WO2011140789A1 - 通过同轴线传输cpri信号的方法及装置 - Google Patents

通过同轴线传输cpri信号的方法及装置 Download PDF

Info

Publication number
WO2011140789A1
WO2011140789A1 PCT/CN2010/078307 CN2010078307W WO2011140789A1 WO 2011140789 A1 WO2011140789 A1 WO 2011140789A1 CN 2010078307 W CN2010078307 W CN 2010078307W WO 2011140789 A1 WO2011140789 A1 WO 2011140789A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
coaxial line
cpri
plane data
Prior art date
Application number
PCT/CN2010/078307
Other languages
English (en)
French (fr)
Inventor
赵虎
张利琼
李少明
陈建军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA2810434A priority Critical patent/CA2810434C/en
Priority to EP20100851293 priority patent/EP2600684B1/en
Priority to CN201080003407.XA priority patent/CN102217412B/zh
Priority to PCT/CN2010/078307 priority patent/WO2011140789A1/zh
Priority to RU2013118217/07A priority patent/RU2548676C2/ru
Priority to BR112013009741-8A priority patent/BR112013009741B1/pt
Publication of WO2011140789A1 publication Critical patent/WO2011140789A1/zh
Priority to US13/870,183 priority patent/US8923759B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for transmitting a CPRI signal over a coaxial line. Background technique
  • the CPRI (Common Public Radio Interface) protocol is a general-purpose interface protocol between a baseband unit (BBU) and a radio remote unit (RRU) in a wireless communication base station.
  • BBU baseband unit
  • RRU radio remote unit
  • the old base station system can be upgraded, the fiber and power supply can be re-arranged, and the CPRI signal can be directly transmitted by using the optical fiber.
  • this method requires a lot of engineering transformation and is costly. Therefore, in order to save cost, the CPRI signal can be transmitted by using the old coaxial line, and the CPRI electric port signal can be directly output, and the electric port signal converted from the DC power supply and the CPRI optical port signal can be combined by the biaser and then passed through the coaxial line.
  • the line is transmitted to the upper tower, and then the optical port signal converted by the DC power supply and the C PR I electrical port signal is branched by the biaser, and the two parts of the signal are sent to the equipment on the tower.
  • Embodiments of the present invention provide a method and apparatus for transmitting CPRI signals over a coaxial line, which can improve the utilization of frequency resources within the coaxial line.
  • a method of transmitting a CPRI signal over a coaxial line comprising: Transmitting a common public radio interface CPRI signal sent by the transmitting end to form a parallel data stream;
  • the valid data is converted into an analog signal that can be transmitted and moved to a specified frequency, and transmitted to the receiving end via a coaxial line.
  • a method of transmitting a CPRI signal over a coaxial line comprising:
  • the parallel data stream is converted to form a CPRI signal and transmitted to the receiving end.
  • a device for transmitting a CPRI signal over a coaxial line comprising:
  • a first conversion module configured to convert a common public wireless interface CPRI signal sent by the transmitting end to form a parallel data stream
  • a parsing module configured to extract valid data in the data stream by frame parsing
  • a first processing module configured to convert the valid data into an analog signal that can be transmitted and move to a specified frequency, by using a coaxial The line is sent to the receiving end.
  • a device for transmitting a CPRI signal over a coaxial line comprising:
  • a second processing module configured to convert an analog signal sent by the transmitting end through the coaxial line into valid data
  • a synthesis module configured to synthesize the valid data into a parallel data stream
  • a second conversion module configured to convert the parallel data stream to form a CPRI signal, and send the signal to the receiving end.
  • the data is converted into an analog signal that can be transmitted and moved to a specified frequency, and transmitted to the receiving end through the coaxial line.
  • the analog signal sent by the transmitting end through the coaxial line is converted into an effective signal.
  • Data, synthesizing the valid data into parallel The data stream is converted, and the parallel data stream is converted to form a CPRI signal and sent to the receiving end.
  • the embodiment of the present invention converts the CPRI signal into a narrow bandwidth analog signal and transmits it through the coaxial line, so that the CPRI signal can be transmitted more effectively, and the utilization rate of the frequency resources in the coaxial line is improved.
  • Embodiment 1 is a flowchart of a method according to Embodiment 1 of the present invention.
  • Embodiment 3 is a flowchart of a method according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of the overall framework of the CPRI protocol
  • FIG. 5 is a flowchart of a method according to Embodiment 4 of the present invention.
  • FIG. 7, and FIG. 8 are schematic structural diagrams of a device according to Embodiment 5 of the present invention.
  • FIG. 9, FIG. 10 and FIG. 11 are schematic diagrams showing the structure of a device according to Embodiment 6 of the present invention. detailed description
  • the embodiment provides a method for transmitting a CPRI signal through a coaxial line. As shown in FIG. 1 , at the transmitting end, the method includes: 101. Convert the CPRI signal sent by the sending end to form a parallel data stream.
  • the CPRI signal sent by the transmitting end can be converted at the physical layer to form a parallel data stream.
  • the sending end may be a BBU, and the receiving end may be an RRU; or the sending end is an RRU, and the receiving end is a BBU; or the sending end is a REC (Radio Equipment Control, wireless device control)
  • the receiving end is an RE (Radio Equipment); or the transmitting end is an RE, and the receiving end is an REC, but is not limited thereto.
  • a CPRI signal is transmitted through a coaxial line, and at the transmitting end, the CPRI signal is converted to form a parallel data stream, and valid data in the data stream is extracted through frame parsing, and the valid data is extracted. It is converted into an analog signal that can be transmitted and moved to the specified frequency, and sent to the receiving end through the coaxial line.
  • the embodiment of the present invention converts the CPRI signal into a narrow bandwidth analog signal and transmits it through the coaxial line, thereby transmitting the CPRI signal more effectively and improving the utilization of the frequency resources in the coaxial line.
  • the embodiment provides a method for transmitting a CPRI signal through a coaxial line. As shown in FIG. 2, at the receiving end, the method includes:
  • the parallel data streams may be converted at the physical layer to form a CPRI signal.
  • the receiving end may be a BBU, and the receiving end may be an RRU; or the transmitting end is an RRU, and the receiving end is a BBU; or the transmitting end is an REC, and the receiving end is an RE; Or, the sending end is an RE, and the receiving end is an REC, but is not limited thereto.
  • the CPRI signal is transmitted by the coaxial line, and the analog signal sent by the transmitting end through the coaxial line is converted into effective data, and the valid data is synthesized into a parallel data stream, and the parallel data is The data stream is converted to form a CPRI signal and sent to the receiving end.
  • the embodiment of the present invention converts the CPRI signal into a narrow bandwidth analog signal and transmits it through the coaxial line, so that the CPRI signal can be transmitted more effectively, and the utilization rate of the frequency resources in the coaxial line is improved.
  • the embodiment provides a method for transmitting a CPRI signal by using a coaxial line.
  • the method is the same as the RRU, and the method of the embodiment is applicable to the RRU.
  • the receiver is the scene of the BBU.
  • a first device connected to the transmitting end is disposed at the transmitting end, and a second device connected to the receiving end is disposed at the receiving end; the first device is configured to send to the sending end
  • the signal is processed, and the processed signal is sent to a second device, and the second device is configured to process the signal processed by the first device and send the signal to the receiving end.
  • the method includes:
  • the first device converts the CPRI signal sent by the BBU at a physical layer to form a parallel data stream.
  • the CPRI protocol is divided into two layers and three data planes.
  • the Layer 1 layer is the physical layer, including the specifications of the optical port/electrical port, the transmission rate of the line, the codec of the line, the format of the frame, and the distance of the transmission. It can be transmitted by electric signal through cable or twisted pair, or transmitted over long distance by optical fiber.
