光剤、静電気除去剤、滑剤、難燃剤、相容化剤、分散剤、界面活性剤などの添加剤を加えてもよい。
 また、上記結晶核剤を目的の高分子化合物と混合後、乾燥工程、キャスト工程、繊維化工程、フィルム化工程や一軸延伸工程、二軸延伸工程、熱処理工程などによって成形体を形成させてもよい。この際、必要に応じて、酸化防止剤、安定剤、耐光剤、静電気除去剤、滑剤、難燃剤、相容化剤、分散剤、界面活性剤などの添加剤を加えてもよく、また、成形物に表面処理等の後処理を施してもよい。
As a method for promoting crystallization of a polymer compound using the crystal nucleating agent of the present invention, for example, a mixture of the crystal nucleating agent of the present invention and a target polymer compound may be used at a temperature equal to or higher than the melting point of the polymer compound. A method of kneading while heating to a temperature lower than the melting point of the nucleating agent, a method in which the polymer compound is finely divided or powdered by the method of the present invention or other methods, and the crystal nucleating agent at a melting point of both of these. Examples include dry blending (mixing in a fine particle or powder state). Alternatively, a method of mixing the dispersion of the crystal nucleating agent of the present invention and the polymer compound into a dispersion, fine particles or powder by the method of the present invention or other methods can be mentioned. At this time, additives such as an antioxidant, a stabilizer, a light-resistant agent, a static eliminating agent, a lubricant, a flame retardant, a compatibilizer, a dispersant, and a surfactant may be added as necessary.
In addition, after mixing the crystal nucleating agent with the target polymer compound, a molded body may be formed by a drying process, a casting process, a fiberizing process, a film forming process, a uniaxial stretching process, a biaxial stretching process, a heat treatment process, or the like. Good. At this time, if necessary, additives such as antioxidants, stabilizers, light proofing agents, static eliminators, lubricants, flame retardants, compatibilizers, dispersants, surfactants, etc. may be added, The molded product may be subjected to post-treatment such as surface treatment.
[成形体]
 本発明の成形体は、前記本発明のポリ乳酸微粒子を含有する。前記本発明のポリ乳酸微粒子は単独で成形樹脂として用いてもよいし、前記ポリ乳酸微粒子からなる結晶核剤を用いて結晶化された高分子化合物を成形樹脂として用いてもよいし、前記本発明のポリ乳酸微粒子と他の高分子化合物とを混合したものを成形樹脂として用いてもよい。また、本発明の成形体は、前記本発明のポリ乳酸微粒子及び他の高分子化合物の他に、添加剤等のその他の成分を含むものであってもよい。
 上記他の高分子化合物は、特に限定されず、例えば、熱可塑性樹脂、熱硬化性樹脂、軟質熱可塑性樹脂などが挙げられる。
[Molded body]
The molded product of the present invention contains the polylactic acid fine particles of the present invention. The polylactic acid fine particles of the present invention may be used alone as a molding resin, or a polymer compound crystallized using a crystal nucleating agent comprising the polylactic acid fine particles may be used as the molding resin. A mixture of the polylactic acid fine particles of the invention and another polymer compound may be used as the molding resin. Moreover, the molded object of this invention may contain other components, such as an additive other than the polylactic acid microparticles | fine-particles of the said this invention, and another high molecular compound.
The other polymer compound is not particularly limited, and examples thereof include a thermoplastic resin, a thermosetting resin, and a soft thermoplastic resin.
 上記添加剤としては、例えば、補強剤としてのフィラー等が挙げられ、無機フィラー、有機フィラーのいずれも用いることができる。
 無機フィラーとしては、ガラス繊維、グラファイト繊維、炭素繊維、カーボンナノチューブ、金属繊維、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、マグネシウム系ウィスカー、珪素系ウィスカー、ワラステナイト、セピオライト、ゾノライト、エレスタダイト、ゼオライト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化珪素繊維、硼素繊維、ガラスフレーク、非膨潤性雲母、グラファイト、金属箔、タルク、クレイ、マイカ、セリサイト、ベントナイト、カオリン、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、水酸化アルミニウム、酸化マグネシウム、ハイドロタルサイト、水酸化マグネシウム、石膏およびドーソナイト等が挙げられる。
As said additive, the filler etc. as a reinforcing agent are mentioned, for example, Both an inorganic filler and an organic filler can be used.
Inorganic fillers include glass fiber, graphite fiber, carbon fiber, carbon nanotube, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, zonolite, elestadite, zeolite, gypsum Fiber, silica fiber, silica-alumina fiber, zirconia fiber, silicon nitride fiber, boron fiber, glass flake, non-swellable mica, graphite, metal foil, talc, clay, mica, sericite, bentonite, kaolin, magnesium carbonate, sulfuric acid Examples include barium, magnesium sulfate, aluminum hydroxide, magnesium oxide, hydrotalcite, magnesium hydroxide, gypsum, and dawsonite.
 また、有機フィラーとしては、天然繊維、パラ型アラミド繊維、ポリアゾール繊維、ポリアリレート、ポリオキシ安息香酸ウィスカー、ポリオキシナフトイルウィスカーおよびセルロースウィスカー等が挙げられる。
 これらのフィラーは、繊維状、板状または針状のものを用いることができる。これらのフィラーの中で、繊維状の無機フィラーが好ましく、特にガラス繊維が好ましい。また、フィラーのアスペクト比は5以上であることが好ましく、10以上であることがより好ましい。特に好ましいのは100以上である。アスペクト比とは、繊維状フィラーの場合は、繊維長を繊維直径で除したもので、板状の場合は、長周期方向の長さを厚さで除したものを指す。
Examples of the organic filler include natural fiber, para-type aramid fiber, polyazole fiber, polyarylate, polyoxybenzoic acid whisker, polyoxynaphthoyl whisker, and cellulose whisker.
These fillers can be used in the form of fibers, plates or needles. Among these fillers, fibrous inorganic fillers are preferable, and glass fibers are particularly preferable. The aspect ratio of the filler is preferably 5 or more, and more preferably 10 or more. Particularly preferred is 100 or more. In the case of a fibrous filler, the aspect ratio refers to the fiber length divided by the fiber diameter, and in the case of a plate shape, the aspect ratio refers to the length in the long period direction divided by the thickness.
 上記フィラーの弾性率は、50GPa以上であることが好ましい。
 フィラーとして繊維状のものを用いる場合には、単繊維としての強度が200MPa以上のものが好ましく、300MPa以上であることがより好ましい。この範囲であれば得られた成形体が十分な力学物性を持ち、混合するフィラーの量が少なくても十分な補強効果をえることができるため、フィラーの添加量を少なくすることで成型体表面の外観を損ねないようにすることができる。
The elastic modulus of the filler is preferably 50 GPa or more.
When a fibrous material is used as the filler, the strength as a single fiber is preferably 200 MPa or more, and more preferably 300 MPa or more. If it is within this range, the obtained molded body has sufficient mechanical properties, and even if the amount of filler to be mixed is small, a sufficient reinforcing effect can be obtained, so the surface of the molded body can be reduced by reducing the amount of filler added. It can be made not to impair the appearance.
 繊維状のフィラーとしては、例えば、繊維の直径が0.1μmから1mmの範囲のものが挙げられ、好ましくは1μmから500μmの範囲である。その繊維と直径の比からなるアスペクト比(長さ÷直径)が50以上であることが好ましい。この範囲であれば、樹脂と繊維との混合を良好に行うことができ、さらに複合化によって良好な物性の成型品を得ることができる。より好ましいアスペクト比は100~500であり、さらに好ましくは100~300である。 Examples of the fibrous filler include those having a fiber diameter in the range of 0.1 μm to 1 mm, and preferably in the range of 1 μm to 500 μm. It is preferable that the aspect ratio (length / diameter) comprising the ratio of the fiber and the diameter is 50 or more. If it is this range, mixing of resin and a fiber can be performed favorably, and also a molded article with a favorable physical property can be obtained by compositing. A more preferred aspect ratio is 100 to 500, and even more preferably 100 to 300.
 また、成形体には、前記フィラー以外にも、公知の添加剤、例えば、可塑剤、酸化防止剤、光安定剤、紫外線吸収剤、熱安定剤、滑剤、離形剤、帯電防止剤、難燃剤、発泡剤、充填剤、抗菌・抗カビ剤、核形成剤、染料、顔料を含む着色剤などの1種あるいは2種以上を目的に応じて含有することができる。
 さらに、成形体をイオン伝導体として用いる場合には、ポリ乳酸とともに、イオン伝導性を有する物質、例えば、リチウム等の金属あるいはその酸化物、塩化物、フッ物、錯体等の金属化合物を含んでもよい。
In addition to the filler, the molded body may contain known additives such as plasticizers, antioxidants, light stabilizers, ultraviolet absorbers, heat stabilizers, lubricants, mold release agents, antistatic agents, One type or two or more types of a colorant including a flame retardant, a foaming agent, a filler, an antibacterial / antifungal agent, a nucleating agent, a dye and a pigment can be contained depending on the purpose.
Further, when the molded body is used as an ion conductor, it may contain a material having ion conductivity, for example, a metal such as lithium or an oxide thereof, a chloride, a fluoride or a complex, together with polylactic acid. Good.
 得られた成形体は、さらに熱処理工程を行ってもよい。熱処理は、DSC測定用の試料パンに入れ、DSC炉内で行ってもよく、また、一定温度に設定可能であれば、オーブン、プレス成形機、空気恒温槽、オイルバス、などを用いて行ってもよい。熱処理温度は、100℃以上300℃以下で行うことができ、より好ましくは150℃以上250℃以下である。熱処理時間は、1分間~72時間とすることが好ましく、1時間~24時間とすることがより好ましい。 The obtained molded body may be further subjected to a heat treatment step. The heat treatment may be performed in a DSC measurement sample pan and in a DSC furnace, and if it can be set to a constant temperature, it is performed using an oven, press molding machine, air thermostat, oil bath, etc. May be. The heat treatment temperature can be 100 ° C. or higher and 300 ° C. or lower, and more preferably 150 ° C. or higher and 250 ° C. or lower. The heat treatment time is preferably 1 minute to 72 hours, more preferably 1 hour to 24 hours.
 成形方法の態様としては、例えば、プレス成形品、射出成形品、押出成形品、真空圧空成形品、ブロー成形品等の成形体が挙げられる。また成形体の形態としては、例えば、フィルム、シート、板状体、構造体、不織布、繊維、布、他の材料との複合体等が挙げられる。また成形体の用途としては、例えば、農業用資材、漁業用資材、土木・建築用資材、文具、医療用品、各種容器、その他の成形体等が挙げられる。 Examples of the molding method include molded products such as press molded products, injection molded products, extrusion molded products, vacuum / pressure molded products, and blow molded products. Moreover, as a form of a molded object, a composite body with a film, a sheet | seat, a plate-shaped object, a structure, a nonwoven fabric, a fiber, cloth, another material, etc. are mentioned, for example. Examples of uses of the molded body include agricultural materials, fishing materials, civil engineering / building materials, stationery, medical supplies, various containers, and other molded bodies.
