WO2011142266A1 - Drinking water server - Google Patents

Drinking water server Download PDF

Info

Publication number
WO2011142266A1
WO2011142266A1 PCT/JP2011/060288 JP2011060288W WO2011142266A1 WO 2011142266 A1 WO2011142266 A1 WO 2011142266A1 JP 2011060288 W JP2011060288 W JP 2011060288W WO 2011142266 A1 WO2011142266 A1 WO 2011142266A1
Authority
WO
WIPO (PCT)
Prior art keywords
drinking water
porous membrane
air filter
water server
range
Prior art date
Application number
PCT/JP2011/060288
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 石鍋
和正 守本
Original Assignee
エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社 filed Critical エア・ウォーター株式会社
Priority to KR1020127022831A priority Critical patent/KR101757500B1/en
Priority to CN201180011912.3A priority patent/CN102781814B/en
Publication of WO2011142266A1 publication Critical patent/WO2011142266A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0009Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0029Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with holders for bottles or similar containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0029Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with holders for bottles or similar containers
    • B67D3/0032Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with holders for bottles or similar containers the bottle or container being held upside down and provided with a closure, e.g. a cap, adapted to cooperate with a feed tube
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/40Adsorbents within the flow path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D2210/00Indexing scheme relating to aspects and details of apparatus or devices for dispensing beverages on draught or for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D2210/00002Purifying means
    • B67D2210/00005Filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/10Location of water treatment or water treatment device as part of a potable water dispenser, e.g. for use in homes or offices

Abstract

Provided is a drinking water server whereby, using a simple structure, bacterial invasion with the introduction of outside air can be prevented and bacterial proliferation within the drinking water server can be inhibited. The drinking water server is provided with an air filter (1) for introducing outside air, which comprises a porous film being formed of a fluororesin and having a pore diameter of 0.2-0.8 µm, and protective porous films fixed to both faces of the aforesaid porous film. In the drinking water server, moreover, an antibacterial member (2), which comprises multiple antibacterial particles comprising a low-density polyethylene and an ion exchanger, wherein silver ions are ionically bound to zeolite, said multiple antibacterial particles being sealed in a water-permeable porous bag, is placed in a tank.

