WO2011142022A1 - Hybrid vehicle control device and hybrid vehicle - Google Patents

Hybrid vehicle control device and hybrid vehicle Download PDF

Info

Publication number
WO2011142022A1
WO2011142022A1 PCT/JP2010/058159 JP2010058159W WO2011142022A1 WO 2011142022 A1 WO2011142022 A1 WO 2011142022A1 JP 2010058159 W JP2010058159 W JP 2010058159W WO 2011142022 A1 WO2011142022 A1 WO 2011142022A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
charge
map
hybrid vehicle
bat
Prior art date
Application number
PCT/JP2010/058159
Other languages
French (fr)
Japanese (ja)
Inventor
英輝 鎌谷
国明 新美
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/058159 priority Critical patent/WO2011142022A1/en
Publication of WO2011142022A1 publication Critical patent/WO2011142022A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid vehicle control device and a hybrid vehicle, and more particularly to a hybrid vehicle control device equipped with a power storage device, a motor, and an engine.
  • Patent Document 1 is a document related to a charge / discharge control device for a hybrid electric vehicle.
  • This document discloses a charge / discharge control device for a hybrid electric vehicle that performs charge control for charging a battery by driving a generator with an onboard motor.
  • This charging / discharging control device sets the charging rate at the start of initial charging and the charging rate at the end of initial charging to be lower than the optimum charging range with good charging efficiency. Then, after the initial charging, the charging rate at the start of charging and the charging rate at the end of charging are shifted to charging based on the optimal charging range through an intermediate charging process closer to the optimal charging range than the initial charging.
  • FIG. 17 is a diagram showing an example of a basic charge / discharge map of a hybrid vehicle.
  • the horizontal axis indicates the state of charge (SOC: State Of Charge) (%), and the vertical axis indicates the charge / discharge amount (kW).
  • the control device for the hybrid vehicle determines the basic charge / discharge amount based on the SOC. That is, if the current SOC of the battery matches the SOC center, the battery is not charged / discharged. If the current SOC is higher than the SOC center, the control device discharges the battery, and if the current SOC is lower than the SOC center, the control device charges the battery. By executing such control, the SOC of the battery converges near the SOC center.
  • FIG. 18 is a diagram illustrating an example of a charge / discharge map in consideration of efficiency.
  • FIG. 18 is referred to when charging is performed.
  • the horizontal axis in FIG. 18 indicates the user requested power, and the vertical axis indicates the amount of charge.
  • the user request power increases or decreases according to, for example, the degree of depression of the accelerator pedal.
  • FIG. 19 is a diagram for explaining charging in consideration of efficiency.
  • the engine operating line and the engine thermal efficiency contour are superimposed on a plane with the engine speed on the horizontal axis and the engine torque on the vertical axis.
  • the thermal efficiency contour is closer to the center, and the thermal efficiency is better.
  • the charge amount is increased to the maximum charge amount in the region where the user request power is low. This charging improves the fuel efficiency of the vehicle because the operating point moves on the engine operating line in a direction in which the thermal efficiency is improved.
  • the charge amount determined in FIG. 18 is on the charge side as compared with the basic charge / discharge amount determined in FIG. 17, the charge amount determined in FIG. Control is performed.
  • An object of the present invention is to provide a hybrid vehicle control device and a hybrid vehicle with improved overall energy efficiency.
  • the present invention is a control device for a hybrid vehicle equipped with a power storage device, a motor, and an engine, the fuel consumption amount and the charge / discharge amount to the power storage device determined in advance for each required driving force to the vehicle.
  • a storage unit storing a plurality of maps each storing a plurality of operation points indicating the relationship between the two, and selecting one map from the plurality of maps according to the required driving force, and a plurality of operation points on the selected map
  • a control device that controls the engine so as to correspond to the selected operating point.
  • control device has an operation point at which an absolute value of an inclination of a line connected to an operation point when performing EV traveling in which the engine is stopped among a plurality of operation points on the selected map is the largest. Select.
  • control device limits a range of operation points to be selected from among a plurality of operation points on the selected map based on the state of the vehicle.
  • the state of the vehicle includes either the state of charge of the power storage device or the temperature of the power storage device.
  • control device when the state of charge of the power storage device exceeds the first threshold value, the control device is set to 1 from an operating point included in a limited area so as to limit the amount of charge to the power storage device on the map. Select one operating point.
  • control device when the state of charge of the power storage device falls below the second threshold value, the control device is configured to 1 from an operating point included in a limited area so as to limit a discharge amount from the power storage device on the map. Select one operating point.
  • the control device when the temperature of the power storage device exceeds a threshold value, the control device is included in an area limited to limit both a charge amount to the power storage device and a discharge amount from the power storage device on the map.
  • One operating point is selected from the operating points to be operated.
  • the state of the vehicle includes a vehicle speed of the vehicle. More preferably, when the vehicle speed of the vehicle exceeds a threshold value, the control device selects one operating point from operating points included in a limited area so as to limit the amount of charge to the power storage device on the map. select.
  • the state of the vehicle includes a charge / discharge integrated time of the power storage device from the initial state.
  • the control device recognizes the driving pattern of the driver, and changes the operating point selected according to the driving pattern recognized from the plurality of operating points on the selected map.
  • the present invention is a hybrid vehicle equipped with any one of the above hybrid vehicle control devices.
  • the efficiency of the hybrid vehicle is further improved and the fuel consumption is improved.
  • FIG. 2 is a diagram illustrating a general configuration when a computer 100 is used as a control device 14.
  • FIG. It is a flowchart for demonstrating the control performed with the control apparatus 14 of FIG.
  • FIG. 6 is a diagram illustrating an example of an fc-Pb map. It is a figure for demonstrating the setting of the operating point at the time of virtual EV driving
  • FIG. It is a figure for demonstrating selection of the operating point of step S32.
  • FIG. 6 is a map in which the allowable discharge amount POUT and the allowable charge amount PIN are entered in the map of FIG. 5 and lines LA1 and LA2 are drawn. It is the figure which showed the example of a process which changes the allowable charging / discharging amount when SOC exceeds a threshold value. It is the figure which showed the example of a process which changes the allowable charging / discharging amount when SOC is less than a threshold value. It is the figure which showed the example of a process which changes the allowable charging / discharging amount when battery temperature exceeds a threshold value. It is the figure which showed the example of a process which changes the allowable charging / discharging amount when a vehicle speed exceeds a threshold value.
  • FIG. 1 is a diagram illustrating a main configuration of a hybrid vehicle 1 according to the present embodiment.
  • the hybrid vehicle 1 is a vehicle that uses both an engine and a motor for traveling.
  • hybrid vehicle 1 includes front wheels 20R and 20L, rear wheels 22R and 22L, an engine 2, a planetary gear 16, a differential gear 18, and gears 4 and 6.
  • the hybrid vehicle 1 further includes a high voltage battery BAT arranged at the rear of the vehicle, a boost unit 32 that boosts DC power output from the high voltage battery BAT, and an inverter 36 that transfers DC power between the boost unit 32, Motor generator MG1 coupled to engine 2 via planetary gear 16 and mainly generating electric power, and motor generator MG2 whose rotating shaft is connected to planetary gear 16 are included.
  • Inverter 36 is connected to motor generators MG ⁇ b> 1 and MG ⁇ b> 2 and performs conversion between AC power and DC power from booster unit 32.
  • the planetary gear 16 has first to third rotating shafts.
  • the first rotation shaft is connected to engine 2
  • the second rotation shaft is connected to motor generator MG1
  • the third rotation shaft is connected to motor generator MG2.
  • the gear 4 is attached to the third rotating shaft, and the gear 4 drives the gear 6 to transmit power to the differential gear 18.
  • the differential gear 18 transmits the power received from the gear 6 to the front wheels 20R and 20L, and transmits the rotational force of the front wheels 20R and 20L to the third rotating shaft of the planetary gear via the gears 6 and 4.
  • Planetary gear 16 plays a role of dividing power between engine 2 and motor generators MG1 and MG2. That is, if the rotation of two of the three rotation shafts of the planetary gear 16 is determined, the rotation of the remaining one rotation shaft is forcibly determined. Accordingly, the vehicle speed is controlled by controlling the power generation amount of the motor generator MG1 and driving the motor generator MG2 while operating the engine 2 in the most efficient region, thereby realizing an overall energy efficient vehicle. Yes.
  • a reduction gear that decelerates the rotation of motor generator MG2 and transmits it to planetary gear 16 may be provided, or a transmission gear that can change the reduction ratio of the reduction gear may be provided.
  • the high voltage battery BAT which is a DC power source includes a secondary battery such as nickel metal hydride or lithium ion, for example, and supplies DC power to the boosting unit 32 and is charged by DC power from the boosting unit 32.
  • the boost unit 32 boosts the DC voltage received from the high voltage battery BAT and supplies the boosted DC voltage to the inverter 36.
  • Inverter 36 converts the supplied DC voltage into AC voltage, and drives and controls motor generator MG1 when the engine is started. Further, after the engine is started, AC power generated by motor generator MG1 is converted into DC by inverter 36, and converted to a voltage suitable for charging high voltage battery BAT by boosting unit 32, and high voltage battery BAT is charged.
  • the inverter 36 drives the motor generator MG2.
  • Motor generator MG2 assists engine 2 to drive front wheels 20R and 20L.
  • the motor generator performs a regenerative operation and converts the rotational energy of the wheels into electric energy.
  • the obtained electrical energy is returned to the high voltage battery BAT via the inverter 36 and the boost unit 32.
  • the high-voltage battery BAT is an assembled battery and includes a plurality of battery units B0 to Bn connected in series.
  • System main relays 28 and 30 are provided between the boost unit 32 and the high voltage battery BAT, and the high voltage is cut off when the vehicle is not in operation.
  • Hybrid vehicle 1 further includes a control device 14 and a storage unit 13.
  • the control device 14 refers to the map stored in the storage unit 13 and determines the engine 2, the inverter 36, the boosting unit 32, and the system main relay 28 in accordance with the driver's instructions and outputs from various sensors attached to the vehicle. , 30 are controlled.
  • FIG. 2 is a diagram showing functional blocks of the control device 14 of FIG. 1 and related peripheral devices.
  • the control device 14 can be realized by software or hardware.
  • control device 14 includes a hybrid control unit 62, a battery control unit 66, and an engine control unit 68.
  • the battery control unit 66 calculates the high voltage battery BAT obtained by integrating the charge / discharge current of the high voltage battery BAT based on the battery current detected by the current sensor 48, the temperature sensor 49, and the voltage sensor 50, the battery temperature, and the battery voltage.
  • the state of charge SOC is transmitted to the hybrid control unit 62.
  • the engine control unit 68 performs throttle control of the engine 2, detects the engine rotation speed Ne of the engine 2, and transmits it to the hybrid control unit 62.
  • the hybrid control unit 62 calculates an output (required power) requested by the driver based on the output signal Acc of the accelerator position sensor 42 and the vehicle speed V detected by the vehicle speed sensor.
  • the hybrid control unit 62 calculates necessary driving force (total power) in consideration of the state of charge SOC of the high-voltage battery BAT in addition to the driver's required power, and the rotational speed required for the engine and the power required for the engine. Are further calculated. At that time, the hybrid control unit 62 refers to the map stored in the storage unit 13.
  • the hybrid control unit 62 transmits the required rotation speed and the required power to the engine control unit 68, and causes the engine control unit 68 to perform throttle control of the engine 2.
  • Hybrid control unit 62 calculates driver required torque according to the running state, causes inverter 36 to drive motor generator MG2, and causes motor generator MG1 to generate power as necessary.
  • the driving force of the engine 2 is distributed to a part that directly drives the wheel and a part that drives the motor generator MG1.
  • the sum of the driving force of motor generator MG2 and the direct driving amount of the engine is the driving force of the vehicle.
  • this vehicle is provided with an EV priority switch 46.
  • the driver presses the EV priority switch 46 the operation of the engine is limited. As a result, the vehicle stops with the engine stopped in principle, and travels only with the driving force of motor generator MG2.
  • the driver can press the EV priority switch 46 as necessary to reduce noise in a densely populated residential area in the middle of the night or early morning, or to reduce exhaust gas in an indoor parking lot or garage.
  • the EV priority switch 46 is turned off. 2) The state of charge SOC of the battery Is reduced below a predetermined value, 3) if any of the conditions that the vehicle speed exceeds a predetermined value (engine start threshold) or 4) the accelerator opening exceeds a specified value, the EV priority switch 46 The on state is released.