 また、得られたポリ乳酸成形体と、他の部材とを組み合わせて複合化し、複合体としてもよい。
 複合体としては、例えば、本発明の成形体に対して、フィルム状、シート状等の膜状の部材を積層した積層体とすることが挙げられる。本発明の成形体と、膜状の他の部材との積層方式としては、両者を加熱、加圧して接着するラミネート方式や、本発明の成形体と、膜状の他の部材とを貼り合わせる方式等が挙げられる。
 本発明の成形体と、膜状の他の部材との貼り合わせにおいては、本発明の成形体と、膜状の他の部材との少なくとも一方に、接着剤を付与してもよい。
Moreover, the obtained polylactic acid molded body and another member may be combined to form a composite.
Examples of the composite include a laminate in which film-shaped members such as a film and a sheet are stacked on the molded body of the present invention. As a lamination method of the molded body of the present invention and another member in the form of a film, a laminate method in which both are bonded by heating and pressing, or the molded body of the present invention and another member in the form of a film are bonded together. The method etc. are mentioned.
In the bonding of the molded body of the present invention and another film-shaped member, an adhesive may be applied to at least one of the molded body of the present invention and the other film-shaped member.
 本発明の成形体との複合化に用いる他の部材の形状は、膜状に制限されず、ペレット状、ブロック状等の塊状であってもよい。
 本発明の成形体の形状も特に制限されず、フィルム状、シート状等の膜状であってもよいし、ペレット状、ブロック状等の塊状であってもよい。
 また、本発明の成形体の形状と、他の部材の形状とは、同じであっても、異なっていてもよい。
The shape of the other member used for compounding with the molded article of the present invention is not limited to a film shape, and may be a lump shape such as a pellet shape or a block shape.
The shape of the molded body of the present invention is not particularly limited, and may be a film shape such as a film shape or a sheet shape, or may be a lump shape such as a pellet shape or a block shape.
In addition, the shape of the molded body of the present invention and the shape of other members may be the same or different.
 成形は常法により行うことができるが、特に成形方法に制限はない。成形方法の一例として、以下に前記本発明のポリ乳酸微粒子からなるフィルムの製造方法の具体例について説明するが、これに限定される物ではない。 Molding can be performed by a conventional method, but the molding method is not particularly limited. As an example of the forming method, a specific example of the method for producing a film comprising the polylactic acid fine particles of the present invention will be described below, but the method is not limited thereto.
<ポリ乳酸微粒子からなるフィルムの製造方法の一例>
 具体的には、例えば、まずポリ乳酸微粒子のメタノール分散液を室温(25℃)にて、
テフロン(登録商標)シャーレ上にキャストし、乾燥させて溶媒を除去する。さらに、24時間減圧乾燥を行って、ポリ乳酸微粒子の集合体を得る(減圧条件:1Pa)。
 次に、図2に示すように、直径110mφ×厚さ2mmの円盤状ステンレス板1の上に厚さ125μmの離型用ポリイミド膜2を置き、次に直径110mmφ×厚さ0.1mmの円盤状ステンレス板に30mm×30mmの矩形窓をくり抜いたもの(矩形窓ありステンレス薄板)3を置き、その矩形窓内に前記ポリ乳酸微粒子の集合体を0.2g置く。その上に、厚さ125μmの離型用ポリイミド膜5を置き、さらにその上に直径110mmφ×厚さ2mmの円盤状ステンレス板6を置く。
 これらの積層体全体を室温(25℃)にて真空チャンバー内に設置されたプレス機(株式会社ボールドウィン製)中の上下板の間に置き、1.33×10-1Paまでロータリーポンプで減圧後、上下のプレス板の間隔を応力がかからないようになるべく近付け、200℃に加熱し、200℃のまま5分間保持し、その後、4.5MPa (シリンダー圧力60Pa)の圧力でプレスしたままヒーター電源を切って減圧状態で室温まで徐冷する。その後、真空チャンバーを開けて成形されたフィルム4を取り出す。
<An example of a method for producing a film comprising polylactic acid fine particles>
Specifically, for example, first, a methanol dispersion of polylactic acid fine particles at room temperature (25 ° C.)
Cast on a Teflon petri dish and dry to remove the solvent. Furthermore, it is dried under reduced pressure for 24 hours to obtain an aggregate of polylactic acid fine particles (reduced pressure condition: 1 Pa).
Next, as shown in FIG. 2, a mold release polyimide film 2 with a thickness of 125 μm is placed on a disk-shaped stainless steel plate 1 with a diameter of 110 mφ × 2 mm, and then a disk with a diameter of 110 mmφ × 0.1 mm in thickness. A 30 mm × 30 mm rectangular window 3 (a stainless steel thin plate with a rectangular window) 3 is placed on a stainless steel plate, and 0.2 g of the polylactic acid fine particle aggregate is placed in the rectangular window. A polyimide film 5 for release having a thickness of 125 μm is placed thereon, and a disk-shaped stainless steel plate 6 having a diameter of 110 mmφ × 2 mm is further placed thereon.
These entire laminates were placed between upper and lower plates in a press machine (manufactured by Baldwin Co., Ltd.) installed in a vacuum chamber at room temperature (25 ° C.), and reduced in pressure with a rotary pump to 1.33 × 10 −1 Pa. Close the space between the upper and lower press plates as much as possible so that no stress is applied, heat to 200 ° C, hold at 200 ° C for 5 minutes, and then turn off the heater power while pressing at a pressure of 4.5 MPa (cylinder pressure 60 Pa) And slowly cool to room temperature under reduced pressure. Thereafter, the vacuum chamber is opened and the formed film 4 is taken out.
 成形体は、例えば、前記ポリ乳酸微粒子の集合体を直接、ロール圧延(延伸)してもよいし、上記方法によって得られた成形体に、一軸延伸や同時二軸延伸、逐次二軸延伸、ロール圧延(延伸)、押し出し延伸等の分子配向を付与する延伸加工を行ってもよい。 The molded body may be, for example, directly rolled (stretched) the aggregate of the polylactic acid fine particles, or the molded body obtained by the above method is uniaxially stretched or simultaneously biaxially stretched, sequentially biaxially stretched, You may perform the extending | stretching process which provides molecular orientation, such as roll rolling (stretching) and extrusion stretching.
 成形体の用途としては、上記用途とともに、例えば、強度や耐熱性を必要とする構造部材、建築材料、建具材料、建設仮設材、各種自動車部品、内装材、シート、マットなども挙げられる。本発明の成形体は広範な用途に好適に使用され、その応用範囲は広い。
 以下に、本発明の成形体において、特に好ましい態様について説明する。
Examples of uses of the molded body include structural members, building materials, joinery materials, construction temporary materials, various automobile parts, interior materials, sheets, mats, and the like that require strength and heat resistance, in addition to the above uses. The molded body of the present invention is suitably used for a wide range of applications, and its application range is wide.
Hereinafter, particularly preferred embodiments of the molded body of the present invention will be described.
<合成繊維>
 本発明の成形体は、一般的な合成繊維材料と同様に、溶融紡糸などにより容易に単繊維状に成形され、汎用の装置によりそのまま繊維状に加工することができる。さらに、紡糸金型を選択することで異形断面繊維などを容易に形成することもできる。
 また、これら繊維に対して、一軸延伸、ロール圧延(延伸)や押し出し延伸等の分子配向を付与する延伸加工を行ってもよい。
 本発明の合成繊維の直径は、0.1μmから1mmの範囲で任意に選択され、好ましくは1μmから500μmの範囲である。
 また、上記合成繊維を用いて、新たな成形体を製造してもよい。この態様としては、本発明の合成繊維により得られる織布、不織布を用いた成形体などが挙げられる。
<Synthetic fiber>
Similar to general synthetic fiber materials, the molded body of the present invention is easily formed into a single fiber by melt spinning or the like, and can be directly processed into a fiber by a general-purpose apparatus. Furthermore, a modified cross-section fiber can be easily formed by selecting a spinning die.
Moreover, you may perform the extending | stretching process which provides molecular orientation, such as uniaxial stretching, roll rolling (stretching), and extrusion stretching, with respect to these fibers.
The diameter of the synthetic fiber of the present invention is arbitrarily selected in the range of 0.1 μm to 1 mm, preferably in the range of 1 μm to 500 μm.
Moreover, you may manufacture a new molded object using the said synthetic fiber. Examples of this embodiment include a woven fabric obtained from the synthetic fiber of the present invention, a molded body using a nonwoven fabric, and the like.
<多孔体>
 本発明の成形体は、ポリ乳酸を含む高分子混合物、成形体あるいは合成繊維からポリ乳酸以外の成分を分解除去することによって得られる多孔体であってもよい。
 多孔体は、例えば、前記本発明の成形体を調製・製造し、その後、該成形体に含まれるポリ乳酸以外の成分を、酸エッチング処理や溶媒中で超音波処理する等の手段によってその少なくとも一部を除去することで得られる。
 ポリ乳酸以外の成分が除去された部分が空隙となり、内部に多数の微細な空隙を有するポリ乳酸の多孔体が形成される。他の成分の除去手段としては、前記酸エッチング処理、超音波処理のいずれでもよく、これらを組み合わせて行ってもよい。複数の手段を組み合わせる場合、その順番は任意である。また、これら複数の処理を同時に行ってもよい。
 また、得られた多孔体に対し、さらに、一軸延伸や同時二軸延伸、逐次二軸延伸、ロール圧延(延伸)、押し出し延伸等の分子配向を付与する延伸加工を行ってもよい。これらの延伸加工は前記のポリ乳酸以外の成分を分解除去する前に行ってもよい。
<Porous body>
The molded body of the present invention may be a polymer mixture containing polylactic acid, a molded body, or a porous body obtained by decomposing and removing components other than polylactic acid from synthetic fibers.
For example, the porous body is prepared / manufactured by the molded body of the present invention, and then at least its components other than polylactic acid contained in the molded body are subjected to acid etching treatment or ultrasonic treatment in a solvent. It is obtained by removing a part.
A portion where components other than polylactic acid are removed becomes voids, and a porous body of polylactic acid having a large number of fine voids inside is formed. As other means for removing the component, either the acid etching treatment or the ultrasonic treatment may be used, or a combination thereof may be performed. When combining a plurality of means, the order is arbitrary. Moreover, you may perform these several processes simultaneously.
Moreover, you may perform the extending | stretching process which provides molecular orientation, such as uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, roll rolling (stretching), and extrusion stretching, with respect to the obtained porous body. These stretching processes may be performed before decomposing and removing components other than the polylactic acid.
[表面改質剤]
 本発明の表面改質剤は、本発明のポリ乳酸微粒子を含んで構成される。
 