Description

飲料水サーバDrinking water server
 本発明は、交換可能に取り付けた飲料水入り容器からコップ等に採水できる飲料水サーバにおいて、細菌類の侵入を防止するとともに、細菌類の繁殖を抑制することができる飲料水サーバに関するものである。 The present invention relates to a drinking water server that can collect water from a container containing drinking water that can be exchanged into a glass or the like, and that can prevent the invasion of bacteria and suppress the propagation of bacteria. is there.
 従来から、飲料水入り容器を、交換可能に取り付け、必要な時に必要な量の飲料水を、上記容器からコップ等に採水できる飲料水サーバが、職場等で使用されている。上記飲料水入り容器としては、一般に、変形しない硬質タイプ(ガロンボトルタイプ)が用いられている。 Conventionally, a drinking water server has been used in the workplace or the like that can replace a container containing drinking water and collect a necessary amount of drinking water from the container into a cup or the like when necessary. In general, a hard type (gallon bottle type) that does not deform is used as the drinking water container.
 この種の飲料水サーバは、例えば、図8に示すように、上記飲料水入り容器Bの口部を着脱自在に接続する容器接続部11が上部に設けられ、この容器接続部11の下方に、上記容器Bから落下した飲料水を貯留する冷水タンク12および温水タンク13が設けられ、この各タンク12,13内に貯留された飲料水をそれぞれ採水する冷水側蛇口(フォーセット)14aおよび温水側蛇口(フォーセット)14bが設けられている(図8では、温水側蛇口14bは、冷水側蛇口14aに隠れている)。また、上記容器接続部11を介して上記飲料水入り容器B内と連通する外気取り入れ口15が設けられ、この外気取り入れ口15を覆った状態でエアフィルタ16が設けられている。 For example, as shown in FIG. 8, this type of drinking water server is provided with a container connecting portion 11 that removably connects the mouth portion of the drinking water-containing container B at the top, and below the container connecting portion 11. A cold water tank 12 and a hot water tank 13 for storing drinking water dropped from the container B are provided, and a cold water faucet (four set) 14a for collecting the drinking water stored in the tanks 12 and 13, respectively. A hot water side faucet (four set) 14b is provided (in FIG. 8, the hot water side faucet 14b is hidden behind the cold water side faucet 14a). In addition, an outside air intake 15 that communicates with the inside of the container B containing drinking water via the container connection portion 11 is provided, and an air filter 16 is provided in a state of covering the outside air intake 15.
 上記容器接続部11は、二重筒状に形成されており、外側が、上記容器Bの口部が嵌合される有底筒状の嵌合用筒状体11aに形成され、内側が、上記容器Bの口部内に挿入される有天筒状の挿入用筒状体11bに形成されている。その内側の挿入用筒状体11bの周壁には、空気流通用の貫通孔11cと、飲料水流通用の貫通孔11dとが形成されており、底面に開口部11eが形成されている。上記温水タンク13は、水密な密封タンクとなっており、冷水タンク12の下方に配置され、冷水タンク12の底部と温水タンク13の内部とが連絡パイプ17で連通している。上記冷水タンク12は、天井部が開放されたタンクとなっており、その冷水タンク12内の高さ方向の中央部には、中心部に貫通孔が形成され、中継パイプ19と一体化された円形板状のセパレータ18が、冷水タンク12の周側壁と隙間をあけた状態で配置されている。そして、そのセパレータ18の中心部の貫通孔と上記連絡パイプ17とが、中継パイプ19で接続されている。また、冷水タンク12の周側壁の外側表面には、冷却用パイプ12aが巻装されており、温水タンク13の周側壁の外側表面には、ヒーター13aが巻装されている。 The container connecting portion 11 is formed in a double cylinder shape, the outer side is formed in a bottomed cylindrical fitting cylindrical body 11a into which the mouth of the container B is fitted, and the inner side is formed in the above-described manner. It is formed in the cylindrical body 11b for insertion which is inserted in the mouth part of the container B. A through-hole 11c for air circulation and a through-hole 11d for circulation of drinking water are formed in the peripheral wall of the inner cylindrical body 11b, and an opening 11e is formed on the bottom surface. The hot water tank 13 is a watertight sealed tank, is disposed below the cold water tank 12, and the bottom of the cold water tank 12 communicates with the inside of the hot water tank 13 through a communication pipe 17. The cold water tank 12 is a tank with an open ceiling, and a through hole is formed in the center of the cold water tank 12 in the height direction and integrated with the relay pipe 19. A circular plate-shaped separator 18 is disposed in a state where a gap is formed between the peripheral wall of the cold water tank 12. The through hole at the center of the separator 18 and the connecting pipe 17 are connected by a relay pipe 19. A cooling pipe 12 a is wound around the outer surface of the peripheral side wall of the cold water tank 12, and a heater 13 a is wound around the outer surface of the peripheral wall of the hot water tank 13.
 上記飲料水サーバは、つぎのようにして使用される。すなわち、まず、飲料水サーバの上部に設けられた容器接続部11に、上記飲料水入り容器Bの口部を接続して、その飲料水入り容器Bを上記飲料水サーバの上部に取り付ける。すると、空気が、容器接続部11の挿入用筒状体11bの底面の開口部11eから、空気流通用貫通孔11cを通って、上記容器B内に入るとともに、その容器B内の飲料水が、上記容器接続部11の挿入用筒状体11bの飲料水流通用貫通孔11dから、底面の開口部11eを通って、落下する。この落下した飲料水は、まず、セパレータ18の貫通孔、およびセパレータ18と冷水タンク12の周側壁との隙間を通って、温水タンク13および冷水タンク12に入る。これにより、冷水タンク12に飲料水が貯留し、その飲料水の水面が上昇する。そして、その水面がセパレータ18を超えて容器接続部11の底面に達すると、その底面の開口部11eを閉栓し、上記容器Bからの飲料水の落下を止める。ついで、この状態で、上記冷水側蛇口14aまたは温水側蛇口14bから飲料水を採水する。すると、セパレータ18上にある飲料水の水面が下降し、その水面による閉栓が解除される。このため、上記と同様にして、容器接続部11から上記容器B内に空気が入るとともに、上記容器Bの口部から飲料水が落下する。つぎに、上記蛇口14a,14bからの採水を止める。すると、セパレータ18上において飲料水の水面が上昇し、その水面が容器接続部11の底面に達すると、再度、上記底面の開口部11eを閉栓し、飲料水の落下を止める。このようにして、上記飲料水サーバにより、上記容器Bから飲料水を採水することができる。 The drinking water server is used as follows. That is, first, the mouth part of the container B with the drinking water is connected to the container connection part 11 provided at the upper part of the drinking water server, and the container B with the drinking water is attached to the upper part of the drinking water server. Then, air enters the container B from the opening 11e on the bottom surface of the insertion cylindrical body 11b of the container connection part 11 through the air circulation through hole 11c, and the drinking water in the container B flows. The container connecting portion 11 drops from the drinking water circulation through hole 11d of the insertion tubular body 11b through the opening 11e on the bottom surface. The dropped drinking water first enters the hot water tank 13 and the cold water tank 12 through the through hole of the separator 18 and the gap between the separator 18 and the peripheral side wall of the cold water tank 12. Thereby, drinking water is stored in the cold water tank 12, and the surface of the drinking water rises. And if the water surface passes the separator 18 and reaches the bottom face of the container connection part 11, the opening part 11e of the bottom face is closed, and the fall of the drinking water from the said container B is stopped. Next, in this state, drinking water is collected from the cold water side faucet 14a or the hot water side faucet 14b. Then, the surface of the drinking water on the separator 18 descends and the plugging by the surface is released. For this reason, in the same manner as described above, air enters the container B from the container connecting portion 11 and drinking water falls from the mouth of the container B. Next, water sampling from the faucets 14a and 14b is stopped. Then, the surface of the drinking water rises on the separator 18, and when the water surface reaches the bottom surface of the container connecting portion 11, the opening 11e on the bottom surface is closed again to stop the drinking water from dropping. In this manner, drinking water can be collected from the container B by the drinking water server.
 ここで、上記容器B内に入る空気は、飲料水サーバの外部からエアフィルタ16を通してのみ取り入れられる。その際に、上記エアフィルタ16は、外部から塵埃等が飲料水サーバ内に侵入するのを防止する。そのエアフィルタ16としては、不織布やスポンジ等の、目を粗く(孔径を大きく)して通気性をよくしたものが使用される。目が細かいものを用いると、通気性が悪くなり、上記容器B内に充分な空気(外気)を取り入れることができないため、上記容器Bから飲料水を適正に落下させられなくなり、蛇口14a,14bでの採水性が悪化するからである。 Here, the air entering the container B is taken only through the air filter 16 from the outside of the drinking water server. At that time, the air filter 16 prevents dust and the like from entering the drinking water server from the outside. As the air filter 16, a non-woven fabric, sponge, or the like that has a rough eye (increases the hole diameter) and improves air permeability is used. If a finer one is used, the air permeability is deteriorated and sufficient air (outside air) cannot be taken into the container B, so that the drinking water cannot be properly dropped from the container B, and the faucets 14a and 14b. This is because the water collection in the water deteriorates.
 しかしながら、上記外気の取り入れを、不織布やスポンジ等の、目の粗いものを通して行うと、塵埃等の比較的大きいものの侵入は防止できるものの、細菌類等の比較的小さいものの侵入は充分に防止できない。また、細菌類は、上記エアフィルタ16を通して侵入するだけでなく、蛇口14a,14bに手や指等が触れることにより、その蛇口14a,14bから侵入する場合もある。採水が頻繁に行われると、飲料水サーバ内で飲料水に動きが生じるため、侵入した細菌類は繁殖し難いが、夜間等の採水が行われない時間帯は、飲料水サーバ内の飲料水に動きが生じず、細菌類が繁殖し易くなる。 However, when the outside air is taken in through a coarse material such as a non-woven fabric or sponge, the entry of relatively large items such as dust can be prevented, but the entry of relatively small items such as bacteria cannot be sufficiently prevented. Further, bacteria may not only enter through the air filter 16 but also enter from the faucets 14a and 14b when the hands or fingers touch the faucets 14a and 14b. If water is collected frequently, the drinking water will move in the drinking water server, so it is difficult for the bacteria that have invaded to breed. There is no movement in the drinking water, and bacteria are easy to propagate.