  • the transmission rate for the line can be selected from the following: 614. 4Mbi t/s, 1228. 8Mbi t/s, 2457. 6Mbi t/s, 3072. 0Mbi t/s, 4915. 2Mbi t/s, 6144. OMbi t/s , this link has more flexibility.
  • Layer 2 layer is the data link layer, which specifies media access control, operation and maintenance data protection, and error detection.
  • the three data planes are divided into User Plane, Control and Maintenance (Control and Management). Plane) and Synchroniza t ion Plane.
  • the user plane mainly carries the data transmitted between the base station and the terminal, that is, the digital baseband (IQ) data of the user platform, and the control and maintenance plane mainly carries the operation and maintenance information of Layer 1 and the upper layer, and the synchronization plane mainly carries the information of synchronization and timing.
  • IQ digital baseband
  • the converting at the physical layer specifically includes parallel-to-serial conversion
  • the converting at the physical layer may further include: scrambling the transmission data, linearly encoding, and converting to a differential signal by a driver.
  • the first device separates user plane data, management control plane data, and synchronization timing data from the data stream by performing frame parsing on the data frame in the data stream.
  • the user plane data includes data transmitted between the base station and the terminal, that is, user platform digital baseband (IQ) data;
  • the management control plane data includes physical layer and upper layer operation and maintenance information;
  • the synchronization timing data includes synchronization and timing information.
  • the receiving end can separate the user plane data, the control management plane data and the synchronization timing data according to the data format of the protocol.
  • the first consecutive 1 / 16 data of each base frame is synchronous timing and control management plane information, and the subsequent 15/ 16 data is user plane data.
  • the first device performs high-order modulation on the user plane data, and up-converts to a specified frequency point to obtain a first modulated signal.
  • the designated frequency point is a frequency point where the first modulation signal is located, and at the specified frequency point, the signal of the first modulation signal adjacent to the first modulation signal is as close as possible but not the first The signals adjacent to the modulated signal overlap.
  • the high-order modulation may be a high-order QAM (Quadrature Amplitude Modulation), but is not limited thereto.
  • the first device performs high-order modulation on the management control plane data and the synchronization timing data, and up-converts to a specified frequency point to obtain a second modulation signal.
  • the designated frequency point is a frequency point where the second modulation signal is located, and at the specified frequency point, the signal adjacent to the second modulation signal and the second modulation signal is as close as possible but not the second The signals adjacent to the modulated signal overlap.
  • the first device combines the first modulated signal and the second modulated signal into one analog signal, and sends the signal to the second device by using a coaxial line.
  • step 305 can also be replaced by step 305a:
  • the first device combines the first modulated signal and the second modulated signal into one analog signal, and then combines the analog signal with a power signal sent by the BBU by using a bias (BIAS Tee), and after combining The signal is sent to the second device via the coaxial line.
  • a bias BiAS Tee
  • the second device divides the analog signal into a first signal and a second signal.
  • step 306 may also be replaced by step 306a:
  • the second device uses the biaser to decompose the combined signal into an analog signal and a power signal, and divides the analog signal into a first signal and a second signal, and sends the power signal to the RRU.
  • the second device demodulates the first signal to obtain user plane data.
  • the second device demodulates the second signal to obtain management control plane data and synchronization timing data.
  • the second device synthesizes user plane data, management control plane data, and synchronization timing data into parallel data streams.
  • the second device converts the parallel data stream into a physical layer to form a CPRI signal, and sends the data to the RRU.
  • the transmission of the CPRI signal at a rate of 2457. 6 Mb it/s requires a bandwidth of 4.9152 GHz; and when the CPRI signal is transmitted by the method of the embodiment, 2457. 6Mb it / s rate transmission CPRI signal only needs to occupy a bandwidth of 287. 5MHz. Therefore, the method of the embodiment of the present invention can improve the utilization of frequency resources in the coaxial line.
  • the CPRI signal is transmitted by the coaxial line
  • the first device converts the CPRI signal sent by the BBU into a parallel data stream at the physical layer, and extracts valid data in the data stream by frame parsing, and
  • the valid data is converted into an analog signal that can be transmitted and moved to a specified frequency, and transmitted to the second device through the coaxial line, before the analog signal reaches the RRU
  • the second device converts the analog signal sent by the first device through the coaxial line into valid data, synthesizes the valid data into a parallel data stream, and converts the parallel data stream into a physical layer to form a CPRI signal transmission.
  • the embodiment of the present invention converts the CPRI signal into a narrow bandwidth analog signal and transmits it through the coaxial line, thereby transmitting the CPRI signal more effectively and improving the utilization of the frequency resources in the coaxial line.
  • the embodiment provides a method for transmitting a CPRI signal by using a coaxial line.
  • the method is the same as the RRU, and the method of the embodiment is applicable to the RRU.
  • the receiver is the scene of the BBU.
  • a first device connected to the transmitting end is provided, and at the receiving end, a second device connected to the receiving end is provided; the first device is configured to send a signal to the transmitting end. Processing is performed, and the processed signal is sent to the second device, and the second device is configured to process the signal processed by the first device and send the signal to the receiving end.
  • the method includes:
  • the first device converts the CPRI signal sent by the BBU into a physical layer to form a parallel data stream.
  • the converting at the physical layer specifically includes serial-to-parallel conversion
  • the converting at the physical layer may further include: converting the external differential signal into serial data, and decoding and descrambling the serial-converted output.
  • the first device separates user plane data, management control plane data, and synchronization timing data from the data stream by performing frame parsing on the data frame in the data stream.
  • the user plane data includes data transmitted between the base station and the terminal, that is, user platform digital baseband (IQ) data;
  • the management control plane data includes physical layer and upper layer operation and maintenance information;
  • the synchronization timing data includes synchronization and timing information.
  • the first device separates the user plane data into multiple antenna carrier AxC signals, and upconverts each channel AxC signal to a designated frequency point.
  • the designated frequency point is a frequency point where the AxC signal is located.
  • the signal adjacent to the AxC signal and the AxC signal is as close as possible but does not overlap with the signal adjacent to the AxC signal.
  • the first device performs high-order modulation on the management control plane data and the synchronization timing data, and up-converts to a specified frequency point to obtain a third modulation signal.
  • the designated frequency point is a frequency point where the third modulation signal is located, and at the specified frequency point, the signal adjacent to the third modulation signal and the third modulation signal is as close as possible but not the third The signals adjacent to the modulated signal overlap.
  • the first device combines the AxC signals and the third modulated signals into one analog signal, and sends the signal to the second device by using a coaxial line.
  • step 505 can also be replaced by step 505a:
  • the first device combines the AxC signals and the third modulated signals into one analog signal, and then combines the analog signal with the power signal sent by the BBU by using a bias (BIAS Tee) to combine the signals.
  • the signal is sent to the second device via the coaxial line.
  • the second device divides the analog signal into a third signal and a multiple AxC signal.
  • step 506 may also be replaced by step 506a:
  • the second device uses the biaser to decompose the combined signal into an analog signal and a power signal, divide the analog signal into a third signal and multiple AxC signals, and send the power signal to the RRU.