 本発明のポリ乳酸微粒子を含む本発明の表面改質剤を用いて、各種基材の表面の全部又は一部を覆う層(「表面改質層」ともいう)を形成することにより、表面改質層は保護層として機能し、基材表面を、耐磨耗性や耐傷付き性に優れた表面に改質することができる。
 さらに、本発明のポリ乳酸微粒子はSc晶の割合が多い。従って、基材表面には、ポリ乳酸のSc晶が多く付着している。ポリ乳酸のSc晶は、通常のα晶および非晶に比べて、耐加水分解性に優れることが知られている〔H. Tsuji, Polymer, Volume 41, pp.3621 (2000)〕。従って、表面改質層は、耐磨耗性および耐傷付き性に加え、耐加水分解性に優れた保護層として機能する。換言すれば、本発明の表面改質剤を用いることで、基材表面を、耐加水分解性に優れた表面に改質することができる。
 本発明のポリ乳酸微粒子は、高率でSc晶を含むため、このような表面改質剤として好適に利用することができる。
[Surface modifier]
The surface modifier of the present invention comprises the polylactic acid fine particles of the present invention.

By using the surface modifier of the present invention containing the polylactic acid fine particles of the present invention to form a layer (also referred to as “surface modified layer”) that covers all or part of the surface of various substrates, surface modification is performed. The quality layer functions as a protective layer, and the surface of the base material can be modified to a surface excellent in wear resistance and scratch resistance.
Furthermore, the polylactic acid fine particles of the present invention have a large proportion of Sc crystals. Therefore, many Sc crystals of polylactic acid are attached to the substrate surface. It is known that the Sc crystal of polylactic acid is superior in hydrolysis resistance compared to normal α crystal and amorphous [H. Tsuji, Polymer, Volume 41, pp.3621 (2000)]. Therefore, the surface modified layer functions as a protective layer excellent in hydrolysis resistance in addition to abrasion resistance and scratch resistance. In other words, by using the surface modifier of the present invention, the substrate surface can be modified to a surface excellent in hydrolysis resistance.
Since the polylactic acid fine particles of the present invention contain Sc crystals at a high rate, they can be suitably used as such a surface modifier.
 また、本発明のポリ乳酸微粒子は、粒径が小さく、1000nm未満のナノオーダーである。従って、Sc晶を含むが、粒径が1μm以上であったマイクロオーダーのポリ乳酸粒子で形成される従来の表面改質層よりも、薄い層厚の表面改質層を、基材表面に形成することができる。基材表面に形成する表面改質層を、より薄くすることで、基材表面からはがれ難い層とすることができる。 Further, the polylactic acid fine particles of the present invention have a small particle size and are nano-order less than 1000 nm. Therefore, a surface-modified layer having a thinner layer thickness than the conventional surface-modified layer formed of micro-order polylactic acid particles containing Sc crystals but having a particle size of 1 μm or more is formed on the substrate surface. can do. By making the surface modification layer formed on the substrate surface thinner, it is possible to make the layer difficult to peel off from the substrate surface.
 特に、表面改質剤の適用対象である基材が、ポリ乳酸を含むフィルム、シート等の薄膜部材であると、表面改質剤よりもポリ乳酸との親和性に優れるため、これら基材とより強固に接着した保護層を形成することができる。
 現在、ポリ乳酸フィルムやシートのコート剤には、ポリエチレンテレフタレートの表面改質に用いられるシリコーン塗布剤が用いられているが、基材ポリ乳酸との親和性が乏しいために長時間使用すると脱離してしまうという問題点を有している。この点で、本発明のポリ乳酸微粒子は、はがれ難い表面改質剤としてより好適に利用できる。
 また、ポリ乳酸Sc晶は、通常のα晶および非晶に比べて高融点かつ機械強度に優れるため、本発明の表面改質剤を用いて形成される層は、耐熱性および耐傷付き性に更に優れた表面保護層となる。
In particular, if the base material to which the surface modifier is applied is a thin film member such as a film or sheet containing polylactic acid, it has better affinity with polylactic acid than the surface modifier. A protective layer adhered more firmly can be formed.
Currently, silicone coatings used to modify the surface of polyethylene terephthalate are used as coating agents for polylactic acid films and sheets. It has the problem that it ends up. In this respect, the polylactic acid fine particles of the present invention can be more suitably used as a surface modifier that is difficult to peel off.
In addition, since the polylactic acid Sc crystal has a higher melting point and better mechanical strength than ordinary α crystal and amorphous, the layer formed using the surface modifier of the present invention has heat resistance and scratch resistance. Furthermore, it becomes an excellent surface protective layer.
 このように、本発明のポリ乳酸微粒子を含んで構成される表面改質剤により、基材表面にSc晶を含む層を形成することができれば、ポリ乳酸成形体全部をSc晶とするよりもはるかに少ない量で、耐加水分解性、耐熱性、耐傷付き性等のSc晶特有の優れた性能を基材に付与することが可能となり、製造コストの面からも、工業的に有用である。 Thus, if a layer containing Sc crystals can be formed on the surface of the substrate with the surface modifier comprising the polylactic acid fine particles of the present invention, the entire polylactic acid molded body is made to be Sc crystals. It is possible to impart excellent performance unique to Sc crystal such as hydrolysis resistance, heat resistance, scratch resistance, etc. to the base material in a much smaller amount, and it is industrially useful from the viewpoint of manufacturing cost. .
 本発明の表面改質剤は、本発明のポリ乳酸微粒子を含む構成であれば特に制限されず、
本発明のポリ乳酸微粒子のみで構成される微粒子集合体であってもよいし、さらに本発明のポリ乳酸微粒子を分散する分散媒体を含んで構成されるポリ乳酸微粒子分散組成物であってもよい。
 本発明のポリ乳酸微粒子を分散する分散媒体としては、液体であっても、ゲルであっても、エアロゾルであってもよい。また、分散媒体が液体またはゲルである場合、液体およびゲルを構成する液体としては、前記第1の溶媒、前記第2の溶媒等が挙げられる。既述のように、前記第1の溶媒は、L-乳酸単位及びD-乳酸単位を含む高分子化合物に対する良溶媒である。前記第2の溶媒は、L-乳酸単位及びD-乳酸単位を含む高分子化合物に対する貧溶媒である。これらの溶媒は、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
 中でも、本発明のポリ乳酸微粒子の機能を保ち、ポリ乳酸微粒子の分散性を向上する観点からは、前記第2の溶媒を用いることが好ましい。
The surface modifier of the present invention is not particularly limited as long as it comprises the polylactic acid fine particles of the present invention,
It may be a fine particle aggregate composed only of the polylactic acid fine particles of the present invention, or may be a polylactic acid fine particle dispersion composition comprising a dispersion medium in which the polylactic acid fine particles of the present invention are further dispersed. .
The dispersion medium for dispersing the polylactic acid fine particles of the present invention may be a liquid, a gel, or an aerosol. When the dispersion medium is a liquid or a gel, examples of the liquid and the liquid constituting the gel include the first solvent and the second solvent. As described above, the first solvent is a good solvent for a polymer compound containing an L-lactic acid unit and a D-lactic acid unit. The second solvent is a poor solvent for a polymer compound containing an L-lactic acid unit and a D-lactic acid unit. These solvents may be used alone or in combination of two or more.
Among these, from the viewpoint of maintaining the function of the polylactic acid fine particles of the present invention and improving the dispersibility of the polylactic acid fine particles, it is preferable to use the second solvent.
 また、本発明の表面改質剤は、ポリ乳酸微粒子の分散性を向上するために、界面活性剤を含んでいてもよいし、ポリ乳酸微粒子が基材表面に付着し易いように、接着剤や粘着剤、溶媒等を含んでいてもよい。さらには、紫外線吸収剤、酸化防止剤等の各種添加剤を含んでいてもよい。 In addition, the surface modifier of the present invention may contain a surfactant in order to improve the dispersibility of the polylactic acid fine particles, and the adhesive may be used so that the polylactic acid fine particles easily adhere to the substrate surface. Or an adhesive, a solvent, and the like. Further, it may contain various additives such as an ultraviolet absorber and an antioxidant.
 本発明の表面改質剤の使用方法は、特に制限されず、例えば、基材表面に本発明のポリ乳酸微粒子を直接撒く方法でもよいし、本発明のポリ乳酸微粒子を、分散媒に分散して、分散液を基材表面に塗付(コート)する方法でもよい。分散液を基材表面に塗付(コート)する方法は、スピンコート法、ワイヤーバーコート法、ブレードコート法、浸漬塗布法、スプレー塗布等が挙げられる。 The method of using the surface modifier of the present invention is not particularly limited, and for example, a method of directly spreading the polylactic acid fine particles of the present invention on the surface of a substrate may be used, or the polylactic acid fine particles of the present invention may be dispersed in a dispersion medium. Alternatively, the dispersion may be applied (coated) to the substrate surface. Examples of the method of applying (coating) the dispersion onto the substrate surface include spin coating, wire bar coating, blade coating, dip coating, and spray coating.
 以上のように、本発明の表面改質剤の形態は、微粒子集合体、エアロゾル等の散布剤、微粒子分散液ないし微粒子分散ゲル等の表面コート剤であってもよい。 As described above, the form of the surface modifier of the present invention may be a fine particle aggregate, a spraying agent such as an aerosol, or a surface coating agent such as a fine particle dispersion or a fine particle dispersion gel.
 本発明の表面改質剤を付着する基材としては、特に限定されるものではないが、次の化合物を用いて構成される基材が挙げられる。
 例えば、ポリ-L-乳酸、ポリ-D-乳酸、ポリ-L-乳酸及びポリ-D-乳酸の共重合体、ポリ-L-乳酸およびポリ-D-乳酸の少なくとも一方を構成成分に含む共重合体またはその誘導体、並びに、これらの混合物等のポリ乳酸由来の化合物が挙げられる。
 以上のポリ乳酸由来の化合物のほか、ポリ-3-ヒドロキシブチレート、ポリε-カプロラクタム、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等の脂肪族ポリエステル、芳香族ポリエステル、ポリビニルアルコール、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンアジペート、ポリ-p-ビニルフェノール、ポリビニルアセテート、ポリエチレンオキサイド、ポリアクリロニトリル、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン等のポリオレフィン、ポリジメチルシロキサン、ポリトリメチル-p-シルフェニレンシロキサン等のシリコーン類、ポリフッビニリデン等のフッ素系高分子、ポリスチレン、ポリブチレンアジペートテレフタレート等を用いてもよい。
 なお、上記化合物を共重合した共重合体やその誘導体、およびこれらの混合物によって基材を構成してもよい。
 さらには、ポリイミドのようなエンジニアリングプラスチック、各種の金属材料やセラミックス等の無機材料により構成される基材を用いてもよい。
Although it does not specifically limit as a base material which adheres the surface modifier of this invention, The base material comprised using the following compound is mentioned.
For example, poly-L-lactic acid, poly-D-lactic acid, a copolymer of poly-L-lactic acid and poly-D-lactic acid, a copolymer containing at least one of poly-L-lactic acid and poly-D-lactic acid as a constituent component Examples include polymers or derivatives thereof, and compounds derived from polylactic acid such as a mixture thereof.