 そこで、その細菌類を殺菌するために、加熱装置を備えた飲料水サーバ(例えば、特許文献1,2参照)、紫外線ランプを備えた飲料水サーバ(例えば、特許文献3参照)、オゾン発生装置を備えた飲料水サーバ(例えば、特許文献4参照)、プラズマイオン発生装置と他の殺菌装置とを備えた飲料水サーバ(例えば、特許文献5参照)等が提案されている。 Therefore, in order to sterilize the bacteria, a drinking water server provided with a heating device (see, for example, Patent Documents 1 and 2), a drinking water server provided with an ultraviolet lamp (see, for example, Patent Document 3), an ozone generator. A drinking water server (see, for example, Patent Document 4), a drinking water server (see, for example, Patent Document 5) that includes a plasma ion generator and another sterilization device, and the like have been proposed.
特開2006-076662号公報JP 2006-076662 A 特開2009-083871号公報JP 2009-038771 A 特開2009-083868号公報JP 2009-083868 A 特許第4317259号公報Japanese Patent No. 4317259 実用新案登録第3110564号公報Utility Model Registration No. 3110564
 しかしながら、上記加熱装置を備えた飲料水サーバは、配管系統が極めて複雑になり、飲料水サーバ自体が高価になるだけでなく、消費電力が増加し、ランニングコストも高くなるという問題や、加熱装置が作動している間は、飲料水サーバが使用できないという問題等がある。また、紫外線ランプを備えた飲料水サーバは、紫外線が人体や眼球に有害であるという問題や、紫外線が飲料水サーバ内の樹脂部品やゴム部品を劣化させるという問題等がある。また、オゾン発生装置を備えた飲料水サーバは、オゾンガスが人体に有用でないため、オゾンガス濃度に規制があるという問題や、オゾン独特の不快臭があり飲料水の風味を損なうという問題等がある。また、プラズマイオン発生装置と他の殺菌装置とを備えた飲料水サーバは、複数の殺菌装置を同時に稼働させるため、エネルギー消費が大きくなるという問題や、装置が極めて複雑になるという問題がある。 However, the drinking water server provided with the heating device has a problem that the piping system becomes extremely complicated and the drinking water server itself is not only expensive, but also increases the power consumption and the running cost. There is a problem that the drinking water server cannot be used while is operating. Moreover, the drinking water server provided with the ultraviolet lamp has a problem that ultraviolet rays are harmful to a human body and an eyeball, a problem that ultraviolet rays deteriorate resin parts and rubber parts in the drinking water server, and the like. Moreover, the drinking water server provided with the ozone generator has a problem that ozone gas concentration is restricted because ozone gas is not useful for the human body, a problem that there is an unpleasant odor peculiar to ozone, and the flavor of drinking water is impaired. Moreover, since the drinking water server provided with the plasma ion generator and other sterilizers operates several sterilizers simultaneously, there exists a problem that energy consumption becomes large, and a problem that an apparatus becomes very complicated.
 本発明は、このような事情に鑑みなされたもので、簡単な構造により、外気取り入れに伴う細菌類の侵入を防止するとともに、飲料水サーバ内での細菌類の繁殖を抑制することができる飲料水サーバの提供をその目的とする。 The present invention has been made in view of such circumstances, and has a simple structure that prevents invasion of bacteria accompanying intake of outside air and can suppress the propagation of bacteria in the drinking water server. The purpose is to provide a water server.
 上記の目的を達成するため、本発明の飲料水サーバは、飲料水入り容器の口部を着脱自在に接続する容器接続部と、この容器接続部の下方に設けられ,上記容器から落下した飲料水を貯留するタンクと、このタンク内に貯留された飲料水を採水する蛇口と、上記容器接続部を介して上記飲料水入り容器内に連通する外気取り入れ口と、この外気取り入れ口を覆った状態で設けられたエアフィルタとを備えた飲料水サーバであって、上記エアフィルタが、下記(A)のエアフィルタであり、上記タンク内に、下記(B)の抗菌部材が設置されているという構成をとる。
(A)フッ素樹脂製多孔膜と、このフッ素樹脂製多孔膜の表裏両面に固定された保護用多孔膜とからなり、上記フッ素樹脂製多孔膜の孔径が、0.2~0.8μmの範囲内に設定され、上記保護用多孔膜の孔径が、上記フッ素樹脂製多孔膜の孔径以上に設定されているエアフィルタ。
(B)複数の粒状抗菌剤と、これら粒状抗菌剤を密封した通水性多孔袋とからなり、上記粒状抗菌剤が、低密度ポリエチレンと、ゼオライトに銀イオンをイオン結合させたイオン交換体とからなるものである抗菌部材。
In order to achieve the above object, a drinking water server according to the present invention includes a container connecting portion that removably connects a mouth portion of a container with drinking water, and a beverage that is provided below the container connecting portion and has dropped from the container. A tank that stores water, a faucet that collects drinking water stored in the tank, an outside air intake port that communicates with the inside of the container containing drinking water via the container connection portion, and the outside air intake port. A drinking water server provided with an air filter provided in a state where the air filter is an air filter of (A) below, and an antibacterial member of (B) below is installed in the tank. It takes the composition that it is.
(A) a fluororesin porous membrane and a protective porous membrane fixed on both front and back surfaces of the fluororesin porous membrane, and the pore diameter of the fluororesin porous membrane is in the range of 0.2 to 0.8 μm And an air filter in which the pore diameter of the protective porous membrane is set to be equal to or larger than the pore diameter of the fluororesin porous membrane.
(B) It consists of a plurality of granular antibacterial agents and a water-permeable porous bag in which these granular antibacterial agents are sealed, and the granular antibacterial agent comprises low density polyethylene and an ion exchanger in which silver ions are ion-bonded to zeolite. An antibacterial member.
 本発明者らは、飲料水サーバにおける衛生管理を、簡単な構造で実現すべく、従来の、侵入した細菌類を飲料水サーバ内で殺菌する手段を採用するのではなく、外気取り入れに伴う細菌類の侵入を防止する手段を採用するとともに、蛇口に人の手や指が触れることにより、その蛇口から細菌類が飲料水サーバ内に侵入してしまうことによる細菌類の繁殖を抑制する手段を採用することに着想した。 In order to realize sanitary management in a drinking water server with a simple structure, the present inventors do not adopt a conventional means for sterilizing invading bacteria in the drinking water server, but bacteria accompanying intake of outside air. A means for preventing the invasion of bacteria and a means for suppressing the propagation of bacteria due to bacteria entering the drinking water server from the faucet by touching the faucet with a human hand or finger. Inspired by adoption.
 そこで、本発明者らは、まず、外気取り入れに伴う細菌類の侵入を防止すべく、エアフィルタの形成材料や構造等について研究を重ねた。その過程で、フッ素樹脂を形成材料とすると、孔径を小さくしても、通気性に優れた多孔膜を作製できることを突き止めた。しかも、フッ素樹脂は、耐水性に優れるため、水を使用する飲料水サーバに適している。さらに、上記フッ素樹脂製多孔膜を保護してフィルタ性能を維持するために、上記フッ素樹脂製多孔膜の両面に、保護用多孔膜を固定することに着想した。そして、この着想に基づき、さらに研究を重ねた。その結果、上記フッ素樹脂製多孔膜の両面に保護用多孔膜を固定してなるエアフィルタにおいて、上記フッ素樹脂製多孔膜の孔径を、0.2~0.8μmの範囲内に設定し、上記保護用多孔膜の孔径を、上記フッ素樹脂製多孔膜の孔径以上に設定すると、長期にわたって、通気性を充分に確保して採水性を維持しつつ、外気取り入れに伴う細菌類の侵入を防止できることを突き止めた。 Therefore, the present inventors first conducted research on the air filter forming material and structure in order to prevent the invasion of bacteria accompanying the intake of outside air. In the process, when a fluororesin is used as a forming material, it was found that a porous film having excellent air permeability can be produced even if the pore diameter is reduced. And since fluororesin is excellent in water resistance, it is suitable for the drinking water server which uses water. Furthermore, in order to protect the fluororesin porous membrane and maintain the filter performance, the inventors conceived of fixing protective porous membranes on both sides of the fluororesin porous membrane. And based on this idea, further research was repeated. As a result, in the air filter in which the protective porous membrane is fixed on both surfaces of the fluororesin porous membrane, the pore diameter of the fluororesin porous membrane is set within the range of 0.2 to 0.8 μm, When the pore size of the protective porous membrane is set to be equal to or larger than the pore size of the fluororesin porous membrane, it is possible to prevent the invasion of bacteria due to the intake of outside air while ensuring sufficient air permeability and maintaining water collection over a long period of time. I found out.
 なお、食中毒菌等は、上記フッ素樹脂製多孔膜の孔径0.2~0.8μmよりも小さいが、静電気の働き、および上記食中毒菌等のフッ素樹脂製多孔膜透過時の慣性衝突とブラウン運動の効果から、上記フッ素樹脂製多孔膜を透過しないと想定できる。 Food poisoning bacteria and the like are smaller than the pore diameter of 0.2 to 0.8 μm of the fluororesin porous membrane, but the action of static electricity and inertial collision and Brownian motion during the penetration of the fluororesin porous membrane such as food poisoning bacteria. From this effect, it can be assumed that it does not permeate the fluororesin porous membrane.
 ついで、本発明者らは、飲料水サーバ内での細菌類の繁殖を抑制すべく、飲料水サーバのタンク内に、抗菌部材を設置することに着想し、その抗菌部材の形成材料や構造等について研究を重ねた。その結果、上記抗菌部材を、複数の粒状抗菌剤と、これら粒状抗菌剤を密封した通水性多孔袋とからなるものとし、上記粒状抗菌剤を、低密度ポリエチレンと、ゼオライトに銀イオンをイオン結合させたイオン交換体とからなるものとすると、上記粒状抗菌剤が水中に上記銀イオンを放出し、その銀イオンの作用により、飲料水サーバ内での細菌類の繁殖を抑制できることを突き止めた。しかも、上記粒状抗菌剤は、人体に悪影響を与えないことも突き止めた。 Next, the present inventors conceived of installing an antibacterial member in the tank of the drinking water server in order to suppress the growth of bacteria in the drinking water server, and the formation material and structure of the antibacterial member Repeated research. As a result, the antibacterial member is composed of a plurality of granular antibacterial agents and a water-permeable porous bag in which these granular antibacterial agents are sealed. The granular antibacterial agent is ion-bonded with low density polyethylene and zeolite with silver ions. It was found that the granular antibacterial agent released the silver ions into water, and the growth of bacteria in the drinking water server could be suppressed by the action of the silver ions. Moreover, it was also found that the granular antibacterial agent does not adversely affect the human body.
 すなわち、本発明者らは、飲料水サーバのエアフィルタとして、上記特定のエアフィルタを採用し、飲料水サーバのタンク内に、上記特定の抗菌部材を設置することにより、簡単な構造で、外気取り入れに伴う細菌類の侵入を防止できるとともに、飲料水サーバ内での細菌類の繁殖を抑制できることを見出し、本発明に到達した。 That is, the present inventors adopt the specific air filter as the air filter of the drinking water server, and install the specific antibacterial member in the tank of the drinking water server, thereby allowing the outside air to have a simple structure. The present inventors have found that it is possible to prevent the invasion of bacteria accompanying the incorporation and to suppress the propagation of bacteria in the drinking water server, and have reached the present invention.