  • the second device demodulates the third signal to obtain management control plane data and synchronization timing data.
  • the second device combines the multiple AxC signals to obtain user plane data.
  • the second device synthesizes user plane data, management control plane data, and synchronization timing data into parallel data streams.
  • the second device converts the parallel data stream into a physical layer to form a CPRI signal.
  • RRU sends.
  • the CPRI signal is transmitted by the coaxial line
  • the first device converts the CPRI signal sent by the BBU into a parallel data stream at the physical layer, and extracts valid data in the data stream by frame parsing, and The valid data is converted into an analog signal that can be transmitted and moved to a specified frequency, and transmitted to the second device through the coaxial line.
  • the second device sends the first device through the coaxial line.
  • the analog signal is converted into valid data
  • the valid data is synthesized into a parallel data stream
  • the parallel data stream is converted at the physical layer to form a CPRI signal and sent to the RRU.
  • the embodiment of the present invention converts the CPRI signal into a narrow bandwidth analog signal and transmits it through the coaxial line, thereby transmitting the CPRI signal more effectively and improving the utilization of the frequency resources in the coaxial line.
  • the embodiment provides a device for transmitting a CPRI signal through a coaxial line. As shown in FIG. 6, the device includes:
  • a first conversion module 601 configured to convert a common public wireless interface CPRI signal sent by the transmitting end to form a parallel data stream
  • the first conversion module 601 can convert the CPRI signal sent by the transmitting end to a parallel data stream at a physical layer;
  • the parsing module 602 is configured to extract valid data in the data stream by frame parsing; the first processing module 603 is configured to convert the valid data into an analog signal that can be transmitted and move to a specified frequency, The coaxial line is sent to the receiving end.
  • parsing module 602 is specifically configured to: perform frame parsing on the data frame in the data stream, and separate user plane data, management control plane data, and synchronization from the data stream. Time data.
  • the user plane data includes data transmitted between the base station and the terminal, that is, user platform digital baseband (IQ) data;
  • the management control plane data includes physical layer and upper layer operation and maintenance information;
  • the synchronization timing data includes synchronization and timing information.
  • the first processing module 603 may include:
  • a first modulating unit 6031 configured to perform high-order modulation on the user plane data, and upconvert to a specified frequency point to obtain a first path signal
  • the designated frequency point is a frequency point where the first modulation signal is located, and at the specified frequency point, the signal of the first modulation signal adjacent to the first modulation signal is as close as possible but not the first The signals adjacent to the modulated signal overlap.
  • a second modulating unit 6032 configured to perform high-order modulation on the management control plane data and the synchronization timing data, and upconvert to a specified frequency point to obtain a second modulation signal
  • the designated frequency point is a frequency point where the second modulation signal is located, and at the specified frequency point, the signal adjacent to the second modulation signal and the second modulation signal is as close as possible but not the second The signals adjacent to the modulated signal overlap.
  • the first combining unit 6033 is configured to combine the first modulated signal and the second modulated signal into one signal.
  • the first processing module 603 may include:
  • a separating unit 6034 configured to separate the user plane data into multiple AxC signals, and upconvert each AxC signal to a designated frequency point;
  • the designated frequency point is a frequency point where the AxC signal is located, and at the specified frequency point, the
  • the signal adjacent to the AxC signal is as close as possible to the signal adjacent to the AxC signal.
  • a third modulating unit 6035 configured to perform high-order modulation on the management control plane data and the synchronization timing data, and upconvert to a specified frequency point to obtain a third modulation signal
  • the designated frequency point is a frequency point where the third modulation signal is located, and at the designated frequency point,
  • the signal adjacent to the third modulated signal and the signal adjacent to the third modulated signal are as close as possible but do not overlap with the signal adjacent to the third modulated signal.
  • the second merging unit 6036 is configured to combine the AxC signals and the third modulation signals into one signal.
  • the sending end and the receiving end may be a BBU and an RRU, respectively.
  • the sending end and the receiving end may also be an RRU and a BBU, respectively.
  • a device for transmitting a CPRI signal by a coaxial line converts a CPRI signal into a parallel data stream, extracts valid data in the data stream by frame parsing, and converts the valid data into a transmittable
  • the analog signal is moved to the specified frequency and sent to the receiving end via the coaxial line.
  • the embodiment of the present invention converts the CPRI signal into a narrow bandwidth analog signal and transmits it through the coaxial line, thereby transmitting the CPRI signal more effectively and improving the utilization of the frequency resources in the coaxial line.
  • the embodiment provides a device for transmitting a CPRI signal through a coaxial line. As shown in FIG. 9, the device includes:
  • a second processing module 901 configured to convert an analog signal sent by the transmitting end through the coaxial line into valid data
  • a synthesizing module 902 configured to synthesize the valid data into a parallel data stream
  • the second conversion module 903 is configured to convert the parallel data stream to form a CPRI signal, and send the signal to the receiving end.
  • the second conversion module 903 can convert the parallel data streams at the physical layer to form a CPRI signal.
  • the second processing module 901 may include:
  • a first decomposing unit 9011 configured to decompose the analog signal into a first signal and a second signal
  • a first demodulating unit 9012 configured to demodulate the first signal to obtain user plane data
  • the adjusting unit 9013 is configured to demodulate the second signal to obtain a management control plane According to and synchronization timing data.
  • the user plane data includes data transmitted between the base station and the terminal, that is, user platform digital baseband (IQ) data;
  • the management control plane data includes physical layer and upper layer operation and maintenance information;
  • the synchronization timing data includes synchronization and timing information.
  • the second processing module 901 may include:
  • a second decomposition unit 9014 configured to decompose the analog signal into a third signal and multiple AxC signals
  • a third demodulation unit 9015 configured to demodulate the third signal to obtain management control plane data and synchronization timing data
  • the combining unit 9016 is configured to combine the multiple AxC signals to obtain user plane data. Further, the synthesizing module 902 is specifically configured to synthesize user plane data, management control plane data, and synchronization timing data into parallel data streams.
  • the sending end and the receiving end are respectively a BBU and an RRU.
  • the sending end and the receiving end may also be an RRU and a BBU, respectively.
  • the apparatus for transmitting the CPRI signal by the coaxial line converts the analog signal sent by the transmitting end through the coaxial line into effective data, and synthesizes the valid data into parallel data streams, and the parallel The data stream is converted to form a CPRI signal and sent to the receiving end.
  • the embodiment of the present invention converts the CPRI signal into a narrow bandwidth analog signal and transmits it through the coaxial line, so that the CPRI signal can be transmitted more effectively, and the utilization rate of the frequency resources in the coaxial line is improved.
  • the apparatus for transmitting a CPRI signal through a coaxial line provided by the embodiment of the present invention can implement the method embodiment provided above.
  • the method and apparatus for transmitting a CPRI signal over a coaxial line provided by an embodiment of the present invention may be adapted to transmit a CPRI signal through a coaxial line, but is not limited thereto.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