  • control device 14 described above with reference to FIG. 2 can also be realized by software using a computer.
  • FIG. 3 is a diagram showing a general configuration when the computer 100 is used as the control device 14.
  • the computer 100 includes a CPU 180, an A / D converter 181, a ROM 182, a RAM 183, and an interface unit 184.
  • the A / D converter 181 converts analog signals AIN such as outputs from various sensors into digital signals and outputs them to the CPU 180.
  • the CPU 180 is connected to the ROM 182, the RAM 183, and the interface unit 184 via a bus 186 such as a data bus or an address bus to exchange data.
  • the ROM 182 stores data such as a program executed by the CPU 180 and a map to be referred to.
  • the RAM 183 is a work area when the CPU 180 performs data processing, for example, and temporarily stores data such as various variables.
  • the interface unit 184 communicates with, for example, another ECU (Electric Control Unit), inputs rewrite data when using an electrically rewritable flash memory or the like as the ROM 182, a memory card or a CD Reading data signal SIG from a computer-readable recording medium such as ROM.
  • ECU Electronic Control Unit
  • the CPU 180 transmits and receives the data input signal DIN and the data output signal DOUT from the input / output port.
  • the control device 14 is not limited to such a configuration, and may be realized by including a plurality of CPUs. Further, each of the hybrid control unit 62, the battery control unit 66, and the engine control unit 68 of FIG. 2 may have a configuration as shown in FIG.
  • FIG. 4 is a flowchart for explaining the control executed by the control device 14 of FIG.
  • control device 14 reads a corresponding fc-Pb map (described later in FIG. 5) based on the required driving force.
  • the fc-Pb map is stored in the storage unit 13 in advance.
  • the fc-Pb map is stored in the ROM 182 or the RAM 183 shown in FIG.
  • FIG. 5 is a diagram showing an example of the fc-Pb map.
  • the horizontal axis represents the fuel consumption fc [g / s]
  • the vertical axis represents the charge / discharge power Pb [kW] of the battery BAT.
  • the charge / discharge power Pb has a sign (+) when the battery BAT is discharged and a sign ( ⁇ ) when the battery BAT is charged.
  • the operating points P1 to P8 are shown on the map as to what the battery charge / discharge power Pb will be if the fuel consumption fc is consumed in order to achieve a certain required driving force. These operating points are adapted to obtain appropriate system efficiency. By performing steady running and measuring, the data of these operating points can be obtained in advance by experiments.
  • the engine power is surplus with respect to the required driving force, so that the surplus power is used to generate power by turning the generator, and the generated power is sent to the battery BAT. Charging is performed.
  • the line L1 connecting the operating points P1 to P8 is a fuel-cell output line when realizing a certain value of required driving force.
  • a map with such fuel-cell output lines drawn is determined in advance for each required driving force.
  • step S2 it is determined whether EV traveling is possible. This determination is determined by, for example, the required power determined by the accelerator pedal position and the vehicle speed. For example, the vehicle is set so that the engine starts when the required power is larger than a predetermined value. This vehicle setting may include various conditions.
  • step S2 the search criteria determination process of step S3 is executed, and the search range of step S4 is determined following step S3.
  • Step S3 includes the processes of steps S31 to S33, and step S4 includes the processes of steps S41 to S43.
  • step S2 If it is determined in step S2 that EV travel is possible, the process of step S32 is directly executed. If it is determined that EV travel is impossible, the process proceeds to step S32 after the process of step S31 is performed. .
  • FIG. 6 is a diagram for describing setting of operating points during virtual EV traveling.
  • the straight line with the inclination d1 is the line LB1
  • the straight line with the inclination d2 is the line LB2.
  • the inclinations d1 and d2 are inclinations selected according to the driving pattern of the driver.
  • a ratio of energy recovered by regeneration and energy consumed by EV running can be used.
  • FIG. 7 is a diagram showing the relationship between the slope d and the parameter K.
  • the vertical axis indicates the absolute value of the slope d (because the lines LB1 and LB2 on the map of FIG. 6 are negative slope lines).
  • the horizontal axis in FIG. 7 shows the ratio between the regenerative energy and the energy consumed by the EV travel (displayed as regenerative / EV in FIG. 7, hereinafter referred to as the regenerative / EV ratio).
  • a driver who tends to change the amount of depression of the accelerator pedal quickly (a driver who has a rapid acceleration tendency) immediately exceeds the threshold value of the required driving force for starting the engine, and therefore tends to have less EV travel. .
  • Such a driver has a low regeneration / EV ratio because the rate at which the regenerative energy is consumed by EV traveling is reduced.
  • the regenerative energy and the energy consumed by EV traveling are observed for a predetermined period, and integrated to calculate the regenerative / EV ratio.
  • the absolute value of the slope d correspondingly increases to d1 to d4.
  • the virtual EV traveling operation point PEV2 can be determined by the line LB2.
  • This operating point PEV2 is an operating point that is determined corresponding to a driver who is less efficient in performing EV traveling than the driver corresponding to the operating point PEV1.
  • step S32 the operating point at the time of EV traveling on the map and other points are connected and the point with the largest inclination (the point with the large absolute value of the negative inclination) is selected and recorded.
  • FIG. 8 is a diagram for explaining the selection of the operating point in step S32.
  • a line connecting an operating point during EV traveling and an operating point during engine traveling alone is defined as line LA.
  • These two operating points are two basic operating points when the required driving force corresponding to this map is given.
  • a line with a negative slope steeper than the line LA (a line where the absolute value of the slope d is larger than the line LA) ) Exist.
  • the operating point on the line where the negative slope is steeper than LA is an operating point that can efficiently charge the fuel consumption increased with respect to the operating point of the single engine operation.
  • the operating point PS exists on the line LA1 where the negative slope is steeper than the line LA. Therefore, it is preferable to operate the hybrid system at the operating point PS as long as the SOC of the battery still has room to charge. Therefore, in principle, when the required driving force corresponding to the map of FIG. 8 is requested, either the EV travel operation point or the operation point PS is selected.
  • step S33 an allowable charge / discharge amount determined by battery constraints is set as a basic search range for searching the map.
  • a value that can protect the life of the battery is set even if this charge / discharge is permanently repeated.
  • FIG. 9 is a map in which the allowable discharge amount POUT and the allowable charge amount PIN are entered in the map of FIG. 5 and lines LA1 and LA2 are drawn.
  • allowable discharge amount POUT and allowable charge amount PIN are allowable charge / discharge amounts determined by battery constraints, and are values set in step S33.
  • the range between the allowable discharge amount POUT and the allowable charge amount PIN is the operating point search range.
  • the operating point on line LA2 has low efficiency, and the operating point on line LA1 has high efficiency.
  • step S41 it is determined whether or not it is necessary to change the allowable charge / discharge amount set in step S33 from the vehicle speed, SOC, and battery temperature.
  • This determination can be made, for example, based on whether any of vehicle speed, SOC, and battery temperature exceeds or falls below a corresponding threshold value.
  • step S41 If it is determined in step S41 that the allowable charge / discharge amount needs to be changed, the process proceeds to step S42, and the process of changing the allowable charge / discharge amount is performed.
  • FIG. 10 is a diagram illustrating a processing example of changing the allowable charge / discharge amount when the SOC exceeds the threshold value.
  • FIG. 11 is a diagram showing an example of processing for changing the allowable charge / discharge amount when the SOC falls below the threshold value.
  • FIG. 12 is a diagram showing a processing example of changing the allowable charge / discharge amount when the battery temperature exceeds the threshold value.
  • the allowable charge amount is changed from PIN to PINZ, and the allowable discharge amount is changed from POUT to POUTZ. That is, the search range of the operating point is narrowed toward the zero charge / discharge line. As a result, it is possible to achieve optimum charge / discharge while avoiding an excessive temperature rise due to charge / discharge.
  • FIG. 13 is a diagram showing a processing example of changing the allowable charge / discharge amount when the vehicle speed exceeds the threshold value.
  • step S42 in FIG. 4 the search range is changed by changing the allowable charge / discharge amount as shown in FIGS.
  • step S43 if it is determined in step S41 in FIG. 4 that it is not necessary to change the allowable charge / discharge amount in terms of vehicle speed, battery SOC, and battery temperature, the process proceeds to step S43.
  • step S43 if the operating point recorded in step S32 is equal to or greater than the allowable charge / discharge amount of step S33, the allowable charge / discharge amount is temporarily increased. This temporary increase is executed in a range where the increasing continuous time does not exceed a predetermined value.
  • FIG. 14 is a diagram for explaining a temporary increase in the allowable charge / discharge amount in step S43.
  • step S33 when the operating point indicating the charge / discharge amount with the optimum efficiency recorded in step S33 is outside the search range, and there is no restriction on the search range due to the battery or vehicle speed (in step S41). NO) allows the search range to be temporarily extended when the continuous charge / discharge time outside the search range is equal to or shorter than a predetermined time (for example, t seconds). That is, the search range is extended only for a short time.
  • a predetermined time for example, t seconds
  • the extended range may include an operating point that is the optimal amount of charge.
  • FIG. 15 is a diagram for explaining the first modification.
  • the efficiency line LA is drawn around the operating point during EV traveling, but the center point of the efficiency line may be the operating point during engine traveling alone as shown in FIG. In this case, the efficiency is better when the slope is gentle on the discharge side, and the efficiency is better when the slope is steep on the charge side.
  • FIG. 16 is a diagram for explaining a second modification.
  • FIG. 16 illustrates a concept that does not have the center point of rotation of the efficiency line.
  • the hybrid vehicle control device disclosed in the present embodiment is a hybrid vehicle control device including battery BAT, motor generators MG ⁇ b> 1 and MG ⁇ b> 2, and engine 2.
  • the hybrid vehicle control device has a map shown in FIG. 5 in which a plurality of operating points, each of which represents a relationship between the fuel consumption amount and the charge / discharge amount to the power storage device, each predetermined for each required driving force to the vehicle are recorded.
  • a plurality of storage units 13 and a single map selected from a plurality of maps according to the required driving force, and a single operating point selected from a plurality of operating points on the selected map.
  • a control device 14 that controls the engine so as to correspond to (PS of FIG. 9, PS1, PS2, etc. of FIG. 6).
  • control device 14 has a line connected to an operating point (PEV1, PEV2, etc. in FIG. 6) when performing EV traveling in which the engine is stopped from among a plurality of operating points on the selected map.
  • the operating point at which the absolute value of the slope d is the largest is selected.
  • control device 14 limits the range of operation points to be selected from a plurality of operation points on the selected map based on the state of the vehicle.
  • the state of the vehicle includes either the state of charge SOC of the battery BAT or the temperature of the battery BAT.
  • control device 14 when the state of charge SOC of battery BAT exceeds the first threshold value, control device 14 is limited to limit the amount of charge to the power storage device on the map.
  • One operation point is selected from the operation points included in the region (the search range in FIG. 10).
  • control device 14 is limited to limit the amount of discharge from the power storage device in the map when the state of charge SOC of battery BAT falls below the second threshold value.
  • One operation point is selected from the operation points included in the region (search range in FIG. 11).
  • control device 14 limits both the charge amount to the power storage device and the discharge amount from the power storage device in the map.
  • One operation point is selected from the operation points included in the limited region (the search range in FIG. 12).
  • the state of the vehicle includes the vehicle speed. More preferably, as shown in FIG. 13, when the vehicle speed V of the vehicle exceeds a threshold value, the control device 14 is within an area limited to limit the amount of charge to the power storage device on the map (see FIG. 13). One operation point is selected from the operation points included in the 13 search ranges.
  • the state of the vehicle includes a continuous charge / discharge time of the battery BAT. That is, the allowable charge / discharge amount may be temporarily expanded as shown in FIG. 14 within a range where the continuous charge / discharge time does not exceed the predetermined time.
  • control device 14 recognizes the traveling pattern of the driver and travels recognized from a plurality of operating points on the selected map.
  • the operating point to be selected is changed according to the pattern.
  • control methods disclosed in the above embodiments can be executed by software using a computer.