 本発明の飲料水サーバは、外気取り入れが、上記(A)のエアフィルタを通して行われるようになっているため、外気取り入れに伴う細菌類の侵入を防止することができる。さらに、タンク内に、上記(B)の抗菌部材を設置するため、たとえ細菌類が蛇口から侵入したとしても、その繁殖を抑制することができる。そして、上記(A)のエアフィルタおよび上記(B)の抗菌部材による衛生管理は、従来の飲料水サーバにおける加熱装置等の複雑な殺菌装置とは異なり、簡単な構造で実現することができる。そのため、メンテナンスが容易であるとともに、衛生管理に電力を使用しないという利点を有する。 Since the drinking water server of the present invention is adapted to take in outside air through the air filter of (A) above, it is possible to prevent bacteria from entering due to taking in outside air. Furthermore, since the antibacterial member of (B) is installed in the tank, even if bacteria enter from the faucet, their propagation can be suppressed. And the hygiene management by the air filter of said (A) and the antibacterial member of said (B) can be implement | achieved by a simple structure unlike complicated sterilizers, such as a heating apparatus in the conventional drinking water server. Therefore, there are advantages that maintenance is easy and power is not used for hygiene management.
 特に、上記(A)のエアフィルタにおいて、上記フッ素樹脂製多孔膜の厚みが1~15μmの範囲内に設定され、上記保護用多孔膜の厚みが120~170μmの範囲内に設定されている場合には、上記エアフィルタの通気性能と細菌類侵入防止性能とのバランスをより適正化することができる。 In particular, in the air filter (A), the thickness of the fluororesin porous membrane is set in the range of 1 to 15 μm, and the thickness of the protective porous membrane is set in the range of 120 to 170 μm. In addition, the balance between the ventilation performance and the bacteria invasion prevention performance of the air filter can be further optimized.
 また、上記(B)の抗菌部材において、上記粒状抗菌剤を構成する低密度ポリエチレンとイオン交換体との割合(低密度ポリエチレン/イオン交換体)が(70重量%/30重量%)~(95重量%/5重量%)の範囲内に設定され、上記粒状抗菌剤の平均直径が3~10mmの範囲内に設定され、上記通水性多孔袋の孔径が50~100μmの範囲内に設定され、上記通水性多孔袋内部における上記粒状抗菌剤の占める容積率が30~70%の範囲内に設定されている場合には、上記抗菌部材の細菌類繁殖抑制性能をより向上させることができる。 In the antibacterial member (B), the ratio of the low density polyethylene and the ion exchanger (low density polyethylene / ion exchanger) constituting the granular antibacterial agent is (70% by weight / 30% by weight) to (95%). Wt% / 5 wt%), the average diameter of the granular antibacterial agent is set in the range of 3-10 mm, the pore diameter of the water-permeable porous bag is set in the range of 50-100 μm, When the volume ratio occupied by the granular antibacterial agent in the water-permeable porous bag is set within a range of 30 to 70%, the bacterial growth suppression performance of the antibacterial member can be further improved.
本発明の飲料水サーバの一実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the drinking water server of this invention. 上記飲料水サーバに用いるエアフィルタを模式的に示す断面図である。It is sectional drawing which shows typically the air filter used for the said drinking water server. 上記エアフィルタが取り付けられる外気取り入れ口部分を拡大して模式的に示す断面図である。It is sectional drawing which expands and shows typically the external air intake part to which the said air filter is attached. 上記飲料水サーバに用いる抗菌部材を模式的に示す斜視図である。It is a perspective view which shows typically the antibacterial member used for the said drinking water server. 実施例の、累積フィルタフローと細孔径との関係を示すグラフである。It is a graph which shows the relationship between a cumulative filter flow and a pore diameter of an Example. 実施例の、細孔径分布と平均孔径との関係を示すグラフである。It is a graph which shows the relationship between pore diameter distribution and an average pore diameter of an Example. 実施例および比較例における一般生菌のコロニー数の分析結果を示すグラフである。It is a graph which shows the analysis result of the colony number of the general living microbe in an Example and a comparative example. 従来の飲料水サーバを模式的に示す断面図である。It is sectional drawing which shows the conventional drinking water server typically.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の飲料水サーバの一実施の形態を模式的に示す断面図である。この飲料水サーバは、図1に示すように、従来の飲料水サーバ(図8参照)と同様、容器接続部11,冷水タンク12,温水タンク13,冷水側蛇口14a,温水側蛇口14b,外気取り入れ口15,エアフィルタ1等が設けられている。同様の部分については、同じ符号を付し、その説明を省略する。そして、この実施の形態の飲料水サーバでは、上記エアフィルタ1として、図2に拡大して示すように、フッ素樹脂製多孔膜1aと、このフッ素樹脂製多孔膜1aの両面に固定された保護用多孔膜1bとからなり、上記フッ素樹脂製多孔膜1aの孔径が、0.2~0.8μmの範囲内に設定され、上記保護用多孔膜1bの孔径が、上記フッ素樹脂製多孔膜1aの孔径以上に設定されているものを用いているのであり、これが本発明の特徴の一つである。この実施の形態では、上記エアフィルタ1は、図3に示すように(図3では上記3層構造のエアフィルタ1を1層に図示している)、外気取り入れ口15に気密に取り付けられる外気取り入れ用筒状体3に、その中空部(外気の流路)を覆うように、熱溶着されている。さらに、そのエアフィルタ1は、通気可能な状態(図3に図示した矢印参照)で、蓋体4で覆われている。 FIG. 1 is a cross-sectional view schematically showing an embodiment of the drinking water server of the present invention. As shown in FIG. 1, this drinking water server is similar to a conventional drinking water server (see FIG. 8), and includes a container connection part 11, a cold water tank 12, a hot water tank 13, a cold water side faucet 14a, a hot water side faucet 14b, and outside air. An intake port 15 and an air filter 1 are provided. Similar parts are denoted by the same reference numerals, and description thereof is omitted. In the drinking water server of this embodiment, as the air filter 1, as shown in an enlarged view in FIG. 2, the fluororesin porous membrane 1a and the protection fixed to both surfaces of the fluororesin porous membrane 1a are provided. And the pore diameter of the fluororesin porous membrane 1a is set in the range of 0.2 to 0.8 μm, and the pore diameter of the protective porous membrane 1b is the fluororesin porous membrane 1a. This is one of the features of the present invention. In this embodiment, as shown in FIG. 3 (the air filter 1 having the three-layer structure is shown as one layer in FIG. 3), the air filter 1 is external air that is airtightly attached to the external air intake 15. It is heat welded to the intake cylindrical body 3 so as to cover the hollow portion (flow path of outside air). Further, the air filter 1 is covered with a lid body 4 in a state in which ventilation is possible (see the arrow shown in FIG. 3).
 また、この実施の形態の飲料水サーバでは、上記従来の一般的な飲料水サーバ(図8参照)には用いられていなかった抗菌部材2を、冷水タンク12内のセパレータ18上に設置している。この抗菌部材2は、図4に示すように、複数の粒状抗菌剤2aと、これら粒状抗菌剤2aを密封した通水性多孔袋2bとからなり(なお、図4では、上記粒状抗菌剤2aの数を少なく図示している)、上記粒状抗菌剤2aが、低密度ポリエチレンと、ゼオライトに銀イオンをイオン結合させたイオン交換体とからなっている。上記抗菌部材2をタンク(この実施の形態では冷水タンク12)内に設置することが、本発明のもう一つの特徴である。 Moreover, in the drinking water server of this embodiment, the antibacterial member 2 that has not been used in the conventional general drinking water server (see FIG. 8) is installed on the separator 18 in the cold water tank 12. Yes. As shown in FIG. 4, the antibacterial member 2 is composed of a plurality of granular antibacterial agents 2a and a water-permeable porous bag 2b in which the granular antibacterial agents 2a are sealed. The granular antibacterial agent 2a is composed of low density polyethylene and an ion exchanger in which silver ions are ion-bonded to zeolite. It is another feature of the present invention that the antibacterial member 2 is installed in a tank (in this embodiment, the cold water tank 12).
 このように、本発明の飲料水サーバは、エアフィルタ1として、上記特定のエアフィルタ1を採用するとともに、飲料水サーバのタンク内に、上記特定の抗菌部材2を設置することが、大きな特徴である。 As described above, the drinking water server of the present invention employs the specific air filter 1 as the air filter 1, and is characterized by installing the specific antibacterial member 2 in the tank of the drinking water server. It is.
 より詳しく説明すると、上記エアフィルタ1(図2参照)を構成するフッ素樹脂製多孔膜1aの形成材料(フッ素樹脂)としては、ポリテトラフルオロエチレン(PTFE)が好ましい。このフッ素樹脂製多孔膜1aの作製は、例えば、フッ素樹脂半焼成体を50倍以上に二軸延伸し、フッ素樹脂の融点以上の温度で熱処理することより行われる。これにより、孔径が0.2~0.8μmの範囲内のフッ素樹脂製多孔膜1aが作製される。 More specifically, polytetrafluoroethylene (PTFE) is preferable as the forming material (fluororesin) of the fluororesin porous membrane 1a constituting the air filter 1 (see FIG. 2). The fluororesin porous membrane 1a is produced, for example, by biaxially stretching a fluororesin semi-fired body 50 times or more and heat-treating it at a temperature not lower than the melting point of the fluororesin. Thereby, a fluororesin porous membrane 1a having a pore diameter in the range of 0.2 to 0.8 μm is produced.
 ここで、上記フッ素樹脂製多孔膜1aの孔径(0.2~0.8μmの範囲内)は、例えば、バブルポイント法により確認することができる。このバブルポイント法は、つぎのようにして行われる。すなわち、まず、上記フッ素樹脂製多孔膜1aに、大気圧下でフッ素系の試液を含浸させる。ついで、そのフッ素樹脂製多孔膜1aをアダプタに取り付け、そのアダプタを、多孔質材料マルチ物性評価装置のサンプルチャンバに取り付ける。その後、上記多孔質材料マルチ物性評価装置により、最大細孔径の検出および濡れ流量曲線(WETカーブ)を、最大圧力または最大流量に到達するまで計測する。また、上記多孔質材料マルチ物性評価装置により、乾き曲線(DRYカーブ)の計測を最大圧力または最大流量に到達するまで計測する。そして、上記計測により、上記フッ素樹脂製多孔膜1aの孔径の分布が得られ、この分布から、上記孔径の範囲を確認することができる。 Here, the pore diameter (within a range of 0.2 to 0.8 μm) of the fluororesin porous membrane 1a can be confirmed, for example, by a bubble point method. This bubble point method is performed as follows. That is, first, the fluororesin porous membrane 1a is impregnated with a fluorine-based test solution under atmospheric pressure. Next, the fluororesin porous membrane 1a is attached to an adapter, and the adapter is attached to the sample chamber of the porous material multi-physical property evaluation apparatus. Thereafter, the detection of the maximum pore diameter and the wetting flow rate curve (WET curve) are measured until the maximum pressure or the maximum flow rate is reached by the porous material multi-physical property evaluation apparatus. Moreover, the measurement of the dry curve (DRY curve) is measured until the maximum pressure or the maximum flow rate is reached by the porous material multi-physical property evaluation apparatus. And by the said measurement, the distribution of the hole diameter of the said fluororesin porous membrane 1a is obtained, and the range of the said hole diameter can be confirmed from this distribution.