通过同轴线传输 CPRI信号的方法及装置 技术领域
本发明涉及通信技术领域, 特别涉及一种通过同轴线传输 CPRI信号的方 法及装置。 背景技术
目前, 随着通信用户数量的日益增加, 以及新的通信标准的日益推广, 基站经常需要扩容, 增加新的制式或频段以提高对用户数量的支持。 CPRI ( Common Publ ic Radio Interface, 通用公共无线接口 )协议是无线通讯基 站中基带单元(Baseband Uni t , BBU )到射频单元( Radio Remote Uni t , RRU ) 之间的通用接口协议,用于无线基站内部无线设备控制中心( Radio Equipment Control , REC )及无线设备 ( Radio Equipment )之间的连接。
在基站扩容过程中, 可以在旧有基站系统上进行升级改造, 重新架设光 纤和电源, 直接使用光纤传输 CPRI信号, 但是, 这种方式需要进行大量的工 程改造, 耗费成本较高。 因此, 为了节省成本, 可以利用旧有的同轴线传输 CPRI信号, 将 CPRI电口信号直接输出, 通过偏置器将直流供电和 CPRI光口信 号转换出的电口信号合路后通过同轴线传输上塔, 之后通过偏置器分路出直 流供电和 C PR I电口信号转换出的光口信号, 将两部分信号送入塔上设备。
在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 利用同轴线传输 CPRI信号时, 占用带宽非常宽, 导致同轴线内剩余的供 其它业务使用的频率资源很少, 频率资源利用率不高。 发明内容
本发明的实施例提供一种通过同轴线传输 CPRI信号方法及装置, 能够提 高同轴线内频率资源的利用率。
本发明实施例釆用的技术方案为:
一种通过同轴线传输 CPRI信号的方法, 包括: 将发送端发出的通用公共无线接口 CPRI信号进行转换形成并行的数据 流;
通过帧解析将所述数据流中有效的数据提取出来;
将所述有效的数据转化为可以发射的模拟信号并搬移到指定的频率, 通 过同轴线向接收端发送。
一种通过同轴线传输 CPRI信号的方法, 包括:
将发送端通过同轴线发送过来的模拟信号转化为有效的数据;
将所述有效的数据合成为并行的数据流;
将所述并行的数据流进行转换形成 CPRI信号, 向接收端发送。
一种通过同轴线传输 CPRI信号的装置, 包括:
第一转换模块, 用于将发送端发出的通用公共无线接口 CPRI信号进行转 换形成并行的数据流;
解析模块, 用于通过帧解析将所述数据流中有效的数据提取出来; 第一处理模块, 用于将所述有效的数据转化为可以发射的模拟信号并搬 移到指定的频率, 通过同轴线向接收端发送。
一种通过同轴线传输 CPRI信号的装置, 包括:
第二处理模块, 用于将发送端通过同轴线发送过来的模拟信号转化为有 效的数据;
合成模块, 用于将所述有效的数据合成为并行的数据流;
第二转换模块, 用于将所述并行的数据流进行转换形成 CPRI信号, 向接 收端发送。
本发明实施例通过同轴线传输 CPRI信号的方法及装置,在发送端,将 CPRI 信号进行转换形成并行的数据流, 通过帧解析将所述数据流中有效的数据提 取出来, 将所述有效的数据转化为可以发射的模拟信号并搬移到指定的频率, 通过同轴线向接收端发送, 在该模拟信号到达接收端之前, 将发送端通过同 轴线发送过来的模拟信号转化为有效的数据, 将所述有效的数据合成为并行 的数据流, 将所述并行的数据流进行转换形成 CPRI信号发送给接收端。 与现 有技术相比, 本发明实施例将 CPRI信号转换为带宽较窄的模拟信号后通过同 轴线进行传输, 从而可以更加有效的传输 CPRI信号, 提高同轴线内频率资源 的利用率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明实施例一提供的方法流程图;
图 2为本发明实施例二提供的方法流程图;
图 3为本发明实施例三提供的方法流程图;
图 4为 CPRI协议的整体框架示意图;
图 5为本发明实施例四提供的方法流程图;
图 6、 图 7、 图 8为本发明实施例五提供的装置结构示意图;
图 9、 图 10、 图 11为本发明实施例六提供的装置结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
为使本发明技术方案的优点更加清楚, 下面结合附图和实施例对本发明 作详细说明。
实施例一
本实施例提供一种通过同轴线传输 CPRI信号的方法, 如图 1所示, 在发送 端, 所述方法包括: 101、 将发送端发出的 CPRI信号进行转换形成并行的数据流。
具体地, 可以将发送端发出的 CPRI信号在物理层进行转换形成并行的数 据流。
102、 通过帧解析将所述数据流中有效的数据提取出来。
103、 将所述有效的数据转化为可以发射的模拟信号并搬移到指定的频 率, 通过同轴线向接收端发送。
其中, 所述发送端可以为 BBU, 所述接收端可以为 RRU; 或者, 所述发送 端为 RRU , 所述接收端为 BBU; 或者, 所述发送端为 REC ( Radio Equipment Control , 无线设备控制中心), 所述接收端为 RE ( Radio Equipment , 无线设 备); 或者, 所述发送端为 RE, 所述接收端为 REC, 但不仅限于此。
本发明实施例通过同轴线传输 CPRI信号的方法, 在发送端, 将 CPRI信号 进行转换形成并行的数据流, 通过帧解析将所述数据流中有效的数据提取出 来, 将所述有效的数据转化为可以发射的模拟信号并搬移到指定的频率, 通 过同轴线向接收端发送。 与现有技术相比, 本发明实施例将 CPRI信号转换为 带宽较窄的模拟信号后通过同轴线进行传输, 从而可以更加有效的传输 CPRI 信号, 提高同轴线内频率资源的利用率。
实施例二
本实施例提供一种通过同轴线传输 CPRI信号的方法, 如图 2所示, 在接收 端, 所述方法包括:
201、 将发送端通过同轴线发送过来的模拟信号转化为有效的数据。
202、 将所述有效的数据合成为并行的数据流。
203、 将所述并行的数据流进行转换形成 CPRI信号, 向接收端发送。
具体地, 可以将所述并行的数据流在物理层进行转换形成 CPRI信号。 其中, 所述发送端可以为 BBU, 所述接收端可以为 RRU; 或者, 所述发送 端为 RRU, 所述接收端为 BBU; 或者, 所述发送端为 REC, 所述接收端为 RE; 或 者, 所述发送端为 RE, 所述接收端为 REC , 但不仅限于此。 本发明实施例通过同轴线传输 CPRI信号的方法, 将发送端通过同轴线发 送过来的模拟信号转化为有效的数据, 将所述有效的数据合成为并行的数据 流, 将所述并行的数据流进行转换形成 CPRI信号发送给接收端。 与现有技术 相比, 本发明实施例将 CPRI信号转换为带宽较窄的模拟信号后通过同轴线进 行传输, 从而可以更加有效的传输 CPRI信号, 提高同轴线内频率资源的利用 率。
实施例三
本实施例提供一种通过同轴线传输 CPRI信号的方法, 在本实施例中, 以 发送端为 BBU、 接收端为 RRU为例, 当然, 本实施例的方法也可以适用发送端 为 RRU、 接收端为 BBU的场景。
在本实施例中, 在发送端设置有与所述发送端连接的第一装置, 在接收 端设置有与所述接收端连接的第二装置; 所述第一装置用于对发送端发出的 信号进行处理, 将处理后的信号发送至第二装置, 所述第二装置用于对所述 第一装置处理后的信号进行处理并发送至接收端。
如图 3所示, 所述方法包括:
301、 第一装置将 BBU发出的 CPRI信号在物理层进行转换, 形成并行的数 据流。