  • a program for causing a computer to execute this control method is read from a recording medium (ROM, CD-ROM, memory card, etc.) recorded in a computer-readable manner into a computer in a vehicle control device or provided through a communication line. You may do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A control device of a hybrid vehicle includes a memory unit (13), wherein a plurality of maps are stored, said maps having a plurality of operation points recorded therein, said operation points denoting relationships between fuel consumption quantities and accumulator device charge-discharge quantities, said maps being pre-defined on a per requested drive power to the vehicle basis; and a control device (14) that selects one map from the plurality of maps according to the requested drive power, selects one operation point from the plurality of operation points upon the selected map, and controls the engine so as to correspond to the selected operation point.

Description

ハイブリッド車両の制御装置およびハイブリッド車両Hybrid vehicle control device and hybrid vehicle
 この発明は、ハイブリッド車両の制御装置およびハイブリッド車両に関し、特に、蓄電装置とモータとエンジンとを搭載するハイブリッド車両の制御装置に関する。 The present invention relates to a hybrid vehicle control device and a hybrid vehicle, and more particularly to a hybrid vehicle control device equipped with a power storage device, a motor, and an engine.
 近年、環境問題からハイブリッド自動車が重要視されている。ハイブリッド電気自動車の充放電制御装置に関する文献として特開平9-98513号公報(特許文献1)がある。 In recent years, hybrid cars have been regarded as important due to environmental issues. Japanese Unexamined Patent Publication No. 9-98513 (Patent Document 1) is a document related to a charge / discharge control device for a hybrid electric vehicle.
 この文献では、車載の原動機により発電機を駆動してバッテリを充電するための充電制御を行なうハイブリッド電気自動車の充放電制御装置が開示されている。この充放電制御装置は、初期充電開始の充電率及びこの初期充電終了の充電率を、充電効率のよい最適充電範囲よりもいずれも低く設定する。そして、初期充電の後に、この初期充電よりも充電開始の充電率や充電終了の充電率が最適充電範囲に近い中間充電処理を経て、最適充電範囲による充電に移行できるように構成されている。 This document discloses a charge / discharge control device for a hybrid electric vehicle that performs charge control for charging a battery by driving a generator with an onboard motor. This charging / discharging control device sets the charging rate at the start of initial charging and the charging rate at the end of initial charging to be lower than the optimum charging range with good charging efficiency. Then, after the initial charging, the charging rate at the start of charging and the charging rate at the end of charging are shifted to charging based on the optimal charging range through an intermediate charging process closer to the optimal charging range than the initial charging.
特開平9-98513号公報JP-A-9-98513 特開平10-215503号公報JP-A-10-215503
 図17~図19によって、充放電制御の効率改善の検討例を説明する。
 図17は、ハイブリッド車両の基本充放電マップの一例を示した図である。
A study example for improving the efficiency of charge / discharge control will be described with reference to FIGS.
FIG. 17 is a diagram showing an example of a basic charge / discharge map of a hybrid vehicle.
 図17を参照して、横軸にはバッテリの充電状態(SOC:State Of Charge)(%)が示され、縦軸には充放電量(kW)が示される。ハイブリッド自動車の制御装置は、SOCに基づいて基本充放電量を決定する。すなわち、バッテリの現在のSOCがSOC中心と一致していれば、バッテリに対して充放電を行なわせない。現在のSOCがSOC中心よりも高ければ制御装置はバッテリを放電させ、現在のSOCがSOC中心よりも低ければ制御装置はバッテリを充電する。このような制御が実行されることにより、バッテリのSOCはSOC中心付近に収束する。 Referring to FIG. 17, the horizontal axis indicates the state of charge (SOC: State Of Charge) (%), and the vertical axis indicates the charge / discharge amount (kW). The control device for the hybrid vehicle determines the basic charge / discharge amount based on the SOC. That is, if the current SOC of the battery matches the SOC center, the battery is not charged / discharged. If the current SOC is higher than the SOC center, the control device discharges the battery, and if the current SOC is lower than the SOC center, the control device charges the battery. By executing such control, the SOC of the battery converges near the SOC center.
 図18は、効率を考慮した充放電マップの一例を示した図である。
 図18は、充電が実行されるときに参照される。図18の横軸にはユーザ要求パワーが示され、縦軸には充電量が示される。ユーザ要求パワーは、たとえばアクセルペダルのふみ具合に応じて増減する。
FIG. 18 is a diagram illustrating an example of a charge / discharge map in consideration of efficiency.
FIG. 18 is referred to when charging is performed. The horizontal axis in FIG. 18 indicates the user requested power, and the vertical axis indicates the amount of charge. The user request power increases or decreases according to, for example, the degree of depression of the accelerator pedal.
 図19は、効率を考慮した充電について説明するための図である。
 図19には、横軸にエンジン回転数、縦軸にエンジントルクを示した平面上においてエンジンの動作ラインとエンジンの熱効率の等高線が重ねて表示されている。熱効率の等高線は中心に近づくほど熱効率が良い。図18、図19を参照して、ユーザ要求パワーが低い領域では、充電量が最大充電量まで増加される。この充電により、エンジンの動作ライン上を動作点が熱効率が良くなる方向に移動するので、車両の燃費が向上する。
FIG. 19 is a diagram for explaining charging in consideration of efficiency.
In FIG. 19, the engine operating line and the engine thermal efficiency contour are superimposed on a plane with the engine speed on the horizontal axis and the engine torque on the vertical axis. The thermal efficiency contour is closer to the center, and the thermal efficiency is better. Referring to FIGS. 18 and 19, the charge amount is increased to the maximum charge amount in the region where the user request power is low. This charging improves the fuel efficiency of the vehicle because the operating point moves on the engine operating line in a direction in which the thermal efficiency is improved.
 図17で決定される基本充放電量に比べて、図18で決定される充電量のほうが充電側であれば、図18で決定される充電量を優先的に適用してエンジン制御およびモータジェネレータ制御が行なわれる。 If the charge amount determined in FIG. 18 is on the charge side as compared with the basic charge / discharge amount determined in FIG. 17, the charge amount determined in FIG. Control is performed.
 しかし、この検討例ではSOC中心が高めにシフトしやすく、減速時の回生電力が回収しきれないことが生じる可能性がある。したがって、この検討例は放電側についてもさらに改善される余地がある。 However, in this study example, the SOC center tends to shift higher, and there is a possibility that the regenerative power during deceleration cannot be recovered. Therefore, this study example has room for further improvement on the discharge side.
 本発明の目的は、総合的なエネルギ効率が改善されたハイブリッド車両の制御装置およびハイブリッド車両を提供することである。 An object of the present invention is to provide a hybrid vehicle control device and a hybrid vehicle with improved overall energy efficiency.
 この発明は、要約すると、蓄電装置とモータとエンジンとを搭載するハイブリッド車両の制御装置であって、車両への要求駆動力ごとにあらかじめ定められた、燃料消費量と蓄電装置への充放電量の関係を示す複数の動作点が各々に記録された複数のマップを記憶した記憶部と、要求駆動力に応じて複数のマップから1つのマップを選択し、選択したマップ上の複数の動作点のうちから1つの動作点を選択して選択した動作点に対応するようにエンジンを制御する制御装置とを含む。 In summary, the present invention is a control device for a hybrid vehicle equipped with a power storage device, a motor, and an engine, the fuel consumption amount and the charge / discharge amount to the power storage device determined in advance for each required driving force to the vehicle. A storage unit storing a plurality of maps each storing a plurality of operation points indicating the relationship between the two, and selecting one map from the plurality of maps according to the required driving force, and a plurality of operation points on the selected map And a control device that controls the engine so as to correspond to the selected operating point.
 好ましくは、制御装置は、選択したマップ上の複数の動作点のうちから、エンジンを停止して走行するEV走行を行なう際の動作点と結んだ線の傾きの絶対値が最も大きくなる動作点を選択する。 Preferably, the control device has an operation point at which an absolute value of an inclination of a line connected to an operation point when performing EV traveling in which the engine is stopped among a plurality of operation points on the selected map is the largest. Select.
 好ましくは、制御装置は、車両の状態に基づいて、選択したマップ上の複数の動作点のうちから選択対象とする動作点の範囲を限定する。 Preferably, the control device limits a range of operation points to be selected from among a plurality of operation points on the selected map based on the state of the vehicle.
 より好ましくは、車両の状態は、蓄電装置の充電状態と、蓄電装置の温度とのいずれかを含む。 More preferably, the state of the vehicle includes either the state of charge of the power storage device or the temperature of the power storage device.
 さらに好ましくは、制御装置は、蓄電装置の充電状態が第1しきい値を超えた場合には、マップにおいて蓄電装置への充電量を制限するように限定した領域内に含まれる動作点から1つの動作点を選択する。 More preferably, when the state of charge of the power storage device exceeds the first threshold value, the control device is set to 1 from an operating point included in a limited area so as to limit the amount of charge to the power storage device on the map. Select one operating point.
 さらに好ましくは、制御装置は、蓄電装置の充電状態が第2しきい値を下回った場合には、マップにおいて蓄電装置からの放電量を制限するように限定した領域内に含まれる動作点から1つの動作点を選択する。 More preferably, when the state of charge of the power storage device falls below the second threshold value, the control device is configured to 1 from an operating point included in a limited area so as to limit a discharge amount from the power storage device on the map. Select one operating point.
 さらに好ましくは、制御装置は、蓄電装置の温度がしきい値を超えた場合には、マップにおいて蓄電装置への充電量および蓄電装置からの放電量をともに制限するように限定した領域内に含まれる動作点から1つの動作点を選択する。 More preferably, when the temperature of the power storage device exceeds a threshold value, the control device is included in an area limited to limit both a charge amount to the power storage device and a discharge amount from the power storage device on the map. One operating point is selected from the operating points to be operated.
 さらに好ましくは、車両の状態は、車両の車速を含む。
 さらに好ましくは、制御装置は、車両の車速がしきい値を超えた場合には、マップにおいて蓄電装置への充電量を制限するように限定した領域内に含まれる動作点から1つの動作点を選択する。
More preferably, the state of the vehicle includes a vehicle speed of the vehicle.
More preferably, when the vehicle speed of the vehicle exceeds a threshold value, the control device selects one operating point from operating points included in a limited area so as to limit the amount of charge to the power storage device on the map. select.
 さらに好ましくは、車両の状態は、初期状態からの蓄電装置の充放電積算時間を含む。
 好ましくは、制御装置は、運転者の走行パターンを認識し、選択したマップ上の複数の動作点のうちから認識した走行パターンに応じて選択する動作点を変更する。
More preferably, the state of the vehicle includes a charge / discharge integrated time of the power storage device from the initial state.
Preferably, the control device recognizes the driving pattern of the driver, and changes the operating point selected according to the driving pattern recognized from the plurality of operating points on the selected map.
 この発明は、他の局面では上記いずれかのハイブリッド車両の制御装置を搭載するハイブリッド車両である。 In another aspect, the present invention is a hybrid vehicle equipped with any one of the above hybrid vehicle control devices.
 本発明によれば、ハイブリッド車両の効率が一層向上して燃費が改善される。 According to the present invention, the efficiency of the hybrid vehicle is further improved and the fuel consumption is improved.