 また、上記フッ素樹脂製多孔膜1aの両面に固定された保護用多孔膜1bは、樹脂からなる不織布または織布であることが好ましい。その樹脂としては、上記エアフィルタ1を取り付ける上記外気取り入れ用筒状体3に熱溶着可能としてその取付構造を簡単にする観点から、上記外気取り入れ用筒状体3の樹脂材料と同一とすることが好ましい。そのような樹脂としては、例えば、ポリエチレンがあげられる。 The protective porous membrane 1b fixed on both surfaces of the fluororesin porous membrane 1a is preferably a nonwoven fabric or a woven fabric made of resin. The resin is the same as the resin material of the external air intake cylindrical body 3 from the viewpoint of simplifying the mounting structure by enabling heat welding to the external air intake cylindrical body 3 to which the air filter 1 is attached. Is preferred. An example of such a resin is polyethylene.
 そして、フッ素樹脂製多孔膜1aの両面に保護用多孔膜1bを固定する方法としては、例えば、フッ素樹脂製多孔膜1aの両面に、保護用多孔膜1bを重ね合わせ、加熱圧着することが行われる。このようにして作製されたエアフィルタ1は、先に述べたように、通気性を充分に確保しつつ、細菌類の侵入を防止することができる性能を有している。また、先に述べたように、上記保護用多孔膜1bの孔径が、上記フッ素樹脂製多孔膜1aの孔径以上に設定されていることから、上記性能は、上記フッ素樹脂製多孔膜1aに依存する性能である。そして、上記性能を向上させる観点から、上記フッ素樹脂製多孔膜1aの厚みは、1~15μmの範囲内に設定されることが好ましく、より好ましくは2~9μm程度である。また、上記保護用多孔膜1bの厚みは、120~170μmの範囲内に設定されることが好ましく、より好ましくは145μm程度である。 As a method for fixing the protective porous membrane 1b on both sides of the fluororesin porous membrane 1a, for example, the protective porous membrane 1b is superposed on both sides of the fluororesin porous membrane 1a and thermocompression bonded. Is called. As described above, the air filter 1 manufactured in this manner has a performance capable of preventing invasion of bacteria while sufficiently ensuring air permeability. Further, as described above, since the pore diameter of the protective porous membrane 1b is set to be larger than the pore diameter of the fluororesin porous membrane 1a, the performance depends on the fluororesin porous membrane 1a. Performance. From the viewpoint of improving the performance, the thickness of the fluororesin porous membrane 1a is preferably set in the range of 1 to 15 μm, more preferably about 2 to 9 μm. The thickness of the protective porous membrane 1b is preferably set in the range of 120 to 170 μm, more preferably about 145 μm.
 ここで、上記フッ素樹脂製多孔膜1aの厚み(1~15μmの範囲内)は、例えば、電界放出形走査電子顕微鏡により確認することができる。すなわち、まず、上記フッ素樹脂製多孔膜1aは、非常に薄く、可撓性を有するため、そのフッ素樹脂製多孔膜1aを樹脂包埋して固める。ついで、そのフッ素樹脂製多孔膜1aの断面を、クロスセクションポリッシャ(CP)により形成する。このクロスセクションポリッシャは、イオンビームの照射により断面を形成する装置であり、機械研磨で断面を形成すると試料が変形する場合に用いられる。そして、その断面を、上記電界放出形走査電子顕微鏡で観察することにより、上記厚みの範囲を確認することができる。なお、この観察中の帯電を軽減するために、上記フッ素樹脂製多孔膜1aの断面に白金をコーティングしてもよい。 Here, the thickness (within a range of 1 to 15 μm) of the fluororesin porous membrane 1a can be confirmed by, for example, a field emission scanning electron microscope. That is, first, since the fluororesin porous membrane 1a is very thin and flexible, the fluororesin porous membrane 1a is resin-embedded and hardened. Next, the cross section of the fluororesin porous film 1a is formed by a cross section polisher (CP). This cross section polisher is an apparatus for forming a cross section by irradiation with an ion beam, and is used when a sample is deformed when the cross section is formed by mechanical polishing. And the range of the said thickness can be confirmed by observing the cross section with the said field emission type scanning electron microscope. In order to reduce charging during observation, platinum may be coated on the cross section of the fluororesin porous membrane 1a.
 なお、上記エアフィルタ1は、JIS Z 8122に「定格風量で粒径が0.15μmの粒子に対して99.9995%以上の粒子捕集率をもち、かつ初期圧力損失が245Pa以下の性能を持つエアフィルタ」と規定されているULPA(Ultra Low Penetration Air )フィルタと同等の性能を有している。上記圧力損失は、値が小さいほど、通気性に優れることを示す。 Note that the air filter 1 has a performance of JIS Z 8122 that has a particle collection rate of 99.9995% or more with respect to particles having a rated air volume of 0.15 μm and an initial pressure loss of 245 Pa or less. It has the same performance as an ULPA (Ultra Low Low Penetration Air) filter, which is defined as “Air Filter”. The said pressure loss shows that it is excellent in air permeability, so that a value is small.
 また、上記エアフィルタ1が熱溶着されている上記外気取り入れ用筒状体3(図3参照)は、上部の大径部3aと、下部の小径部3bとからなっており、これら大径部3aと小径部3bとの境界部分が段部に形成されている。この段部(大径部の底部分)に、上記円形のエアフィルタ1の周縁部が熱溶着されている。また、大径部3aの上端開口縁には、4個(図3は断面図であるため図示されているのは2個)の凸部3cが均等に配置されており、それら凸部3cの上端面が上記蓋体4をその天井面の周縁部で支えている。そして、隣り合う凸部3cの間の隙間が、外気の流路(図3に図示した矢印参照)となり、上記外気取り入れ用筒状体3の中空部と連通している。なお、図3において、符号3dは、上記外気取り入れ用筒状体3の外周面に取り付けられたOリングであり、それにより、上記外気取り入れ用筒状体3を外気取り入れ口15に取り付けた状態では、上記外気取り入れ用筒状体3の外周面と外気取り入れ口15の内周面との間を気密にしている。また、上記外気取り入れ用筒状体3は、外気取り入れ口15に着脱自在になっている。 The outside air intake tubular body 3 (see FIG. 3) to which the air filter 1 is thermally welded is composed of an upper large-diameter portion 3a and a lower small-diameter portion 3b. The boundary part between 3a and the small diameter part 3b is formed in the step part. The peripheral portion of the circular air filter 1 is thermally welded to the step portion (the bottom portion of the large diameter portion). Further, four convex portions 3c (two are shown because FIG. 3 is a cross-sectional view) are evenly arranged on the upper end opening edge of the large diameter portion 3a. The upper end surface supports the lid 4 on the peripheral edge of the ceiling surface. And the clearance gap between the adjacent convex parts 3c becomes a flow path (refer the arrow shown in FIG. 3) of the outside air, and is connected with the hollow part of the said cylindrical body 3 for taking in outside air. In FIG. 3, reference numeral 3 d is an O-ring attached to the outer peripheral surface of the outside air intake cylindrical body 3, whereby the outside air intake cylinder 3 is attached to the outside air intake port 15. Then, the space between the outer peripheral surface of the outside air intake cylindrical body 3 and the inner peripheral surface of the external air intake port 15 is made airtight. Also, the outside air intake cylindrical body 3 is detachably attached to the outside air intake 15.
 上記蓋体4は、有天筒状に形成されている。その頂面は、中心部から周縁部にいくにつれて徐々に低くなる曲面に形成されており、その曲面により、頂面に、塵や水滴等が溜まるのを防止している。また、上記蓋体4の周側面の内面には、上記外気取り入れ用筒状体3の大径部3aの下端周縁部に係脱自在に係合する係合爪(図示せず)が、4個均等に配置されており、その係合爪により、上記外気取り入れ用筒状体3に着脱自在に取り付けられている。そして、上記蓋体4が、上記エアフィルタ1を覆うよう、上記外気取り入れ用筒状体3の上部に取り付けられることにより、塵や水滴等がエアフィルタ1に接触するのを防止している。 The lid 4 is formed in a cylindrical shape. The top surface is formed into a curved surface that gradually decreases from the central portion toward the peripheral portion, and the curved surface prevents dust, water droplets, and the like from accumulating on the top surface. Further, on the inner surface of the peripheral side surface of the lid body 4, there are 4 engagement claws (not shown) that are detachably engaged with the lower edge of the large-diameter portion 3 a of the outside air intake cylindrical body 3. They are arranged evenly and are detachably attached to the outside air intake tubular body 3 by their engaging claws. The lid 4 is attached to the upper part of the outside air intake cylindrical body 3 so as to cover the air filter 1, thereby preventing dust, water droplets, and the like from coming into contact with the air filter 1.
 一方、上記抗菌部材2(図4参照)を構成する粒状抗菌剤2aの作製は、例えば、上記低密度ポリエチレンに、上記ゼオライトに銀イオンをイオン結合させたイオン交換体を担持させた100μm程度の粉体を、100℃程度で加熱成型し、低密度ポリエチレン樹脂が全て溶けきらないで空隙を残した状態で行われる。そして、細菌類の繁殖を抑制する観点から、低密度ポリエチレンとイオン交換体との割合(低密度ポリエチレン/イオン交換体)は、(70重量%/30重量%)~(95重量%/5重量%)の範囲内に設定されることが好ましく、より好ましくは(90重量%/10重量%)程度である。また、上記粒状抗菌剤2aの平均直径は、3~10mmの範囲内に設定されることが好ましく、より好ましくは6mm程度である。この平均直径6mmの粒状抗菌剤2aの質量は、53.3mg/個程度である。なお、上記イオン交換体としては、例えば、下記の化学式(1)で示されるものがあげられる。そして、上記粒状抗菌剤2aにおける銀の含有量は、0.1~0.5重量%、好ましくは0.2~0.3重量%の範囲内である。また、上記平均直径は、任意の10個の粒状抗菌剤2aについて、任意の1箇所の直径をノギスで測定し、それらの平均値をとったものである。 On the other hand, the production of the granular antibacterial agent 2a constituting the antibacterial member 2 (see FIG. 4) is, for example, about 100 μm in which an ion exchanger in which silver ions are ion-bonded to the zeolite is supported on the low density polyethylene. The powder is heat-molded at about 100 ° C., and the low-density polyethylene resin is not completely dissolved, leaving a void. From the viewpoint of suppressing the growth of bacteria, the ratio of the low density polyethylene to the ion exchanger (low density polyethylene / ion exchanger) is (70 wt% / 30 wt%) to (95 wt% / 5 wt). %), And more preferably (90% by weight / 10% by weight). The average diameter of the granular antibacterial agent 2a is preferably set in the range of 3 to 10 mm, more preferably about 6 mm. The mass of the granular antibacterial agent 2a having an average diameter of 6 mm is about 53.3 mg / piece. In addition, as said ion exchanger, what is shown by following Chemical formula (1) is mention | raise | lifted, for example. The silver content in the granular antibacterial agent 2a is in the range of 0.1 to 0.5% by weight, preferably 0.2 to 0.3% by weight. Moreover, the said average diameter measures the diameter of arbitrary 1 places with calipers about arbitrary 10 granular antibacterial agents 2a, and takes those average values.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、上記粒状抗菌剤2aにおける銀の含有量(0.1~0.5重量%の範囲内)は、例えば、ICP発光分析法により確認することができる。すなわち、まず、上記粒状抗菌剤2aに硫酸を添加し、その粒状抗菌剤2aを灰化する。ついで、その灰化したものをフッ酸処理した後、硫酸水素カリウムにて融解する。つぎに、希硝酸に溶解し、純水にて定容する。そして、それをICP発光分析機にかけ、上記銀の含有量を確認することができる。 Here, the silver content (within a range of 0.1 to 0.5% by weight) in the granular antibacterial agent 2a can be confirmed by, for example, ICP emission analysis. That is, first, sulfuric acid is added to the granular antibacterial agent 2a to ash the granular antibacterial agent 2a. Next, the ashed product is treated with hydrofluoric acid and then melted with potassium hydrogen sulfate. Next, dissolve in dilute nitric acid and make a constant volume with pure water. And it can be applied to an ICP emission analyzer to confirm the silver content.