In addition to the above polylactic acid-derived compounds, poly-3-hydroxybutyrate, polyε-caprolactam, polybutylene succinate, polyethylene succinate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, and other fats Polyester, aromatic polyester, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyethylene adipate, poly-p-vinylphenol, polyvinyl acetate, polyethylene oxide, polyacrylonitrile, polyethylene glycol, polypropylene glycol, polyethylene, polypropylene, poly-1-butene Polyolefins such as poly-4-methyl-1-pentene, polydimethylsiloxane, polytrimethyl - silicones such as silphenylene siloxanes, fluorinated polymers such as poly fluoride vinylidene polystyrene, may be used polybutylene adipate terephthalate.
In addition, you may comprise a base material with the copolymer which copolymerized the said compound, its derivative (s), and these mixtures.
Furthermore, you may use the base material comprised by inorganic materials, such as engineering plastics, such as a polyimide, various metal materials, and ceramics.
 基材の形状としては、本発明の表面改質剤を付着可能な形状であれば、特に制限されず、フィルム状、シート状等の膜状であってもよいし、ペレット状、ブロック状等の塊状など、どのような形状であってもよい。 The shape of the substrate is not particularly limited as long as the surface modifier of the present invention can be attached, and may be a film shape, a film shape such as a sheet shape, a pellet shape, a block shape, or the like. Any shape such as a lump shape may be used.
 基材表面は、表面改質剤に含まれる本発明のポリ乳酸微粒子が、基材表面に付着し易くなるように、表面改質剤の適用前に、プラズマ処理、コロナ放電処理、化学修飾処理、酸エッチング処理、超音波処理等の表面改質処理を施してもよい。
 あるいは、基材表面に粉末を接触させることで表面をポリ乳酸微粒子で覆うことができる。この際、ポリ乳酸微粒子を基材表面に付着させやすくするために、適宜、溶媒あるいは接着剤等を塗布してもよい。
 また、本発明のポリ乳酸微粒子を予めフィルム状、シート状等の膜状に成形し、これを基材に対して積層してもよい。
The surface of the substrate is subjected to plasma treatment, corona discharge treatment, chemical modification treatment before application of the surface modifier so that the polylactic acid fine particles of the present invention contained in the surface modifier are easily attached to the substrate surface. Further, surface modification treatment such as acid etching treatment or ultrasonic treatment may be performed.
Alternatively, the surface can be covered with polylactic acid fine particles by bringing the powder into contact with the surface of the substrate. At this time, in order to make the polylactic acid fine particles easily adhere to the surface of the base material, a solvent or an adhesive may be appropriately applied.
Further, the polylactic acid fine particles of the present invention may be previously formed into a film shape such as a film shape or a sheet shape and laminated on a substrate.
 このようにして各種基材に本発明の表面改質剤を付着させた成形体に対して、上記のフィルム成形に用いたプレス成形の他、ロール成形、射出成形、ブロー成形等の公知の各種成形法を施してもよい。さらに、一軸延伸や同時二軸延伸、逐次二軸延伸、ロール圧延(延伸)、押し出し延伸等の分子配向を付与する延伸加工を行ってもよい。 In this way, various known materials such as roll molding, injection molding, blow molding, etc., in addition to the press molding used for the above film molding, are applied to the molded body in which the surface modifier of the present invention is adhered to various base materials. A molding method may be applied. Furthermore, you may perform the extending | stretching process which provides molecular orientation, such as uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, roll rolling (stretching), and extrusion stretching.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例に何ら制約されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist.
[実施例1]
 図1に示す製造装置100を用い、以下のようにしてポリ乳酸微粒子の製造を行った。
[Example 1]
Using the production apparatus 100 shown in FIG. 1, polylactic acid fine particles were produced as follows.
<ポリ乳酸微粒子の製造>
-準備工程-
 高分子化合物として、PLLA(三井化学(株)製、製品名:レイシア、Mw=2.3×10)及びPDLA(PURAC社製、Mw=2.3×10)を使用した。上記PLLA及びPDLAを、ジクロロメタンに溶解させた後、メタノールで再沈殿させてオリゴマーを除去した後、抗酸化処理(具体的には、ビタミンEやカルボジイミドを添加する処理)を行うことで精製PLLA及び精製PDLAを得た。
 精製PLLA及び精製PDLAを、それぞれ0.5質量%の濃度になるように(すなわち精製PLLAと精製PDLAが等量になるように)クロロホルムに溶解させ、PLLA及びPDLAのクロロホルム溶液(高分子化合物溶液1)を得た。
 第2の溶媒としては、メタノールを用いた。
 なお、ポリ乳酸、クロロホルム、メタノールの溶解度パラメーターは19.0、19.0、29.7である(特開2007-332187公報)。
<Manufacture of polylactic acid fine particles>
-Preparation process-
As the polymer compound, PLLA (manufactured by Mitsui Chemicals, Inc., product name: Lacia, Mw = 2.3 × 10 5 ) and PDLA (manufactured by PURAC, Mw = 2.3 × 10 5 ) were used. The above PLLA and PDLA are dissolved in dichloromethane, reprecipitated with methanol to remove oligomers, and then subjected to an antioxidant treatment (specifically, treatment with addition of vitamin E or carbodiimide) and purified PLLA and Purified PDLA was obtained.
Purified PLLA and purified PDLA are dissolved in chloroform so that each concentration is 0.5% by mass (that is, purified PLLA and purified PDLA are in equal amounts), and a chloroform solution of PLLA and PDLA (polymer compound solution) 1) was obtained.
Methanol was used as the second solvent.
The solubility parameters of polylactic acid, chloroform and methanol are 19.0, 19.0 and 29.7 (Japanese Patent Laid-Open No. 2007-332187).
-接触工程-
 透過膜30として、孔径(細孔の直径)が100nmのメンブレンフィルター(アドバンテック社製、製品名:親水性PTFEタイプメンブレンフィルター(品番H010A)、材質:PTFE、膜厚:35μm、空隙率:71%)を用いた。なお、上記メンブレンフィルター中における細孔は、直線状ではなくメンブレンフィルター内において網目状に広がった形状となっている。
 透過膜30の貯留器22側からメタノールを注入し、透過膜30をメタノールで湿らせた後、貯留器12に上記高分子化合物溶液1を注入し、貯留器22にメタノールを注入することで、透過膜30の細孔内に存在する気体を除去し、高分子化合物溶液1とメタノールとを直接接触させた。
-Contact process-
As the permeable membrane 30, a membrane filter having a pore diameter (pore diameter) of 100 nm (manufactured by Advantech, product name: hydrophilic PTFE type membrane filter (product number H010A), material: PTFE, film thickness: 35 μm, porosity: 71% ) Was used. Note that the pores in the membrane filter are not linear but have a network-like shape in the membrane filter.
By injecting methanol from the reservoir 22 side of the permeable membrane 30 and moistening the permeable membrane 30 with methanol, injecting the polymer compound solution 1 into the reservoir 12 and injecting methanol into the reservoir 22, The gas present in the pores of the permeable membrane 30 was removed, and the polymer compound solution 1 and methanol were brought into direct contact.
-透過工程-
 次に、減圧手段60を作動した。このとき、高分子化合物溶液1が流速0.41mL/(min・cm)で透過膜30を透過するように、圧力調整手段50で製造措置100内の圧力を調整した。
 以上のようにして、ポリ乳酸微粒子1を得た。
-Transmission process-
Next, the decompression means 60 was operated. At this time, the pressure in the manufacturing measure 100 was adjusted by the pressure adjusting means 50 so that the polymer compound solution 1 permeates the permeable membrane 30 at a flow rate of 0.41 mL / (min · cm 2 ).
Thus, polylactic acid fine particles 1 were obtained.
<ポリ乳酸微粒子の評価>
 得られたポリ乳酸微粒子1がメタノールに分散した分散液を、へき開したマイカ板の上に滴下して乾燥させ、SEM(日立ハイテク製、型番:S-4800)でポリ乳酸微粒子1の観測を行った。その結果得られた画像を図3に示す。
<Evaluation of polylactic acid fine particles>
The resulting dispersion of polylactic acid fine particles 1 dispersed in methanol is dropped on a cleaved mica plate and dried, and the polylactic acid fine particles 1 are observed with an SEM (manufactured by Hitachi High-Tech, model number: S-4800). It was. The resulting image is shown in FIG.
 ポリ乳酸微粒子1の個数平均粒径、全結晶成分中におけるSc晶の割合、及び全成分における全結晶成分の割合を上記方法により求めた結果を表2に示す。
 なお、上記Sc晶の割合を求めるためのDSC測定については、具体的には、得られたポリ乳酸微粒子1のメタノール分散液を乾燥(乾燥温度25℃)させ、DSC測定装置(パーキンエルマー社製、型番:Pyris 1 DSC)を用いて、温度を100℃から240℃まで10℃/分の昇温速度で上昇させて、測定を行った。そして、200℃から225℃にかけて現れるSc晶に起因する融解ピーク面積から求めたSc晶分率および150℃から180℃にかけて現れるα晶に起因する融解ピーク面積から求めたα晶分率を元に、全結晶成分における「Sc晶の割合」および試料中における「全結晶成分の割合」(結晶化度)を算出した。
Table 2 shows the results obtained by the above method for the number average particle diameter of the polylactic acid fine particles 1, the ratio of Sc crystals in all crystal components, and the ratio of all crystal components in all components.
In addition, about the DSC measurement for calculating | requiring the said ratio of Sc crystal | crystallization, specifically, the methanol dispersion liquid of the obtained polylactic acid microparticles | fine-particles 1 was dried (drying temperature 25 degreeC), and a DSC measuring apparatus (made by Perkin Elmer Co., Ltd.). , Model number: Pyris 1 DSC), and the temperature was increased from 100 ° C. to 240 ° C. at a rate of temperature increase of 10 ° C./min. Based on the Sc crystal fraction determined from the melting peak area attributed to the Sc crystal appearing from 200 ° C. to 225 ° C. and the α crystal fraction determined from the melting peak area attributed to the α crystal appearing from 150 ° C. to 180 ° C. Then, the “ratio of Sc crystal” in all crystal components and the “ratio of all crystal components” (crystallinity) in the sample were calculated.
[実施例2]
 流速を0.82mL/(min・cm)とした以外は、ポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子2を得た。
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子2をSEMにより観察を行った。観察の結果得られた画像を図4aに示す。また、図4aとは別の位置における低倍率のSEM画像を図4bに示し、高倍率のSEM画像を図4cに示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子2の個数平均粒径、全結晶成分中におけるSc晶の割合、及び全成分における全結晶成分の割合を求めた。結果を表2に示す。さらに、ポリ乳酸微粒子2の粒度分布を、図4dに示す。
[Example 2]
Polylactic acid microparticles 2 were obtained in the same manner as polylactic acid microparticles 1 except that the flow rate was 0.82 mL / (min · cm 2 ).
The obtained polylactic acid fine particles 2 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. 4a. Also, a low-magnification SEM image at a position different from that in FIG. 4a is shown in FIG. 4b, and a high-magnification SEM image is shown in FIG. 4c.
Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 2, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 2 is shown in FIG.
-フィルムの製造-
 得られたポリ乳酸微粒子2を用いて、前記ポリ乳酸微粒子からなるフィルムの製造方法の一例(図2)と同様の方法により、フィルム1を得た。
 得られたフィルム1は自立した膜状であり、手に持っても破壊することなく、実用的な強度を有していた。また、このフィルム1について、JIS K7105「プラスチックの光学的特性試験方法」に従ってヘーズ(曇度、単位:%)を室温(25℃)で測定した。その結果、12.5であった。
 さらに、フィルム1をHitachi U-1800の光路上に置いて、透過率を250~800nmの範囲で、室温にて測定して求めた。表1に測定値を示す。
-Production of film-
Using the obtained polylactic acid microparticles 2, a film 1 was obtained by the same method as in one example of a method for producing a film composed of the polylactic acid microparticles (FIG. 2).
The obtained film 1 was a self-supporting film, and had practical strength without being broken even if it was held in the hand. The film 1 was measured for haze (cloudiness, unit:%) at room temperature (25 ° C.) according to JIS K7105 “Testing method for optical properties of plastics”. As a result, it was 12.5.
Further, the film 1 was placed on the optical path of Hitachi U-1800, and the transmittance was measured in the range of 250 to 800 nm at room temperature. Table 1 shows the measured values.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これらの結果から、本発明のポリ乳酸微粒子を用いて作製したフィルムは透明性に優れることがわかった。 From these results, it was found that the film produced using the polylactic acid fine particles of the present invention was excellent in transparency.
[実施例3]
 透過膜30として、メンブレンフィルターの代わりに、アルミナポーラス膜(Whatman社製、製品名:Anodisc Membrane Filter 25、材質:アルミナ、膜厚:60μm、空隙率:25~50%)を用い、流速を2×10-2mL/(min・cm)とした以外は、ポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子3を得た。
 なお、上記アルミナポーラス膜の細孔は、第1貯留器12側の面における直径が200nm、第2貯留器22側の面における直径が20nmであり、第1貯留器12側の面から第2貯留器22側の面に向かって直径が小さくなる構造となっている。またアルミナポーラス膜の細孔は、高分子化合物溶液が透過する方向に直線的に貫通した形状となっている。
[Example 3]
As the permeable membrane 30, an alumina porous membrane (manufactured by Whatman, product name: Anodisc Membrane Filter 25, material: alumina, film thickness: 60 μm, porosity: 25 to 50%) is used instead of a membrane filter, and the flow rate is 2 Polylactic acid microparticles 3 were obtained in the same manner as polylactic acid microparticles 1 except that × 10 −2 mL / (min · cm 2 ).
The pores of the alumina porous membrane have a diameter of 200 nm on the surface on the first reservoir 12 side and a diameter of 20 nm on the surface on the second reservoir 22 side, and the second from the surface on the first reservoir 12 side. The diameter decreases toward the surface on the reservoir 22 side. The pores of the alumina porous membrane have a shape that penetrates linearly in the direction in which the polymer compound solution permeates.
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子3をSEMにより観察を行った。観察の結果得られた画像を図5aに示す。また、図5aとは別の位置におけるSEM画像を図5bに示す。
 また、ポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子3の個数平均粒径、全結晶成分中におけるSc晶の割合、及び全成分における全結晶成分の割合を求めた。結果を表2に示す。さらに、ポリ乳酸微粒子3の粒度分布を、図5cに示す。
The obtained polylactic acid fine particles 3 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. Moreover, the SEM image in the position different from FIG. 5a is shown in FIG. 5b.
Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 3, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 3 is shown in FIG.
[比較例1]
 メタノール80mLに、フッ素樹脂コート撹拌子(長さ1.5cm、直径4mm)により速度200rpmで撹拌を行いながら、20mLの上記高分子化合物溶液1を、0.1mL/secで滴下し、ポリ乳酸微粒子4を得た。なお、これらの溶液量は、実施例1で用いた第2の溶媒の容量および高分子化合物溶液の容量と同じであり、以下の実施例及び比較例についても同様である。
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子4をSEMにより観察を行った。観察の結果得られた画像を図6aに示す。また、図6aとは別の位置における低倍率のSEM画像を図6bに示し、高倍率のSEM画像を図6cに示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子4の個数平均粒径、全結晶成分中におけるSc晶の割合、及び全成分における全結晶成分の割合を求めた。結果を表2に示す。
[Comparative Example 1]
While stirring at 80 rpm with a fluororesin coat stirrer (length: 1.5 cm, diameter: 4 mm) in 80 mL of methanol, 20 mL of the polymer compound solution 1 was added dropwise at 0.1 mL / sec, and polylactic acid fine particles 4 was obtained. The amounts of these solutions are the same as the volume of the second solvent and the volume of the polymer compound solution used in Example 1, and the same applies to the following Examples and Comparative Examples.
The obtained polylactic acid fine particles 4 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. 6a. Further, a low magnification SEM image at a position different from that in FIG. 6a is shown in FIG. 6b, and a high magnification SEM image is shown in FIG. 6c.
Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 4, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2.
[実施例4]
 流速を4mL/(min・cm)とした以外は、ポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子5を得た。
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子5をSEMにより観察を行った。観察の結果得られた画像を図7aに示す。また、図7aとは別の位置における低倍率のSEM画像を図7bに示し、高倍率のSEM画像を図7cに示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子5の個数平均粒径、全結晶成分中におけるSc晶の割合、及び全成分における全結晶成分の割合を求めた。結果を表2に示す。さらに、ポリ乳酸微粒子5の粒度分布を、図7dに示す。
[Example 4]
Polylactic acid microparticles 5 were obtained in the same manner as the polylactic acid microparticles 1 except that the flow rate was 4 mL / (min · cm 2 ).
The obtained polylactic acid fine particles 5 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. Further, a low-magnification SEM image at a position different from that in FIG. 7a is shown in FIG. 7b, and a high-magnification SEM image is shown in FIG. 7c.
Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 5, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 5 is shown in FIG. 7d.
[実施例5]
 流速を0.28mL/(min・cm)とした以外は、ポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子6を得た。
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子6をSEMにより観察を行った。観察の結果得られた画像を図8aに示す。また、図8aとは別の位置における低倍率のSEM画像を図8bに示し、高倍率のSEM画像を図8cに示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子6の個数平均粒径、全結晶成分中におけるSc晶の割合、及び全成分における全結晶成分の割合を求めた。結果を表2に示す。さらに、ポリ乳酸微粒子6の粒度分布を、図8dに示す。
[Example 5]
Polylactic acid microparticles 6 were obtained in the same manner as the polylactic acid microparticles 1 except that the flow rate was 0.28 mL / (min · cm 2 ).
The obtained polylactic acid fine particles 6 were observed by SEM in the same manner as the polylactic acid fine particles 1. An image obtained as a result of the observation is shown in FIG. 8a. Further, a low-magnification SEM image at a position different from that in FIG. 8a is shown in FIG. 8b, and a high-magnification SEM image is shown in FIG. 8c.
Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 6, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2. Furthermore, the particle size distribution of the polylactic acid fine particles 6 is shown in FIG.
[実施例6]
 透過膜30として、上記メンブレンフィルターの代わりに、孔径(細孔の直径)が500nmのメンブレンフィルター(アドバンテック社製、製品名:親水性PTFEタイプメンブレンフィルター(品番H050A)、材質:PTFE、膜厚:35μm、空隙率:79%)を用い、流速を0.41mL/(min・cm)とした以外は、ポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子7を得た。
[Example 6]
As the permeable membrane 30, instead of the membrane filter, a membrane filter having a pore diameter (pore diameter) of 500 nm (manufactured by Advantech, product name: hydrophilic PTFE type membrane filter (product number H050A), material: PTFE, film thickness: Polylactic acid microparticles 7 were obtained in the same manner as polylactic acid microparticles 1 except that 35 μm and porosity: 79%) were used, and the flow rate was 0.41 mL / (min · cm 2 ).
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子7をSEMにより観察を行った。観察の結果得られた画像を図9に示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子7の個数平均粒径、全結晶成分中におけるSc晶の割合、及び全成分における全結晶成分の割合を求めた。結果を表2に示す。
In the same manner as the polylactic acid fine particles 1, the obtained polylactic acid fine particles 7 were observed by SEM. An image obtained as a result of the observation is shown in FIG.
Similarly to the polylactic acid fine particles 1, the number average particle diameter of the polylactic acid fine particles 7, the ratio of Sc crystals in all the crystal components, and the ratio of all crystal components in all the components were determined. The results are shown in Table 2.
[実施例7]
 精製PLLA及び精製PDLAを、それぞれ0.1質量%の濃度になるように(すなわち精製PLLAと精製PDLAが等量になるように)クロロホルムに溶解させ、PLLA及びPDLAのクロロホルム溶液(高分子化合物溶液2)を得た以外は、ポリ乳酸微粒子5と同様にして、ポリ乳酸微粒子8を得た。
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子8をSEMにより観察を行った。観察の結果得られた画像を図10に示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子8の個数平均粒径を求めた。結果を表2に示す。
[Example 7]
Purified PLLA and purified PDLA are dissolved in chloroform so that each concentration is 0.1% by mass (that is, purified PLLA and purified PDLA are in equal amounts), and a chloroform solution of PLLA and PDLA (polymer compound solution) Polylactic acid microparticles 8 were obtained in the same manner as the polylactic acid microparticles 5 except that 2) was obtained.
In the same manner as the polylactic acid fine particles 1, the obtained polylactic acid fine particles 8 were observed by SEM. An image obtained as a result of the observation is shown in FIG.
The number average particle diameter of the polylactic acid fine particles 8 was determined in the same manner as the polylactic acid fine particles 1. The results are shown in Table 2.
[実施例8]
 流速を0.82mL/(min・cm)とした以外は、ポリ乳酸微粒子8と同様にして、ポリ乳酸微粒子9を得た。
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子9をSEMにより観察を行った。観察の結果得られた画像を図11に示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子9の個数平均粒径を求めた。結果を表2に示す。
[Example 8]
Polylactic acid fine particles 9 were obtained in the same manner as the polylactic acid fine particles 8, except that the flow rate was 0.82 mL / (min · cm 2 ).