如图 4所示, CPRI协议共分为两层和三个数据面。 Layer 1层为物理层, 包括光口 /电口的规格、 线路的传输速率、 线路的编解码、 帧的格式以及传输 的距离的规定。 可以通过电缆或者双绞线以电信号传输, 也可以通过光纤远 距离传输。 对于线路的传输速率可以从以下几种中选择: 614. 4Mbi t/s、 1228. 8Mbi t/s、 2457. 6Mbi t/s、 3072. 0Mbi t/s、 4915. 2Mbi t/s、 6144. OMbi t/s , 这样链路有更强的灵活性。 在物理层上进行 8B/10B编码, 以保证被编码数据 中有足够的高低电平翻转, 接收端可以从中提取出同步字节。 Layer2层为数 据链路层, 规定了媒体访问控制、 操作维护数据保护以及检错功能等。 三个 数据面分为用户面 ( User Plane )、 控制与维护面 ( Control and Management Plane )和同步面 ( Synchroniza t ion Plane )。 用户面主要承载基站与终端之 间传输的数据, 即用户平台数字基带(IQ )数据,控制与维护面主要承载 Layer 1层和高层的操作维护信息, 同步面主要承载同步和定时的信息。
其中, 所述在物理层进行转换具体包括并串转换;
进一步的, 所述在物理层进行转换还可以包括: 对发送数据进行加扰、 线性编码以及通过驱动器转换为差分信号。
302、 第一装置通过对所述数据流中的数据帧进行帧解析, 由所述数据流 中分离出用户面数据、 管理控制面数据以及同步定时数据。
其中, 所述用户面数据包括基站与终端之间传输的数据, 即用户平台数 字基带 (IQ )数据; 管理控制面数据包括物理层和高层的操作维护信息; 同 步定时数据包括同步和定时的信息。
在传输过程中, 接收端可以根据协议的数据格式将用户面数据、 控制管 理面数据和同步定时数据分离开。 每一基础帧最先连续的 1 / 16数据是同步定 时和控制管理面信息, 后续的 15/ 16数据是用户面数据。
303、 第一装置对所述用户面数据进行高阶调制, 并上变频到指定频点, 获得第一调制信号。
其中, 所述指定频点为该第一调制信号所在的频点, 在所述指定频点上, 所述第一调制信号与该第一调制信号临近的信号尽可能接近但不与该第一调 制信号临近的信号重叠。
其中,所述高阶调制可以为高阶 QAM ( Quadra ture Ampl i tude Modula t ion, 正交振幅调制), 但不仅限于此。
304、 第一装置对所述管理控制面数据和同步定时数据进行高阶调制, 并 上变频到指定频点, 获得第二调制信号。
其中, 所述指定频点为该第二调制信号所在的频点, 在所述指定频点上, 所述第二调制信号与该第二调制信号临近的信号尽可能接近但不与该第二调 制信号临近的信号重叠。 305、 第一装置将所述第一调制信号和第二调制信号合并为一路模拟信 号, 通过同轴线向第二装置发送。
可选的, 所述步骤 305还可以由步骤 305a替换:
305a , 第一装置将所述第一调制信号和第二调制信号合并为一路模拟信 号, 然后利用偏置器(BIAS Tee )将该模拟信号与 BBU发出的电源信号进行合 路, 将合路后的信号通过同轴线向第二装置发送。
306、 第二装置将所述模拟信号分为第一信号和第二信号。
可选的, 当步骤 305由步骤 305a替换时, 所述步骤 306还可以由步骤 306a 替换:
306a , 第二装置利用偏置器将所述合路后的信号分解为模拟信号和电源 信号,将所述模拟信号分为第一信号和第二信号,将所述电源信号向 RRU发送。
307、 第二装置对所述第一信号进行解调, 获得用户面数据。
308、 第二装置对所述第二信号进行解调, 获得管理控制面数据和同步定 时数据。
309、 第二装置将用户面数据、 管理控制面数据以及同步定时数据合成为 并行的数据流。
310、 第二装置将所述并行的数据流在物理层进行转换形成 CPRI信号, 向 RRU发送。
在现有技术中, 利用旧有的同轴线传输 CPRI信号时, 以 2457. 6Mb i t/ s速 率传输 CPRI信号需要占用 4. 9152GHz的带宽; 而利用本实施例的方法传输 CPRI 信号时, 以 2457. 6Mb i t / s速率传输 CPRI信号仅需要占用 287. 5MHz的带宽。 因 此, 釆用本发明实施例的方法, 可以提高同轴线内频率资源的利用率。
本发明实施例通过同轴线传输 CPRI信号的方法, 第一装置将 BBU发出的 CPRI信号在物理层进行转换形成并行的数据流, 通过帧解析将所述数据流中 有效的数据提取出来, 将所述有效的数据转化为可以发射的模拟信号并搬移 到指定的频率, 通过同轴线向第二装置发送, 在该模拟信号到达 RRU之前, 第 二装置将第一装置通过同轴线发送过来的模拟信号转化为有效的数据, 将所 述有效的数据合成为并行的数据流, 将所述并行的数据流在物理层进行转换 形成 CPRI信号发送给 RRU。 与现有技术相比, 本发明实施例将 CPRI信号转换为 带宽较窄的模拟信号后通过同轴线进行传输, 从而可以更加有效的传输 CPRI 信号, 提高同轴线内频率资源的利用率。
实施例四
本实施例提供一种通过同轴线传输 CPRI信号的方法, 在本实施例中, 以 发送端为 BBU、 接收端为 RRU为例, 当然, 本实施例的方法也可以适用发送端 为 RRU、 接收端为 BBU的场景。
需要说明的是, 在发送端设置有与所述发送端连接的第一装置, 在接收 端设置有与所述接收端连接的第二装置; 所述第一装置用于对发送端发出的 信号进行处理, 将处理后的信号发送至第二装置, 所述第二装置用于对所述 第一装置处理后的信号进行处理并发送至接收端。
如图 5所示, 所述方法包括:
501、 第一装置将 BBU发出的 CPRI信号在物理层进行转换形成并行的数据 流。
其中, 所述在物理层进行转换具体包括串并转换;
进一步的, 所述在物理层进行转换还可以包括: 将外部差分信号转化为 串行数据、 将串并转换后的输出进行解码和解扰。
502、 第一装置通过对所述数据流中的数据帧进行帧解析, 由所述数据流 中分离出用户面数据、 管理控制面数据以及同步定时数据。
其中, 所述用户面数据包括基站与终端之间传输的数据, 即用户平台数 字基带 (IQ )数据; 管理控制面数据包括物理层和高层的操作维护信息; 同 步定时数据包括同步和定时的信息。
503、 第一装置将所述用户面数据分离成多路天线载波 AxC信号, 将各路 AxC信号上变频到指定频点。 其中, 所述指定频点为该 AxC信号所在的频点, 在所述指定频点上, 所述 AxC信号与该 AxC信号临近的信号尽可能接近但不与该 AxC信号临近的信号重 叠。
504、 第一装置对所述管理控制面数据和同步定时数据进行高阶调制, 并 上变频到指定频点, 获得第三调制信号。
其中, 所述指定频点为该第三调制信号所在的频点, 在所述指定频点上, 所述第三调制信号与该第三调制信号临近的信号尽可能接近但不与该第三调 制信号临近的信号重叠。
505、 第一装置将所述各路 AxC信号和第三调制信号合并为一路模拟信号, 通过同轴线向第二装置发送。
可选的, 所述步骤 505还可以由步骤 505a替换:
505a、 第一装置将所述各路 AxC信号和第三调制信号合并为一路模拟信 号, 然后利用偏置器(BIAS Tee )将该模拟信号与 BBU发出的电源信号进行合 路, 将合路后的信号通过同轴线向第二装置发送。
506、 第二装置将所述模拟信号分为第三信号及多路 AxC信号。
可选的, 当步骤 505由步骤 505a替换时, 所述步骤 506还可以由步骤 506a 替换:
506a , 第二装置利用偏置器将所述合路后的信号分解为模拟信号和电源 信号, 将所述模拟信号分为第三信号及多路 AxC信号, 将所述电源信号向 RRU 发送。