 また、上記抗菌部材2を構成する通水性多孔袋2bは、樹脂からなる不織布または織布であることが好ましい。その樹脂としては、強度等の観点から、例えば、ポリエチレンテレフタレートとポリエチレンとの複合素材であることが好ましい。また、上記不織布等の質量は、17.0~27.0g/mの範囲内に設定されることが好ましく、より好ましくは22.4g/mである。上記不織布等の厚みは、0.05~0.15mmの範囲内に設定されることが好ましく、より好ましくは0.10mmである。さらに、通水性を良好にする観点から、上記不織布等の孔径は50~100μmの範囲内に設定されることが好ましい。 Moreover, it is preferable that the water-permeable porous bag 2b which comprises the said antibacterial member 2 is the nonwoven fabric or woven fabric which consists of resin. The resin is preferably a composite material of, for example, polyethylene terephthalate and polyethylene from the viewpoint of strength and the like. The mass of the nonwoven fabric or the like is preferably set in the range of 17.0 to 27.0 g / m 2 , more preferably 22.4 g / m 2 . The thickness of the nonwoven fabric or the like is preferably set in the range of 0.05 to 0.15 mm, more preferably 0.10 mm. Further, from the viewpoint of improving water permeability, the pore diameter of the nonwoven fabric is preferably set in the range of 50 to 100 μm.
 そして、上記通水性多孔袋2bへの粒状抗菌剤2aの密封は、例えば、上記不織布等で粒状抗菌剤2aを包み、その不織布等の周縁部をヒートシールして袋状にすることにより行われる。上記粒状抗菌剤2aと飲料水との接触をより適正にして細菌類の繁殖をより一層抑制するとともに、上記抗菌部材2における飲料水の通過性をより適正にする観点から、上記通水性多孔袋2b内部における上記粒状抗菌剤2aの占める容積率は30~70%の範囲内に設定されることが好ましい。 And sealing of the granular antibacterial agent 2a to the said water-permeable porous bag 2b is performed by wrapping the granular antibacterial agent 2a with the said nonwoven fabric etc., and heat-sealing the peripheral parts, such as the nonwoven fabric, and making it into a bag shape, for example. . From the viewpoint of making the contact between the granular antibacterial agent 2a and drinking water more appropriate and further suppressing the growth of bacteria, and making the passage of drinking water through the antibacterial member 2 more appropriate, the water-permeable porous bag. The volume ratio occupied by the granular antibacterial agent 2a in 2b is preferably set in the range of 30 to 70%.
 なお、上記実施の形態では、上記抗菌部材2を冷水タンク12内のセパレータ18上に設置したが、セパレータ18の下に設置してもよい。 In the above embodiment, the antibacterial member 2 is installed on the separator 18 in the cold water tank 12, but it may be installed below the separator 18.
 また、上記実施の形態では、冷水タンク12と温水タンク13の2個のタンクを設けたが、いずれか一方のタンクのみを設けてもよい。その場合は、上記セパレータ18は不要となるため、上記抗菌部材2の設置位置は、タンク内のいずれかの位置でよい。 In the above embodiment, the two tanks, the cold water tank 12 and the hot water tank 13, are provided, but only one of the tanks may be provided. In that case, since the separator 18 is not necessary, the installation position of the antibacterial member 2 may be any position in the tank.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
 図1に示す飲料水サーバを準備した。エアフィルタは、PTFE製多孔膜(厚み10μm)の両面にポリエチレン製多孔膜(厚み145μm)を加熱圧着してなるシート材〔ダイキン社製、ニューロファイン(登録商標)、合計厚み300μm〕から、直径22.8mmの円形に打ち抜きしたものを用いた。上記エアフィルタのPTFE製多孔膜の孔径は、バブルポイント法により確認した結果、0.2~0.8μmの範囲内に形成されていた。また、上記エアフィルタは、JIS Z 8122に規定されているULPAフィルタの粒子捕集率99.9995%以上および初期圧力損失245Pa以下を満たすものであった。そして、上記円形のエアフィルタの周縁部を、超音波(発振機出力1200W、発振周波数15.15±0.15kHz、溶着時間0.2秒間、保持時間0.4秒間)により、外気取り入れ用筒状体の中空部(外気の流路)を覆うように熱溶着した。この外気取り入れ用筒状体の流路径は14mmであった。また、抗菌部材を構成する粒状抗菌剤は、低密度ポリエチレン90重量%と、ゼオライトに銀イオンをイオン結合させたイオン交換体10重量%とからなり、平均直径6mm(53.3mg/個)に加熱成型されたもの(シナネンゼオミック社製、PB6LJ10-1:銀の含有量0.23重量%)を用いた。そして、その粒状抗菌剤を30g秤量して、ポリエチレンテレフタレートとポリエチレンとの複合素材からなる厚み0.10mmの不織布(22.4g/m、孔径50~100μm)を袋状(170mm×90mm)にした通水性多孔袋に入れ、ヒートシールにより密封した。上記通水性多孔袋内部における上記粒状抗菌剤の占める容積率を50%とした。 The drinking water server shown in FIG. 1 was prepared. The air filter has a diameter from a sheet material (Daikin Co., Ltd., Neurofine (registered trademark), total thickness 300 μm) formed by heat-pressing a polyethylene porous film (thickness 145 μm) on both sides of a PTFE porous membrane (thickness 10 μm). What was punched into a 22.8 mm circle was used. The pore diameter of the PTFE porous membrane of the air filter was confirmed to be within the range of 0.2 to 0.8 μm as a result of confirmation by the bubble point method. The air filter satisfies the ULPA filter particle collection rate of 99.9995% or more and the initial pressure loss of 245 Pa or less specified in JIS Z 8122. Then, the peripheral portion of the circular air filter is subjected to an outside air intake cylinder by ultrasonic waves (oscillator output 1200 W, oscillation frequency 15.15 ± 0.15 kHz, welding time 0.2 seconds, holding time 0.4 seconds). It heat-sealed so that the hollow part (flow path of external air) of a shape body might be covered. The channel diameter of the outside air intake cylindrical body was 14 mm. The particulate antibacterial agent constituting the antibacterial member comprises 90% by weight of low density polyethylene and 10% by weight of an ion exchanger in which silver ions are ion-bonded to zeolite, and has an average diameter of 6 mm (53.3 mg / piece). A heat-molded product (PB6LJ10-1 manufactured by Sinanen Zeomic Co., Ltd .: silver content 0.23% by weight) was used. Then, 30 g of the granular antibacterial agent is weighed, and a non-woven fabric (22.4 g / m 2 , pore diameter 50 to 100 μm) made of a composite material of polyethylene terephthalate and polyethylene is formed into a bag shape (170 mm × 90 mm). The water-permeable porous bag was sealed and sealed by heat sealing. The volume ratio occupied by the granular antibacterial agent inside the water-permeable porous bag was 50%.
 ここで、上記バブルポイント法は、つぎのようにして行った。すなわち、まず、上記フッ素樹脂製多孔膜に、大気圧下でGalwick(フッ素系の試液,表面張力0.0157N/m)を含浸させた。そして、それを多孔質材料マルチ物性評価装置(米国PMI社製、パームポロメーター:CFP-1200AEXLCBBJ)により計測した。その結果、図5に示す「累積フィルタフローvs細孔径」グラフ、および図6に示す「細孔径分布vs平均孔径」グラフを得た。これらグラフから、孔径0.39μm付近を極大としてピークが確認され、孔径が0.2~0.8μmの範囲内にあることが確認された。また、平均流量孔径が0.389μm、極大細孔径が0.386μmあることが確認された。 Here, the bubble point method was performed as follows. That is, first, the above-mentioned fluororesin porous membrane was impregnated with Galwick (fluorine type test solution, surface tension 0.0157 N / m) under atmospheric pressure. Then, it was measured with a porous material multi-physical property evaluation apparatus (manufactured by PMI, USA, palm porometer: CFP-1200AEXLCBBJ). As a result, the “cumulative filter flow vs. pore diameter” graph shown in FIG. 5 and the “pore diameter distribution vs. average pore diameter” graph shown in FIG. 6 were obtained. From these graphs, a peak was confirmed with a pore size around 0.39 μm as a maximum, and it was confirmed that the pore size was in the range of 0.2 to 0.8 μm. It was also confirmed that the average flow pore size was 0.389 μm and the maximum pore size was 0.386 μm.
 また、上記粒状抗菌剤における銀の含有量(0.23重量%)は、ICP発光分析機(島津製作所社製、ICPS-8100)を用いたICP発光分析法により確認した。 Further, the silver content (0.23% by weight) in the granular antibacterial agent was confirmed by an ICP emission analysis method using an ICP emission analyzer (ICPS-8100, manufactured by Shimadzu Corporation).
〔比較例1〕
 上記実施例の飲料水サーバにおいて、エアフィルタとして、ポリエチレン製スポンジ(直径22.8mmの円形、厚み5mm)を用い、外気取り入れ用筒状体に取り付けた(熱溶着せず)。それ以外の部分は、上記実施例と同様にした。
[Comparative Example 1]
In the drinking water server of the above example, a polyethylene sponge (circular shape with a diameter of 22.8 mm, thickness of 5 mm) was used as an air filter, and was attached to a cylindrical body for taking in outside air (without heat welding). The other parts were the same as in the above example.
〔比較例2〕
 上記実施例の飲料水サーバにおいて、抗菌部材を設置しないものとした。それ以外の部分は、上記実施例と同様にした。
[Comparative Example 2]
In the drinking water server of the above embodiment, the antibacterial member is not installed. The other parts were the same as in the above example.
〔比較例3〕
 上記実施例の飲料水サーバにおいて、エアフィルタとして、ポリエチレン製スポンジ(直径22.8mmの円形、厚み5mm)を用い、外気取り入れ用筒状体に取り付けた(熱溶着せず)。また、抗菌部材を設置しないものとした。それ以外の部分は、上記実施例と同様にした。
[Comparative Example 3]
In the drinking water server of the above example, a polyethylene sponge (circular shape with a diameter of 22.8 mm, thickness of 5 mm) was used as an air filter, and was attached to a cylindrical body for taking in outside air (without heat welding). Moreover, the antibacterial member was not installed. The other parts were the same as in the above example.
〔一般生菌のコロニー数の分析方法〕
 上記実施例および比較例1~3の飲料水サーバを、80人が事務作業を行うオフィスのフロア(面積600m)に設置した。そして、各飲料水サーバについて、つぎのようにして、14日間、一般生菌のコロニー数を分析し、図7にグラフで示した。
(a)まず、飲料水サーバの各所を、熱湯殺菌およびアルコール殺菌の方法により、殺菌洗浄した。
(b)ついで、ミネラルウォーター(東日本エア・ウォーター・エネルギー社製、AW・ウォーター)が12L入ったガロンボトルを各飲料水サーバに取り付けた。
(c)つぎに、冷水側蛇口から、500mLのミネラルウォーターを採水し、それを破棄した。