In the same manner as the polylactic acid fine particles 1, the obtained polylactic acid fine particles 9 were observed by SEM. An image obtained as a result of the observation is shown in FIG.
The number average particle size of the polylactic acid fine particles 9 was determined in the same manner as the polylactic acid fine particles 1. The results are shown in Table 2.
[実施例9]
 流速を0.21mL/(min・cm)とした以外は、ポリ乳酸微粒子8と同様にして、ポリ乳酸微粒子10を得た。
 ポリ乳酸微粒子1と同様にして、得られたポリ乳酸微粒子10をSEMにより観察を行った。観察の結果得られた画像を図12に示す。
 またポリ乳酸微粒子1と同様にして、ポリ乳酸微粒子10の個数平均粒径を求めた。結果を表2に示す。
[Example 9]
Polylactic acid microparticles 10 were obtained in the same manner as the polylactic acid microparticles 8 except that the flow rate was 0.21 mL / (min · cm 2 ).
In the same manner as the polylactic acid fine particles 1, the obtained polylactic acid fine particles 10 were observed with an SEM. An image obtained as a result of the observation is shown in FIG.
The number average particle diameter of the polylactic acid fine particles 10 was determined in the same manner as the polylactic acid fine particles 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果より、実施例では、上記本発明の製造方法を用いてポリ乳酸微粒子の製造を行っているため、比較例に比べ、粒径が小さいにもかかわらず、Sc晶の割合が大きなポリ乳酸微粒子が形成されていることが分かる。すなわち、実施例で得られたポリ乳酸微粒子は、Sc晶の割合が100%であり、小さな粒径と高いSc晶の割合が両立されていることが分かる。また、実施例で得られた粒径の小さなポリ乳酸微粒子は、得られたフィルムの光透過性が高いことが分かる。 From the results shown in Table 2, in the examples, since the polylactic acid fine particles are produced using the production method of the present invention, the ratio of the Sc crystal is small although the particle diameter is small as compared with the comparative example. It can be seen that large polylactic acid fine particles are formed. That is, it can be seen that the polylactic acid fine particles obtained in the examples have a Sc crystal ratio of 100%, and both a small particle size and a high Sc crystal ratio are compatible. Moreover, it turns out that the polylactic acid microparticles | fine-particles with a small particle diameter obtained in the Example have the high light transmittance of the obtained film.
 また、実施例1~9及び比較例1のSEM画像から、高分子化合物溶液1をメタノールに滴下し、ただ混ぜた比較例1のSEM画像に示される粒子よりも、メンブレンフィルターまたはアルミナポーラス膜を透過させた実施例の粒子の方が、均一なサイズのパーティクルが得られていることがわかった。 Also, from the SEM images of Examples 1 to 9 and Comparative Example 1, the polymer compound solution 1 was dropped into methanol and mixed with the membrane filter or alumina porous membrane rather than the particles shown in the SEM image of Comparative Example 1. It turned out that the particle | grains of the Example which permeate | transmitted the particle | grains of uniform size were obtained.
 なお、実施例1~9及び比較例1のSEM画像は、いずれも、膜透過した溶液を、マイカ板にキャストし、観察したものである。当該SEM画像を撮るにあたっては、ナノメートルサイズの粒子を観察するため、通常のSEM観察で用いられる金属蒸着処理は行わなかった。従って、試料観察中に試料が受けるダメージを防ぐため、加速電圧を500Vまで下げて、観察を行った。また、実施例1~9及び比較例1のSEM画像は、低倍率では10,000倍、高倍率では70,000倍で撮影した。 The SEM images of Examples 1 to 9 and Comparative Example 1 are all observed by casting the solution that permeated the membrane onto a mica plate. In taking the SEM image, in order to observe nanometer-sized particles, the metal vapor deposition treatment used in normal SEM observation was not performed. Therefore, in order to prevent damage to the sample during sample observation, the acceleration voltage was lowered to 500 V for observation. The SEM images of Examples 1 to 9 and Comparative Example 1 were taken at 10,000 times at low magnification and 70,000 times at high magnification.
 次に、示差走査型熱量分析(DSC)装置〔パーキンエルマー社製、Pyris 1 DSC〕を用いて、得られた結晶に、Sc晶が含まれているかを調べた。なお、DSC測定は、実施例2で得たフィルム1および実施例5で得たポリ乳酸微粒子6について行い、窒素気流下、昇温速度10℃/分、走査温度範囲30~250℃の測定条件でDSC融解曲線を得た。なお、温度ならびに熱量は標準試料(インジウムおよびスズ)の融点および融解熱を測定し、補正を行った。得られたDSC融解曲線を、図13に示す。
 図13に示される2つの曲線のうち、下の曲線(曲線A)は、実施例2のフィルム1についてのDSC融解曲線であり、上の曲線(曲線B)は、実施例5のポリ乳酸微粒子6についてのDSC融解曲線である。
Next, using a differential scanning calorimetry (DSC) device (Perkin Elmer, Pyris 1 DSC), it was examined whether the obtained crystals contained Sc crystals. The DSC measurement was performed on the film 1 obtained in Example 2 and the polylactic acid fine particles 6 obtained in Example 5. The measurement conditions were a temperature increase rate of 10 ° C./min and a scanning temperature range of 30 to 250 ° C. in a nitrogen stream. DSC melting curve was obtained. The temperature and heat quantity were corrected by measuring the melting point and heat of fusion of standard samples (indium and tin). The obtained DSC melting curve is shown in FIG.
Of the two curves shown in FIG. 13, the lower curve (curve A) is the DSC melting curve for film 1 of Example 2, and the upper curve (curve B) is the polylactic acid microparticles of Example 5. 6 is a DSC melting curve for 6.
 今までの研究より、ポリ乳酸のDSC測定においては、α晶のピークが170℃に、Sc晶のピークが220℃に、それぞれ観察されることがわかっている。
 一方、メンブレンフィルターを用いて、ゆっくり、あるいは早く通過させて得られたナノ粒子を乾燥させた試料のDSC融解曲線(曲線Aおよび曲線B)は、220℃付近の領域にSc晶の融解ピークのみが観察され、170℃付近の領域には、Sc晶の融解ピークのような極大ピークは観察されなかった。
 この結果より、細孔膜を用いた結晶化は、Sc結晶化に有効であり、効率的にSc晶のナノパーティクルを得られることが明らかになった。
From the studies so far, it is known that the α crystal peak is observed at 170 ° C. and the Sc crystal peak is observed at 220 ° C. in the DSC measurement of polylactic acid.
On the other hand, the DSC melting curve (curve A and curve B) of the sample obtained by drying the nanoparticles obtained by passing slowly or quickly using a membrane filter shows only the melting peak of Sc crystal in the region around 220 ° C. In the region around 170 ° C., no maximum peak such as a melting peak of Sc crystal was observed.
From this result, it was found that crystallization using a pore membrane is effective for Sc crystallization, and Sc crystal nanoparticles can be obtained efficiently.
[実施例10]
-表面コーティング-
 表面改質剤として、ポリ乳酸微粒子6がメタノールに分散した分散液(ポリ乳酸微粒子の濃度約0.2質量%)を準備した。
 表面改質剤をコートする基材として、PLLA単品〔三井化学(株)製、製品名:レイシア、Mw=2.3×10〕を原料として、前記ポリ乳酸微粒子からなるフィルムの製造方法の一例(図2)と同様の方法を用いて、フィルム2(PLLAフィルム)を得た。このPLLAのフィルム2の表面に、ポリ乳酸微粒子6の分散液5mLを、フィルム表面全体(おもて片面)に少しずつ均一に塗布して乾燥させる工程を繰り返して表面コート層を形成させた。乾燥温度は25℃とした。
[Example 10]
-Surface coating-
As a surface modifier, a dispersion in which polylactic acid fine particles 6 are dispersed in methanol (polylactic acid fine particle concentration of about 0.2% by mass) was prepared.
As a base material for coating the surface modifier, PLLA single product [manufactured by Mitsui Chemicals, Inc., product name: Lacia, Mw = 2.3 × 10 5 ] as a raw material is used. Film 2 (PLLA film) was obtained using the same method as in one example (FIG. 2). On the surface of this PLLA film 2, 5 mL of a dispersion of polylactic acid fine particles 6 was uniformly applied to the entire surface of the film (front side) little by little and dried, and a surface coat layer was formed. The drying temperature was 25 ° C.
 得られた表面コート層の結晶構造を、リガク(株)製の表面X線測定装置、UltimaIIIにて解析した。測定の際のフィルム面に対するX線斜入射角度は、ポリ乳酸結晶の全反射角度(臨界角度)0.17°以下の0.05°とした。当該臨界角度以下でX線を入射することにより、ごく表面層(フィルム最表面からの深さ10nm程度)のみのX線回折プロファイルを得ることができる。
 得られたX線回折プロファイル(WAXD曲線)を図14に示す。図14において、横軸は、X線の回折角度2θ(deg.)であり、縦軸は、相対強度を示す。Sc晶に由来する結晶反射のみが観察されている。なお、通常のα晶に由来する結晶反射は、2θ=16.5°および18.9°に観察されるが、図14では全く観察されておらず、α晶を含まないことがわかる。
The crystal structure of the obtained surface coat layer was analyzed with a surface X-ray measurement device, Ultimate III, manufactured by Rigaku Corporation. The oblique X-ray incident angle with respect to the film surface at the time of measurement was 0.05 °, which is a total reflection angle (critical angle) of 0.17 ° or less of the polylactic acid crystal. By making X-rays incident at a critical angle or less, an X-ray diffraction profile of only a very surface layer (a depth of about 10 nm from the outermost surface of the film) can be obtained.
The obtained X-ray diffraction profile (WAXD curve) is shown in FIG. In FIG. 14, the horizontal axis represents the X-ray diffraction angle 2θ (deg.), And the vertical axis represents the relative intensity. Only crystal reflections derived from Sc crystals are observed. In addition, although the crystal reflection derived from the normal α crystal is observed at 2θ = 16.5 ° and 18.9 °, it is not observed at all in FIG. 14, and it is understood that the α crystal is not included.
 以上の結果から、本発明のポリ乳酸微粒子をPLLA単品フィルム表面に塗布することにより、Sc晶の表面コート層が形成されることがわかる。このことから、本発明のポリ乳酸微粒子は表面改質剤として好適であることが示された。 From the above results, it can be seen that the surface coat layer of Sc crystal is formed by applying the polylactic acid fine particles of the present invention to the surface of the single PLLA film. This indicates that the polylactic acid fine particles of the present invention are suitable as a surface modifier.
 日本出願2010-108575の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2010-108575 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
1、6 円盤状ステンレス板
2、5 離型用ポリイミド膜
3 矩形窓ありステンレス薄板
4 フィルム
10 高分子化合物溶液
12 第1貯留器
16 開口部
18、28 温度調整手段
20 第2の溶媒
22 第2貯留器
30 透過膜
40 第3貯留器
44、54 排出管
46 排出口
50 圧力調整手段
60 減圧手段
100 製造装置
1 and 6 Disc-shaped stainless steel plate 2 and 5 Mold release polyimide film 3 Stainless steel thin plate with rectangular window 4 Film 10 Polymer compound solution 12 First reservoir 16 Opening portions 18 and 28 Temperature adjusting means 20 Second solvent 22 Second Reservoir 30 Permeation membrane 40 Third reservoir 44, 54 Discharge pipe 46 Discharge port 50 Pressure adjusting means 60 Depressurizing means 100 Manufacturing apparatus