本実施の形態のハイブリッド車両1の主たる構成を示す図である。It is a figure which shows the main structures of the hybrid vehicle 1 of this Embodiment. 図1の制御装置14の機能ブロックと関連する周辺装置とを示した図である。It is the figure which showed the peripheral device related with the functional block of the control apparatus of FIG. 制御装置14としてコンピュータ100を用いた場合の一般的な構成を示した図である。2 is a diagram illustrating a general configuration when a computer 100 is used as a control device 14. FIG. 図1の制御装置14で実行される制御を説明するためのフローチャートである。It is a flowchart for demonstrating the control performed with the control apparatus 14 of FIG. fc-Pbマップの一例を示した図である。FIG. 6 is a diagram illustrating an example of an fc-Pb map. 仮想のEV走行時の動作点の設定について説明するための図である。It is a figure for demonstrating the setting of the operating point at the time of virtual EV driving | running | working. 傾きdとパラメータKとの関係を示した図である。It is the figure which showed the relationship between the inclination d and the parameter K. FIG. ステップS32の動作点の選択について説明するための図である。It is a figure for demonstrating selection of the operating point of step S32. 図5のマップに許容放電量POUTと許容充電量PINを記入し、ラインLA1、LA2を引いたマップである。6 is a map in which the allowable discharge amount POUT and the allowable charge amount PIN are entered in the map of FIG. 5 and lines LA1 and LA2 are drawn. SOCがしきい値を超えた場合の許容充放電量を変更する処理例を示した図である。It is the figure which showed the example of a process which changes the allowable charging / discharging amount when SOC exceeds a threshold value. SOCがしきい値を下回った場合の許容充放電量を変更する処理例を示した図である。It is the figure which showed the example of a process which changes the allowable charging / discharging amount when SOC is less than a threshold value. バッテリ温度がしきい値を超えた場合の許容充放電量を変更する処理例を示した図である。It is the figure which showed the example of a process which changes the allowable charging / discharging amount when battery temperature exceeds a threshold value. 車速がしきい値を超えた場合の許容充放電量を変更する処理例を示した図である。It is the figure which showed the example of a process which changes the allowable charging / discharging amount when a vehicle speed exceeds a threshold value. ステップS43における許容充放電量の一時的な増加について説明するための図である。It is a figure for demonstrating the temporary increase of the allowable charging / discharging amount in step S43. 第1の変形例を説明するための図である。It is a figure for demonstrating a 1st modification. 第2の変形例を説明するための図である。It is a figure for demonstrating the 2nd modification. ハイブリッド車両の基本充放電マップの一例を示した図である。It is the figure which showed an example of the basic charging / discharging map of a hybrid vehicle. 効率を考慮した充放電マップの一例を示した図である。It is the figure which showed an example of the charging / discharging map which considered efficiency. 効率を考慮した充電について説明するための図である。It is a figure for demonstrating the charge which considered efficiency.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 図1は、本実施の形態のハイブリッド車両1の主たる構成を示す図である。ハイブリッド車両1は、エンジンとモータとを走行に併用する車両である。
[Embodiment 1]
FIG. 1 is a diagram illustrating a main configuration of a hybrid vehicle 1 according to the present embodiment. The hybrid vehicle 1 is a vehicle that uses both an engine and a motor for traveling.
 図1を参照して、ハイブリッド車両1は、前輪20R,20Lと、後輪22R,22Lと、エンジン2と、プラネタリギヤ16と、デファレンシャルギヤ18と、ギヤ4,6とを含む。 Referring to FIG. 1, hybrid vehicle 1 includes front wheels 20R and 20L, rear wheels 22R and 22L, an engine 2, a planetary gear 16, a differential gear 18, and gears 4 and 6.
 ハイブリッド車両1は、さらに、車両後方に配置される高圧バッテリBATと、高圧バッテリBATの出力する直流電力を昇圧する昇圧ユニット32と、昇圧ユニット32との間で直流電力を授受するインバータ36と、プラネタリギヤ16を介してエンジン2と結合され主として発電を行なうモータジェネレータMG1と、回転軸がプラネタリギヤ16に接続されるモータジェネレータMG2とを含む。インバータ36はモータジェネレータMG1,MG2に接続され、交流電力と昇圧ユニット32からの直流電力との変換を行なう。 The hybrid vehicle 1 further includes a high voltage battery BAT arranged at the rear of the vehicle, a boost unit 32 that boosts DC power output from the high voltage battery BAT, and an inverter 36 that transfers DC power between the boost unit 32, Motor generator MG1 coupled to engine 2 via planetary gear 16 and mainly generating electric power, and motor generator MG2 whose rotating shaft is connected to planetary gear 16 are included. Inverter 36 is connected to motor generators MG <b> 1 and MG <b> 2 and performs conversion between AC power and DC power from booster unit 32.
 プラネタリギヤ16は、第1~第3の回転軸を有する。第1の回転軸はエンジン2に接続され第2の回転軸はモータジェネレータMG1に接続され第3の回転軸はモータジェネレータMG2に接続される。 The planetary gear 16 has first to third rotating shafts. The first rotation shaft is connected to engine 2, the second rotation shaft is connected to motor generator MG1, and the third rotation shaft is connected to motor generator MG2.
 この第3の回転軸にはギヤ4が取付けられ、このギヤ4はギヤ6を駆動することによりデファレンシャルギヤ18に動力を伝達する。デファレンシャルギヤ18はギヤ6から受ける動力を前輪20R,20Lに伝達するとともに、ギヤ6,4を介して前輪20R,20Lの回転力をプラネタリギヤの第3の回転軸に伝達する。 The gear 4 is attached to the third rotating shaft, and the gear 4 drives the gear 6 to transmit power to the differential gear 18. The differential gear 18 transmits the power received from the gear 6 to the front wheels 20R and 20L, and transmits the rotational force of the front wheels 20R and 20L to the third rotating shaft of the planetary gear via the gears 6 and 4.
 プラネタリギヤ16は、エンジン2,モータジェネレータMG1,MG2の間で動力を分割する役割を果たす。すなわちプラネタリギヤ16の3つの回転軸のうち2つの回転軸の回転が定まれば、残る1つの回転軸の回転は強制的に決定される。したがって、エンジン2を最も効率のよい領域で動作させつつ、モータジェネレータMG1の発電量を制御してモータジェネレータMG2を駆動させることにより車速の制御を行ない、全体としてエネルギ効率のよい自動車を実現している。 Planetary gear 16 plays a role of dividing power between engine 2 and motor generators MG1 and MG2. That is, if the rotation of two of the three rotation shafts of the planetary gear 16 is determined, the rotation of the remaining one rotation shaft is forcibly determined. Accordingly, the vehicle speed is controlled by controlling the power generation amount of the motor generator MG1 and driving the motor generator MG2 while operating the engine 2 in the most efficient region, thereby realizing an overall energy efficient vehicle. Yes.
 なお、モータジェネレータMG2の回転を減速してプラネタリギヤ16に伝達する減速ギヤを設けても良く、その減速ギヤの減速比を変更可能にした変速ギヤを設けても良い。 It should be noted that a reduction gear that decelerates the rotation of motor generator MG2 and transmits it to planetary gear 16 may be provided, or a transmission gear that can change the reduction ratio of the reduction gear may be provided.
 直流電源である高圧バッテリBATは、例えばニッケル水素またはリチウムイオンなどの二次電池を含み、直流電力を昇圧ユニット32に供給するとともに、昇圧ユニット32からの直流電力によって充電される。 The high voltage battery BAT which is a DC power source includes a secondary battery such as nickel metal hydride or lithium ion, for example, and supplies DC power to the boosting unit 32 and is charged by DC power from the boosting unit 32.
 昇圧ユニット32は、高圧バッテリBATから受ける直流電圧を昇圧してその昇圧された直流電圧をインバータ36に供給する。インバータ36は供給された直流電圧を交流電圧に変換してエンジン始動時にはモータジェネレータMG1を駆動制御する。また、エンジン始動後には、モータジェネレータMG1が発電した交流電力はインバータ36によって直流に変換され、昇圧ユニット32によって高圧バッテリBATの充電に適切な電圧に変換されて高圧バッテリBATが充電される。 The boost unit 32 boosts the DC voltage received from the high voltage battery BAT and supplies the boosted DC voltage to the inverter 36. Inverter 36 converts the supplied DC voltage into AC voltage, and drives and controls motor generator MG1 when the engine is started. Further, after the engine is started, AC power generated by motor generator MG1 is converted into DC by inverter 36, and converted to a voltage suitable for charging high voltage battery BAT by boosting unit 32, and high voltage battery BAT is charged.
 また、インバータ36はモータジェネレータMG2を駆動する。モータジェネレータMG2はエンジン2を補助して前輪20R,20Lを駆動する。制動時には、モータジェネレータは回生運転を行ない、車輪の回転エネルギを電気エネルギに変換する。得られた電気エネルギは、インバータ36および昇圧ユニット32を経由して高圧バッテリBATに戻される。高圧バッテリBATは組電池であり、直列に接続された複数の電池ユニットB0~Bnを含む。昇圧ユニット32と高圧バッテリBATとの間にはシステムメインリレー28,30が設けられ、車両非運転時には高電圧が遮断される。 Further, the inverter 36 drives the motor generator MG2. Motor generator MG2 assists engine 2 to drive front wheels 20R and 20L. During braking, the motor generator performs a regenerative operation and converts the rotational energy of the wheels into electric energy. The obtained electrical energy is returned to the high voltage battery BAT via the inverter 36 and the boost unit 32. The high-voltage battery BAT is an assembled battery and includes a plurality of battery units B0 to Bn connected in series. System main relays 28 and 30 are provided between the boost unit 32 and the high voltage battery BAT, and the high voltage is cut off when the vehicle is not in operation.
 ハイブリッド車両1は、さらに、制御装置14と記憶部13とを含む。制御装置14は、記憶部13に格納されたマップを参照し、運転者の指示および車両に取付けられた各種センサからの出力に応じて、エンジン2,インバータ36,昇圧ユニット32およびシステムメインリレー28,30の制御を行なう。 Hybrid vehicle 1 further includes a control device 14 and a storage unit 13. The control device 14 refers to the map stored in the storage unit 13 and determines the engine 2, the inverter 36, the boosting unit 32, and the system main relay 28 in accordance with the driver's instructions and outputs from various sensors attached to the vehicle. , 30 are controlled.
 図2は、図1の制御装置14の機能ブロックと関連する周辺装置とを示した図である。なお、この制御装置14は、ソフトウエアでもハードウエアでも実現が可能である。 FIG. 2 is a diagram showing functional blocks of the control device 14 of FIG. 1 and related peripheral devices. The control device 14 can be realized by software or hardware.
 図2を参照して、制御装置14は、ハイブリッド制御部62と、バッテリ制御部66と、エンジン制御部68とを含む。 Referring to FIG. 2, control device 14 includes a hybrid control unit 62, a battery control unit 66, and an engine control unit 68.
 バッテリ制御部66は、電流センサ48、温度センサ49、電圧センサ50によって検出されたバッテリ電流、バッテリ温度およびバッテリ電圧に基づいて高圧バッテリBATの充放電電流の積算などを行なって求めた高圧バッテリBATの充電状態SOCをハイブリッド制御部62に送信する。 The battery control unit 66 calculates the high voltage battery BAT obtained by integrating the charge / discharge current of the high voltage battery BAT based on the battery current detected by the current sensor 48, the temperature sensor 49, and the voltage sensor 50, the battery temperature, and the battery voltage. The state of charge SOC is transmitted to the hybrid control unit 62.
 エンジン制御部68は、エンジン2のスロットル制御を行なうとともに、エンジン2のエンジン回転速度Neを検出してハイブリッド制御部62に送信する。 The engine control unit 68 performs throttle control of the engine 2, detects the engine rotation speed Ne of the engine 2, and transmits it to the hybrid control unit 62.
 ハイブリッド制御部62は、アクセルポジションセンサ42の出力信号Accと車速センサで検出された車速Vとに基づいて、運転者の要求する出力(要求パワー)を算出する。ハイブリッド制御部62は、この運転者の要求パワーに加え、高圧バッテリBATの充電状態SOCを考慮して必要な駆動力(トータルパワー)を算出し、エンジンに要求する回転速度とエンジンに要求するパワーとをさらに算出する。その際に、ハイブリッド制御部62は、記憶部13に格納されたマップを参照する。 The hybrid control unit 62 calculates an output (required power) requested by the driver based on the output signal Acc of the accelerator position sensor 42 and the vehicle speed V detected by the vehicle speed sensor. The hybrid control unit 62 calculates necessary driving force (total power) in consideration of the state of charge SOC of the high-voltage battery BAT in addition to the driver's required power, and the rotational speed required for the engine and the power required for the engine. Are further calculated. At that time, the hybrid control unit 62 refers to the map stored in the storage unit 13.
 ハイブリッド制御部62は、エンジン制御部68に要求回転速度と要求パワーとを送信し、エンジン制御部68にエンジン2のスロットル制御を行なわせる。 The hybrid control unit 62 transmits the required rotation speed and the required power to the engine control unit 68, and causes the engine control unit 68 to perform throttle control of the engine 2.
 ハイブリッド制御部62は、走行状態に応じた運転者要求トルクを算出し、インバータ36にモータジェネレータMG2を駆動させるとともに、必要に応じてモータジェネレータMG1に発電を行なわせる。 Hybrid control unit 62 calculates driver required torque according to the running state, causes inverter 36 to drive motor generator MG2, and causes motor generator MG1 to generate power as necessary.
 エンジン2の駆動力は、車輪を直接駆動する部分とモータジェネレータMG1を駆動する部分とに分配される。モータジェネレータMG2の駆動力とエンジンの直接駆動分との合計が車両の駆動力となる。 The driving force of the engine 2 is distributed to a part that directly drives the wheel and a part that drives the motor generator MG1. The sum of the driving force of motor generator MG2 and the direct driving amount of the engine is the driving force of the vehicle.