(d)そして、冷水側蛇口から、100mLのミネラルウォーターを、容量100mLのポリエチレン製の滅菌採水瓶(サンセイ医療器材社製、型番2-6425-05)に採水し、それを、ペトリフィルム培地(住友スリーエム社製、型番6400AC、培地の接種面積20cm)にて、一般生菌を培養した。
(e)48時間経過後、希釈倍率1倍としてペトリフィルム培地のコロニー数を目視にて数えた。このとき、コロニー数が250を超えるような場合、ペトリフィルム培地の1cm格子の中のコロニー数の平均値を求め、これを20倍することにより、コロニー数を推定する。また、希釈倍率1倍の際のコロニー数の上限を2500とした。
(f)各飲料水サーバについて、1日に1回、上記(c)~(e)のようにして、コロニー数を確認した。
[Method of analyzing the number of general viable colonies]
The drinking water servers of the above Examples and Comparative Examples 1 to 3 were installed on the floor (area 600 m 2 ) of an office where 80 people perform office work. And about each drinking water server, the number of colonies of general viable bacteria was analyzed for 14 days as follows, and was shown with the graph in FIG.
(A) First, each part of the drinking water server was sterilized and washed by hot water sterilization and alcohol sterilization.
(B) Next, a gallon bottle containing 12 L of mineral water (AW Water, manufactured by East Japan Air Water Energy Co., Ltd.) was attached to each drinking water server.
(C) Next, 500 mL of mineral water was collected from the cold water side faucet and discarded.
(D) Then, 100 mL of mineral water is collected from the cold water side faucet into a 100 mL polyethylene sterilized water sampling bottle (Sansei Medical Equipment Co., Ltd., model number 2-6425-05). General viable bacteria were cultured in (manufactured by Sumitomo 3M Ltd., model number 6400AC, medium inoculation area 20 cm 2 ).
(E) After 48 hours, the number of colonies in the Petri film medium was visually counted at a dilution factor of 1. At this time, when the number of colonies exceeds 250, the average value of the number of colonies in the 1 cm 2 lattice of the Petri film medium is obtained, and the number of colonies is estimated by multiplying it by 20. In addition, the upper limit of the number of colonies when the dilution factor was 1 was set to 2500.
(F) For each drinking water server, the number of colonies was confirmed once a day as in (c) to (e) above.
 図7のグラフに示すように、実施例の飲料水サーバでは、14日間、一般生菌は全く確認されなかった。これに対し、比較例1の飲料水サーバでは、9日目から一般生菌が確認され、その後少しだけ増加し、11日目以降急増した。このことから、目の粗いエアフィルタを用いた比較例1では、一般生菌が侵入しており、9日目までは抗菌部材の作用により殺菌が可能であったが、それ以降は抗菌部材の細菌の繁殖を抑制する能力を超える一般生菌が侵入したことがわかる。また、比較例2の飲料水サーバでは、2日目から一般生菌が確認され、その後少しだけ増加し、7日目以降急増した。このことから、比較例2では、目の細かいエアフィルタにより、一般生菌の侵入をある程度防止できるが、抗菌部材がないため、一旦侵入した一般生菌が増殖し、そのコロニー数の制御ができないことがわかる。そして、比較例3の飲料水サーバでは、2日目から一般生菌が確認され、その後少しだけ増加し、3日目以降急増し、12日目には上限の2500個に達した。この試験では、上限を2500個に設定しているため、図7のグラフでは12日目以降も2500個であるが、12日目も増殖している可能性がある。このことから、比較例3では、エアフィルタの目が粗いため、一般生菌が侵入し易く、しかも、抗菌部材がないため、侵入した一般生菌が増殖し易くなっていることがわかる。以上のことから、実施例の飲料水サーバのように、上記特定のエアフィルタと上記特定の抗菌部材との併用は、一般生菌のコロニー数の抑制に有用であることがわかる。 As shown in the graph of FIG. 7, in the drinking water server of the example, no viable bacteria were confirmed at all for 14 days. On the other hand, in the drinking water server of Comparative Example 1, general viable bacteria were confirmed from the 9th day, and increased slightly thereafter, and rapidly increased after the 11th day. From this, in Comparative Example 1 using a coarse air filter, general viable bacteria had invaded and sterilization was possible by the action of the antibacterial member until the 9th day. It can be seen that general bacteria that exceed the ability to suppress bacterial growth have invaded. Moreover, in the drinking water server of the comparative example 2, general viable bacteria were confirmed from the 2nd day, and increased only a little after that, and increased rapidly after the 7th day. Therefore, in Comparative Example 2, the fine air filter can prevent the invasion of general viable bacteria to some extent, but since there is no antibacterial member, the invading general viable bacteria grow and the number of colonies cannot be controlled. I understand that. And in the drinking water server of the comparative example 3, general viable bacteria were confirmed from the 2nd day, and it increased only a little after that, increased rapidly after the 3rd day, and reached the upper limit 2500 pieces on the 12th day. In this test, since the upper limit is set to 2500, in the graph of FIG. 7, it is 2500 after the 12th day, but there is a possibility that the 12th day is also proliferating. From this, it can be seen that in Comparative Example 3, the air filter has a rough mesh, so that viable bacteria can easily invade, and since there is no antibacterial member, the invading common viable bacteria can easily grow. From the above, it can be seen that the combined use of the specific air filter and the specific antibacterial member as in the drinking water server of the example is useful for suppressing the number of colonies of general viable bacteria.
 また、上記実施例において、エアフィルタのPTFE製多孔膜の厚みおよびポリエチレン製多孔膜の厚みを変えて、上記と同様にして、一般生菌のコロニー数の分析を行った結果、上記PTFE製多孔膜の厚みを1~15μmの範囲内に設定し、上記ポリエチレン製多孔膜の厚みを120~170μmの範囲内に設定すると、上記実施例と同様、好ましい結果が得られた。 In the above examples, the thickness of the PTFE porous membrane and the polyethylene porous membrane of the air filter were changed, and the number of colonies of general viable bacteria was analyzed in the same manner as described above. As a result, the PTFE porous membrane was analyzed. When the thickness of the membrane was set in the range of 1 to 15 μm and the thickness of the polyethylene porous membrane was set in the range of 120 to 170 μm, similar results to the above examples were obtained.
 ここで、上記フッ素樹脂製多孔膜の厚み(1~15μmの範囲内)は、つぎのようにして確認した。すなわち、まず、主剤〔応研商事社製、エポック812(E.M.grade)〕,硬化剤〔応研商事社製、MNA(methyl nadic anhydride)〕,重合促進剤〔応研商事社製、D.M.P.-30(Tri-dimethyl aminomethyl phenol)からなるエポキシ樹脂を用い、上記フッ素樹脂製多孔膜を樹脂包埋して固めた。ついで、クロスセクションポリッシャ(日本電子社製、SM-09010)により、上記フッ素樹脂製多孔膜の断面を形成した。その際、加工イオンとしてアルゴンを用い、イオン加速電圧を5kV、加工速度を1.3μm/分(加速電圧6kV,SiO2換算)、断面位置決め精度を15μm(光学顕微鏡による位置決め)とした。その後、上記断面に、帯電軽減用の白金コーティングを施した。そして、上記断面を、電界放出形走査電子顕微鏡(日立ハイテクノロジーズ社製、S-4800)を用い、倍率3500倍で観察した。その結果、上記断面の厚みは、不均一であったが、上記1~15μmの範囲内に形成されていた。 Here, the thickness of the fluororesin porous membrane (within a range of 1 to 15 μm) was confirmed as follows. That is, first, the main agent [Oken Trading Co., epoch 812 (EM grade)], the curing agent [Oken Shoji, MNA (methyl nadic anhydride)], the polymerization accelerator [Oken Trading Co., Ltd. M.M. P. Using an epoxy resin made of -30 (Tri-dimethylaminophenyl), the fluororesin porous membrane was embedded and solidified. Next, a cross section of the fluororesin porous membrane was formed by a cross section polisher (manufactured by JEOL Ltd., SM-09010). At that time, argon was used as the processing ions, the ion acceleration voltage was 5 kV, the processing speed was 1.3 μm / min (acceleration voltage 6 kV, converted to SiO 2 ), and the cross-sectional positioning accuracy was 15 μm (positioning with an optical microscope). Thereafter, a platinum coating for reducing charge was applied to the cross section. The cross section was observed at a magnification of 3500 using a field emission scanning electron microscope (S-4800, manufactured by Hitachi High-Technologies Corporation). As a result, the thickness of the cross section was non-uniform, but it was formed within the range of 1 to 15 μm.
 さらに、また、抗菌部材の粒状抗菌剤の成分比,粒状抗菌剤の平均直径,通水性多孔袋の孔径,通水性多孔袋内部における粒状抗菌剤の占める容積率についても、数値を変えて、上記と同様にして、一般生菌のコロニー数の分析を行った結果、粒状抗菌剤を構成する低密度ポリエチレンとイオン交換体との割合(低密度ポリエチレン/イオン交換体)を(70重量%/30重量%)~(95重量%/5重量%)の範囲内に設定し、粒状抗菌剤の平均直径を3~10mmの範囲内に設定し、通水性多孔袋の孔径を50~100μmの範囲内に設定し、上記容積率を30~70%の範囲内に設定すると、上記実施例と同様、好ましい結果が得られた。 In addition, the numerical ratio of the particulate antibacterial agent component ratio of the antibacterial member, the average diameter of the granular antibacterial agent, the pore diameter of the water-permeable porous bag, and the volume ratio occupied by the granular antibacterial agent inside the water-permeable porous bag are changed as described above. As a result of analyzing the number of colonies of general viable bacteria in the same manner as described above, the ratio (low density polyethylene / ion exchanger) of the low density polyethylene and the ion exchanger constituting the granular antibacterial agent (70 wt% / 30) Wt%) to (95 wt% / 5 wt%), the average diameter of the granular antibacterial agent is set within the range of 3 to 10 mm, and the pore diameter of the water-permeable porous bag is within the range of 50 to 100 μm When the volume ratio was set within the range of 30 to 70%, a preferable result was obtained as in the above example.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。さらに、請求の範囲の均等範囲に属する変更は、全て本発明の範囲内である。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Further, all modifications belonging to the equivalent scope of the claims are within the scope of the present invention.
 本発明の飲料水サーバは、特定のエアフィルタと特定の抗菌部材との併用により、外気取り入れに伴う細菌類の侵入を防止するとともに、飲料水サーバ内での細菌類の繁殖を抑制し、衛生管理を、簡単な構造で実現する。 The drinking water server of the present invention uses a specific air filter and a specific antibacterial member in combination to prevent the invasion of bacteria due to the intake of outside air and to suppress the growth of bacteria in the drinking water server. Management is realized with a simple structure.
 1 エアフィルタ
 2 抗菌部材
                                                                                