Claims (8)

  1.  直径が0.5nm以上1000nm以下の細孔を有する透過膜で区画された2つの液体収容部を有する透過装置の、一方の液体収容部に、L-乳酸に由来する構造単位及びD-乳酸に由来する構造単位を含む高分子化合物を第1の溶媒に溶解してなる高分子化合物溶液を収容し、他方の液体収容部に、前記高分子化合物に対する貧溶媒である第2の溶媒を収容する準備工程と、
     前記一方の液体収容部に収納された前記高分子化合物溶液を、1×10-3mL/(min・cm)以上10000mL/(min・cm)以下の流速で前記透過膜を透過させることで、前記高分子化合物溶液を前記第2の溶媒に接触させる透過工程と、を有するポリ乳酸微粒子の製造方法。
    In a permeation device having two liquid containing portions partitioned by a permeable membrane having pores having a diameter of 0.5 nm or more and 1000 nm or less, a structural unit derived from L-lactic acid and D-lactic acid are provided in one liquid containing portion. A polymer compound solution obtained by dissolving a polymer compound containing a derived structural unit in a first solvent is accommodated, and a second solvent that is a poor solvent for the polymer compound is accommodated in the other liquid container. A preparation process;
    The polymer solution accommodated in the liquid accommodating portion of the one, 1 × 10 -3 mL / ( min · cm 2) or more 10000mL / (min · cm 2) be transmitted through said permeable membrane at a flow rate not less than And a permeation step for bringing the polymer compound solution into contact with the second solvent.
  2.  さらに、前記準備工程に先立って、前記透過膜を予め液体に接触させ、前記透過膜の前記細孔内の気体を液体に置換する透過膜湿潤工程を有する、請求項1に記載のポリ乳酸微粒子の製造方法。 2. The polylactic acid fine particles according to claim 1, further comprising a permeation membrane wetting step of bringing the permeation membrane into contact with a liquid in advance and substituting the gas in the pores of the permeation membrane with the liquid prior to the preparation step. Manufacturing method.
  3.  前記高分子化合物が、ポリ-L-乳酸の単独重合体とポリ-D-乳酸の単独重合体との混合物である、請求項1又は請求項2に記載のポリ乳酸微粒子の製造方法。 The method for producing polylactic acid microparticles according to claim 1 or 2, wherein the polymer compound is a mixture of a poly-L-lactic acid homopolymer and a poly-D-lactic acid homopolymer.
  4.  ポリ-L-乳酸とポリ-D-乳酸とのステレオコンプレックス結晶の成分がポリ乳酸の全結晶成分に対して50%以上100%以下であり、かつ、個数平均粒径が0.5nm以上1000nm未満である、ポリ乳酸微粒子。 The component of the stereocomplex crystal of poly-L-lactic acid and poly-D-lactic acid is 50% or more and 100% or less with respect to the total crystal component of polylactic acid, and the number average particle size is 0.5 nm or more and less than 1000 nm Polylactic acid fine particles.
  5.  ポリ乳酸の非晶成分及び前記全結晶成分の合計に対する前記全結晶成分の割合が10%以上である、請求項4に記載のポリ乳酸微粒子。 The polylactic acid fine particles according to claim 4, wherein the ratio of the total crystal component to the total of the amorphous component of polylactic acid and the total crystal component is 10% or more.
  6.  請求項4又は請求項5に記載のポリ乳酸微粒子からなる結晶核剤。 A crystal nucleating agent comprising the polylactic acid fine particles according to claim 4 or 5.
  7.  請求項4又は請求項5に記載のポリ乳酸微粒子を含む成形体。 A molded product comprising the polylactic acid fine particles according to claim 4 or 5.
  8.  請求項4又は請求項5に記載のポリ乳酸微粒子を含む表面改質剤。 A surface modifier comprising the polylactic acid fine particles according to claim 4 or 5.
PCT/JP2011/060469 2010-05-10 2011-04-28 Method for producing polylactic acid microparticles, polylactic acid microparticles, and crystal nucleation agent, molded article, and surface modifier using the same WO2011142283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012514770A JP5652831B2 (en) 2010-05-10 2011-04-28 Method for producing polylactic acid fine particles, polylactic acid fine particles, and crystal nucleating agent, molded article, and surface modifier using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010108575 2010-05-10
JP2010-108575 2010-05-10