 さらに、この車両にはEV優先スイッチ46が設けられている。運転者がこのEV優先スイッチ46を押すとエンジンの作動が制限される。これにより車両は、原則としてエンジンを停止させモータジェネレータMG2の駆動力のみで走行する。深夜、早朝の住宅密集地での低騒音化や屋内駐車場、車庫内での排気ガス低減化のために、運転者は必要に応じてEV優先スイッチ46を押すことができる。 Furthermore, this vehicle is provided with an EV priority switch 46. When the driver presses the EV priority switch 46, the operation of the engine is limited. As a result, the vehicle stops with the engine stopped in principle, and travels only with the driving force of motor generator MG2. The driver can press the EV priority switch 46 as necessary to reduce noise in a densely populated residential area in the middle of the night or early morning, or to reduce exhaust gas in an indoor parking lot or garage.
 しかし、エンジンをずっと停止させておくとバッテリが充電不足になったり、必要なパワーが得られなかったりすることがあるので、1)EV優先スイッチ46をオフにする、2)バッテリの充電状態SOCが所定値よりも低下する、3)車速が所定値(エンジン起動しきい値)以上となる、4)アクセル開度が規定値以上となる、といういずれかの条件が成立するとEV優先スイッチ46のオン状態は解除される。 However, if the engine is stopped for a long time, the battery may become insufficiently charged or the necessary power may not be obtained. 1) The EV priority switch 46 is turned off. 2) The state of charge SOC of the battery Is reduced below a predetermined value, 3) if any of the conditions that the vehicle speed exceeds a predetermined value (engine start threshold) or 4) the accelerator opening exceeds a specified value, the EV priority switch 46 The on state is released.
 以上図2で説明した制御装置14は、コンピュータを用いてソフトウエアで実現することも可能である。 The control device 14 described above with reference to FIG. 2 can also be realized by software using a computer.
 図3は、制御装置14としてコンピュータ100を用いた場合の一般的な構成を示した図である。 FIG. 3 is a diagram showing a general configuration when the computer 100 is used as the control device 14.
 図3を参照して、コンピュータ100は、CPU180と、A/D変換器181と、ROM182と、RAM183と、インターフェース部184とを含む。 Referring to FIG. 3, the computer 100 includes a CPU 180, an A / D converter 181, a ROM 182, a RAM 183, and an interface unit 184.
 A/D変換器181は、各種センサの出力等のアナログ信号AINをディジタル信号に変換してCPU180に出力する。またCPU180はデータバスやアドレスバス等のバス186でROM182と、RAM183と、インターフェース部184とに接続されデータ授受を行なう。 The A / D converter 181 converts analog signals AIN such as outputs from various sensors into digital signals and outputs them to the CPU 180. The CPU 180 is connected to the ROM 182, the RAM 183, and the interface unit 184 via a bus 186 such as a data bus or an address bus to exchange data.
 ROM182は、例えばCPU180で実行されるプログラムや参照されるマップ等のデータが格納されている。RAM183は、例えばCPU180がデータ処理を行なう場合の作業領域であり、各種変数等のデータを一時的に記憶する。 The ROM 182 stores data such as a program executed by the CPU 180 and a map to be referred to. The RAM 183 is a work area when the CPU 180 performs data processing, for example, and temporarily stores data such as various variables.
 インターフェース部184は、例えば他のECU(Electric Control Unit)との通信を行なったり、ROM182として電気的に書換可能なフラッシュメモリ等を使用した場合の書換データの入力などを行なったり、メモリカードやCD-ROM等のコンピュータ読み取り可能な記録媒体からのデータ信号SIGの読込みを行なったりする。 The interface unit 184 communicates with, for example, another ECU (Electric Control Unit), inputs rewrite data when using an electrically rewritable flash memory or the like as the ROM 182, a memory card or a CD Reading data signal SIG from a computer-readable recording medium such as ROM.
 なお、CPU180は、入出力ポートからデータ入力信号DINやデータ出力信号DOUTを授受する。 Note that the CPU 180 transmits and receives the data input signal DIN and the data output signal DOUT from the input / output port.
 制御装置14は、このような構成に限られるものでなく、複数のCPUを含んで実現されるものであっても良い。また、図2のハイブリッド制御部62、バッテリ制御部66、エンジン制御部68の各々が図3のような構成を有するものであっても良い。 The control device 14 is not limited to such a configuration, and may be realized by including a plurality of CPUs. Further, each of the hybrid control unit 62, the battery control unit 66, and the engine control unit 68 of FIG. 2 may have a configuration as shown in FIG.
 図4は、図1の制御装置14で実行される制御を説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining the control executed by the control device 14 of FIG.
 図4を参照して、まず処理が開始されると、ステップS1において制御装置14は要求駆動力に基づいて対応するfc-Pbマップ(後に図5で説明する)を読込む。fc-Pbマップは、記憶部13に予め格納されている。なお、例えば、制御装置としてコンピュータが使用される場合には、fc-Pbマップは図3に示したROM182やRAM183に記憶されている。 Referring to FIG. 4, when the process is first started, in step S1, control device 14 reads a corresponding fc-Pb map (described later in FIG. 5) based on the required driving force. The fc-Pb map is stored in the storage unit 13 in advance. For example, when a computer is used as the control device, the fc-Pb map is stored in the ROM 182 or the RAM 183 shown in FIG.
 図5は、fc-Pbマップの一例を示した図である。
 図5を参照して、横軸には燃料消費量fc[g/s]、縦軸にはバッテリBATの充放電パワーPb[kW]が示されている。充放電パワーPbは、バッテリBATから放電が行なわれる場合の符号を(+)とし、バッテリBATに充電が行なわれる場合の符号を(-)としている。そして、ある要求駆動力を実現するために燃料消費量fcを消費することとするとバッテリ充放電パワーPbがどのようになるか、動作点P1~P8がマップ上に示されている。これらの動作点は、適切なシステム効率が得られるように適合された点である。定常走行させ計測しておくことにより、これらの動作点のデータは実験により予め求めておくことができる。
FIG. 5 is a diagram showing an example of the fc-Pb map.
Referring to FIG. 5, the horizontal axis represents the fuel consumption fc [g / s], and the vertical axis represents the charge / discharge power Pb [kW] of the battery BAT. The charge / discharge power Pb has a sign (+) when the battery BAT is discharged and a sign (−) when the battery BAT is charged. The operating points P1 to P8 are shown on the map as to what the battery charge / discharge power Pb will be if the fuel consumption fc is consumed in order to achieve a certain required driving force. These operating points are adapted to obtain appropriate system efficiency. By performing steady running and measuring, the data of these operating points can be obtained in advance by experiments.
 fc=0の動作点P1はエンジンを停止させた状態でモータのみで走行を行なうEV走行した場合の動作点である。Pb=0の動作点P5は、エンジンパワーのみで走行した場合の動作点である。なお、動作点P5での燃料消費量fc=fとする。また、燃料消費量fcがfより小さい動作点P2~P5では、エンジンパワーのみでは要求駆動力が実現できないのでモータでアシストする必要があり、バッテリBATからの放電が行なわれる。逆に、燃料消費量fcがfより大きい動作点P6~P8では、エンジンパワーが要求駆動力に対して余るのでその余分のパワーで発電機を回して発電し、その発電電力でバッテリBATへの充電が行なわれる。 The operating point P1 of fc = 0 is an operating point in the case of EV traveling in which traveling is performed only by the motor with the engine stopped. The operating point P5 of Pb = 0 is an operating point when traveling with only engine power. It is assumed that the fuel consumption amount fc = f at the operating point P5. Further, at the operating points P2 to P5 where the fuel consumption amount fc is smaller than f, the required driving force cannot be realized only by the engine power, so it is necessary to assist with the motor, and the battery BAT is discharged. Conversely, at the operating points P6 to P8 where the fuel consumption amount fc is larger than f, the engine power is surplus with respect to the required driving force, so that the surplus power is used to generate power by turning the generator, and the generated power is sent to the battery BAT. Charging is performed.
 動作点P1~P8を結んだラインL1は、ある値の要求駆動力を実現する場合の燃料-電池出力線である。このような燃料-電池出力線が引かれたマップが、要求駆動力ごとに予め定められている。 The line L1 connecting the operating points P1 to P8 is a fuel-cell output line when realizing a certain value of required driving force. A map with such fuel-cell output lines drawn is determined in advance for each required driving force.
 再び図4を参照して、ステップS1において要求駆動力に対応するfc-Pbマップの読み込みが完了すると、ステップS2に処理が進む。ステップS2ではEV走行可能か否かが判断される。この判断は、たとえばアクセルペダルの位置などで定まる要求パワーと車速とによって定められる。たとえば、要求パワーが所定値よりも大きい場合にはエンジンが始動するように車両の設定がなされている。この車両の設定は、種々の条件を含み得る。 Referring to FIG. 4 again, when the reading of the fc-Pb map corresponding to the required driving force is completed in step S1, the process proceeds to step S2. In step S2, it is determined whether EV traveling is possible. This determination is determined by, for example, the required power determined by the accelerator pedal position and the vehicle speed. For example, the vehicle is set so that the engine starts when the required power is larger than a predetermined value. This vehicle setting may include various conditions.
 ステップS2の次は、ステップS3の検索基準の決定処理が実行され、ステップS3に続いてステップS4の検索範囲の決定が実行される。ステップS3はステップS31~S33の処理を含み、ステップS4はステップS41~S43の処理を含む。 After step S2, the search criteria determination process of step S3 is executed, and the search range of step S4 is determined following step S3. Step S3 includes the processes of steps S31 to S33, and step S4 includes the processes of steps S41 to S43.
 ステップS2において、EV走行可能と判断された場合には直接ステップS32の処理が実行されるが、EV走行不可と判断された場合にはステップS31の処理が実行されてからステップS32に処理が進む。 If it is determined in step S2 that EV travel is possible, the process of step S32 is directly executed. If it is determined that EV travel is impossible, the process proceeds to step S32 after the process of step S31 is performed. .
 ステップS31では、マップ上にエンジン単体走行時の動作点を通る所定の傾きdの線を引き、燃料消費量fc=0となる点(縦軸との交点)を仮想のEV走行時の動作点として設定する。 In step S31, a line having a predetermined slope d passing through the operating point when the engine is traveling alone is drawn on the map, and the point where the fuel consumption fc = 0 (intersection with the vertical axis) is the operating point during virtual EV traveling. Set as.
 図6は、仮想のEV走行時の動作点の設定について説明するための図である。
 図4、図6を参照して、fc=fの点(単体走行の動作点)に対して、傾きd1の直線がラインLB1であり、傾きd2の直線がラインLB2である。この傾きd1、d2は、運転者の走行パターンにより選択される傾きである。走行パターンを評価するパラメータは、たとえば回生で回収されるエネルギとEV走行で消費されるエネルギの比などを用いることができる。
FIG. 6 is a diagram for describing setting of operating points during virtual EV traveling.
Referring to FIGS. 4 and 6, with respect to the point of fc = f (the operating point for single traveling), the straight line with the inclination d1 is the line LB1, and the straight line with the inclination d2 is the line LB2. The inclinations d1 and d2 are inclinations selected according to the driving pattern of the driver. As a parameter for evaluating the running pattern, for example, a ratio of energy recovered by regeneration and energy consumed by EV running can be used.
 図7は、傾きdとパラメータKとの関係を示した図である。
 図7を参照して縦軸には傾きdの絶対値が示されている(図6のマップ上のラインLB1,LB2は負の傾きのラインであるため)。また図7の横軸には回生エネルギとEV走行による消費エネルギの比が示される(図7において回生/EVと表示、以降、回生/EV比と称する)。
FIG. 7 is a diagram showing the relationship between the slope d and the parameter K.
Referring to FIG. 7, the vertical axis indicates the absolute value of the slope d (because the lines LB1 and LB2 on the map of FIG. 6 are negative slope lines). The horizontal axis in FIG. 7 shows the ratio between the regenerative energy and the energy consumed by the EV travel (displayed as regenerative / EV in FIG. 7, hereinafter referred to as the regenerative / EV ratio).