507、 第二装置对所述第三信号进行解调, 获得管理控制面数据和同步定 时数据。
508、 第二装置将所述多路 AxC信号进行合并, 获得用户面数据。
509、 第二装置将用户面数据、 管理控制面数据以及同步定时数据合成为 并行的数据流。
510、 第二装置将所述并行的数据流在物理层进行转换形成 CPRI信号, 向 RRU发送。
在现有技术中, 利用旧有的同轴线传输 CPRI信号时, 以 2457. 6Mbi t/s速 率传输 CPRI信号需要占用 4. 9152GHz的带宽; 而利用本实施例的方法传输 CPRI 信号时, 以 2457. 6Mbi t/s速率传输 CPRI信号仅需要占用 100MHz的带宽。 因此, 釆用本发明实施例的方法, 可以提高同轴线内频率资源的利用率。
本发明实施例通过同轴线传输 CPRI信号的方法, 第一装置将 BBU发出的 CPRI信号在物理层进行转换形成并行的数据流, 通过帧解析将所述数据流中 有效的数据提取出来, 将所述有效的数据转化为可以发射的模拟信号并搬移 到指定的频率, 通过同轴线向第二装置发送, 在该模拟信号到达 RRU之前, 第 二装置将第一装置通过同轴线发送过来的模拟信号转化为有效的数据, 将所 述有效的数据合成为并行的数据流, 将所述并行的数据流在物理层进行转换 形成 CPRI信号发送给 RRU。 与现有技术相比, 本发明实施例将 CPRI信号转换为 带宽较窄的模拟信号后通过同轴线进行传输, 从而可以更加有效的传输 CPRI 信号, 提高同轴线内频率资源的利用率。
实施例五
本实施例提供一种通过同轴线传输 CPRI信号的装置, 如图 6所示, 所述装 置包括:
第一转换模块 601 , 用于将发送端发出的通用公共无线接口 CPRI信号进行 转换形成并行的数据流;
具体地, 第一转换模块 601可以将发送端发出的 CPRI信号在物理层进行转 换形成并行的数据流;
解析模块 602 , 用于通过帧解析将所述数据流中有效的数据提取出来; 第一处理模块 603 , 用于将所述有效的数据转化为可以发射的模拟信号并 搬移到指定的频率, 通过同轴线向接收端发送。
进一步的, 所述解析模块 602 , 具体用于通过对所述数据流中的数据帧进 行帧解析, 由所述数据流中分离出用户面数据、 管理控制面数据以及同步定 时数据。
其中, 所述用户面数据包括基站与终端之间传输的数据, 即用户平台数 字基带 (IQ )数据; 管理控制面数据包括物理层和高层的操作维护信息; 同 步定时数据包括同步和定时的信息。
可选的, 如图 7所示, 所述第一处理模块 603可以包括:
第一调制单元 6031 , 用于对所述用户面数据进行高阶调制, 并上变频到 指定频点, 获得第一路信号;
其中, 所述指定频点为该第一调制信号所在的频点, 在所述指定频点上, 所述第一调制信号与该第一调制信号临近的信号尽可能接近但不与该第一调 制信号临近的信号重叠。
第二调制单元 6032 , 用于对所述管理控制面数据和同步定时数据进行高 阶调制, 并上变频到指定频点, 获得第二调制信号;
其中, 所述指定频点为该第二调制信号所在的频点, 在所述指定频点上, 所述第二调制信号与该第二调制信号临近的信号尽可能接近但不与该第二调 制信号临近的信号重叠。
第一合并单元 6033 , 用于将所述第一调制信号和第二调制信号合并为一 路信号。
可选的, 如图 8所示, 所述第一处理模块 603可以包括:
分离单元 6034 , 用于将所述用户面数据分离成多路 AxC信号, 将各路 AxC 信号上变频到指定频点;
其中, 所述指定频点为该 AxC信号所在的频点, 在所述指定频点上, 所述
AxC信号与该 AxC信号临近的信号尽可能接近但不与该 AxC信号临近的信号重 叠。
第三调制单元 6035 , 用于对所述管理控制面数据和同步定时数据进行高 阶调制, 并上变频到指定频点, 获得第三调制信号;
其中, 所述指定频点为该第三调制信号所在的频点, 在所述指定频点上, 所述第三调制信号与该第三调制信号临近的信号尽可能接近但不与该第三调 制信号临近的信号重叠。
第二合并单元 6036 , 用于将所述各路 AxC信号和第三调制信号合并为一路 信号。
在本实施例中, 所述发送端和接收端可以分别为 BBU和 RRU , 当然, 所述 发送端和接收端也可以分别为 RRU和 BBU。
本发明实施例通过同轴线传输 CPRI信号的装置, 将 CPRI信号进行转换形 成并行的数据流, 通过帧解析将所述数据流中有效的数据提取出来, 将所述 有效的数据转化为可以发射的模拟信号并搬移到指定的频率, 通过同轴线向 接收端发送。 与现有技术相比, 本发明实施例将 CPRI信号转换为带宽较窄的 模拟信号后通过同轴线进行传输, 从而可以更加有效的传输 CPRI信号, 提高 同轴线内频率资源的利用率。
实施例六
本实施例提供一种通过同轴线传输 CPRI信号的装置, 如图 9所示, 所述装 置包括:
第二处理模块 901 , 用于将发送端通过同轴线发送过来的模拟信号转化为 有效的数据;
合成模块 902 , 用于将所述有效的数据合成为并行的数据流;
第二转换模块 903 , 用于将所述并行的数据流进行转换形成 CPRI信号, 向 接收端发送。
具体地, 第二转换模块 903可以将所述并行的数据流在物理层进行转换形 成 CPRI信号。
可选的, 如图 10所示, 所述第二处理模块 901可以包括:
第一分解单元 9011 , 用于将所述模拟信号分解为第一信号和第二信号; 第一解调单元 9012 , 用于对所述第一信号进行解调, 获得用户面数据; 第二解调单元 9013 , 用于对所述第二信号进行解调, 获得管理控制面数 据和同步定时数据。
其中, 所述用户面数据包括基站与终端之间传输的数据, 即用户平台数 字基带 (IQ )数据; 管理控制面数据包括物理层和高层的操作维护信息; 同 步定时数据包括同步和定时的信息。
可选的, 如图 11所示, 所述第二处理模块 901可以包括:
第二分解单元 9014 , 用于将所述模拟信号分解为第三信号及多路 AxC信 号;
第三解调单元 9015 , 用于对所述第三信号进行解调, 获得管理控制面数 据和同步定时数据;
组合单元 9016 , 用于将所述多路 AxC信号进行组合, 获得用户面数据。 进一步的, 所述合成模块 902 , 具体用于将用户面数据、 管理控制面数据 以及同步定时数据合成为并行的数据流。
在本实施例中, 所述发送端和接收端可以分别为 BBU和 RRU, 当然, 所述 发送端和接收端也可以分别为 RRU和 BBU。
本发明实施例通过同轴线传输 CPRI信号的装置, 将发送端通过同轴线发 送过来的模拟信号转化为有效的数据, 将所述有效的数据合成为并行的数据 流, 将所述并行的数据流进行转换形成 CPRI信号发送给接收端。 与现有技术 相比, 本发明实施例将 CPRI信号转换为带宽较窄的模拟信号后通过同轴线进 行传输, 从而可以更加有效的传输 CPRI信号, 提高同轴线内频率资源的利用 率。
本发明实施例提供的通过同轴线传输 CPRI信号的装置可以实现上述提供 的方法实施例。 本发明实施例提供的通过同轴线传输 CPRI信号的方法及装置 可以适用于通过同轴线传输 CPRI信号, 但不仅限于此。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存 己忆体 ( Random Access Memory, RAM )等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种通过同轴线传输 CPRI信号的方法, 其特征在于, 包括:
将发送端发出的通用公共无线接口 CPRI信号进行转换形成并行的数据流; 通过帧解析将所述数据流中有效的数据提取出来;