Publications (1)

Publication Number Publication Date
WO2011142283A1 true WO2011142283A1 (en) 2011-11-17

Family

ID=44914339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060469 WO2011142283A1 (en) 2010-05-10 2011-04-28 Method for producing polylactic acid microparticles, polylactic acid microparticles, and crystal nucleation agent, molded article, and surface modifier using the same

Country Status (2)

Country Link
JP (1) JP5652831B2 (en)
WO (1) WO2011142283A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516781A (en) * 2007-01-26 2010-05-20 アイエスピー インヴェストメンツ インコーポレイテッド Dispensing process for producing spray-dried products
JP2015067616A (en) * 2013-09-26 2015-04-13 学校法人福岡大学 Manufacturing method of polylactic acid microparticles, and polylactic acid microparticles
CN110841108A (en) * 2019-12-27 2020-02-28 南京思元医疗技术有限公司 Preparation method of polylactic acid microparticles and injectable soft tissue filler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012670A (en) * 2000-04-24 2002-01-15 Tanabe Seiyaku Co Ltd Method for producing microsphere
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
JP2004352882A (en) * 2003-05-29 2004-12-16 Mitsubishi Rayon Co Ltd Polymer particle and its manufacturing method
JP2005290257A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Crystal nucleating agent for polylactic acid molding, method for producing polylactic acid molding using the same and polylactic acid molding
WO2006088241A1 (en) * 2005-02-20 2006-08-24 Teijin Limited Process for producing polylactic acid
JP2006307195A (en) * 2005-03-31 2006-11-09 Sanyo Chem Ind Ltd Resin particle
JP2009235152A (en) * 2008-03-26 2009-10-15 Toppan Printing Co Ltd Colored sheet and decorative sheet
WO2011024693A1 (en) * 2009-08-28 2011-03-03 東レ株式会社 Polylactic acid stereocomplex, process for production thereof, and nucleating agent for polylactic acid resin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350606B2 (en) * 1995-01-13 2002-11-25 カネボウ株式会社 Method for producing polylactic acid
JP3723157B2 (en) * 2002-07-12 2005-12-07 トヨタ自動車株式会社 Polylactic acid polymer composition
JP2006348141A (en) * 2005-06-15 2006-12-28 Dainippon Ink & Chem Inc Polylactic acid resin composition
JP5191102B2 (en) * 2006-04-28 2013-04-24 国立大学法人広島大学 Method for producing high-performance nucleating agent
JP4737261B2 (en) * 2008-10-01 2011-07-27 ソニー株式会社 Resin composition and resin molding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012670A (en) * 2000-04-24 2002-01-15 Tanabe Seiyaku Co Ltd Method for producing microsphere
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
JP2004352882A (en) * 2003-05-29 2004-12-16 Mitsubishi Rayon Co Ltd Polymer particle and its manufacturing method
JP2005290257A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Crystal nucleating agent for polylactic acid molding, method for producing polylactic acid molding using the same and polylactic acid molding
WO2006088241A1 (en) * 2005-02-20 2006-08-24 Teijin Limited Process for producing polylactic acid
JP2006307195A (en) * 2005-03-31 2006-11-09 Sanyo Chem Ind Ltd Resin particle
JP2009235152A (en) * 2008-03-26 2009-10-15 Toppan Printing Co Ltd Colored sheet and decorative sheet
WO2011024693A1 (en) * 2009-08-28 2011-03-03 東レ株式会社 Polylactic acid stereocomplex, process for production thereof, and nucleating agent for polylactic acid resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516781A (en) * 2007-01-26 2010-05-20 アイエスピー インヴェストメンツ インコーポレイテッド Dispensing process for producing spray-dried products
JP2015067616A (en) * 2013-09-26 2015-04-13 学校法人福岡大学 Manufacturing method of polylactic acid microparticles, and polylactic acid microparticles
CN110841108A (en) * 2019-12-27 2020-02-28 南京思元医疗技术有限公司 Preparation method of polylactic acid microparticles and injectable soft tissue filler

Also Published As

Publication number Publication date
JPWO2011142283A1 (en) 2013-07-22
JP5652831B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
EP2476729B1 (en) Method for producing stereo complex crystals of polylactic acid, polylactic acid, and molded body, synthetic fiber, porous body and ion conductor comprising same
Kang et al. Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility
Bai et al. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries
Zhang et al. All-organic multilayer coatings for advanced poly (lactic acid) films with high oxygen barrier and excellent antifogging properties
Xie et al. From nanofibrillar to nanolaminar poly (butylene succinate): paving the way to robust barrier and mechanical properties for full-biodegradable poly (lactic acid) films
Arias et al. Homocomposites of polylactide (PLA) with induced interfacial stereocomplex crystallites
Li et al. Enhancing the oxygen-barrier properties of polylactide by tailoring the arrangement of crystalline lamellae
Xu et al. Graphene oxide-driven design of strong and flexible biopolymer barrier films: From smart crystallization control to affordable engineering
US10550263B2 (en) Composition for the preparation of a nanostructured biodegradable polymeric material, the material obtained and its applications
Zhou et al. Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and cellulose nanocrystals
Ma et al. Influence of scPLA microsphere on the crystallization behavior of PLLA/PDLA composites
Mirhosseini et al. Fabrication and characterization of polymer–ceramic nanocomposites containing pluronic F127 immobilized on hydroxyapatite nanoparticles
Cacciotti et al. Tailoring the properties of electrospun PHBV mats: Co-solution blending and selective removal of PEO
Huang et al. Halloysite polymer nanocomposites
US8691893B2 (en) Biodegradable composite materials
JP5652831B2 (en) Method for producing polylactic acid fine particles, polylactic acid fine particles, and crystal nucleating agent, molded article, and surface modifier using the same
Li et al. Synthesis of a novel biocomposite of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with acetylated cellulose nanocrystals
Nivedita et al. Effect of unmodified and modified montmorillonite on the properties of PCL based ultrafiltration membrane for water treatment applications
Broza et al. Melt processing and filler/matrix interphase in carbon nanotube reinforced poly (ether‐ester) thermoplastic elastomer
Hou et al. Porous poly (l-lactide)/poly (d-lactide) blend film with enhanced flexibility and heat resistance via constructing a regularly oriented pore structure
Yong et al. Polylactide-based chiral porous monolithic materials prepared using the high internal phase emulsion template method for enantioselective release
Parvathy et al. A Review on Barrier Properties of Nanocellulose and Polylactic acid Composites
Lai et al. Preparation and characterization of novel poly (vinylidene fluoride) membranes using self-assembled dibenzylidene sorbitol for membrane distillation
Simeonova et al. Fabrication and characterization of biodegradable polymer scaffolds adapting microfibrillar composite concept
ÇAKMAN et al. Preparation and physical, thermal properties of polycaprolactone/m-Halloysite nanocomposite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514770

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780540

Country of ref document: EP

Kind code of ref document: A1