 たとえば、アクセルペダルの踏み込み量の変化が早い傾向のある運転者(急加速傾向の運転者)は、エンジンを始動させる要求駆動力のしきい値をすぐに超えるため、EV走行が少ない傾向がある。このような運転者は回生エネルギをEV走行で消費する率が少なくなるので回生/EV比が大きくなる。 For example, a driver who tends to change the amount of depression of the accelerator pedal quickly (a driver who has a rapid acceleration tendency) immediately exceeds the threshold value of the required driving force for starting the engine, and therefore tends to have less EV travel. . Such a driver has a low regeneration / EV ratio because the rate at which the regenerative energy is consumed by EV traveling is reduced.
 逆に、アクセルペダルをゆっくり踏み込む傾向の運転者(急加速をしない運転者)は、EV走行の期間が長くなる。このような運転者は回生エネルギをEV走行で消費する率が大きくなるので回生/EV比が小さくなる。 Conversely, drivers who tend to depress the accelerator pedal slowly (drivers that do not accelerate suddenly) have a longer EV travel period. Such a driver increases the rate at which the regenerative energy is consumed by EV travel, and thus the regenerative / EV ratio decreases.
 このように所定期間、回生エネルギとEV走行で消費するエネルギを観測し各々積算して回生/EV比を計算する。図7に示すように、回生/EV比がK1~K4と大きくなると、それに対応して傾きdの絶対値はd1~d4と大きくなる。 Thus, the regenerative energy and the energy consumed by EV traveling are observed for a predetermined period, and integrated to calculate the regenerative / EV ratio. As shown in FIG. 7, when the regeneration / EV ratio increases to K1 to K4, the absolute value of the slope d correspondingly increases to d1 to d4.
 再び図6を参照して、運転者の走行パターンにより選択される傾きがd1である場合、fc=fの動作点を基点にラインLB1(y=-d1*(x-f):ただし縦軸Pbをyとし、横軸fcをxとした)を引くことができる。そして、このラインLB1によって仮想のEV走行動作点PEV1が決定できる。この動作点PEV1は、EV走行を効率良く行なう運転者に対応して定められる動作点である。 Referring to FIG. 6 again, when the slope selected by the driving pattern of the driver is d1, line LB1 (y = −d1 * (x−f): ordinate with the operating point of fc = f as the base point Pb is y, and the horizontal axis fc is x). The virtual EV traveling operation point PEV1 can be determined by the line LB1. This operating point PEV1 is an operating point determined corresponding to a driver who efficiently performs EV traveling.
 また、運転者の走行パターンにより選択される傾きがd2である場合、fc=fの動作点を基点にラインLB2(y=-d2*(x-f):ただし縦軸Pbをyとし、横軸fcをxとした)を引くことができる。そして、このラインLB2によって仮想のEV走行動作点PEV2が決定できる。この動作点PEV2は、動作点PEV1に対応する運転者よりもEV走行を行なう効率が悪い運転者に対応して定められる動作点である。 If the slope selected by the driving pattern of the driver is d2, the line LB2 (y = −d2 * (x−f): where fc = f is the base point, where y is the vertical axis Pb and horizontal The axis fc is x). The virtual EV traveling operation point PEV2 can be determined by the line LB2. This operating point PEV2 is an operating point that is determined corresponding to a driver who is less efficient in performing EV traveling than the driver corresponding to the operating point PEV1.
 再び図4を参照して、ステップS2においてEV走行が可能である場合にはfc=0の動作点が存在し、ステップS2においてEV走行が不可である場合でもステップS31の処理により仮想のEV走行動作点が決定される。その後ステップS32の処理が実行される。 Referring to FIG. 4 again, when EV traveling is possible in step S2, there is an operating point of fc = 0, and even if EV traveling is impossible in step S2, virtual EV traveling is performed by the process of step S31. An operating point is determined. Thereafter, the process of step S32 is executed.
 ステップS32では、マップのEV走行時の動作点とその他の点を結び最も傾きが大きい点(負の傾きの絶対値が大きい点)を選択して記録する。 In step S32, the operating point at the time of EV traveling on the map and other points are connected and the point with the largest inclination (the point with the large absolute value of the negative inclination) is selected and recorded.
 図8は、ステップS32の動作点の選択について説明するための図である。
 図8を参照して、EV走行時の動作点とエンジン単体走行時の動作点とを結んだ線をラインLAとする。この2つの動作点は、このマップに対応する要求駆動力が与えられた場合の基本的な2つの動作点である。
FIG. 8 is a diagram for explaining the selection of the operating point in step S32.
Referring to FIG. 8, a line connecting an operating point during EV traveling and an operating point during engine traveling alone is defined as line LA. These two operating points are two basic operating points when the required driving force corresponding to this map is given.
 そして、EV走行時の動作点を基点として、他の動作点を結ぶ直線を考えたとき、ラインLAよりも負の傾きが急になるライン(傾きdの絶対値がラインLAよりも大きくなるライン)が存在するか否かを検討する。負の傾きがLAよりも急であるライン上ある動作点は、エンジン単体動作の動作点に対して増量した燃料消費量を、効率良く充電できる動作点である。 Then, when considering a straight line connecting other operating points with the operating point at the time of EV traveling as a base point, a line with a negative slope steeper than the line LA (a line where the absolute value of the slope d is larger than the line LA) ) Exist. The operating point on the line where the negative slope is steeper than LA is an operating point that can efficiently charge the fuel consumption increased with respect to the operating point of the single engine operation.
 図8の場合にはラインLAよりも負の傾きが急になるラインLA1上に動作点PSが存在する。従って、電池のSOCにまだ充電する余裕がある限りは、動作点PSでハイブリッドシステムを動作させることが好ましい。したがって、原則的には図8のマップに対応する要求駆動力が要求された場合、EV走行動作点と動作点PSのいずれかが選択されることとなる。 In the case of FIG. 8, the operating point PS exists on the line LA1 where the negative slope is steeper than the line LA. Therefore, it is preferable to operate the hybrid system at the operating point PS as long as the SOC of the battery still has room to charge. Therefore, in principle, when the required driving force corresponding to the map of FIG. 8 is requested, either the EV travel operation point or the operation point PS is selected.
 なお同様な動作点の探索が図6においても行なわれる。EV効率が良い場合、つまり仮想EV走行動作点PEV1が選択されていた場合には、ラインLB1に対し、それより負の傾きが急なラインLB1Sが決定され動作点PS1が選択される。またEV効率が悪い場合、つまり仮想EV走行動作点PEV2が選択されていた場合には、ラインLB2に対し、それより負の傾きが急なラインLB2Sが決定され動作点PS2が選択される。すなわち、動作点PS1はEV効率が良い場合の効率最適点であり、動作点PS2はEV効率が悪い場合の効率最適点である。 Note that a similar operation point search is performed in FIG. When the EV efficiency is good, that is, when the virtual EV traveling operation point PEV1 is selected, the line LB1S having a more negative slope than the line LB1 is determined and the operation point PS1 is selected. When the EV efficiency is low, that is, when the virtual EV traveling operation point PEV2 is selected, the line LB2S having a more negative slope than the line LB2 is determined and the operation point PS2 is selected. That is, the operating point PS1 is an optimum efficiency point when the EV efficiency is good, and the operating point PS2 is an optimum efficiency point when the EV efficiency is bad.
 再び図4を参照して、ステップS32において図8の動作点PSが記録されたら、ステップS33に処理が進む。ステップS33では、マップを検索する基本検索範囲として、バッテリ制約で決まる許容充放電量の設定が行なわれる。ここでは、恒久的にこの充放電を繰返してもバッテリの寿命を守れる値を設定する。 Referring again to FIG. 4, when the operating point PS of FIG. 8 is recorded in step S32, the process proceeds to step S33. In step S33, an allowable charge / discharge amount determined by battery constraints is set as a basic search range for searching the map. Here, a value that can protect the life of the battery is set even if this charge / discharge is permanently repeated.
 図9は、図5のマップに許容放電量POUTと許容充電量PINを記入し、ラインLA1、LA2を引いたマップである。 FIG. 9 is a map in which the allowable discharge amount POUT and the allowable charge amount PIN are entered in the map of FIG. 5 and lines LA1 and LA2 are drawn.
 図9を参照して、許容放電量POUTと許容充電量PINはバッテリ制約で決まる許容充放電量であり、ステップS33で設定された値である。許容放電量POUTと許容充電量PINの間の範囲が動作点の検索範囲となる。図9では検索範囲に5つの動作点がかかっており、効率が悪いのはラインLA2上の動作点であり、効率が良いのはラインLA1上の動作点である。ラインLA1は、直線の式y=ax+bの係数aが負方向に最大となる動作点である。この場合には、検索範囲が後の処理で変更されなければ最適動作点として動作点PSが選択されることとなる。 Referring to FIG. 9, allowable discharge amount POUT and allowable charge amount PIN are allowable charge / discharge amounts determined by battery constraints, and are values set in step S33. The range between the allowable discharge amount POUT and the allowable charge amount PIN is the operating point search range. In FIG. 9, there are five operating points in the search range. The operating point on line LA2 has low efficiency, and the operating point on line LA1 has high efficiency. The line LA1 is an operating point at which the coefficient a of the linear equation y = ax + b is maximum in the negative direction. In this case, the operating point PS is selected as the optimal operating point unless the search range is changed in a later process.
 再び図4を参照して、ステップS33の処理の次にはステップS4の検索範囲の決定処理が実行される。まずステップS41において、車速、SOC、電池温度からステップS33で設定した許容充放電量を変更する必要があるか否かが判断される。 Referring to FIG. 4 again, after the process of step S33, the search range determination process of step S4 is executed. First, in step S41, it is determined whether or not it is necessary to change the allowable charge / discharge amount set in step S33 from the vehicle speed, SOC, and battery temperature.
 この判断は、たとえば、車速、SOC、電池温度のいずれかが対応するしきい値を超えたり下回ったりするか否かで行なうことができる。 This determination can be made, for example, based on whether any of vehicle speed, SOC, and battery temperature exceeds or falls below a corresponding threshold value.
 ステップS41において許容充放電量を変更する必要があると判断された場合には、ステップS42に処理が進み、許容充放電量を変更する処理が行なわれる。 If it is determined in step S41 that the allowable charge / discharge amount needs to be changed, the process proceeds to step S42, and the process of changing the allowable charge / discharge amount is performed.
 図10~図13を用いて許容充放電量を変更する処理の例について説明する。
 図10は、SOCがしきい値を超えた場合の許容充放電量を変更する処理例を示した図である。
An example of processing for changing the allowable charge / discharge amount will be described with reference to FIGS.
FIG. 10 is a diagram illustrating a processing example of changing the allowable charge / discharge amount when the SOC exceeds the threshold value.
 図10を参照して、バッテリのSOCが上側のしきい値を超えた場合、バッテリにはあまり充電する余裕(空き容量)が無い。そこで、許容充電量をPINからPINXに変更する。これによって、マップ上の動作点の検索範囲から充電が行なわれる動作点が排除される。 Referring to FIG. 10, when the SOC of the battery exceeds the upper threshold value, the battery does not have much room for charging (free capacity). Therefore, the allowable charge amount is changed from PIN to PINX. As a result, the operating point at which charging is performed is excluded from the operating point search range on the map.
 図11は、SOCがしきい値を下回った場合の許容充放電量を変更する処理例を示した図である。 FIG. 11 is a diagram showing an example of processing for changing the allowable charge / discharge amount when the SOC falls below the threshold value.
 図11を参照して、バッテリのSOCが下側のしきい値を超えた場合、バッテリから放電すると過放電になる恐れがある。そこで、許容放電量をPOUTからPOUTXに変更する。これによって、マップ上の動作点の検索範囲から放電が行なわれる動作点が排除される。 Referring to FIG. 11, when the SOC of the battery exceeds the lower threshold, discharging from the battery may cause overdischarge. Therefore, the allowable discharge amount is changed from POUT to POUTX. As a result, the operating point where the discharge is performed is excluded from the operating point search range on the map.
 図10、図11に示したように充放電制御を行なうことによって、SOC中心の収束の偏りを避けることができ、最適な充放電を実現できる。 By performing charge / discharge control as shown in FIG. 10 and FIG. 11, it is possible to avoid an uneven convergence of the SOC center and to realize optimum charge / discharge.
 図12は、バッテリ温度がしきい値を超えた場合の許容充放電量を変更する処理例を示した図である。 FIG. 12 is a diagram showing a processing example of changing the allowable charge / discharge amount when the battery temperature exceeds the threshold value.