1 Air filter 2 Antibacterial member

Claims (3)

  1.  飲料水入り容器の口部を着脱自在に接続する容器接続部と、この容器接続部の下方に設けられ,上記容器から落下した飲料水を貯留するタンクと、このタンク内に貯留された飲料水を採水する蛇口と、上記容器接続部を介して上記飲料水入り容器内に連通する外気取り入れ口と、この外気取り入れ口を覆った状態で設けられたエアフィルタとを備えた飲料水サーバであって、上記エアフィルタが、下記(A)のエアフィルタであり、上記タンク内に、下記(B)の抗菌部材が設置されていることを特徴とする飲料水サーバ。
    (A)フッ素樹脂製多孔膜と、このフッ素樹脂製多孔膜の表裏両面に固定された保護用多孔膜とからなり、上記フッ素樹脂製多孔膜の孔径が、0.2~0.8μmの範囲内に設定され、上記保護用多孔膜の孔径が、上記フッ素樹脂製多孔膜の孔径以上に設定されているエアフィルタ。
    (B)複数の粒状抗菌剤と、これら粒状抗菌剤を密封した通水性多孔袋とからなり、上記粒状抗菌剤が、低密度ポリエチレンと、ゼオライトに銀イオンをイオン結合させたイオン交換体とからなるものである抗菌部材。
    A container connecting part for detachably connecting a mouth part of a container containing drinking water, a tank provided below the container connecting part for storing drinking water dropped from the container, and drinking water stored in the tank A drinking water server comprising: a faucet that collects water; an outside air intake port that communicates with the inside of the container containing drinking water through the container connecting portion; and an air filter that covers the outside air intake port. And the said air filter is an air filter of the following (A), The antibacterial member of the following (B) is installed in the said tank, The drinking water server characterized by the above-mentioned.
    (A) a fluororesin porous membrane and a protective porous membrane fixed on both front and back surfaces of the fluororesin porous membrane, and the pore diameter of the fluororesin porous membrane is in the range of 0.2 to 0.8 μm And an air filter in which the pore diameter of the protective porous membrane is set to be equal to or larger than the pore diameter of the fluororesin porous membrane.
    (B) It consists of a plurality of granular antibacterial agents and a water-permeable porous bag in which these granular antibacterial agents are sealed, and the granular antibacterial agent comprises low density polyethylene and an ion exchanger in which silver ions are ion-bonded to zeolite. An antibacterial member.
  2.  上記(A)のエアフィルタにおいて、上記フッ素樹脂製多孔膜の厚みが1~15μmの範囲内に設定され、上記保護用多孔膜の厚みが120~170μmの範囲内に設定されている請求項1記載の飲料水サーバ。 2. The air filter according to (A), wherein the thickness of the fluororesin porous membrane is set in a range of 1 to 15 μm, and the thickness of the protective porous membrane is set in a range of 120 to 170 μm. The described drinking water server.
  3.  上記(B)の抗菌部材において、上記粒状抗菌剤を構成する低密度ポリエチレンとイオン交換体との割合(低密度ポリエチレン/イオン交換体)が(70重量%/30重量%)~(95重量%/5重量%)の範囲内に設定され、上記粒状抗菌剤の平均直径が3~10mmの範囲内に設定され、上記通水性多孔袋の孔径が50~100μmの範囲内に設定され、上記通水性多孔袋内部における上記粒状抗菌剤の占める容積率が30~70%の範囲内に設定されている請求項1または2記載の飲料水サーバ。
                                                                                    
    In the antibacterial member of (B), the ratio of the low density polyethylene and the ion exchanger (low density polyethylene / ion exchanger) constituting the granular antibacterial agent is (70% by weight / 30% by weight) to (95% by weight). / 5 wt%), the average diameter of the granular antibacterial agent is set in the range of 3 to 10 mm, the pore diameter of the water-permeable porous bag is set in the range of 50 to 100 μm, The drinking water server according to claim 1 or 2, wherein a volume ratio occupied by the granular antibacterial agent in the aqueous porous bag is set within a range of 30 to 70%.
PCT/JP2011/060288 2010-05-10 2011-04-27 Drinking water server WO2011142266A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127022831A KR101757500B1 (en) 2010-05-10 2011-04-27 Water dispenser
CN201180011912.3A CN102781814B (en) 2010-05-10 2011-04-27 Water dispenser

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-108411 2010-05-10
JP2010108411 2010-05-10
JP2011-087248 2011-04-11
JP2011087248A JP5904717B2 (en) 2010-05-10 2011-04-11 Drinking water server

Publications (1)

Publication Number Publication Date
WO2011142266A1 true WO2011142266A1 (en) 2011-11-17

Family

ID=44914322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060288 WO2011142266A1 (en) 2010-05-10 2011-04-27 Drinking water server

Country Status (5)

Country Link
JP (1) JP5904717B2 (en)
KR (1) KR101757500B1 (en)
CN (1) CN102781814B (en)
TW (1) TWI527618B (en)
WO (1) WO2011142266A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032514A (en) * 2011-07-05 2013-02-14 Nitto Denko Corp Porous polytetrafluoroethylene film and air filter filtration material
CN103569931A (en) * 2012-07-27 2014-02-12 李宁 Smart oil dispenser
JP2014076834A (en) * 2012-10-11 2014-05-01 Air Water Inc Water alarm mechanism of drinking water dispenser
EP2902367A1 (en) * 2012-09-25 2015-08-05 Mitsubishi Rayon Co., Ltd. Water purification cartridge and water purifier

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470732B1 (en) * 2013-05-09 2014-12-08 신태호 Mineral Water Supplying System Compatibly Usable for Refrigerator and Cold/Hot Water Dispenser
US11618696B2 (en) 2013-08-15 2023-04-04 Applied Silver, Inc. Antimicrobial batch dilution system
US10640403B2 (en) 2013-08-15 2020-05-05 Applied Silver, Inc. Antimicrobial batch dilution system
US10000881B2 (en) 2013-12-06 2018-06-19 Applied Silver, Inc. Method for antimicrobial fabric application
CN103750747A (en) * 2014-01-13 2014-04-30 株式会社Nac Device of removing suspended matters through precision filter
KR101640028B1 (en) * 2014-05-14 2016-07-18 주식회사 진텍 Filter for water purifier
JP6430731B2 (en) * 2014-07-02 2018-11-28 ビクトリージャパン株式会社 Drinking water supply device
US20170050870A1 (en) 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent
WO2018160708A1 (en) 2017-03-01 2018-09-07 Applied Silver, Inc. Systems and processes for treating textiles with an antimicrobial agent
JPWO2020235656A1 (en) * 2019-05-21 2020-11-26
CN114072353A (en) * 2019-05-21 2022-02-18 三得利控股株式会社 Beverage machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067895U (en) * 1992-06-29 1994-02-01 株式会社加藤機械製作所 Sterilization float
JPH07187295A (en) * 1993-12-22 1995-07-25 Yokohama Rubber Co Ltd:The Dispenser for beverage
JPH08164393A (en) * 1994-12-09 1996-06-25 Kanebo Ltd Resin composition for anti-underwater microorganisms
JP2003205211A (en) * 2001-11-09 2003-07-22 Nitto Denko Corp Antibacterial air filter medium and filter unit using the same
JP2008174576A (en) * 2007-01-16 2008-07-31 Kenji Nakamura Antibacterial resin molded product and method for producing the same
JP2009083871A (en) * 2007-09-28 2009-04-23 Noritz Corp Drinking water server
JP2009196650A (en) * 2008-02-19 2009-09-03 Takagi Ind Co Ltd Cold and hot water supplying apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008219A (en) * 2004-06-28 2006-01-12 Sanden Corp Beverage dispenser
JP4137114B2 (en) 2005-10-31 2008-08-20 サントリー株式会社 Mineral water dispenser heat sterilizer
JP4253036B1 (en) * 2008-08-27 2009-04-08 株式会社コスモライフ Beverage dispenser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067895U (en) * 1992-06-29 1994-02-01 株式会社加藤機械製作所 Sterilization float
JPH07187295A (en) * 1993-12-22 1995-07-25 Yokohama Rubber Co Ltd:The Dispenser for beverage
JPH08164393A (en) * 1994-12-09 1996-06-25 Kanebo Ltd Resin composition for anti-underwater microorganisms
JP2003205211A (en) * 2001-11-09 2003-07-22 Nitto Denko Corp Antibacterial air filter medium and filter unit using the same
JP2008174576A (en) * 2007-01-16 2008-07-31 Kenji Nakamura Antibacterial resin molded product and method for producing the same
JP2009083871A (en) * 2007-09-28 2009-04-23 Noritz Corp Drinking water server
JP2009196650A (en) * 2008-02-19 2009-09-03 Takagi Ind Co Ltd Cold and hot water supplying apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032514A (en) * 2011-07-05 2013-02-14 Nitto Denko Corp Porous polytetrafluoroethylene film and air filter filtration material
CN103569931A (en) * 2012-07-27 2014-02-12 李宁 Smart oil dispenser
EP2902367A1 (en) * 2012-09-25 2015-08-05 Mitsubishi Rayon Co., Ltd. Water purification cartridge and water purifier
EP2902367A4 (en) * 2012-09-25 2015-10-28 Mitsubishi Rayon Co Water purification cartridge and water purifier
JP2014076834A (en) * 2012-10-11 2014-05-01 Air Water Inc Water alarm mechanism of drinking water dispenser

Also Published As

Publication number Publication date
KR20130059315A (en) 2013-06-05
TW201143870A (en) 2011-12-16
CN102781814A (en) 2012-11-14
KR101757500B1 (en) 2017-07-12
JP5904717B2 (en) 2016-04-20
TWI527618B (en) 2016-04-01
JP2011255960A (en) 2011-12-22
CN102781814B (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5904717B2 (en) Drinking water server
He et al. Evaluation of regeneration processes for filtering facepiece respirators in terms of the bacteria inactivation efficiency and influences on filtration performance
Brincat et al. A review of the state-of-the-art in air filtration technologies as may be applied to cold storage warehouses
SG193590A1 (en) Chlorine dioxide generator
JP2008188082A (en) Mask
JP2008022765A (en) Device for evaluating environment and method for evaluating environment
WO2006104043A1 (en) Method of surface treatment and surface-treated article
US20220040615A1 (en) Face mask
JP3676694B2 (en) Vibration agitator for sterilization, sterilizer including the same, and sterilization method
WO2008010394A1 (en) Environmental evaluation system and environmental evaluation method
JP5810392B1 (en) Sanitized air filter for compressed air circuit
Chen et al. Speaking-induced charge-laden face masks with durable protectiveness and wearing breathability
JP2021040710A (en) Air filter for sterilizing compressed air circuit
JP5256058B2 (en) Sterilization and virus inactivation equipment
WO2017188398A1 (en) Virus-trapping filter for disposable bag or container for medical aspirator
JP2008106398A (en) Sterilization sheet
JP2011200818A (en) Filter for cleaning and cleaning method
JP2008022764A (en) Environment evaluation method
RU104460U1 (en) PHOTOCATALYTIC FILTER AIR CLEANER
CN210020450U (en) Degerming air respirator capable of achieving online steam sterilization
Xiang et al. Preparation and photocatalytic activity of MAO-TiO2 films formed on titanium doped with V2O5 and Ag2O
Wang et al. Development of electrospun nanofibrous filters for controlling coronavirus aerosols
Yang et al. Study on an air filter material immobilized with bio-antimicrobials
Jeong et al. Increased sanitization potency of hydrogen peroxide with synergistic O 3 and intense pulsed light for non-woven polypropylene
CN219030319U (en) Bag body and slow-release functional bag

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011912.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022831

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780523

Country of ref document: EP

Kind code of ref document: A1