将所述有效的数据转化为可以发射的模拟信号并搬移到指定的频率, 通过 同轴线向接收端发送。
2、 根据权利要求 1所述的方法, 其特征在于, 所述通过帧解析将所述数据 流中有效的数据提取出来具体包括:
通过帧解析, 由所述数据流中分离出用户面数据、 管理控制面数据以及同 步定时数据。
3、 根据权利要求 2所述的方法, 其特征在于, 所述将所述有效的数据转化 为可以发射的模拟信号并搬移到指定的频率包括:
对所述用户面数据进行高阶调制, 并上变频到指定频点, 获得第一调制信 号;
对所述管理控制面数据和同步定时数据进行高阶调制, 并上变频到指定频 点, 获得第二调制信号;
将所述第一调制信号和第二调制信号合并为一路信号。
4、 根据权利要求 2所述的方法, 其特征在于, 所述将所述有效的数据转化 为可以发射的模拟信号并搬移到指定的频率包括:
将所述用户面数据分离成多路天线载波 AxC信号, 将各路 AxC信号上变频到 指定频点;
对所述管理控制面数据和同步定时数据进行高阶调制, 并上变频到指定频 点, 获得第三调制信号;
将所述各路 AxC信号和第三调制信号合并为一路信号。
5、 一种通过同轴线传输 CPRI信号的方法, 其特征在于, 包括:
将发送端通过同轴线发送过来的模拟信号转化为有效的数据; 将所述有效的数据合成为并行的数据流;
将所述并行的数据流进行转换形成 CPRI信号, 向接收端发送。
6、 根据权利要求 5所述的方法, 其特征在于, 所述将发送端通过同轴线发 送过来的模拟信号转化为有效的数据包括:
将所述模拟信号分为第一信号和第二信号;
对所述第一信号进行解调 , 获得用户面数据;
对所述第二信号进行解调, 获得管理控制面数据和同步定时数据。
7、 根据权利要求 5所述的方法, 其特征在于, 所述将发送端通过同轴线发 送过来的模拟信号转化为有效的数据包括:
将所述模拟信号分为第三信号及多路 AxC信号;
对所述第三信号进行解调, 获得管理控制面数据和同步定时数据; 将所述多路 AxC信号进行合并, 获得用户面数据。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述将所述有效的数据合 成为并行的数据流具体包括:
将用户面数据、 管理控制面数据以及同步定时数据合成为并行的数据流。
9、 一种通过同轴线传输 CPRI信号的装置, 其特征在于, 包括:
第一转换模块, 用于将发送端发出的通用公共无线接口 CPRI信号进行转换 形成并行的数据流;
解析模块, 用于通过帧解析将所述数据流中有效的数据提取出来; 第一处理模块, 用于将所述有效的数据转化为可以发射的模拟信号并搬移 到指定的频率, 通过同轴线向接收端发送。
10、 根据权利要求 9所述的装置, 其特征在于, 所述解析模块, 具体用于通 过帧解析, 由所述数据流中分离出用户面数据、 管理控制面数据以及同步定时 数据。
11、 根据权利要求 10所述的装置, 其特征在于, 所述第一处理模块包括: 第一调制单元, 用于对所述用户面数据进行高阶调制, 并上变频到指定频 点, 获得第一路信号;
第二调制单元, 用于对所述管理控制面数据和同步定时数据进行高阶调制 , 并上变频到指定频点, 获得第二调制信号;
第一合并单元, 用于将所述第一调制信号和第二调制信号合并为一路信号。
12、 根据权利要求 10所述的装置, 其特征在于, 所述第一处理模块包括: 分离单元, 用于将所述用户面数据分离成多路 AxC信号, 将各路 AxC信号上 变频到指定频点;
第三调制单元, 用于对所述管理控制面数据和同步定时数据进行高阶调制 , 并上变频到指定频点, 获得第三调制信号;
第二合并单元, 用于将所述各路 AxC信号和第三调制信号合并为一路信号。
1 3、 一种通过同轴线传输 CPRI信号的装置, 其特征在于, 包括:
第二处理模块, 用于将发送端通过同轴线发送过来的模拟信号转化为有效 的数据;
合成模块, 用于将所述有效的数据合成为并行的数据流;
第二转换模块, 用于将所述并行的数据流进行转换形成 CPRI信号, 向接收 端发送。
14、 根据权利要求 1 3所述的装置, 其特征在于, 所述第二处理模块包括: 第一分解单元, 用于将所述模拟信号分解为第一信号和第二信号; 第一解调单元, 用于对所述第一信号进行解调, 获得用户面数据; 第二解调单元, 用于对所述第二信号进行解调, 获得管理控制面数据和同 步定时数据。
15、 根据权利要求 1 3所述的装置, 其特征在于, 所述第二处理模块包括: 第二分解单元, 用于将所述模拟信号分解为第三信号及多路 AxC信号; 第三解调单元, 用于对所述第三信号进行解调, 获得管理控制面数据和同 步定时数据;
组合单元, 用于将所述多路 AxC信号进行组合, 获得用户面数据。
16、 根据权利要求 14或 15所述的装置, 其特征在于, 所述合成模块, 具体 用于将用户面数据、 管理控 ^
PCT/CN2010/078307 2010-11-01 2010-11-01 通过同轴线传输cpri信号的方法及装置 WO2011140789A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2810434A CA2810434C (en) 2010-11-01 2010-11-01 Method and apparatus for transmitting cpri signal by means of coaxial line
EP20100851293 EP2600684B1 (en) 2010-11-01 2010-11-01 Method and device for transmitting common public radio interface signals via coaxial line
CN201080003407.XA CN102217412B (zh) 2010-11-01 2010-11-01 通过同轴线传输cpri信号的方法及装置
PCT/CN2010/078307 WO2011140789A1 (zh) 2010-11-01 2010-11-01 通过同轴线传输cpri信号的方法及装置
RU2013118217/07A RU2548676C2 (ru) 2010-11-01 2010-11-01 Способ и устройство для передачи сигнала cpri посредством коаксиальной линии
BR112013009741-8A BR112013009741B1 (pt) 2010-11-01 2010-11-01 Método e aparelho para transmitir sinal cpri por meio de linha coaxial
US13/870,183 US8923759B2 (en) 2010-11-01 2013-04-25 Method and apparatus for transmitting CPRI signal by means of coaxial line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078307 WO2011140789A1 (zh) 2010-11-01 2010-11-01 通过同轴线传输cpri信号的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/870,183 Continuation US8923759B2 (en) 2010-11-01 2013-04-25 Method and apparatus for transmitting CPRI signal by means of coaxial line

Publications (1)

Publication Number Publication Date
WO2011140789A1 true WO2011140789A1 (zh) 2011-11-17

Family

ID=44746782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078307 WO2011140789A1 (zh) 2010-11-01 2010-11-01 通过同轴线传输cpri信号的方法及装置

Country Status (7)

Country Link
US (1) US8923759B2 (zh)
EP (1) EP2600684B1 (zh)
CN (1) CN102217412B (zh)
BR (1) BR112013009741B1 (zh)
CA (1) CA2810434C (zh)
RU (1) RU2548676C2 (zh)
WO (1) WO2011140789A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140789A1 (zh) 2010-11-01 2011-11-17 华为技术有限公司 通过同轴线传输cpri信号的方法及装置
CN103404191B (zh) * 2013-01-18 2017-04-26 华为技术有限公司 数据传输的方法、装置和系统
US10334008B2 (en) 2013-07-04 2019-06-25 Nxp Usa, Inc. Method and device for data streaming in a mobile communication system
WO2015001389A1 (en) * 2013-07-04 2015-01-08 Freescale Semiconductor, Inc. Method and device for streaming control data in a mobile communication system
CN104955087B (zh) * 2014-03-25 2019-03-01 华为技术有限公司 一种无线基站的控制系统及方法、相关设备
CN105207967B (zh) * 2014-05-30 2019-07-12 中兴通讯股份有限公司 混合通信数据的分流方法和系统
US10027413B2 (en) * 2015-06-18 2018-07-17 Futurewei Technologies, Inc. Cascaded waveform modulation with an embedded control signal for high-performance mobile fronthaul
CN106534006A (zh) * 2016-10-25 2017-03-22 孔令斌 一种通用公共无线接口信息的处理系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960231A (zh) * 2005-10-31 2007-05-09 Ut斯达康通讯有限公司 Cpri链路多路复用传输方法及系统
CN101106460A (zh) * 2006-07-11 2008-01-16 杭州华三通信技术有限公司 基于电视同轴线的以太网收发装置
CN101557597A (zh) * 2009-05-21 2009-10-14 华为技术有限公司 一种多模汇聚、合路的方法及装置
EP2232942A1 (en) * 2008-01-17 2010-09-29 Telefonaktiebolaget LM Ericsson (publ) Asynchronous communication over common public radio interface (cpri)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019639A1 (en) * 1998-09-30 2000-04-06 Qualcomm Incorporated Apparatus and method for sending common information on common data channels
CN101106640A (zh) * 2006-07-11 2008-01-16 乐金电子(南京)等离子有限公司 电视接收机的减弱图像干扰的装置及方法
CN101815044A (zh) * 2009-02-20 2010-08-25 北京东方信联科技有限公司 实现以太网数据接入传输的方法
WO2011140789A1 (zh) 2010-11-01 2011-11-17 华为技术有限公司 通过同轴线传输cpri信号的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960231A (zh) * 2005-10-31 2007-05-09 Ut斯达康通讯有限公司 Cpri链路多路复用传输方法及系统
CN101106460A (zh) * 2006-07-11 2008-01-16 杭州华三通信技术有限公司 基于电视同轴线的以太网收发装置
EP2232942A1 (en) * 2008-01-17 2010-09-29 Telefonaktiebolaget LM Ericsson (publ) Asynchronous communication over common public radio interface (cpri)
CN101557597A (zh) * 2009-05-21 2009-10-14 华为技术有限公司 一种多模汇聚、合路的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2600684A4 *

Also Published As

Publication number Publication date
CN102217412A (zh) 2011-10-12
BR112013009741A2 (pt) 2016-07-19
CA2810434C (en) 2016-01-12
RU2548676C2 (ru) 2015-04-20
EP2600684B1 (en) 2015-04-22
BR112013009741B1 (pt) 2021-06-15
EP2600684A1 (en) 2013-06-05
US20130237161A1 (en) 2013-09-12
CA2810434A1 (en) 2011-11-17
CN102217412B (zh) 2014-08-13
US8923759B2 (en) 2014-12-30
RU2013118217A (ru) 2014-12-10
EP2600684A4 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US11968070B2 (en) Technologies for transmitting or receiving an aggregate physical layer protocol data unit
WO2011140789A1 (zh) 通过同轴线传输cpri信号的方法及装置
CN103580703B (zh) 发射电路、收发机、通信系统和发射数据的方法
CN103621035A (zh) 用于处理标准化格式的数字信号的分布式天线系统接口
CN101136811A (zh) Ofdm发射信号处理装置、方法及射频远端单元
US10164731B2 (en) Method for base station backhaul, related device and system for base station backhaul
CN106576267B (zh) 一种数字前传数据的传输方法、设备及系统
CN111372287A (zh) 信号处理方法、接入网设备及多制式接入网设备
CN109417395B (zh) 一种数据发送、接收的方法、设备以及数据传输系统
JP2009171373A (ja) 無線通信ネットワークおよび無線基地局装置および無線通信ネットワークにおける通信方法
CN102195664B (zh) 一种多路微波数字接收机
CN104125189A (zh) 一种适用于e波段通信的帧结构
US20070147486A1 (en) Signal processing within a wireless modem
CN102291741B (zh) 移动终端跨频段无线资源管理一致性测试系统及其方法
CN212876127U (zh) 一种基于cofdm技术的手持式基站
CN204967944U (zh) 具有中国数字音频广播(cdr)接收功能的移动终端
CN107528669B (zh) 数据传输方法及微波传输装置
CN114567927B (zh) 基于cpri的数据传输方法、装置、设备以及存储介质
US20230421417A1 (en) Communication method and communication apparatus
CN202799170U (zh) 一种用于lte与hrpd无线网络移动性交互的装置
Ma et al. Experimental Demonstration of Wireless Multi-relay Transmission Based on USRP Platform
CN115720337A (zh) 无线变频热点覆盖方法和装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003407.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010851293

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2810434

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013118217

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013009741

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013009741

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130422