 図12を参照して、バッテリ温度がしきい値を超えた場合、バッテリにはあまり充放電すると温度が上昇しすぎてバッテリの寿命を悪化させる。そこで、許容充電量をPINからPINZに変更し、許容放電量をPOUTからPOUTZに変更する。すなわち、動作点の検索範囲を充放電ゼロのラインに向けて狭める。これによって、充放電による過度な温度上昇を避けつつ、最適な充放電を実現できる。 Referring to FIG. 12, when the battery temperature exceeds a threshold value, if the battery is charged / discharged too much, the temperature rises too much and the life of the battery is deteriorated. Therefore, the allowable charge amount is changed from PIN to PINZ, and the allowable discharge amount is changed from POUT to POUTZ. That is, the search range of the operating point is narrowed toward the zero charge / discharge line. As a result, it is possible to achieve optimum charge / discharge while avoiding an excessive temperature rise due to charge / discharge.
 図13は、車速がしきい値を超えた場合の許容充放電量を変更する処理例を示した図である。 FIG. 13 is a diagram showing a processing example of changing the allowable charge / discharge amount when the vehicle speed exceeds the threshold value.
 図13を参照して、車速Vがしきい値を超えた場合(高速走行時)には、未来に大きな減速に伴う回生エネルギが回収可能であることが予測される。このため、高車速で走行しているときは検索範囲を放電側に移動する。すなわち、許容充電量をPINからPINYに変更する。これによって、マップ上の動作点の検索範囲から充電が行なわれる動作点が排除され、放電が行なわれる動作点から動作点の選択が行なわれる。 Referring to FIG. 13, when vehicle speed V exceeds a threshold value (during high speed driving), it is predicted that regenerative energy accompanying a large deceleration can be recovered in the future. For this reason, when traveling at a high vehicle speed, the search range is moved to the discharge side. That is, the allowable charge amount is changed from PIN to PINY. As a result, the operating point where charging is performed is excluded from the operating point search range on the map, and the operating point is selected from the operating point where discharging is performed.
 このようにすることで、高速定常走行時等においてSOCが高めに収束することを回避することができる。これにより回生電力の取りこぼしを防ぐことができるため、燃費向上性能をフルに発揮できる。また、将来の回生電力の発生を予測して電池を効率良く使うため、様々な走行パターンにおけるSOCの収束性を従来以上に高めることができる。 By doing so, it is possible to prevent the SOC from converging higher during high-speed steady driving or the like. As a result, it is possible to prevent the regenerative power from being lost, so that the fuel efficiency improvement performance can be fully exhibited. Moreover, in order to predict the generation | occurrence | production of future regenerative electric power and to use a battery efficiently, the convergence property of SOC in various driving patterns can be improved more than before.
 以上説明したように図4のステップS42では、図10~図13で示したような許容充放電量の変更により検索範囲が変更される。 As described above, in step S42 in FIG. 4, the search range is changed by changing the allowable charge / discharge amount as shown in FIGS.
 一方、図4のステップS41において、車速、バッテリのSOC、バッテリ温度の面からは許容充放電量を変更する必要が無いと判断された場合、ステップS43に処理が進む。ステップS43では、ステップS32で記録した動作点がステップS33の許容充放電量以上なら、その許容充放電量を一時的に増加する。なお、この一時的な増加は増加している連続時間が所定値を超えない範囲で実行される。 On the other hand, if it is determined in step S41 in FIG. 4 that it is not necessary to change the allowable charge / discharge amount in terms of vehicle speed, battery SOC, and battery temperature, the process proceeds to step S43. In step S43, if the operating point recorded in step S32 is equal to or greater than the allowable charge / discharge amount of step S33, the allowable charge / discharge amount is temporarily increased. This temporary increase is executed in a range where the increasing continuous time does not exceed a predetermined value.
 図14は、ステップS43における許容充放電量の一時的な増加について説明するための図である。 FIG. 14 is a diagram for explaining a temporary increase in the allowable charge / discharge amount in step S43.
 図4、図14を参照して、たとえばステップS33で記録した最適効率の充放電量を示す動作点が検索範囲外にある場合、かつ電池や車速による検索範囲の制約が無い場合(ステップS41でNO)には、検索範囲外の連続充放電時間が所定時間(たとえばt秒間)以下の場合に、一時的に検索範囲を拡張することを許可する。すなわち、短時間だけ検索範囲を拡張する。 Referring to FIGS. 4 and 14, for example, when the operating point indicating the charge / discharge amount with the optimum efficiency recorded in step S33 is outside the search range, and there is no restriction on the search range due to the battery or vehicle speed (in step S41). NO) allows the search range to be temporarily extended when the continuous charge / discharge time outside the search range is equal to or shorter than a predetermined time (for example, t seconds). That is, the search range is extended only for a short time.
 すると拡張した範囲に最適の充電量である動作点が含まれるようになる場合がある。このようにすることで、電池寿命を悪化させることなく、従来よりも効率が向上した充放電量を実現することができる。 Then, the extended range may include an operating point that is the optimal amount of charge. By doing in this way, the charge / discharge amount whose efficiency improved compared with the past can be implement | achieved, without deteriorating battery life.
 [変形例1]
 図15は第1の変形例を説明するための図である。
[Modification 1]
FIG. 15 is a diagram for explaining the first modification.
 図8では、EV走行時の動作点を中心に効率線LAを描かせたが、効率線の中心点は、図15に示すようにエンジン単体走行時の動作点等にしても良い。この場合、放電側は傾きが緩い方が効率が良く、充電側は傾きが急なほうが効率が良い。 In FIG. 8, the efficiency line LA is drawn around the operating point during EV traveling, but the center point of the efficiency line may be the operating point during engine traveling alone as shown in FIG. In this case, the efficiency is better when the slope is gentle on the discharge side, and the efficiency is better when the slope is steep on the charge side.
 ただし、この考え方については、充電と放電等でどちらが効率が良いかは新たに定義する必要がある。 However, regarding this concept, it is necessary to newly define which is more efficient for charging and discharging.
 [変形例2]
 図16は、第2の変形例を説明するための図である。
[Modification 2]
FIG. 16 is a diagram for explaining a second modification.
 図16では、効率線の回転の中心点を持たない考え方を説明する。y=ax+bの効率線でbを負から徐々に増加させ、検索範囲内の数点の動作点のうち最初に交わる点を最適点とする。この考え方だと、図16のような1枚のマップからエンジンの始動/停止判断も可能となる。ただし、エンジンの始動/停止に新たな電力消費が発生するため、マップ上のEV走行点をそのまま選択するとシステム全体としては最適でない可能性が高く、EV走行点の補正が必要である。 FIG. 16 illustrates a concept that does not have the center point of rotation of the efficiency line. The efficiency line y = ax + b is used to gradually increase b from negative, and the first point that intersects among several operating points in the search range is determined as the optimum point. With this concept, it is possible to determine engine start / stop from a single map as shown in FIG. However, since new power consumption occurs in starting / stopping the engine, if the EV travel point on the map is selected as it is, there is a high possibility that the entire system is not optimal, and the EV travel point needs to be corrected.
 最後に、再び図面を用いて、本実施の形態について総括する。図1、図2を参照して、本実施の形態に開示されるハイブリッド車両の制御装置は、バッテリBATとモータジェネレータMG1、MG2とエンジン2とを搭載するハイブリッド車両の制御装置である。ハイブリッド車両の制御装置は、車両への要求駆動力ごとにあらかじめ定められた、燃料消費量と蓄電装置への充放電量の関係を示す複数の動作点が各々に記録された図5に示すマップを複数記憶した記憶部13と、要求駆動力に応じて複数のマップから1つのマップを選択し、選択したマップ上の複数の動作点のうちから1つの動作点を選択して選択した動作点(図9のPS,図6のPS1,PS2など)に対応するようにエンジンを制御する制御装置14とを含む。 Finally, this embodiment will be summarized using the drawings again. Referring to FIGS. 1 and 2, the hybrid vehicle control device disclosed in the present embodiment is a hybrid vehicle control device including battery BAT, motor generators MG <b> 1 and MG <b> 2, and engine 2. The hybrid vehicle control device has a map shown in FIG. 5 in which a plurality of operating points, each of which represents a relationship between the fuel consumption amount and the charge / discharge amount to the power storage device, each predetermined for each required driving force to the vehicle are recorded. A plurality of storage units 13 and a single map selected from a plurality of maps according to the required driving force, and a single operating point selected from a plurality of operating points on the selected map. And a control device 14 that controls the engine so as to correspond to (PS of FIG. 9, PS1, PS2, etc. of FIG. 6).
 好ましくは、制御装置14は、選択したマップ上の複数の動作点のうちから、エンジンを停止して走行するEV走行を行なう際の動作点(図6のPEV1,PEV2など)と結んだ線の傾きdの絶対値が最も大きくなる動作点を選択する。 Preferably, control device 14 has a line connected to an operating point (PEV1, PEV2, etc. in FIG. 6) when performing EV traveling in which the engine is stopped from among a plurality of operating points on the selected map. The operating point at which the absolute value of the slope d is the largest is selected.
 好ましくは、図10~図13で説明したように、制御装置14は、車両の状態に基づいて、選択したマップ上の複数の動作点のうちから選択対象とする動作点の範囲を限定する。 Preferably, as described with reference to FIGS. 10 to 13, the control device 14 limits the range of operation points to be selected from a plurality of operation points on the selected map based on the state of the vehicle.
 より好ましくは、図10~図12で説明したように、車両の状態は、バッテリBATの充電状態SOCと、バッテリBATの温度とのいずれかを含む。 More preferably, as described with reference to FIGS. 10 to 12, the state of the vehicle includes either the state of charge SOC of the battery BAT or the temperature of the battery BAT.
 より好ましくは、図10に示すように、制御装置14は、バッテリBATの充電状態SOCが第1しきい値を超えた場合には、マップにおいて蓄電装置への充電量を制限するように限定した領域内(図10の検索範囲)に含まれる動作点から1つの動作点を選択する。 More preferably, as shown in FIG. 10, when the state of charge SOC of battery BAT exceeds the first threshold value, control device 14 is limited to limit the amount of charge to the power storage device on the map. One operation point is selected from the operation points included in the region (the search range in FIG. 10).
 より好ましくは、図11に示すように、制御装置14は、バッテリBATの充電状態SOCが第2しきい値を下回った場合には、マップにおいて蓄電装置からの放電量を制限するように限定した領域内(図11の検索範囲)に含まれる動作点から1つの動作点を選択する。 More preferably, as shown in FIG. 11, control device 14 is limited to limit the amount of discharge from the power storage device in the map when the state of charge SOC of battery BAT falls below the second threshold value. One operation point is selected from the operation points included in the region (search range in FIG. 11).
 より好ましくは、図12に示すように、制御装置14は、バッテリBATの温度Tがしきい値を超えた場合には、マップにおいて蓄電装置への充電量および蓄電装置からの放電量をともに制限するように限定した領域内(図12の検索範囲)に含まれる動作点から1つの動作点を選択する。 More preferably, as shown in FIG. 12, when temperature T of battery BAT exceeds a threshold value, control device 14 limits both the charge amount to the power storage device and the discharge amount from the power storage device in the map. One operation point is selected from the operation points included in the limited region (the search range in FIG. 12).
 より好ましくは、図13に示すように、車両の状態は、車両の車速を含む。
 より好ましくは、図13に示すように、制御装置14は、車両の車速Vがしきい値を超えた場合には、マップにおいて蓄電装置への充電量を制限するように限定した領域内(図13の検索範囲)に含まれる動作点から1つの動作点を選択する。
More preferably, as shown in FIG. 13, the state of the vehicle includes the vehicle speed.
More preferably, as shown in FIG. 13, when the vehicle speed V of the vehicle exceeds a threshold value, the control device 14 is within an area limited to limit the amount of charge to the power storage device on the map (see FIG. 13). One operation point is selected from the operation points included in the 13 search ranges.
 より好ましくは、車両の状態は、バッテリBATの連続充放電時間を含む。すなわち、連続充放電時間が所定時間を超えない範囲内で図14に示すように許容充放電量を一時的に拡張しても良い。 More preferably, the state of the vehicle includes a continuous charge / discharge time of the battery BAT. That is, the allowable charge / discharge amount may be temporarily expanded as shown in FIG. 14 within a range where the continuous charge / discharge time does not exceed the predetermined time.
 より好ましくは、図6で仮想EV走行動作点を変えることを説明したように、制御装置14は、運転者の走行パターンを認識し、選択したマップ上の複数の動作点のうちから認識した走行パターンに応じて選択する動作点を変更する。 More preferably, as described with reference to changing the virtual EV traveling operation point in FIG. 6, the control device 14 recognizes the traveling pattern of the driver and travels recognized from a plurality of operating points on the selected map. The operating point to be selected is changed according to the pattern.
 なお、以上の実施の形態で開示された制御方法は、コンピュータを用いてソフトウエアで実行可能である。この制御方法をコンピュータに実行させるためのプログラムをコンピュータ読み取り可能に記録した記録媒体(ROM、CD-ROM、メモリカードなど)から車両の制御装置中のコンピュータに読み込ませたり、また通信回線を通じて提供したりしても良い。 Note that the control methods disclosed in the above embodiments can be executed by software using a computer. A program for causing a computer to execute this control method is read from a recording medium (ROM, CD-ROM, memory card, etc.) recorded in a computer-readable manner into a computer in a vehicle control device or provided through a communication line. You may do it.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ハイブリッド車両、2 エンジン、4,6 ギヤ、13 記憶部、14 制御装置、16 プラネタリギヤ、18 デファレンシャルギヤ、20R,20L 前輪、22R,22L 後輪、28,30 システムメインリレー、32 昇圧ユニット、36 インバータ、42 アクセルポジションセンサ、46 優先スイッチ、48 電流センサ、49 温度センサ、50 電圧センサ、62 ハイブリッド制御部、66 バッテリ制御部、68 エンジン制御部、100 コンピュータ、181 変換器、182 ROM、183 RAM、184 インターフェース部、186 バス、B0~Bn 電池ユニット、BAT バッテリ、BAT 高圧バッテリ、MG1,MG2 モータジェネレータ。 1 hybrid vehicle, 2 engine, 4, 6 gear, 13 storage unit, 14 control device, 16 planetary gear, 18 differential gear, 20R, 20L front wheel, 22R, 22L rear wheel, 28, 30 system main relay, 32 booster unit, 36 Inverter, 42 accelerator position sensor, 46 priority switch, 48 current sensor, 49 temperature sensor, 50 voltage sensor, 62 hybrid control unit, 66 battery control unit, 68 engine control unit, 100 computer, 181 converter, 182 ROM, 183 RAM , 184 interface unit, 186 bus, B0-Bn battery unit, BAT battery, BAT high voltage battery, MG1, MG2 motor generator.

Claims (12)

  1.  蓄電装置(BAT)とモータ(MG1、MG2)とエンジン(2)とを搭載するハイブリッド車両の制御装置であって、
     車両への要求駆動力ごとにあらかじめ定められた、燃料消費量と前記蓄電装置(BAT)への充放電量の関係を示す複数の動作点が各々に記録された複数のマップを記憶した記憶部(13)と、
     前記要求駆動力に応じて前記複数のマップから1つのマップを選択し、選択したマップ上の前記複数の動作点のうちから1つの動作点を選択して選択した動作点に対応するように前記エンジンを制御する制御装置(14)とを含む、ハイブリッド車両の制御装置。
    A control device for a hybrid vehicle including a power storage device (BAT), a motor (MG1, MG2), and an engine (2),
    A storage unit storing a plurality of maps each storing a plurality of operating points indicating a relationship between a fuel consumption amount and a charge / discharge amount to the power storage device (BAT), which is predetermined for each required driving force to the vehicle (13)
    One map is selected from the plurality of maps according to the required driving force, and one operation point is selected from the plurality of operation points on the selected map so as to correspond to the selected operation point. A control device for a hybrid vehicle, including a control device (14) for controlling the engine.
  2.  前記制御装置(14)は、前記選択したマップ上の複数の動作点のうちから、前記エンジン(2)を停止して走行するEV走行を行なう際の動作点と結んだ線の傾きの絶対値が最も大きくなる動作点を選択する、請求の範囲第1項に記載のハイブリッド車両の制御装置。 The control device (14) has an absolute value of an inclination of a line connected to an operating point when performing EV traveling in which the engine (2) is stopped from a plurality of operating points on the selected map. The control apparatus for a hybrid vehicle according to claim 1, wherein an operating point at which the maximum value is selected is selected.
  3.  前記制御装置(14)は、車両の状態に基づいて、前記選択したマップ上の複数の動作点のうちから選択対象とする動作点の範囲を限定する、請求の範囲第1項に記載のハイブリッド車両の制御装置。 The hybrid according to claim 1, wherein the control device (14) limits a range of operation points to be selected from a plurality of operation points on the selected map based on a state of the vehicle. Vehicle control device.
  4.  前記車両の状態は、前記蓄電装置(BAT)の充電状態と、前記蓄電装置(BAT)の温度とのいずれかを含む、請求の範囲第3項に記載のハイブリッド車両の制御装置。 4. The control apparatus for a hybrid vehicle according to claim 3, wherein the state of the vehicle includes one of a charged state of the power storage device (BAT) and a temperature of the power storage device (BAT).
  5.  前記制御装置(14)は、前記蓄電装置(BAT)の充電状態が第1しきい値を超えた場合には、前記マップにおいて前記蓄電装置(BAT)への充電量を制限するように限定した領域内に含まれる動作点から1つの動作点を選択する、請求の範囲第4項に記載のハイブリッド車両の制御装置。 The control device (14) is limited to limit the amount of charge to the power storage device (BAT) in the map when the state of charge of the power storage device (BAT) exceeds a first threshold value. The hybrid vehicle control device according to claim 4, wherein one operating point is selected from operating points included in the region.
  6.  前記制御装置(14)は、前記蓄電装置(BAT)の充電状態が第2しきい値を下回った場合には、前記マップにおいて前記蓄電装置(BAT)からの放電量を制限するように限定した領域内に含まれる動作点から1つの動作点を選択する、請求の範囲第4項に記載のハイブリッド車両の制御装置。 The control device (14) is limited to limit the amount of discharge from the power storage device (BAT) in the map when the state of charge of the power storage device (BAT) falls below a second threshold value. The hybrid vehicle control device according to claim 4, wherein one operating point is selected from operating points included in the region.
  7.  前記制御装置(14)は、前記蓄電装置(BAT)の温度がしきい値を超えた場合には、前記マップにおいて前記蓄電装置(BAT)への充電量および前記蓄電装置(BAT)からの放電量をともに制限するように限定した領域内に含まれる動作点から1つの動作点を選択する、請求の範囲第4項に記載のハイブリッド車両の制御装置。 When the temperature of the power storage device (BAT) exceeds a threshold value, the control device (14) determines the amount of charge to the power storage device (BAT) and the discharge from the power storage device (BAT) in the map. The hybrid vehicle control device according to claim 4, wherein one operating point is selected from operating points included in a limited region so as to limit both amounts.
  8.  前記車両の状態は、前記車両の車速を含む、請求の範囲第3項に記載のハイブリッド車両の制御装置。 4. The hybrid vehicle control device according to claim 3, wherein the state of the vehicle includes a vehicle speed of the vehicle.
  9.  前記制御装置(14)は、前記車両の車速がしきい値を超えた場合には、前記マップにおいて前記蓄電装置(BAT)への充電量を制限するように限定した領域内に含まれる動作点から1つの動作点を選択する、請求項8に記載のハイブリッド車両の制御装置。 When the vehicle speed of the vehicle exceeds a threshold value, the control device (14) includes an operating point included in a region limited to limit the amount of charge to the power storage device (BAT) in the map. The control apparatus of the hybrid vehicle of Claim 8 which selects one operating point from these.
  10.  前記車両の状態は、前記蓄電装置(BAT)の充放電連続時間を含む、請求の範囲第3項に記載のハイブリッド車両の制御装置。 4. The control apparatus for a hybrid vehicle according to claim 3, wherein the state of the vehicle includes a continuous charge / discharge time of the power storage device (BAT).
  11.  前記制御装置(14)は、運転者の走行パターンを認識し、選択したマップ上の前記複数の動作点のうちから認識した走行パターンに応じて選択する動作点を変更する、請求の範囲第1~10項のいずれか1項に記載のハイブリッド車両の制御装置。 The said control apparatus (14) recognizes a driver | operator's driving | running | working pattern, and changes the operating point selected according to the driving | running | working pattern recognized from these operating points on the selected map. 11. The hybrid vehicle control device according to any one of items 10 to 10.
  12.  請求の範囲第11項に記載のハイブリッド車両の制御装置を搭載するハイブリッド車両。 A hybrid vehicle equipped with the hybrid vehicle control device according to claim 11.
PCT/JP2010/058159 2010-05-14 2010-05-14 Hybrid vehicle control device and hybrid vehicle WO2011142022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058159 WO2011142022A1 (en) 2010-05-14 2010-05-14 Hybrid vehicle control device and hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058159 WO2011142022A1 (en) 2010-05-14 2010-05-14 Hybrid vehicle control device and hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2011142022A1 true WO2011142022A1 (en) 2011-11-17

Family

ID=44914090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058159 WO2011142022A1 (en) 2010-05-14 2010-05-14 Hybrid vehicle control device and hybrid vehicle

Country Status (1)

Country Link
WO (1) WO2011142022A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123942A (en) * 2011-12-13 2013-06-24 Toyota Motor Corp Hybrid vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137091A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Control unit and control method for secondary battery
JP2008024204A (en) * 2006-07-24 2008-02-07 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2008099461A (en) * 2006-10-13 2008-04-24 Hitachi Ltd Power controller and rolling stock using the same
JP2008201165A (en) * 2007-02-16 2008-09-04 Tokai Rika Co Ltd Hybrid vehicle control unit
JP2008273518A (en) * 2004-09-09 2008-11-13 Toyota Motor Corp Battery control device and method for hybrid automobile, and hybrid automobile
JP2009248889A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Battery temperature control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137091A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Control unit and control method for secondary battery
JP2008273518A (en) * 2004-09-09 2008-11-13 Toyota Motor Corp Battery control device and method for hybrid automobile, and hybrid automobile
JP2008024204A (en) * 2006-07-24 2008-02-07 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2008099461A (en) * 2006-10-13 2008-04-24 Hitachi Ltd Power controller and rolling stock using the same
JP2008201165A (en) * 2007-02-16 2008-09-04 Tokai Rika Co Ltd Hybrid vehicle control unit
JP2009248889A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Battery temperature control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123942A (en) * 2011-12-13 2013-06-24 Toyota Motor Corp Hybrid vehicle

Similar Documents

Publication Publication Date Title
JP4314257B2 (en) VEHICLE DISPLAY DEVICE, VEHICLE DISPLAY DEVICE CONTROL METHOD, PROGRAM, AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP4434302B2 (en) Hybrid vehicle control device and hybrid vehicle
KR100792893B1 (en) Method for control power generating point for hev
CN102652087B (en) Hybrid vehicle and control method thereof
CN102883933B (en) The control setup of motor vehicle driven by mixed power and there is the motor vehicle driven by mixed power of this control setup
CN102883934B (en) The controlling device and there is the motor vehicle driven by mixed power of this control device of motor vehicle driven by mixed power
JP5316703B2 (en) Control device for hybrid vehicle and hybrid vehicle including the same
CN102958775B (en) The control setup of motor vehicle driven by mixed power and there is the motor vehicle driven by mixed power of this control setup
JP5445676B2 (en) Vehicle control device
JP6439722B2 (en) Hybrid car
JP2004129373A (en) Output control arrangement of hybrid vehicle
JP2011093335A (en) Controller for hybrid vehicle
US20100250042A1 (en) Vehicle and method of controlling the vehicle
JP2000175306A (en) Controller of hybrid vehicle
WO2014080468A1 (en) Accelerator-pedal-counterforce control device and vehicle
KR20200054385A (en) Vehicle and method for controlling the vehicle
JP5729475B2 (en) Vehicle and vehicle control method
CN213948116U (en) Vehicle hybrid power system based on double motors and vehicle with same
CN108068813B (en) Method for determining an optimal operating point of a hybrid electric vehicle
JP7091948B2 (en) Hybrid vehicle control device
JP3013764B2 (en) Charge and discharge control device for hybrid electric vehicles
CN108583293A (en) The feedback braking torque distribution method and its four-wheel-driven control system of new-energy automobile
WO2011142022A1 (en) Hybrid vehicle control device and hybrid vehicle
CN113335264B (en) Hybrid vehicle battery energy control method and device
JP2006136131A (en) Controller for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP